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vi INTRODUCTION

All monoids in the thesis are supposed to be commutative. The stable
equivalence on a monoid M, denoted by ~y, is the least congruence on M
such that the quotient My := M/ ~ is cancellative. The congruence is
defined by = ~g y if there exists z € M such that x + z = y + z, for all
x,y € M. The correspondence M — M ¢ extends canonically to a functor
that we denote by (—)s.

Directed Abelian groups
(=)« (—)F

Cancellative monoids

Monoids 1d

Id (v, 0)-semilattices

<—>C< )m

Algebraic lattices

F1GURE 1. Partially ordered Abelian groups, monoids, and
algebraic lattices

There is an universal map (—).: M — M, sending monoids to Abelian
groups. Moreover the algebraic order on a monoid M induces a partial
order on the target Abelian group M ,; such that the image of the monoid
corresponds to the positive cone of M. The construction of the partially
ordered Abelian group M, for a given monoid M is an analogy of the con-
struction of the field of fractions of a given commutative ring. We consider
the set of formal differences between pairs of elements from M and an equiv-
alence relation, say ~., on them. The equivalence is given by x —y ~, 2 —u
provided that there is w € M such that x + v+ w = 2 + y + w. The map
(=)« is dermined by z + [z — 0]~,, © € M. Again, the correspondence
is canonically functorial. Notice that the partially ordered Abelian group
M., is directed, that is, it is, as a group, generated by the positive cone. It
is straightforward to see that this is equivalent to the partial order on M,
being upwards directed.

Let GT := {p € G | 0 < p} denote the positive cone of a partially or-
dered Abelian group G. Observing that an order preserving homomorphism
G — H maps the positive cone G of G into the positive cone H' of H,
we see that there is a functor (=)™ from the category of partially ordered
Abelian groups to monoids. Moreover, the composition (—)* o (—), is nat-
urally equivalent to the functor ~y.
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We denote by =< the least congruences on M such that M /< is a (V, 0)-
semilattice and we set V(M) := M /<. As in the previous cases, the corre-
spondence M — V(M) extends a functor.

The ideal lattice Id(8) of a (V,0)-semilattice 8 is an algebraic lattice
and, conversely, compact elements of an algebraic lattice £ form a (V,0)-
semilattice, denoted by L.. Both the correspondences extend to functors
that are inverse to each other (up to obvious natural equivalences).

Here are more ideal-type functors to consider. Firstly, the functor that
assigns to a monoid M the algebraic lattice Id(M) of all o-ideals of M.
Secondly, the functor G +— Id(G™") which assigns to a directed Abelian
group the algebraic lattice of all convex subgroups of G.

All the introduced functors are depicted in Figure 1. Note that the
diagram of functors is commutative (up to natural equivalences).

Directed interpolation groups
(=)« SN
Cancellative refinement monoids
(—)s

Refinement monoids

Id

v

Id Distributive (V, 0)-semilattices

). ( )Id

Distributive algebraic lattices

FIGURE 2. Directed interpolation groups, refinement
monoids, and distributive algebraic lattices

We will be interested in structures that are mapped by the ideal functor
Id to algebraic lattices that are distributive. Starting from the bottom of
Figure 2, these are distributive (V, 0)-semilattice (cf. [15, Section IL.5]). In-
deed, a (V,0)-semilattice is distributive if and only if Id(8) is an algebraic
distributive lattice. Next we consider the class of refinement monoids, i.e,
the conical monoids that satisfy the Riesz refinement property. The maxi-
mal semilattice quotient V(M) of a refinement monoid M is a distributive
(V, 0)-semilattice and the lattice Id(M) of all o-ideals of M is distributive
(cf. [14, lemma 2.4]. Finally, a directed Abelian group G is an interpolation
group if and only if the positive cone G™ is a refinement monoid [10, Prop.
2.1]. In particular, the lattice Id(G) of all ideals (i.e, convex subgroups) of
a directed interpolation group is again distributive.

There are more structures in the picture as we tried to depict in Figure 3.
Given a ring R, we denote by V(R) the monoid of all isomorphism classes
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Dir. interpol. groups

%
L —

Regular rings (=)« (—)F

Compl. mod. lattices \%4 Cancel. ref. monoids

Dist. (V,0)-semilattices

Coneg ™ —
(e ( ) Id
NId ~ Con

— Dist. alg. lattices

Id

Ficure 3. Regular rings, refinement monoids, and distribu-
tive (V, 0)-semilattices

of finitely generated projective right R-modules with addition derived from
direct sums. If the ring R is (Von-Neumann) regular, the monoid V' (R) sat-
isfies the Riesz refinement property (see [11, Corollary 2.7]). The partially
ordered Abelian group V (R)., denoted by Ky(R), is called the Grothendieck
group of R. When we limit ourselves unital rings, it is appropriate to assign
to a ring R a partially ordered Abelian group Ky(R) with an order-unit
corresponding to the isomorphism class [ R] and study the category of par-
tially ordered Abelian groups with order units (cf. [11, Chapter 15]). If the
ring R is regular, then Ky(R) is a directed interpolation group.

We denote by L(R) the (V,0)-semilattice of all right finitely gener-
ated ideals of a ring R. For a regular ring, the (V,0)-semilattice £L(R)
is closed under finite meets, therefore £L(R) forms a lattice [11, Theorem
2.3]. Moreover, the lattice £(R) is modular and sectionally complemented
(complemented if R is with an unit element).

Congruences of sectionally complemented modular lattices correspond to
their neutral ideals (see [15, Section I11.3.10]). In particular, if R is a regular
ring, then the lattice Con(£L(R)) is isomorphic to the lattice NId(L(R)) of
all neutral ideals of £L(R). By [36, Lemma 4.2], an ideal of the lattice
L(R) (for a regular ring R) is neutral if and only if it contains with each
aR all principal ideals bR with bR ~ aR. It follows that Con(L(R)) ~
NId(L(R)) ~ Id(R) (see [36, Lemma 4.3]), and so, the lattice Id(R) of two-
sided ideals of a regular ring R is distributive. Moreover, combining [36,
Corollary 4.4 and Proposition 4.6] we get the isomorphisms Con.(£L(R)) ~
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V(V(R)) ~ 1d.(R) of distributive (V, 0)-semilattices, for every regular ring
R.

We have seen that a distributive algebraic lattice that is isomorphic to
the lattice of two-sided ideals of a regular ring is at the same time isomor-
phic to the congruence lattice of a modular sectionally complemented lattice.
This brings a connection with the Congruence lattice problem, whether every
distributive algebraic lattice is isomorphic to the congruence lattice of a lat-
tice. The conjecture has an interesting history (see [41]) and remained open
four over sixty years until the counter-example was found by F. Wehrung
[38]. We will discuss the Congruence Lattice Problem in detail in Chapter 3.

In this thesis we study various representation problems, namely for dis-
tributive algebraic lattices (resp. corresponding distributive (V, 0)-semilat-
tices), refinement monoids, or directed Abelian groups. For example, we ask
whether a given distributive algebraic lattice (or any algebraic lattice with
particular properties) is isomorphic to a lattice of all two sided ideals of a
regular ring, respectively, as a lattice of all compact subgroups of a directed
Abelian group. We might also restrict to some class of regular rings as,
for example, locally matricial algebras, or to some class of directed Abelian
groups, for example, dimension groups.

A more complex question is when we seek for a functorial solution, that
is, when we ask not only for representing a single object but for lifting
particular diagrams. Given a diagram A: J — C and a functor ¥: B — C,
a lifting of A with respect to ¥ is a functor ®: J — B such that the
composition ¥ o @ is naturally equivalent to A.

The thesis consists of six chapters, each based on a single paper and
related to a particular realization or lifting problem.

Chapter 1 is based on the paper [27]:

Liftings of distributive lattices by locally matricial alge-
bras with respect to the 1d. functor, Algebra Universalis
55 (2006), 239 — 257.

In the paper we study liftings with respect to the functor Id. from
the category of locally matricial algebras to the category of distributive
(V, 0)-semilattices. The problem goes back to [5]. In the unpublished notes
G. Bergman proved that

e every countable distributive (V, 0)-semilattice,

e every strongly distributive (V, 0)-semilattice (i.e., a (V, 0)-semilat-
tice of all compact elements of the lattice of all hereditary subsets
of a poset),

are isomorphic to the (V,0)-semilattices of all finitely generated two-sided
ideals of locally matricial algebras. In [25] we developed a new construction
and besides reproving the Bergman’s results we have realized every distribu-
tive (V, 0)-semilattices that is closed under finite meets, and so it forms a
distributive lattice, as the (V,0)-semilattice of all finitely generated two-
sided ideals of a locally matricial. In the presented paper [27] we simplify
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the construction from [25] and study possibilities of functorial solutions of
the problem. We construct

e a simple finite subcategory Do of the category DLat of all dis-
tributive (0, 1)-lattices,

e a subcategory D, of DLat corresponding to a partially ordered
proper class, which cannot be lifted with respect to the Id. functor.

On the positive side we prove that every diagram in DLat indexed by a
partially ordered set and the subcategory DLat,, of DLat whose objects
are all distributive (0, 1)-lattices and whose morphisms are (V, A, 0, 1)-em-
beddings can be lifted with respect to the Id. functor.

Let us mention some applications of the results:

e The realization of distributive (V, 0)-semilattices closed under fi-
nite meets by (V,0)-semilattices of all finitely generated ideals
of locally matricial algebras answers the I'-invariant realization
problem from [8]. Given an uncountable cardinal x we let B, :=
P(k)/ club,, denote the Boolean algebra of all subsets of x mod-
ulo the filter club, generated by all closed unbounded subsets of
k. A O-lattice £ is strongly dense if the poset of its non-zero
elements contains a cofinal strictly decreasing chain. The dimen-
sion of a strongly dense (0, 1)-lattice £ is the minimum length of
a cofinal strictly decreasing chain in £. Given a strongly dense
modular (0, 1)-lattice £ of an uncountable dimension x with a
cofinal strictly decreasing chain A = (a,, | @ < k), we set

E(A) :={a < k| 3B € (o, k]: ay is not complemented over ag},

where a,, is complemented over ag if there exists b € £ such that
a,ANb=agand a,Vb = 1. The I'-invariant of the (0, 1)-lattice £
is the block F(A) € B,. The block does not depend on the choice
of the cofinal strictly decreasing chain A (cf. [8]). According to
[8, Theorem 1.3], there is a distributive strongly dense (0, 1)-lat-
tice L of dimension x with a [-invariant E, for every E € B,.
Passing to the ideal lattice Id(L), we get a distributive algebraic
strongly dense (0, 1)-lattice of dimension » with the I-invariant E.
Applying [25, Theorem 4.7] or Theorem ?7 from Chapter 1, we
conclude that the lattice Id(L) is isomorphic to the lattice of all
two-sided of a locally-matricial k-algebra R, where the field k can
be chosen arbitrarily. Then S := R ®; R°P, where R°P denotes
the opposite ring to R, is again a locally matricial k-algebra, due
to [8, Lemma 2.1]. The original k-algebra R is naturally a right S-
module wia the multiplication given by a-(b®c) = cab. Observing
that two-sided ideals of the k-algebra R bijectively correspond
to submodules of the right S-module R, we conclude that each
algebraic distributive lattice that is realized as the lattice of two-
sided ideals of a locally matricial algebra is realized as a submodule
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lattice of a module over a locally matricial algebra. In particular,
all I'-invariants are realized.

e The other application of the result is related to the Congruence
Lattice Problem. In [30] E. T. Schmidt proved that every dis-
tributive O-lattice is an image of a generalized Boolean lattice un-
der a distributive (V,0)-homomorphism, and consequently, it is
isomorphic to Con. (L) for a lattice £. Later, in [32] (see [31] for
an earlier weaker result), E. T. Schmidt proved that every finite
distributive lattice is the congruence lattice of a complemented
modular lattice. Applying our construction, we infer that every
distributive (0, 1)-lattice is isomorphic to Con.(£(R)) for a locally
matricial algebra R, hence its ideal lattice is representable as the
congruence lattice of a complemented modular lattice. The unit el-
ement is not essential in the construction, and so we can easily get
every distributive 0-lattice is isomorphic to the (V,0)-semilattice
Conc(£L) for a sectionally complemented modular lattice £. This
gives the result first obtained by P. Pudldk [22]. The Pudldk’s
approach provides a functorial solution and his results are directly
(and independently) extended by Theorem ?7.

Let us note that a different approach to the representations of distributive
0-lattices as Id.(R) of locally matricial algebras R, similar to the Bergman’s
constructins [5], is in [20] by M. Plos¢ica.

Chapter 2 is based on the paper [29]:

Distributive congruence lattices of congruence-permutable

algebras, Journal of Algebra 311 (2007), 96 — 116.

The paper is a joint work with Jif{ Ttima and Friedrich Wehrung. It closely
follows and extends results from [21] and [33]. In the earlier paper [36] F.
Wehrung defined the congruence splitting property of lattices. The class of
congruence splitting lattices (i.e. lattices satisfying the congruence splitting
property) is closed under direct limits and it contains all sectionally com-
plemented, all relatively complemented lattices, and all atomistic lattices.
The distributive (V,0)-semilattice 8,; (for k > Ny) constructed in [35] is
not isomorphic to the (V, 0)-semilattice of all compact congruences of any
congruence splitting lattice. Since relatively complemented lattices are con-
gruence splitting, the (V, 0)-semilattice 8;; (for k > Ng) is not isomorphic to
Con.(L(R)) (and, consequently, to Id.(R)) for any regular ring R.

It was in [36], where a uniform refinement property was used for the
first time. This is an infinite system of join-semilattice (or monoid) equa-
tions based on the Riesz refinement property that are satisfied for a certain
class of join-semilattices, the (V,0)-semilattices of compact congruences of
congruence splitting lattices in this case, and that do not hold for some
(V, 0)-semilattice, here 8,. Similar strategy was applied in [21], [33], and
also in our paper [29].
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The observation that congruence splitting lattices have permutable con-
gruences lays behind [33]. Applying a variant of the uniform refinement
property, J. Tuma and F. Wehrung proved that Con.(Fy(x)), where Fy(k)
denotes the free lattice in a non-distributive lattice variety V with xk > Ny
generators, is not isomorphic to the (V,0)-semilattice of all compact con-
gruences of any lattice with almost permutable congruences.

In the presented paper we show, using yet another modification of the
uniform refinement property, that the (v, 0)-semilattice Con.(Fy(x)) is not
isomorphic to the (V, 0)-semilattice of all compact congruences of any alge-
bra with almost permutable congruences. In particular, the algebraic dis-
tributive lattice Con(Fy(k)) is isomorphic neither to the normal subgroup
lattice of a group, nor to the submodule lattice of a module, nor the lattice
of convex subgroups of a lattice-ordered group. These three cases are dis-
cussed separately and in the first two of them, the cardinal bound RNg (for
the set of compact elements of the algebraic distributive lattice) is proved
to be optimal. The negative result is obtained by proving that the algebraic
distributive lattice Con(Fy(k)) is not the range of any distance satisfying
the V-condition of type 3/2.

We also study the functorial solution of the problem. We consider the
category D of all surjective distances with morphisms being pairs of one-to-
one maps and the forgetful functor IT from D to the category of (V,0)-semi-
lattice with (V,0)-embeddings. On one side, we prove that the restriction
of the functor II to the V-distances of type 2 (i.e, the distances satisfying
the V-condition of type 2) has a left inverse. On the other hand we find
an unliftable cube by V-ditances of type 3/2. Similar examples are stud-
ied in [33]. The mysterious connection between sizes of counter-examples
for representation problems and dimensions of unliftable cubes was later
ingeniously explained by P. Gillibert and F. Wehrung, see [17].

Chapter 3 is based on the paper [28]:

Free trees and the optimal bound in Wehrung’s theorem,
Fund. Math. 198 (2008), 217 — 228.

Following G. Birkhoff and O. Frink [6], the congruence lattice of a lattice
is algebraic and due to N. Funayama and T. Nakayama [9] it is distributive.
In early forties P. Dilworth observed that every finite distributive lattice is
representable as a congruence lattice of a finite lattice and conjectured that
every algebraic distributive lattice is isomorphic to the congruence lattice of
a lattice. The conjecture, named as the Congruence Lattice Problem, shortly
CLP, turned to be a prominent open problem of the lattice theory for over
sixty years.

Many partial results was obtained, see [15, Appendix C] and the survey
paper [34] until a counter-example was constructed by F. Wehrung [38]. The
Wehrung’s counter-example has N, compact elements. In Chapter 3 we
improve the size of the counter-example construcitng a distributive (V, 0, 1)-
semilattice of size No such that is not the range of a weakly distributive
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(V, 0)-homomorphism from Con, A with 1 in its image, for any algebra A
with either a congruence-compatible structure of a (V,1)-semilattice or a
congruence-compatible structure of a lattice. In particular, our (V, 0)-semi-
lattice is not isomorphic to the (V,0)-semilattice of compact congruences
of any lattice. Thus we provide a conter-example to CLP of the lowest
possible cardinality. The main ingredient of our proof is the modification of
Kuratowski’s Free Set Theorem, which involves what we call free trees.

e Chapter 4 is based on the paper [26]:

Countable chains of distributive lattices as mazximal semi-
lattice quotients of positive cones of dimension groups,
Comment. Math. Univ. Carolin. 47 (2006), 11 — 20.

The Grothendieck group Ky(R) of a regular ring R is a directed pre-
ordered Abelian group with interpolation. If the ring R is unit-regular,
then Ko(R) is partially ordered and the positive cone K (R) corresponds
to the monoid V (R) of isomorphism classes of finitely generated projective
right R-modules.

Recall that a partially ordered Abelian group G is unperforated if np > 0
implies that p > 0 for all p € G. A dimension group is an unperforated
directed partially ordered Abelian group with interpolation. A simplicial
directed Abelian group is a free abelian group of a finite rank n with a
basis, say, p1,...,pn with the positive cone ZTp; x --- x ZTp,. Dimen-
sion groups are exactly direct limits of simplicial directed Abelian groups
in the category of pre-ordered Abelian groups (with order-preserving group
homomorphisms) [7, Theorem 2.2].

Let us fix a field F. Locally matricial F-algebras are unit-regular and
their Grothendieck groups are dimension groups. Following [11, Chapter
15], we call direct limits of countable chains of matricial F-algebras ultrama-
tricial, and countable dimension groups ultrasimplicial. By [11, Theorem
15.24], every ultrasimplicial group appears as the Grothendieck group of an
ultramatricial F-algebra and the ultramatricial F-algebra is determined by
its Grothendieck group up to the Morita~equivalence [11, Corollary 15.27].
The first part of this correspondence extends to dimension groups of size
Ny, due to [13]. In particular, every dimension group of size at most N; is
represented as the Grothendieck group of a locally matricial F-algebra. On
the other hand, Grothendieck groups of size R; do not determine the locally
matricial algebras up to the Morita equivalence as in the countable case (see
[11, Example 15.28]). In [35] there is constructed a dimension group of size
N9 that is not isomorphic to the Grothendieck group of any regular ring.

As depicted in Figure 1, if R is an unit-regular ring, we have the iso-
morphisms Id(Ky(R)) ~ Id(R). The question, whether every distributive
(V, 0)-semilattice 8 is isomorphic to V(G™) for some dimension group G
was stated as [16, Problem 1]. We solved this problem in [24], where we
constructed a counter-example of size Ny. Since every countable distributive
(V, 0)-semilattice 8 is isomorphic to the maximal semilattice quotient of the
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positive cone of a dimension group (see [16, Theorem 5.2]), only the case
of cardinality N; remained open. This was resolved by F. Wehrung [37],
who constructed a distributive (V, 0, 1)-semilattice 8, of size R; that is not
isomorphic to V(M) for any Riesz monoid with an order-unit of finite stable
rank. This readily implies that the (V,0,1)-semilattice 8, is not realized
as the maximal semilattice quotient of the positive cone of any dimension
group. As in some previously discussed constructions, he found a variant
of the uniform refinement property, here denoted by URPy,, that holds in
any Riesz monoid M with order-unit of finite stable rank but that is not
satisfied by 8, .

It follows from [37, Corollary 7.2] that every direct limit of a countable
sequence of distributive lattices and (V, 0)-homomorphisms satisfies URPg,
and it was stated as [37, Problem 1], whether such a direct limit is iso-
morphic to V(G™) for a dimension group G. Recall that every distributive
(V,0)-semilattice closed under finite meets is isomorphic to Id.(R) for a
locally-matricial algebra R and consequently to V(Ky(R)™") for the dimen-
sion group Ky(R) due to [25]. In Chapter 4 we give a negative answer to
this question by constructing an increasing countable chain of Boolean join-
semilattices, with all inclusion maps being (V, 0, 1)-homomorphisms, whose
union cannot be represented as the maximal semilattice quotient of the pos-
itive cone of any dimension group. Furthermore, we construct a similar
example with a countable chain of strongly distributive bounded join-semi-
lattices.

Chapter 5 is based on the paper [23]:

On the construction and the realization of wild monoids,
to appear in Archivum Mathematicum (Brno).

Many still open problems about the structure of regular rings have re-
formulations in terms of the corresponding monoids V' (R) of isomorphism
classe of finitely generated projective right R-modules. Let us say that a
monoid M is realizable (by a regular ring R) if M ~ V(R). According to
[11, Theorem 2.8], all such monoids are refinement monoids. The funda-
mental problem by K. R. Goodearl [12] asks which refinement monoids are
realizable. By [35] there are non-realizable refinement monoids of cardinal-
ity No but there is not yet known a non-realizable refinement monoid of size
< Ng. Particularly interesting question is whether all countable refinement
monoids admit realization, indeed, the answer would shed light on a number
of related problems regarding regular rings or C*-algebras.

Some comprehensive positive results were obtained so far, namely the
realization of monoids of row finite quivers [3, Theorems 4.2 and 4.4] and the
realization of finitely generated primitive monoids with all primes free [2,
Theorem 2.2]. These realizations are obtained via direct limit construction
and the monoids can be realized by regular F-algebras over an arbitrary field
F. On the other hand there are countable refinement monoids realizable by
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regular F-algebras over a countable field F but not over any uncountable
field (see [1, Sec. 4]).

Many positive realization results (in general context) are obtained by
direct limit construction from diagrams of finitely generated (or even finite)
objects, e.g., every distributive (V,0)-semilattice is a direct limit of finite
distributive (V, 0)-semilattices (cf. [22, Fact 4 on p. 100]). This is not the
case of refinement monoids. Following [4] we call a refinement monoid time
provided that it is a direct limit of finitely generated refinement monoids
and wild otherwise. The existence of wild refinement monoids indicates
that the Goodeatl’s fundamental problem is essentially distinct from the
other, seemingly similar, realization problems.

An prominent example of a wild refinement monoid is due to G. Bergman
and K. R. Goodearl [11, Examples 4.26 and 5.10]. We study the example,
develop elementary methods of computing the monoids V(R) for directly-
finite regular rings R, and construct a class of directly finite non-cancellative
refinement (therefore wild) monoids realizable by regular algebras over an
arbitrary field.

Chapter 6 is based on the paper [19]:

A maximal Boolean sublattice that is not the range of a
Banaschewski function, to appear in Algebra Universalis.

This paper is a joint work with Samuel Mokris.

A Banaschewki function on a bounded lattice £ is a map 5: L — £
such that @ < b implies f(b) < f(a) and 1 = a @ S(a), for all a,b € L.
The terminology is motivated by the early result of B. Banaschewski that the
subspace lattice of a vector space admits such a map. Simultaneously we can
define a Banaschewski function on a ring R as a map f: R — Idem(R) such
that aR = f(a)R and aR C bR implies that f(a) < f(b), for all a,b € R.
(Here e < f means that e = ef = fe, for all e, f € Idem(R).) A connection
between these two notions of the Banaschewski function is established by
[39, Lemma 3.5]: An unital regular ring R admits a Banaschewski function
if and only if the complemented modular lattice £(R) does.

A notion replacing Banachewski function for lattices without a maximal
element is a Banaschewski measure [39, Definition 5.5]. Every countable
sectionally complemented lattice has a Banaschewski measure due to [39,
Corollary 5.6].

Yet another notion related to the Banaschewski function and the Ba-
naschewski measure is a Banschewski trace [39, Definition 5.1]. In [39,
Section 6] F. Wehrung discovered a close connection between exitence of
Banschewski traces (resp. Banschewski measures) and coorinatizability of
sectionally complemented modular lattices. This connection is applied in
[40] in order to construct a non-cordinatizable sectionally complemented
modular lattice of size Ny with a large 4-frame. The example shows that the
variant of the Jonson’s coordinatization theorem that states that sectionally
complemented modular lattices £ with large n-frames, for n > 4, and with
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a contable cofinal chain is coordinatizable (see [18]) does not hold for larger
cardinalities.

We study ranges of Banaschewski functions on countable complemented
modular lattices. According to [39, Theorem 4.1 and Corollary 4.8], a count-
able complemented modular lattice £ has a Banaschewski function with a
Boolean range and all the Boolean ranges of Banschewski functions on the
lattice £ are isomorphic maximal Boolean sublattices of £. In [39, Prob-
lem 2] it is asked whether every maximal Boolean sublattice of a countable
complemented modular lattice £ appears as a range of some Banaschewski
function and whether the maximal Boolean sublattices of £ are isomor-
phic. We construct a countable complemented modular lattice 8 with two
non-isomorphic maximal Boolean sublattices H and G and we represent the
lattice J as the range of a Banaschewski function on 8. Furthermore, we
prove that the lattice 8 is coordinatizable, in spite of not containing a 3-
frame. We show that the lattices H and G correspond to maximal Abelian
(regular) subalgebras of the regular algebra S realizing the lattice 8.
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Chapter 1 is based on paper [27], Chapter 2 on paper [29], Chapter 3
on [28], Chapter 4 on [26], Chapter 5 on [23], and Chapter 6 on paper [19].
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