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ABSTRAKT
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Kandidát: Kristýna Ludínová
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Externí školitelé: Dr. Manfred Oswald, Prof. Dr. Rohini Kuner

Název diplomové práce:  Vymezení bolesti a paměťových stop strachu v prefrontální 

kůře 

Bolest je komplexní proces zahrnující aktivaci různých mozkových center. Dle dostupných 

výsledků ze zobrazovacích metod na lidech a hlodavcích, mediální prefrontální kůra , patří 

mezi oblast, která je konstitutivně aktivovaná během bolesti. Mediální prefrontální kůra 

zpracovává funkčně rozdílné procesy jako bolest, emoce, rozhodování, pozornost, avšak 

její přesná role a souvislost ve vnímání bolesti a jiných procesech není známa.

Naším cílem bylo vymezení, jak se strach (emoce) a bolest manifestují na buněčné úrovni. 

S použitím značení závislého na aktivitě jsme testovali, zda jsou soubory buněk v mediální 

prefrontální  kůře  aktivované bolestí  odlišné  od  souborů  buněk aktivovaných strachem. 

Zkoumali  jsme  potenciální  využití  DREADDs  (konstruované  receptory  výhradně 

aktivované  konstruovaným  aktivátorem)  pro  testovaní  funkční  role  prefrontální  kůry  

v bolesti a ve strachu.

Naše výsledky umožňují orientačně nahlédnout na to, jak je prefrontální kůra aktivovaná 

v bolesti a ve strachu a srovnání jejich buněčné exprese pomocí imunohistochemických 

metod. Také přinášíme možné návrhy na studování překryvu neuronálních populací. 

Náš navrhovaný postup s použitím DREADDs metody se neosvědčil, proto navrhujeme 

metodu dále  optimalizovat  zvýšením výkonosti  značení  a  užitím vhodných kontrolních 

skupin. Avšak pokud by se metoda stále zdála jako nevhodná,  jako další krok navrhujeme 

optogenetiku jako potenciální metodu.
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Pain is a complex process associated with activation of various brain centres. 

According to evidence of imaging studies in humans and rodents the medial prefrontal 

cortex  (mPFC)  ranks  amongst  the  brain  area  consistently  activated  during  painful 

perception. 

The  mPFC  circuits  underlies  functionally-distinct  processes,  such  as  pain,  emotional 

response, decision-making, attention amongst others. However, the precise contribution of 

mPFC in pain related function remains to be unknown.

The aim of the study was to delineate how pain and fear are manifested at the cellular level 

within the regions of PFC. By employing activity dependent neuronal labelling we tested if 

cellular ensembles activated in pain and fear behaviours within the mPFC are distinct. We 

investigated  a  potential  use  of  activity-dependent  DREADDs  (Designer  Receptors 

Exclusively Activated by Designer Drugs) expression in order to test for the functional role 

of PFC ensembles in pain and fear behaviour.

Our findings provide the potential insight of the c-Fos expression within the prefrontal 

cortex  (PFC)  separately  in  pain,  fear  and  their  comparison.  They  also  propose  future 

experiments for studying ensemble overlap. Our DREADDs approach to test the functional 

role of PFC in pain and fear behaviour proved not to be effective, and we suggest further 

optimisation of this  method by increasing labelling efficiency and by using appropriate 

controls. However, if the method appeared to be unsuitable for our experiments again, we 

would propose using optogenetics potential approach as a next step.
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1. Introduction

Pain as early-warning is  major  part  of  physiological  protective system, however  under 

pathological conditions, pain loses its protective function and becomes excruciating and 

distressing feeling. Despite the several currently approved analgesics, the treatment of pain 

still remains to be challenge in clinical practice and basic science due to the fact, that the 

current analgesic therapy is often associated with different unwanted side effects or the 

available drugs do not exert sufficient efficacy in pain relief. Therefore, the investigation of 

brain mechanisms underlying pain remains to be in focus in many pharmacological studies.

 1.1  The goals of the thesis

This thesis was conducted as a part of a larger project on  “The Role of the Prefrontal 

Cortex in Nociception and Pain and Underlying Circuitry”.  The involvement of PFC 

circuits  underlies  functionally  distinct  processes,  such  as  pain,  attention,  learning,  and 

emotional responses.  The main project addresses these aspects by studying the cellular 

contribution in distinct PFC regions in mice using in vivo techniques for neuronal activity 

mapping and manipulation. The extent to which specific cell populations within cortical 

circuits  govern  acute  pain  and  pain  chronicity  in  conditions  of  inflammatory  and 

neuropathic pain is studied with genetic tools for reversible, minimally-invasive silencing 

or activation of specific cell populations.

 The central aims of the thesis are:

a)  To delineate  how pain and fear are encoded at  the cellular  level within medial  and 
lateral regions of the PFC.

b) To test if the cellular ensembles activated in pain and fear behaviours within the mPFC 
are distinct.

c)  Characterize initial  experiments with activity-dependent  DREADD expression in the 

lateral and medial PFC in order to test for the functional role of PFC ensembles in pain and 

fear.
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2. Pain and Nociception

 2.1  Classification of pain

The  International  Association  for  the  Study  of  Pain  (IASP)  [1] defines  pain  as  an 

unpleasant  sensory  and emotional  experience  associated  with actual  or  potential  tissue 

damage or described in terms of such damage. The sensation of pain produces a reflexive 

retraction from the painful stimulus, and tendency to protect the affected body part while it 

heals and avoids a painful situation in the future. Pain is a fundamental part of the body's 

protective system [2].

Pain  can  be  in  general  classified  according  to  its  length  of  duration  as  acute  pain, 

subchronic and chronic pain. Duration of acute pain lasts only until the noxious stimuli are 

removed and the intensity of acute pain may change rapidly over a short period of time. 

Acute pain presents itself as a sudden and sharp sensation in a response to noxious stimuli 

[2]. It fulfils a warning role, it is highly complex physiological and protective sensation 

triggered in the nervous system to alert to real or impending injury. In contrast to chronic 

pain,  acute  pain  is  often  associated  with  response  of  autonomic  nervous  system 

(tachycardia, elevation of blood pressure). The presence of acute pain serves as indication 

of injury or acute disease and the intensity of pain often corresponds to severity of insult, 

also  in  clinical  practise  the  severity  of  acute  pain  correlates  with  the  pharmacological 

treatment that is needed for pain relief [3].

Subchronic pain lasts for hours up to days. Chronic pain is any painful condition persisting 

for three or more months (persists beyond tissue healing) or the painful sensation regularly 

recurring  in  time.  It  does  not  serve  as  any  biological  function  and  has  no  benefit  or 

usefulness. The intensity of chronic pain very often does not correspond with proportion of 

disease or injury [2]. Chronic pain can be understood as a disease on its own and it has the 

deleterious impact on quality of life. The profound differences between acute and chronic 

pain emphasize the fact that pain is not generated by an immutable, hard-wired system, but 

rather results from the engagement of highly plastic molecules and circuits. In contrast to 

acute  pain,  the  contributions  of  autonomic  nervous  system are  absent  or  exhausted  in 

chronic pain conditions. The causes of chronic pain are mainly associated with less curable 

and chronic diseases [2].
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Another  way  of  pain  classification  is  based  on  mechanisms  of  its  development.  This 

classification separates pain into nociceptive pain, neuropathic and inflammatory pain. It is 

critical to distinguish between these, as the mechanisms and treatment are different [2].

 2.1.1  Physiological pain

Under  physiological  conditions,  acute  pain  is  defined  by  its  obvious  cause  and  short 

duration.  However,  the  definition is  not  absolute.  Acute pain as  physiological  pain is  

a sensation, which we all experience frequently in our everyday life. Due to the nature of 

unpleasant sensations, we learn to avoid certain stimuli. Pain as a term is used in order to 

describe the sensation that is experienced in response to noxious stimuli.  Physiological 

pain can be evoked only by stimuli  that  reach the pain threshold,  such as mechanical, 

thermal  or  chemical  stimuli  [4].  The  increase  of  intensity  of  noxious  stimuli,  further 

produces  quantifiable-stimulus  response  until  the  pain  exceeds  a  level  of  tolerance. 

Nociceptive  pain results  from noxious  stimuli  capable  of  tissue damage and is  further 

subdivided into visceral pain and somatic pain. Visceral pain is an important part of the 

normal sensory repertoire of all human beings and a prominent symptom of many clinical 

conditions [5].

 2.1.2  Pathological pain 

Pathological pain can be subdivided in the inflammatory and neuropathic pain, which have 

important  common features  in  comparison with physiological  pain.  Clinically  common 

types  of  pathological  pain  are  spontaneous  pain,  hyperpathia/  hyperalgesia,  allodynia, 

referred  pain,  sympathetic  dystrophy,  sympathetically  maintained  pain  [4]. However, 

pathological pain may also develop in response to damage or alterations in primary afferent 

neurons (stimulus-dependent). In pathological pain, there is no adequate response to the 

stimuli, the sensation of pain is in this case completely excessive and may occur even in 

absence of any apparent stimulation (stimulus independent) [6]. In pathophysiology of pain 

processes, it is very hard to describe the single mechanism. Whereas the physiological pain 

can be produced only by activation of high-threshold nociceptors, pathological pain such 

as neuropathic pain and inflammatory pain is caused by disturbances in somatosensory 

system and can be triggered in very wide variety of different conditions, such as clinical 
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manifestation of diverse disorders, infectious, toxic, metabolic disease or trauma. It can 

also be developed as a result of damage or alterations in primary afferent neurons [6].

Sensitization,  as  a  mechanism involved  in  the  development  of  pathological  pain,  may 

include less common low-thresholds in primary afferent nociceptor or plasticity induced 

central mechanism in the spinal cord or forebrain [7].

 2.1.3  Neuropathic pain

Neuropathic  pain  was  defined  by  IASP as  a  pain  resulting  from a  primary  lesion  or 

dysfunction of the nervous system, usually involving an element of sensory dysfunction 

[8].  Whereas in nociceptive pain the nociceptors are activated by an adequate stimulus, 

neuropathic  pain  results  from  the  activation  of  nervous  system,  even  in  absence  of 

nociceptive  input  [9]. Typically  neuropathic  pain  occurs  due  to  a  primary  insult  or 

dysfunction of peripheral or central nervous system. It might also occur independently of 

other tissue damage and in contrast to other kinds of pain it lacks a protective purpose [10]. 

It is often irreversible and persists even after the cause of nerve damage is eliminated. It 

may also occur as a secondary symptom of other diseases such as metabolic syndrome in 

diabetes,  infection  of  herpes  zoster  and  cancer  [6].  Mechanism  of  pathophysiology 

underlying  development  of  neuropathic  pain  encompasses  both  peripheral  and  central 

components [11].

 2.1.4 Inflammatory pain

One of the main and unique features of an inflammatory state is that the evoked sensation 

of  pain  is  produced  by  normally  innocuous  stimuli [12].  Transduction  itself  can  be 

enhanced by inflammatory mediators which are released during inflammation, metabolic 

stress and tissue injury. In the group of inflammatory mediators belongs wide range of 

chemical substances such as prostaglandins, bradykinin, ATP, protons, and nerve growth 

factor (NGF) [10]. NGF belongs to a family of neutrophic factors and is an essential factor 

for  development  and  maintenance  of  central  and  peripheral  nervous  system.  The 

inflammatory mediators further initiated a second messenger cascade by sensitization and 

activation of membrane ion channels [5].
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 2.2  Synaptic plasticity

Neuronal plasticity is a term that refers to fundamental ability to learn and adapt neuronal 

functions in response to environmental or intrinsic changes [12]. Shifts in pain thresholds 

and responsiveness are an expression of neuronal plasticity. Dynamic changes can occur on 

the molecular, synaptic and cellular levels, which alter the strength of synaptic connections 

between  neurons.  Neuronal  plasticity  is  determined  by  activation,  modulation,  and 

modification and for this reason in mature nervous  system synaptic transmission can be 

potentiated, suppressed and modulated in many different ways  [13]. Neuronal plasticity 

plays  a  major  role  in  development  of  chronical  pain  and  stands  for  wide  range  of 

deviations in clinical manifestation of pain  [14]. Conversely, plasticity can decrease the 

body's  own  pain  inhibitory  systems,  leading  ultimately  to  increased  pain.  Neuronal 

plasticity also causes hypersensitivity, which is very important because it arises when the 

pain pathways increase their sensitivity while relaying pain messages [14].

 2.2.1  Types of hypersensitivity

In terms of hypersensitivity, two forms are distinguished [13].

Allodynia  is  evoked  by non-noxious  stimuli.  In  case  of  allodynia  high  thresholds  are 

lowered so pain can be triggered by stimuli which would not normally under physiological 

conditions produce pain. Allodynia can be experienced as a burning sensation in response 

to thermal or mechanical stimuli. It can often be caused by injury [15].

Hyperalgesia  so-called  "over  pain"  occurs  when  responsiveness  to  noxious  stimuli  is 

increased and the noxious stimuli  induce exaggerated and prolonged pain.  This can be 

caused  by  damage  to  peripheral  nerves,  nociceptor  or  even  during  changes  in  higher 

centres [15].

 2.3 Transmission of pain

Transmission  of  pain  is  a  very  complex  process  that  includes  integration  within  the 

periphery,  spinal  cord,  brainstem,  and  forebrain [16].  The  transmission  of  information 

related to pain from periphery to CNS is processed through three levels within CNS. First 
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neuron  (pseudounipolar)  resides  the  dorsal  root  ganglia  (DRG)  or  trigeminal  ganglia. 

Second-order neurons are located in the dorsal horn, those neurons project through the 

ascendant spinothalamic tract. The third neuron resides in thalamus and is further projected 

to  the  primary  somatosensory  and  cingulate  cortices.  The  emotional,  affective  and 

motivational  factors  related  to  pain  are  transduced  by distinct  pathways,  that  involves 

structures  such  as  parabrachial  nucleus,  amygdala,  and  intralaminar  nucleus  of  the 

thalamus [15].

Emotional, affective and motivational aspects highly predominate during chronic pain and 

are rather transduced by wide dynamic range neurons (second-order nociceptive neurons) 

[8].  

 2.4 Nociception and pain 

Nociception  is  critical  survival  mechanism  in  an  organism  and  triggers  appropriate 

protective responses. Under physiological conditions the nociceptive sensation of pain can 

be  produced  only  as  a  reaction  to  noxious  intense  stimuli.  These  noxious  stimuli  are 

recognized and mediated by very specific threshold primary neurons in peripheral endings. 

There they generate signals that are subsequently transferred to higher CNS centre  [17]. 

The threshold for recognizing and eliciting pain are not fixed and can be shifted either up 

or down. This ability may later occur by either as adaptive or maladaptive [8].  Shifts in 

pain threshold are enabled by changes in the nervous system and these changes can modify 

responses to any stimuli. This process is called neuronal plasticity mentioned earlier and 

has a key role in clinical pain syndromes. In clinical practice, patients can show similar 

neuroplastic  changes  in  nociceptive  transmission,  however,  the  cortical  processing  in 

higher CNS of nociceptive signals are very individual and subjective. As a result, the level 

of pain which patients experience can vary greatly [7].

 2.4.1 Nociceptors

Nociceptors are distinguished from the other sensory nerve fibres by their ability to be 

excited by a noxious stimuli that has sufficient energy to overcome the high-threshold. 

Nociceptors are highly specialized to respond only to noxious stimuli such as heat, intense 

pressure or  irritant  chemical,  but  on the other  side to  be completely unexcitable  to  an 

innocuous stimulus such as only warming or light touch [18].
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Within nociceptive pathways can be found many different types of nociceptors responsible 

for various types of pain. Nociceptors are morphologicaly pseudo-unipolar cells, fibres that 

are  responsible  for  innervating  region  of  head  and  body.  Their  cell  bodies  reside  in 

trigeminal and  dorsal  root  ganglion  (DRG).  Nociceptor  has  four  major  functional 

components (Fig 2.1). According to Woolf and Ma the following parts of nociceptor are 

distinguished:

1. the peripheral terminal that transduces external stimuli from the target tissue and 

also initiates the action potentials, 

2. the cell body, whose role is to secure the identity and integrity of the whole neuron, 

3. the axon that conducts action potentials,

and the central terminal ending as the part of presynaptic unit of the first sensory pathway 

of nociception [17].

Nociceptors can be categorized according to their anatomical and functional criteria. The 

natural  stimuli  of  nociceptors  might  be  difficult  to  identify  due  to  their  distinct 

characteristics [19] Aβ fibres are the primary sensory myelinated fibres with the largest 

diameters. Most of the Aβ fibres ensure the detection of non-noxious stimuli (applied to 

skin, joints, muscle).  In the absence of tissue or nerve injury, they have a main role in 

proprioception and only respond to touch, vibration and to other modes of non-noxious, 

lower  intensity  mechanical  stimuli [17].  Under  physiological  circumstances,  they  are 

considered as the fibres without any contribution to pain [20].

16
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Fibres with a small- and medium-diameter cell bodies contribute to the transduction of 

noxious stimuli upon the exposure of the skin. A  fibres with medium diameter (2–6 μm)m)𝛿 fibres with medium diameter (2–6 μm)  

and two main classes are lightly myelinated with a velocity of conduction 12–30 m.sec−1 

[17].  AA𝛿 fibres with medium diameter (2–6 μm) fibres elicit the first phase pain rapid and sharp sensation [20].  One class of A𝛿 fibres with medium diameter (2–6 μm) 

fibres belongs to rapidly-conducting, high-threshold mechanoreceptors the so-called ,,Type 

I”. There are typically activated by mechanical and high-intensity noxious stimuli. Type II 

of  A𝛿 fibres with medium diameter (2–6 μm) fibres is very weakly responsive to high-intensity heat, cold and chemical stimuli 

[17].  C  fibres  are  the  thinnest  (Ø  =  0,4–1,2  μm)m)  unmyelinated  slowly  conducting 

nociceptor with the conduction of action potentials in these fibres is the slowest ( 0,5–2∼0,5–2  

m.sec−1).  Most C fibres are also polymodal with ability to respond to noxious thermal, 

mechanical and also to chemical stimuli, such as substance capsaicin [17].

There is further one class of nociceptors called ,,silent nociceptor” or sleeping nociceptor. 

Those  neurons  are  unresponsive  to  acute  noxious  stimuli,  however,  they  may  become 

sensitized in  present  of  inflammatory process,  chemical  mediators  or  in  case of  tissue 

injury. Sleeping nociceptors are of an interest in the context of prolonged pain [20].

 2.4.2 Nociceptive transmission at the spinal cord

Pain transduction is very complex process that employs multiple biological mechanisms, 

and peripheral and central levels of the nervous system. Nociception on its own involves a 

multiple innervations of the thalamus, midbrain, limbic system, cortex, reticular formation 

and many other cerebral structures via multiple ascending pathways (see Fig 2.2) [20].
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First components of the nociceptive pain pathway are a peripheral terminals of nociceptor. 

Action  potentials  caused by noxious  stimuli  are  transmitted  by  unmyelinated  C-fibres, 

thinly myelinated  Aδ fibres nociceptors, by specific receptors or ion channels which are 

sensitive to heat, cold, protons or mechanical stimuli. Those action potentials are driven 

along  the  afferent  axons  to  the  dorsal  horns  (DH)  of  the  spinal  cord. By  means  of 

nociceptor, the spinal neurons are activated and are evoked to send the electrical activity by 

axons across the region of spinal cord, medulla, midbrain, and thalamus. Terminal axons of 

thalamic neurons are further projected into cortex including somatosensory cortex [20]. 
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Figure  2.2:  Afferent  pain  pathways  include  multiple  brain  regions.  Afferent  spinal  

pathways include the spinothalamic, spinoparabrachio–amygdaloid and spinoreticulo–

thalamic pathways.  The  receiving information is projected from amygdala (AMY) to  

basal ganglia (BG) whereas thalamus projects the nociceptive information to the insula,  

anterior  cingulate  cortex  (ACC),  primary somatosensory cortex  (S1)  and secondary  

somatosensory cortex (S2). Figure adapted from [31].



 2.5 Transient receptor potential channels

 2.5.1 TRP channels

Transient receptor potential (TRP) ion channels are commonly understood as tetrameric 

transporters, located in plasmatic and intracellular space and their role is to regulate the 

flux  across  the  plasma membrane as  a  result  of  various  environmental  or  intracellular 

impulses  [21].  TRP  proteins  belong  among  Ca2+-permeable  ion  channels  and  are  

a  superfamily  (28  members  in  the  mammal)  with  diverse  physiological  functions 

(chemosensation, mechanosensation), tissue distribution and subcellular localization. The 

ion channels facilitate the transmembrane flux of cations and trace metal ions along their 

electrochemical gradients. In mammals, the TRPs are expressed in almost each cell in both 

excitable and non-excitable tissue [22]. The so-called “sensory TRPs“ are subsets of TRP 

channels in sensory cells, such as a somatosensory neuron. The “non-sensory TRPs” are 

channels expressed in non-sensory tissues [23].

TRPs participate in many physiological processes. They are present in cellular membranes 

where they have a significant contribution to motile function and sensory functions, such 

as  taste  transduction,  nociception,  and  thermosensation,  also  in  the  maintenance  of 

homeostasis by regulation of pH, osmolality and intra and extracellular caution of Ca2+ and 

Mg2+ levels [22].

When activated, most TRPs conduct Ca2+,  as well  as Na+ and K+ ions. Most TRPs are 

considered as non-selective cation channels, only a few have the ability of high selective 

permeability for Ca2+. TRP channels family possess diverse gating mechanisms such as 

ligand  binding  activation,  temperature  dependent  activation,  and  voltage-gated 

activation.The  activation  of  TRPs  channels  results  in  depolarization  of  the  cellular 

membrane  and  accumulation  of  cations.  The  activity  of  TRP  channel  leads  to  an 

accumulation  of  cations  and  depolarization  of  the  cellular  membrane,  which  in  terms 

activates  voltage-dependent  ion  channels,  resulting  in  changes  of  intracellular  Ca2+ 

concentration.  TRP channels  serve  as  gatekeepers  for  transcellular  transport  of  several 

cations especially for Ca2+and Mg2+ and are the reason why TRP channels stay in the centre 

of many vital cellular processes [23].
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Reports of several studies have shown that, TRP channels are sensitive to various multiple 

intracellular  signals  such  as  the  increased  concentration  of  cytoplasmic  Ca2+, 

phosphorylation, and phospholipids. In particular, many TRPs are highly sensitive to the 

most frequent acidic phospholipid in the plasma membrane, and to phosphatidylinositol 

4,5-bisphosphate  [24].  Ligands  activating  TRP channels  are  broadly  divided  into  the 

groups of exogenous small organic molecules (capsaicin, icilin) and endogenous lipids or 

product of lipid metabolism (eicosanoids, diacylglycerols) [25].

In  mammals,  28  channel  subunit  genes  have  been  identified  and  subdivided  into  

7 subfamilies TRPA, TRPC, TRPM, TRPML, TRPN, TRPP, and TRPV, E [24].

 2.5.2 The TRPV subfamily

The first mammalian TRPV was discovered during the research for channels activated by 

inflammatory vanilloid compound capsaicin [24]. TRPV family encompasses six members, 

possible to further classify on the basis of their structure and function into two groups 

TRPV1–V4  and  TRPV5  and  TRPV6.  The  so-called  thermal  TRPs  comprise  TRPV1-

TRPV4 that are activated by heating in heterogeneous expression system. TRPV channels 

seem to be employed in thermo-sensation.  TRPV1 receptors are highlighted in the text 

below [24].

TRPV2 receptor  can be  activated  by noxious  stimuli  (≥52°C) but  not  by capsaicin  or 

homeostasis changes in pH. TRPV2 receptors are distributed in dorsal root ganglia, CNS 

neurons, gastrointestinal tract, spleen, mast cells, smooth, cardiac and skeletal muscle cell. 

TRPV3 and  TRPV4 are activated at warm temperatures in the ranges of 33–39°C and  

27–34°C [24]. TRPV3 receptors are mainly located in dorsal root and trigeminal ganglia 

for mediating thermo-sensation to moderate heat, nociception and wound healing.

TRPV5 and  TRPV6 differ from other TRPV sub-families in the way that they do not 

mediate a thermo-sensation because, they are not activated by heat. TRPV5 and TRPV6 

belong  to  the  most  Ca2+ selective  channels  (PCa:  PNa >  100)  of  the  mammalian  TRPs. 

Although both channels are  highly selective and permeable to  Ca2+,  in  the absence of 

extracellular Ca2+ they might be permeable to monovalent cations [26].
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 2.5.3 TRPV1 channel and its role in nociceptive transmission

The TRPV1 channel stays in the centre of focus due to their ability to be activated only be 

painful stimuli. Topically used capsaicin binds to TRPV1s and desensitizes the nociceptive 

terminal to all modes of noxious stimuli by inhibiting C-fibres, this interaction can provide 

a pain relief  [26].  Consistent with their  essential  role in nociception,  the expression of 

TRPV1 is mainly detected in small to medium size neurons in the trigeminal ganglia (TG) 

and dorsal root ganglia (DRG). TRPV1s are non-selective cation channels, which mediate 

the response to a number of painful stimuli, such as noxious heat, extracellular acidosis, 

and they are also the receptor for capsaicin, which is the pungent agent from chilli peppers 

that elicits burning pain. TRPV1s can be modulated by inflammatory agents as well as by 

noxious heat. TRPV1s are arguably considered as best-characterized member of vertebrate 

TRP family. It was the first member of mammalian TRPV sub-family that was discovered 

in sensory neurons. Its wide expression and function of TRPV1s have become a subject of 

many  types  of  research  and  have  been  studied  most  extensively.  TRPV1s  and  other 

members  of  TRP family  have  become considered  as  fundamental  targets  for  analgesic 

drugs and their development  [23]. TRPVs are composed of six transmembrane spanning 

domains and establish the channel structure with a pore-loop region interdicted between 

transmembrane domains five and six (Fig 2.3) [27]. 
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 2.5.4 Activation of TRPV1

TRPV1s are involved in many different signaling pathways in the cell and functions. Their 

role there is of an integrator for a variety of sensory inputs. They are a polymodal receptor 

that can function as a molecular stimulus integrator, especially in primary afferent fibres 

[20].  There  is  a  wide  range  of  extracellular  stimuli  capable  of  activating  TRPV1s, 

including noxious heat (> 43-45 °C), plant derivatives (capsaicin), by low pH < 6 and other 

environmental irritants. TRPV1s are also activated by various endogenous lipids, such as 

anandamide,mN-arachidonoyl-dopamine,  and  various  metabolic  products  of 

lipoxygenases. In the activation of TRPV1s can also participate extracellular events such as 

inflammation that may trigger signaling pathways leading to sensitization and activation. 

For instance, bradykinin, a potent pain-causing substance, indirectly activates TRPV1s via 

distinct associated receptor system (phospholipase C or protein kinase C pathway) [28].
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Figure  2.3:  The  TRPV1  primary  structure  involves  six  transmembrane  segments  

(S1–S6) with a pore domain between the fifth (S5) and sixth (S6) segment, and both C  

and N termini are located intracellularly. Amino acid residues involved in the binding  

of  chemical and physical activation/modulation of TRPV1 activity are indicated in  

a colour scheme. Figure adapted from [27]. 



 2.5.5 TRPV1 activation by capsaicin

TRPV1  receptors  can  be  activated  by  capsaicin,  which  belongs  to  vanilloids  family 

(compounds which possess a vanillyl group).  Capsaicin evokes the depolarization of cell 

membrane by an influx of sodium and calcium cations. It is suggested that to initiate a 

respond  of  TRPV1  the  binding  of  at  least  two  capsaicin  molecules  is  required  [23]. 

Capsaicin a member of group known as capsaicinoids cause the spicy flavor (pungency) of 

chili pepper fruit. Capsaicin is identified as a unique alkaloid primarily found in the fruit of 

the capsaicin genus due to its wide range of potential applications the interest of capsaicin 

has increased. The pungency of capsaicin has limited use in clinical trials to support its 

biological  activity.  Together  with  dihydrocapsaicin  represent  approximately  90%  of 

capsaicinoids  in  chili  pepper  fruit.  Capsaicin  (trans-8-methyl-N-vanillyl-6-nonenamide) 

can by characterized as crystalline, colorless, lipophilic and oderless alkaloid (Fig 2.4) that 

is fat-, alcohol- and oil- soluble [29].

Structure-activity  relationships  (SAR)  for  capsaicin  agonist  can  be  divided  into  three 

regions.  Aromatic  ring,  amide  bond and hydrophobic  side  chain.  It  is  known that  the 

substituents in the positions 3 and 4 of the aromatic-ring are essential for potent agonist  

activity, and the phenolic 4-OH group in capsaicin analogues is of particular importance, 

H-bond donor/acceptor properties of the phenol group are key for agonist activity [29].
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Figure 2.4: Regions of the molecule of capsaicin: (A) aromatic ring; (B)  

amide bond, and (C) hydrophobic side chain [29]. 



3. Central modulation of pain

 3.1 Psychosocial factors

Despite  the  ubiquity of  pain,  its  interaction with psychological  and neurophysiological 

factors still remains controversial.

Psychosocial  factors such as fear,  depression and anxiety have powerful impact on the 

perception of pain however, the brain mechanisms underlying the connection between pain 

and emotions remain largely unknown [23].

The presence of mental disorder has negative impact on coping with chronic pain, whereas 

cognitive  factors  such as  attention  and emotional  factors  such as  fear  seem to  be risk 

factors  for  acute  pain  and  also  influence  acute  pain  intensity  (Fig  3.1)  [30]. Broad 

interaction between pain and emotions are given by the multiplicity of mechanisms of 

cerebral  and cerebrospinal  modulation of  pain  by emotions  (Fig 3.1)  [31].  One of  the 

analysis examining the relationship between pain and emotions suggested an involvement 

of prefrontal, parahippocampal and brainstem regions as a modulation structures [31] .
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Figure  3.1:  Emotional  and  cognitive  components  of  pain.  Feedback  loops  shows  association  

between pain, emotion and cognition as and significant components of pain perception. Where  

cognitive states such as memory, attention but also negative or positive emotional state can cause  

significant changes in pain perception. The minus sign refers to a negative effect and the plus sign  

refers to a positive effect. Loop adapted from [31].



The correlation between the activation of sensory receptors (nociceptor), which are highly 

specialized to detect actual or potential tissue damage and the activation of brain regions 

that drive the experience of pain sensation is not always apparent. It has been known, that 

the experience of pain varies dramatically between individuals. Even in the similar cases of 

injuries, individual pain experience is highly variable. Another important part which can 

either enhance or diminish the pain experience are emotions. Emotional state, degree of 

anxiety,  attention,  memories  and  past  experience  may  all  have  a  large  impact  on  the 

perception  of  pain  [32].  Still  today,  how  emotional  responses  to  painful  stimuli  are 

generated  in  the  brain  remains  one  of  the mysteries  in  the  field  of  neuroscience  [33]. 

Certain cortical structures such as somatosensory, cingulate and insular regions as well as 

subcortical structures such as the basal ganglia and amygdala significantly contribute to the 

perception of pain and are part of a larger pain processing network. It is believed that the 

forebrain plays an important role in emotional-affective and in cognitive dimensions of 

pain, however, this contribution to pain is little understood [34].

 3.2 Role of prefrontal cortex in pain and fear 

The  prefrontal  cortex  (PFC),  in  general,  is  associated  with  high-order  emotional  and 

cognitive functions, including working memory, goal-directed behaviour [35], the ability to 

learn associations between contextual cues and behaviourally meaningful actions, decision 

making and emotional response [36].

 3.2.1 Prefrontal cortex

The  mammalian  prefrontal  cortex  can  be  distinguished  by  anatomical  criteria  such  as 

cytoarchtectonic  features,  connectivity  patterns  with  the  other  brain  regions, 

electrophysiological  properties,  protein  expression  and  changes  in  behaviour  following 

damage. There is a basic acceptance for a homology of PFC between rodents and higher-

order  species [37].  Rodent  PFC like  human  PFC is  fundamental  to  a  broad  array  of 

behavioural functions [38].

The prefrontal cortex is part of the frontal lobe in rodents and is generally subdivided into 

three main sub-territories. The medial PFC (mPFC), the ventrally located orbital PFC, and 
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the laterally located cortical region termed the lateral (sulcal) PFC, which corresponds to 

the anterior insular cortex [39].

The medial and lateral PFC regions were the main focus of our experiments. The mPFC in 

rodents  can  be  further  subdivided  on  the  basis  of  cytoarchitectonics  into  the  dorsally 

located anterior cingulate cortex (ACC), the more ventrally located infralimbic area (IL), 

and the prelimbic area (PL), sandwiched in between the former two [40].  These mPFC 

regions are highly interconnected and have wide reciprocal connections to sensory, motor 

and limbic cortices. This feature makes the mPFC a central hub to integrate and synthesize 

information from large number of different sources [41].

In the lateral PFC, an accepted subdivision of the insular cortex (IC) is based again on 

cytoarchitectonic features.  The three described subregions of the IC are agranular insular 

cortex (AI), dysgranular insular cortex (DI) and granular insular cortex (GI) [42, 43]. One 

of the main cytoarchitectonic patterns of rodent PFC are laminar structures organized into 

deep and superficial layers, which are distinguished between the neighbouring structures 

but can be less organized or defined compared to primates [44].

 3.2.2 Population of cells in PFC

In order to process information in PFC, multiple interactions between distinct neuronal cell 

populations  are  required.  As  in  other  cortical  areas  there  are  two  main  neuronal  cell 

categories:  80-90%  of  all  neurons  are  principal  cells  which  encompass  subclasses  of 

pyramidal cells that are well suited for long-distance projections and the remaining 10-20% 

are covered by several classes of interneurons exhibiting different firing patterns [45].

 3.2.3 Physiological functions of PFC

Tight  control  of  fear  regulation  encompass  prefrontal  cortex  (especially  mPFC) which 

seems to be a major part of top-down control driven over subcortical structures  [40,  46] 

and it is in the centre for modulating goal-directed behaviour [47]. The medial prefrontal 

cortex has been associated with numerous diverse functions including decision making, 

memory, emotions, attentional processes, visceromotor activity,  working memory, long-

term memory, and in regard to our work fear memory aquisition, storage and retrieval as 

well as cognitive dimension of pain [40, 47]. Tight control of fear regulation encompassing 
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prefrontal cortex (especially the mPFC seems to be a major part of top-down control driven 

over subcortical structures [47].

 3.3 Fear memory and engram cells

Fear memories allow an individual to avoid a dangerous situations and thus increasing the 

chances of survival. Fear learning is closely connected with time-dependent reorganization 

of neural circuits, whereas the innate fear behaviour appears to be constant with time. Fear 

memories  can  be retrieved and reorganized long after  learning and one of  the regions 

considered as a crucial for fear retrieval is the medial prefrontal cortex [48]. It is suggested 

that the information stored in this neocortical structure is necessary for retrieval of recent 

and remote fear memory. During learning and the process of memory consolidation the 

preferential co-activation of a specific subset of neurons is required, forming an ensemble 

of so-called engram cells [49].

Engram cells are defined as specific population of neurons that are activated by learning, 

exhibits enduring molecular changes, and possess the ability to be reactivated in memory 

recall by the original stimulus. By its definition engram cells are fundamental at any stage 

of a memory [50].

 3.3.1 Consolidation of fear memory

After  the  activation  of  a  mPFV  engram  cells  by  a  painful  stimulus,  fear-inducing 

components are not directly stored in the PFC but require other brain areas to become 

functionally mature with time [51]. These authors propose that during consolidation of the 

fear memory the initial information (recent memory) is first stored within engram cells of 

the hippocampal-entorhinal cortex (HPC-EC) formation, encoding contextual and spatial 

information, and over time becomes consolidated within mPFC cells. This corresponds to 

standard model of memory consolidation, where the first information is rapidly stored in 

the hippocampus and over longer period of time the memory is transferred to engram cells 

within the mPFC [52].

The activity of neocortical areas, such as the rodent mPFC was found to be necessary for 

recent and remote fear recall [53]. However, more recent experiments by the Tonegawa lab 

found that mPFC engram cells were preferentially reactivated at remote time points [54].
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In early studies of the role of PFC, it has been noted that dorso-ventral regions of PFC 

mediate  different  behavioural  responses  and  autonomic  outcomes,  pointing  to  the 

possibility  of  studying overlapping and distinct  functions of PFC subregions  [55].  The 

prelimbic  and  infralimbic  subregions  of  mPFC  are  functionally  distinct,  and  exhibit 

different activity during fear behaviour.. They differentially mediate stimulus response and 

action-outcome learning [40]. 

PL and  IL have  reciprocal  c-Fos  expression  patterns  in  response  to  a  contextual  fear 

stimulus. IL exhibits increase of IEG during presentation of extinguished CS in extinction 

context whereas PL is associated with a robust increase of c-Fos expression during fear 

renewal (contextual fear recall) [40]. However, these studies suggest that even though the 

PL and IL have opposed roles in the expression and suppression of fear, activity in both of 

these mPFC regions may underlie new forms of learning [56].

 3.3.2 The role of anterior cingulate cortex in fear

The  anterior  cingulate  cortex  (ACC),  one  of  the  mPFC  subregions,  which  is  ideally 

positioned to integrate emotion and cognition signals between limbic and other cortical 

structures. It is a key region for emotion and learning processing but also a region with 

strong  involvement  in  several  processes  such  as  anticipation,  pain,  attention,  error 

monitoring and effortful recall and remote spatial memory. 

Due to its location, ACC may somehow be involved in the control of amygdala dependent 

fear learning. There is strong evidence for anatomical ACC-amygdala connectivity [47]. 

ACC  consistently  emerges  from  inactivation,  activation  and  neuroimaging  studies  an 

involvement in normal and abnormal fear processing. More in detail the previous evidence 

shows that the inactivation of ACC, notably impairs fear learning, whereas potentiation of 

activity within ACC mediates and enhances fear acquisition and expression [57].

 3.3.3  Involvement of prelimbic cortex in fear

The vmPFC is composed of the infralimbic cortex (IL) ventrally and the prelimbic cortex 

(PL) dorsally. Recent electrophysiological findings suggest that IL and PL have opposite 

influences on fear expression [58]. 

Prelimbic cortex (PL) has been implicated in memory modulation, memory consolidation 

and fear retrieval  [59]. It is one of the proposal brain regions that integrates inputs from 
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amygdala, hippocampus and other cortical sources involved in fear conditioning, in order 

to regulate the expression of fear memories.

Studies show involvement of PL in the selective expression of conditioned fear to a certain 

cue that is fully dependent upon contextual information  [60]. Due to the broad range of 

inputs from auditory cortex, hippocampus and amygdala into PL, there is a proposal that 

PL  may  participate  in  signal  processing  from  various  structures  [61].  The  higher 

responsiveness and excitability of PL for those inputs might be caused by fear-induced 

release  of  neuromodulators  such  as  noradrenaline  and  dopamine  within  PL  [62].  The 

release of neuromodulators could significantly contribute in augmentation of sustained fear 

response.  Broad  connections  of  PL within  various  brain  structures  allows  PL to  have 

important role as a main site that integrates stress-related, contextual and auditory signals 

[63].

Together  with  recently  given  evidence  from  lesion  and  inactivation  studies  of  mPFC 

pointed out PL as crucial region involved in the expression of fear memory but not in the 

fear extinction, which is more likely associated with IL, This fact can by supported by 

suggestion that cases of extinction failure in mice can be caused by excessive activity in 

PL, combined with lack of activity in IL [64].

 3.3.4 Involvement of infralimbic cortex in fear

Infralimbic  cortex  (IL)  as  a  part  of  vmPFC is  closely  associated  with  neural  circuits 

modulating extinction of conditioned fear, upon the contextual and temporal factors, it is 

also one of the main region of PFC responsible for suppression of fear.

Memory extinction can be defined as regulatory mechanism, when the inhibitory circuits 

gradually  decrease  the  expression  of  fear  memory,  after  repeated  presentation  of 

conditioned stimulus (CS). As a result of extinction learning, the fear response is no longer 

induced by the repeated CS [65].

One of the proposal mechanism, is that the extinction does not erase fear memory but more 

likely generates new safety memory  [47]. Memory extinction can be also considered as 

highly  labile  mechanism  of  fear  suppression  that  can  easily  relapse  when  previous 

extinguished cues is performed outside the extinction context  [47]. This argument gives  

a proof to the fact that memory exctinction is highly context-dependent. In general fear 

extinction involves mainly three structure such as amygdala, PFC and hippocampus. The 

triad of these region has been deeply studied in terms of fear memory [47].
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 3.4 Role of prefrontal cortex in pain

In order to alter the sensory experience of pain “top down” modulatory circuits which may 

diminish or enhance to the perception of painful stimuli are involved.

Neuroimaging  techniques  in  humans  have  been  used  to  define  the  origin  of  pain 

modulatory systems within cortical and subcortical regions [65].

A line of neuroimaging studies led to the suggestion of the “pain matrix” theory, which 

includes brain regions, that are consistently activated by noxious stimuli. The PFC belongs 

among the brain areas that are highly associated with pain. Brain regions that are part of 

the “pain matrix” are highly interconnected. These brain regions are involved also in other 

neurological  functions  such as  cognition  and emotion and collectively give rise  to  the 

complex experience of pain [66].

 3.4.1 Dissociative roles of mPFC

In order to reveal and explain precise function of medial prefrontal cortex, it is necessary to 

distinguish between different subregion of mPFC to highlight the importance of individual 

anatomical regions. A robust dorsal-ventral dissociation within mPFC was observed. The 

dorsal ACC region is responsible in variety of stimuli and psychological states such as pain 

and cognitive control. The cognitive effects and conflict were overlapping more dorsally, 

whereas pain seems to be localized more ventrally [33]. 

 3.4.2 Anterior cingulate cortex

The ACC mediates the affective component of pain , the placebo effect and together with 

ventral mPFC also anticipation of pain [61,  66,  67].  Numerous sources indicate that the 

ACC is a crucial part of a “neuromatrix” involved in affective-motivational dimension of 

pain and in pain processing in general [68].

Neurons of ACC encode a broad spectrum of functions and consistently exhibit activation 

in response to noxious stimuli but not to non-noxious stimuli, such as thermal, chemical 

and mechanical stimuli [33]. It is unlikely that the dorsal ACC selectively encodes pain as 

suggested  by  Lieberman  and  Eisenberger  [69],  as  the  dACC  is  activated  also  in 

anticipatory or empathic situations and participates in diverse cognitive functions such as 

memory, learning and decision-making. [61].
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Accordingly another imaging study in humans suggested that the ACC together with insula 

are encoding the emotional and motivational aspect of pain [67]. 

 3.4.3 The role of PL and IL mPFC 

The PL and IL mPFC regions are involved in diverse emotional, cognitive and mnemonic 

processes.  In  addition  the  ventromedial  region  of  the  mPFC  was  found  to  make  

a  significant  contribution  to  processing the unpleasantness  of  pain  [31]. Neuroimaging 

studies in humans revealed that spontaneous pain is associated with novel activity in mPFC 

[48] subregions that may be comparable with activity patterns occurring during acute pain 

stimuli [70, 71].

A modulatory function of prelimbic cortex on pain perception was demonstrated by neural 

imaging studies in humans  [72,  69,  73] and the optogenetic manipulation of inhibitory 

interneurons  in  mice  [74].  Zhang's  team  also  point  out  a  crucial  role  of  the  PL in 

spontaneous pain caused by peripheral nerve injury [48]. Generally these studies found that 

the  neuronal  activity  of  mPFC is  enhanced  during  painful  experience  and  reduced  in 

chronic pain situations  [48]. However, how the prelimbic subregion participates in pain 

processing and how reduced activity in the mPFC may affect pain sensation remains to be 

resolved [75]. 

 3.4.4 Lateral PFC/ Insular cortex

An increasing  evidence  of  neuroimaging  and  electrophysiological  studies  propose  the 

insular cortex as a crucial site processing multimodal salient information to an affective 

event  [48,  76].  Regarding pain there is a suggestion that the IC is involved in encoding 

both sensory-discriminative and affective-motivational aspects of pain. Due to its abundant 

connections with other brain areas, the IC likely seems to be an important interface where 

cross-modal shaping of pain occurs [77].

The subregions of IC have been associated with somatosensory features of pain as well as 

with modulation of affective aspect [76].

The IC can be viewed as an interface where attention, anticipation or belief shape pain 

perception by activating cognitive areas such as the dorsal and ventral mPFC. A number of 

studies  on  pain  anticipation  [78] propose  that  IC  activity  may  be  responsible  for 

modulation  and  enhanced  responsiveness  within  other  cortico-cortical  areas.  Taken 
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together,  it  is  proposed  that  the  IC  serves  as  an  interface  to  synthesize  multimodal 

information and integrate it with nociception [76].

4. Principles of used methods

 4.1 Tetracycline off system

Tet-off technology, also known as the tTA-dependent system, was developed by Prof. Dr. 

H. Bujard and his team at the University of Heidelberg and was first published in 1992. 

Since then Tet-off  (Fig 4.1) and Tet-on (Fig 4.2) systems are broadly used techniques in 

order  to  control  gene  expression.  It  allows  precise,  reversible  and  highly  efficient 

regulation of gene expression in eukaryotic cells. Tet-off technology (Fig 4.1)  allows to 

switch off the target gene selectively by administration of tetracycline (Tet) or doxycycline 

(Dox)  whereas  the  Tet-on  system  is  used  to  selectively  activate  gene  expression  by 

doxycycline [79, 80].

The Tet  System consists  of  two critical  components. The first  element  is  a  regulatory 

fusion protein consisting of the tetracycline repressor protein (TetR) normally found in 

gram negative E.coli, and the activator protein VP16 from the Herpes Simplex Virus. [81]. 

The  fusion  of  these  two  subunits  generates  a  hybrid  protein  known  as  tetracycline-

controlled transactivator (tTA) and allows to convert the tetracycline repressor protein with 

inhibitory activity into a transcriptional activator in the absence of tetracycline The second 

critical component of Tet System is the response plasmid. This plasmid is carrying the gene 

of interest (Gene X) whose expression is under control of the tetracycline-response element 

(TRE).  The  tetracycline-response  element  is  7  repeats  of  a  19  nucleotide  tetracycline 

operator (tetO) sequence placed upstream of a minimal promoter and it is recognized by 

the TetR domain of tTA. In the absence of tetracycline, tTA dimers will bind these tetO 

sequences and the VP16 activation domain promotes gene expression. In the presence of 

Tet or Dox, these effector molecules induce a conformational change in the TetR domain 

and this precludes tTA binding to the TRE, thus silencing gene expression [80].
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 4.2 Tetracycline on system

The system also known as the rtTA-dependent system has been discovered in the year 1995 

when Gossen and his  team randomly mutated  amino acid  residues  of  tetR,  which  are 

fundamental for tetracycline-dependent repression (Fig 4.2). They succeeded in developing 

a  reverse  Tet  repressor  or  rTetR,  which  now  binds  the  TRE  only  in  the  presence  of 

tetracycline to induce gene expression [80].

In both Tet-On and Tet-Off Systems, transcription is turned on or off in response to Dox or 

Tet in a precise and dose-dependent manner. The main advantage of Tet and Dox is that 

they are inexpensive, well characterized, and yield highly reproducible results [80].
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Figure  4.1:  Scheme of  Tet  off  system. In the presence of  tetracycline,  expression from the  

Tet-inducible promoter is inhibited. Adapted from [81]. 



 4.3 DREADDs – Designer Receptors Exclusively Activated by Designer Drugs

In the field of neuroscience a large number of chemogenetics method and technology have 

been  made  available  for  remote  user-defiened  control  of  neuronal  activity  [81]. 

DREADDS, the chemogenetically  engineered proteins are  to  date  to  most  widely used 

technique.  This method exploits G-protein-coupled receptor signaling pathways and their 

high involvement in the control of physiological conditions to modulate cellular activity 

[82].

 4.3.1 Biotechnology of DREADDS 

Designer Receptors Exclusively Activated by Designer Drugs, DREADDs involve the use 

of receptor proteins derived from targeted mutagenesis of endogenous G-protein coupled 

receptor DNA to yield synthetic receptors [82].

DREADDs  represent  a  biotechnology  whereby  designed  G  protein-coupled  receptors 

(GPCRs) were synthetically created in order to be activated solely by an extrinsic ligand. 

These engineered GPCRs have become a widely used method, which aids neuroscientists 

to  elucidate  the  circuits  of  perception,  behaviour,  emotions,  innate  drives  and  motor 
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Figure  4.2:  Scheme of the Tet on system in the presence of tetracycline, expression  

from the Tet-inducible promoter is initiated. To use tetracycline as a regulator of gene  

expression, a reverse tetracycline-controlled transactivator (rtTA) has to be present  

adapted from [81].



functions [82]. DREADD  development  has  been  based  on  muscarinic  acetylcholine 

receptors  from which  multiple  teams of  scientists  developed a  whole group of  mutant 

muscarinic receptors for three G protein-dependent signaling pathways (Gi, Gq, and Gs). 

All three receptors should be solely activated by Clozapine N-oxide (CNO) (Fig 4.3) [83].

In  addition,  DREADDS  may  be  designed  in  many  different  pharmacological  profiles. 

These  highly  specialized  DREADDS  are  then  expressed  in  target  cell  populations  or 

disease-associated cells, aiding the search for pharmacological targets [83].

GPCRs with constitutive activity and with high levels of expression may lead to signaling 

even in the absence of ligand. Accordingly, DREADDs should be expressed at the lowest 

potential levels. However, for hM3Dq and hM4Di it was possible to achieve a life-long and 

extremely high levels of expression due to the use of the genetically encoded tetracycline-

sensitive system, without inducing basal electrophysiological, behavioural, or anatomical 

abnormalities  [80].  DREADDs  as  any  other  receptors  may  be  desensitized  and 

subsequently down-regulated due to the impact of repeated dosing of DREADD chemical 

actuator [83].

One of the most commonly used DREADDs for silencing and for activating neurons are 

hM3Dq and hM4Di (sections 4.3.2 and 4.3.3). An intracranial delivery of an expression 

vector via transgenic viruses is utilized most frequently to transfect brain cells. The viral 

construct typically carries the DREADD transgene, an ubiquitous or cell-specific promoter 

and a fluorescent reporter [82].
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Figure 4.3: Structure of Clozapine N-oxide (CNO) [82]



Despite the fact that DREADDs have been used in more than 800 studies this popular 

chemogenetic technique needs to be used cautiously when used for  in vivo studies  [82] 

[84]. 

 4.3.2 Gq-DREADDS, CNO Analogues, and Basal Activity

hM1Dq, hM3Dq, and hM5Dq, belong to the group of excitatory Gq- DREADDS, and each 

of  these  receptors  is  based  on different  muscarinic  receptor.h3MDq DREADD can  be 

considered as one of the most frequently used excitatory DREADDs and is typically used 

in order to enhanceing neuronal excitability and firing activity [85].  Several options are 

available for expressing hM3Dq in genetically specified cells. Expression of hM3Dq in 

genetically  modified  mice  can  be  controlled  by  the  Tet-  system and  via  Cre-mediated 

recombination [82].

The prototypical chemical actuator for Gi/Gq-DREADDs is Clozapine N-oxide (CNO). It 

has been long assumed that CNO, as an inert metabolite of the atypical antipsychotic drug 

clozapine, can cross the blood brain barrier and has very good pharmacokinetics properties 

[82].  However, recently it has been revealed that only clozapine, the reverse product of 

CNO crosses  the  blood brain  barrier  and  possess  a  high  affinity  for  DREADDs.  This 

finding contradicts the long-term assumption that DREADDs are exclusively activated by 

the designer drug. Furthermore, it puts an emphasis on using appropriate controls such as 

admininstering CNO to animals that express only a fluorescent marker and do not express 

the designer receptor itself. In that way one can test for potential effects of CNO-derived 

clozapine,  that  potentially  activates  endogenous  serotonin  and  dopamine  receptors  in 

addition to DREADDs [82].

 4.3.3 Gi-DREADDs

Gi-DREADDs which allow the silencing of neuronal activity are hM2Di, hM4Di and the 

κ-opioid-derived DREADD (KORD). hM4Di is the most frequently use DREADDs with 

inhibitory activity. 

hM4Di may  be  activated  by  clozapine  [84] whereby  KORD  as  another  class  of 

chemogenetic  GPCR, is activated by salvinorin B, which does not exhibit any activity to 

other  tested  molecular  targets  (>350  GPCRs,  ion  channels,  transporters,  and  enzymes 
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evaluated).  According to  reports  from several  labs,  salvinorin B may by considered as 

pharmacologically inertand can serve as a KORD ligand to inhibit activity in neurons that 

express a complementary signaling cascade [84].

 4.4 Immunohistochemistry 

 4.4.1 DAPI staining 

4’, 6-diamidino-2-phenylindole, also called Dapi, is a blue fluorescent dye commonly used 

in  immunohistochemistry methods for  visualizing nucleic  acids.  Dapi has  an ability  to 

passes though the cell membrane and then bind to regions of dsDNA. It is excited by the 

violet (405 nm) laser line [85].

 4.4.2 NeuN – Neuronal nuclei

Neuronal  nuclei  is  a  soluble neuron-specific  nuclear  protein recognized in  a  vertebrate 

nervous system. The expression of NeuN is observed in most neurontypes in the nervous 

system However in certain types of neurons, for instance in Purkinje cells, NeuN is not 

present. Immunohistochemical detection of NeuN is possible after the initial development 

serves as an excellent neuronal marker in the central and peripheral nervous system [86].

 4.4.3 Immediate-early gene product c-Fos

c-Fos  as  a  product  of  immediate-early  gene  (IEG)  expression  serves  as  a  marker  of 

neuronal  activation  in  the  central  nervous  system.  Therefore  c-Fos  staining  takes  an 

important  place among immunohistochemical  methods and provides a powerful tool in 

experimental studies that aim to map cellular activation within brain areas [87].

 4.5 Fear conditioning

In need to characterize phenotypes of mutant mice and the effects of genetic alterations 

fear conditioning (FC) has gained popularity over the last few decades. FC is a convenient 

tool to study associative learning processes. It is a subtset of classical conditioning that 

includes the association between conditioned stimulus (CS) and unconditioned stimulus 
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(US) and evokes freezing behaviours associated with fear. As unconditioned stimulus (US) 

an electric foot shock (in rats and mice) or an air puff to the eye are typically used [88].

A particular context and/or cue, for instance a tone typically serve as CS so that two types 

of FC, contextual or cued are distinguished (Fig 4.4). The freezing behaviour of an animal 

can be defined as “absence of movement except for respiration” and is usually quantified 

by measuring laser beam breaks or pixel changes in digital movie sequences [89].

 4.5.1 Contextual fear conditioning

One form of conditioning involves placing an animal in a novel environment and providing 

an aversive stimulus. If the animal is later returned to the same environment, the freezing 

response related to fear can be assessed [90].

 4.5.2 Cued fear conditioning 

This form of conditioning differs from contextual conditioning by pairing a CS with the 
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Figure  4.4:  Fear  conditioning is a form of associative learning in which an aversive  

fear-evoking stimulus (the unconditioned stimulus) is paired with exposure to a novel  

environment or a sensory cue such as a tone (the conditioned stimulus) [89].



US in a novel context (Figure 4.4). To be able to separate context from cue, the freezing 

behaviour of animals is then measured when re-exposed to the CS in the context that was 

used to assess baseline freezing behaviour [90].
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Experimental Part
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5. Materials

 5.1 Animals

C57BL/6JRj  mice  (Janvier  Labs,  France),(25–30  g,  eight  weeks  old)  were  housed  in 

groups of 2–4 per cage and were maintained with food and water ad libitum on a 12 h 

light/12  h  dark  cycle.  All  experimental  procedures  were  performed  according  to  the 

German  Animal  Welfare  Act  and  were  approved  by  the  local  governing  body 

(Governmental Council in Karlsruhe, Germany, approval numbers G115/14 and G205/14).

 5.2 Equipment

Coverslips (Medite GmbH; Brugdorf, GE)

Falcon tubes 15 ml, 50 ml (Sarstedt AG & Co.; Nümbrecht, GE)

Microscope slides (Gerhard Menzel B.V&Co. KG. Braunschweig, GE)

Microscope slides (NeoLab Migge Laborbedarf-Vertriebs GmbH; Heidelberg, GE)

Microtube 1.5 ml (Sarstedt AG & Co.; Nümbrecht, GE)

Pipette (Gilson, Inc.; Middleton, WI, USA)

Pipette boy – neoAccupette (Wager & Munz GmbH; München, GE)

Pipette tips (Greiner bio-one GmbH; Frickenhausen, GE)

Serological pipette 5 ml, 10 ml, 25 ml (Sarstedt AG & Co.; Nümbrecht, GE)

Tissue culture dishes (Becton Dickinson Labware; Le Pon de Claix, France)

 5.3 Instruments

Digital camera Nikon DS-Qi1Mc (Nikon Instruments Europe B.V, GE)

Digital camera Nikon DS-Ri1Mc (Nikon Instruments Europe B.V, GE)

Epifluorescence microscope Nikon Ni-5 (Nikon Instruments Europe B.V, GE)

Fear Conditioning System Ugo Basile (21036 GEMONIO - Varese – ITALY)

Leica Vibrotom VT 1000S (Leica Microsystems GmbH; Wetzlar, GE)

LSC microscope Leica TCS SP8 (Leica Microsystems GmbH; Wetzlar, GE)

Microscope Leica DM LS2 (Leica Microsystems GmbH; Wetzlar, GE)

Objectives 10x, 20x, 40x PL APO CS2 (Leica Microsystems GmbH; Wetzlar, GE)
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 5.4 Chemicals

All used chemicals were in the highest purity.

Capsaicin (Sigma-Aldrich Chemie GmbH; Steinheim, GE)

DAPI (Sigma-Aldrich Chemie GmbH; Steinheim, GE)

DMSO (Sigma-Aldrich Chemie GmbH; Steinheim, GE)

Fentanyl 0.05 mg/ml(Sigma-Aldrich Chemie GmbH; Steinheim, GE)

Formaldehyde, (Applichem, Darmstadt, GE)

Glycin (AppliChem GmbH; Darmstadt, GE)

Horse serum, liquid (Sigma-Aldrich Chemie GmbH; Steinheim, GE)

Isoflurane (Baxter Deutschland GmbH; Heidelberg, GE)

Lidocain 10%(Sigma-Aldrich Chemie GmbH; Steinheim, GE)

Medetomidine hydrochloride (1mg/ml) (Sigma-Aldrich Chemie GmbH; Steinheim, GE)

Midazolam 5mg/ml (Sigma-Aldrich Chemie GmbH; Steinheim, GE)

Mowiol 4-88 (Sigma-Aldrich Chemie GmbH; Steinheim, GE)

Paraformaldehyde (Applichem, Darmstadt, GE)

Pentobarbitalum 1mg/1ml (Sigma-Aldrich Chemie GmbH; Steinheim, GE)

Phosphate Buffered Saline (PBS)(Sigma-Aldrich Chemie GmbH; Steinheim, GE)

HEK 293 cell line(Sigma-Aldrich Chemie GmbH; Steinheim, GE)

Triton X-100 ( Sigma-Aldrich Chemie GmbH; Steinheim, GE)

Tween 80 ( Sigma-Aldrich Chemie GmbH; Steinheim, GE), 

 5.5 Antibiotics

Doxycycline Hyclate (Envigo, Huntingdon, UK)

 5.6 Plasmid constructs

pAAV-cFos-tTA-pA 

pAAV-PTRE-tight-hM3Dq:mCherry

pAAV-cfos-tTA2G 

(all obtained from Addgene, deposited by W. Wisden, Imperial College, London, UK)

pAAV-6p-Cminibi.iCreCheery (provided by Rolf Sprengel, Max Planck Institute for 

Medical Research, Heidelberg, GE) 
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pAAV-PTRE-tighthM4Di:mCherry (Addgene, deposited by W.Wisden, Imperial College, 

London, UK) 

 5.7 Recombinant viruses

rAAV-cfos-tTA2G

rAAV-pTRE2G-M4:mCherry

rAAV-pTRE2G-M3:mCherry

rAAV-cfos-tTA-pA

rAAV-6p-Cminibi.iCreCheery

 5.8 Software

ANY-maze behavioural tracking software (Stoelting Europe, Dublin 6, Ireland)

Fiji Is Just Image J (Image J, Curtis Rueder, UW-Madison LOCI, USA)

GraphPad, Prism 6 (GraphPad Software, USA)

Leica Microsystems CMS Software License (Leica Microsystems GmbH, Wetzlar, GE)

NIS-Elements Acquisition Software (Nikon GmbH, Düsseldorf, GE)

 5.9 Antibodies

 5.9.1 Primary

anti-c-Fos (rabbit; Millipore, Merck Milipore Burlingto, USA)

anti-NeuN (mouse, Millipore, Merck Milipore Burlingto, USA)

 5.9.2 Secondary

donkey anti-rabbit Alexa 488 (Jackson Laboratory West Grove, PA, USA)

donkey anti-mouse Alexa 647 (Jackson Laboratory West Grove, PA, USA)

6. Methods

AAV TetTag-DREADD transgenes were generated as previously described [90].

Each of the Tet-Tag transgene components, cFos-tTA, TRE-mCherry, cFos-tTA2G, TRE-

hM3Dq:mCherry and TRE-hM4Di:mCherry,  were cloned in an AAV expression vector 
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and  packaged  separately  in  AAV  capsids  of  mixed  serotype  (AAV1  and  AAV2)  as 

described by Zhang et al. (2015). The pTRE-hM4Di:mCherry construct was generated in 

the laboratory  of W. Wisden by replacing the DREADD transgene of the PTRE-tight-

hM3Dq-mCherry-WPRE-pA  expression  vector.  These  Tet-Tag  transgene  components 

contained the second generation (2G) tet-operator promoter (PTRE-tight) [34].

 6.1 Generation of recombinant AAV particles

All AAV transgenes were packaged into AAV capsids (mixed serotype 1 & 2, 1:1 LORR 

ratio  of  AAV1 and AAV2 capsid  proteins  using  AAV2 ITRs)  by  a  technician  of  the 

Pharmacological  Institute  at  Heidelberg  University  according  to  established  procedures 

[34]. As packaging cell line HEK293 cells were used.

 6.2 Surgical procedures

Viral  delivery: In  vivo delivery  of  AAVs  (Table  6.2)  were  performed  by  a  qualified 

scientist of the Pharmacological Institute at Heidelberg University. Eight-week-old male 

C57BL/6JRj mice (Janvier Labs, France) were deeply anesthetized with an intraperitoneal 

injection of fentanyl (0.05 mg/ml), medetomidine hydrochloride (1 mg/ml) and midazolam 

(5 mg/ml) mixture (4:6:16, 0.7 μm)L per gram body weight). A thin layer of lidocaine (10%) 

was applied to the epidermis and a small craniotomy was made above the region of interest 

(Fig 6.1). The AAV mixture was slowly injected by applying of pneumatic pressure via  

a glass pipette using the stereotaxic coordinates listed in Table 6.1.
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Figure 6.1: A) Injection site of Dox Delta animals. (B) Injection site of Funky  

and AlphaZ experimental group



Table 6.1: Coordinates of rAAV delivery to target the PL (Funky, AlphaZ) and the AIC (Delta) 

according to the mouse brain atlas [91]. ML, medio-lateral from the midline; AP, anterior-posterior 

relative to Bregma; DV, dorso-ventral from the pial surface membrane.

Dox Delta
bilateral AAV injections, 6 
X 0,5 µl over 10 min each

Funky
bilateral AAV injections,
6 X 0,5 µl over 10 min each

AlphaZ
bilateral AAV injections, 2 X 
0,3 µl over 15 min each

ML(x)1,2= +/-2.5

AP( y)1,2= 1.8

DV(z)1,2= -1.5

ML(x)1,2 = +/- 0.25
AP(y)1,2 = +1.8
DV(z)1,2 = -1.5

ML(x) =+/- 0.25
AP(y)= 2,1 
DV(z)= - 1.5

ML(x)3,4= +/-2.5

AP(y)3,4= 2.0

DV(z)3,4= -1.5

ML(x)3,4 = +/- 0.25
AP(y)3,4 = + 2.2
DV(z)3,4 = - 1.2

ML(x)5,6= +/-2.5

AP(y)5,6= 2.2

DV(z)5,6= -1.1

ML(x)5,6 = +/- 0.25
AP(y)5,6 = + 2.6
DV(z)5,6 = -0.9

Table 6.2: Recombinant AAVs used for individual experimental group

Animals rAAV construct Ratio

Delta 1 AAV-cFos-tTA2G  AAV-TRE2G-hM4Di:mCherry 1:1

Delta 2 AAV-cFos-tTA2G AAV-TRE2G-M4:mCherry 1:1

Funky 1; 4; 14 AAV-cFos-tTA2G AAV-TRE2G-M4:mCherry 1:1

Funky 2; 3 AAV-cFos-tTA2G AAV-TRE2G-M3:mCherry 1:1

AlfaZ AAV-cFos-tTA-pA AAV-6p-Cminibi.iCreCheery 3:1

 6.3 Behavioral testing paradigms 

All  behavioral  tests  were  carried  out  during  the  light  cycle  of  the  animals  and  were 

conducted by M. Oswald (PhD) or MD student O. Retana. After an 11 day recovery period 

from surgery animals were acclimatized for 2 days to the behavioural testing environment 

and, after 90 s habituation in context A,  Baseline spontaneous freezing levels measured 

over a 7 min period the day before fear conditioning. Fear conditioning (FC) took place in 

context B. Following 90 s habituation 5 tones (5 kHz, 75 dB, 30 s) were played over a 7 

min period at semi-random intervals and paired to a mild electric foot shock (0.6 mA, 1 s) 

applied during the last second of each tone (time 29-30s). Except for the naïve group, the 

fear conditioning session was repeated twice at an interval of 3 h to obtain a robust fear 

memory  lasting  over  the  labeling  and  testing  sessions.  Labelling  (Table  6.3) was 

conducted after placing animals for 48 h on normal chow without doxycycline (OFF Dox), 
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by subjecting them either to the first fear retrieval (FR) session (7 min period, 5 times 30 

sec CS+ tone ) or an acute pain stimulus. Animals were placed back on the doxycycline 

diet  (ON  Dox)  60  min  later.  Labelling of  engram  cells  that  were  active  during  the 

conditioned  fear  response  was  again  performed  in  context  A,  either  3-5  days  after 

conditioning to test recent, or after 28-33 days to test remote fear memory (Table 6.3, see 

Fig 6.2, 6.3 for detailed timelines and behavioural paradigms).

To  test  for  behavioural  effects  due  to  DREADD  activation,  injections  of  

Clozapine-N-oxide (CNO, 2 mg/kg, i.p. [82]) or saline (100 μm)l) were administered.

Capsaicin injection: Mice were lightly anaesthetized in isoflurane and capsaicin (0.06%, 

20 μm)l in 10% DMSO/saline; or 0.06%, 20 μm)l in 10% DMSO/7% Tween 80/saline) injected 

subcutaneously in the left hind paw. In functional tests involving DREADDs, capsaicin 

was administered 2-3 hours following the CNO or saline injection. Mice were tested for 

nocifensive  behavior  (paw lifting,  paw licking,  leg  shaking,  toe-splaying)  within  5-20 

minutes  following  capsaicin  injection..  For  capsaicin  administration  mice  were  lightly 

anaesthetized in isoflurane.  The individual testing paradigms are described in detail  for 

each experimental group in behavioural schemes (Fig 6.2, 6.3)

Context A : 20 x 20 cm plastic box placed on a smooth plastic surface inside a Faraday 

cage with the camera mounted above; a 70 % ethanol solution scented with 2 % benzyl 

alcohol was used for cleaning parts before the start of each session.

Context B: 18 x 18 cm Perspex box with raised metal grill floor placed inside a black 80 x 

80 cm enclosure; the camera was mounted above; lemon-scented detergent was used for 

cleaning parts between each session.
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Figure  6.2:  Schematic  timelines  and  behavioural  paradigm  for  experimental  groups  of  mice  

TetTag-labelled  for  acute  pain  or  conditioned fear.  A)  AplhaZ group animals  transduced with  

activity-dependent fluorescent reporter vectors (mCherry) were subjected to CFC, engram cells  

labelled for remote FR and exposed to an acute nocifensive stimulus (0.06% capsaicin in 10%  

DMSO & 7% Tween 80) 60-90 min before perfusion. B) Dox Delta 1 group animals transduced  

with activity-dependent DREADD vectors (hM4Di) were subjected to CFC, engram cells labelled  

for remote FR and tested for acute pain behaviour (Capsaicin 0.06%, 20 μl in 10% DMSO/saline)l in 10% DMSO/saline)  

while activating or not activating the DREADDs. C) Dox Delta 2 group animals transduced with  

activity-dependent DREADD vectors (hM4Di) were subjected to CFC, engram cells labelled in  

acute pain caused by capsaicin injection (0.06%, in 10% DMSO/ 7% Tween 80) and FR tested  

while activating or not activating. CFC= cued fear conditioning,, FR= fear retrieval.
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Table 6.3: Behavioral tests used to label neuronal ensemble activity by the TetTag and endogenous 

c-Fos expression methods.

Experimental group TetTag labelling 

stimulus

Endogenous c-Fos 

expression stimulus

Fear memory 
retrieval time

Dox Delta 1 Tone-cued Fear Capsaicin (pain) remote 

Dox Delta 2 Acute pain (Capsaicin) Tone-cued Fear remote 

Funky 1-4;14 Tone-cued Fear Tone-cued Fear  recent 

Alpha Z Tone-cued Fear Capsaicin (pain) remote 

 6.4 Fixation

After the last behavioural test animals were returned to the homecage for 60 to 90 min 

before  they  were  sacrificed  with  a  pentobarbital  overdose and  immediately  perfused 

transcardially with phosphate-buffered saline (PBS; pH 7.4) followed by 10% formalin-
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Figure  6.3:  D)  Funky  group  animals  transduced  with  activity-dependent  TetTag  AAV vectors  

(hM4Di/ hM3Dq) were subjected to CFC, labelled in recent FR, and later tested for FR and acute  

pain (Capsaicin inj. 0.06%, 20 μl in 10% DMSO/saline)l in 10% DMSO/saline) while activating (CNO) or not activating  

(saline) DREADDs. E) Naive mice were subjected to CFC twice and tested each time, once after  

the  first  CFC  and  once  following  the  second  FC.  CFC=  cued  fear  conditioning,,  FR=  fear  

retrieval.



fixative  solution.  Brains  were  removed  and  postfixed  at  4  °C  for  a  further  24  h  in 

10%formalin, and stored in PBS at 4 °C for up to 3 days until sectioning.

 6.5 Brain slice preparation

The  cerebellum was  removed  by  a  coronal  cut  at  the  level  of  the  brainstem  and  the 

forebrain was glued via the coronal cut to the vibratome stage (Leica VT1000S, Germany). 

Coronal  sections  (50  μm)m)  were  collected  and  stored  in  0.5%  formalin  at  4  °C  until 

processed further with immunohistochemical procedures.

 6.6 Immunohistochemistry protocols

 6.6.1 c-Fos and NeuN

Brain sections (50m) were collected and washed in PBS containing 50 mM glycine for 10 

min and rinsed in PBST ( 0.2% Triton in PBS). Section were subsequently blocked for 60 

min  in  10% horse  serum and  0.2% Triton  in  PBS at  room temperature  under  gentle 

agitation.  Sections were then incubated in a primary antibody cocktail  (rabbit  anti-cFos 

1:5000, mouse anti-NeuN 1:1000) in blocking solution overnight at 4 °C.

After incubation, primary antibodies were washed out with PBST three times, 15 min each, 

and the sections subsequently incubated with secondary antibodies (anti-rabbit Alexa 488, 

1:700 and anti-mouse-Alexa 647, 1:700) in Ab-buffer (PBST/10%NHS) for 2 hours. After 

incubation,  secondary  antibodies  were  rinsed  out  with  PBST twice  for  10  min  each. 

Sections were then incubated in DAPI/PBS (1:10000) for 15 min. This was followed by 

washing sections twice in PBS for 10 min and then 10 min in 10mM TRIS-HCl.  The 

sections were mounted onto glass slides from TRIS-HCl and coverslipped with Mowiol. 

Immunostained  sections  were  examined  either  with  an  epifluorescence  microscope 

equipped with a digital camera or a laser-scanning confocal microscope and images were 

captured with a digital camera..

 6.7 Image analysis 

The experimenters were blinded to the identity of the mice during image analysis.
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 6.7.1 Confocal microscopy

Immunostained brain sections spanning the entire region of interest and covering the AAV 

injection site were visualized using a laser-scanning confocal microscope (Leica TCS SP8, 

Germany)  with  10x,  20x  or  40x  magnification  (Leica  PL  APO  CS2  objectives). 

Consecutive  confocal  image  stacks  (10x,  taken  in  interval  2,4µm) were  acquired 

sequentially in a montage configuration to cover the entire region of interest. Each animal 

group  image  acquisition  required  separation  into  the  two  Sequences  (405,594  nm), 

(633,488 nm), to reduce cross-talk (emission overlap) to a minimum.

Images and their maximum Z projections were captured and quantified in Leica software. 

From each animal, 3 to 5 sections were imaged and 3 to 4 hemispheres with the brightest  

expression  levels  around  the  injection  site  were  used  for  quantification.  For  counting 

purposes,  regions  of  interest  (ROI) in  Z projections  of acquired  image montages  were 

traced for ACC, PL, IL, AID, AIV, and DI, based on the The Mouse Brain in stereotactic 

coordinates [91]. Neuronal counts were performed for each cortical region while blinded to 

the treatments  of the animals.  A cell  was counted only if  it  displayed intensity  values 

throughout the soma consistently above background intensity levels. A positive neuron-

like signal was only included in the final analyses if it did possess simultaneously a nuclear 

(Dapi, blue) and (NeuN, pink) marker.

 6.8 Data analysis 

GraphPad Prism® 6.0 was used for all statistical analysis.

Data are presented as means ± S.E.M. (standard error of the mean) for n animals. One-way 

or two-way analysis of variance (ANOVA), was used to determine significant differences 

between the  experimental  groups followed by Tukey’s  or  Sidak’s  multiple  comparison 

tests.  A  paired  t-test  and  an  unpaired  t-test  was  conducted  to  analyse  behavioural 

differences for CNO and saline treatments. Values of * p<0,05 were considered significant, 

** p<0,01 very significant and *** p<0,001 or **** p< 0,0001 extremely significant.
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7. Results

 7.1 Immediate-early gene (IEG) expression in pain

To evaluate the role of medial (ACC, PL & IL) and lateral (DI, AID & AIV) PFC regions  

in  acute  pain,  a  group  of  mice  that  had  been  transduced  earlier  with  complementing 

activity- and tetracycline-dependent AAV vectors in the PL, received a capsaicin injection 

in the hind paw while on doxycycline. The patterns of endogenous IEG expression evoked 

by the acute pain stimulus were captured by perfusion fixation of the brains 60–90 min 

after the capsaicin injection. c-Fos immunolabeling of coronal brain sections suggested that 

PL-mPFC and anterior insular regions of the lateral PFC were mainly activated (Fig 7.1). 

Counting  of  individual  c-Fos+  neurons  in  the  six  brain  regions  revealed  significant 

differences  with  the  highest  expression  observed in  the  PL and intermediate  levels  of 

activation in the ACC, AID and AIV (Fig 7.2A). Many c-Fos+ neurons were also apparent 

in  the  piriform  cortex  of  treated  animals  and  this  number  appeared  to  be  increased 

compared to home cage controls but this brain region was not evaluated further in this 

study.

The magnitude of c-Fos expression evoked in the lateral PFC by the acute pain stimulus 

was further assessed by counting immunolabelled cells in brains from unstimulated home 

cage controls and animals that received injections of capsaicin prepared with two distinct 

solutions. Few PFC neurons expressed c-Fos in the home cage group in (Fig 7.2 B). If  

capsaicin was dissolved without the addition of detergent to the 10 % DMSO solvent  

a  moderate  increase  in  c-Fos  expressing  neurons  was  apparent  in  the  anterior  insular 

regions of the PFC (Fig 7.2B). Nocifensive behaviour lasted 1390 ± 85 s if the injected 

capsaicin solution also contained detergent and 138 ± 45 s when dissolved simply in 10 % 

DMSO. Accordingly, the potent detergent-solubilized capsaicin induced c-Fos expression 

in significantly more neurons in the AID compared to home-cage controls and mice that 

received the less potent solution of capsaicin (Fig 7.2B). 
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Figure  7.1:  Example montages of confocal image projections of lateral and medial PFC (left  

and right panels, respectively) immunolabeled for c-Fos (top) and stained for nuclei with DAPI  

(bottom).White lines indicate borders of the assessed brain regions. Insets show zooomed detail  

of AIV. Abbreviations: ACC anterior cingulate cortex, PL prelimbic cortex, IL infralimbic, DI  

dysgranular  insula,  AID dorsal  anterior  insula,  AIV ventral  anterior  insula.,  PIR  piriform 

cortex.



 7.2 IEG expression in fear

The PFC has been tied to a wide range of functions such as attention, short-term memory, 

effort and motivation  [91], and associative learning including conditioned fear behaviour 

[39]. We focused here on the activity of the PFC during fear retrieval as this should allow 

us to disentangle PFC activity encoding acute pain or an emotion such as fear evoked by

 a conditioned stimulus to a painful experience in the past. In order to evaluate the role of  

the  PFC in  tone-cued  fear  retrieval,  two groups  of  mice  (n=12 in  total)  received  five 

pairings of a mild foot shock with an auditory tone and were re-exposed to the conditioned 

tone stimulus in a different context approximately 8 or 31 days later. The induced c-Fos 

expression was captured and analysed as described for the acute pain stimulus above. The 

pattern  of  IEG  expression  evoked  by  fear  was  somewhat  similar  to  that  observed  in 
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Figure  7.2:  (A)  Comparison  of  c-Fos  expression  in  PFC  regions  induced  by  detergent-

solubilized capsaicin injected in the left hind paw (AlphaZ experimental group, n=5, one-way  

ANOVA (p<0,05) and Tukey´s post-hoc test).  (B) Comparison of c-Fos expression in lateral  

PFC regions of home-cage controls (n = 6), and mice that received left hind paw injections of  

capsaicin solubilized either in 10 % DMSO and 7 % Tween-80 (AlphaZ, n=5) or in 10 %  

DMSO only (Dox Delta 1, n=6). Two-way ANOVA (p<0,05 for the treatment effect) and Tukey´s  

post-hoc  test  for  within  brain  region  differences  between  the  experimental  groups.  

Abbreviations: ACC – anterior cingulate cortex, PL - prelimbic cortex, IL - infralimbic cortex,  

DI - dysgranular insula, AID - dorsal anterior insula, AIV - ventral anterior insula.



response  to  the  acute  capsaicin  pain  (Fig  7.3)  and  detailed  counting  revealed  notable 

differences between individual regions (Fig 7.4A). c-Fos expression was again highest in 

PL and lowest in DI, with intermediate numbers of c-Fos expressing neurons apparent in 

ACC, IL, AID & AIV.

To test if AAV mediated gene transduction and expression of the Gi:mCherry DREADD 

construct in the lateral PFC of the Dox Delta 2 mice had any impact on endogenous IEG 

expression, we compared c-Fos+ neuron numbers evoked by cued fear retrieval in Dox 

Delta 2 (n=7) with those evoked in naive (n=5) and untreated homecage control (n=6) 

mice.  This  analysis  confirmed  significant  differences  in  c-Fos  expression  between 

homecage controls and both groups of fear conditioned mice (Fig 7.4B) and did not reveal 

significant differences in the fear retrieval-induced endogenous c-Fos expression between 

naive and DREADD expressing mice. Hence the endogenous c-Fos activation during cued 

fear retrieval of both fear conditioned groups was considered as comparable, justifying the 

combined  analysis  of  c-Fos  activity  between  the  PFC  regions  in  Figure  7.4A.
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Figure 7.3: Example montages of confocal image projections of lateral (left) and medial (right)  

PFC regions showing representative low power images of c-Fos immunolabelled brain sections  

from an animal exposed to a cued fear retrieval stimulus. Borders of brain regions that were  

analysed by counting cFos+ neurons are shown as white lines.. 



56

A B

Figure 7.4: (A) Comparison of c-Fos expression in PFC brain regions of fear-conditioned mice  

exposed to the CS+ to trigger fear memory 8-31 days after conditioning and 60 - 90 minutes  

before sacrifice (one-way ANOVA , n=12, p< 0,001, and Tukey´s multiple comparison test). (B)  

c-Fos expression in home cage controls (n=6) and in response to tone-cued fear retrieval 8  

days (naïve mice, n=5) or  31 days (Dox Delta 2 group mice, n=7) after fear conditioning.  

Testing for main group effects in a two-way ANOVA confirmed significant differences in c-Fos  

expression between experimental groups and brain regions (both p<0,001) but the evoked c-Fos  

expression between the two fear conditioned groups was not different across all brain regions  

(Tukey’s multiple comparison test for the main treatment effect). * p<0,05; ** p<0,01; *** p <  

0,001; **** p< 0,0001.



 7.3 Comparison of IEG expression within PFC in acute pain and conditioned fear

In order to test for potential differences of IEG expression in PFC regions evoked by cued 

fear  stimuli  and  detergent  solubilized  capsaicin,  endogenous  c-Fos  expression  patterns 

were compared between two distinct groups of mice. AlphaZ (n=5) mice that had been 

transduced earlier with the activity- and tetracycline-dependent AAV vectors in the PL, 

received a capsaicin injection in the hind paw while on doxycycline, and Dox Delta 2 

(n=7) mice that were also transduced with activity- and tetracycline-dependent AAVs in the 

lateral PFC and subjected to tone cued fear retrieval. Both groups were exposed to the pain 

or fear stimulus 60-90 minutes before sacrificed while On-Dox (Fig 6.2)

The AlphaZ, Dox Delta 2 and untreated home cage mice were analysed for c-Fos+ neuron 

counts in the PFC regions (Fig 7.5A, two-way ANOVA, p<0,0001 for the main treatment  

effect). Multiple comparison testing showed that the c-Fos expression was evoked mainly 

in the PL, and significantly more so by the detergent-solubilized capsaicin compared to the 

cued fear  stimulus (Fig 7.5A).  While  cued-fear  retrieval  did not  induce a  notable IEG 

response  in  any  other  region,  the  acute  pain  stimulus  significantly  increased  c-Fos 

expression also in the ventral and dorsal anterior insula (Tukey´s multiple comparison test 

for the treatment effect within brain regions). * p<0,05; ** p<0,01; *** p < 0,001; **** 

p< 0,0001.

In  addition  we  tested  for  differences  in  the  number  of  endogenous  c-Fos  expressing 

neurons in PFC regions of homecage control, naive tone-cued fear, and AlphaZ acute pain 

mice. Two-way ANOVA confirmed significant differences between conducted treatments 

(Fig 7.5B,  p<0,001). Again, PL was the only region where c-Fos was evoked by both, 

acute pain and conditioned fear stimuli above the untreated home cage controls. In this 

analysis a differential response to conditioned fear and acute pain was observed in the AID 

where very few c-Fos+ neurons were observed in response to conditioned fear. Acute pain 

evoked  c-Fos  IEG expression  in  both,  AIV and AID in  comparison to  c-Fos+ neuron 

numbers in the untreated homecage controls (Fig 7.5B, Tukey´s multiple comparison test 

for the main treatment effect). Hence at the cellular level, IEG expression was induced in 

response to acute pain and conditioned fear stimuli in the PL- mPFC whereas in lateral 

AID and AIV PFC regions c-Fos expression was preferentially induced by acute pain.
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 7.4 Ensemble overlap & Labelling efficiency

We detected increased c-Fos+ neuron numbers in the PL in response to acute pain and 

conditioned  fear  stimuli  but  endogenous  c-Fos  expression  alone  is  not  sufficient  to 

determine if the same or distinct neurons were activated in response to these two stimuli.  

To test for neuronal specificity encoding each stimulus, we next analysed the overlap of 

endogenous c-Fos expressing neurons with genetically labelled mCherry+ neurons in the 

mPFC (Fig 7.6). The Tet-Tag labelling approach provides a temporal activity-dependent 

marker for neurons that had their c-Fos promoter activity triggered either by capsaicin or 

tone-cued fear  3-7  days  before  the  same mice  were  exposed to  the  alternate  stimulus 

modality, the latter neuronal activity patterns are reflected by immunolabelling endogenous 

c-Fos protein levels. In AlphaZ mice activity-dependent mCherry expression was evoked 

by tone-cued fear stimulation 28 days after fear conditioning while animals were off Dox. 
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Figure  7.5:  (A) Comparison of  endogenous c-Fos expression in PFC regions of  home cage  

controls (n=6), and in response to capsaicin-induced pain (AlphaZ, n=5) or conditioned fear  

(Delta  2,  n=7,  two-way  ANOVA (p<  0,0001),  and  Tukey´s  multiple  comparison  test).  (B)  

Comparison of endogenous c-Fos expression in PFC regions of home cage controls (n=6), and  

in response to capsaicin-induced pain (AlphaZ, n=6) or conditioned fear (naïve mice, n=6, two-

way ANOVA (p< 0,0001), and Tukey´s multiple comparison test). * p<0,05; ** p<0,01; *** p <  

0,001; **** p< 0,0001.

A B



Endogenous c-Fos expression was then evoked by a capsaicin injection in the contralateral 

hind paw 4 days later when animals were back on Dox. 

The percentage of mCherry+ neurons that were also c-Fos+ ranged from 4,94-16,7 % in 

the ACC and from 12,0-30,4% in the PL (Fig 7.7A). No mCherry+ neurons were detected 

in the IL mPFC of AlphaZ mice, the neighbouring area of the targeted PL mPFC region 

(Fig 7.7A). This indicates that the proportion of ensemble neurons contributing to both 

acute pain and conditioned fear modalities is  reasonably low as less than 25 % of the 

mCherry+  acute  pain  ensemble  neurons  were  also  recruited  into  the  conditioned  fear 

ensemble. 

To provide an unbiased estimate of genetic labelling efficiency in the PL and neighbouring 

ACC and IL areas we compared the number of mCherry+ fear neurons in AlphaZ mice 

with the number of endogenous c-Fos+ neurons obtained in a different group of mice that 

were exposed to the tone-cued fear retrieval session in the same manner as the AlphaZ 

group (Fig 7.7B). An influence on the endogenous c-Fos expression in response to the 

cued-fear stimulus in the Dox Delta 2 control group by the earlier capsaicin-induced Tet-

Tag labelling of anterior insula neurons was unlikely as AAV injections were targeting 

exclusively  lateral  PFC  regions  in  Dox  Delta  2  mice.  The  activity-dependent  cellular 

labelling in mPFC regions differed significantly between the two groups (Fig 7.7B). While 

the labelling efficiency was high in the ACC and no neurons were detected in the IL, the 

number of mCherry+ PL neurons only approached 50 % of c-Fos+ neurons in response to 

the same tone-cued fear stimulus. These findings confirm that the AAV injections in the 

AlphaZ group mainly targeted the dorsal mPFC regions and highlight the fact that the 

genetic Tet-Tag labelling efficiency in the PL could be improved.
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In comparison to the activity-dependent mCherry just described, the Tet-tag labelling 

efficiency of the activity-dependent DREADD vectors was found to be poor. Labelling 

efficiency  of  TRE-Gq:mCherry  and  TRE-Gi:mCherry  constructs,  with  each  of  these 

injected at a 1:1 ratio with the cFos-tTA2G transactivator in the PL mPFC, was assessed 

in the group of Funky mice labelled with a tone-cued fear retrieval stimulus (Fig 6.3). In 

comparison to endogenous c-Fos+ neuron numbers observed in response to remote fear 

retrieval  stimulation  in  Dox  Delta  2  mice,  mCherry+  neurons  in  Funky  mice  were 

significantly reduced in the mPFC, and in particular in the PL region at the centre of the 

injection site (Fig 7.8B, two-way ANOVA, p<0,001, and Tukey´s multiple comparison 

test).
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Figure  7.7: (A) Estimate of the proportion of ensemble neurons activated by acute pain and  

conditioned fear stimuli ( AlphaZ, n=5, the degree of ensemble overlap in PL and ACC was not  

different,  paired  t-test,  p  =  0,0896). ).  (B)  Estimate  of  the  genetic  labelling  efficiency  in  

response  to  the  conditoned fear  stimulus  in  Alpha Z  mice  (mCherry+ neuron numbers)  in  

comparison to the number of endogenous cFos+ neurons (Dox Delta 2, n=7) evoked by the  

same  fear  conditioned  stimulus  (two-way  ANOVA,  p<0,0001  for  the  main  labelling  effect  

between the two groups, and Sidak’ s multiple comparison test, * p<0,05; ** p<0,01).
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A compromised  Tet-Tag  labelling  efficiency  was  also  apparent  in  the  lateral  PFC.  

In comparison to c-Fos+ neuron numbers observed in response to remote fear retrieval, the 

number of mCherry+ cells labelled by the same remote fear stimulation paradigm appeared 

reduced though in this  case it  did not reach significance (Fig 7.9A, two-way ANOVA, 

p=0,0539,). Tet-Tag labelling induced by acute pain stimulation was more convincing in 

the lateral PFC in Delta 2 mice where mCherry+ neuron numbers in the AID approached 

those for endogenous c-Fos+ neurons detected after the same acute pain stimulus applied 

to Alpha Z mice (Fig 7.8A). The improved efficiency in this situation may be explained by 

the fact that Dox Delta 2 mice were taken off Dox for 4-5 days before inducing Tet-Tag 

expression of the Gi:mCherry construct with the acute capsaicin pain stimulus (Fig 6.2). 

This  would  indicate  that  Tet-Tag  labelling  efficiency  can  be  improved  by  optimising 

systemic Dox levels and the period of time that animals are taken off Dox before applying 

the Tet-Tag labelling stimulus.

Comparison of c-Fos expression as a response to fear stimuli in Dox Delta 2 control 

group and mCherry+ labelled cells in Funky group showed significant difference (two-

way ANOVA, p(<0,001), The most significant difference was in PL and IL (Fig 7.8B) 

(Tukey´s multiple comparison test, * p<0,05; ** p<0,01; *** p < 0,001; **** p< 0,0001).
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Figure 7.8: (A) Labelling efficiency in pain ,with potent capsaicin s.c. inj. Dox Delta 2, n=7,  

two-way  ANOVA,  p(>0,05)  cFos-tTA,  TRE-Gi:mCherry,  c-Fos  AlphaZ,  n=5,  two-way  

ANOVA  p(<  0,001),  Tukey´s  test,  (B)  Labelling  efficiency  induced  by  fear  retrieval  

stimulation  in  mPFC  regions  of  Funky  mice  (n=5,  mCherry+  neurons)  compared  to  

endogenous c-Fos+ neurons counted after similar remote fear retrieval stimulation in Dox  

Delta 2 mice (n=7, two-way ANOVA, p < 0,05 for the main experimental group effect, and  

Tukey´s multiple comparison test).
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 7.5 Behavioural effects of engram neuron manipulation with DREADDs

Though  the  Tet-Tag  labelling  efficiency  was  sub-optimal  we  assessed  pain  and  fear 

behaviour in animals that expressed DREADDs in Tet-Tag labelled engram neurons for 

one of these modalities. CNO (2mg/kg i.p.) or saline was administered at least 60 min 

before exposing animals to the acute pain or cued fear retrieval stimulus and assessing 

freezing or nocifensive behaviour, respectively. 

Dox Delta 1 mice expressing the inhibitory Gi DREADD construct in fear-labelled engram 

neurons in the lateral  PFC were re-exposed to the same fear retrieval  stimulus on two 

consecutive days after having received alternating saline or CNO injections on either day. 

The proportion of time mice displayed freezing behaviour was similar in the CNO and 

saline conditions (Fig 7.10A) meaning the fear behaviour was not changed. On the second 

day of testing with CNO/saline (Fig 6.2, day 32), Dox Delta 1 mice were injected also with 

capsaicin (0,06% in 10% DMSO) in the left hind paw to assess nocifensive behaviour (paw 
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Figure  7.9:  (A)  Labelling efficiency  induced by  remote fear  stimulation  in  Dox  

Delta 1 (mCherry+ neurons, n=5) was somewhat reduced compared to endogenous  

c-Fos+ neurons induced by the same stimulation paradigm in Dox Delta 2 mice  

(n=7,  two-way  ANOVA,p>0,05  for  experimental  group  and  brain  region).  (B)  

Labelling efficiency induced by acute pain stimulation with detergent-solubilised  

capsaicin in Dox Delta 2 mice (n=7, mCherry+ neurons) compared to endogenous  

c-Fos+ neuron numbers detected after the same acute pain stimulus in AlphaZ mice  

(n=5, two-way ANOVA, p>0,05 for experimental group and brain region). 
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lifting or shaking, licking, toe-splaying). Again, we did not observe a treatment effect as 

mice  having  received  either  saline  or  CNO spent  similar  times  displaying  nocifensive 

actions (Fig 7.10B). 

Similarly,  fear  freezing  behaviour  in  Dox  Delta  2  mice  expressing  the  inhibitory  Gi 

DREADD in acute pain engram neurons in  the lateral  PFC was not  different  in  CNO 

compared to saline treated mice (Fig 7.10C).

  

Figure 7.10: (A) Fear freezing behaviour of Dox Delta 1 mice with fear labelled engram  

neurons  in  the  lateral  PFC  expressing  Gi  DREADD was  similar  in  saline  and  CNO  

treatment conditions (paired t-test, p>0,05). (B) Nocifensive behaviour of Dox Delta 1 mice  

was tested on one day only with mice receiving saline (n=2) or CNO (n=3) treatment,  

(unpaired t-test,  p>0,05). (C) Fear freezing behaviour of  Dox Delta 2 mice with acute  

pain-labelled engram neurons in the lateral PFC expressing Gi DREADD was similar in  

saline (n=3) and CNO (n=4) treatment (unpaired t-test, p>0,05).

Since we did not observe any behavioural effects as a result of inhibiting engram neurons 

in the lateral PFC by activating the inhibitory DREADD with CNO, we counted cFos+ 

neurons in these regions (Fig 7.11). The number of endogenous cFos+ neurons was not 

different in CNO compared to saline-treated animals (p>0,05 for the main treatment effect 

for both, acute pain and fear retrieval stimuli (Fig 7.11) Although there was a tendency of 

reduced  cFos+  neuron  numbers  in  the  AIV after  inhibiting  fear  engram  neurons  and 

challenging  with  an  acute  pain  stimulus  (Fig  7.11A)  the  number  of  animals  in  these 

treatment groups was to low to draw any meaningful conclusions. 
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Figure 7.11: A) IEG expression in lateral PFC regions of Dox Delta 1 mice expressing inhibitory  

Gi DREADD in fear retrieval-labelled engram neurons after experiencing acute pain stimulation  

while on CNO (n=2) or saline (n=3) treatment (two-way ANOVA, p>0,05 for the main treatment  

effect). (B) IEG expression in PFC regions of Dox Delta 2 mice expressing inhibitory Gi DREADD  

in acute pain-labelled engram neurons after fear retrieval stimulation while on CNO (n=4) or  

saline (n=3) treatment (two-way ANOVA, p>0,05 for the treatment main effect).
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8.  Discussion

According to  accumulating evidence,  the prefrontal  cortex is  considered as  one of  the 

crucial brain regions involved in processing fear memory and pain  [92,  47]. Particularly 

the medial prefrontal cortex (mPFC) comprising of the of anterior and cortex (ACC), the 

prelimbic cortex, (PL) and the infralimbic cortex (IL) are implicated in both pain and fear 

behaviours. Those regions rank high amongst regions that are consistently activated during 

painful perception  [61]. It is not clear if mPFC circuits underlying functionally-distinct 

processes, such as pain and emotions are different, or if distinct subsets of mPFC neurons 

participate in distinct functions [61].

We have implicated the tetracycline-dependent tagging method (Tet-Tag) in combination 

with the activity-dependent cFos promoter. This Tet-Tag system provides temporal control 

to restrict labelling of neuronal activity within a defined time window, in the assumption 

that the behavioural stimulus used to label engram neurons is linked most prominently to 

neuronal activity patterns at  the time. We also employed immunolabelling methods for 

immediate-early genes such as the activity-dependent marker c-Fos to delineate how pain 

and fear are encoded and manifested at the cellular level within PFC regions. These tools 

were used to test whether the cellular ensembles activated in pain and fear behaviours are 

distinct.  We  have  also  aimed  to  establish  and  explore  activity-dependent  DREADDs 

expression to in order test for the functional role of PFC ensembles in pain-related and 

non-related functions.

 8.1 IEG expression in pain

We have examined and analysed c-Fos expression within medial and lateral PFC regions 

evoked by acute plantar heat following s.c administration of capsaicin (Fig 7.2) and fear 

(Fig 7.4). The results of IEG expression in pain suggested that PL- mPFC and anterior 

insular region of the lateral PFC were mainly activated (Fig 7.1). Our results are consistent 

with findings where mPFC [47, 61] and insular cortex as a part of lateral PFC are both 

involved in pain processing [93].

Consistent with the prediction of a regional dissociation within dorsal and ventral mPFC 

regions in pain processing [94], we had expected more c-Fos+ cells in ACC compared to 
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the PL, as pain processing was reported to be associated most prominently with the activity 

in the ACC [61]. However, a significant dissociation of c-Fos+ pain neurons in our analysis 

was apparent only between PL and IL mPFC (Fig 7.2A).

We also investigated IEG expression within regions of insular cortex in the lateral PFC 

evoked by capsaicin pain stimulation (Fig 7.2B) The lowest expression was observed in the 

dysgranular insular cortex, receiving the bulk of the gustatory afferents [67]. The agranular 

insular cortex (AIV, AID) is mainly responsible for the perception of the unpleasantness of 

pain which is later apparent in the actual behavioural reaction displayed [95]. The observed 

expression of c-Fos+ neurons within ventral and dorsal agranular insular cortex (AIV, AID) 

was much lower  than we predicted,  however  we did test  mainly  at  a  certain anterior-

posterior Bregma level (1,7-1,9) so it is possible, that insular neuronal activity at more 

anterior or posterior levels could be enhanced.

In general, to increase the statistical power of our findings, it will be essential to test more 

animals. The findings presented here suggest that the dorsal anterior insula of the lateral 

PFC is mainly active in acute pain, whereas pain and fear stimuli activate the prelimbic 

mPFC to a similar extent.

 8.1.1 Comparison of different forms of capsaicin injections

The solvent used to dilute capsaicin makes a difference. In our experiments capsaicin was 

injected without and with the addition of detergent (Tween 80) to the 10% DMSO-based 

solvent. Including the detergent seems to be crucial in terms of evoking a cellular response. 

Capsaicin injected without detergent was not sufficient to increase c-Fos+ neuron counts 

above counts observed in the home cage control group  (Fig 7.2B).  Therefore for future 

experiments that rely on a robust IEG induction in PFC regions, Tween 80 detergent should 

be added to the capsaicin solvent.

 8.2 IEG expression in fear

While  a  painful  stimulus  was  employed  as  unconditioned  stimulus  (US)  during  fear 

conditioning, during recall of the fear memory was evoked exclusively by the conditioned 

stimulus (CS+). We avoided the use of the unconditioned electric foot shock to label fear 

engram neurons as the US by itself is highly painful. Using CS+ allows us later to make 

a comparison of the two distinct stimulus modalities, primarily inducing pain (capsaicin) or 
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an emotional response (fear).

As mentioned above we have activated fear engram cells within subregions of PFC. We 

observed a significant dissociation between mPFC and lateral PFC (Fig 7.4A), confirming 

that the insular cortex is highly associated with pain [94] PL – mPFC with both pain and 

fear memory [96].

This finding is consistent with the literature suggesting a high involvement of mPFC in 

fear memory recall [97, 40]. The observed high expression levels of c-Fos and associated 

cell counts suggest an essential role of the prelimbic mPFC in fear memory recall (Fig 

7.4A/B) [98].

 8.3 Comparison of IEG expression within PFC in acute pain and conditioned fear

 8.3.1 Comparison of recent and remote fear

We  compared  c-Fos  expression  between  recent  fear  memory  (triggered  8  days  after 

conditioning)  and remote  fear  memory (triggered  31 days  after  conditioning)  with  the 

highest number of cFos+ neurons detected in the PL (Fig 7.4B). However, the number of 

c-Fos-expressing  neurons  in  both  these  fear  conditioned  groups  was  not  significantly 

different. This results support the fact that PL is involved in recent and remote memory 

[45] but is not entirely consistent with a recent report in Science by Kitamura et al., who 

found that the PL mPFC has a functional role mainly encoding remote fear [47]. 

A role for the PL mPFC in encoding fear memory was also identified by De-Monte et al.

[99], although the PL involvement in fear learning and retrieval became apparent within 

a few days of conditioning opposing to recent Science paper by Kitamura, where PFC is 

highly involved in remote fear [47].  Based on this contrast, testing more animals also at 

earlier timepoints following conditioning will be essential.

 8.3.2 Comparison of acute pain and conditioned fear 

We aimed to examine how pain and fear manifestation differs within mPFC and lateral 

insular cortex (Fig 7.5A/B). We have used s.c. capsaicin injection as an acute pain stimulus 

and exposure to conditioned CS+ tone to provoke fear memory. We expected a regional 

dissociation in cFos+ neuron counts between pain and fear, with the higher pain expression 

in ACC [100] and the opposed higher expression in fear in PL and IL, [67]. However, the 
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pain expression was significantly elevated only in PL and the anterior insular regions (Fig 

7.5B) and cFos+ neuron numbers evoked by pain or fear stimuli differed only in the AID. 

In order  to  increase  the statistical  power and verify this  finding,  testing more  animals 

would be essential.

 8.4 Ensemble overlap

To test if the detected neuron ensembles recruited by the acute pain and cued fear retrieval 

stimuli are distinct we used the activity-dependent c-Fos promoter in the Tet-tag system to 

label neurons with the fluorescent mCherry marker in one modality and classical ICC for 

the endogenous c-Fos expression in the other modality. We calculated the percentage of 

mCherry+  cells  that  were  also  c-Fos+  (Fig  7.7A)  to  assess  the  extent  of  overlapping 

engram neurons. 16 % of fear engram neurons were also activated by the acute capsaicin 

pain  stimulus.  This  percentage  overlap  is  clearly  below the  30% overlap  reported  for 

remote fear memory triggered by contextual cues and labelling performed during the fear 

conditioning session in the same context [53]. This comparison suggests that pain and fear 

encoding by engram neurons in the PL mPFC are mostly distinct, with a relatively small 

proportion participating in encoding both modalities.  To achieve a better estimate of the 

neuronal overlap to pain and fear stimuli,  it would be necessary to further improve the 

labelling efficiency (Fig 7.7B). As a control it would be very useful to include a group of 

animals labelled either with a cued fear or acute pain stimulus and tested later again for the 

same stimulus modality to directly compare the degree of overlap in same modality and 

distinct modality situations.

 8.5 DREADDs and labelling efficiency

The PL mPFC is associated with pain  [53] and fear processing  [72].  Using the Tet-Tag 

labelling approach to express DREADDs in engram neurons we aimed to test if activating 

or inhibiting ensemble neurons has behavioural consequences.

We have labelled lateral PFC engram neurons with an inhibitory DREADD by providing

 a cued fear or an acute pain stimulus in two separate groups of mice, and later tested for 

behavioural effects while activating the DREADD with CNO and compared this to the 

performance in the saline control condition. We did not detect a change in the behaviour 
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when inhibiting engram neurons in the lateral PFC, not during fear when labelled with the 

same cued fear or a distinct acute painful stimulus, nor during acute pain when labelled 

with  the  distinct  fear  retrieval  cue  (Fig  7.10).  Consistent  with  strong evidence  for  an 

involvement of the anterior insular cortex in pain perception [101].  Tet-Tag labelling and 

testing with DREADDs should be focused on an acute pain stimulus in order to test for 

behavioural functions of these engrams in the lateral PFC.

We have hypothesised that  by using  Gi/Gq DREADDs we could  eventually  inhibit  or 

potentiate the activity of specific engram neurons within the prelimbic mPFC, a key PFC 

subregion implicated in pain and fear processing [76], 61]. As a first step we aimed to label 

neurons with a  cued fear  stimulus  and later  test  fear  behaviour  again while  activating 

DREADDs. Similarly, by labelling engram neurons with an acute pain stimulus and later 

testing  for  cued  fear  behaviour  while  activating  DREADDs  with  CNO  we  hoped  to 

disentangle functional roles of engram neuron activity in the mPFC. This intent to dissect 

fear and pain engram interactions was not possible, however as we did not achieve a high 

labelling efficiency.

By injecting the rAAVs for c-Fos-tTA and TRE-Gi/Gq:mCherry in a 1:1 ratio we have 

achieved a poor labelling efficiency in the PL (Fig 7.8) and neither behavioural testing with 

CNO/saline nor c-Fos to  estimate engram neuron activity was suggestive of functional 

effect  due  to  the  DREADD  engram  manipulation  (not  shown)  (Fig  7.10,  7.11).  By 

adjusting the ratio of the two rAAV vector components it might be possible to optimize and 

improve  the  Tet-Tag  labelling  efficiency.  Similarly,  optimizing  the  doxycycline  dosing 

regime and the period of time off Dox before stimulation should provide means to improve 

the labelling efficiency.

However,  according  to  recent  findings  published  by  M.  Michaelides  and  his  team  in 

Science  [84] caution  the  specificity  of  the  DREADD  system  is  required.  They 

demonstrated that CNO uptake in the CNS is extremely low and CNO is only activating 

DREADDs once converted to clozapine. The authors suggest that CNO is metabolized to 

clozapine which can cross the blood brain barrier and activate DREADDs, while CNO 

itself does not cross the BBB [84].

Hence it will be necessary in future to control for the non-specific effects of clozapine due 

to it activating endogenous receptors such as D2 dopamine or serotonin receptor types. 
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Using low doses of clozapine in absence of the designer receptors would be an appropriate 

control  to  be  able  to  recognize  clozapine-like  behavioural  effects  not  mediated  by 

DREADDs themself.  In  parallel,  treating  a  group of  Tet-Tag labelled  mice  expressing

a  fluorescent  marker  with  CNO,  and  testing  for  behavioural  consequences  will  be  an 

important control for the specific of the DREADD cellular manipulation approach [84].

Another concern that might be eventually problematic is the finding of Gold´s team that 

even in the absence of CNO, the expression of DREADDs had profound effects on the 

cellular  physiology-disrupting  normal  signalling  cascades  simply  by  DREADDs  being 

present [102]. DREADDs have been portrayed as a powerful chemogenetic tool to silence 

or potentiate neuronal activity very in a specific fashion. Despite the fact, that more than 

eight  hundred studies  employing  DREADDs were  published,  many  scientists  are  now 

warning to take great care in using DREADDs appropriately [84]. When used along with 

proper controls, and if the expression is optimized, they should still provide a powerful 

approach to manipulate the activity of a specific subset of neurons.

In case of using the proper control groups, and if the expression is optimized we could still  

draw conclusions in our experiments. 

Optogenetic methodologies provide another possible approach to silence or excite neuronal 

ensembles  specifically.  This  is  achieved  by  expressing  photosensitive  ion  channels  in 

specific cell types and this approach has been used in Tet-Tag labelled engram neurons by 

the Tonegawa´ s lab [55]. Neurons are typically activated with blue light by expressing the 

cation  channel,  Channelrhodopsin-2  (ChR2)  [101] and  inhibited  with  green  light  by 

expressing the light-sensitive proton pump Archaerhodopsin (Arch) [103].
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9. Conclusion

The  prefrontal  cortex  is  one  of  the  most  studied  brain  regions  and  its  subregions, 

particularly in the mPFC, are highly associated with fear memory and pain processing.

We aimed to elucidate the contribution of lateral and medial PFC regions to pain-related 

functions. Our findings revealed acute pain-induced activation of mPFC regions, mainly 

the PL mPFC, as well as the dorsal and ventral anterior insular cortex regions of the lateral  

PFC. The results obtained by activating fear engram cells support the suggestions of a high 

involvement of the PL - mPFC in fear and point to a regional dissociation between pain 

and fear within the lateral PFC.

In order to test if cued fear memory encoding in the PL mPFC becomes more important 

over time, engram neuron activity detected at various time points for recent and remote 

fear  memory  need  to  be  assessed  in  detail.  Contrary  to  our  expectation,  c-Fos-based 

engram activity for pain and fear stimuli was elevated consistently only in the PL mPFC. 

cFos+ neuron counts were not significantly induced by the acute pain and cued fear stimuli 

in the ACC.

Further experiments  are required to optimize the Tet-Tag and DREADD-based engram 

manipulation approach.

Here  we  aimed  to  conduct  pilot  experiments  characterizing  the  activity-dependent 

DREADD  expression  in  order  to  test  for  the  functional  role  of  different  neuronal 

ensembles  within the PFC. This approach so far  proved to be ineffective and requires 

optimization. However, if this method proves to be unsuitable for this purpose we propose 

using an optogenetic approach as a potential alternative.
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Abbreviations
 

AAV Adeno-associated virus

ACC Anterior cingulate cortex

Arch Archaerhodopsin 

AIC Anterior insular cortex 

AMY Amygdala

ATP Adenosine triphosphate

BG Basal ganglia

BBB Blood brain barrier

CFC Cued fear conditioning

ChR2 Channelrhodopsin-2 

CNO Clozapine-N-oxide

CNS Central nervous system 

CS Conditioned stimulus

DMSO Dimethyl sulfoxide

Dox Doxycycline

DREADD Designer Receptors Exclusively Activated by Designer Drugs

DRG Dorsal root ganglion

FC Fear Conditioning

FR Fear retrieval

GPCRs G protein-coupled receptors

HEK 293 Human embryonic kidney 293 cell line

IASP The International Association for the Study of Pain

IC Insular cortex

i.p. Intraperitoneal injection 

IHC Immunohistochemistry method

IEG Immediate-early gene 

IL Infralimbic cortex

LSC Laser-scanning confocal

mPFC Medial prefrontal cortex

NeuN Neuronal nuclei

NGF Nerve growth factor
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pAAV Plasmid of adeno-associated virus

PFC Prefrontal Cortex

PL Prelimbic cortex

PtdIns(4,5)P2 Phosphatidylinositol 4,5-bisphosphate

rTetR Reverse tetracycline repressor

ROI Region of interest

SAR Structure-activity relationship

s.c. Subcutaneous injection

S1 Primary somatosensory cortex

S2 Secondary somatosensory cortex

S.E.M Standard error of the mean

TET Tetracycline 

Tet- off Tetracycline off system

Tet- on Tetracycline on system

tetO Tetracycline operator

TetR Tetracycline repressor protein

Tet-tag Tetracycline-dependent tagging

TG Trigeminal ganglia 

TRE Tetracycline-response element

TRP Transient receptor potential

TRPV Transient receptor potential vanilloid

tTA Tetracycline-controlled transactivator

US Unconditioned stimulus

vmPFC Ventro-medial prefrontal cortex
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