
BACHELOR THESIS

Patŕıcia Lakatošová

Taxi system front-end

Department of Distributed and Dependable Systems

Supervisor of the bachelor thesis: doc. RNDr. Tomáš Bureš, Ph.D.
Study programme: General Computer Science

Study branch: Computational linguistics

Prague 2018

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

I would like to thank my supervisor for his comments, advices, efficient commu-
nication and understanding. My special thanks belongs to my fiancé who was
with me in the toughest moments and despite it all decided to marry me. I could
not forget my roommate who struggled through the same and worse and still
managed to make my life less miserable. My sincere gratitude goes to Taxi Ali
Mladá Boleslav for invaluable insight on inner management of a taxi company
with a lot of practical advice and plenty of consultations. Last but not least I
want to thank my family for their support and patience and especially my uncle
Dominik for his review and commentary.

ii

Title: Taxi system front-end

Author: Patŕıcia Lakatošová

Department: Department of Distributed and Dependable Systems

Supervisor: doc. RNDr. Tomáš Bureš, Ph.D., Department of Distributed and
Dependable Systems

Abstract: In this thesis we implement front-end of a taxi system. It is based
on our knowledge of how a local taxi company operates and is intended to be
used by them to manage orders and staff. It is composed of web applications
for dispatching and drivers, and a PWA for customers. We developed it using
the newest technologies - Angular 6. Focus was centered on separating logic in
services from design in components and reusability of code. We greatly eliminated
the need for typed input from driver compared to other applications therefore
increasing customer’s safety. Since maps are a big part of all our applications we
made them comfortable to use. Overall this system automates ordering process
and lowers demands on dispatchers.

Keywords: taxi system, front-end, web application, Angular, PWA

iii

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Existing applications . 5

1.2.1 Uber . 5
1.2.2 Modrý anděl . 5

1.3 Goals . 5
1.4 Outline . 6

2 Problem structure 7
2.1 Roles . 7
2.2 Objects . 7

2.2.1 Order . 8
2.2.2 Employee . 9
2.2.3 Car . 10
2.2.4 Customer . 10

3 Detailed analysis 11
3.1 Dispatching application . 11

3.1.1 Login . 11
3.1.2 Create new order . 11
3.1.3 Latest orders . 11
3.1.4 Scheduled orders . 12
3.1.5 My phone orders . 12
3.1.6 Edit profile . 12
3.1.7 Notifications . 12
3.1.8 Cars . 12
3.1.9 Employees . 12
3.1.10 Order history . 13

3.2 Driver application . 13
3.2.1 Login . 13
3.2.2 New order . 14
3.2.3 Arriving . 14
3.2.4 Arrived . 14
3.2.5 Picked up customer . 14
3.2.6 Finished order . 14

3.3 Customer application . 15
3.3.1 Login . 15
3.3.2 Registration . 15
3.3.3 Forgotten password . 15
3.3.4 Start selection . 16
3.3.5 Finish selection . 16
3.3.6 Standard order confirmation 16
3.3.7 Airport order confirmation 17
3.3.8 Driver’s arrival . 17
3.3.9 Order cancellation . 17

1

3.3.10 Scheduled orders . 18

4 Technical analysis 19
4.1 Web application technology . 19

4.1.1 Angular . 19
4.1.2 Vue . 19
4.1.3 React . 20
4.1.4 Selecting Angular . 20

4.2 Native application technology . 20
4.2.1 NativeScript . 20
4.2.2 PWA . 20

4.3 Libraries . 21
4.3.1 Angular Material . 21
4.3.2 Google Material Icons . 21
4.3.3 Angular Google Maps . 21
4.3.4 Communication with server 21

5 Architecture 22
5.1 Modules . 22
5.2 Components . 22
5.3 Services . 24
5.4 Project structure . 24

6 Implementation 26
6.1 Dispatching application . 26

6.1.1 Login . 26
6.1.2 Create new order . 27
6.1.3 My phone orders . 28
6.1.4 Latest orders . 28
6.1.5 Scheduled orders . 29
6.1.6 Notifications . 29
6.1.7 Edit profile . 30
6.1.8 Cars . 30
6.1.9 Edit car . 31
6.1.10 Employees . 32
6.1.11 Employee profile . 33
6.1.12 Order history . 34

6.2 Driver application . 35
6.2.1 Choose car . 36
6.2.2 No orders . 37
6.2.3 New order . 38
6.2.4 Arriving . 39
6.2.5 Arrived . 40
6.2.6 Fraud . 41
6.2.7 Picked up customer . 42
6.2.8 Enqueued orders . 43
6.2.9 Break . 44

6.3 Customer application . 45
6.3.1 Login . 45

2

6.3.2 Registration . 46
6.3.3 Forgotten password . 47
6.3.4 Start selection . 48
6.3.5 Standard order confirmation 49
6.3.6 Airport order confirmation 50
6.3.7 Driver’s arrival . 51
6.3.8 Scheduled orders . 52
6.3.9 Reusing message component 53

7 Evaluation 54
7.1 Testing . 54
7.2 Meeting goals . 54

Conclusion 56

Bibliography 57

List of Figures 58

List of Abbreviations 59

A Appendix 60

3

1. Introduction
People have always had a desire to travel. Since cars were invented, traveling
became easier, faster and more comfortable. However, you don’t always have
your car around when you need to transfer and that’s where taxi steps in. It has
been around for a while now but it has barely changed the way it works. With
all the technology available these days a significant improvement in complexity,
comfort and user experience can be achieved.

In this thesis, we create a front-end for taxi system consisting of dispatching,
driver and customer application that offers an easy way to manage orders for
a local taxi company and thus enables them to provide better service for their
customers. It is designed to meet company’s requirements and support smooth
transmission from current application-free state. This application communicates
with back-end implemented by a different student in a separate bachelor thesis.

Through this application we want our dispatchers to be able to create and
manage orders as well as check the history in case of need. Our drivers want to
see their orders queue with any changes that may happen in a clear and simple
style without distraction. Customers would like to create an order easily and
quickly, and receive more information on their driver.

1.1 Motivation
Mladá Boleslav, where targeted taxi company operates, is an area with very low
unemployment rates therefore if employers want to offer better services, they have
very little leverage on their employees to perform better. A good dispatcher has
to know the city thoroughly and be able to make an accurate prediction of arrival
time. Someone with these qualifications is very hard to find in this area. Using
our application nearly anybody can be hired and the only skill they ”need” is to
get familiar with our application. It can calculate arrival time more accurately
and display it to the customer even with updates in case of unexpected changes.

This step makes dispatcher’s job much easier what leads to smaller number
of dispatchers needed to process the same amount of orders. We aim to minimize
the need for dispatchers and thus boost the profit while keeping the quality.

Additionally, they cannot process more orders at one time than there are
dispatchers present. Customers often have to wait on hold to be served for a long
time and most likely they decide to call a different taxi company although we
still might have free drivers for the job. Our application takes the burden off of
the telephone lines and enables creating orders in parallel.

Current state of communication between dispatchers and drivers is alarming.
Assigning orders as well as accepting them, canceling and changing is arranged
using Facebook Messenger. Customers complain on feeling unsafe when their
drivers type while driving. It often escalates to chatting with other drivers and
confusion on dispatcher’s side. We can bring more safety to our streets limiting
this entire communication to a few quick taps on a button.

Ultimately, local taxi companies as we know them are being challenged by
global players like Uber that adapted to online world more quickly. If they don’t
catch up their end is inevitable. This may not seem like a bad thing at first but

4

it will only support American economy at the expense of our own and absence of
competition will yield higher prices and lower quality.

1.2 Existing applications
Naturally, some applications has already been created in an attempt to auto-
mate the process of creating orders. However, since they have developed in a
commercial and highly competitive environment, they are protected by trade se-
cret which keeps us from being able to observe or compare their approach to the
problem. The only publicly available part is usually customer application. In this
section we analyze and compare our application with some of the most significant
applications in this field.

1.2.1 Uber
Uber is an an American ridesharing company that operates in 633 cities worldwide
at the time of writing Ube [2018]. It consists of driver and customer application
where anybody can sign up to be a driver. Unquestionably they had developed
high quality application but with a different idea in mind. They are dependent on
ordinary people willing to wake up and become Uber driver for that day and their
prices change depending on supply and demand. We want to keep the stability
of taxi service with constant supply of drivers and fixed prices. Additionally we
are keeping the option to create an order by calling dispatching for people who
prefer it for various reasons.

1.2.2 Modrý anděl
Modrý anděl is a taxi company operating in Prague with a customer application
most similar to what we are creating. We got inspired by some good ideas from
them and found a different solution for parts that were less user friendly. Main
improvements include better integration of airport orders, overall simpler navi-
gation, easier address selection on map, and more modern design. We also used
newer technology allowing it to run on both Android and iOS as progressive web
app (PWA), in a web browser as a standard web application and even on desktop
as Windows application.

1.3 Goals
The goal of our thesis is to create front-end for taxi system. It will provide
all basic functionality needed by a common taxi company. We will create three
applications - for drivers, dispatchers and customers.

• Each application is designed for a specific device and our design will cor-
respond to that. Dispatching application is designed for desktops because
dispatchers sit in the office with one or two monitors where they like to
view all the information they need systematically arranged on large screens.
This application also has the most features and information that needs to

5

be displayed so fitting it on a small screen would be inappropriate and
overwhelming for the user. Driver and customer applications, on the other
hand, will be viewed almost exclusively on mobile devices so we will make
them easy to use with simple navigation.

• In the process of choosing technology we will focus on the cross-platform
options. We want all of our customers to be able to view it but each of
them has a different device with a different operating system. In order for
our application to be used, we need it to work well on as many devices as
possible. We will choose technology we will consider the most helpful in
achieving this.

• We aim to increase safety of customers. Our driver application will mini-
mize driver’s input needed allowing them to focus on driving more. It will
simplify navigation and have no typing required on the road. More driver
input will be required only at time when the vehicle is expected not to be
moving.

• During the past three years of our bachelor studies we have learnt the
importance of clean structuring and creating reusable parts of code. We
have discovered how one can save a lot of time just by spending a little
more on thinking it through. We will now use this knowledge in practice
and implement it in this complex project. Our goal is not to repeat big
chunks of code and structure components in an easily apprehensible way.
Our application will be easily extensible and maintainable for the future.

1.4 Outline
In the beginning we introduced our project and explained the motivation behind
it. We compared it to related projects and set up our goals.

Chapter 2 discovers what roles and objects will be needed to describe our
problem and what properties should they contain.

Chapter 3 analyzes our problem into depth and creates use cases. It defines
basic flows and shapes what our application will look like. It is the most important
part to avoid confusion during development.

Chapter 4 sums up our technological options and explains why given tech-
nologies were chosen. It also lists libraries used.

Chapter 5 shows the architecture of our project and how Angular shaped it.
It further describes what are the building blocks of an Angular application.

Chapter 6 presents screenshots of our three applications and comments on
their implementation. It explains the most complex parts and show how user
navigates between them.

Chapter 7 evaluates our final product. It looks back on the goals we set and
whether we managed to reach them. It also re-evaluates the technology choice.

In Conclusion we sum up our work and lay out the possibilities for new fea-
tures.

6

2. Problem structure
This chapter analyzes real-world problem into more technical structure than can
be implemented and establishes naming conventions for different objects and
actions used in the project. It is the result of pre-implementation stage when
we tried to simplify the problem and differentiate roles, objects, and actions.

Our project consists of three applications:

• dispatching application

• driver application

• customer application

Different entities can be associated with one or more applications depending
on who has the right to use them.

2.1 Roles
Our analysis led us to establish 5 roles:

• administrator

• dispatcher

• driver

• registered customer

• unregistered customer

Dispatcher, driver and customer are derived intuitively from the project struc-
ture.

Administrator is the only role that can edit and manage other roles. It has
the same privileges as dispatcher but can also edit other dispatchers, customers,
drivers and cars.

We decided to split customers into two roles based on registration. Main rea-
son is that when a customer is not registered, they have different rights on what
features they can use and what information they see. Additionally, registered
users provide us with more information that we can use to skip unnecessary steps
in order creation. Customers are identified by their phone number so when an
unregistered customer registers in the application, even orders created in unreg-
istered state will appear in their history.

One person can posses multiple roles, only registered and unregistered cus-
tomers are mutually exclusive.

2.2 Objects
In this section we will describe most common objects needed in this project and
what properties we need to store in them.

7

2.2.1 Order
Order is the most complex object. Although it could be simplified for the needs
of this project we decided not to because there is much useful information that
we can benefit from in the future after some statistical data had been collected.

There are 3 main types of orders:

• standard

• scheduled - order created earlier for a specified time in the future

• airport - from/to the airport (driver adjusts time to the delay of the plane)

Order has several states it can appear in but only in order specified by diagram
2.1.

Figure 2.1: Order status

For each order we store this information:

• id

• status - one of statuses listed in 2.1

• driver - who drove this order

• dispatcher (only when order was created by phone call) - who created this
order

• vehicle - that was used for this order

• customer

• start - latitude and longitude location, address, date and time when driver
started working on this order (both estimated and final)

8

• finish - latitude and longitude location, address, date and time when driver
finished order (original estimate, current estimate, final)

• picked up - time when customer was picked up (original estimate, current
estimate, final)

• arrived - time when driver arrived on starting point selected by customer
(original estimate, current estimate, final)

• passenger count

• note - form customer to driver

• contact telephone - only when it is different from the phone on which the
order was made

• VIP - boolean for luxury services

• estimated price

• scheduled pick up at - time and date of scheduled order

• source - created in customer application or through dispatching

• flight number - airport order only

• explicitly chosen driver - not the fastest driver was chosen

• time of creation and last update of this order

Storing our original and current time estimates for different stages of an order
helps us evaluate how good is our system in predicting these times and it can
later be improved to shorten waiting times.

2.2.2 Employee
Employee is a driver, dispatcher, administrator or any combination of these. They
all need to have these properties:

• id

• name

• image

• email

• employee roles - an array of roles the employee has; may contain: driver,
dispatcher, admin

9

2.2.3 Car
A car object needs to have these properties:

• id

• name - describes car brand

• image - base64 encoded picture of the car

• plate

• max-persons - maximum number of people that can be transported by this
car (excluding driver)

• available - true if car can be used for driving (e.g. not currently in repair)

• driver-id - id of driver currently using this car or null if not in use

2.2.4 Customer
We need this information about each customer:

• id

• phone number

• name - not required for unregistered customers

• note - internal note written by dispatchers about a customer (e.g. ’changes
his mind very often’)

• token - authentication token assigned with each login

10

3. Detailed analysis
In this chapter we separate what to do from how we do it. Since our application
has broad functionality we need to analyze its flow in enough detail not to let
our user do things that were not intended. Fully describing our functions before
programming them will help us gain an overview of the application as a whole
and plan its user interface (UI) better. It also speeds up the programming process
because we do not have to think about what is next or how should we handle
errors. We can analyze it using standard use cases for each of our applications.

3.1 Dispatching application
In all use cases user represents dispatcher or administrator, unless stated other-
wise.

3.1.1 Login
Basic flow: User enters email and password and presses ’Login’ button.
Exception flows: Invalid credentials, inform user that login failed.
Post-conditions: Application routes to Create new order screen.

Following actions are available only after a successful login.

3.1.2 Create new order
Basic flow: User enters customer’s phone number. A request is sent to server
that loads customer’s details (e.g.name). User enters start and destination on
the map or selects airport icon if it is an airport order. Optionally, VIP mode
can be selected or date and time can be set in case of scheduled order. Fastest
driver will be calculated based on start and finish address and it can be changed
by dispatcher if desired. In case of scheduled order, driver can be picked from a
list of all drivers.
Exception flows: Inputs with invalid values will be highlighted.
Post-conditions: Order is confirmed and appears in selected driver’s queue or
in scheduled orders table.

3.1.3 Latest orders
Basic flow: User can see a table of orders divided into three parts:

1. Ongoing orders

2. Orders waiting to be process (they are in some driver’s queue but not on
the first place)

3. Last orders that had been finished

Row contain orders and column represent details like driver, car, type, start and
finish, status etc.

11

3.1.4 Scheduled orders
Basic flow: User sees a table with scheduled orders and can change assigned
driver or cancel the order.

3.1.5 My phone orders
Basic flow: At all times dispatcher will have a list of orders process by him
displayed on a side panel. For each order they will see assigned driver, customer’s
number and name (if known), estimated arrive time and delay. User should inform
the customer in case of a significant delay.
Exception flows: User should be notified if this list fails to refresh.

3.1.6 Edit profile
Basic flow: User can change their name, password and picture.
Exception flows: Empty name and short password is not permitted.

3.1.7 Notifications
Basic flow: User clicks on a notification icon and a list with notifications rolls
down. A notification can be of these types:

• A scheduled order in the near future does not have a driver assigned or
assigned driver is not on shift.

• Driver complains that their customer is not present on the start.

• A customer with history of fraud created an order.

When new notification arrives, it is emphasized with a sound effect. To remove
a notification from the list user has to mark it as solved.

3.1.8 Cars
Actors: administrator only
Basic flow: User views a list of all cars. They can edit and remove cars. To
add a new car, user has to supply an image and specify plate, number, maximum
number of passengers, name and availability.
Exception flows: User cannot mark a car that is currently in use as unavailable.
Invalid input are highlighted.

3.1.9 Employees
Actors: administrator only
Basic flow: User can view a list of all dispatchers and drivers and click on them
for more information. They can deactivate user or add a new one. For a new user
their email, full name, picture and roles have to be entered. After creating new
employee they will receive an email with activation link where they can choose
password.
Exception flows: Invalid values are highlighted.

12

3.1.10 Order history
Basic flow: User can view orders for an arbitrary time period. For each order
they will see:

• driver and vehicle

• start and finish

• order creation time

• customer

• note

• type - application or phone call

• time of important events

Exception flows: Check whether the time period is valid.

3.2 Driver application
Except login, all following actions describe various states that the application
goes through. At any state, driver sees a short menu with a few simple actions
available at the top of the screen. These 3 quick actions include:

• Phone icon to call dispatching.

• An icon to plan a break at the end of their order queue. No more orders
will be assigned to this driver and their break will start after they finish
remaining orders. During the break, there will be a button to end the break.
Upon tapping this button, driver can receive new orders again. To optimize
arrival times, orders from other drivers’ queues can be reassigned to this
driver.

• Logout icon - user will be logged out and all their orders will be reassigned
to remaining drivers. User should not log out when their queue is non-
empty unless it is an emergency. To end shift, user should plan a break,
finish remaining orders in the queue and only then log out.

In all use cases user represents driver.

3.2.1 Login
Identical as in dispatching application. The only difference is that after the login
user has to choose a car he drives from the list of available cars in order to start
a shift. After starting shift, an order queue is created for the driver where they
receive order. Following actions represent first order in the queue, the rest of the
queue can be viewed by scrolling down.

13

3.2.2 New order
Basic flow: Appears as a pop-up covering entire screen. Shows start location
on a map, customer’s name and note. User can accept or reject the order. When
accepted and no orders are in the queue, order will be marked as arriving and
order details will be displayed.
Alternate flows: When there are some orders in the queue, user’s current order
will appear on screen and new order will be displayed on the bottom of the order
queue.
Exception flows: When user does not react to new order for a long period of
time, it will be reassigned to a different driver.

3.2.3 Arriving
Preconditions: User accepted the order.
Basic flow: User sees current order’s customer, note and start location on a map.
Current estimate of arrival time is displayed and user can regulate it using simple
plus and minus buttons according to current traffic or unexpected complications.
Exception flows: At any time customer can cancel the order, user is notified
about it and next order from the queue appears. If customer canceled an order
in the queue, user is notified and order disappears from the queue.
Post-conditions: Upon arriving to the start user taps on ’Arrived on start’.

3.2.4 Arrived
Preconditions: User arrived on start.
Basic flow: User is waiting for the customer. They see the customer’s name,
note, and start location as before. When customer arrives, user taps on ’Customer
picked up’.
Alternate flows: Customer is not showing up. User taps on ’Notify dispatching’
and waits for them to respond. If it takes too long, user can mark the order as a
fraud and proceed to next order in the queue.

3.2.5 Picked up customer
Preconditions: Customer got in the vehicle.
Basic flow: User views a map with finish location along with details about the
customer. They can edit finish location in case user chose not to enter it or it was
entered incorrectly. Arrival time to finish can be adjusted using plus and minus.
This serves to adjust arrival times for next orders in the queue. After arriving to
the destination, user marks this order as finished.
Exception flows: Order cannot be marked as finished if finish location is not
entered.

3.2.6 Finished order
Preconditions: User dropped the customer off at the destination.
Basic flow: Next order from the queue is given arriving state.

14

Alternate flows: User does not have more orders in queue; waiting screen
appears until new order arrives.

3.3 Customer application
In all use cases arbitrary customer represents user unless stated otherwise.

3.3.1 Login
Preconditions: User started application without having logged in previously or
after logging out.
Basic flow: User enters phone number and password and presses ’Log In’ button.
Alternate flows: User decides not to log in and presses ’Continue without login’
button or does not have an account and presses ’Register’ button.
Exception flows:

• Entered credentials are invalid. User will be notified by changing the invalid
control’s color to red.

• User forgot password. User presses corresponding button and continues to
Forgotten password screen.

Post-conditions: Application routes to a screen where he can select order type,
view his scheduled orders or sign out.

3.3.2 Registration
Preconditions: User selected Register on login screen.
Basic flow: User fills in full name, phone number, password and password con-
firmation and presses ’Register’. They receive SMS message with verification code
which they enter into application to confirm registration.
Exception flows:

• Inputs turn red if entered values are invalid.

• User did not receive SMS code; they can ask for it to be resent.

• Registration is unsuccessful if user with given phone number already exists.

Post-conditions: User is forwarded to login screen where he can log in and
continue.

3.3.3 Forgotten password
Preconditions: User selected Forgotten password on login screen.
Basic flow: Application asks for phone number to which it sends verification
SMS code. After entering it new password can be typed in.
Exception flows:

• Inputs turn red on invalid phone number format, incorrect SMS code or if
entered passwords do not match.

15

• User can ask to have the verification code resend if they haven’t received it.

Post-conditions: User will be forwarded to login screen.

3.3.4 Start selection
Preconditions: User selected standard order, or airport order with direction to
the airport.
Basic flow: User sees a map with their location (if known) and they can change
it by moving the map or entering an address. Application will autocomplete
addresses from Google maps and user’s favorite locations (if logged in). Button
to return to user’s current location will be present.
Exception flows:

• When user’s location is unknown, map will center on default location.

• User will not be allowed to continue unless they select an address within
specified area.

Post-conditions: In standard order they will proceed to select finish location,
on airport order it will be sent to server and a message will be displayed to wait
for confirmation from driver.

3.3.5 Finish selection
Preconditions: User selected start location in standard order, or chose airport
order with direction from the airport.
Basic flow: User selects finish location on a map as in Start selection.
Alternate flows: User may decide to skip this step in standard order.
Exception flows: Finish must be in designated area as in Start selection.
Post-conditions: User proceeds to confirm standard order or send airport order.

3.3.6 Standard order confirmation
Preconditions: User selected start location and finish location.
Basic flow: Application shows:

• Fastest driver and car for the order. User can change it by clicking on
the driver and selecting from a list of available drivers with their cars and
arrival times.

• Minutes it will take for selected car to arrive to given start location.

• Start and finish address

• Number of people (editable, default is 1)

• Contact phone number (editable, default is user’s number if known)

• Scheduled order toggle - when checked, date and time for the order can be
chosen

16

• Note for the driver (editable)

• Estimated price (registered users only)

User can edit and check given details and send the order.
Alternate flows: When scheduled order is selected, driver selection will not be
possible.
Exception flows:

• Scheduled order cannot be planned for earlier than when some driver is
available.

• If selected driver becomes unavailable at the time of sending the order, user
will be notified and drivers’ times will be updated.

• Number of passengers cannot exceed the capacity of the car.

Post-conditions: Order is send and message is displayed to user to wait for
confirmation from the driver.

3.3.7 Airport order confirmation
Actors: logged in user
Preconditions: User selected airport order.
Basic flow: User fills in date and time, flight number, number of passengers,
contact phone number, note for driver (optional), and direction (to/from the
airport).
Exception flows: Invalid values will be highlighted.
Post-conditions: User proceeds to choose start/finish.

3.3.8 Driver’s arrival
Preconditions: User sent the order, driver confirmed it and is heading to start
location.
Basic flow: User can watch driver’s location on map refreshed periodically.
Car’s plate and current estimate of arrival time are displayed below. When driver
arrives, user is notified. Until then, user can cancel the order at any time. When
user begins the ride, they can see their estimated time to the final destination.
Exception flows:

• If driver changes for any reason, car plate will be updated.

• If user does not show up at start, order is canceled, marked as fraud and
user is notified about it.

Post-conditions: When order is marked as finished, user is thanked and offered
and option to create new order.

3.3.9 Order cancellation
Preconditions: User clicked on ’Cancel’ button before driver arrived.
Basic flow: Request is sent to server about cancellation.
Post-conditions: Message about success of this request is displayed.

17

3.3.10 Scheduled orders
Actors: logged in customer
Preconditions: User clicked on ’Scheduled orders’ in order selection menu.
Basic flow: User can view their scheduled orders with start, finish, and driver
assigned (if any) and cancel them.

18

4. Technical analysis
This chapter describes the decision making on the technological side. The quality
of our application also depends on what technology we choose to use. However this
decision is not easy and has significant consequences on the rest of development
process. Therefore we must inspect our options thoroughly.

Each of our applications has a different purpose so we need to consider them
separately. Dispatching application needs to run on desktop computers while
actively interacting with server. Creating it as web application instead of desktop
application will allow dispatchers to work from home as well what will make hiring
dispatchers easier for the taxi company.

Driver application on the other hand targets mobile devices so we could con-
sider creating a native application. However we require it to run on all phones
because we need all our drivers to be able to use it. Therefore we once again
decided to create it as a web application.

Customer application also targets mobile devices but this time we are satisfied
if vast majority of users can view it. Therefore we would like it to be more native
so the customers do not have to remember the URL but they can have it in their
phone in a form of an application.

4.1 Web application technology
For our web applications there are 3 most popular frameworks/libraries that we
explored - Vue, React and Angular. We will look at their pros and cons and
explain why we decided to choose or not to choose given framework.

4.1.1 Angular
Angular is a TypeScript-based open-source web application platform released
by Google in 2016 (after its predecessor AngularJS). We like that, since it is
a platform, it takes care for the entire front-end including routing, dataflow,
etc. With typescript being an opinionated language it shares some similarities
with the language we learnt during our studies - C#. It also has very detailed
documentation for the platform itself Ang [2018a] as for various libraries it offers.
It supports reusing components, PWA, two-way data binding and separating logic
in services from design in components.

4.1.2 Vue
Vue is an open-source JavaScript framework released in 2014. It was inspired by
AngularJS and shares some of its concepts. Its advantages compared to other
frameworks are its fast performance and how lightweight it is. However, it still
has significantly smaller community than the other two frameworks. Lately some
programmers have raised complaints about its performance in bigger projects
Insights [2018].

19

4.1.3 React
React is a JavaScript library released by Facebook in 2013. It has gained pop-
ularity and is now used the most among these Insights [2018]. It is designed to
be just a smaller core to which various libraries can be added if needed. It has
steeper learning curve than Angular Neuhaus [2017] but a larger community of
contributors.

4.1.4 Selecting Angular
Since we would like our application to be sustainable in the future, we prefer
technologies with larger communities.

React is targeted more on experienced web developers who are looking for
a better technology but since we had absolutely no experience with web devel-
opment before starting this project, it appeared more confusing. Additionally,
from previous experiences we know that a lot of time is wasted on choosing the
right library to use, often discovering its pitfalls half-way in implementation. This
prolongs the development process and frustrates the programmer.

Although both React and Angular are very capable, reasons stated above
made us select Angular. We used the newest version available at the time which
was Angular 5 (and updated the project to Angular 6 when it was released).

4.2 Native application technology
For our customer application we are looking for a native technology. To create a
native application we would need to code at least one for Android and one for iOS
to cover majority of phones. This is too complicated and it would be an overkill
because our application does not need a lot of processing power. Native-like
application that runs both operating systems would be a best choice.

4.2.1 NativeScript
NativeScript framework seemed like a natural continuation for mobile platform.
It supports Angular so we could use our previously gained knowledge and have a
native-like application without the need to learn a completely new language. At
the beginning of the project this was what we decided to use. However, during
the development of the first two application a new technology became available -
progressive web applications (PWAs).

4.2.2 PWA
From the beginning, PWAs were considered a breakthrough in mobile develop-
ment. A developer only creates a web application as they normally would but
with addition of service worker and a manifest in can be saved as a native ap-
plication. No installation is required and a service worker caches data so the
application does not need to be loaded from scratch every time, it can show push
notifications and load updated content in the background and therefore run of-
fline as well. The same application can still run in a browser for the users that did

20

not add it to their home screen yet. All this is supported by Angular so it did not
take us long to figure out this technology will be even better for our application
than NativeScript.

During the development of web applications a new version of Angular was
released, so Angular 6 was used for PWA.

For coding we chose Visual Studio Code because it is available for both Win-
dows and Linux and has good autocomplete plugins.

4.3 Libraries
In the section we describe libraries we chose to use in our project. We do not
provide reasoning because Angular offers only one library for each functionality.
There are some third-party libraries but they are not integrated as well and may
not be updated as often therefore we decided not to use them.

4.3.1 Angular Material
Angular Material Ang [2018b] is the library we use the most throughout the
project. It provides material styled components and theming that can be man-
aged globally for the whole application. By supplying several palettes from the
list, components are styled in these colors creating soothing look without much
effort and the color can be changed any time. It offers a wide range of compo-
nents to choose from and is easily imported. Its undeniable advantage is detailed
documentation with examples.

4.3.2 Google Material Icons
Google offers wide range of icons that are supported by Angular Material and
can be added as an HTML tag. We used this icons Goo [2018a] in our project to
simplify navigation.

4.3.3 Angular Google Maps
Maps are used a lot in our application so we need a library that adds Google maps
into our application. This is not an official Angular library but there are only
two third-party libraries for this feature and this one has significantly simpler
syntax and more users. Communication with Google Maps is via Javascipt API
provided by Google Maps Goo [2018b].

4.3.4 Communication with server
Communication with server is implemented as HTTPS requests using REST API.
Request’s body is in JSON format with desired data.

21

5. Architecture
This chapter explains the architecture of our code. During the development we
were trying to implement Angular’s best practices to achieve clean structure and
comfortable maintenance even in a bigger project.

5.1 Modules
An NgModule is a container for a cohesive block of code dedicated to an appli-
cation domain, a workflow, or a closely related set of capabilities Ang [2018a].
Basically, modules can contain components and services that are related or serve
similar purpose. Structuring our code into modules helps make our applications
faster because Angular can lazy load modules. For example, when user wants to
look at drivers, there’s no need to load order module since it has nothing to do
with drivers - Angular knows it and loads only driver module.

In each application there is one root module called AppModule. All the
other modules are called feature modules and are included in AppModule as
child modules. Launching the application means bootstrapping the root module.

Any module is basically a class decorated with @NgModule decorator. It can
export components it contains or import an exported component from a different
module.

5.2 Components
A component controls and adds logic to a part of application called view. It is
also a class just like module only it is decorated with @Component decorator.
Each Angular component consists of 4 files:

1. An HTML file describing view’s structure.

2. A CSS file adding styles to the view.

3. A TS file describing logic of the view like button presses or lifecycle hooks.

4. An optional TS file for tests.

Component’s HTML file does not contain pure HTML. It is enriched with
Angular template syntax like directives, pipes and data binding. Directives like
*ngIf and *ngFor hide or generate components. It does not simply label the
component as hidden; it completely removes it from DOM. Pipes transform data
like date and time to desired format. In two-way data binding, Angular combines
property binding and event binding as shown in figure 5.1.

22

Figure 5.1: Component two-way data binding

A useful feature is that CSS styles affect only given component without af-
fecting its children components. Lifecycle hooks allow you to execute code on
components initialization or when the component is destroyed.

Components communicate between each other using @Input and @Output
decorators. @Input allows passing a parameter into the component while @Out-
put decorates an EventEmitter which creates an event on value change of the
child’s property, as illustrated in figure 5.2

Figure 5.2: Parent-child binding

Component’s TS file contains metadata that define which template belongs
to the component, which service are needed and how the component can be
referenced in HTML. Referencing one component in other component’s template
allows us to nest components in each other as showed in figure 5.3.

Figure 5.3: Component tree

23

5.3 Services
Angular’s services take care of complicated logic and communication with the
server. Each service needs to register at least one provider. Providers can be
registered on different levels - in a component, feature module or a root module.
This level determines how big of a scope shares the same instance of the service.
A service therefore can act as a singleton data holder for multiple components.
Service is added to the component in the constructor using dependency injection.

5.4 Project structure
In our project we created modules mostly similar to what objects we have. Our
dispatching and driver application contains these feature modules:

• car - components to view, edit and select cars

• driver - component to view drivers

• general - global error handling component and interceptors

• map - two different map components

• menu - dispatching and driver menus

• order - dispatching and driver order managing components

• reusable - useful components used in different modules

• user - components concerning employees and authentication

Our customer PWA consists of these modules (with similar content):

• authentication

• general

• map

• order

• reusable

In figure 5.4 we show how is our project structured. We enclosed all compo-
nents belonging to the module in its folder with each component in a separate
folder. Services provided by the module are grouped in shared folder.

parent-child-binding

24

Figure 5.4: Module folder structure

25

6. Implementation
This chapter goes into details of implementation, describing problems we encoun-
tered and how we approached them. It gives an overview of all applications using
screenshots and explains some key features in them.

6.1 Dispatching application

6.1.1 Login

Figure 6.1: Dispatching and driver login

To enter the application, login is necessary. It is the same for dispatchers and
drivers.

As shown in figure 6.1, user enters email and password which are then sent
to server. If given credentials are correct, server responds with user’s details and
a token which is saved in local storage. It is later added into header of every
outcoming request to authorize it. This is done using Angular’s interceptors.
They intercept each request and add the token if it’s present.

In case user attempts to access other routes without logging in, router navi-
gates them back to login screen. In case user is already logged in, they are routed
to main menu automatically. To achieve this we implemented Angular’s route
guards which check whether user should be allowed to open requested url before
it is loaded.

26

6.1.2 Create new order

Figure 6.2: Dispatching - create new order

Figure 6.2 displays the standard screen that a dispatcher uses when they want
to create new order while talking to a customer on the phone. They first copy
customer’s phone number into the input. Input dynamically validates it and sends
a request to the server when a valid phone number is entered. If the customer
had previously made an order using our system, their details (e.g. name) will be
downloaded and filled in.

In the next step, dispatcher enters start and finish location using map or
address input. On the map, marker is fixed in map’s center while map can be
dragged. On drag finish, address is filled in for the place that the marker is
pointing to. When entering address using input, Google Places Autocomplete
is used to hint addresses while typing (Love [2018]). Choosing places as well as
autocomplete are limited to a larger rectangular area surrounding Mladá Boleslav.

Optionally, number of passengers can be changed, or a note or VIP can be
added. A scheduled order can be created by filling in date and time.

After start and finish are chosen, dispatcher click on ’Select driver’ which
triggers a request to server where the arrival times for each driver are calculated.
Dispatcher then selects driver according to customer’s preference.

Only now can dispatcher ’Confirm order’. This triggers form validation. Form-
Builder is used to create FormGroup from controls and add validators to them.
Angular offers some basic validators like ’required’, ’minLength’, etc. For phone
number, ’pattern’ validator is used which validates it using regex. Inputs are val-
idated dynamically - while user types, input turns red and shows error message
when the input is invalid. These validators are all evaluated when the form is
submitted. if it’s invalid, faulty entries are highlighted and form does not get
submitted.

27

When airport order is desired, dispatcher selects airport icon in upper right
corner what triggers adding a flight number input and airport icons to start and
finish. On selecting one of these icons, default airport address is filled in. Only
one airport icon can be selected at a time. On form submission, custom validator
checks whether exactly one airport icon is selected and only then allows the form
to be submitted.

6.1.3 My phone orders
Orders that were created by dispatcher and are not yet finished are displayed on
the right side (as shown in figure 6.2) at all times. They are polled from server
every 10 seconds and driver, customer, and delay time are displayed. Order
changes color when the delay increases above trigger amount to signal dispatcher
that they should inform the customer about the delay.

6.1.4 Latest orders

Figure 6.3: Dispatching - latest orders

Navigating to the next item on the menu, we can look at latest orders as shown
in figure 6.3. Since the three tables we can see here have nearly all columns sim-
ilar, we decided to create one component we can reuse for all tables. Which
columns to display and what orders to load are the only parameters this com-
ponent consumes. They are declared with @Input decorator inside the child
component.

We used Angular Material Table to display orders in. It additionally supports
pagination and number of items per page. Since it is a useful feature we decided

28

to implement it in communication with server.

6.1.5 Scheduled orders

Figure 6.4: Dispatching - scheduled orders

Figure 6.4 additionally shows how the menu looks when users click on the
menu icon in the upper left corner. The lowest icon triggers logout and deletes
user’s token from local storage.

This component loads data about scheduled orders from the server and dis-
plays it in a table. It also contains an actions column were a garbage icon can
be clicked to remove an order. It will generate a pop-up dialog where dispatcher
can confirm their choice to remove the order. In drivers column, driver can be
selected or changed for the order using a select component. It communicates the
change to the server using a service and selects them only if the request succeeds.

6.1.6 Notifications

Figure 6.5: Dispatching - notifications

A notification icon is displayed in the upper right corner with a badge showing
the number of unread notifications. When user clicks on it, a list of notifications
pops up as illustrated in figure 6.5. Each notification describes the issue in a
short message. A check button is present to mark the issue as resolved (after
dispatcher contacts the customer, driver, etc.). After resolving, the corresponding
notification disappears from the notification tray. Notification tray is updated in
the background by pulling from the server every 10 seconds. It shows maximum
of 100 last received notifications, including more is considered unnecessary.

29

6.1.7 Edit profile

Figure 6.6: Dispatching - edit profile

Each employee can view their profile and edit it. To change their profile
picture, an invisible input of type ’file’ is used, triggered with the press of the
button. To change their password the same form validation as mentioned before is
used. Only this time a custom validator is added to validate two controls at once
- it checks whether the two entered passwords match. It validates it dynamically
so the user can see it while typing.

6.1.8 Cars

Figure 6.7: Admin - cars

This icon in the menu is available only for an administrator account. Cars are
loaded to the table and additional actions can be performed. Administrator can
delete a car what triggers a dialog to make sure they did not click it accidentally.

30

Car can be edited by clicking on the pencil icon or made unavailable for rides by
unchecking the green checkbox.

A new car can be added in the following form. We created a reusable compo-
nent to choose the picture. On selecting new picture, white rectangle is replaced
with the picture. A red cross is added in the corner to delete the picture and
choose a different one if needed. Form validates dynamically and on submission
as described in previous screenshots. New car immediately appears in the table.

6.1.9 Edit car

Figure 6.8: Admin - edit car

When user decides to edit car, a form prefills with current information about
the car. User may edit it and then hit ’Save changes’. The form from ’add new
car’ is reused so the validation stays the same.

31

6.1.10 Employees

Figure 6.9: Admin - employees

This component is only available for administrator. It loads employees into
the table and they can be deleted or edited similarly as in the car table. A new
employee can be added and their roles need to be selected. Image selector is reused
from previous components. Form is validated and a request with new employee
is sent. Server sends an email with activation link where the new employee can
set their password. Link contains a token to identify the user. After entering new
password as shown in 6.10, we send a request with new password and this token
to the server. Without completing this step, new employee cannot log in.

Figure 6.10: Dispatching - password confirmation

32

6.1.11 Employee profile

Figure 6.11: Admin - edit employee

This component provides equivalent functionality as edit car only for employ-
ees.

33

6.1.12 Order history

Figure 6.12: Dispatching - order history

Order history implicitly loads the newest finished orders. A different time
period can be selected using Angular Material Datepickers. A custom validator
is implemented that does not allow to choose an older to-date than from-date.
Datepicker contains a filter that does not allow user to select a day in the future.

34

6.2 Driver application
A basic overview of driver application and its routing is shown in figure 6.13.

Figure 6.13: Driver application lifecycle

35

6.2.1 Choose car

Figure 6.14: Driver - choose car

After logging in, driver needs to choose which car they will be driving. Avail-
able cars are pulled from the server and displayed. Driver can choose a car by
clicking on it. Application then sends a request to start the shift with selected
vehicle. Since the start of the shift, driver’s application constantly sends driver’s
location coordinates to server. This allows customers to watch their driver.

36

6.2.2 No orders

Figure 6.15: Driver - no orders

This is the default when no orders are available. In the quick menu in the
toolbar, driver can log out, go on a break or call dispatching.

Logout should be used only when no orders are available - driver should plan
a break ahead before logging out. However, driver can still log out in case of
emergency situations and their orders will be redistributed to remaining drivers.

Going on a break is implemented as planning ”break” as last order in the queue
and not allowing anything else to be planned from that moment on. Driver’s break
starts when they finish last order in the queue.

37

6.2.3 New order

Figure 6.16: Driver - new order

When new order arrives, a notification is displayed in a dialog covering entire
screen. Order details are shown and start location is displayed on a map using
fixed marker. Driver has to accept or reject the order using simple icons.

38

6.2.4 Arriving

Figure 6.17: Driver - arriving

Driver starts the order on this screen. They can see the start location on a
map and estimated arrival time. They can adjust this time using plus and minus
buttons. These adjustments are immediately communicated to the server so the
customer can see an updated arrival time. Driver has an option to focus the map
on their location using the button in the upper right corner of the map. Upon
arrival to start location, pressing the ’Arrived’ button will send a request to the
server which further notifies the customer about it.

39

6.2.5 Arrived

Figure 6.18: Driver - arrived

Since this view is very similar to the previous one, we reused the same com-
ponent only displaying different controls using *ngIf and *ngSwitch. Driver can
now signalize to server whether the customer was present on the start location
or not. From this point on, customer cannot cancel the order.

40

6.2.6 Fraud

Figure 6.19: Driver - fraud

We again reused the same component. Driver can now continue to the next
order by marking this one a fraud. Server will then inform the customer that
their order was canceled due to their absence. If the customer does show up,
order continues.

41

6.2.7 Picked up customer

Figure 6.20: Driver - picked up customer

Again, we used the same component and even reused the time modifier com-
ponent. Map component became editable, since finish may not be entered. When
finish is known, it is marked on the map by a static marker. To change it, driver
can tap on pencil icon, what causes address input to become editable. It also
changes the static marker to a marker floating over the center of the map. Driver
can now move the map to make the it point on the correct finish location. They
can also change it in the address input, with help of autocomplete. When driver
finishes editing, they need to confirm the position by clicking on the check icon.
Check icon turns back into pencil icon and finish location is marked by a static
marker.

We considered adding navigation for the driver but agreed it might become a
disadvantage. If drivers would not be forced to remember the roads and plan their
route, they would only simply drive on the route recommended by the application.
We would therefore loose the human element and our drivers would no longer be
considered the professionals that know all the shortcuts better than anyone.

If driver tries to finish the order before filling in the finish location, they will
be shown an error message in a snackbar.

42

6.2.8 Enqueued orders

Figure 6.21: Driver - enqueued orders

Driver can view their other enqueued orders simply by scrolling down. Cur-
rent order always covers the entire screen but the rest of the order queue is
displayed under it. Order queue is pulled from the server every 30 seconds using
a TimerObservable.

43

6.2.9 Break

Figure 6.22: Driver - break

When driver planned a break and has no orders in the queue, this component
shows up instead of ’no orders’ component. However, they are both part of menu
component, displayed using *ngIf.

44

6.3 Customer application
Following section describes customer application using screenshots.

6.3.1 Login

Figure 6.23: Customer - login

This login is similar to the login in previous application, the difference is that
it validates for phone number and contains more router links.

45

6.3.2 Registration

Figure 6.24: Customer - registration

A registration form with validation. When valid values are sent to the server,
it sends an SMS message to given phone number. We show a dialog window
where this code can be entered or user can ask to send it again. If a valid code
is entered, registration is confirmed and application routes to login.

46

6.3.3 Forgotten password

Figure 6.25: Customer - forgot password

Forgotten password behaves similarly to registration. It asks for phone num-
ber and receives confirmation code using SMS.

47

6.3.4 Start selection

Figure 6.26: Customer - choose start

User is asked to select start on the map. Selecting reuses the map component
from driver’s application. It is reused again to select finish location.

48

6.3.5 Standard order confirmation

Figure 6.27: Customer - confirm standard order

A request is sent to server to calculate arrival times of drivers. The fastest
driver is shown with their arrival time. User can change the driver by clicking on
it. A list of drivers with their arrival times is shown and user can click on desired
driver.

Selected start and finish address are viewed for the customer to review. Addi-
tional order details can be provided. When user toggles scheduled toggle, a date
and time selection appears. Upon tapping ’Send’ button, form is validated and
order is sent only if it is valid.

49

6.3.6 Airport order confirmation

Figure 6.28: Customer - confirm airport order

Order details are the first step of airport order creation process. Since it is
only available for registered users, phone number is pre-filled. Customer fills in
flight number and date. Toggle indicates whether the airport is the start location
or finish. According to toggle selection, next step is either choosing start or finish.
Location selection is the same as in standard order. After location is selected,
order is sent.

50

6.3.7 Driver’s arrival

Figure 6.29: Customer - watch driver arrive

When driver starts this order, customer is shown a map with car icon repre-
senting the location of the driver. Driver’s location is polled from the server as
well as order details shown below it. Until driver arrives, customer can cancel
the order.

When driver arrives, this screen transforms. Option to cancel the order dis-
appears and information about arrival is shown.

When driver picks up the customer, estimated time to finish is show.
At the end, a thank note is shown to the customer.

51

6.3.8 Scheduled orders

Figure 6.30: Customer - scheduled orders

Registered users can see an overview of their scheduled orders when they select
it in the menu at order selection. Details of each order is shown along with an
option to cancel the order. After the driver is selected it is shown to the user.
When the driver start their shift, car is added too.

52

6.3.9 Reusing message component

Figure 6.31: Customer - order finished

We created a simple component containing a message and a button. It is
reused in customer application for various messages. It is implemented using
parent-child component communication. It always resides in a parent that passes
in the parameters and implements click events.

53

7. Evaluation
After implementing our applications, we need to test them and evaluate whether
they fulfill our requirements.

7.1 Testing
We tested our applications on Chrome version 66.0.3359.170. PWA was addition-
ally tested on Lenovo P70 with Android version 5.1.

To test our application we made use of detailed use cases we created in the
beginning. We tested each application on all of its use cases to ensure it fulfills
all the criteria and behaves as expected. Boundary values were tested during
development and only randomly tested in the final testing since there is too
many of them.

We tested our applications on a screen size it was designed to be used for.
We executed main testing for mobile screens on iPhone 5 (in Chrome) since it
is the smallest screen size available therefore we can expect more problems to
occur there. Occasionally, we tried a different screen to make sure it behaves as
expected too.

PWA was tested on a physical phone to ensure it can run independently as
native mobile application, runs reasonably fast and caches screens as planned.

Backend provided a generator to create one year’s order history with em-
ployees and customers which allowed us to test our application under more real
conditions.

All our tests ensured that our application is ready for testing in real traffic
and help taxi companies modernize their businesses.

7.2 Meeting goals
Looking back at the goals we set in the beginning, we can conclude they were all
successfully met.

We believe we made a good choice picking Angular. It really seems to be a
language that meets the developer half way and makes their job less painful. It
also simplified our transition to PWA as it provided great build-in support for it
and generated service workers needed.

Choosing PWA was a very good step towards having our applications cross-
platform. Although it is only supported by Android at the time of writing, iOS
claims to be working on implementing it and promises to release it soon. Many
bigger companies like Aliexpress or Google Photos have already released a PWA
version of their application. During the development process we encountered
many expert opinions saying it is the future of applications. Additionally, it is
responsible for a much better performance of our customer application thanks to
caching and pre-loading.

We successfully styled our applications to fit the desired screen sizes. We tried
to add scaling and wrapping of components for a smaller screen everywhere we
thought it might be needed.

54

Our driver application successfully relieves driver of all typing. The only
typing element is map’s address input which can be fully replaced using map
gestures. Nevertheless, if used, it is most probably at a time when vehicle is
stopped - when driver picks up customer or finishes the order.

We humbly consider our final code to be well structured. Once again we be-
lieve it is mainly thanks to Angular, TypeScript and their detailed documentation
and best practices. We successfully created multiple larger reusable components
controlled by parameters.

55

Conclusion
We successfully implemented a complete taxi system front-end with three ready-
to-use applications for automation of ordering process. All required functionality
was accomplished using the newest technologies. We believe our application will
serve well in real traffic providing customers with intuitive and comfortable expe-
rience. We are looking forward to improve it further based on user reviews after
we set it up for local taxi company.

Future
There is certainly a lot of space for extensions and new features to add to our
applications. Some ideas we seriously consider for the future are:

• Login with Facebook or Google

• New types of orders

• Order reviews/evaluation

• Using machine learning to calculate better transfer times

Although Angular tests were not a part of our implementation, test files were
added to all components. Optionally, tests can be added if needed for all appli-
cations.

There might be a need to translate our customer application to different
language so that even foreign customers can use our services. Angular offers
Internationalization tools to make translations easier. However, so far interna-
tionalization is only implemented for messages in HTML templates therefore it
is not possible to use to translate error messages shown at runtime. Angular
team promises to add this feature to the next release. Therefore we implemented
internationalization for template messages so far. When the feature is released,
error messages can be translated and our PWA can become fully international.

56

Bibliography
Angular, June 2018a. URL https://angular.io/.

Angular Material, 2018b. URL https://material.angular.io/.

Icons - Material Design, 2018a. URL https://material.io/tools/icons/
?style=baseline.

Maps JavaScript API, 2018b. URL https://developers.google.com/maps/
documentation/javascript/tutorial.

How does uber work, 2018. URL https://www.uber.com/en-CZ/ride/.

Cuelogic Insights. Angular vs React vs Vue: A 2018 compar-
ison, January 2018. URL http://www.cuelogic.com/blog/
angular-vs-react-vs-vue-a-2018-comparison/.

Brian Love. Angular 2+ google maps places autocomplete,
April 2018. URL http://brianflove.com/2016/10/18/
angular-2-google-maps-places-autocomplete/.

Jens Neuhaus. Angular vs. React vs. Vue: A 2017 compari-
son, August 2017. URL https://medium.com/unicorn-supplies/
angular-vs-react-vs-vue-a-2017-comparison-c5c52d620176.

57

https://angular.io/
https://material.angular.io/
https://material.io/tools/icons/?style=baseline
https://material.io/tools/icons/?style=baseline
https://developers.google.com/maps/documentation/javascript/tutorial
https://developers.google.com/maps/documentation/javascript/tutorial
https://www.uber.com/en-CZ/ride/
http://www.cuelogic.com/blog/angular-vs-react-vs-vue-a-2018-comparison/
http://www.cuelogic.com/blog/angular-vs-react-vs-vue-a-2018-comparison/
http://brianflove.com/2016/10/18/angular-2-google-maps-places-autocomplete/
http://brianflove.com/2016/10/18/angular-2-google-maps-places-autocomplete/
https://medium.com/unicorn-supplies/angular-vs-react-vs-vue-a-2017-comparison-c5c52d620176
https://medium.com/unicorn-supplies/angular-vs-react-vs-vue-a-2017-comparison-c5c52d620176

List of Figures

2.1 Order status . 8

5.1 Component two-way data binding 23
5.2 Parent-child binding . 23
5.3 Component tree . 23
5.4 Module folder structure . 25

6.1 Dispatching and driver login . 26
6.2 Dispatching - create new order . 27
6.3 Dispatching - latest orders . 28
6.4 Dispatching - scheduled orders . 29
6.5 Dispatching - notifications . 29
6.6 Dispatching - edit profile . 30
6.7 Admin - cars . 30
6.8 Admin - edit car . 31
6.9 Admin - employees . 32
6.10 Dispatching - password confirmation 32
6.11 Admin - edit employee . 33
6.12 Dispatching - order history . 34
6.13 Driver application lifecycle . 35
6.14 Driver - choose car . 36
6.15 Driver - no orders . 37
6.16 Driver - new order . 38
6.17 Driver - arriving . 39
6.18 Driver - arrived . 40
6.19 Driver - fraud . 41
6.20 Driver - picked up customer . 42
6.21 Driver - enqueued orders . 43
6.22 Driver - break . 44
6.23 Customer - login . 45
6.24 Customer - registration . 46
6.25 Customer - forgot password . 47
6.26 Customer - choose start . 48
6.27 Customer - confirm standard order 49
6.28 Customer - confirm airport order 50
6.29 Customer - watch driver arrive . 51
6.30 Customer - scheduled orders . 52
6.31 Customer - order finished . 53

58

List of Abbreviations
AoT Ahead of Time compilation
API Application programming interface
CLI Command line interface
CSS Cascading style sheets
DOM Document Object Model
HTML Hyper-text markup language
ID unique identification number
PWA Progressive web application
REST Representational state transfer
TS Typescript
UI User Interface
URL Uniform Resource Locator

59

A. Appendix
In the following part we describe how to build and run the source code submitted.

Source code contains two folders:

• customer-pwa: PWA application for customers

• web-dispatching-drivers: driver and dispatching web application

To run these applications, following steps are necessary:

1. Install Node.js version 8.x or greater.

2. Install npm version 5.x or greater.

3. Run following command to install Angular CLI globally.

npm install -g @angular/cli

4. Navigate to application’s root folder and run following command to down-
load dependencies.

npm install

5. Run following command to start the application.

ng serve --open

Using option --open will open browser on http://localhost:4200/. To
start application on a different port, use option --port 4201.

These applications communicate with backend which is not a part of this
thesis. Its source files are located on a private bitbucket account. To receive
access, please send an email to lukas@brezinovi.sk.

To run backend take following steps:

1. Install Docker CE. (https://docs.docker.com/install/linux/docker-ce/
ubuntu/#set-up-the-repository)

2. Install docker-compose. (https://docs.docker.com/compose/install/)

3. Navigate to backend folder containing file docker-compose.yml.

4. Add following to /etc/hosts (or its alternatives on other operating sys-
tems).

127.0.0.1 taxiali.local
127.0.0.1 api.taxiali.local

5. Run following commands:

60

docker-compose build
docker-compose run api-development rake db:init
docker-compose run api-development rake db:migrate
docker-compose run api-development rake
cml:generator:generate_1_year_data

6. Start by running:

docker-compose up

Since SMS with verification codes were not yet implemented by backend,
verification codes can be viewed using command
docker attach server-background_api-development_1.

61

	Introduction
	Motivation
	Existing applications
	Uber
	Modrý anděl

	Goals
	Outline

	Problem structure
	Roles
	Objects
	Order
	Employee
	Car
	Customer

	Detailed analysis
	Dispatching application
	Login
	Create new order
	Latest orders
	Scheduled orders
	My phone orders
	Edit profile
	Notifications
	Cars
	Employees
	Order history

	Driver application
	Login
	New order
	Arriving
	Arrived
	Picked up customer
	Finished order

	Customer application
	Login
	Registration
	Forgotten password
	Start selection
	Finish selection
	Standard order confirmation
	Airport order confirmation
	Driver's arrival
	Order cancellation
	Scheduled orders

	Technical analysis
	Web application technology
	Angular
	Vue
	React
	Selecting Angular

	Native application technology
	NativeScript
	PWA

	Libraries
	Angular Material
	Google Material Icons
	Angular Google Maps
	Communication with server

	Architecture
	Modules
	Components
	Services
	Project structure

	Implementation
	Dispatching application
	Login
	Create new order
	My phone orders
	Latest orders
	Scheduled orders
	Notifications
	Edit profile
	Cars
	Edit car
	Employees
	Employee profile
	Order history

	Driver application
	Choose car
	No orders
	New order
	Arriving
	Arrived
	Fraud
	Picked up customer
	Enqueued orders
	Break

	Customer application
	Login
	Registration
	Forgotten password
	Start selection
	Standard order confirmation
	Airport order confirmation
	Driver's arrival
	Scheduled orders
	Reusing message component

	Evaluation
	Testing
	Meeting goals

	Conclusion
	Bibliography
	List of Figures
	List of Abbreviations
	Appendix

