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Chapter 1

Introduction

This habilitation thesis consists of 12 publications authored or co-authored by
Ondřej Bojar. The publications were selected and organized to highlight the
author’s contribution to the state of the art in machine translation (MT), par-
ticularly translation into morphologically rich languages like Czech.

The thesis is structured as follows. Chapter 2 serves as a very brief overview
of the task of machine translation, highlighting the core problems that have to
be tackled and setting the context for the author’s contributions detailed in the
rest of this text.

Chapter 3 starts with a quick summary of the author’s efforts devoted to the
collection and preparation of training data. What may seem a somewhat boring
product is nevertheless a valuable resource for many researchers and a critical
component necessary to achieve the state of the art in translation quality, as
discussed in the following chapters.

Chapter 4 covers the first of the three main contributions of the author: im-
proving grammaticality, and particularly morphological coherence, in
phrase-based machine translation. While large data are essential for attaining
good performance in machine translation, it is not conceivable to collect cor-
pora large enough to cover all possible word forms and provide sufficiently dense
statistics about their usage in all possible contexts. Targeting languages with
highly productive morphological systems such as Czech thus requires some form
of explicit handling of morphology and this chapter summarizes the author’s
research in this area.

Chapter 5 is focused on the second main contribution, namely employing
deeper linguistic information to improve translation quality. While statis-
tical methods have had a great success in machine translation, the nature of
the handled subject, natural text, belongs to the field of linguistics, and it is
therefore interesting to examine to what extent can statistical approaches to
MT benefit from linguistic knowledge. The chapter explains the problems faced
when trying to organize the statistical models along the linguistic structure of
the sentence and describes the author’s proposed method that circumvents these
problems. The resulting system Chimera outperformed all other MT systems
participating in the English-to-Czech news translation task in the years 2013–
2015, including Google Translate and other commercial and on-line systems. The
setup of Chimera is naturally not limited to translating news text, and adapted
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6 Chapter 1. Introduction

versions of the system served in applied EU projects (QTLeap, HimL) as well as
in commercial collaboration of the author’s department with IBM.

Finally, evaluation is critical in all applied sciences and evaluating machine
translation is particularly intriguing. Chapter 6 is devoted to the third main area
of the author’s contributions, namely to methods of manual and automatic
MT evaluation, explaining why MT evaluation is a difficult discipline, revealing
the reasons of low performance of an established automatic evaluation measure
and proposing modifications to improve the correlation with human judgement.

The last Chapter 7 summarizes the author’s service to the community through
his contribution to the organization of shared tasks related to machine transla-
tion.

The thesis is concluded in Chapter 8. Key papers (co-)authored by Ondřej
Bojar and cited throughout the text are reprinted in Appendix A.



Chapter 2

Problems and Solutions
in Machine Translation

The goal of machine translation is to translate text from one natural language
to another. Machine translation is sometimes dubbed as the “king discipline”
of computational linguistics, because translation easily entails almost all aspect
of natural language and its meaning: from meaning ambiguity and the relation
between the form of an expression and its function in the communication to
complex rules of grammatical correctness.

Despite the complexity of language phenomena involved, machine transla-
tion has been very successfully tackled by statistical methods even in their
relatively simple form.

In statistical machine translation, an approach prevalent since 1990s (Brown
et al., 1990, 1993; Berger et al., 1994), we search for the most likely target

sentence êÎ1 (a sequence of target words ê1, . . . , êÎ) given the source sentence fJ
1 :

êÎ1 = argmax
I,eI1

p(eI1|fJ
1 ) (2.1)

The parameters of the probabilistic distribution p(eI1|fJ
1 ) are estimated auto-

matically from parallel corpora (texts translated previously by humans), subject
to various simplifying assumptions.

One of these assumptions, still mainly followed today and reflected also in
Eq. 2.1, is that sentences are translated individually, ignoring any contextual
information beyond sentence boundaries.

Another critical assumption is that the sentence can be decomposed into a
small finite number of translation units which are then translated more or less in-
dependently of each other. This assumption has been removed only very recently
through the adoption of deep learning methods (neural machine translation, see
Section 2.2.3 below). Since the nature of neural MT is also statistical, we will
use the qualifier “classical” statistical methods to denote approaches that rely
on the decomposition into separate translation units. We will however follow the
common usage of abbreviations and use SMT to denote classical statistical MT
only.

7



8 Chapter 2. Problems and Solutions in Machine Translation

In SMT, additional model components are used to compensate for the in-
dependence assumption of translation units and ensure overall coherence of the
sentence.

The first step in the classical SMT derivation is to use the Bayes’ law and de-
compose the probability into two components, the translation model p(f I

J |eI1)
and the language model p(eI1):

p(eI1|fJ
1 ) =

p(f I
J |eI1)p(eI1)

p(fJ
1 )

(2.2)

Bayes’ law reverses the conditional probability in the translation model, but
this does not pose any problem: translational equivalence is usually understood
as bidirectional and the reversed probability is going to be estimated from the
same type of data, parallel texts, anyway.

Furthermore, the denominator is constant in the maximization, so under
argmax, we can write:

êÎ1 = argmax
I,eI1

p(eI1|fJ
1 ) = argmax

I,eI1

p(f I
J |eI1)p(eI1) (2.3)

Eq. 2.3 is called the noisy channel model (Brown et al., 1990). Since Och
and Ney (2002), the common formal device used in SMT is the more flexible log-
linear model: The conditional probability of eI1 being the translation of fJ

1 is
modelled as a combination of independent feature functions h1(·, ·), . . . , hM(·, ·)
describing the relation of the source and target sentences:

p(eI1|fJ
1 ) =

exp(
∑M

m=1 λmhm(eI1, f
J
1 ))∑

e′I
′

1
exp(

∑M
m=1 λmhm(e′I

′
1 , f

J
1 ))

(2.4)

Similarly to the noisy channel model (which is in fact a special case of the
log-linear model), the denominator in Eq. 2.4 depends on the source sentence
fJ

1 only and does not affect the selection of the maximum, and neither does the
exponential, giving us a simplified formula:

êÎ1 = argmax
I,eI1

p(eI1|fJ
1 ) = argmax

I,eI1

M∑
m=1

λmhm(eI1, f
J
1 ) (2.5)

The assumption of translation units is formally reflected by defining a joint
segmentation sK1 of the source sentence and the target candidate into K trans-
lation units. The majority of features hm(·, ·) are required to decompose along
the segmentation, i.e., to take the form:

hm(eI1, f
J
1 , s

K
1 ) =

K∑
k=1

h̃m(ẽk, f̃k) (2.6)
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where f̃k represents the source side of the translation unit and ẽk represents its
target side given the segmentation sK1 .

Feature functions that decompose along this joint segmentation are called
local and other feature functions are called non-local. To distinguish them, we
can divide the sum over model components into two parts: ML local and MN

non-local features:

M∑
m=1

λmhm(eI1, f
J
1 ) =

ML∑
mL=1

λmL

K∑
k=1

h̃mL
(ẽk, f̃k) +

MN∑
mN=1

λmN
hmN

(eI1, f
J
1 ) (2.7)

Ideally, the segmentation sK1 should be treated as a hidden parameter and
summed over in the maximization in Eq. 2.1. This would be too complicated
and too expensive, so it practice, we search for the best derivation, i.e., the pair
of segmentation ŝK̂1 and translation êÎ1:

êÎ1, ŝ
K̂
1 = argmax

I,eI1,K,sK1

p(eI1|fJ
1 )

= argmax
I,eI1,K,sK1

ML∑
mL=1

λmL

K∑
k=1

h̃mL
(ẽk, f̃k) +

MN∑
mN=1

λmN
hmN

(eI1, f
J
1 )

= argmax
I,eI1,K,sK1

K∑
k=1

ML∑
mL=1

λmL
h̃mL

(ẽk, f̃k) +

MN∑
mN=1

λmN
hmN

(eI1, f
J
1 )

(2.8)

The component weights λm are most commonly optimized with respect to the
final translation quality measure. Traditionally, this process is called “tuning”
or “model optimization”.

2.1 Problems of Machine Translation

Machine translation is a challenging task for several reasons. Adopting the clas-
sical statistical MT strategy, we have to choose adequate translation units first
and be able to effectively gather them from training data. Then, SMT has to
consider a very large search space of possible outputs. And finally, identifying
which possible outputs are good and which are bad is difficult.

Defining Translation Units As mentioned above, individual sentences of
natural languages are rather complex and up until very recently, they were always
decomposed into some smaller units, translating each of these units more or
less independently. The various definitions of the units gave rise to word-based
(Brown et al., 1990, 1993), phrase-based (PBMT, Koehn et al., 2003) or various
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arts of syntax-based (Yamada and Knight, 2001; Zollmann and Venugopal, 2006;
Chiang, 2010; Bojar and Hajič, 2008) statistical machine translation.

The choice of a translation unit affects the difficulty in obtaining the “trans-
lation dictionary” of these units and the difficulty in decomposing sentences into
these units and putting them back together to form the translated sentence.

Shallow units like individual word forms or short sequences of word forms
(“phrases” in phrase-based MT, see Section 4.1) are easier to obtain but we very
often risk producing a grammatically incorrect output when combining them.
Linguistically more adequate units, e.g., some deep-syntactic nodes or treelets,
rely on tools for sentence analysis and generation and suffer from their errors.

Larger units (e.g., longer phrases in phrase-based MT) can cover the neces-
sary linguistic dependencies within a single unit, thereby preventing errors at
unit combination, but they are obviously much harder to observe in sufficient
numbers.

More coarse-grained units such as base forms (lemmas) of words are less
prone to data sparsity issues but they imply some information loss which can
easily cause a harm to the meaning of the sentence and they are again harder to
use correctly.

Managing Huge Search Space As shown already by Knight (1999), picking
the right word order and covering source multi-word translation units with entries
from translation dictionary are two sub-tasks that render machine translation
NP-complete.

When we work with two languages, we can treat target language words as
the repertoire of possible “meanings” of source words. It is easy to notice the
ambiguity of expressions and its multiplicative effect whenever more occur in a
sentence in striking examples like The plant is next to the bank. (The plant can
be a flower or a factory, the bank can be a financial institution or a river bank.)

In practice, the number of options to choose from is actually much higher for
two main reasons: (1) the input can be often segmented into translation units in
many possible ways, and (2) automatically extracted “translation dictionaries”
offer many more possible translations (as observed in the translated data) than
one would expect. Bojar (2015)1 reviews how various problems of MT get worse
due to morphological richness of languages, including this type of ambiguity:
i.e., the translation system has to choose not only the right word but also its
morphological form to indicate its relationship to other words in the sentence
(e.g., agreement) or to refine its meaning (e.g., plural).

Assessing Translation Quality Given the large space of possible transla-
tions, we would need a reliable method for distinguishing good and bad transla-
tions. This enterprise is called “machine translation evaluation” (if a reference

1See page 63 for the full reference and link to Bojar (2015).
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translation is available) or “quality estimation” (if we do not have the reference
translation) and it is as old and as complex as MT itself.

Not very surprisingly, small changes in the sentence can drastically change
its meaning (e.g., reversing the negation). At the same time, a very different
wording can convey the same meaning as the original but we are usually given
just one reference translation.

2.2 Complementary Solutions

The history of SMT, see Bojar (2012) or Koehn (2009) for a summary, has seen
many complementary methods addressing various aspects of the core problems
outlined above. Here we highlight those related our contributions as detailed in
the subsequent chapters.

2.2.1 Using Large Data

The success of statistical MT relies on the access to large training data. In fact,
some of the problems of MT outlined above lose in their severity as the training
data grow. With very large data, we can afford using larger translation units
(e.g., longer and longer phrases in phrase-based translation) when covering the
input and the phrase-independence assumption will have fewer occasions to do
any harm. In the ideal case (which indeed does happen in small and repetitive
domains), the whole sentences will be available for reuse.

Precisely for that reason, we have put considerable efforts into collecting large
Czech-English parallel data, see Chapter 3.

2.2.2 Adding Linguistic Information

Common approaches to SMT often lack sufficient generalization power and vio-
late many linguistic constraints. For instance, pure phrase-based MT can only
produce forms of words as seen in the training data and it has no means to
capture the overall sentence structure.

It is therefore interesting to add linguistic knowledge explicitly to the model.
In our work, we followed the layered formal description of sentences in natural
language defined by the Functional Generative Description (Sgall et al., 1986).
We tried to benefit from both relatively shallow morphological layer (information
relevant for each token in the linear sequence of words in the sentence) as well
as from the syntactic analysis of the sentence.

We were successful in utilizing the token-level information, see Chapter 4
for more details. Our attempts to employ the subsequent layers of linguistic
description (shallow and deep syntax) were less successful, mainly because they
implicitly strengthened the unjustified independence assumption of individual
translation units. The deep-syntactic approach to MT was so far best exploited
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in the transfer-based system TectoMT (Popel and Žabokrtský, 2010) and despite
the system did not perform very well on its own, we managed to incorporate
TectoMT to the standard phrase-based system in a way that set the new state
of the art in English-to-Czech translation, see Chapter 5.

2.2.3 Removing Independence Assumptions

Our work on the core of machine translation has been carried out in the con-
fines of classical statistical MT that deals with individual translation units. We
contributed to attempts at removing this assumption through the supervision of
Aleš Tamchyna’s PhD studies (2012–2017), where Aleš developed a discrimina-
tive model to select translation of phrases considering the whole source-side and
a small target-side context (Tamchyna, 2017; Tamchyna et al., 2016a; Huck et
al., 2017); more details are provided in Section 4.3.3.

A breakthrough in machine translation quality was achieved recently through
deep learning, giving rise to neural machine translation, NMT (Sutskever et al.,
2014; Bahdanau et al., 2014).

NMT replaces the log-linear model with a model directly predicting target
words, one at a time, conditioned on the whole source sentence fJ

1 :

p(eI1|fJ
1 ) = p(e1, e2, . . . eI |fJ

1 )

= p(e1|fJ
1 ) · p(e2|e1, f

J
1 ) · p(e3|e2, e1, f

J
1 ) . . .

=
I∏

i=1

p(ei|ei−1, . . . e1, f
J
1 )

(2.9)

The similarity of NMT to a standard language model should be highlighted.
A language model (see Section 4.1 below) predicts the next word based on the
previous words: p(eI1) =

∏I
i=1 p(ei|e1, . . . ei−1). NMT adds fJ

1 to the antecedent.
While the main steering force in PBMT is the translation model and the

language model “only” caters for target coherence, the main steering force in
NMT is the language model and the source “only” conditions the word choices.
The exact consequences of this major shift are yet to be explored but NMT
generally performs much better in fluency of translation and somewhat better in
adequacy.

2.2.4 Better Evaluation

The outputs of machine translation are evaluated manually and automatically
for a number of reasons. From the end users’ point of view, we need to be able
to select the overall best performing MT system. System developers need to be
able to reliably check progress or, with the help of automatic evaluation methods,
automatically optimize model parameters.
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If our metrics2 of MT quality do not reflect well the problems in output,
we cannot expect any improvements. At the same time, understanding what
is a good and what is a bad translation is an essential component of machine
translation as a field of study.

Our contributions to both the technical and scientific aspects of MT evalua-
tion are summarized in Chapter 6.

2The term “metric” traditionally used in the field of MT evaluation does not imply the
properties of a metric in the mathematical sense.





Chapter 3

Large Data

The collection and preparation of training data may seem a rather mundane task
from the scientific point of view. It is nevertheless undisputably the key prereq-
uisite for statistical methods in NLP in general and MT in particular. We also
take the stance that a high-quality training dataset attracts attention to the task
and languages concerned. We believe that our long-term work on a large Czech-
English parallel corpus CzEng described in this chapter has thus not only allowed
our own research in English-to-Czech MT but also considerably contributed to
the overall focus on this language pair and its adoption as an interesting research
problem. MT into Czech is thus examined to a much deeper extent than what
would correspond for example to the number of speakers of Czech or the amount
of money spent on NLP research by national funding agencies.

Our main contribution in data collection and preparation is the series of
releases of CzEng, summarized in Table 3.1. Every release, aside from including
additional training data was devoted to a particular topic.

Three CzEng releases deserve a special remark. The version 0.9 (Bojar
and Žabokrtský, 2009) was the first major upgrade when we processed both
of the sides of the corpus with the Treex NLP processing platform (Popel and
Žabokrtský, 2010; in 2009, the platform was still called TectoMT). CzEng 0.9
with its 8.0 million sentences posed a significant technical challenge to the toolkit.
Up until then, Treex has been used in various NLP tasks, but processing time
and stability across a wide range of data conditions were never the main focus
of its development. CzEng 0.9 served as a very thorough test case and allowed
to identify many corner cases and minor bugs in the toolkit. Since there was no
time available for any major code rewrites, the goal was achieved through data
parallelization and automatic collection of failures. We then processed the bugs
from the most frequent to the less common ones.

The second major step in CzEng development was achieved in the version 1.0
(Bojar et al., 2012b).1 In that release, we not only almost doubled the corpus size
again, provided the automatic processing (improved in various aspects) but we
also carefully filtered the corpus to avoid low-quality sentence pairs. In CzEng
1.0 for the first time, we exploited the other side of the corpus to enhance the
automatic annotation even monolingually. Specifically, the comparison of the

1See page 63 for the full reference and link to Bojar et al. (2012b).
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16 Chapter 3. Large Data

Ver. Size Main Focus Details in

0.5 0.9M Sentence alignment, common for-
mat

Bojar and Žabokrtský (2006)

0.7 1.0M Used in WMT06 and WMT07 Bojar et al. (2008)
0.9 8.0M Automatic annotation up to t-

layer
Bojar and Žabokrtský (2009)

– – Sentence-level filtering Bojar et al. (2010b)
1.0 15.0M Improving monolingual annotation

through parallel data
Bojar et al. (2012b)

1.6 62.5M Processing tools dockered Bojar et al. (2016b)

Table 3.1: Summary of CzEng release versions. Size is reported in millions of
sentence pairs.

Czech and English automatic annotation allowed us to (1) improve sentence
segmentation by adding dedicated training data and new focus patterns to our
trainiable tokenizer (Marš́ık and Bojar, 2012) and (2) spot and fix several errors
in the rules construcing “formemes” (Žabokrtský et al., 2008) due to unexpected
formeme mismatches in the aligned sentences.

Finally, the most recent release, CzEng 1.6 (Bojar et al., 2016b) benefited
from our supervision of Jakub Kúdela’s master thesis and publication (Kúdela et
al., 2017): 1.84 billion of web pages of the July 2015 Common Crawl were scanned
for parallel Czech-English texts through sentence embeddings and locality-sensitive
hashing. The goal was to again extend the CzEng parallel data, but as we de-
scribed in Kúdela et al. (2017), Common Crawl was too “sparse”. From each
website, Common Crawl usually gets only a handful of pages. We thus could not
rely directly on Common Crawl data dump and re-crawled the list of websites
with parallel content for CzEng 1.6.

Besides MT, CzEng has been used in research on coreference resolution
(Novák et al., 2013), automatic valency frame selection (Dušek et al., 2014),
in the development of a valency lexicon (Fuč́ıková et al., 2016), a subjectivity
lexicon (Veselovská, 2015), a lexical network (Ševč́ıková et al., 2016), word-level
(Kocmi and Bojar, 2016) and sentence-level (Wieting et al., 2017) embeddings
or a spoken corpus of Czech dialects (Michĺıková, 2013) and in semi-automatic
linking between corpora and lexicons (Bejček, 2015).



Chapter 4

Handling Morphology
in Phrase-Based MT

The common topic that threads through this thesis is the difficulty of targetting
Czech with its rich morphology. Morphological correctness was undoubtedly the
most apparent issue of the PBMT-based systems.

Table 4.1 motivates this research by illustrating the availability of morpho-
logical variants of the Czech word čéška (knee cap) in plural in training corpora
of 50K to 50M sentences. The word is not very frequent, but we are lucky to
see it in the nominative case (line 1) already in 50K training sentences. Other
morphological variants are seen as we use larger corpora. In 50M sentences, we
finally see all morphological variants of the word, although the vocative case (line
5) was actually still not seen and we know the form only thanks to its homonymy
with the nominative.

case surface form 50K 500K 5M 50M

1 čéšky • • • •
2 čéšek – • • •
3 čéškám – – • •
4 čéšky ◦ ◦ • •
5 čéšky ◦ ◦ ◦ ◦
6 čéškách – • • •
7 čéškami – – – •

Table 4.1: The seven Czech cases of the word čéška (knee cap) in plural as
seen in 50K/500K/5M/50M sentences. “•” indicates the word was seen in the
particular case, “◦” indicates that the surface form was seen but in a different
case. Reproduced from Huck et al. (2017).

In order to correctly use words in a morphologically rich language, the SMT
system has to have the capacity to produce them given the English source in
the first place (i.e., to see them in a parallel corpus) and also to select the form
that fits the given context. As indicated by the example in Table 4.1, some
morphological variant of a word may be seen in a relatively small number of
sentence pairs, but we can’t expect to see all forms.

17



18 Chapter 4. Handling Morphology in Phrase-Based MT

Peter left for home .

Peter doleva pro domů .

Petr levá , pro domov .

Petrovi doleva pro domova . “

Petra , opustili k doma

Petr odešel ve domovem

petra odešel v domů ,

nechali domovu .

z̊ustalo pro domáćı

na doma .

hlavńı

domácnosti .

k domovu .

na cestu domů .

Figure 4.1: Translation options considered by PBMT when translating the sen-
tence “Peter left for home.” from English into Czech. Options with a higher
translation probability are listed higher, bold indicates options that could be
used to construct an acceptable, although not very good translation. Figure
simplified from Bojar (2012).

In this chapter, we describe our contributions to producing correct text in
morphologically rich languages. We start with a very brief summary of the
underlying framework of phrase-based MT (Section 4.1), then focus on improved
modelling in situations when the needed target word forms are generally available
in the training data (Section 4.2) and conclude by our contributions to producing
word forms which were not observed in the parallel or even in the monolingual
data (Section 4.3).

4.1 Overview of Phrase-Based MT

Phrase-Based MT (PBMT, Koehn et al., 2003) is one of several classical statisti-
cal approaches to MT. Thanks to the availability of open-source implementation
of a strong PBMT system Moses (Koehn et al., 2007), phrase-based MT has
become the industry standard and remained so until about 2016.

PBMT assumes that the input sentence can be decomposed into contiguous
sequences of words called “phrases” and each of the phrases can be translated
more or less independently. Figure 4.1 illustrates such a decomposition and
possible translation units (called translation options in PBMT) for the English
sentence Peter left for home.

The output sentence is constructed left-to-right, selecting phrase translations
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Word penalty

Peter left for home .

Petr odešel domů .

Bigram log. prob.

1,0 2,0 1,0
Phrase penalty 1,0 1,0 1,0

Phrase log. prob. 0,0 -0,69 -1,39

Total

4,0
3,0

-2,08

-2,50 -3,61 -0,39 -10,59

Weight

-0,5
-1,0
2,0

1,0

Weighted

-2,0
-3,0
-4,16

-10,59

Total -19,75

◁

-4,02

◁

-0,08

Figure 4.2: Local and non-local features scoring one candidate translation. The
solid rectangles indicate individual translation options. Any information avail-
able in each of the rectangle can be used for local features. Non-local features
cross translation options boundaries and as an example, we illustrate the use
of a bigram LM (dotted). The scores are added up for each feature and finally
weighted by the weights of the log-linear model. Reproduced from Bojar (2012).

from the source sentence in any order (subject to reordering costs).
Formally, PBMT is implemented as a log-linear model described in Chapter 2,

where the key local features are:

• phrase translation probabilities (several variants are used simultaneously,
see Koehn, 2009),

• phrase count; its weight is called phrase penalty and moderates if transla-
tions are rather literal (word for word) or not,

• word count; its weight is called word penalty and controls the output length.

The only non-local feature is the language model, so any coherence of the
selected candidate (e.g., short- or long-range agreements) is to be ensured by the
language model. Unfortunately, the language models that were most often used
were n-gram LMs. This helped tractability (it was sufficient to keep the previous
n − 1 output tokens in the search state to allow LM evaluation)1 but it has a
serious detrimental effect on overall sentence grammaticality.

Figure 4.2 illustrates one candidate translation, as constructed from the En-
glish source using three translation options.

The parameters of these model components are generally estimated using
maximum likelihood estimates, usually subject to some form of smoothing or

1LMs of unlimited history became possible thanks to deep learning (Bengio et al., 2003)
and they indeed brought an improvement to PBMT (Schwenk, 2007) but they never became
widely used because the computational costs were too high before the computation was moved
to GPUs (Schwenk et al., 2012).
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Translate and Check (T+C) 2×Translate + Generate (T+T+G)

English Czech
form

lemma
tag

form
lemma

tag

+LM
+LM
+LM

English Czech
form

lemma
tag

form
lemma

tag

+LM
+LM
+LM

Figure 4.3: Two basic factored translation setups.

interpolation (Chen and Goodman, 1996; Foster et al., 2006) from parallel data
(phrase translations) and target-side monolingual data (language models).

As mentioned in Section 2.1, the number of possible translations of a given
sentence is exponential to the sentence length, so the space is explored in an
approximate search, e.g., beam search. Many candidate partial translations
are considered simultaneously, the more promising ones are further expanded by
attaching translation options covering so far untranslated words while the less
promising ones are discarded.

In its pure form, PBMT treats word forms as opaque symbols. This is a great
advantage for language independence of the method but it comes at the cost of
severe data sparsity for morphologically rich languages: the model needs to see
all possible forms of all possible translations of a word to have the capacity to
produce them. And it should also see each of them in a large number of contexts
to be able to select the correct one.

4.2 Factored Setups for Improving Morphological
Choices

The implementation of PBMT in the Moses translation system introduced fac-
tors (Koehn and Hoang, 2007). In short, factors provide additional information
for each input and/or output token, and thereby allow to introduce new score
components and also to generate output factors based on additional data, not
just the parallel corpus.

In Bojar (2007),2 we thoroughly examined the utility of factored PBMT for
targetting Czech.

If we limit ourselves to factors bearing morphological information,3 two setups
immediately come to mind, as illustrated in Figure 4.3 and explored in Bojar
(2007):

• T+C (Translate and Check) translates the source word forms into target

2See page 63 for the full reference and link to Bojar (2007).
3Other options are obviously possible and helpful, see e.g., Avramidis and Koehn (2008),

Birch et al. (2007), or Niehues and Waibel (2010).
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word forms, as baseline PBMT would do, but it also produces target-side
morphological tags. This sequence of tags can be then scored with a dedi-
cated language model which operates on a much smaller vocabulary (mor-
phological tags) and therefore can be effectively trained for a much higher
n-gram size (e.g., 7 or 10-grams).

• T+T+G (2×Translate and Generate) translates lemmas and morphologi-
cal tags independently and generates the target word form from the lemma
and morphological tag; again, multiple language models are used. This
setup is linguistically appealing, it correctly strips morphological variance
of words from their lexical values. Figure 4.4 explains the benefit from inde-
pendent learning of translation of lemmas and translation of morphological
tags: evidence can be assembled from different sentences, the co-occurrence
counts are generally higher and probability estimates more reliable.

In later studies, we wanted to build upon these setups. The T+C setup works
very well, as we demonstrated in Bojar (2007) but it is difficult to improve it
further, see Section 4.2.1. The T+T+G setup brings serious complications, as
described in Section 4.2.2. We proposed several techniques to circumvent the
issues, see Section 4.3.

4.2.1 Automatic Exploration of Configurations Infeasible

The content of factors as well as the exact sequence in which they are used on
the source side and constructed on the target side is fully configurable. The
space of possible configurations is thus very large, especially if we consider also
the various meta-parameters such as n-gram size or type of smoothing of each
of the language models, and their effectiveness also depends on the amounts of
available training data.

In a series of experiments, we largely explored this space of possible configu-
rations:

• In Bojar and Tamchyna (2013),4 we developed Eman, an experiment man-
ager. Eman, populated with “seed” scripts relevant for machine translation
(or any other field of study), allows to manually explore large numbers of
configurations, automatically reusing common model parts and rebuilding
only what is necessary.

Eman has been used in the development of almost all our MT experiments
and when building shared task systems as well as commercially applied
MT systems. While Eman was designed for research and flexibility in
experimenting, it also serves as the backbone of a fully automated batch
translation online service that we run for IBM to translate into Czech,
Hungarian, Arabic and experimentally also into Japanese.

4See page 63 for the full reference and link to Bojar and Tamchyna (2013).
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Figure 4.4: Linguistically motivated extraction of factored phrases from a parallel
corpus. The corpus, consisting of just two “sentence” pairs: (viděl jsem) starého
pána = (I saw an) old man and (dej to tomu) černému psovi = (give it to the)
black dog, does not allow to directly learn the phrase black dog = černého psa
(the translation of black dog into Czech accusative case). In the factored setup
T+T+G, this translation is licensed by the combination of the separate lemma
(černý pes) and tag (AAMS4 NNMS4) translations, each of which comes from a
different training sentence pair. Reproduced from Bojar (2012).

• In Bojar et al. (2012a), we introduced a simple taxonomy for the more
common factored setups and further examined which setups work best in
various data conditions.

• In Tamchyna and Bojar (2013), Eman served as the underlying engine
in an attempt to explore the space of possible PBMT configurations fully
automatically. While we were able to find a small number of setups that
improved the baseline, the main result of that work is negative:

– The space of possible factored configurations is too large to be ex-
plored automatically, i.a. there are exponentially many setups given
a number of source-side factors.

– Evaluating each configuration is computationally demanding (e.g., a
few days of computing time with large training data).

– The automatic evaluation metric (BLEU in that case, see Chapter 6
for more details) is not sufficiently discerning and reliable, many se-
tups receive too similar scores.
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– Model optimization is non-deterministic and fragile; several optimiza-
tion runs of the same setup often differ in their performance more
than possible alternative setups.

Across all examined setups, we confirmed that a significant improvement
can be expected from essentially only T+C, i.e., a setup that improves target-
side morphological coherence by employing an additional language model over
morphological tags. This setup does not allow the MT system to produce any
word forms that were not seen in both the parallel and monolingual training
data, but it improves the probability estimates of word form sequences.

4.2.2 Morphological Explosion on the Fly

The T+T+G setup illustrated in Figure 4.4 unfortunately works only with ex-
tremely small datasets (at generally low levels of overall performance). As soon
as the parallel corpus becomes reasonably big, T+T+G introduces a loss of es-
sential details and more importantly leads to an explosion of the search space:
too many possible word forms have to be generated and scored. Consider our
setup where all combinations of lemmas and tags have to be produced and eval-
uated. For instance for the Czech word stát (one of the possible translations
of the English word state, both the verb and the noun), this amounts to 347
possible Czech word forms (or 182 word forms when dialects and archaic forms
are excluded) according to Hajič (2004).

Containing this explosion proved impossible given the design of factored
translation models. The models are said to be synchronous, i.e., translation
options have to be fully generated (all target factors filled) before the main search
starts. While we can prune this space by dropping less promising translation op-
tions, the scores available at this early stage are only local, they cannot consider
the context of surrounding words because it will be (gradually) built only later
in the main search. At the same time, many morphological features express the
relation of words to the context. Dropping some “unlikely” case variations of
a noun before the verb is known will inevitably fail because it is the verb that
requests a particular case.

In the following section and also later in Chapter 5, we present techniques
that avoid these problems.

4.3 Producing Unseen Word Forms

Table 4.1 motivated the need to generate Czech word forms on the fly but in
Section 4.2.2, we explained that simply allowing to generate word forms from
combinations of lemmas and tags doesn’t work.

In this section, we summarize three methods we proposed as possible solu-
tions: two-step translation, reverse self-training and an integrated discriminative
model.
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Src after a sharp drop
Mid po+6 ASA1.prudký NSA-.pokles
Gloss after+loc adj+sg...sharp noun+sg...drop
Out po prudkém poklesu

Figure 4.5: An illustration of two-step translation: translating from English to
lemmatized Czech (Mid) and only then inflecting.

4.3.1 Two-Step Translation

In Bojar and Kos (2010),5 we presented the idea of two-step translation to avoid
the explosion of variants of words and the difficulties of pruning them before the
surrounding context is available. In two-step translation, the search is divided
into two consecutive phases, see Figure 4.5 for an illustration:

1. Reordering and lexical choices. The input sentence is translated into an
intermediate “language” that disregards morphological attributes implied
solely by the target language. The desired number of tokens, their posi-
tions and meaning-bearing morphological features (e.g., plural for nouns or
negation) are preserved.6

2. Morphological choices. The intermediate representation is inflected, pre-
serving the number and order of tokens.

The benefit from phasing the search into two independent steps is that the
inflection in Step 2 have full access to the context of surrounding words. Gen-
erating all forms is acceptable because they can be effectively pruned without
risking serious search errors suffered by T+T+G (Section 4.2.2).

Technically, we realized both steps as factored PBMT setups. Step 1 was
trained on parallel data, with standard limits on reordering and target side sim-
plified to lemmas and a hand-picked subset of morphological features.

Step 2 was a monotone word-for-word “translation”: the translation model (a
phrase table with all phrases limited the length of one token) mapped each sim-
plified Czech word to all possible regular word forms and the standard language
model ensured selecting coherent combinations. Since Step 2 was mapping be-
tween simplified Czech and regular Czech, we could train it on (large) Czech-only
texts.

Compared to the T+C baseline (Section 4.2), our results in Bojar and Kos
(2010) were mixed: the two-step translation improved over the baseline in small
data setting but not in large data setting.

5See page 63 for the full reference and link to Bojar and Kos (2010).
6 Prior work of Minkov et al. (2007), Toutanova et al. (2008), or Fraser (2009) disregarded

all morphological information and also targeted other languages.
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Source English Target Czech
Para a cat chased. . . = kočka honila. . .
126k kočka honit. . . (lem.)

I saw a cat = viděl jsem kočku
vidět být kočka (lem.)

Mono ? četl jsem o kočce
2M č́ıst být o kočka (lem.)

Use reverse translation
I read about a cat ← backed-off by lemmas.

⇒ A new phrase learned: “about a cat” = “o kočce”.

Figure 4.6: The key idea of reverse self-training: The English word cat is present
in the parallel corpus but its Czech counterparts do not cover all morphological
cases of the word, the locative kočce is missing. Translating (based on lemmas)
a sentence with this particular form from the monolingual data adds this form
in its correct context to the translation model.

We continued in exploring two-step setups with our PhD student in Bojar et
al. (2012a) and Jawaid and Bojar (2014) with no significant gains. The area was
also subsequently studied by others, most recently Burlot et al. (2016) who ex-
plored several other technical realizations of step 2, generally confirming smaller
gains as parallel training data grow. At about 1M parallel sentences, there is
little or no benefit from the separation.

4.3.2 Reverse Self-Training

In Bojar and Tamchyna (2011a) and further in Bojar and Tamchyna (2011b),7

we realized that the decision capacity about word forms lies ultimately in the lan-
guage model. If word form combinations (such as an agreeing pair of an adjective
and a noun) are known to the language model, it will promote them. And con-
versely, any unknowns will force the system to fall back to denser statistics, e.g.,
to shorter n-grams or (if linguistically-informed models are available) to lemmas
or tag sequences. Any cleverness in offering word forms in the translation model
is not going to provide any improvement if the language model cannot support
the proposed sequence. In other words, it is the intersection of the translation
and language model capabilities that is capping the performance of the system.

Assuming that we have trained the LMs of the system the best way we could
(used all possible data, used LMs over different linguistic factors), we must en-
sure that the translation model is not adding further limitations and that it is
offering translation candidates that the LM can effectively evaluate. Any further
candidates, coming for example from a morphological generator, are not going

7See page 63 for the full reference and link to Bojar and Tamchyna (2011b).
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Figure 4.7: Improvements in BLEU score thanks to reverse self-training when
adding monolingual data to fixed parallel data (500k sentences, left plot) and
when increasing parallel data size with fixed monolingual (5M sentences, right
plot). Reproduced from Bojar and Tamchyna (2011b).

to be used anyway because they are not known to the LM (and LM will thus
score them lower than other options).

We thus proposed reverse self-training as a technique that ensures that
the TM is as capable as the LM in producing word forms. Given that the LM
is trained on generally much larger training data (monolingual texts), we must
somehow incorporate these texts into the training of the TM.

The key idea is to use back-translation to translate the target-side monolin-
gual data to the source language and use this synthetic parallel corpus to train
the forward system. Back-translation was used previously by Bertoldi and Fed-
erico (2009) and became extremely popular recently in neural MT (Sennrich et
al., 2016) but one aspect remains unique to our setup.

As illustrated in Figure 4.6 on the preceding page, we back-off the back-
translation system to translate from lemmas if the exact word form is not known.
If the original source language (English, in our setup) is morphologically less rich,
the translation from lemmas will not cause any harm. The forward system will
then see a good English sentence or phrase translated to a perfect Czech phrase,
containing a word form never seen in the small parallel data. The forward system
thus gets the chance to learn a new form of a known word in its correct context.

Figure 4.7 shows the benefits of reverse self-training for English-to-Czech
translation. It is well known that increasing LM size is always beneficial (Brants
et al., 2007), see the “BLEU of Mono LM” curve in the left plot. Our technique
allows to exploit the given monolingual data much better, see the curve “BLEU
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Figure 4.8: Reverse self-training for more language pairs. Reproduced from Bojar
and Tamchyna (2011b).

of Mono LM and TM” in the left plot. In the right plot, we can see that the gains
diminish as the parallel data grow. The benefit from reverse self-training started
at 4 BLEU points but becomes negligible from about 2M of parallel sentences.

Figure 4.8 documents the effectiveness of the method for several language
pairs, in relation to their morphological richness. All the underlying experiments
used 94–128k parallel sentences and 662–896k monolingual sentences. “Vocabu-
lary size ratio” indicates how many more distinct word forms the target language
had in the parallel corpus compared to the source. The extreme is English-
Finnish with 2.8× more Finnish forms. The tendency is clear: the richer the
target language is compared to the source, the larger the gain. If both languages
are rich, such as German-Czech, the benefit is not necessarily big.

4.3.3 Unseen and Discriminatively Trained

As we know from the previous section, having a parallel corpus of 2M sentences
for languages like Czech may already be sufficient but arguably, many language
pairs suffer from lack of resources much more. Examining methods for particu-
larly low-resource settings is thus interesting.

In the situation when the necessary (target) word forms are not available
even in the monolingual data, we have to rely on morphological analyzers and
generators, and their dictionaries. Since the dictionaries (naturally) do not pro-
vide frequencies or probabilities of the forms in their contexts, we have to rely
on a different scoring mechanism.

One option would be to use standard language models in the factored setup
(Section 4.2), trained over sequences of morphological tags and (separately) over
lemmas. The best form would be selected based on a weighted combination of
these scores.
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Figure 4.9: The improvement in BLEU thanks to including automatically gener-
ated word form variations of translation options (“synthetic (mtu)”) and scoring
them with the discriminative model (“morph-vw”). Reproduced from Huck et
al. (2017).

Aleš Tamchyna’s thesis examined more fine-grained models, namely discrim-
inative models (Tamchyna, 2017). The discriminative model is trained outside
of the translation system and allows to include many more features, including
fully lexicalized ones (e.g., indicators checking for the presence of individual word
forms or lemmas). One of the advantages is that it has the power of learning
valency frames, that is the requirements of verbs for a particular preposition
or case of their arguments.

The integration of such a rich model into the PBMT search is technically
challenging because the model is evaluated before pruning for a very large number
of translation options. Tamchyna et al. (2016a) had to come up with a sequence
of optimization tricks to avoid any duplicated calculation. The benefit of this
optimization was that the discriminative model could use also a limited context
of the target side, i.e., the previous word or two of the current partial hypothesis.

In Huck et al. (2017), the discriminative model was trained excluding the
exact word forms and relying only on individual morphological features and
the lemma. This allowed to reliably score even word forms generated by the
morphological generator; in the case of Czech, Morphodita (Straková et al., 2014)
was used. The method is effective especially with corpus sizes of 50k and 500k
sentences, small gains are however observed also at 5M and 50M sentence pairs.



Chapter 5

Benefiting from Deep Syntax in MT

The methods and experiments described so far were limited to using relatively
shallow linguistic information: lemmatization, tagging, and morphological gen-
eration.

In this chapter, we summarize one of our key contributions of this thesis,
namely the incorporation of deep-syntactic knowledge to phrase-based MT. We
note that we explored this topic already in our PhD thesis (Bojar, 2008), but
the approach taken then was not successful.

As we documented for dependency trees used for translation between English
and Czech in Bojar and Hajič (2008) and further in Bojar and Týnovský (2009)
and as Chiang (2010) described independently for constituency trees for trans-
lation from Chinese or Arabic into English, a statistical transfer-based system
where the minimum translation units are linguistically-adequate treelets has a
considerably harder situation than phrase-based MT or its extension, hierarchical
phrase-based translation (Chiang, 2005).

In Section 5.1, we briefly review the problem. Our technique that allows to
circumvent it is summarized in Section 5.2, the underlying reasons of its effec-
tiveness are further explained in Section 5.3 and empirical results are provided
in Section 5.4.

5.1 Brief Summary of Difficulties with Tree-Based
Transfer

In our PhD thesis, we attempted to improve the grammaticality of MT by im-
plementing a transfer-based MT system. Such systems first analyze the input
sentence into a formal representation reflecting its syntax and/or semantics, then
convert this representation to a corresponding formal representation for the tar-
get language and finally generate the plain text in the target language.

The fact that the target string is produced from a formal representation
would ideally guarantee that the output will be grammatical and the separation
of source linguistic analysis and target generation potentially reduces the need
for (large) bilingual training data, benefiting from the generalizations that can
be observed monolingually or provided in the form of dictionaries.

29
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In practice, the transfer-based approach fails to surpass shallow methods like
phrase-based MT on average, due to especially the following issues (Bojar and
Hajič, 2008):

• Cumulation of errors when preparing the source and target formal rep-
resentations of the parallel data. In our case, a tagger was followed by a
surface-syntactic parser and then a deep-syntactic parser. If any of them
made an error (or if the sentence in the training data was not exactly gram-
matical, according to the rules embodied in the particular tool or matching
the training data behind the tool), the resulting structure contained an er-
ror. Shallow methods, on the other hand, suffer only from errors genuinely
present in the training data.

• Mismatching structures between the source formal representation, the
target representation and their alignments prevent extraction of translation
counterparts. As outlined above, classical SMT assumes that both source
and target can be decomposed into some units, corresponding to one an-
other. If the units follow the syntactic structure of the sentence, as was our
case, the decomposition must conform to the structures of both source and
target. The underlying grammar formalisms and parsers for the two lan-
guages were however built independently and arbitrary decisions as well as
natural divergence between languages (Dorr, 1994; Šindlerová et al., 2014)
render the sub-structures not matching exactly. Commonly, one accepts
only matching sub-structures into the automatically collected “translation
dictionary”. This means a considerable data loss in comparison to PBMT,
where only the word alignment is constraining which pairs of substrings
are learned from the data.

• Increased data sparseness due to fine-grained details of the deep anal-
ysis. As described in Bojar and Týnovský (2009), the core of our approach
was a formalism for tree-to-tree transfer (synchronous tree substitution
grammars, Eisner, 2003), which assumed operating on trees with atomic
nodes. In practice, the nodes of the deep syntactic representation had many
attributes, and their values were indeed necessary in order to be able to
generate the target sentence correctly. If one combined all the attributes
into an atomic unit, the vocabulary size of these units was actually larger
than the vocabulary of word forms because the deep representation made
finer distinctions. The factorization of translating lemmas and morpholog-
ical tags separately as discussed for PBMT in Section 4.2 was therefore
necessary, risking a combinatorial explosion during the translation.

Carefully constructed systems, such as TectoMT (Popel and Žabokrtský,
2010), can to some extent circumvent these shortcomings. For instance, Tec-
toMT still builds upon the assumption that the source and target representa-
tions are isomorphic, reducing the transfer to the search for the best labelling of
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Dev set (En)

Baseline ttable

TectoMT

CH0 CH1 CH2

Test set (En)

Synthetic ttable

Moses Moses

Depfix

TMT

Parallel training data
(En-Cs)

Figure 5.1: Setup of Chimera. Reproduced from Tamchyna and Bojar (2015).

the source-side structure with target-side lemmas and morpho-syntactic labels,
so-called “formemes” (Žabokrtský et al., 2008; Dušek et al., 2012). We aimed
at a more general data-driven method that would be easier to reuse for other
languages, but failed.

While the approach of TectoMT is linguistically appealing and in many cases,
it indeed produced grammatically better output than PBMT, it never surpassed
PBMT on unconstrained input on average.

5.2 Chimera: Deep-Syntactic and PBMT Systems
Combined

In Bojar et al. (2013c)1 and subsequent publications (Tamchyna et al., 2014; Bo-
jar and Tamchyna, 2015; Tamchyna et al., 2016b; Bojar et al., 2017d), we pro-
posed and tested a method that combines the benefits of TectoMT and PBMT.
The resulting system was called “Chimera”, in reference to the three-headed
mythical creature; the third “head” was Depfix (Rosa et al., 2012).

Figure 5.1 schematically illustrates the design of the system combination:
the central component is Moses trained on large parallel data and with the best-
performing setup (the T+C factored system) as described in Section 4.2. This
setup alone is denoted ch in the following.

The transfer-based system TectoMT is included in a rather simple but sur-
prisingly effective fashion: TectoMT translates the source side of both the test

1See page 63 for the full reference and link to Bojar et al. (2013c).
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I saw two green striped cats .
já pila dva zelený pruhovaný kočky .

pily dvě zelená pruhovaná kočky
. . . dvě zelené pruhované koček

viděl dvou zelené pruhované kočkám
viděla dvěma zeleńı pruhovańı kočkách

. . . dvěmi zeleného pruhovaného kočkami
viděl jsem zelených pruhovaných

viděl jsem zelenými pruhovanými
viděla jsem dvě zelené pruhované kočky

dvě zelené pruhované kočky

Figure 5.2: Translation options available to ch: the majority of options come
from the corpus and some combination of them hopefully leads to a good transla-
tion, underlined. TectoMT provides synthetic options (in bold) that easily match
longer sequences of input.

and the development set, leading to a synthetic parallel corpus. The corpus (of a
size corresponding to the development and test set, i.e., a few thousand sentence
pairs at most) is then processed in the standard “PBMT way”: automatic word
alignment followed by phrase extraction. We obtain a standard phrase table (the
“syntetic ttable” in Figure 5.1) and provide it to Moses, in addition to its stan-
dard corpus-based table. Moses has thus the chance to use phrases constructed
by TectoMT. Finally, the output is processed by Depfix.

For clarity, we denote the stages of this system tmt (TectoMT alone), ch
(Moses alone), ch (Moses with TectoMT) and ch (the full combination). In
this chapter, we focus only on the first two components and their interaction.

5.3 Analysis of the Combination

In Tamchyna and Bojar (2015), we carefully analyzed the behavior of the com-
bined system. Technically, the two phrase tables simply provide translation
options (as discussed in Section 4.1) to a common pool and the standard search
is free to select any of them. Each of the phrase tables comes with its separate
phrase penalty, so the model weights can influence whether translation options
from one of the tables should be used more often on average.

The nature of the phrases from the ch and tmt phrase tables is however
rather different. The ch table was extracted from a large parallel corpus and,
depending of the repetitiveness of the domain and its match with the test data,
the source sentence cannot be generally covered with very long phrases, simply
because the exact wording is not likely to be seen in the training data.

The tmt table, on the other hand, was created from the source sentences and
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all different? reachable? score diff

3003
2665

1741
1601 (<)
140 (>)

924 (unreachable)
338 (identical)

Table 5.1: Forced decoding—an attempt of ch to reach the test set translations
produced by ch. Reproduced from Tamchyna and Bojar (2015).

therefore matches exactly the current source. Much longer phrases can be thus
used, as illustrated in Figure 5.2. The ch phrase table may have contained all
the necessary forms, but they were generally collected from separate sentences.
The options by TectoMT may often contain identical words (thus slightly increas-
ing the issue of spurious ambiguity), but it provides them in a longer sequence.
The gradual expansion of hypotheses has thus the chance to “jump over” all
the combinatorial explosion when searching for a matching combination of word
forms.

The language model is applied as usual, giving the combined system the
capacity to reject strange parts of the translation that TectoMT may have pro-
duced.

Following our discussion on local and non-local features and conflicting struc-
tures, our method relieved the language model from being the only source of
horizontal coherence of the sentence. Phrases from TectoMT reflect grammatical
relations between words locally, within the phrase. The deep-syntactic analysis
in TectoMT was useful for producing such phrases but this different structuring
along the deep-syntactic tree does not interfere with the simple phrase segmen-
tation of PBMT, thanks to our combination method.

Table 5.1 on the current page documents that TectoMT provided also words
not available to ch. We ran ch in the so-called “forced” or “constraint” mode
(Schwartz, 2008), checking if it can produce translations created by ch, i.e., the
model with access to TectoMT translations. Out of the 3003 sentences in the
WMT14 news test set, ch and ch produced identical output in 338 cases. In
about a third (924) of the remaining sentences, ch could not reach the output of
ch, which means that TectoMT either provided a word form never seen in the
parallel training data (52M sentences in this experiment), or not seen enough to
survive the necessary technical thresholds that disqualify infrequent translations
(up to 100 options are considered from each phrase table for each source span).

Figure 5.3 illustrates the complementary benefits of ch and tmt, and the
ability of ch to select the better of each of them. While ch makes better lexical
choices esp. at the beginning of the sentence when translating the expression
living zone, it suffers from bad morphological choices at the end of the sentence.
The combined system ch produces a perfect output for this sentence snippet.
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Src the living zone with the dining room and kitchen section in the household of the young couple .

Ref
obývaćı zóna s j́ıdelńı a kuchyňskou část́ı v domácnosti mladého páru .
living zone with dining and kitchen section in household younggen couplegen .

ch
obývaćı zóna s j́ıdelnou a kuchyńı v sekci domácnosti mladý pár .
living zone with dining room and kitchen in section householdgen youngnom couplenom .

tmt
živá zóna pokoje s j́ıdelnou a s kuchyňským odd́ılem v domácnosti mladého páru .
alive zone roomgen with dining room and with kitchen section in household younggen couplegen .

ch
obývaćı prostor s j́ıdelnou a kuchyńı v domácnosti mladého páru .
living space with dining room and kitchen in household younggen couplegen .

Figure 5.3: Example of translations of Moses (ch) and TectoMT alone and
their phrase-based combination ch. Errors are in bold, glosses are in italics.
Reproduced from Tamchyna and Bojar (2015).

5.4 Empirical Results

We used Chimera in five years of WMT evaluation campaigns, as documented in
Table 5.2. During the years 2013–2015, it scored best and it surpassed Google
MT significantly in the years 2013–2016.

The table also documents the transition towards neural MT. The first NMT
system to join English-to-Czech task was montreal (Jean et al., 2015) and it
ended up third or fourth in manual evaluation in 2015. In 2016 and 2017, NMT
has proved its superiority.

In Sudarikov et al. (2017), we experimented with neural MT but our purely
neural approach did not perform well due to various reasons, including the short-
age of computing resources (large-memory GPU cards). We nevertheless strongly
benefited from NMT outputs by integrating them to our submission in the style
of Chimera, adding them in a separate phrase table. Chimera without NMT
reached BLEU of 18.3 and NMT allowed an increase to 20.5.

Table 5.2 is sorted by BLEU but it should be noted that this automatic
score does not always match human judgements. The most striking difference is
seen in WMT17 where our combination including NMT surpassed Google NMT
setup in both BLEU and TER but considerably lost in manual scoring. We see
this as an indication that humans demand overall sentence coherence. This can
be achieved by NMT thanks to its avoidance of the assumption of translation
units. PBMT, even if provided with well-formed long phrases (from TectoMT or
NMT), lacks the capacity to ensure this coherence, and BLEU lacks the capacity
to evaluate long-range phenomena.

The disparity between manual and automatic evaluation methods leads nat-
urally to the last large topic in our work, MT evaluation, as described in the
next chapter.
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System BLEU TER Manual

W
M

T
13

ch 20.0 0.693 0.664
ch 20.1 0.696 0.637
ch 19.5 0.713 –
Google Translate 18.9 0.720 0.618
cu-tectomt 14.7 0.741 0.455

W
M

T
1
4

ch 21.1 0.670 0.371
uedin-unconstr. 21.6 0.667 0.356
ch 20.9 0.674 0.333
Google Translate 20.2 0.687 0.169
cu-tectomt 15.2 0.716 -0.175

W
M

T
15

ch 18.8 0.715 0.686
ch 18.7 0.717 –
NMT: montreal 18.3 0.719 0.467
ch 17.6 0.730 –
Google Translate 16.4 0.750 0.515
cu-tectomt 13.4 0.763 0.209

W
M

T
16

NMT: uedin-nmt 26.3 0.639 0.59
ch 21.7 0.677 0.30
Google Translate 23.2 0.678 0.19
cu-tectomt 15.2 0.730 -0.03

W
M

T
17

NMT: uedin-nmt 22.8 0.667 0.308
ch incl. NMT 20.5 0.696 0.050
NMT: Google Translate 20.1 0.703 0.240
ch 18.3 0.719 –

Table 5.2: Automatic scores (BLEU and TER) and results of manual ranking
(where available) in WMT13–WMT17. The top other system and Google
Translate reported for reference. Bold indicates the best system in each met-
ric, or more systems, if the difference between their manual scores was not suffi-
ciently large for statistical significance.





Chapter 6

Precise MT Evaluation

This chapter summarizes our contributions to the understanding of how to dis-
tinguish between good and bad translations.

As mentioned above, MT evaluation serves several purposes and each of them
requires a slightly different approach:

• For day-to-day progress check, we need fast and reproducible methods that
reflect well overall translation quality as well as the problems we want to
focus on. Standard automatic evaluation methods may easily neglect our
current research target (e.g., translating pronouns or preserving negation),
because it is not exhibited on a large portion of the output. Custom tar-
geted methods, on the other hand, can easily overfit, i.e., provide a good
score for the aspect their evaluate while ignoring an overall decrease in
translation quality.

• For automatic training (model optimization), similarly fast and repro-
ducible methods are necessary. In addition to this, they need to be suf-
ficiently discerning even for very similar candidates (e.g., members of an
n-best list). Most importantly, the methods need to be able to rule out
poor candidates because otherwise, the optimization could converge to a
bad optimum.

• For the selection of the best MT system from a set of fixed possible systems,
we have to ask what is the planned use of the MT system: will someone
post-edit the translations, or will they be automatically indexed for full-
text search, or will someone read them (with or without access or mild
understanding of the source)? Each of these uses can lead to a different
choice.

In contrast to the previous situations, most of the compared candidates
will be already relatively good machine translations but they can differ
considerably on the surface. Methods that work well for selecting the best
candidate from an n-best list can fail when the hypotheses become less
similar.

In general, both manual and automatic MT output evaluation methods are
used. The main benefit of automatic methods is their reproducibility and low

37
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All sequences of words in the target language

Grammatically
correct sentences

Understandable
translations

Sequences reachable
from the given source sentence

by a given MT system

Top-scoring
candidates

The single
winning candidate

Reference
translations

Post-edited best candidate
All correct translations

Figure 6.1: Space of possible translations. Reproduced from Bojar et al. (2013a).

cost, but they are obviously confined by their inherent assumptions and there-
fore often overestimate the quality of MT systems based on similar assumptions.
Manual evaluation methods are expensive and the main problem is that they are
never exactly reproducible because the annotator is affected by the sentences he
or she has already evaluated. Reproducibility in manual evaluation can be im-
proved by using large samples with many annotators, however it further increases
the cost.

We have contributed to both manual and automatic methods of MT evalua-
tion. In Section 6.1, we explain why MT evaluation is so difficult in general. In
Section 6.2, we evaluate the importance of using more references. In Section 6.3,
we add a complementary style of manual annotation and notice that PBMT
tends to “swallow” words. Finally, Section 6.4 documents that BLEU scores are
even less reliable when they are low, and explains why this is the case.

Furthermore, we have contributed to the development of methods of manual
MT evaluation that operate along a structured representation of the meaning of
the sentence, see Section 6.5.

As a meta-evaluation, automatic MT metrics are evaluated in terms of corre-
lation with human judgements in annual evaluation campaigns, see Section 7.2.

6.1 Why Is MT Evaluation Difficult

It may not be obvious why evaluating MT is so difficult. We contributed to its
understanding in Bojar et al. (2013a).1

1See page 63 for the full reference and link to Bojar et al. (2013a).
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A ačkoli ho lze považovat za politického veterána, radńı Březina reagoval obdobně.
Ač ho můžeme prohlásit za politického veterána, reakce radńıho Karla Březiny byla velmi
obdobná.
A i přestože je politický matador, radńı Karel Březina odpověděl podobně.
A přestože je to politický veterán, velmi obdobná byla i reakce radńıho K. Březiny.
A radńı K. Březina odpověděl obdobně, jakkoli je politický veterán.
A třebaže ho můžeme považovat za politického veterána, reakce Karla Březiny byla velmi
podobná.
Byť ho lze označit za politického veterána, Karel Březina reagoval podobně.
Byť ho můžeme prohlásit za politického veterána, byla i odpověď K. Březiny velmi podobná.
K. Březina, i když ho lze prohlásit za politického veterána, odpověděl velmi obdobně.
Odpověď Karla Březiny byla podobná, navzdory tomu, že je politickým veteránem.
Radńı Březina odpověděl velmi obdobně, navzdory tomu, že ho lze prohlásit za politického
veterána.
Radńı Karel Březina, navzdory tomu, že ho můžeme označit za politického veterána, reagoval
podobně.
Reakce K. Březiny, třebaže je politický veterán, byla velmi obdobná.
Velmi obdobná byla i odpověď Karla Březiny, ačkoli ho lze prohlásit za politického veterána.

Figure 6.2: Random sample from 71k possible translations of the English sen-
tence: And even though he is a political veteran, the Councilor Karel Brezina
responded similarly. Reproduced from Bojar (2012).

Given a fixed input sentence, it is easy to see that there are extremely many
possible erroneous translations. We can start from any correct translation and
modify it by introducing typing errors, altering morphological properties of words
(e.g., the number or negation), reordering words or inserting or deleting words.
The vast majority of these modifications will damage the translation—and a
good MT system should avoid all these errors.

Starting from the other end, considering the set of all correct translations is
not that straightforward. The situation can be schematically illustrated as in
Figure 6.1 on the facing page.

In Bojar et al. (2013a), we attempted to quantify the number of correct
possible translations from English into Czech. Inspired by the work of Dreyer
and Marcu (2012), we designed a framework fit for morphologically rich languages
and asked several annotators to provide as many good translations of a sentence
as possible.

The results, in line with what Dreyer and Marcu (2012) observed for En-
glish, are rather interesting. An English sentence of 14 words can easily have 70
thousands of correct translations, as illustrated in Figure 6.2.

Each annotator in this exercise was instructed to spend up to two hours per
sentence, using our tool to generate and validate sentences semi-automatically.
The least prolific annotator provided this sentence with 350 possible translations,
the second one created 3192 translations. And the most prolific one reached
67936 translations. Among these, only 8 translations were suggested by all three
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Figure 6.3: Correlation of BLEU and human judgements for varying type and
number of reference translations. Reproduced from Bojar et al. (2013b).

annotators and only 172 translations were suggested by two of the three anno-
tators. The space of possible translations is thus probably much larger.

The translations are not always 100% literal and they obviously differ in many
more or less important aspects, such as register or style, information structure
etc. If used in a coherent text and not as isolated sentences, many of these
translations may not be acceptable at all, but for the current level of MT quality,
all are equally good.

When designing automatic methods of MT evaluation, we thus have to keep
in mind that the candidate translation produced by an MT system can be correct
but superficially very distant from a given reference translation, or that it can
be superficially very similar to the reference translation but suffer from serious
errors.

6.2 More and/or Post-Edited References

The most widespread automatic MT evaluation method, BLEU (Papineni et
al., 2002), works by validating short fragments (1 to 4-grams) of the candidate
translation against a provided reference translation. BLEU has been designed
with the assumption that four independent human reference translations will be
available, to allow for at least some variance in the MT output. However, BLEU
is actually most often used with only one reference.

In Bojar et al. (2013b), we extended the manually-collected data of WMT13
with a substantial number of post-edited sentences. Through that experiment,
we confirmed that BLEU becomes much more reliable with more references, but
also found out that the nature of reference translations affects the correlation
of BLEU and human judgements. The correlations are generally higher if the
reference translations were created by post-editing MT outputs, i.e., if they are
(very likely) more similar to the candidate translations.
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Google Moses-Bojar PC Translator TectoMT Total

Automatic: BLEU 13.59 14.24 9.42 7.29 –
Manual: Sentence ranking 0.66 0.61 0.67 0.48 –
Manual: Error flags 2319 2354 2536 2895 10104

Error flags details:
Words with bad meaning 617 587 800 999 3003
Auxiliary word missing 84 111 96 138 429
Content word missing 72 199 42 108 421
Word form incorrect 783 735 762 713 2993
Superfluous word 381 313 353 394 1441
Non-translated word 51 53 56 97 257

Total serious errors 1988 1998 2109 2449 8544

Bad local word order 117 100 157 155 529
Punctuation error 115 117 150 192 574
. . . . . . . . . . . . . . . . . .
Tokenization error 7 12 10 6 35

Table 6.1: A comparison of two types of manual evaluation (Sentence ranking
and Flagging of errors) and BLEU scores for four English-to-Czech MT systems
from WMT09. Noteworthy best results highlighted in bold, noteworthy worst
results in italics. Adapted from Bojar (2011).

Figure 6.3 documents the situation. The generally lowest performance is ob-
tained in the standard conditions with 1 “official” reference translation. The
error bars reflect the variance due to random subsampling from the full 3k sen-
tences and get narrower as larger and larger portion of the test set is used. With
2k or 3k sentences in the test set, the Spearman’s rank correlation coefficient ρ
reaches levels of 0.9. Using a single reference created by post-editing randomly
selected systems from the set of evaluated systems works clearly better, reaching
correlation of 0.95.

We also see from Figure 6.3 that the size of the test set and the number of
references can somewhat compensate for each other. Specifically, the common
practice of WMT shared translation tasks is to have about 3000 sentences with
a single reference translation. A comparable correlation of BLEU and human
judgements could be also achieved with just 100–200 sentences and 6–7 reference
translations.

6.3 Error Annotations Help to Explain Bad Correlation
for BLEU

In Bojar (2011)2, we experimented with two techniques of detailed error anal-
ysis. One was based on semi-automatic interpreting of post edits of candidate

2See page 63 for the full reference and link to Bojar (2011).
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translations and another relied on manual flagging of errors using some error
classification. Here is an example of the error flagging:

Source Sarkozy meets angry fishermen.
Reference Sarkozy jde vstř́ıc rozhněvaným rybář̊um

Moses Sarkozy se missC: setkává missA: s form rozzlobeńı rybáři.

TectoMT Sarkozy disam splňuje missC: vstř́ıc naštvané form rybáře.

Google Sarkozy lex splňuje form zlobit form rybář̊u.

PC Translator Sarkozy se setkává missA: s form rozhněvané form rybáře.

In our annotation, we attached flags to individual tokens in MT output (and
added tokens for missing words). The example illustrates errors in word form
choice ( form ), word meaning (source word disambiguation disam and bad lexical
choice lex ; the last two are difficult to distinguish and have the highest disagree-
ment rate), as well as missing content ( missC ) and auxiliary ( missA ) words.

Both post-editing and error flagging led to similar conclusions about the MT
systems competing in English-to-Czech translation back then: the traditional
commercial system PC Translator was quite bad in lexical choice, TectoMT per-
formed best in picking the right form of the word and phrase-based Google and
our Moses were generally good in lexical choice but suffered from errors in mor-
phology.

The flagging of errors also allowed to explain the bad performance of BLEU
for this set of systems, see Table 6.1. Our Moses scored best according to BLEU
but ended up third in terms of the WMT09 manual sentence ranking. As the
detailed error flags reveal, the winning PC Translator made by far the least
number of errors in the category of “Content word missing”, while our Moses
dropped almost five times more content words.

6.4 Low BLEU Scores Unreliable

In the English-to-Czech evaluation campaigns 2009 and 2010, we saw a strikingly
low correlation between human judgements about translation quality and BLEU
scores, see the left part of Figure 6.4.

While the correlation of BLEU and human judgements for Czech was low,
we found in Bojar et al. (2010a)3 a high correlation between the absolute BLEU
scores and their correlation to human judgements across all language pairs taking
part in WMT09, see the right part of Figure 6.4. Put simply, BLEU scores below
20 are not reliable.

Bojar et al. (2010a) have also explained the reason for this. The situation is
illustrated in Table 6.2 which compares the sets of n-grams in outputs of several
MT systems deemed correct according to (1) the presence of the n-gram in the
reference translation vs. (2) the absence of manual error flags described above.

3See page 63 for the full reference and link to Bojar et al. (2010a).
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Figure 6.4: Left: Low correlation between BLEU and human judgements. Each
point corresponds to one MT system, different point styles indicate a different test
conditions. We see no correlation between BLEU and manual judgement. Right:
A good correlation between the BLEU scores and their correlation with human
judgements, i.e., higher BLEU scores correlate well with humans and lower BLEU
scores do not. Each cross corresponds to one language pair, showing the average
and standard deviation of BLEU scores and manual judgements across all systems
for that language pair. Simplified from Bojar et al. (2010a).

Two situations are desirable: when the n-gram does not contain errors and
it is confirmed by the reference, and when the n-gram contains errors and the
reference does not confirm it. This happens for 59% of unigrams and 56% of
bigrams, etc. False positives (n-grams confirmed but containing an error) are
luckily rather rare: 6% of unigrams, 2% of bigrams, etc.

The reason for unreliability of BLEU at low scores lies in the fourth case:
error-free n-grams that are nevertheless not available in the reference. BLEU
does not give any credit to them but the systems can quite differ in the quality
of translation in these cases. As seen in Table 6.2, this amounts to more than a
third of unigrams, 43% of bigrams etc.

Post-edited references discussed in the previous section are much closer the
to candidate translations and don’t suffer from this lack of coverage. The un-
confirmed n-grams will be only those where the post-editor needed to rephrase
the sentence to fix some error or disfluency. Any decrease in BLEU will thus
correspond to genuine issues of the candidate translation.

In Bojar et al. (2010a), we proposed to increase the coverage of BLEU by
matching the candidate with the reference at a coarser level of representation,
namely bags of deep-syntactic lemmas (separate for each deep-syntactic part of
speech) instead of the common longer n-grams of exact word forms. For English-
to-Czech, this increased the correlation in that particular experiment from 0.33
to 0.53.
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Confirmed by Ref Contains Errors 1-grams 2-grams 3-grams 4-grams
Yes Yes 6,34 % 1,58 % 0,55 % 0,29 %
Yes No 36,93 % 13,68 % 5,87 % 2,69 %
No Yes 22,33 % 41,83 % 54,64 % 63,88 %
No No 34,40 % 42,91 % 38,94 % 33,14 %
Total n-grams 35 531 33 891 32 251 30 611

Table 6.2: n-grams as confirmed by the reference and/or by containing or free
from errors according to manual error flagging. Lack of coverage of the reference
highlighted in bold. Reproduced from Bojar et al. (2010a).

In Macháček and Bojar (2011), we further elaborated on that, moving back to
the less computationally-demanding shallow but still sufficiently coarse features
of words. We also confirmed the applicability of the proposed method in model
optimization, performing acceptably in the main manual scoring that rewarded
tied results and getting the best score when ties were disfavored (Callison-Burch
et al., 2011). See also Section 7.1 for a discussion the manual evaluation method.

6.5 MT Evaluation Focused on Semantics

With the success of neural MT, the focus of MT evaluation has to be changed as
well. Multiple studies (Bentivogli et al., 2016a; Bojar et al., 2016a; Castilho et al.,
2017b,a) suggest that NMT primarily improves fluency. Adequacy of translations
is improved as well, but to a smaller extent. We would therefore expect that,
on average, misunderstandings due to MT errors will be less frequent, but at
the same time, they will be harder to notice: MT output will be more often
seemingly perfect but including a semantic flaw.

For that reason, we have revived our interest in semantic correspondence
between the candidate translation and the reference. In Bojar and Wu (2012),
we experimented with HMEANT (Lo and Wu, 2011), a manual method of MT
evaluation based on aligning the predicate-argument structures of the candidate
and the reference. Building upon that, we designed a manual method of MT
evaluation that closely follows the semantic structure of the source sentence (and
not the reference, thereby avoiding the need to parse the often garbled MT
output) in a joint work (Birch et al., 2016).
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Shared Tasks

To reliably measure progress of the field of natural language processing and
machine translation in particular, approaches to problems and proposed solutions
have to be regularly compared in a rigorous way. Such a comparison is however
often difficult to achieve due to many interacting conditions and generally large
efforts are needed.

The common practice in NLP resolves this by shared tasks: regularly or
independently organized events where the organizers specify an exact task de-
scription and usually provide training datasets and then collect submissions from
participants to evaluate them in a clear and comparable way.

The history of shared tasks related to machine translation has been sum-
marized in Bojar et al. (2016c)1 for WMT (originally Workshop on Statistical
Machine Translation which became an ACL-sponsored conference in 2016) and
in Bentivogli et al. (2016b) for IWSLT, a workshop focused primarily on the
translation of spoken language.

Over the years, our contribution to the course of WMT shared task has
been twofold: (1) contributing to best practices in MT evaluation, and (2) co-
organizing various tasks. We summarize these contributions in the following
sections.

7.1 Avoiding Bias in WMT News Translation Task

The main shared task at WMT is translation of news text, see Koehn and Monz
(2006) through Bojar et al. (2017a). Thanks to our participation in the EU
project EuroMatrix2 and subsequent EU projects within the 6th and 7th Frame-
work Programmes and in H2020, Czech has been included in this task every year
since 2007. We also participated in the task with our translation systems of
diverse nature.

Up until 2016, the main WMT evaluation measure was derived from anno-
tation screens of up to five systems ranked manually according to the perceived
translation quality. The annotators were presented with the source, the reference
translation and 5 candidate outputs and they indicated the relative quality of

1See page 63 for the full reference and link to Bojar et al. (2016c).
2http://www.euromatrix.net/
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Figure 7.1: Illustration of an artificial collection of manual rankings as used
in WMT until 2016. The sample annotation consists of 10 annotation screens
in total, in 6 of which the system D wins and in 4 of which it loses. Its four
competitors M1. . .M4 are always on par. Individual annotation screens may be
provided by different people.

Interpretation “≥ Others” “> Others” “Ignore Ties”

Formula wins+ties
wins+ties+losses

wins
wins+ties+losses

wins
wins+losses

Favors “mainstream” “distinct” -

D 6 × 4 = 24/40 24/40 24 / 40 = 6/10
M1 10 × 3 + 4 = 34/40 4/40 4/10

Figure 7.2: Various ways of handling ties in WMT ranking. The calculations are
based on the sample annotation from Figure 7.1. When ties are rewarded (“≥
Others”), the tying systems M1. . .M4 “support” each other and each of them
thus seems to perform better than D (34/40 over 24/40 wins), unduly favouring
similar systems. Penalizing ties (“> Others”) promotes distinct systems like D.
“Ignore Ties” is a fairer option, for which we advocated in Bojar et al. (2011).

these translations; see Figure 7.1 for sample dataset of judgements (the underly-
ing sentences were selected randomly from the test set and were not important
when interpreting the evaluation, we thus omit them in the picture). In practice,
the exact set of 5 ranked systems differed from screen to screen, sub-sampling
five-tuples from all the competing systems.

Observing the performance of our systems in 2010, we noticed that the same
collected judgements can be interpreted in subtly different ways, leading to dif-
ferent results. We thus carefully analyzed the discrepancies and reported them
in Bojar et al. (2011). Here we highlight two of the issues:

Rewarding ties unduly favors similar systems. Figure 7.2 illustrates that
depending on the treatment of cases where more systems receive the same
rank in an annotation screen, the final ordering of the systems can differ.
Specifically, WMT used to rely on a formula that rewards ties (“≥ Others”;
“systems . . . are ranked based on how frequently they were judged to be
better than or equal to any other system”, Callison-Burch et al., 2010).
This choice can be considered particularly problematic since several system
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Figure 7.3: Intra- and inter-annotator agreement in terms of the kappa statis-
tic (left axis) of WMT10 evaluation, including of excluding comparisons with
reference translations. “Histogram of sentence lengths” (right axis) shows the
distribution of sentences in the test set. Adapted from Bojar et al. (2011).

submissions were always based on the Moses translation system, where
similar translation quality can be expected.

Agreement rates decrease with sentence length. The aggreement rates be-
tween different people (inter-) and between annotations of the same person
(intra-) have been reported along with the results since Callison-Burch et
al. (2007), in the form of Cohen’s kappa (Bennett et al., 1954). In Bojar et
al. (2011), we noted that the agreement decreases with sentence length as
illustrated in Figure 7.3. Following indicative ranges for the kappa statis-
tic,3 we see that the inter-annotator agreement when comparing two real
systems (as opposed to one system and the reference translation) gets close
or below what Landis and Koch (1977) suggest as moderate agreement. Im-
portantly, it turns out that the majority of the evaluated sentences are of
this length.

Our discussion sparkled further research and evolution of the method of man-
ual ranking (Lopez, 2012; Koehn, 2012; Hopkins and May, 2013). The current
method called “direct assessment” (Graham et al., 2016) simplifies the task by
evaluating only one candidate at a time and asking the annotator to provide a
score on an effectively continuous absolute scale given only the reference transla-
tion, not the source. Direct assessment became the official method only in 2017
(Bojar et al., 2017a) so we still anticipate further developments in this area in
the coming years.

3However, see the discussion in Komagata (2002).
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’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17

Participating Teams - 6 8 14 9 8 12 12 11 9 8
Evaluated Metrics 11 16 38 26 21 12 16 23 46 16 14
Baseline Metrics 5 6 7 7 7

System-level evaluation methods
Spearman Rank Correlation        #
Pearson Correlation Coefficient #     

Segment-level evaluation methods
Ratio of Concordant Pairs   
Kendall’s τ ¶ ¶ ¶ · ¸ ¸ ¸ H
Pearson Correlation Coefficient # G

Tuning Task    

 main and # secondary score reported for the system-level evaluation.

¶, · and ¸ are slightly different variants regarding ties.

Table 7.1: Summary of metrics and tuning tasks over the years. The vertical bar
indicates since when we started co-organizing the task.

7.2 Organizing Shared Tasks

Since 2013, we have been actively involved in the organization of shared tasks of
various types:

News Translation Tasks attract the largest number of participants each year.
The main goal, translating short news stories, remains unchanged while the
underlying set of languages slightly changes every year. The test sets for
the task are created anew each year, to provide the participants with gen-
uinely novel text. Huge collective effort is spent on manual evaluation and
throughout the years (also due to our analysis presented in Section 7.1
above), the task saw a few modifications to the official method of evalua-
tion.

Our contribution to the organization slightly varied through the years, but
every year, we arranged the selection and fixes to the Czech part of the
test set (without actually looking at it, to avoid any advantage over other
participants in the task), and we organized the evaluation of Czech, relying
on a large pool of our Czech colleagues and other annotators.

We were involved in five such campaigns so far (Bojar et al., 2013b, 2014,
2015, 2016a, 2017a).

Metrics Tasks build upon the large pool of manual translation quality judge-
ments collected in the evaluation of News Translation Task and test the
performance of automatic metrics against human scoring. Since 2008, two
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levels of evaluation are considered: “system-level” (metrics have to pre-
dict the quality of a set of sentences) and “segment-level” (metrics have to
predict the quality of every sentence).

We were co-organizing five metrics tasks (Macháček and Bojar, 2013; Macháček
and Bojar, 2014; Stanojević et al., 2015b; Bojar et al., 2016d, 2017b) and
Table 7.1 provides an overview of the full history of the task.

In 2016, we trialled the use of direct assessment as the golden truth in the
metrics task and in 2017, it became the official method of news task eval-
uation, so we switched to it as well. For some language pairs, the direct
assessment method did not allow to collect sufficient number of manual
judgements and we had to resort to the older style of comparison, as indi-
cated by the symbols G and H.

It used to be the case in the past, that successful metrics from one year
were never submitted again in the subsequent editions of the task simply
because their authors got interested in other topics. To at least partially
avoid this loss, we introduced a set of baseline metrics and regularly include
them in the task. Accumulating the results over the years (i.e., a varied
set of language pairs and evaluated MT systems), we can draw more stable
conclusions about the overall performance of these metrics. A first such
summary was presented in Bojar et al. (2016c).

Tuning Tasks were devoted to the model optimization as mentioned in Sec-
tion 2: a fixed set of model components for a fixed MT system was provided
and task participants had to find the best weight settings. The transla-
tions using these settings (run by the task organizers) were then evaluated
manually among the News task submissions. The point of the tuning tasks
was to assess the applicability of various MT metrics in model optimization
and the performance of various model optimization techniques themselves.

After two rounds of the tuning task (Stanojević et al., 2015a; Jawaid et
al., 2016), we concluded that the variance among the different submis-
sions in large-data setting (Tuning Task 2016) is small. The results have
nevertheless clearly indicated that there was some progress in the opti-
mization algorithms, KBMIRA (Cherry and Foster, 2012) outperforming
the prevalent MERT (Och, 2003), but not in metrics when used for model
optimization: BLEU (Papineni et al., 2002) was still the method that led
to the best-performing systems in terms of final manual evaluation.

Neural MT Training Task (Bojar et al., 2017c) is a new type of task we
proposed in respose to the shift to neural MT. The performance of neural
MT models is affected by several more or less independent aspects: (1) the
model structure, (2) the available training data and their pre-processing
and (3) the technique used to train the model. In the NMT training task,
we fixed (1) and (2), providing task participants with a pre-defined model
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in the Neural Monkey toolkit (Helcl and Libovický, 2017), pre-processed
training data and some suggestions what would be interesting to evaluate.
As with the tuning tasks, participants did not run the translation them-
selves, they only provided the trained models. We applied the models to
the WMT17 news test set and included these outputs in manual evaluation
of WMT17.

The results indicate that statistically-significant differences in translation
quality can be obtained by different training techniques, and the more
successful submissions shared one particular property: they adapted the
training corpus to the news domain by subsampling it or by promoting such
sentence pairs. Domain adaptation is thus a critical step in the training of
neural MT.

Further long-term observations of the news translation task (esp. its manual
evaluation) and the metrics task (a summary of the best performing metrics
across the years) are provided in Bojar et al. (2016c).4

4See page 63 for the full reference and link to Bojar et al. (2016c).



Chapter 8

Summary

This habilitation thesis summarizes the contributions of Ondřej Bojar in the
area of machine translation and machine translation evaluation focused on the
translation into morphologically rich languages, mainly from English into Czech.

As documented in the attached publications, the author has:

• created a large automatically-annotated corpus CzEng, allowing a wide
audience of researchers to experiment with English-Czech translation and
allowing Czech to become a frequent example language in MT research,

• exploited explicit morphological information to improve translation quality
into Czech, using several different techniques and different settings: word
forms known but less frequent in parallel data, word forms not available in
parallel data but covered in monolingual data and word forms not available
even in the monolingual data,

• experimented with incorporating deep syntactic processing into machine
translation systems, proposing a technique that defined the state of the art
for news translation from English to Czech in years 2013–2015,

• contributed to techniques of MT evaluation by analyzing the space of pos-
sible translations, difficulties of MT evaluation and issues of the most com-
monly used MT evaluation method,

• supported the MT community by co-organizing shared task and also sig-
nificantly contributing to the practices in translation task evaluation.

The original scientific papers detailing these contributions are reproduced in
Appendix A, pages 63–65.
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- Deliverable 3.4, ÚFAL, Charles University, March 2009. Cited on page 29, 30
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the WMT17 Neural MT Training Task. In Proceedings of the Second Conference on Ma-
chine Translation, Copenhagen, Denmark, September 2017. Association for Computational
Linguistics. Cited on page 49
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Republic, 2012. Cited on page 11, 18, 19, 22, 39
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Montréal, Canada, June 2012. Association for Computational Linguistics. Cited on page 39
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Ondřej Dušek, Jan Hajic, and Zdenka Uresova. Verbal valency frame detection and selection
in czech and english. In Proceedings of the Second Workshop on EVENTS: Definition,
Detection, Coreference, and Representation, pages 6–11, Baltimore, Maryland, USA, June
2014. Association for Computational Linguistics. Cited on page 16

Jason Eisner. Learning Non-Isomorphic Tree Mappings for Machine Translation. In Proceed-
ings of the 41st Annual Meeting of the Association for Computational Linguistics (ACL),
Companion Volume, pages 205–208, Sapporo, July 2003. Cited on page 30

George Foster, Roland Kuhn, and Howard Johnson. Phrasetable Smoothing for Statistical Ma-
chine Translation. In Proceedings of the 2006 Conference on Empirical Methods in Natural
Language Processing, EMNLP ’06, pages 53–61, Stroudsburg, PA, USA, 2006. Association
for Computational Linguistics. Cited on page 20

Alexander Fraser. Experiments in morphosyntactic processing for translating to and from
german. In Proceedings of the Fourth Workshop on Statistical Machine Translation, StatMT
’09, pages 115–119, Stroudsburg, PA, USA, 2009. Association for Computational Linguistics.
Cited on page 24



58 Bibliography
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Jan Hajič. Disambiguation of Rich Inflection (Computational Morphology of Czech). Nakla-
datelstv́ı Karolinum, Prague, 2004. Cited on page 23
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Tuning Shared Task. In Ondřej Bojar and et al ., editors, Proceedings of the First Conference
on Machine Translation (WMT). Volume 2: Shared Task Papers, volume 2, pages 232–238,
Stroudsburg, PA, USA, 2016. Association for Computational Linguistics, Association for
Computational Linguistics. Cited on page 49
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Aleš Tamchyna and Ondřej Bojar. What a Transfer-Based System Brings to the Combination
with PBMT. In Bogdan Babych, Kurt Eberle, Patrik Lambert, Reinhard Rapp, Rafael
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Aleš Tamchyna, Roman Sudarikov, Ondřej Bojar, and Alexander Fraser. CUNI-LMU Submis-
sions in WMT2016: Chimera Constrained and Beaten. In Proceedings of the First Confer-
ence on Machine Translation, pages 385–390, Berlin, Germany, August 2016. Association
for Computational Linguistics. Cited on page 31
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for English-to-Czech Translation. In Proceedings of the Eighth Workshop
on Statistical Machine Translation, pages 92–98, Sofia, Bulgaria, August
2013. Association for Computational Linguistics.
Citations: 7 (excluding self-citations)
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