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1 Introduction

Loop theory is a branch of abstract algebra sitting between group theory, universal algebra
and combinatorics. Its main object—a loop—is, vaguely said, a group without associativity;
more precisely it is an algebra Q with a single binary operation · satisfying

• for all x, y in Q there exists a unique z with x · z = y; (left quasigroup)

• for all x, y in Q there exists a unique z with z · x = y; (right quasigroup)

• there exists a (unique) element 1 in Q such that x · 1 = 1 · x = x, for all x ∈ Q. (neutral
element)

From the combinatorial point of view, a loop is a latin square with the first row and the
first column prescribed. From the universal algebraic point of view, it is useful to define
companion operations / and \; a loop is then an algebra (Q, ·, /, \, 1) satisfying

1 · x = x, (x · y)/y = x, (x/y) · y = x,
x · 1 = x, x\(x · y) = y, x · (x\y) = y.

These division operations have to be taken into account when constructing subloops and
congruences.

Loops share some properties with groups, e.g. the work with congruences: in group
theory we work with normal subgroups instead of congruences. The same principle applies
for loops—given a homomorphism from a loop to a loop, all preimages of elements are
copies of the preimage of 1 and this subset turns out to be a subloop called the kernel. And
a subloop is called normal if it is a kernel of some homomorphism; we shall, later on, give
another characterisation of normal subloops.

There are several other notions that can be naturally pulled from group theory into loop
theory but most of group properties fail to hold in loops. Consider, for instance, one of the
smallest non-associative loops:

1 2 3 4 5
1 1 2 3 4 5
2 2 1 5 3 4
3 3 4 1 5 2
4 4 5 2 1 3
5 5 3 4 2 1

(1)

This is a loop of order 5 where every element has order 2. Hence we see that even Lagrange’s
property does not hold for loops in general (some orders of subloops do not divide the order
of the loop), let alone that the order of an element itself needs not be defined in some loops.

1 Loops of Bol-Moufang type

In order to obtain stronger structural results, researchers usually focus on narrower classes
of loops, usually such classes that contain all the groups. The most famous class of loops are
Moufang loops, which satisfy one of the four following equivalent identities:

x · (y · (x · z)) = ((x · y) · x) · z, (x · y) · (z · x) = (x · (y · z)) · x,
(x · y) · (z · x) = x · ((y · z) · x), y · ((x · z) · x) = ((y · x) · z) · x.

(2)
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1 Introduction §1.2

This class was first studied by Ruth Moufang on the example of octonions: the multiplication
operation of octonions is not associative anymore but it turns out to satisfy (2). Other
examples are code loops that are used to construct some error-correcting codes or Parker’s
loop that was used to construct the Monster group.

Moufang loops form the best-known class of loops. Nevertheless, some of the results
needed lots of efforts, for instance, the Lagrange property for Moufang loops was proved
as late as 2005, by A. Grishkov and A. Zavarnitsine [16] and independently by J. Hall and
S. Gagola III [10]. Both the proofs needed the classification of simple groups which is itself
a highly non-trivial result.

Another example of a famous loop class are so called Bol loops, defined by the identity

x · (y · (x · z)) = (x · (y · x)) · z.

Examples are, e.g., all Moufang loops. These loops are power-associative, that means, all
mono-generated subloops are groups. Hence it makes sense to define xk, for any integer k.

If Bol loops satisfy also
(x · y)−1 = x−1y−1,

then they are called Bruck loops or K-loops. They are found naturally in several settings, for
instance in Einstein’s relativity theory. Bruck loops play a prominent rôle in the loop theory
because of the work of G. Glauberman [11]: suppose that (Q, ·) is a Moufang loop such that
the squaring x 7→ x2 is a bijection. Then (Q, ◦) with x ◦ y =

√
xy2x is a Bruck loop sharing

many properties with the Moufang loop (Q, ·). Hence many Moufang loop properties were
first proved for Bruck loops and then pushed to the Moufang world.

2 Permutation groups on loops

In loops, a crucial structure is so called multiplication group, which is a permutation group
acting on the loop. We define left and right translations as follows:

La : x 7→ ax, Ra : x 7→ xa.

and, for a loop Q, the multiplication group is

Mlt(Q) = 〈La,Ra; a ∈ Q〉 .

An important subgroup of the multiplication group is the inner mapping group, defined
as

Inn(Q) = Mlt(Q)1 = {α ∈Mlt(Q); α(1) = 1}.

In groups, the inner mapping are just conjugations, i.e. inner automorphisms, and therefore
all inner mappings are automorphisms. In loops, it is usually not so, for instance the
5-element loop shown in (1) has 12 automorphisms and 24 inner mappings.

A loop Q is called automorphic if every inner mapping is an automorphisms. An
automorphic loop can be also defined equationally as a loop satisfying

(x · y)\(x · (y · (u · v))) = ((x · y)\(x · (y · u))) · ((x · y)\(x · (y · v))), (3)
(((u · v) · x) · y)/(x · y) = (((u · x) · y)/(x · y)) · (((v · x) · y)/(x · y)), (4)

x\((u · v) · x) = (x\(u · x)) · (x\(v · x)). (5)
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1 Introduction §1.3

The meaning of these identities is the following: the inner mapping group is generated be
the mappings

Lx,y = L−1
xy LxLy, Rx,y = R−1

xy RyRx, Tx = L−1
x Rx.

Then (3) ensures that Lx,y is a homomorphism, (4) ensures that Rx,y is a homomorphism and
(5) ensures that Tx is a homomorphism.

The automorphic property is important because of the following reason: a subloop of a
loop Q is normal if and only if it is preserved by every inner mapping. A subloop is called
characteristic if it is preserved by every automorphism. In groups, every characteristic
subgroup is normal and fractions over characteristic subgroups are very important tools. In
loops, characteristic subloops need not be normal, unless we work with automorphic loops.

Examples of characteristic subloops are the left, middle and right nuclei:

Nλ(Q) = {a ∈ Q; a · (x · y) = (a · x) · y, ∀x, y ∈ Q},
Nµ(Q) = {a ∈ Q; x · (a · y) = (x · a) · y, ∀x, y ∈ Q},
Nρ(Q) = {a ∈ Q; x · (y · a) = (x · y) · a, ∀x, y ∈ Q}.

Another example is the center:

Z(Q) = {a ∈ Nλ(Q) ∩Nµ(Q) ∩Nρ(Q); a · x = x · a, ∀x ∈ Q}.

It is easy to see that the center consists of those elements fixed by every inner mapping and
hence the center is always normal unlike nuclei that are often abnormal.

3 History of automorphic loops

The study of automorphic loops commenced in the 50’s by the pioneer work of R. Bruck and
L. Paige [5]. They established main properties of automorphic loops:

• they are power-associative, that means one-generated subloops are associative; we
can therefore define xk, for any k, and the notions of element order and loop exponent
make sense;

• Nλ(Q) ⊆ Nµ(Q) and Nρ(Q) ⊆ Nµ(Q); actually Nλ(Q) = Nρ(Q) but it has beed proved
just recently.

The autors constructed several non-trivial examples too and, last but not least, they tackled
the following question: are diassociative (every two-generated subloop is a group) auto-
morphic loops Moufang? Bruck and Paige managed to prove only a few partial results.
Several years later, J. M. Osborne [28] gave an affirmative answer in the commutative case,
identifying thus the class of commutative diassociative automorphic loops and the class of
commutative Moufang loops.

In the next several decades, only some minor results appeared till the era of computers.
Finally, in 2002 M. Kinyon, K. Kunen and J. D. Phillips [24] solved Bruck’s and Paige’s ques-
tion for all diassociative automorphic loops. A part of the proof was computer generated—it
was one of the first non-artificial problems solved by an automated prover. The reason why
the result could not be proved earlier without computers is probably the nature of identities
(3)–(5). For humans, they are difficult to work with but computers treat every identity the
same way, no matter whether it is ugly or nice.
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1 Introduction §1.3

The modern era of automorphic loops started in April 2008 during my visit at Denver
University; together with local professors P. Vojtěchovský and M. Kinyon we focused on
commutative automorphic loops (CAL). We constructed many new examples of CAL and we
discovered new structural properties of finite CALs. The most important was the discovery
that a finite CAL splits as the product of an odd order CAL and a 2-loop, which is of order
2k. The proof involved a lemma with a computer generated proof. The proof was then
translated into a human language so, at the end, the computer intervention is not visible
in the paper; however it would be extremely difficult to find the proof directly without a
computer aid.

Now the study of finite CALs falls into two branches: we managed to use the idea
Glauberman had for Moufang loops and we connected finite CALs of odd order with Bruck
loops and then we pushed many properties of Bruck loops back to CALs. The 2-loop case
did not offer any such shortcut but we found a few properties anyway. The structural results
of our work are thus [19]:

• anti-automorphic inverse property, i.e. (x · y)−1 = y−1
· x−1,

• Lagrange’s theorem for CALs,

• existence of subloops of order p, for any prime p dividing the order of the loop,

• existence of Sylow p-subloops,

• existence of Hall Π-subloops,

• solvability of odd order loops.

We continued the cooperation during my stay in Denver two years later when we proved
nilpotency of finite p-loops, for every odd prime p [21].

Paralelly with the structural research we were constructing examples of CALs to streng-
then or disprove hypotheses we were making [20]. The smallest non-trivial examples have
8 elements, one of them having trivial center, showing that nilpotency of finite p-loops
cannot be extended to p = 2. Using several techniques we constructed and enumerated all
CALs up to size 31. None of them was simple, which opened the question of existence of
a non-associative simple finite CAL. The structural results implied that such a simple loop
would be of exponent 2, if it exists.

The question of existence of a simple finite automorphic loop then attracted the attention
of several researchers. First, K. Johnsson, M. Kinyon, G. Nagy and P. Vojtěchovský [23]
performed an exhaustive computer search proving that no non-associative automorphic
loop smaller that 2500 is simple and no commutative non-associative automorphic loop
smaller that 212 is simple. For non-commutative loops, the result was extended to 4096
by P. Cameron and D. Leemans; in the commutative case, A. Grishkov, M. Kinyon and
G. Nagy [14] proved, using deep results about Lie algebras, that every finite CAL is solvable
and therefore not simple.

In the meantime, I was studying examples of CAL. Our paper with M. Kinyon and
P. Vojtěchovský brought many examples of 2-loops but only one construction of odd or-
der loops, namely some CALs of order p3. Later on D. A. S. de Barros, A. Grishkov and
P. Vojtěchovský [3] showed by an exhaustive calculation that this list of CALs of order p3 is
complete.
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1 Introduction §1.3

Another construction of odd order CALs was presented by A. Drápal [9] but the construc-
tion was not very transparent—it was not even clear which orders admit the construction,
apart of sizes 3k, for k odd. We analysed the construction together with D. Simon [22] and we
managed to translate it into a more accessible setting. It turned out that Drápal’s extension
of a commutative ring R (for R � Zn or R a field) by Zk exists if and only if there exists an
element ζ of order k lying either in R∗ or in a quadratic extension of R; moreover in the latter
case the norm of ζ has to be 1. How to construct such a quadratic extension is well-known
for fields but needs some non-trivial number theory knowledge for R � Zn. In particular,
starting with the field Zp, for p odd, this construction yields loops of order kp if and only if
k | (p − 1) or k | (p + 1). We also conjectured that all CALs of order pq, for p, q primes, can be
constructed in this way; this hypothesis may be confirmed soon with the recent classification
of Bruck loops of the same order [26].

Most constructions of CAL presented in the literature have something in common: they
are semidirect products of the middle nucleus and an abelian group. J. Hora and me [17]
decided to study this situation and we discovered that the semidirect product in this case has
some features common with the group semidirect product, namely an inner automorphism
glueing the groups. Only in CAL case, the mapping ϕ in K oϕ H is the inner mapping Lx,y
– and not Tx as in groups – and therefore we need two parameters to describe the product.
Moreover, in the group case the mapping ϕ : K → Aut(H) has to be a homomorphism,
whereas in the CAL case the mapping ϕ : K2

→ Aut(H) needs not to be bilinear; actually
the conditions are a little bit weaker. Anyway, if ϕ happens to be a bilinear form, this case
is now completely understood. Furthemore, the case of |K| being odd was studied in the
subsequent paper [18], where I completely described the specific cases of |K| = 3 and |K| = 5.

The area of commutative automorphic loops is flourishing now; there are several papers
having appeared, not only from the authors already mentioned but also from P. Csörgő [6,
7, 8], M. Aboras [1, 2], M. Greer [12] and others. There are also results on non-commutative
automorphic loops, among which the most important is the paper by M. Kinyon, K. Kunen,
J. D. Phillips and P. Vojtěchovský [25] – the authors showed that automorphic loops of odd
orders can be associated with Bruck loops, analogously as in the commutative case. Very
little is known about the even order. Since this case covers, for instance, all the symmetric
groups, we cannot expect as strong results as in the commutative case, but still there is a lot
of space for further investigation.
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