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ABSTRACT 

 

In the early phases of drug design and development, scientists must overcome many challenges 

involved in identifying potential drug-like or lead-like compounds. This has led to the need of 

creating large sets of chemical data which will aid in improving the identification of 

pharmacophores and active compounds. Various scientific fields especially pharmacology, 

medicinal chemistry and biochemistry have begun to employ the use of computer sciences to aid 

in the screening for potential leads with more specificity with regards to drug-like compounds’ or 

substances’ bioactivity. The emphasis of this project was to create a database containing a 

collection of pyrazine compounds synthesized overtime in the Faculty of Pharmacy in Hradec 

Kralove (Charles University) with the aim of having antimycobacterial (and possible antibacterial 

and antifungal) activity, and further utilize this database to predict descriptors important for 

pharmacokinetic and bioavailability properties. This project seeks to demonstrate how certain 

molecular descriptors can be used as reliable chemoinformation to determine the likeliness or 

possibility of developing a lead-like or drug-like compound by utilizing computer software. An 

in-house database of 623 compounds saved in SMILES format was created and used in 

demonstrating quantitative structure-activity relationships (QSAR) and in evaluating and 

analyzing whether optimal lead-like or drug-like compounds are being produced. The database can 

be used to guide future synthesis with regards to CADD (Computer aided drug design).  
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List of important abbreviations 

 

CADD     Computer aided drug design 

clogP     fragment based or calculated logP 

CMR     Calculated Molar Refractivity 

DT     Diploma thesis 

HBA     Hydrogen-bond acceptor 

HBD     Hydrogen-bond donor 

HIV     human immunodeficiency virus 

HTS     high-throughput screening 

InChI     International Chemical Identifier 

InChIKey    hashed International Chemical Identifier 

LogP     base 10 logarithm of partition coefficient 

Mtbc     Mycobacterium tuberculosis strand H37Rv 

MIC     minimum inhibitory concentration 

MDR-TB    multidrug-resistant tuberculosis 

MW     molecular weight 

NRot     Number of rotatable bonds 

NMR     nuclear magnetic resonance 

POA     Pyrazinoic acid 

PSA     polar surface area 

PZA     Pyrazinamide 

QSAR     quantitative structure-activity relationships 

SMARTS    SMILES Arbitrary Target Specification 

SMILES    Simplified Molecular-Input Line Entry System 
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TAACF Tuberculosis Antimicrobial Acquisition and Coordinating 

Facility 

TB     tuberculosis 

XDR-TB    extensively drug-resistant tuberculosis 
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1. INTRODUCTION 
 

Tuberculosis (TB) continues to be a major health issue despite it being treatable and curable. 

Approximately 10.4million people were diagnosed with TB in 2016, with the disease being the 

top cause of death from a single infectious agent (1). TB is also the leading cause of death in human 

immunodeficiency virus (HIV)-positive individuals, causing a quarter of all HIV-related deaths. 

Drug-resistance has posed a great challenge in controlling the disease. Multidrug-resistant 

tuberculosis (MDR-TB) strains (that is those resistant to the most potent anti-TB drugs rifampicin 

and isoniazid) and extensively drug-resistant TB (XDR-TB) strains (those strains not susceptible 

to second-line anti-tuberculosis drugs like fluoroquinolones) have begun to emerge, causing even 

more detriment (2). Pyrazinamide (PZA) was first used against TB in 1952, and was unique 

because it reduced the treatment course from a typical 9-12 months to 6 months. This action is 

attributed to its ability to kill certain dormant microorganisms at acidic conditions that are not 

suited for other anti-TB agents. 

 

 

Figure 1: Structures and systematic names of Pyrazinamide and Pyrazinoic acid 

 

PZA is the active form of pyrazinoic acid (POA). They exert their action by multiple mechanisms. 

Firstly by inhibiting the specific mycobacterial enzyme Fatty Acid Synthase I (FAS I) leading to 

the disruption of membrane function (3). PZA must first cross the mycobacterial cell envelope, via 

active transport. It then accumulates within the cellular environment and blocks translational 

processes involved in protein synthesis. (4) 
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Figure 2: Illustration of the different mechanisms of action of PZA and POA (5) 

 

2. AIM 

The main aim of this thesis was to create an electronic in-house database of pyrazine derivatives 

possessing antimicrobial activity that have been published by teams in the Faculty of Pharmacy 

(Charles University, Hradec Kralove). Furthermore, it must be possible to use the database in 

demonstrating quantitative structure-activity relationships (QSAR) and to evaluate and analyze 

whether optimal lead-like or drug-like compounds are being produced. The resulting database 

must also be usable in guiding future syntheses.  
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3.1 Molecular descriptors 
 

The structure of a chemical compound is the main interest for chemists as this directly related to 

the biological activity. Molecular descriptors, essentially, give an idea to the features of a chemical 

entity. They relate the structure of the molecule to the properties it possesses. There are various 

types of molecular descriptors according to (6). Those that are used commonly are constitutional, 

surface, molecular connectivity, electrostatic, shape, geometry, quantum-chemical, physico-

chemical and hybrid. 

 

3.1.1 Constitutional molecular descriptors inform you about a compound’s chemical 

composition. For example: the number of atoms in the molecule, the number of bonds in a 

molecule, or the number atoms/groups of type “x”. 

 

3.1.2 Topological/surface molecular descriptors are very important is they are used in 

determining the solubility and permeability of a drug according to its surface properties. PSA 

(Polar Surface Area) describes total surface area of the molecule represented by polar atoms like 

oxygen, nitrogen and halogens. Other topological descriptors include SAS (Solvent-Accessible 

Surface), van der Waals surface and MS (Molecular Surface area). 

 

3.1.3 Quantum descriptors, which are derived computationally (7), cover all geometric and 

electronic features of a molecule, instead of its empiric ones. These include Lewis acid and Lewis 

base properties, charge transfer characteristics, hydrogen bonding ability, polarizability, polarity, 

steric factors, and lipophilicity. 

 

Amongst physico-chemical properties employed in structure-activity relationship and prediction 

of pharmacokinetic properties are boiling and melting point, dipole moment, molar refractivity 

and water partition coefficient. From the point of view of designing drugs, the most relevant 

molecular descriptors are the molecule’s solubility and its 1-octanol/water partition coefficient. 

Solubility directly affects the oral bioavailability of a drug. Furthermore key physico-chemical 
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properties that are associated with hydrophobicity and lipophilicity include solubility, hydrogen 

bonding capacity, and the state of ionization. These properties in turn strongly influence 

permeability through biological membranes, thereby, affecting absorption, distribution, 

metabolism and elimination (8).  

 

It is also worth noting that  molecular descriptors can be classed in various manners (9). The basis 

can be by origin (i.e. experimental versus calculated). Experimentally obtained descriptors include: 

logP, aqueous solubility and Abraham’s hydrogen-bond acidity/basicity parameters (10). 

Calculated molecular descriptors are assessed in-silico from different dimensional molecular 

models. The basis can be on the described object (i.e. global, local or field description). Global 

descriptors describe the entire molecule (e.g. molecular surface). Local descriptors are for 

particular atoms or fragments of the molecule (e.g. bond polarizability and atomic charges). Field 

descriptors are detail molecular fields in the area surrounding the molecule such as electrostatic 

potential. Finally, classification can be according to the dimensionality (1D, 2D or 3D) of the 

structure. 1-Dimensional descriptors include constitutional counts and molecular weight. 2-

Dimensional descriptors are topology-based (that is to say they are obtained from the molecular 

graph representation (branching degree, shape, steric effects). 3-Dimensional descriptors are 

obtained through quantum mechanics. Examples include LUMO (Lowest occupied molecular 

orbital energy) HOMO (Highest occupied molecular orbital energy), IP (Ionization Potential), ∆E 

(Protonation Energy). 2D and 3D descriptors are especially useful in identifying and studying the 

pharmacophore and lipophilicity potential. 
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3.2 File formats used to store molecular structures 

  

 

3.2.1 Connection tables/adjacency matrices 

Connection tables are employed to store information regarding the structure of a molecule. The 

first table (called the atom table) contains two fields, one identifying the atom in discussion and 

the other identifies that atom (e.g. N, O, S, C, P, Cl etc). The second table (called the bond table) 

has three fields, of which, two of those indicate which atoms the bond connects and one field 

indicates the bonder order (i.e. single, double or triple). Further fields may need to be added to the 

tables to denote chirality/stereochemistry (11).  

 

With regard to adjacency matrices, topology (graph theory) is used whereby a square matrix 

represents a finite graph. The atoms in the molecule are usually assigned a type describing their 

chemical identity. This type can be a mnemonic symbol or integral number like ‘12’ or ‘Csp2’. 

“The type reflects not only an element but also a particular arrangement of bonds formed by the 

atom, and its formal charge”. Also, the type of atom may depend on neighboring atoms in the 

molecule. The majority of molecular modeling systems assigned different types, for example, to 

the amine, ammonium, imine, amide and other nitrogens. Likewise, bonds are designated types: 

single, double, aromatic, etc. (12) 

 

Aside from real chemical atoms and bonds, most systems introduce pseudo/virtual atoms and 

bonds which can be used to indicate important molecular features like geometry and orientation. 

The relation amongst atoms should be given to fully specify molecules to the computer. This 

information is made up of two parts: “the specification of bonds and specification of geometry (the 

spatial relation between atoms)” (12).  

 

Concerning connection tables and adjacency matrices fall several file formats which are coded 

using these methods. CML (Chemical Mark-up Language) supports concepts such as reaction 

schemes and spectra (13). PDB (Protein Data Bank) is a database containing 3D images of 
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molecules and crystals, especially large biomolecules like nucleic acids, obtained via x-ray 

crystallography and NMR (nuclear magnetic resonance) spectroscopy. The original format of such 

a file was pdb, more recent formats are mmCIF (macromolecular crystallographic information file) 

and PDBML (14).  

 

Molfile is a format type containing information about atoms, connectivity (and coordinates) of a 

molecule. Multiple molfiles can be joined and put together with more information about the 

compounds. Those molfiles are what then build SDfiles (Structure-data files), basically SDfiles 

wrap the information about molecules contained in molfiles as molfiles can be fragments. RDfiles 

(reaction-data files) have the same concept as SDfiles but with a more general format which may 

include reactions and molecules, together with their related data. 

 

 

3.2.2 Linear string notation  

 

3.2.2.1 SMILES 

SMILES (Simplified Molecular-Input Line Entry System) is a line-notation that describes the 

structure of the chemical species and allows conversion between 2D and 3D models. A SMILES 

string is composed of two different parts, the syntax specification and the semantic specification. 

The syntax specification specifies how the atoms, bonds, parentheses, digits etc are represented, 

and the semantic describes how those symbols are interpreted as a sensible molecule. Every atom 

that is not a hydrogen is represented by its atomic symbol enclosed within brackets. It is assumed 

by convention that hydrogens comprise the remaining part of an atom’s lowest normal valence 

while formal charges are expressed using a + or – sign. In aromatic compounds, the atoms are 

specified by the lowercase atomic symbol, and the bonds are indicated by ‘-’ (single), ‘=’ (double) 

and ‘#’ (triple). Branched systems are denoted by enclosing within parentheses. A cyclic structure 

is depicted by disjoining a ring at a single or aromatic bond then numbering the atoms adjacent to 

the break with a number. Tautomeric structures (that is their bonds and mobile hydrogens) do not 

have definitions in SMILE notation, therefore, tautomers must be clearly specified as separate 

structures (15). 
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An example of SMILES using molecules from the prepared database 

 

No.  63  

O=C(C1=NC=C(CCCCCC)N=C1)N   

   

 

No. 336 

S=C(C1=NC=C(C(C2=CC=C(Cl)C=C2)=O)N=C1)N 

  

 

Figure 3: chemical structures of Compounds No. 63 and 336 from the database 
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Even though the order of priority of atoms/groups connected to stereogenic centers does not matter 

when it comes to this type of notation, Optical configuration can still be expressed in SMILES 

(16). Clockwise (S) chirality is shown by ‘@@’ while anticlockwise (R) chirality is shown by ‘@’ 

after the symbol of the first atom connected the stereocenter  (i.e. the order depends solely on the 

writer of the SMILE). Geometric configuration of atoms around double bonds can be denoted 

within a SMILE using the symbols ‘/’ and ‘\’ in pairs with the idea in mind that the symbols 

represent bonds pointing above or below the double bond (17). Using these symbols, whether an 

atom is above or below is in relation to the carbon atom not the double. See illustration below. 

 

F/C(C)=C(C)\F  F/C(C)=C(F)\C 

 

Figure 4: Illustration of cis-(Z) and trans-(E) configuration using SMILES 

 

It is important to note that in practice, the syntax and semantics are usually mixed together in the 

code that implements a SMILES analyzer or reader (15) and that different versions of a SMILE 

can represent a single molecule. Software such as ChemDraw can be used to produce SMILES. 

 

3.2.2.2 SMARTS 

SMILES Arbitrary Target Specification (SMARTS) uses direct rules extended from SMILES and 

allows for specification of sub-structural patterns and atoms. This affords one the ability to search 

for SMILES as substructures. Over and above the SMILES naming conventions, SMARTS 

includes logical operators, such as “AND” (&), “OR” (,), and “NOT” (!), and special bond and 

atomic symbols permitting flexibility to chemical names. 
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3.2.2.3 InChI 

Another well-established line notation is the InChI (International Chemical Identifier) string 

developed by IUPAC (International Union of Pure and Applied Chemistry). InChI is a unique, 

non-proprietary chemical identifier produced, using software, from the chemical structure drawn 

on a computer. There are fundamental features governing the design of an InChI, name (18). 

Firstly, an approach based on the structure is used. Anyone should be able to produce the identifier 

from only the structural formula of the chemical entity. Secondly, the identifier/label must be 

unique to one substance, guaranteeing that each time in application the substance will be labeled 

the same. Thirdly, since it is non-proprietary, the source code of the InChI must be openly and 

freely accessible, hence the programming software. An InChI must be applicable to the whole 

organic chemistry field, significantly to inorganic entities and of course a general usability in all 

of chemistry. Fifthly, it should be possible to create the same InChI for structures drawn using 

different conventions and styles (to a reasonable extent), particularly those represented by 

mesomers (stereochemically superimposable mirror image isomers). The sixth critical point in 

generating an InChI is that an “hierarchical approach allowing encoding of molecular structure 

with different levels of granularity, this depends on the software. A specific necessity is the 

capability of including or excluding stereochemical, tautomer and isotope information. Finally, an 

identifier that has some “default” controls to ensure interoperability (interusability) in large 

databases. It is worth noting that InChI may be generated for combinations of unbound 

components, not just single structure. These may be viewed as equimolar mixture representations. 

(18) See the InChI of compounds number 63 and 336 in the database below obtained via 

ChemDraw. 

 

No. 63: 1S/C11H17N3O/c1-2-3-4-5-6-9-7-14-10(8-13-9)11(12)15/h7-8H,2-6H2,1H3,(H2,12,15) 

 

No. 336: 1S/C12H8ClN3OS/c13-8-3-1-7(2-4-8)11(17)9-5-16-10(6-15-9)12(14)18/h1-

6H,(H2,14,18) 
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To ease interoperability and information sharing, especially when handling large volumes of data, 

a standard InChI which differentiates chemical entities at a “level of stereochemistry, connectivity 

and isotopic composition” was developed in 2009. Connectivity is the valence-bond connectivity 

that is invariant to tautomers, whereby different tautomers have matching hydrogen 

layer/connectivity. Stereochemistry is stereogenic atom and bond configuration where absolute 

stereo or no stereo is permitted, and unknown configurations are regarded as undefined. 

Composition of isotopes is, when specified, the mass number of the isotopic atoms. (18) 

 

3.2.2.4 InChIKey 

InChIKey is a compact, 27-character chemical identifier based on InChI. It is more practical and 

convenient for internet searches and databases used for indexing. The InChIKey is required to be 

in upper case and must not be shortened or changed for it to be accepted by all search engines. An 

example of InChIKey of compounds number 63 and 336 in the database is given beneath, obtained 

using ChemDraw. As the InChI cannot be reconstructed from InChIKey, it is a must that an 

InChIKey is always linked to the original InChI in order to get back the original structure. This is 

done through a resolver which acts as a look up service such as PubChem (19), NCI (National 

Cancer Institute) (20), ChemSpider (21) and UniChem (22). 

 

No. 36: QWNFJQMIKHKSEU-UHFFFAOYSA-N  

 

No. 336: LTBULBXTNYJLBA-UHFFFAOYSA-N 

 

In creating this database, the molecules were first stored as molecular structures in the internal 

ChemDraw format. Following this, the structures were converted into SMILES notation. This was 

done to create a smaller sized file which allowed better manipulation of the database by preventing 

freezing/lagging. More importantly, SMILES do ‘carry’ enough data about the specific molecular 

entity that can be exported to all chemical software. 
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3.3 Molecular descriptors utilized in the database 

 

1. Number of Atoms is the total number of atoms that make up the molecule 

2. Number of Heavy Atoms is any atom of any element besides hydrogen 

3. Molar refractivity reflects arrangements of ions’ electron shells in molecules, informing on the 

electronic polarization of ions. It shows the changes in the properties caused by deformation 

or polarization of the ions’ electron shells due to influence of the electric fields of adjacent ions 

(23) 

4. CMR (Calculated Molar Refractivity) is used to estimate the molecular volume and steric bulk 

of a compound (23) 

5. HBA (Hydrogen-bond acceptor) are heteroatoms with lone electron pair(s) that can to form a 

hydrogen-bond (24) 

6. HBD (Hydrogen-bond donor) is a heteroatom that is covalently bound to at least one hydrogen. 

7. Number of Rotatable Bonds are the bonds that are able to freely rotate 

8. PSA (Polar-surface Area) describes the total hydrogen bonding capacity of a molecule. This is 

the van der Waals surface arising from all nitrogen and oxygen atoms together with all the 

hydrogens attached to them. It has been used to determine intestinal absorption. (24) 

9. LogP (Partition Coefficient) is the octanol/water partition constant. P is the ratio of activity or 

concentration of a substance in a mixture of two immiscible solvents, an aqueous (water) phase 

and an organic phase (octanol) at equilibrium. This mimics a biological environment and is 

used to study a substance’s affinity for the aqueous (hydrophilic) or organic 

(lipophilic/hydrophobic) phase. Lipophilicity, for organic substances, can be described in 

terms of the partition coefficient (log P), the intrinsic lipophilicity of functional groups and 

carbon skeleton in the molecule without dissociation or ionization. 

10. cLogP (fragment based logP) is puts together values for fragments of a structure and correction 

factors depending on the particular way the parts are combined. 

11. LogS is the solubility of a substance in water, this directly affects the absorption and 

distribution. Solubility itself is measured in moles per liter, but the logarithmic form has no 

units. 

12. pKa is the measure of acid/base strength or acid dissociation/ionization constant. The more 

negative the pKa the stronger the acid 
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13. Molecular weight (MW) is the mass of a molecule (sum of all elements from the molecular 

formula). 

 

3.4 Molecular descriptors used for predicting kinetics and bioavailability 

 

The set of optimal descriptors include molecular mass (MW), molecular surface area (MSA), 

molecular volume (MV), molecular refractivity (MR), total hydrogen count (HC), partition 

coefficient (clogP), rotatable bonds (NRot), polar surface area (PSA) and solubility index (logS). 

(24) 
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3.5 Rules and descriptors which are used to define drug-like and lead-like molecules 

 

Lipinski’s ‘Rule of Five’, also called the ‘Pfizer rule’, is the main approach used to determine 

potential leads or drugs. Based on oral formulations, this rule focuses mainly on the permeation or 

absorption of a drug/molecule because this is the first pharmacokinetic barrier that a drug must 

overcome to elicit a pharmacological action. Classes of compounds that are substrates to biological 

transporters are excluded from this rule (25). This rule was applied to already know drugs vetted 

by different professional bodies (26). The ‘rule of five’ states that the absorption of a molecule 

will be likely impaired when the molecule’s octanol/water partition coefficient is greater than 5, 

when its molecular weight is greater than 500, the molecule possesses more than 5 Hydrogen bond 

donor groups and lastly the molecule has over 10 Hydrogen bond acceptor groups. (27). 

 

The ‘Pfizer rule’ dictates that a molecule must have a balance in hyrdophobic-hydrophilic 

characteristics. This character is profoundly influenced by two physicochemical criteria: solubility 

in water (which is fundamental to delivering the drug) and hydrophobicity (which affects 

absorption, transport and distribution of the drug). The aqueous solubility is expressed as the 

molecular descriptor logS, the log units of molar solubility. The base 10 logarithm of octanol/water 

partition coefficient of a chemical substance is key in quantitative structure-activity relationship 

studies. LogP is linked to hydrophobicity of organic compounds, and this plays a critical part in 

setting the tone of absorption, distribution, metabolism and elimination/clearance processes. In 

particular “drug-membrane interactions, drug transport, biotransformation, distribution, 

accumulation, protein and receptor binding are all related to drug hydrophobicity” (27). A higher 

number of hydrogen bonds lessen partitioning from the aqueous phase into the bilayer lipid 

membrane resulting in permeability being affected (therefore H-bonds must be minimized). (27) 

 

High bioavailabilty is a crucial matter that, when it comes to the most preferred administration 

route, orally, is difficult to achieve. Bioavailability is the percentage of drug which reaches the 

central circulation from the point of administration unchanged. If the molecule has unfavorable 

‘rule of five’ character then its bioavailability will be predictably poor due to the disadvantageous 

physicochemical properties. Compounds with PSA less than 140Å and number of rotatable bonds 
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less than 10 will have good bioavailability (28). It is important to note, as described by (24), PSA 

and the number of rotatable bonds are important discriminants for compounds with oral activity. 

A greater number of rotatable bonds in a molecule correspond with a reduced rate of permeation. 

The sum of polar atoms in a molecule (PSA) determines drug-permeability; the lesser the PSA the 

better/increased the permeation. Molecular entities with PSA below 90Å are able to cross the 

blood-brain barrier (29), where those below 60Å have a biovailability above 90% (30) . 

 

 

3.6 Drug-likeness versus lead-likeness 

 

A drug is deemed as an already patented compound that causes an expected or intended 

physiological effect. More specifically according to the World Health Organization a drug is “any 

chemical agent that alters the biochemical physiological processes of tissues or organisms” (31).  

Drug-likeness refers to products that share such property or similarity. A lead, however, is 

described as a prototype chemical entity that meets certain criteria in the process of drug discovery 

(32). Using various screens, biological activity against a known target should be determined, 

pharmacokinetic properties must be validated. Moreover, the compound must be in series with 

others to show structure-activity relationship during analysis; this matters greatly to medicinal 

chemists during lead optimization (33). An alternative concept that is becoming more widely 

accepted is that drug-like and lead-like compounds require different physicochemical properties.  

 

A lead can be a drug or result in multiple drugs. Lead-likeness is determined by a strict criterion 

called the “Rule-of-Three” or Ro3. Surmised by Astex Technologies, specific limits regarding 

selected molecular descriptors must be observed in fragment-based screening (32). The limits to 

observe are MW below 300, HBD, HBA and clogP less than or equal to 3 respectively. Note that 

clogP (compound or fragment logP) (34) is determined by using data from full compounds, or 

fragments that have been deduced experimentally followed by quantitative structure-activity 

relationship modelling. The clogP differs from logP in that logP is generally predicted via software 

rather than through practical experiments (34). Furthermore, a PSA of not more than 60 and NRot 

(number of rotatable bonds) not exceeding 3 have been suggested as useful selection criteria of 
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promising fragments. Additionally, the presence of a single charge (secondary or tertiary amine 

preferred) is an advantage. 

 

It can be said that Lipinski’s Ro5 can be used to determine drug-likeness, whereas the Ro3 

parameters from T. I. Oprea et al (of the AstraZeneca group) (35) (36) are more suited for lead-

likeness determination. 

 

In the figure below, the values of lead-likeness are based on Oprea’s work. In the original finding 

of Lipinski’s Rule, NRot (number of rotatable bonds) and PSA (Polar Surface Area) were not 

defined. Later on in 2002, work by D. L. Veber et al (through GlaxoSmithKline) elaborated on 

this. (24) 

 

LEAD-LIKENESS DRUG-LIKENESS 

Physiochemical properties typical of good 

lead compounds in target-driven drug 

discovery programs that employ biochemical 

assays: 

 MW<300 

 HBA≤3 

 HBD≤3 

 logP≤3 

 PSA≤60 

 NRot≤3 

Physiochemical properties that improve 

probability of success in drug development by 

addressing issues of absorption and 

bioavailability: 

 MW <500 

 logP ≤5 

 HBD ≤5 

 HBA ≤10 

 PSA ≤140 

 NRot ≤10 

Figure 5: The properties of lead-likeness as compared with the properties of drug-likeness 

adapted from Rishton (2003) (37) 

 

Permeability of a molecule or drug through the mycobacterial cell wall is an imperative 

determinant of its efficacy. So far it has been a challenge to reliably predict the permeability of 
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potential antimycobacterial agents. MycPermCheck, a bioinformatics tool, has been developed to 

estimate the likelihood or probability that a small organic entity will permeate the mycobateria’s 

cell envelopes (38). MycPermCheck (Wuezberg, Germany) can be accessed online for free. The 

program allows entry of the molecule into the database as a CSV (comma-separated values) file 

format. The input must contain pre-calculated descriptors from a different type of software, for 

example Schrodinger software (Schrodinger, LLC, new Yourk, USA), in order to generate the 

CSV file utilized by the program. 

 

The latest edition of software is MycPermCheck 1.1 (39). The results output are the name of the 

compound, its predicted permeability and whether the specific data (that is, the 5 descriptors 

calculated and used by the program to process the final probability) falls within the specific 

limits/ranges (see figure below). This type of permeability prediction provides a more realistic 

manner of estimating the quality of a drug-likeness, rather than only following more “traditional” 

cut offs such as Ro3 and Lipinski’s rule (40). 

 

 

Descriptors 

calculated by 

Schrodinger 

software 

Definition Range of optimal 

values of permeable 

molecules 

FOSA Represents hydrophobic part that is 

solvent-accessible (i.e. saturated carbons 

and the attached hydrogens) 

90.8-272.23Å2 

logP the calculated octanol/water partition 

coefficient 

2.779-4.479 

PISA The π-interacting part of the solvent 

accessible surface area 

205.16-355.49Å2 
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HBA Number of hydrogen-bond acceptors, 

calculated as average number of 

configurations in the molecule 

3.750-6.000 

glob Globularity descriptor is the ratio of 

generic spherical surface to molecule 

surface NB 1.0=spherical molecule 

0.794-0.839 

Figure 6: Explanation of the main descriptors used in MycPermCheck and their optimal values 

for permeability prediction, derived from Merget et al, 2012 (38) 

 

 

3.7 Role of in-house databases in drug design and development 

 

After identifying and validating a target, the next step in drug development is identifying a hit and 

lead molecules. A ‘hit’ molecule is one that possesses a desired activity found through screening 

a large number of molecules or compounds. The hit molecule’s activity is then confirmed by 

retesting (41). Molecular libraries play an important role in pre-clinical stages of design in both 

academic research and big pharmaceutical industries. Various methods of screening for hits and 

leads are applied through chemical/molecular databases, according to (42). The main methods are 

High-throughput screening (HTS), Focused screening, Fragment screening, Physiological 

screening, NMR screening, Structure-aided drug design and Virtual screening. The creation of 

chemical compound libraries is what facilitates the screening process to identify hit molecules. 

 

In-house databases allow for pooling of the data contained in them into subsets for more particular 

screening, this may be in silico (virtual) testing or real “wet screening”. These databases are what 

hold information about the compounds in libraries. The focus can be based upon previous 

knowledge from literature or preceding drug patents (i.e. patented chemical classes or groups with 

a known activity) (43). They can be used by companies for compound sourcing and even for 

analyzing the uniqueness of compounds. This is especially important regarding commercial.  
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Table 1: Explanation of different of screening methods to identify hits or leads adapted from (42) 

Method Description  

HTS (High-throughput 

screening) 

a quick, automated biochemical and pharmacokinetic 

assay catering best for libraries of less than 1000 

chemical entities. The automation means that robots 

handle each step of the process at different stations, from 

mixing reagents to the last step of detection output 

Focused screens based on likening compounds which have been identified 

before as hitting specific biologic targets to new 

compounds with similar structures. This type of 

screening, however, can miss new hits although it may be 

a cheap way to discovering novel compounds 

Fragment screen involves the soaking of tiny molecules into crystals to get 

compounds with low millimolar (mM) activity that may 

then be used to build bigger molecules. It is absolutely 

necessary to have a crystal structure, and the smaller 

fragments can be conjoined to improve potency 

NMR (nuclear magnetic 

resonance) screening 

similar to Fragment screening as it also involves 

crystallizing small molecules or fragments into targets 

with known structure to search for hits with a low 

millimolar (mM) activity that may then be used to build 

bigger compounds. NMR technology is used to determine 

the structure of a molecule and the functional groups in it. 

Physiological screens are better suited for small pools of compounds and aim to 

replicate tissue environment as closely as possible to 

assess the effects the drug’s effects at tissue site instead 

of cellular or subcellular effects. 

Virtual screening utilizes docking of virtual compound banks against the x-

ray of the protein or ligand as the basis of designing new 

compounds. By determining the orientation of a hit-and-
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target complex, scientists can begin the development of 

completely new chemical entities based on existing ones, 

or use the results of a virtual screen as a starting point for 

a focused screen, without having to use costly large 

database screens. Pharmacophore searching has also 

begun  to gain acceptance 

Structural-aided drug design employs the use of crystalline structures. Such methods 

study the macromolecular 3D structure of RNA or 

proteins (the targets of drugs), to identify key sites and 

interactions important for biological functions. Big 

pharmaceutical companies use this method to supplement 

other screening techniques 

 

The above described screens have contributed greatly to the development of different types of 

databases for analyzing chemical biology activity of molecular entities as explained by (41). In 

this particular instance, the type of database is deemed a “chemical interaction database” which 

gathers, categorizes and organize the results. The database constitutes two parts, the first being a 

large collection of chemical structures and the second is a set of results from assays that correlate 

the compounds to certain biological activities. PubChem (19), STITCH (44), ChemDB (45) and 

Norvatis’ Avalon (46) are well known examples of chemical interaction databases 

 

In this project, the determining drug class is pyrazine compounds.  The database contains a 

collection of structures of the in-house pyrazine compounds which were analyzed for activity 

against Mycobacterium tuberculosis H37Rv (Mtb) and further, but to a minimal extent, possible 

antifungal and antibacterial activity. The structures are stored as different formats. 

 

It can be shown how in-house database contribute to multiple scientific fields such as medicinal 

chemistry, molecular modeling, structural biology and biochemistry that are involved in drug-

development stages from the point of synthesizing compounds until the pre-clinical testing phase. 

(47) 
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Figure 7: Diagrammatic representation of how in-house database play a role in drug discovery 

and development, adapted from (47). The dotted line shows how drug candidates can become 

new hits which then re-enter the cycle. 
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3. EXPERIMENTAL PART 

 

 

4.1 Procedure, software and sources used to create and analyze the database 

In creation of this database, the first step was to pool together compounds that had already been 

published in the Faculty of Pharmacy of Charles University, through collaboration of various 

departments from the year 2000. The source of these compounds was various works that included 

rigorous thesis carried out under different undergraduate and doctoral studies and scientific 

experiments by various team members.  Works led by M. Dolezal, O. Jandourek, J. Zitko, B. 

Servusova, L. Semelkova, J. Jampilek & P. Palek who were all affiliated with the faculty. A 

detailed list of the works used is provided below as Appendix I. Also included were diploma thesis 

works related to this project from M. Halirova, A. Mindlova, 

 

The data-mining approach proved challenging in certain instances. Generally, a profound problem 

was there were different experimental methods used to determine MIC or activity. Another 

concern was that certain compounds are very sensitive to in vitro testing conditions like pH and 

the growth medium used, especially for pyrazinamide. For example, pyrazinamide shows activity 

when tested at 37°C in low/acidic pH about 5.5 (48), whereas activity at neutral pH is undetectable 

(49). 

 

During this data mining, mainly pyrazine-like compounds or derivatives with some activity against 

Mtb were selected. The activity had been determined by testing for the MIC (Minimum Inhibitory 

Concentration) of the compound in micromoles per liter µmol/L, after a series of microdilutions 

tests against the microbe.  Where MIC values were not reported or available, the percentage of 

inhibition of microbial growth at 6.25µg/mL concentration of the tested antimicrobial was opted 

for (i.e. TAACF values). The Tuberculosis Antimicrobial Acquisition and Coordinating Facility 

(TAACF) provides high end pre-clinical screening and efficacy testing services to researchers free 

of charge. The TAACF was established in 1994 to foster discovery of novel anti-tuberculosis, 

established by the National Institute of Allergy and Infectious Diseases (NIAID) based in 
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Maryland, USA. The TAACF program itself ended in 2010 officially, however NIAID still 

continues to provide its resources worldwide (50) (51). 

 

Besides Mycobacterium tuberculosis M37Rv (Mtb), the other mycobacterial species that were 

tested against the antimicrobial molecules were Mycobacterium kansasii, Mycobacterium avium 

and Mycobacterium smegmatis. Furthermore, other bacteria were tested for susceptibility; these 

included gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae and Pseudomonas 

aeruginosa) gram-positive bacteria (Staphylococcus aureus, MRSA [methicillin resistant 

Staphylococcus aureus], Staphylococcus epidermidis and Enterococcus faecalis). Finally, 

antifungal activity was also undertaken, testing being done on Candida albicans, Candida 

tropicalis, Candida krusei, Candida glabrata, Trichosporon beigelii, Aspergillus fumigatus, 

Absidia corymbifera and Trichophyton mentagrophytes. For bacteria and fungi, the IC80 (80% 

Inhibited visible growth of microbial population) value after a period of 24 hours was chosen. The 

data for activity against gram-negative bacteria was of peculiar interest since a few compounds 

have expressed this activity, hence any compounds showing such properties was recorded in the 

database. 

 

The computer software that was chosen to create the database was Microsoft® Excel 2016 

spreadsheet (Washington, USA) and ChemDraw Professional 15.1 (PerkinElmer®, 

Massachusetts, USA). Besides statistical applications, the spreadsheet software has various 

capabilities that optimized data screening and has an add-in ChemDraw function that adds 

chemical intelligence to Excel. ChemDraw Professional is registered under PerkinElmer®, a 

technology company that is dedicated to innovative detection, imaging and informatics which are 

useful in fields such as life science and diagnostics globally. 

 

ChemDraw Professional 15.1 (Massachusetts, USA) is a drawing tool that is has capability to 

effectively and quickly draw molecules, reactions, biological entities and pathways to be utilized 

in documents; searching databases; to accurately generate names from structures (and vice versa, 

which was very important for this project) and in predicting properties and spectra of molecules. 
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In this project it was used to process various types of chemical structure/formula (SMILES and 

chemical formulae). 

 

ChemDraw for Excel plugin implements the spreadsheet’s sorting, analysis and organization 

functions to manipulate and enrich sets of compounds, scientific data and explore structure-activity 

relationships. This was very crucial as it is what made it possible to accurately calculate the 

molecular descriptors for each compound. 

 

 

4.2 Stepwise illustration of how the database was created (using compound No. 291) 

 

Step 1: Manual extraction of molecule from publication: copy and paste name of compound into 

spreadsheet. Enter all relevant information to identify the source (i.e. main author, original lab 

code, number or code in original publication, DOI and year of publication, MIC or activity against 

Mtb and other specified pathogens) 
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Step 2: Convert spreadsheet to ChemOffice worksheet 

 

 

 

after all compounds were collected, the normal spreadsheet was converted to a ChemDraw 

worksheet to allow the utilization of ChemOffice functions. 

 

 

Step 3: convert the systematic name to molecular structures using ChemOffice functions 
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Step 4: The structure is then converted to SMILES using ChemDraw Professional functions. Each 

compound was also checked for spelling errors by converting each name to a structural formula. 

The structures (SMILES) were used to regenerate the systematic name of each compound.  The 

structure was then hidden to allow easier manipulation of the file. 

 

  

 

Another way to determine SMILES is shown below. 

 

Step 5: following the correction of structures and spellings of names the molecular descriptors 

were calculated using the built in ChemOffice functions (including but not limited to the chemical 

formula, SMILES, MW, HBA, HBD, logP, clogP, PSA, and number total of atoms in the 

molecule). 
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Here is the complete record of compound 91 from the database 

 

 

 

 

 

 

 

After calculating the molecular descriptors, the database was checked for duplications by sorting 

using the MW. 16 duplicates were removed. If compounds with identical composition and multiple 

tests results were found the entity with a lower MIC was kept in the database. 
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5. RESULTS 

5.1 Statistics of the database 

1. Total number of compounds:     623 

 

2. Active compounds:     91 

A compound is designated as Active if it has a reported MIC of 6.25µg/mL or TAACF 

value greater than 90%. 

a. Compounds with MIC≤6.25µg/mL:  87 

b. Compounds with TAACF≥90%:  4   

 

3. Inactive compounds:      532 

A compound designated as Inactive if it has a reported MIC of over 6.25µg/mL, TAACF 

values less than 90% or if results at the time of data collection were still pending 

a. Compounds with MIC>6.25µg/mL:  450 

b. Compounds TAACF<90%:   81 

c. Compounds with no available data:   1 
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5.2 GRAPHS SHOWING THE IMPORTANT DESCRIPTOR STATISTICS OF THE 

DATABASE  

5.2.1 MW 

 

Figure 8: All molecules distributed by MW 

 

Figure 9: Active molecules distributed by MW 

 

Figure 10: Inactive molecules distributed by MW 
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5.2.2 HBA 

 

Figure 11: All compounds distributed by number of HBA 

 

Figure 12: Active compounds distributed by number of HBA 

 

Figure 13: Inactive compounds distributed by number of HBA  
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5.2.3 HBD 

 

Figure 14: All compounds distributed by number of HBD 

 

Figure 15: Active compounds distributed by number of HBD 

 

Figure 16: Inactive compounds distributed by number of HBD 
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5.2.4 NRot 

 

Figure 17: All compounds distributed by NRot 

 

Figure 18: Active compounds distributed by NRot 

 

Figure 19: Inactive compounds distributed by NRot 

1                2               3                4                5               6               7                8               9             >10 

    3                   4                   5                   6                   7                  8                   9                  10               

>10 
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5.2.5 PSA 

 

Figure 20: All compounds distributed by PSA 

 

Figure 21: Active compounds distributed by PSA 

 

Figure 22: Active compounds distributed by PSA 
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5.2.6 logP 

 

Figure 23: All compounds distributed by logP 

  

Figure 24: Active compounds distributed by logP 

 

Figure 25: Inactive compounds distributed by logP 
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5.3 Statistics of Descriptors 

Table 2: Statistics of the descriptors 

Descriptor Minimum Maximum Mean  Mean SD Median 

MW 

207.28 429.69 295.86 35.10 289.22 

123.16 463.55 269.16 53.94 268.10 

123.16 463.55 273.06 52.89 270.34 

Number of  

Atoms 

24 56 35.10 8.95 33 

12 64 31.57 6.89 30 

12 64 32.08 7.33 30 

Number of 

Heavy 

Atoms 

15 26 20.44 2.77 20 

9 32 18.68 3.38 18 

9 32 18.94 3.36 19 

Molecular 

Refractivity 

57.78 104.62 78.40 12.44 77.20 

34.97 113.80 70.47 13.25 69.96 

34.97 113.80 71.62 13.42 70.37 

CMR 

5.92 10.65 7.85 1.24 7.53 

3.50 11.42 7.07 1.34 7.06 

3.50 11.42 7.18 1.35 7.07 

HBA 

2 8 4.25 1.15 4 

2 10 4.32 1.14 4 

2 10 4.31 1.14 4 

HBD 

0 3 1.46 0.58 1 

0 3 1.46 0.63 1 

0 3 1.46 0.62 1 

NRot 

3 13 6.03 2.82 5 

1 17 5.11 2.09 5 

1 17 5.24 2.23 5 

PSA 

50.74 142.93 68.28 16.77 65.85 

36.75 163.16 74.03 19.64 74.05 

36.75 163.16 73.19 19.35 68.42 

LogP 

-0.17 5.64 2.59 1.09 2.58 

-2.18 4.96 1.75 1.28 1.65 

-2.18 5.46 1.87 1.29 1.75 

cLogP 

0.40 6.17 3.33 1.41 3.06 

-0.68 7.95 2.08 1.36 2.19 

-1.01 7.95 2.48 1.41 2.30 

      

 KEY: Actives Inactives All Cmpds  
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Looking at the average molecules, there is a great difference between the size of active 

compounds compared to inactive ones. The average MW of active compounds is much larger 

than that of inactive compounds. 

 

With regard to HBA and HBD, there is no significant difference in either the mean or median 

values of all the compounds (whether active or inactive). This implies that these descriptors are 

not determinants in our setup. 

 

The logP values of Active compounds are higher than of the inactive compounds by almost a 

whole unit. Active compounds have a logP of approximately 2.6.  
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4. DISCUSSION OF RESULTS 

 

According to our results, 91 out of 623 compounds were found to be ‘active’, that is about 14% 

of the molecules in the database. 87 had MIC≤6.25µg/mL 4 reported TAACF≥90%.  

 

Table 3: Comparison of average molecule from whole database to the limits/range of Ro3 and 

Lipinski’s Rule 

Descriptor MW HBA HBD NRot PSA logP 

Mean molecule 273.06 4.31 1.46 5.24 73.19 1.87 

Median molecule 270.34 4 1 5 65.85 1.75 

Ro3 <300 <3 <3 <3 <60 <3 

Ro5 <500 <10 <5 <10 <140 <5 

 

Regarding the Ro3, the average molecule produced slightly exceeds the limit of number of HBA 

and the PSA. In relation to the Ro5, the molecules are within all limits. Therefore it can be 

concluded that drug-like compounds have been produced more than lead-like compounds. Based 

on Lipinski’s rule optimal molecules are being produced.  

 

Table 4: Comparison of average molecule of whole database to the limits/range of 

MycPermCheck 

Descriptor FOSA logP PISA HBA Globularity 

Mean molecule null 1.87 null 4. 306581 null 

Median molecule null 1.75 null 4 null 

MycPermCheck 90.8-272.23 2.779-4.479 205.16-355.49 3.750-6.000 0.794-0.839 

 

NB ‘null’ means the values were not obtained during preparation of the database 

Two descriptors calculated from the database that relate to MycPermCheck are logP and HBA. 

These values fall with the defined limits. Thus, based only on these two descriptors it can be said 

that the average molecule can successfully permeate a mycobacterial cell. 
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5.4 Outputs of the database 

This database has proven useful in pooling together data from an extended period time as 

previously there was no actual electronic repository of synthesized or tested entities in the 

Department of Pharmaceutical Chemistry. Creating an electronic library will allow an easier, less 

laborious way to find those molecules from the cited team leaders that are useful (together with 

their related data in one place). 

 

This database has applied the cheminformatics approach of keeping together and retrieving all 

experimental data regarding a compound and heterogeneous entities electronically (52). In future 

this could be advantageous in keeping track of which exact compounds were produced to avoid 

redundancy of recreating compounds that had already been made before or that proved to be 

futile. Also large datasets within the database can sub-grouped to allow more critical analysis 

and evaluation or screening (53). 

 

The database can further be extrapolated to other chemical software. This would allow it to be 

applied in modelling studies in computer aided drug design (CADD) especially ligand based 

drug design (LBDD) (54). LBDD focuses on known ligands for a target so as to establish a 

relationship between physicochemical properties of the compound and its activities (i.e. 

structure-activity relationship). This can further be implemented in pharmacophore and/or 

similarity searching, whereby the part of a molecule responsible for pharmacological action is 

identified or analogous chemicals that are physicochemically similar as input compound can be 

found (55). LBDD techniques are used without the 3-dimensional information of a receptor, only 

the information about how molecules bind with the target is relied upon.  3D QSAR (3D 

quantitative structure-activity relationships) and pharmacophore modeling are critical methods 

and commonly used in LBDD. 

 

On the other hand, SBDD (Structure based drug design) studies the 3D structure of biological 

macromolecular targets with the intent of creating their inhibitors (56). The structure can be 

obtained through NMR spectroscopy or x-ray crystallography. The most commonly employed 
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method of SBDD is SILCS (Site Identification by Ligand Competitive Saturation) which uses 

molecular dynamics to characterize binding patterns of 3-dimensional functional groups by 

simulating the target molecule in an aqueous solution of different fragments. The in-house 

database that was developed could be used in such a manner (57). 

 

Quantitative structure-activity relationships immensely contribute to hit-to-lead optimization 

(42). Thus, a fundamental application of this database could in hit-lead-optimization. This could 

be achieved by recommending possible alterations to molecular structure and by reducing the 

number of molecules that are to be synthesized practically. (58). Optimization aims to improve 

the activity, selectivity and physicochemical properties of a hit by chemical modification. 

 

A hit is a compound with a certain desired activity found through screening large numbers of 

compounds or molecules. A lead, however, is a prototype compound or molecule that possesses 

bioactivity against a known target with valid pharmacokinetic properties and structure-activity 

relationship to a series of other compounds (42).  

 

A single compound (ID number 376) was found to possess activity against gram-negative P. 

aeruginosa. 
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5. CONCLUSION 

A digital library of pyrazine-derivatives with antimicrobial activity, prominently focusing on 

activity against Mycobacterium tuberculosis H37Rv (Mtb), was successfully created. The 

compounds were further successfully analyzed in order to elucidate their quantitative structure-

activity relationship. 

 

Evaluation of the results based on specific scientific rules showed that the average molecule 

produced is more drug-like than it is lead-like. This means that the molecular entities that have 

been produced thus far are more close to known anti-tuberculosis drugs than novel prototypes. 
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APPENDIX I 

 

First Author Title  DOI/type of work/publication year of 

publicatio

n 

M. Dolezal Substituted N-

Phenylpyrazine-2-

carboxamides: Synthesis 

and Antimycobacterial 

Evaluation 

10.3390/molecules14104180 2009 

M. Dolezal Synthesis, 

Antimycobacterial, 

Antifungal and 

Photosynthesis-Inhibiting 

Activity of Chlorinated N-

phenylpyrazine-2-

carboxamides 

10.3390/molecules15128567 2010 

M. Dolezal Substituted 5-

aroylpyrazine-2-carboxylic 

acid derivatives: synthesis 

and biological activity 

Il Farmaco 58 (2003) 1105-1111 2003 

M. Dolezal Substituted 

Pyrazinecarboxamides: 

Synthesis and Biological 

Evaluation 

10.3390/11040242 2006 

M. Halirova 5-alkylpyrazine-2-

carboxylic acid derivatives 

as potential antiinfectives 

DT (Charles University Faculty of 

Pharmacy, Hradec Kralove) 

 

 

2017 

J. Jampilek Antimicrobial Evaluation of 

Some 

Arylsulfanylpyrazinecarbox

ylic Acid Derivatives 

10.2174/157340607780620635 2007 

O. Jandourek New Potentially Active 

Pyrazinamide Derivatives 

Synthesized Under 

Microwave Conditions 

10.3390/molecules19079318 2014 

O. Jandourek Synthesis of Novel 

Pyrazinamide Derivatives 

10.3390/molecules22020223 2017 
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Based on 3-

Chloropyrazine-2-

carboxamide and Their 

Antimicrobial Evaluation 

A. Mindlova Pyrazine derivatives as 

potential drugs 

DT (Charles University Faculty of 

Pharmacy, Hradec Kralove) 

2016 

P. Palek Synthesis, 

Antimycobacterial and 

Antifungal Evaluation of 3‐

Arylaminopyrazine‐2,5‐

dicarbonitriles 

10.1002/ardp.200700119 2008 

L. 

Semelkova 

Synthesis and Biological 

Evaluation of N-Alkyl-3-

(alkylamino)-pyrazine-2-

carboxamides 

10.3390/molecules20058687 2015 

L. 

Semelkova 

n/a lab n/a 

L. 

Semelkova 

3-Substituted N-

Benzylpyrazine-2-

carboxamide Derivatives: 

Synthesis, 

Antimycobacterial and 

Antibacterial Evaluation 

10.3390/molecules22030495 2017 

L. 

Semelkova 

Design, Synthesis, 

Antimycobacterial 

Evaluation, and In Silico 

Studies of 3-

(Phenylcarbamoyl)-

pyrazine-2-carboxylic 

Acids 

10.3390/molecules22091491 2017 

B. Servusova Alkylamino derivatives of 

pyrazinamide: Synthesis 

and antimycobacterial 

evaluation 

10.1016/j.bmcl.2013.12.054 2014 

B. Servusova Synthesis and 

Antimicrobial Evaluation of 

6‐Alkylamino‐N‐

phenylpyrazine‐2‐

carboxamides 

10.1111/cbdd.12536 2015 
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B. Servusova Synthesis and 

antimycobacterial 

evaluation of N-substituted 

5-chloropyrazine-2-

carboxamides 

10.1016/j.bmcl.2013.04.021 2013 

B. 

Servusova-

Vanaskova 

Alkylamino derivatives 

of N-benzylpyrazine-2-

carboxamide: synthesis and 

antimycobacterial 

evaluation 

10.1039/c5md00178a 2015 

O. Valasek Pyrazine derivatives as 

potential drugs 

DT (Charles University Faculty of 

Pharmacy, Hradec Kralove) 

2016 

J. Zitko Synthesis and 

antimycobacterial 

evaluation of N-substituted 

3-aminopyrazine-2,5-

dicarbonitriles 

10.1016/j.bmcl.2011.12.129 2012 

J. Zitko n/a lab n/a 

J. Zitko Synthesis and 

antimycobacterial 

properties of N-substituted 

6-amino-5-cyanopyrazine-

2-carboxamides 

10.1016/j.bmc.2010.12.054 2011 

J. Zitko Synthesis and 

antimycobacterial 

evaluation of 5-alkylamino-

N-phenylpyrazine-2-

carboxamides 

10.1016/j.bmc.2014.11.014 2015 

J. Zitko Synthesis and anti-infective 

evaluation of 5-amino-N-

phenylpyrazine-2-

carboxamides 

Čes. slov. Farm. 2015 2015 

J. Zitko Synthesis and 

antimycobacterial 

evaluation of pyrazinamide 

derivatives with 

benzylamino substitution 

10.1016/j.bmcl.2012.11.052 2013 

J. Zitko Synthesis, 

Antimycobacterial Activity 

and In Vitro Cytotoxicity of 

10.3390/molecules181214807 2013 
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5-Chloro-N-

phenylpyrazine-2-

carboxamides 

J. Zitko Design, synthesis and 

antimycobacterial activity 

of hybrid molecules 

combining pyrazinamide 

with 4-phenylthiazol-2-

amine scaffold 

10.1039/C8MD00056E 2018 

  

 

 

  



52 
 

Works Cited 

1. World Health Organization. Global tuberculosis report 2017. [Online] [Cited: August 26, 

2018.] http://apps.who.int/iris/bitstream/handle/10665/259366/9789241565516-

eng.pdf;jsessionid=D761B52F57452D4F21D285A9E70AE04B?sequence=1. 

2. A Note on Derivatives of Isoniazid, Rifampicin, and Pyrazinamide Showing Activity Against 

Resistant Mycobacterium tuberculosis. Unissa, A. N., Hanna, L. E. and Soumaya, Swaminathan. 

4, s.l. : John Wiley & Sons, 2015, Chemical Biology & Drug Design, Vol. 87, pp. 537-550. 

3. Synthesis of Novel Pyrazinamide Derivatives Based on 3-Chloropyrazine-2-carboxamide and 

Their Antimicrobial Evaluation. Jandourek, O., et al. 223, 2017, MDPI, Vol. 22. 

4. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis: a potential 

mechanism for shortening the duration of tuberculosis chemotherapy. Shi, W., Zhang, X., Jiang, 

X., Ruan, H., Barry, C. E., Wang, H., Zhang, Y., Zhang, W. 6049, s.l. : HHS Public Access, 

2011, Science, Vol. 333, pp. 1630-1632. 

5. Pyrazinamide - Pharmaceutical, biochemical and pharmacological properties and 

reappraisal of its role in the chemotherapy of tuberculosis. Momekov, G., et al. 1, 2014, 

Pharmacia, Vol. 61, pp. 38-67. 

6. Karthikeyan, Muthukumarasamy and Viyas, Renu. Practical Chemoinformatics. s.l. : Springer 

India, 2014. p. 533. 

7. Winiwarter, S., et al. Use of Molecular Descriptors for Absorption, Distribution, Metabolism, 

and Excretion Predictions. s.l. : Elsevier, 2007. pp. 531-544. 

8. Smith, Dennis, et al. Pharmacokinetics and Metabolism in Drug Design. Singapore : Wiley-

VCH Verlag GmbH, 2012. Online ISBN:9783527600212. 

9. Gragos, H., Marcou, G. and Varnek, A. [Online] [Cited: April 2, 2018.] 

http://bigchem.eu/sites/default/files/School1_Horvat.pdf. 

10. A refined model for prediction of hydrogen bond acidity and basicity parameters from 

quantum chemical molecular descriptors. Devereux, M., Popelier, P. L. and M., McLay. I. 2009, 

s.l. : Royal Society of Chemistry, 2009, Physical Chemistry Chemical Physics, Vol. 10, pp. 

1595-1603. 



53 
 

11. Belford, Robert. Introduction to Connection Tables. LibreTexts. [Online] MindTouch. [Cited: 

April 5, 2018.] 

https://chem.libretexts.org/LibreTexts/University_of_Arkansas_Little_Rock/Spring_2017_Chem

infomatics_CHEM_4399%2F%2F5399/2.2%3A_Chemical_Representations_on_Computer%3A

_Part_II/2.2.1._Introduction_to_Connection_Tables. 

12. Three‐Dimensional Quantitative Structure‐Activity Relationships. 2. Conformational 

Mimicry and Topographical Similarity of Flexible Molecules. Labanowski, J, et al. 4, 

Weinheim : WILEY‐VCH Verlag GmbH & Co. KGaA, 1986, Molecular Informatics, Vol. 5, pp. 

138-152. 

13. Development of chemical markup language (CML) as a system for handling complex 

chemical content. Murray-Rust, P., Rzepa, H. S. and Wright, M. 2001, New Journal of 

Chemistry, pp. 618-634. 

14. Westbrook, J., et al. PDBML: the representation of archival macromolecular structure data in 

XML. Bioinformatics Volume 21, Issue 7. April 01, 2005, pp. 988-992. 

15. Computational Methods in Drug Discovery. Sliwoski, G., et al. 2014, Pharmacological 

Reviews, pp. 334-395. 

16. Automated Identification and Classification of Stereochemistry: Chirality and Double Bond 

Stereoisomerism. Teixeira, A. L, Leal, J. P. and Falcao, A. O. 2013, CoRR. 

17. James, Craig A. OpenSMILES specification. OPENSMILES. [Online] 2017. [Cited: August 

12, 2018.] http://opensmiles.org/opensmiles.html. 

18. InChI, the IUPAC International Chemical Identifier. Heller, S. R., et al. 2015, Journal of 

Cheminformatics. 

19. Information, National Center for Biotechnology. PubChem. PubChem. [Online] [Cited: 

August 16, 2018.] https://pubchem.ncbi.nlm.nih.gov/. 

20. Chemical Identifier Resolver. [Online] 2009. [Cited: August 21, 2018.] 

https://cactus.nci.nih.gov/chemical/structure. 

21. [Online] Royal Society of Chemistry, 2015. [Cited: August 21, 2018.] 

http://www.chemspider.com/. 



54 
 

22. UniChem. [Online] European Bioinformatics Institute. [Cited: April 08, 2018.] 

https://www.ebi.ac.uk/unichem/. 

23. Quantitative structure-activity relationship studies on nitrofuranyl antitubercular agents. 

Hevener, K. E., et al. 17, s.l. : NIH Public Access, September 1, 2008, Bioorganic Medicinal 

Chemistry, Vol. 16, pp. 8042-8053. 

24. Molecular properties that influence the oral bioavailability of drug candidates. Veber, D. F., 

et al. 12, Pennsylvania : American Chemical Society, 2002, Journal of Medicinal Chemistry, 

Vol. 45, pp. 2615-2623. 

25. Experimental and computational approaches to estimate solubility and permeability in drug 

discovery and development settings. Lipinski, C. A., et al. 1997, s.l. : Elsevier Science, 1996, 

Advanced Drug delivery Reviews, Vol. 23, pp. 3-25. PII of original article: S0169-

409X(96)00423-1. 

26. Understanding drug-likeness. Ursu, O., et al. 1, s.l. : John Wiley & Sons Ltd, 2011, 

Computational Molecular Science, Vol. 2011, pp. 760-781. 

27. Schneider, G. Prediction of Drug-like properties. Texas : Landes Bioscience, 2000-2013. 

Madame Curie Bioscience Database [Internet]. 

28. Identification of New Molecular Entities (NMEs) as Potential Leads against Tuberculosis 

from Open Source Compound Repository. Kotapalli, S. S., et al. 12, 2015, PLoS ONE, Vol. 10. 

29. Structure−Brain Exposure Relationships. Hitchcock, S. A. and Pennington, L. D. 26, 

Thousand Oaks : American Chemical Society, 2006, Journal of Medicinal Chemistry, Vol. 49, 

pp. 7559-7583. 

30. Polar molecular surface properties predict the intestinal absorption of drugs in humans. 

Palk, K., et al. 5, Uppsala : Springer Science, 1997, Pharmaceutical Research, Vol. 14, pp. 568-

571. 

31. World Health Organization. Lexicon of alcohol and drug terms published by the World 

Health Organization. [Online] [Cited: April 16, 2018.] 

http://www.who.int/substance_abuse/terminology/who_lexicon/en/. 



55 
 

32. A ‘Rule of Three’ for fragment-based lead discovery? Congreve, M., et al. 19, Cambridge : 

Elsevier Science Ltd, October 1, 2003, Drug Discovery Today, Vol. 8, pp. 876-877. 

33. Molecular recognition: the fragment approach in lead generation. Fattori, D. 5, s.l. : Elsevier 

Science Ltd, March 1, 2004, Drug Discovery Today, Vol. 9, pp. 229-238. 

34. Calculation of molecular lipophilicity: State‐of‐the‐art and comparison of log P methods on 

more than 96,000 compounds. Mannhold, R., et al. 2009, s.l. : Wiley InterScience , 2008, Journal 

of Pharmaceutical Sciences, Vol. 98, pp. 861-893. 

35. Is There a Difference between Leads and Drugs? A Historical Perspective. Oprea, T. I., et al. 

3-6, 2001, Journal of Chemical Information and Computer Science, Vol. 41, pp. 1308-1315. 

PubMed ID: 11604031 . 

36. The Design of Leadlike Combinatorial Libraries. Teague, S. J., et al. 24, Weinheim : 

WILEY-VCH Verlag GmbH, 1999, Vol. 38, pp. 3955-3957. 

37. Nonleadlikeness and leadlikeness in biochemical screening. Rishton, G. M. 2, s.l. : Elsevier 

Science Ltd, January 15, 2003, Drug Discovery Today, Vol. 8, p. 94. 

38. MycPermCheck: The Mycobacterium tuberculosis permeability prediction tool for small 

molecules. Merget, B., et al. 1, Oxford : Oxford Univeristy Press, 2012, Bioinformatics, Vol. 29, 

pp. 62-68. 

39. Merget, Benjamin. MycPermCheck. MycPermCheck. [Online] 1.1, Stroiffer Lab, 2012. 

[Cited: August 21, 2018.] http://www.mycpermcheck.aksotriffer.pharmazie.uni-wuerzburg.de/. 

40. Quantifying the chemical beauty of drugs. Bickerton, R., et al. 2, s.l. : Macmillan Publishers 

Ltd, 2012, Nature Chemistry, Vol. 4, pp. 90-98. 

41. AN OVERVIEW OF COMPUTATIONAL LIFE SCIENCE DATABASES & EXCHANGE 

FORMATS OF RELEVANCE TO CHEMICAL BIOLOGY RESEARCH. Hall, A. S., et al. 2013, 

Combinatorial Chemistry & High Throuput Screening, pp. 189-198. 

42. Principles of early drug discovery. Hughes, J., et al. 2011, British Journal of Pharmacology, 

pp. 239-1249. 



56 
 

43. Selecting, Acquiring, and Using Small Molecule Libraries for High-Throughput Screenin. 

Dandapani, S., et al. s.l. : HHS Public Access, 2012, Current Protocols in Chemical Biology, 

Vol. 4, pp. 177-191. 

44. STITCH. STITCH. [Online] Institute of Genomics and Bioinformatics. [Cited: August 20, 

2018.] http://stitch.embl.de/. 

45. ChemDB Chemoinformatics Portal. [Online] Institute of Genomics and Bioinformatics, 

University of California, 2012. [Cited: August 20, 2018.] http://cdb.ics.uci.edu/. 

46. Ertl, Peter. [Online] [Cited: April 12, 2018.] http://infochim.u-

strasbg.fr/CS3/program/material/Ertl.pdf. 

47. OSIRIS, an Entirely in-House Developed Drug Discovery Informatics System. Sander, T., et 

al. 2, Allschwil : American Chemical Society, 2009, Journal of Chemical Information and 

Modeling, Vol. 49, pp. 232-246. 

48. Synthesis and antimycobacterial properties of N-substituted. Zitko, J., et al. s.l. : Elsevier 

Ltd, 2011, Journal of Bioorganic and Medicinal Chemistry, Vol. 19, pp. 1471-1476. 

49. Pyrazinamide Is Active against Mycobacterium tuberculosis Cultures at Neutral pH and Low 

Temperature. den Hertog, A. L., et al. 8, 2016, Antimicrobial Agents and Chemotherapy, Vol. 

60, pp. 4956-4960. 

50. National Institue of Allergy and Infectious Disease. National Institue of Health (NIH). 

[Online] [Cited: August 24, 2018.] https://www.niaid.nih.gov/diseases-conditions/tuberculosis-

tb. 

51. Antituberculosis Activity of the Molecular Libraries Screening Center Network Library. 

Maddry, J. A., et al. 5, Edinburgh : Elsevier Ltd, September 2009, Tuberculosis (Edinburgh), 

Vol. 89, pp. 354-363. 

52. A Study on Cheminformatics and its Applications on Modern Drug Discovery. Firdaus 

Begam, B. and Shatheesh Kumar, J. 2012, Coimbatore : Elsevier Ltd, 2012, Vol. 38, pp. 1264-

1275. 



57 
 

53. AN OVERVIEW OF COMPUTATIONAL LIFE SCIENCE DATABASES & EXCHANGE 

FORMATS OF RELEVANCE TO CHEMICAL BIOLOGY RESEARCH. Hall, A. S., et al. 3, 2013, 

Combinatorial Chemistry & High Throughput Screening, Vol. 16, pp. 189-198. 

54. Computer-Aided Drug Design Methods. Yu, W. & MacKerell, A. D. 2017, Methods in 

Molecular Biology, pp. 85-106. 

55. Computer-Aided Drug Design Applied to Marine Drug Discovery: Meridianins as 

Alzheimer’s Disease Therapeutic Agents. Llorach-Prares, L., et al. 12, 2017, Marine Drugs, Vol. 

15. 

56. Structure and Ligand Based Drug Design Strategies in the Development of Novel 5-LOX 

Inhibitors. Aparoy, P., Kumar Reddy, K. and Reddanna, P. 22, s.l. : Bentham Science Publishers, 

Current Medicinal Chemistry, Vol. 19, pp. 3763-3778. 

57. Computational methods in drug discovery. Leelananda, S. P. and Lindert, S. 2016, Beilstein 

Journal of Organic Chemistry, Vol. 12, pp. 2694-2718. 

58. Chemistry-Driven Hit-To-Lead Optimization Guided by Structure-Based Approaches. 

Hoffer, L., et al. Weinheim : Wiley-VCH Verlag GmbH & Co. KGaA, 2018, Molecular 

Informatics, Vol. 37. 

59. Lexicon of alcohol and drug terms published by the World Health Organization. World 

Health Organization. [Online] [Cited: April 16, 2018.] 

http://www.who.int/substance_abuse/terminology/who_lexicon/en/. 

60. An overview of heavy-atom derivatization of protein crystals. Pike, A. C. W., Garman, E. F., 

Krojer, T., von Delft, F., & Carpenter, E. P. Pt 3, 2016, Acta Crystallographica. Section D, 

Structural Biology, Vol. 72, pp. 303-318. 

 

 


