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ABSTRACT 

Charles University University of Porto 

Faculty of Pharmacy in Hradec Králové Faculty of Pharmacy 

Department of Pharmacology and Toxicology Department of Biological Sciences 

Student: Karolína Zubatá 

Supervisor: doc. PharmDr. Martina Čečková, Ph.D. 

Consultants: Susana Rocha, Ph.D., prof. Alice Santos-Silva, Ph.D. 

Title of diploma thesis: Oxidative stress biomarkers of the erythrocyte in the newborn 

– a follow-up study 

 

Increased levels of oxidative stress (OS) have been described in healthy, full-term 

newborns as a consequence of the drastic changes introduced by birth and by 

the exposure to extrauterine environment. Our intention was to examine the OS levels 

in red blood cells (RBCs) of neonates and to further understand the changes 

that the newborn organism undergoes with its newly-acquired autonomy as this 

knowledge is limited and there are no reference values. Umbilical cord blood samples 

were collected from a small population of newborns (n = 8) and several hematological 

and biochemistry parameters were evaluated. Our experimental data consist of OS 

biomarkers measurements performed in different fractions of blood (RBC membrane, 

total RBCs and plasma): membrane bound hemoglobin (MBH), lipid peroxidation (LPO), 

quantification of catalase (CAT) and glutathione peroxidase (GPx) activities, 

determination of total antioxidant status (TAS) and quantification of total and oxidized 

glutathione; the same parameters were assessed after two months in the same subjects 

(n = 8) using peripheral blood samples, to obtain the follow-ups. Hematological 

and biochemistry data were in accordance with general knowledge and available 

reference values. Significant changes were recorded in five of our OS biomarkers: 

decrease in membrane LPO and MBH levels suggests that OS really fades with age. We 

recorded a significant decrease in GPx activity and an increase in CAT activity 

which probably reflects different specialization of the enzymes and 

the newborn´s increasing autonomy. With all the gathered data we could observe 

the process of the newborn´s adaptation to the outer world. The most significant 

contribution of this work are the new OS biomarkers reference values, which, to our 

knowledge, have not been published before. However, our population was small and only 

half of the selected biomarkers displayed a significant change in the follow-ups two 

months after birth. Further studies are warranted to extend the knowledge in the field 

of OS and its biomarkers because we believe that there is a great potential for them to be 

used in clinical monitoring and diagnosis.  

keywords: oxidative stress, biomarker, erythrocyte, newborn 
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Oxidační stres (OS) bývá primárně spojován s patologickými stavy, byl však popsán 

i u zdravých, v termínu narozených dětí, a to v důsledku drastických změn, kterými 

organismus novorozence během a po porodu prochází. Cílem naší práce bylo pomocí 

vhodných biomarkerů proměřit hladiny OS v erytrocytech (RBC) novorozenců a přispět 

k porozumění toho, jak se organismus adaptuje na vnější prostředí. Tato problematika 

není plně prozkoumána a chybí oficiální referenční hodnoty. Vzorky krve byly získány 

od malého počtu subjektů (n = 8) a to dvakrát – v den narození (pupečníková krev) 

a po dvou měsících, jako follow-up vzorky (periferní krev). V nemocnici byla provedena 

základní hematologická a biochemická vyšetření, naše experimentální data zahrnují 

proměření několika biomarkerů OS v různých frakcích krve (RBC membrány, plasma 

a celé RBC): membránově vázaný hemoglobin (MBH), peroxidace lipidů (LPO), 

kvantifikace aktivity catalasy (CAT) a glutathion peroxidasy (GPx), stanovení celkové 

antioxidační kapacity (TAS) a celkového a oxidovaného glutathionu. Výsledky 

hematologických a biochemických vyšetření odpovídají znalostem o tomto tématu 

i referenčním hodnotám. Statisticky významné změny byly pozorovány u pěti z našich 

biomarkerů: pokles u membránové LPO a MBH poukazuje na to, že OS s věkem 

skutečně klesá. Zaznamenali jsme pokles aktivity GPx a nárůst u CAT, pravděpodobně 

v důsledku lehce odlišných cílů těchto enzymů a zvyšující se autonomie dětského 

organismu. Veškerá sesbíraná a naměřená dat poskytla dobré podklady pro studium 

vývoje a postupné adaptace dětského organismu na okolní svět a působení OS. Největším 

přínosem této práce jsou naměřené hodnoty OS biomarkerů, které mohou být orientačně 

použity jako referenční, jelikož, pokud je autorům známo, jiné zatím nebyly publikovány. 

Počet vzorků byl však omezený, a pouze u poloviny vybraných biomarkerů byla 

zaznamenána statisticky významná změna, novorozenec versus follow-up. Další výzkum 

je vyžadován pro prohloubení znalostí o OS a jeho biomarkerech, protože, jak věříme, 

tyto informace a hodnoty by mohly být s velkou výhodou používány v klinické praxi 

(monitorování, diagnostika). 

klíčová slova: oxidační stres, biomarker, erytrocyt, novorozenec 
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1 INTRODUCTION 

This project is a part of a long-standing research on oxidative stress (OS) in erythrocytes 

carried out by Prof. Alice Santos-Silva and Dr. Susana Rocha 

from the UCIBIO/ REQUIMTE, Laboratory of Biochemistry, Department of Biological 

Sciences, Faculty of Pharmacy, Porto University. The researchers from the Laboratory 

of Biochemistry cover a range of areas (Hematology, Immunology, Clinical 

Biochemistry and Molecular and Cell Biology). The major goal of their work being: 

“...the understanding of the cellular and molecular mechanisms underlying different 

inflammatory conditions, associated with physiological and pathological situations 

that can trigger serious or fatal events” (Anonymous c1996-2018).  

In the present study we investigated the levels of OS in healthy full-term 

newborns. The birth itself has been proven to be a stressful event for the neonate since 

after leaving the womb it faces a relatively hyperoxic environment which results 

in an increased production of reactive oxygen species (ROS). The matter of interest is, 

how does the organism of the neonate copes and adapts to it (Friel et al. 2004, Muller 

1987, Ochoa et al. 2003). 

Although OS provokes a lot of discussion nowadays, the attention is mainly paid 

to its contributions to various disease processes. We, on the other hand, wanted to focus 

on physiological stress of the delivery and on the healthy newborns ability to adapt to it. 

As we were at the very beginning of the research, our aim was to discover more 

about the topic, to test several basic methods, to gather data and to contribute 

to the current knowledge about the newborns biochemistry and antioxidant (AOX) 

defense mechanisms. This thesis should lay the foundations for the future research. 
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1.1 Erythrocytes 

Erythrocytes, also known as red blood cells (RBC), are the most abundant of blood cells, 

comprising up to 45% of blood volume, maintaining the vital function 

of oxygen (O2)/carbon dioxide (CO2) transporters by carrying the respiratory gases 

from lungs to tissues and vice-versa (Gwaltney-Brant 2014). 

1.1.1 Erythropoiesis 

The average life-span of an erythrocyte in humans is 120 days. To maintain the normal 

count of these rapidly maturing cells, a large number of RBCs needs to be synthesized 

every day (around 1% of the RBCs, meaning cca. one billion of new cells). 

Erythropoiesis, a complex, dynamic and well-regulated process, allows their 

replenishment (Hattangadi et al. 2011). 

In the fetus, erythropoiesis begins in the liver during the early first trimester, 

which was preceded by extraembryonic erythropoiesis of the yolk sack. RBC production 

occurs in the liver through the rest of gestation, although the production starts to diminish 

during the second trimester as bone marrow erythropoiesis increases (the first 

erythroblasts occur in the bone marrow at 8 to 9 weeks of gestation and the first area 

of bone marrow appearance is near the clavicle). By the end of the third trimester, almost 

all erythropoiesis is localized in the bone marrow, although other sites may be involved 

(Richard A. Polin 2017). 

After birth, erythropoiesis is restricted primarily to the bone marrow, although 

occasionally it may be found in the spleen or liver as well. In adults, extramedullary 

hematopoiesis (EMH) may occur during hematological disorders when bone marrow 

production is insufficient or ineffective. Typical sites include liver, spleen, lymph nodes, 

paravertebral areas with the intra-spinal canal, pre-sacral region, nasopharynx 

and paranasal sinuses as less common locations for EMH (Gwaltney-Brant 2014). 

Bone marrow is protected by bone casing and composed of hematopoietic cells, 

adipose tissue and various supportive cells and tissues. Its structural and blood flow 

configurations, including bone – bone marrow portal capillary systems, provide 

the appropriate environment for the proliferation, differentiation and maturation 

of cellular components of the blood. Stromal stem cells are progenitors of adipocytes, 
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skeletal tissue components (the hematopoiesis-supporting stroma, osteoblasts, 

chondroblasts, etc.) and reticular cells that provide a structural support for the marrow 

and secrete mediators essential for the maintenance, differentiation, and growth 

of hematopoietic stem cells (Gwaltney-Brant 2014). 

Hematopoietic cells are formed continuously from a small population 

of pluripotent stem cells that are capable of self-renewal. A regular hematopoietic stem 

cell develops into a common lymphoid progenitor, which lineage results in T, B, 

and natural killer cells, or follows a myeloid lineage and becomes a common myeloid 

progenitor (CMP), giving rise to granulocytes, macrophages, megakaryocytes 

and erythrocytes. Differentiation of cells is a series of lineage restriction steps that results 

in the progressive loss of differentiation potential to other cell lineages (Kondo 2010). 

The pathway leading to mature erythrocytes (Figure 1) begins with hematopoietic 

stem cell which later develops in CMP, megakaryocyte-erythroid progenitor, burst-

forming unit – erythroid (BFU-E) and colony-forming unit – erythroid (CFU-E). 

CFU- E undergoes many substantial changes, including a decrease in cell size, chromatin 

condensation and hemoglobinization, leading up to its enucleation and expulsion of other 

organelles, resulting in formation of the reticulocyte and finally, after additional cellular 

remodeling and loss of organelles, the mature erythrocyte (Bresnick et al. 2018, Dzierzak 

& Philipsen 2013, Kondo 2010). 

 

Figure 1: The pathway leading to mature erythrocytes. Hematopoietic stem cell (HSC) can either 

develop to lymphoid progenitor (resulting in lymphocytes and natural killers cells) or colony forming unit 

– granulocyte erythrocyte megakaryocyte macrophage (CFU-GEMM). The CFU-GEMM can take 

a  pathway leading to platelets and white cells or to erythrocytes. The latter continues as follows: burst-

forming unit – erythroid (BFU-E) and colony-forming unit – erythroid (CFU-E), proerythroblast, various 

stages of normoblasts and finaly reticulocytes which mature into RBC. Adapted from EpoMedicine, 2016 

(Anonymous c2016). 
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The process of erythropoiesis is regulated by various growth factors. An exquisite 

short-term control of the process is accomplished by the kidney-derived glycoprotein 

hormone erythropoietin, which production is induced by hypoxic conditions 

and stimulates BFU-E cells. Other growth factors include granulocyte-macrophage 

colony-stimulating factor, stem cell factors or interleukins (IL): IL-3, IL-6, 

IL- 9 and IL- 12 (Hattangadi et al. 2011). 

1.1.2 Structure 

Red blood cells first appear in the circulation as reticulocytes, that are enucleated cells 

containing residual RNA and some mitochondria capable of oxidative respiration. 

In a healthy adult they make up 1 - 2% of the circulating RBCs, while in neonates 

the number is higher, up to 2.5% - 6.5% but drops to normal values within two weeks 

after birth. Once 24h in circulation, as the reticulocytes pass through the splenic vessels 

and lose their organelles and RNA, they mature into normal RBCs (Bukhari & Zafar 

2013, Gordon-Smith 2013). 

Healthy mature erythrocytes are biconcave cells of approximately 7.5 to 8.7 μm 

in diameter and 1.7 to 2.2 μm in thickness. These structural proprieties allow the RBC 

to accomplish its vital function: 1) the flexible membrane, composed of proteins 

and lipids, enables the erythrocyte to travel through the vascular system and deform 

reversibly to squeeze into the smallest capillaries during microcirculation (2–3 μm 

in diameter) and, 2) the discocyte shape with a central depression on each side provides 

a high surface-to-volume ratio that facilitates a rapid diffusion of the respiratory gases 

to and from the cell (Diez-Silva et al. 2010). 

As already mentioned, mature erythrocytes lack nucleus and most 

of the organelles so that the maximum space in cytosol can be occupied by hemoglobin, 

an iron-containing biomolecule essential for gas transport.  

Hemoglobin 

Hemoglobin (Hb) is the main protein component of the RBCs, making up to 95 % of their 

dry content. Hb is a tetramer of two α and two non-α globin chains, each chain enclosing 

one of the four heme groups. HbA, the most common type of Hb in healthy adults, is 

composed of two α chains and two β chains, thus the tetramer can be represented as α2β2, 
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whereas fetal hemoglobin, HbF, is known for its structure of α2γ2, containing a γ chain 

that binds to the O2 molecule with greater affinity. HbA2, α2δ2, is found in small amounts 

in all adults (1 - 2 % of all Hb molecules) but other variants of Hb exist and can be seen 

mainly in various pathologies (Marengo-Rowe 2006). 

Hb is synthesized during the RBC maturation process: mitochondria produce 

heme, which then combines with the globin chains synthetized on the polyribosomes. 

Heme iron constantly undergoes a recycling loop after the destruction of the erythrocyte 

so that it could be used again for new RBCs (Chung et al. 2012). 

Heme, an iron-containing tetrapyrrole ring, known as proto-porphyrin, is 

an essential prosthetic group of many biomolecules, including Hb. Four nitrogen atoms 

within the ring coordinate with the central ion and there are methene bridges among 

the four pyrrole rings. Iron in heme is bound to a histidine (His) residue of the globin 

chain and to O2 molecule that binds at other coordinated position of the ion; its ferrous 

state (Fe2+) allows a reversible binding to O2, while ferric state (Fe3+) in methemoglobin 

(metHb) is unable to carry O2 (Capece et al. 2006, Tsiftsoglou et al. 2006). 

RBC membrane 

The flexibility of the RBCs is primarily attributed to the cell membrane, as there are no 

organelles and filaments inside the cell. The RBC membrane is approximately 19.5% 

water (H2O), 39.5% protein, 35.1% lipids and 5.8% carbohydrates. It consists 

of a cytoskeleton and an asymmetrical lipid bilayer tethered together via “immobile” 

macromolecular complexes centered on band-3 proteins at the spectrin-ankyrin binding 

sites and via glycophorin at the actin junctional complexes. The protein composition 

determines the shape and flexibility of the RBC. Transmembrane proteins usually have 

both cytoplasmic and plasma domains. The outer side includes binding sites for immune 

complexes and the external parts of transmembrane channels and signaling proteins. 

The lipid bilayer includes various types of phospholipids, sphingolipids, cholesterol, 

and integral membrane proteins, such as band-3 or glycophorin. (Oliveira & Saldanha 

2009). 

A significant feature of the lipid bilayer organization is that various phospholipids 

are distributed asymmetrically following their different tasks and functions. Thus, 

when a reorganization occurs, it has an important signaling effect. For example, 

phosphatidylserine (PS), which is normally localized in the inner layer of the bilayer, can 
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set off RBC destruction by macrophages; once the organization of the bilayer 

is disrupted, PS gets exposed at the cell surface and marks the RBC for phagocytosis (An 

& Mohandas 2008). 

The cytoskeleton is composed principally of spectrin, actin and its associated 

proteins (tropomyosin, tropomodulin, adducin and dematin), protein 4.1R and ankyrin 

(Li & Lykotrafitis 2014, Lux 2016, Pandey & Rizvi 2011). 

1.1.3 Function 

The primary purpose of the RBCs is to carry Hb and thus allow gas exchange of O2/CO2 

among lungs and tissues. Besides that, erythrocytes help to maintain the systemic 

acid/base and osmotic equilibria, participate in control of nitric oxide metabolism, redox 

regulation, blood rheology and viscosity (Kuhn et al. 2017). Lastly, RBCs are equipped 

with an effective AOX system that, together with their natural ability to circulate through 

the whole body, makes them invaluable free radical (FR) scavengers: they provide AOX 

protection not only to themselves but also to other tissues and organs in the body (Pandey 

& Rizvi 2011). 

Hemoglobin plays a crucial role as it carries O2 from lungs to tissues and takes 

carbon dioxide back to lungs. There, after O2 binds to the first heme group in Hb, its 

configuration changes and the O2 affinity of the remaining hemes increases, allowing 

the tetramer to easily bind and carry four O2 molecules, thus enabling each RBC to carry 

over 1 billion O2 molecules. Once the RBC reaches the tissue and the O2 is unloaded, 

globin chains rearrange and diminish the O2 affinity with the aid 

of 2,3- diphosphoglycerate (2,3-DPG) (Kanias & Acker 2010).  

Concerning carbon dioxide transport, CO2 diffuses from the intracellular space 

into blood’s two components, plasma and erythrocytes. Within the organism, it is 

transported in three different forms: dissolved in solution; buffered with H2O as carbonic 

acid or bound to proteins, particularly Hb. After CO2 diffuses into the RBC, it combines 

with H2O to form carbonic acid, during a reaction accelerated by carbonic anhydrase. The 

newly-emerged hydrogen ion of carbonic acid is accepted by the deoxyhemoglobin 

(deoxyHb) and the remaining bicarbonate ion diffuses into the plasma via the chloride 

shift, mediated by protein band 3. Carbonic acid can be converted back to CO2 allowing 

the gas to be exhaled. Minor ways of CO2 disposal include its direct binding 
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to the deoxyHb, forming carbamino-hemoglobin (20% of CO2 removal) and lastly, 

carbon dioxide can be carried to the lungs dissolved in plasma (5% of total CO2) (Arthurs 

& Sudhakar 2005, Geers & Gros 2000).  

1.1.4 Metabolism 

Mature RBCs have a limited metabolic capacity since they lack nucleus and other 

organelles, particularly mitochondria. The major source of energy is glucose that enters 

the erythrocyte by facilitated diffusion, independently of insulin. It is then metabolized 

by the anaerobic glycolytic Embden-Meyerhof pathway to lactate. For each glucose 

molecule that enters the pathway, two molecules of adenosine triphosphate (ATP) are 

generated. Besides that, reduced nicotinamide adenine dinucleotide phosphate (NADPH) 

is generated, which is essential for metHb reductase to keep the Hb in a reduced state. 

The obtained ATP molecules provide energy for maintenance of red cell volume, shape, 

the membrane flexibility and for regulation of sodium-potassium pump. The Luebering-

Rapoport bypass, a side arm of the main pathway, provides 2,3-DPG, a molecule 

necessary for regulating the Hb O2 affinity. Only about 90% of glucose entering the RBC 

is used to generate ATP through glycolysis and the remaining 10% is processed by 

the hexose monophosphate shunt. This alternative pathway generates NADPH molecules 

that are later used for glutathione (GSH) reduction, an important player in AOX 

protection of the cell (Brown 1996, Hoffbrand & Moss 2016, Pandey & Rizvi 2011). 

1.1.5 Antioxidant capacity 

RBCs are extremely susceptible to oxidative damage for two main reasons: 1) due to their 

primary function as gas carriers they are constantly exposed to high levels of O2 and, 2) 

since mature erythrocytes are enucleated, they are unable to synthesize new proteins 

and enzymes for themselves. Erythrocytes are not defenseless though. They are equipped 

with powerful AOX defense system that provides the needed protection both for them 

and other cells and tissues as well. This is the reason why RBCs by fulfilling their purpose 

of gas transporters and by traveling through the organism serve as perfect scavengers 

of free radicals (Cimen 2008). 

There are enzymatic and non-enzymatic mechanisms in the RBC´s AOX defense 

system. 
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Enzymatic 

AOX enzymes detoxify reactive ROS by catalytically reducing or oxidizing the oxygen 

intermediates to less harmful products. Generally, cytosolic superoxide dismutase (SOD) 

provides the first line protection as it converts superoxide radical into less reactive 

hydrogen peroxide (H2O2). The H2O2 can be then decomposed to O2 and H2O by either 

catalase (CAT), glutathione peroxidase (GPx) or peroxiredoxin 2 (Prx2) (Culotta 2000). 

Superoxide dismutase 

SODs compose a family of oxidoreductase enzymes, the role of which is to protect 

the organism from ROS. There are three known isoforms of SOD in mammals depending 

on the protein fold and the metal cofactor: SOD1 (CuZnSOD), SOD2 (MnSOD) 

and SOD3 (extracellular SOD) (Fukai & Ushio-Fukai 2011). 

In erythrocytes, cytosolic CuZnSOD plays an important role on the first line 

of defense against ROS by catalyzing the dismutation of superoxide radical into harmless 

O2 or H2O2, which is further decomposed to O2 and H2O (Fukai & Ushio-Fukai 2011). 

Eukaryotic SOD1 is described as a stable homodimer with the active sites oriented 

on the opposite sides of its subunits. The subunits are held together mainly by 

hydrophobic and electrostatic interactions. Each SOD1 monomer contains two metal 

ions, copper and zinc, bound together by His side chain and by a secondary linkage 

of hydrogen bond. Both of the metal ions are believed to play important catalytic 

and structural roles: while copper is essential for the catalysis of the superoxide 

dismutation, zinc mostly plays a structural role and acts as a positive charge sink (Rakhit 

& Chakrabartty 2006, Tainer et al. 1983). 

Superoxide anion is one of the main ROS, hence SOD1 key role in the cell´s AOX 

defense. The enzyme, formerly known as erythrocuprein, catalyzes a reaction where two 

superoxide molecules are turned into O2 and H2O by the “ping-pong” mechanism: first 

superoxide is oxidized and the second is reduced in the disproportionation reaction 

(Rakhit & Chakrabartty 2006). 

Catalase 

Human CAT belongs to a large group of monofunctional heme-containing CATs 

which are found in almost all aerobic organisms. It is mostly an intracellular enzyme with 

highest concentrations in RBCs and liver. Under normal conditions, RBCs contain 
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1.31– 2.71 μg CAT /mg Hb. CAT is a tetrameric protein composed of four subunits, each 

containing a Fe3+ heme group and a bound NADPH molecule that protects the enzyme 

against oxidation and inactivation by its substrates. Supposedly, it does not take part 

in the enzymatic activity of H2O2 dissociation (Aksoy et al. 2004, Kodydkova et al. 

2014). When CAT is exposed to H2O2 for a long time, the bound NADPH gets oxidized 

and the activity of CAT fells to about one third of its initial activity (Kirkman et al. 1987). 

The enzyme has two different activity modes: 1) catalytic activity, the major one, 

of decomposition of H2O2, generated by dismutation of superoxide (catalyzed by SOD), 

into H2O and O2 (α-phase) and, 2) peroxidatic activity (β-phase), that involves H2O2 

elimination by oxidizing alcohols, formate or nitrate. The catalytic reaction predominates 

in higher H2O2 concentration (˃10-4 M), while below this concentration the peroxidatic 

reaction dominates if there is an acceptable hydrogen donor (Mate et al. 1999). 

The main function of CAT is H2O2 removal by catalytically decomposing it 

to H2O and O2; this enzyme is believed to take action mainly in removing higher 

intracellular H2O2 concentrations, while other AOX enzymes work under different 

conditions: GPx and Prx act at low H2O2 concentrations (Kodydkova et al. 2014). It has 

also been described that CAT is the major RBC defense enzyme against exogenous H2O2 

and, unlike other AOX enzymes, is highly specific for H2O2 and, thus, does not participate 

in detoxifying organic peroxides (Johnson et al. 2010). 

Glutathione peroxidase 

Out of eight GPx recognized in mammals, only GPx1 is present in the RBCs as 

an intracellular cytosolic AOX enzyme. GPx catalyzes the reduction of both H2O2 

and organic hydroperoxides and peroxynitrites using GSH as a reducing agent (Brigelius-

Flohe & Maiorino 2013).  

GPx1 is a tetramer of four subunits of 21kDa each containing a selenocysteine 

(Sec). It was described that GPx1 binds 10–15% of circulating Se (Zachara 2015). The 

catalytic center is a tetrad formed by cysteine (Cys), glutamine, tryptophan and aspargine 

and the reactive Sec is surrounded by four arginines and a lysine of an adjacent subunit. 

Studies suggest that these residues are essential for binding the GSH. The proposed 

mechanism of the reaction is as follows (Figure 2): peroxide reduction involves formation 

of selenic acid (Se-OH) at the selenol (Se-H) active site. First molecule of GSH is used 

for the reduction of the Se-OH, forming glutathiolated selenol (Se-SG), 
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the selenadisulfide bond of which is afterwards reduced by the second GSH molecule. 

Active site of the enzyme is then restored and the newly emerged oxidized GSH (GSSG) 

is regenerated to GSH by the action of glutathione reductase (GR) (Brigelius-Flohe & 

Maiorino 2013, Lubos et al. 2011).  

 

 

For some time, GPx and CAT used to be considered as the major players 

of the RBC´s AOX defense system. Nowadays, as more knowledge has been gained, 

attention is paid to Prx2 as well, and the function of each of the enzymes has been studied 

in detail, although the interplay among these three enzymes still requires more research. 

While CAT is believed to work mainly at higher concentrations, GPx1 seems to be 

effective at low H2O2 concentrations, mostly of endogenous origin (Hb auto-oxidation). 

This fact might be attributed to CAT having higher Km for H2O2 but according to Flohé 

(Flohé 1982), since neither of the enzymes saturates with H2O2, the rate limiting step for 

GPx1 is the recycling of GSH at high H2O2 concentrations (Low et al. 2008, Rocha et al. 

2015). 

Glutathione reductase 

GR is an important component of the erythrocyte´s AOX defense system as it protects 

RBC´s Hb, enzymes and cell membranes against oxidative damage. Unlike previously 

described enzymes, its effect is not pointed directly at ROS, but it is an essential catalyst 

of the reaction that recycles GSH (Chang et al. 1978). 

GR belongs to the family of flavoenzymes which contain either flavin adenine 

dinucleotide (FAD) or flavin mononucleotide. GR has a homodimeric structure with two 

Figure 2. Reaction mechanism of GPx1. The active site of the enzyme (GPx-SeH) is oxidized 

(GPx- SeOH) after its reaction with hydroperoxides (ROOH). Regeneration of the enzyme involves two 

molecules of GSH. The first molecule reduces the selenic acid in GPx-SeOH forming a glutathiolated 

selenol (GPx- Se -SG). The disulfide bond is then reduced by the second GSH molecule yielding 

regenerated enzyme (GPx-SeH) and oxidized glutathione (GSSG). Adapted from Lubos et al., 2011 

(Lubos et al. 2011). 
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active sites and two FAD molecules incorporated in the subunits (Kamerbeek et al. 2007). 

The main function of the enzyme is to keep GSH in its reduced state. 

The two subunits are bond by a disulfide bridge. There are two flexible NH2 

residues arms with unknown role and the remaining residues are organized into four 

domains in each subunit. The first two of them bind FAD and NADPH molecules, 

respectively. The catalytic center lies between the subunits and is shared by five domains 

(four of one subunit a one of the other) which is quite unusual (Pai & Schulz 1983). 

The reaction is described to happen in two steps (equation 1). First, the enzyme 

(E) is reduced to its stable EH2 (reduced enzyme) form, and NADPH is oxidized 

to NADP. Then, EH2 forms a complex with GSSG later yielding in regenerated GSH 

molecules and the enzyme (Pai & Schulz 1983, Staal & Veeger 1969). 

 

      H+ + NADPH + E 
 
⇔  NADP+ + EH2                           

                      H2 + GSSG 
 
⇔2 GSH                   (equation 1) 

 

Because of its close cooperation with NADP/NADPH, GR also regulates 

the proper balance of NADP and NADPH in the hexose monophosphate shunt 

of glycolysis (Pai & Schulz 1983). 

Peroxiredoxin 2 

Prx family, a group of H2O2, organic hydroperoxide and peroxynitrite reducing enzymes, 

is vastly distributed among various living organisms, from anaerobes to humans. Six 

isoforms have been identified in mammals, and human RBCs possess Prx1, Prx2 

and Prx6. The levels of Prx2 (5.5mg/ml of packed RBC) by far exceed the other isoforms; 

it was even described that Prx2 is the third most abundant RBC´s cytosolic protein 

(following Hb and carbonic anhydrase) (Low et al. 2008). 

Prx2, formerly known as torin, calpromotin, NKEF-B, HRPRP or band 8, is 

an intracellular cytosolic enzyme the importance of which was only described 

and grounded several years ago, much later than that of previously presented enzymes 

(CAT, SOD, GPx…) (Harris et al. 2001, Manta et al. 2009). To point out the crucial AOX 

role of Prx2 in RBC: the work by Lee et al. showed that the RBCs from Prx2 knockout 

mice proved to display a significantly shorter life span compared to wild type mice RBCs, 
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as well as, showing increased levels of oxidized proteins and Heinz bodies (Lee et al. 

2003). 

All Prxs contain in their active site (Cys), the peroxidatic Cys (CysP), highly 

specific for peroxides. Subfamilies of the enzymes differ in the architecture of the active 

site with Prx2 belonging to the Prx1 (typical 2-Cys Prx) subfamily (Peskin et al. 2016). 

In its functional state, Prx2 appears as a homodimer with its subunits non-covalently 

associated in a head to tail manner (Low et al. 2008). 

The peroxidase cycle of Prx2 starts with the reaction of CysP and the H2O2 

generating a sulfonic acid (–SOH) which can either react with the resolving Cys on 

the opposing chain of the dimer and form a disulfide bond (major pathway) or, it can be 

further oxidized by H2O2 to the sulfinic acid. Hyperoxidation is not common in RBCs 

though, as sulfiredoxin manages to counteract the reaction (Cho et al. 2010). The cycle is 

completed by Prx2 regeneration by thioredoxin (Trx) and Trx reductase, using NADPH 

as a donor of reducing equivalents. This has been accepted as a major mechanism but 

redox reactions with other thiols have been described, as well as, in vitro recycling 

of Prx2 by dithiothreitol, as alternative pathways in the Prx2 cycle (Low et al. 2008, 

Peskin et al. 2016). 

Quaternary structure of Prx2 has been studied and it has been shown 

that the enzyme exists in various forms, depending on the ionic strength, protein 

concentration, pH, phosphorylation and, most importantly, the redox state: its minimal 

functional unit, monomer, oxidizes into a disulfide-linked dimer upon reaction with H2O2 

(Ogasawara et al. 2012). During catalysis, the homodimer is shifted into a doughnut-

shaped decamer, a pentamer of dimers, which immediately falls apart upon disulfide 

formation. The role of the transition is still unclear (Hall et al. 2009). Prx2 is even 

believed to form 12-decamer dodecahedron cage under certain conditions (Low et al. 

2008). 

Prx2 has shown a remarkable sensitivity to extremely low concentrations of H2O2, 

proving to be oxidized even when CAT and GPx1 were active. It has been suggested 

that Prx2 detoxifies the RBC of the low endogenous levels of H2O2, similarly to GPx1. 

These two enzymes also share the ability to reduce hydroperoxides and peroxynitrites 

(Low et al. 2008, Rocha et al. 2015). Another important role of Prx2 has been described 



13 

by Han et al.: Prxs containing 2-Cys residues act as molecular chaperons under increased 

OS by binding to Hb and thus stabilizing it against oxidative damage (Han et al. 2012).  

Association with the membrane of RBCs has been described both under normal 

conditions (cca 0.05% of Prx2), in hematological disorders and under OS (Rocha et al. 

2015). 

Non-enzymatic 

Apart from enzymatic mechanisms, RBCs AOX defense system comprises of numerous 

endogenous AOX molecules. The major ones are GSH, ascorbic acid and α- tocopherol 

(Kuhn et al. 2017, Pandey & Rizvi 2011). Besides these, carotenoids, ubiquinone, 

melatonin, uric acid ceruloplasmin, transferrin or haptoglobulin are described to play 

an important role as well (Cimen 2008). 

Glutathione (GSH/GSSG) 

Structurally, glutathione (L-γ-glutamyl-L-cysteinyl-glycine) is a thiol-containing 

tripeptide of L-glutamate, L-cysteine and L-glycine, irreplaceable in RBC´s defense 

against ROS (Monostori et al. 2009). 

De novo synthesis of GSH is localized in the cytosol of all mammalian cells 

including RBCs, regardless of their limited biosynthetic capacity (Lu 2009). The 

biosynthesis of GSH is described to happen in two steps: 1) γ-glutamylcysteine is formed 

from L-glutamate and cysteine, in a reaction catalyzed by glutamate cysteine ligase and, 

2) the rate limiting step, catalyzed by GSH synthetase, adding glycine to the C-terminal 

of γ-glutamylcysteine (Shan et al. 2015). 

The crucial role of GSH as a central redox agent lies in its nucleophilic character. 

The reduced form serves as a proton donor in several oxidation-reduction processes while 

oxidizing itself into the oxidized form GSSG, which is two GSH molecules bound 

together by a S-S disulfide bond (Lu 2009, Zitka et al. 2012). To maintain the redox state 

of the cell and close the GSH cycle, GSSG is regenerated back to GSH by GR, using 

NADPH as a proton donor (Shan et al. 2015).  

The process of GSH regeneration consists of four steps: 1) glucose (Glc) is 

transported through RBC membrane, 2) Glc molecule is phosphorylated to glucose-6-

phosphate (G-6-P) by hexokinase, 3) nicotinamide adenine dinucleotide phosphate 

(NADP) is reduced to NADPH by G-6-P dehydrogenase and 6-phosphogluconate 
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dehydrogenase and, 4) GSSG is reduced by GR utilizing NADPH, resulting in two GSH 

molecules (Kurata et al. 2000).  

Besides its well-known AOX role as a cofactor of GPx (Lu 2009), GSH also 

serves as a direct scavenger of hydroxyl radicals and peroxinitrites (Griffith 1999, Wu et 

al. 2004), takes part in lipid peroxides detoxification (Raftos et al. 2010) and helps to keep 

the thiol groups of important RBC´s structures in reduced state ( Hb, enzymes, 

membranes…) (Lu 2009). GSH is also able to detoxify the RBC from xenobiotics by 

forming a water-soluble conjugates that can be exported from the RBC and excreted, 

and it also serves as a Cys storage, since extracellularly this amino-acid undergoes a rapid 

auto-oxidation into cystine (Lu 2009). Not to forget its cooperation with other AOXs 

molecules, enabling their regeneration (e.g. ascorbate, α-tocopherol) (Monostori et al. 

2009). 

At all moments, GSH is present in two forms: as a reduced molecule (GSH) 

and an oxidized form (GSSG), the amount of which is kept at low concentration (1:100 

to 1:1000) by the action of NADPH-dependent GR. The GSSG/GSH ratio is a valuable 

indicator of cell functionality and the level of OS (Monostori et al. 2009). To maintain 

constant concentrations of GSH within the erythrocyte at ∼2.3 mM, the rate of synthesis 

must equal the rate of its export in the form of GSH conjugates and/or GSSG (Raftos et 

al. 2010). It was suggested that GSSG could leave the RBC in two ways – directly 

through the cell membrane, which can be damaged under OS conditions, or by an active 

MgATP-dependent transport, both resulting in decreased GSH levels in OS associated 

conditions (Pandey & Rizvi 2011, Raftos et al. 2010), as has been described 

in Parkinson's disease, liver disease, cystic fibrosis, sickle cell anemia, AIDS, cancer, 

heart attack, stroke or diabetes (Pandey & Rizvi 2011). 

Ascorbate/dehydroascorbate 

Ascorbic acid, also known as vitamin C, is an essential hydrophilic vitamin, which, after 

its intake from food, is mostly localized in plasma where its serves as one of the most 

important AOX (it directly protects against peroxidation of plasma low-density 

lipoprotein (LDL)). Ascorbate´s AOX activity is based on its ability to reversibly donate 

one or two hydrogens and electrons to a variety of ROS, thanks to its carbon-carbon 

double bond and high reducing potential. Newly emerged dehydroascorbate is taken up 

by RBC´s glucose transporter (GLUT1) and recycled. The mechanism of the reduction is 
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GSH- and NADPH-dependent, catalyzed by various enzymes (dehydroascorbate 

reductase, glutaredoxin, thioredoxin etc.). Once recycled, ascorbate is trapped inside 

the RBC and only very slowly diffuses back, thus maintaining its plasma concentrations. 

It was suggested that ascorbate is more sensitive to oxidation by exogenous H2O2 than 

GSH and α-tocopherol. Although ascorbate does not directly protect the RBC membranes 

from peroxidation, it performs its function via the reduction of tocopheroxyl FR at 

the aqueous-lipid interface of the membrane bilayer (May 1998).  

α-tocopherol 

In RBCs, lipid-soluble α-tocopherol, the most widely distributed AOX in nature, acts as 

a potent scavenger of peroxyl radicals to protect polyunsaturated fatty acids (PUFA) 

of membranes from lipid peroxidation (LPO) (Pandey & Rizvi 2011). α-tocopherol 

intervenes in the propagation step during auto-oxidation of lipids. It donates its phenolic 

hydrogen atom to a peroxyl radical and, thus, converts it to less dangerous hydroperoxide. 

The newly formed tocopheroxyl radical is adequately stable to stop the reaction and can 

leave the cycle by reacting with another peroxyl radical forming an inactive non-radical 

product (Yamauc 1997). Ascorbate reduces the tocopheroxyl radical to regenerate 

vitamin E (Niki 1987). 

1.2 Oxidative stress 

There are various definitions of the term „oxidative stress“; Sies refers to it as 

„an imbalance between oxidants and antioxidants in favor of the oxidants, potentially 

leading to damage” (Sies 1997). 

1.2.1 Oxidants 

Oxidants, continuously attacking all cells living under aerobic conditions, may be 

of either endogenous or exogenous origin, all together known as ROS. There are two 

types of ROS, free radicals (molecules with unpaired electrons) and nonradicals (free 

radicals that share their unpaired electrons). The ROS and their important equations are 

depicted in Table 1 with the three major ROS being superoxide anion (O2
-), hydroxyl 

radical (·OH) and H2O2. 
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Table 1. Reactions of selected reactive oxygen species. 

Oxidant Formula Reaction equation 

Superoxide anion O2
- NADPH + 2O2 ↔ NADP+ + 2O2

- + H+ 

Hydrogen peroxide H2O2 

2O2
- + H+ →O2 + H2O2 

HPX + H2O + O2 ↔ XAN + H2O2 

XAN + H2O + O2 ↔ UA + H2O2 

Hydroxyl radical ·OH Fe2+ + H2O2 → Fe3+ + OH- + ·OH 

Peroxyl radical ROO· R + O2 → ROO· 

NADPH, nicotinamide adenine dinucleotide phosphate, reduced form; NADP+, nicotinamide adenine dinucleotide 

phosphate, oxidized form; HPX, hypoxanthine; XAN, xanthine; UA, uric acid.  

Adapted from Birben et al. (Birben et al. 2012). 

 

Endogenous sources of ROS are the normal products of aerobic metabolism but 

under pathological conditions their levels may rise. Generally, they are produced 

in mitochondrial respiratory chain, as byproducts of oxidative phosphorylation, but 

in other organelles as well: in endoplasmic reticulum, in peroxisomes (xanthine oxidase) 

and during auto-oxidation process of small molecules (including Hb auto-oxidation), as 

well as, in immune reactions such as the respiratory burst of phagocytes. 

Exogenous sources include cigarette smoke, ionizing radiation, heavy metals ions, 

ozone exposure, pollutants, drugs and toxins including oxidizing disinfectants or 

hyperoxia. (Birben et al. 2012, Pandey & Rizvi 2010, Sarniak et al. 2016) 

1.2.2 Antioxidants 

To compensate for the actions of oxidants, organisms have integrated protective systems 

of enzymatic and non-enzymatic AOXs to block the harmful effects of ROS. AOXs can 

be synthesized in vivo (e.g. GSH and SOD) or taken in from the diet. 

According to Gutteridge and Halliwell, AOX is “any substance that, when present 

at low concentrations compared with those of an oxidizable substrate, significantly delays 

or prevents oxidation of that substrate” (Halliwell 2007). 

 Generally, there are two groups of AOX, enzymatic and non-enzymatic ones. 

The three major classes of AOX enzymes are SODs, CATs and GPxs (Sies 1997). 
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Ascorbic acid (vitamin C), α-tocopherol (vitamin E), GSH and carotenoids represent non-

enzymatic AOXs (Cimen 2008).  

1.2.3 Mechanisms and consequences of oxidative damage 

Due to the unpaired electrons, ROS are highly reactive molecules and tend to attack 

and alter the function of cell’s macromolecules - nucleic acids, lipids, and proteins 

(Birben et al. 2012). 

PUFA residues of phospholipids are extremely susceptible to oxidation. LPO 

leads to formation of hydroperoxides that, if not reduced by AOX enzymes, break down 

into reactive aldehyde products (e.g. 4-hydroxy-2-nonenal, 4-hydroxy-2-hexenal, 

malondialdehyde (MDA), or acrolein) which have been proven to be mutagenic. Besides 

that, LPO in general leads to loss of membrane fluidity and elasticity, impaired cellular 

functioning and even cell lysis (Catala 2009, Valko et al. 2007). 

Proteins can be damaged either by direct oxidation of their amino-acid residues 

and cofactors or by secondary attack via LPO end-products. The side chains of all amino-

acid residues of proteins are prone to oxidation by the action of ROS, especially cysteine. 

Its oxidation may lead to the reversible formation of disulphide bridges between protein 

thiol groups (–SH) and low molecular weight thiols, in particular GSH 

(S- glutathiolation). Such conformation changes may lead to decrease in enzyme activity 

if the targeted amino-acid residues are close to active sites (Costa et al. 2007, Valko et al. 

2007). 

Oxidative damage has been proven to play an important role 

in the etiopathogenesis of many common pathological conditions, including neurological 

disorders, atherosclerosis, hypertension, ischemia/perfusion, diabetes, acute respiratory 

distress syndrome, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease 

or asthma (Birben et al. 2012). 

Although ROS are mostly regarded as toxic by-products of oxidative metabolism 

and their participation in pathologic processes is indisputable, low levels of these reactive 

molecules are supposed to be essential for normal functioning of the organism. Namely, 

they play a significant role in modulation of gene expression, in cell signaling, as second 

messengers, or in various immune reactions (phagocytosis, inflammation) (Cimen 2008, 

Remacle et al. 1994). 
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1.2.4 Oxidative stress & erythrocytes 

Erythrocytes are constantly exposed to risk of oxidative injury since incessant contact 

with the O2 molecule and high content of Hb is inevitable for O2 carriers. Even though 

oxyhemoglobin (HbFe(II)O2
-) is rather stable molecule, its auto-oxidation (equation 2) 

occurs up to a rate of 3% per day. The process is characterized by a dissociation of the O2 

molecule without an electron transfer to yield O2
- and metHb (HbFe(III)) (Kanias & 

Acker 2010). 

𝐻𝑏𝐹𝑒(𝐼𝐼)𝑂2
𝑎𝑢𝑡𝑜𝑜𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛
→           𝐻𝑏𝐹𝑒(𝐼𝐼𝐼) + 𝑂2

−            (equation 2) 

 

Both of these products under normal conditions are effectively detoxified: 

NADH-cytochrome b5–metHb reductase reduces Hb to deoxyHb and ROS are eliminated 

by AOX enzymes (Kanias & Acker 2010). 

When the capacity of the AOX enzymes (cytosolic SOD and CAT, mostly) is 

exceeded, metHb can be oxidized to so called hemichromes, which are precipitates 

of denaturated Hb. These structures have been known to covalently bind to cell 

membrane, resulting in clustering of integral membrane protein band 3 and interfering 

with the integrity of the cytoskeleton. Therefore, membrane-bound hemoglobin (MBH) 

has been suggested as a reliable marker of oxygen radical-induced injury to RBCs 

(Sharma & Premachandra 1991, Welbourn et al. 2017). 

Another widely used biomarker of RBCs OS, namely of LPO, is MDA content. 

This secondary oxidation product reacts with the free amino groups of proteins 

and phospholipids which leads to structural modification, inducing dysfunction 

of various cell systems. The bright side of the MDA´s reactivity is that its reaction with 

thiobarbituric acid (TBA), which yields a colored chromogen, offers an easy way 

to assess the OS of the cell. Measurement of thiobarbituric reactive substances (TBARS) 

has been considered as a reliable and easily reproducible biomarker of OS for many 

years, although a discussion about the low specificity of the test continues (Ayala et al. 

2014, Pandey & Rizvi 2010, Rizvi & Maurya 2007).  

To evaluate the state and potential of OS in cells, total antioxidant 

status (TAS)/capacity can be assessed. From a number of methods, the one developed by 

Benzie and Strain stands out due to its simplicity and easy and reliable performance. 
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The ferric reducing antioxidant power assay is measured as a reduction of ferric ion 

ligand complex to intensely colored ferrous complex by all available AOXs in a sample 

(Pandey & Rizvi 2010). 

1.3 Specifics of newborns & neonatal oxidative stress 

A newborn represents the culmination of various developmental steps from conception, 

through organogenesis to birth. The composition of fetal blood changes significantly 

during the second and third trimester, preparing the fetus for birth and extrauterine 

environment. Mean Hb increases (from 9.0 ± 2.8 g/dl at the age of 10 weeks to 16.5 ± 

4.0 g/dl at 39 weeks), the percentage of nucleated cells decreases (from 12% at 18 weeks 

to 4% at 30 weeks) and large numbers of committed hematopoietic progenitors are found 

circulating in the fetal blood (Lichtman et al. 2016). 

Birth introduces dramatic changes in the circulation and oxygenation, as 

the newborn undergoes the transition to a separate biological existence. These events are 

reflected in the composition of blood of the newborn, during the first hours and days 

of life there are rapid fluctuations in the quantities of all hematologic elements. Studies 

suggest that most of the measured parameters were highest on the first day of life 

and declined thereafter (Esan 2016, Ogundeyi M.M. et al. 2011).  

Levels of cord blood Hb vary between approximately 165 and 170 g/L, depending 

on the timing of cord clamping. Later, at around 8 weeks, there is a progressive fall in Hb 

levels to 100-110g/L (or even lower in preterm infants which make them more 

susceptible to iron and folate deficiency), followed by a recovery to 125g/L at 6 months. 

Nucleated cells can be seen for first days in the blood film (longer in preterm infants). 

The reticulocyte count, which is initially up to 2-6%, falls to 0.5% during a week due 

to increased oxygenation of tissues which leads to suppression of erythropoiesis. 

The RBC count increases during the first day of life, then it remains at that level for about 

2 weeks and slowly declines afterwards. The leukocyte count often fluctuates at all ages 

but most significantly in infants. Leukocytosis is typical at birth, the range of normal 

values is wide and the count slowly decreases until approximately 4 years of age (Esan 

2016). 
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Considering OS, birth itself is a stressful process for both mother and fetus, 

and delivery is a cause of hyperoxic challenge for the newborn (Friel et al. 2004, 

Norishadkam et al. 2017). The neonate is exposed to an environment that is relatively 

hyperoxic (pO2 of 100 mm Hg) compared to the intrauterine one 

(pO2 of 20 – 25 mm Hg). The increased O2 bioavailability leads to a greatly enhanced 

generation of FR and OS (Perrone et al. 2010, Tsukahara 2007). 

Newborns, especially preterm, are particularly susceptible to the oxidative 

damage for number of reasons: structural and functional immaturity of organs, 

overloading of aerobic tissues metabolism with rapidly growing energy demand, 

the reduced ability to induce efficient homeostatic mechanisms. The same goes for 

neonatal RBCs: increased release of transitional metals like free iron, increased 

production of superoxide radicals, increased content of fatty acids, and last but not least, 

lack of AOX systems (low enzyme activities such as GPx and SOD; low content 

of vitamin E and ascorbic acid) (Claster et al. 1984, Perrone et al. 2010). It was described 

that at the end of pregnancy, AOX enzymes are induced and the transfer of other AOX 

molecules (vitamins E, C, β-carotenes, ubiquinone) across the placenta is increased 

during last days of gestation (Friel et al. 2004, Torres-Cuevas et al. 2017); however, 

the AOX systems only come to full maturity during the first year of life of the infant 

(Norishadkam et al. 2017).  

1.3.1 Oxidative stress related diseases in newborns 

Serious imbalance between the action of ROS and insufficient defensive mechanisms, 

which is even more likely to appear in preterm newborns, not only leads to oxidative 

damage but several secondary conditions are reported as well. OS related neonatal 

diseases include: chronic lung diseases, intraventricular hemorrhages of newborns, 

necrotizing enterocolitis (Norishadkam et al. 2017, Perrone et al. 2010), 

bronchopulmonary dysplasia, retinopathy of prematurity, patent ductus arteriosus, 

periventricular leukomalacia, respiratory distress syndrome, intrauterine growth 

retardation, congenital malformation (Ozsurekci & Aykac 2016). 

There has been number of evidence that (neonatal) OS plays an important role 

in various diseases, yet very few OS markers have made it into routine clinical practice. 

This might be accounted to variety of reasons: e.g. low specificity of methods, 
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the properties of the oxidative modifications, such as the lability of some structures, or 

their low abundance, poses significant challenges to translate them into a high-

throughput, cost-effective clinical diagnostic (Frijhoff et al. 2015). 

Further measurements and examination of OS biomarkers are required in order 

for them to contribute to prediction of high-risk patients (Negi et al. 2015), proper 

diagnosis, and early/optimal administration of effective pharmacotherapy. 
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2 AIMS 

Although there have been many publications concerning OS and mechanisms of AOX 

defense, very few or even none have dealt with the OS in erythrocytes of healthy 

newborns specifically. Therefore, our aims were as follows: 

- to collect the physiological OS related values from healthy young individuals 

(early infancy) 

- to observe the changes of OS levels between newborn vs 2 months old babies 

- to contribute to the knowledge on how healthy newborns adapt to “hyperoxic 

challenge” caused by a sudden exposure to extrauterine environment and how 

their AOX mechanism copes with it in time  
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3 MATERIALS AND METHODS 

3.1 Population 

The study was performed under the approval of the Ethics Committee of Centro Materno-

Infantil from Centro Hospitalar do Porto, Portugal. Blood samples were collected 

from newborns after obtaining mother´s informed consent to participate in the study. 

Umbilical cord blood (UCB) samples were collected at birth (n = 8) and, after 

2 months, peripheral blood samples (n = 8) were collected from the subjects. 

There were 4 girls and 4 boys among the subjects of the study, all of which were 

full-term, born by vaginal delivery to healthy mothers. 

Collection of samples was slightly complicated due to inevitable elimination 

of several participants (health reasons) and due to temporarily restricted operation with 

the collaborating hospital. 

3.2 Sample processing 

Blood samples were delivered from the hospital and processed within 2 hours after their 

collection, in tubes with and without anticoagulant; K3EDTA was used as 

an anticoagulant.  

Our intention was to isolate several different fractions of each sample – whole 

blood, serum, plasma, RBC membranes and total erythrocytes. Aliquots of these sample 

fractions were stored at -80 °C until assayed. 

Serum was isolated from tubes without anticoagulant by centrifugation (1000 g, 

20 min., room temperature (R.T.)) and used for biochemical parameters assessment 

in an automated analyzer (Cobas Mira S, Roche) using commercially available assay kits: 

uric acid (Uric Acid ver.2, Roche Diagnostics); albumin (Albumin Plus, Roche 

Diagnostics); total (Bilirubin Total Gen.3, Roche Diagnostics), direct (Bilirubin Direct; 

Roche Diagnostics) and indirect bilirubin; gamma glutamyl transferase (γ-

Glutamyltransferase ver.2, Roche Diagnostics); aspartate transaminase (Aspartate 
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Aminotransferase Test ASTL, Roche Diagnostics) and alanine transaminase (Alanine 

Aminotransferase Test ALTL, Roche Diagnostics).  

Erythrocyte, leukocyte and reticulocyte count, Hb concentration, hematocrit, 

hematimetric indexes – mean cell volume (MCV), mean cell hemoglobin (MCH), mean 

cell hemoglobin concentration (MCHC) – and red cell distribution width (RDW) were 

measured using an automatic blood cell counter (Sysmex K1000, Sysmex). 

Anticoagulated whole blood was centrifuged at 2000 g, 20 min., 4 ºC and, 

afterwards, plasma was aliquoted and stored. Leukocytes were isolated from RBCs after 

centrifugation on a double density gradient (Histopaque 1077; Histopaque 1119; 

700 g/30 min/R.T.). 

RBCs were then washed with saline solution (NaCl 9.0 g/L; centrifuged at 

1000 g/5 min/4 °C) and small portion was frozen as total erythrocyte aliquots. Another 

portion of these RBCs was mixed with HClO4 5 % and following a centrifugation 

(10000 g/15 min/ 4 °C), aliquots for GSH measurements were prepared.  

The rest of the RBCs were submitted to hypotonic lysis, according to Dodge et al. 

(Dodge et al. 1963) in order to isolate membranes. Obtained membrane suspensions were 

carefully washed in 5mM pH8 phosphate buffer, using phenylmethylsulfonylfluoride 

(final concentration 0.1 mM) in the first two washes, as a protease inhibitor.  

3.3 Materials 

3.3.1 Reagents 

From Sigma-Aldrich: Triton X-100; Tiobarbituric acid; Coomassie Brilliant Blue G-250; 

CAT from bovine liver; purpald; H2O2 30%; GPx from bovine erythrocytes; GSH (L-

glutathione reduced); GSSG (L-glutathione oxidized disodium salt); GR 

from baker´s yeast – S. cerevisiae; β-nicotinamide adenine dinucleotide 2´-phosphate 

reduced tetrasodium salt hydrate (NADPH); Cumene hydroperoxide; 5,5´-dithiobis-2-

nitrobenzoic acid (DTNB); 2-vinylpyridine; KHCO3; Iron(II) sulfate heptahydrate; 

Iron(III) chloride hexahydrate; 2,4,6-Tris(2-pyridyl)-s-triazine (TPTZ). 

From Merck: ethanol; methanol; HClO4 70-72%; Phosphoric acid 85%; HCl 37%; acetic 

acid 100%; KOH; KIO4. 
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From Panreac: NaCl; KH2PO4; K2HPO4; NaH2PO4; Na2HPO4; sodium acetate. 

From VWRChemicals: n-butanol; ethylenediamine tetraacetic acid (EDTA) 

Bovine serum albumin (BSA) from Calbiochem and formaldehyde 36.5% 

from Chem- Lab. 

3.3.2 Consumables 

96 wells plates; Pauster Pipettes; Micro-pipette Tips; Eppendorf tubes; etc. 

3.3.3 Instruments 

Centrifuge (1580R, GYROZEN); Micro-centrifuge (Heraeus Freco 21, Thermo 

Scientific); Microplate reader (Power Wave XS, Bio-Tek); Water bath (FALC); Vortex 

(VELP Scientifica); Ultra-Low Temperature Freezer (MDF-U5386S, Panasonic); 

Fumehood (Industrial Laborum) 

3.3.4 Software 

KC junior (microplate reader software) 

IBM SPSS (Statistics Package for Social Sciences), version 24.0  

3.4  Methods 

3.4.1 General 

To be able to assess the changes of measured data credibly, both samples of the same 

subject – newborn and 2 months follow-up – were always assayed at the same time, under 

the same conditions.  

3.4.2 Determination of total protein concentration 

The modified Bradford method was used to estimate the total protein concentration 

of membrane and total erythrocyte samples (Bradford 1976).  
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The Bradford´s reagent, (100 mg of Coomassie Brilliant Blue G-250; 50 mL 

of ethanol 95%; 100 mL of phosphoric acid 85%) exists in two different color forms, red 

and blue. The Reagent´s binding to protein molecules is accompanied by its color change 

and, thus, by a shift in absorption maximum (from 365 to 595 nm). The absorbance 

at 595 nm is spectrophotometrically monitored (microplate reader) and compared with 

a set of protein standard solutions. 

Membrane samples were diluted 1:100 and the total erythrocytes ones 1:15000. 

The standard curve was obtained using a set of BSA standards (concentration 

0.0 to 0.05 mg/mL). An Internal Control (dilution 1:2000) was used to standardize 

and validate the obtained data. 

3.4.3 Membrane bound hemoglobin 

MBH was measured by spectrophotometry (microplate reader) in erythrocyte membrane 

suspensions samples (Santos-Silva et al. 1995).  

Triton X-100 (5% w/v in 5mM pH8 phosphate buffer) was added to the samples 

for protein dissociation and the absorbance was measured at 415 nm (maximum Hb 

absorbance) and at 700 nm (background absorbance). The MBH percentage was 

estimated using the corrected absorbance value and total protein concentration 

of the samples to normalize its percentage (equation 3). 

 

% MBH =
A415 − A700

[Total protein concentration]
 x 100           (equation 3) 

 

3.4.4 Erythrocyte membrane lipid peroxidation 

The TBARS test, adapted from Mihara and Uchiyama (1977), was used to determine 

the erythrocyte membrane LPO in membrane and plasma samples (Mihara & Uchiyama 

1978). 

To assess the LPO of each sample, the quantity of MDA and its precursors was 

determined. MDA is one of the main LPO products and the method makes use of its 

reaction with TBA which results in a formation of a red colored chromogen adduct with 

absorption maximum at 535 nm (Ayala et al. 2014). 
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Membrane samples were incubated 10 min. at R.T. with Triton X-100 20% 

to dissociate proteins. The following procedure was the same for both membrane 

and plasma samples: H3PO4 1.0% (v/v) and TBA 0.6% (m/v) were added to the samples, 

the tubes were thoroughly homogenized and incubated on a boiling water bath for 

45 minutes. Afterwards, samples were put on ice to cool down and n-butanol was added 

to each tube to extract the TBA-MDA complex. The organic layer was separated by 

centrifugation (1000 g; 2 min.; R.T.) and its absorbance was measured by 

spectrophotometry at 535 nm. 

For RBC membrane samples, the LPO was determined after correcting this value 

with background absorbance (520 nm) and normalizing it with total protein concentration 

for each sample. For plasma samples, we used directly the value of absorbance at 535 nm. 

3.4.5 Quantification of catalase activity 

To determine the activity of CAT in membrane and total erythrocytes samples, 

a spectrophotometric method adapted from Johansson and Borg was performed 

(Johansson & Borg 1988). 

The method is based upon the CAT peroxidatic activity: the reaction 

of the enzyme with a hydrogen donor (methanol) in the presence of optimal 

concentration of H2O2 results in a formation of formaldehyde. The latter forms a bicyclic 

heterocycle with a chromogen, 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole 

(Purpald), which upon oxidation changes from colorless to a purple compound with 

absorption maximum at 540 nm (Figure 3). The absorbance was compared to a set 

of standard formaldehyde solutions and its value was used to calculate the activity 

of the enzyme. 

H2O2 + CH3OH + Purpald 
CAT
→   CH2O + 2 H2O 

Figure 3. Quantification of catalase activity. Hydrogen peroxide (H2O2) reaction with methanol 

(CH3OH) in the presence of catalase (CAT) yields formaldehyde (CH2O) and water (H2O). Formaldehyde 

and Purpald form a compound which, upon oxidation, changes from colorless to purple. Adapted 

from Melo, 2017 (Melo 2017). 

 

The membrane samples were diluted 1:25 and total erythrocyte samples 1:10000. 

A set of standard formaldehyde solutions (0 – 75 uM) was prepared. All samples, 
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standards and the control were incubated with methanol and H2O2 35.0 mM 

for 20 minutes, then KOH 10.0 M (to stop the reaction) and Purpald (chromogen) were 

added. After 10 minutes of incubation, KIO4 300.0 mM (color amplifier) was added to all 

wells and following a 5 minutes incubation, the absorbance was measured at 540 nm. A 

CAT activity internal control was used to validate the results. 

The enzyme activity was determined by interpolation of the sample values 

in the standard curve and by applying a formula (including normalization of the activity 

by dividing by total protein concentration) as seen in equation 4: 

 

𝐶𝑎𝑡 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑛𝑚𝑜𝑙/𝑚𝑖𝑛/𝑚𝐿/𝑚𝐺𝑃𝑡)  =  
𝑓𝑜𝑟𝑚𝑎𝑙𝑑𝑒ℎ𝑦𝑑𝑒 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛  𝑥 (0.17/0.02)

20 (min)
 𝑥 𝐷. 𝐹. 𝑥 

1

𝑃𝑡
  

(equation 4) 

3.4.6 Quantification of glutathione peroxidase activity  

The activity of GPx was measured in total erythrocyte samples by an indirect assay 

adapted from Weydert & Cullen (Weydert & Cullen 2010).  

This spectrophotometric method enables GPx activity quantifying through 

the actions of other enzymes and cofactors that are necessary for its function.  

GPx catalyzes the reduction of various hydroperoxides (e.g., H2O2) to H2O via 

oxidation of reduced GSH into its disulfide form GSSH. GSSG is regenerated to GSH by 

GR with consumption of NADPH. The decrease of NADPH can be easily monitored 

spectrophotometrically and is proportional to GPx activity. 

Samples were diluted 1:200 and a set of standard GPx solutions 

(0 – 100.0 mU/mL) was prepared, as well as, a GPx internal control to validate 

the procedure. GSH/GR solution (with final well concentration 1.0 mM/1.0 U/mL) 

and NADPH 0.2 mM (final well concentration) were added followed by 10 minutes 

of incubation at 25 °C. After adding the substrate, cumene hydroperoxide 1.5 mM (final 

well concentration), a kinetic absorbance reading was performed at 340 nm for 5 minutes 

(30 seconds intervals). The value of GPx activity was obtained after interpolation 

of the samples absorbance delta per minute in the standard curve and after normalizing 

this value with the total protein concentration for each sample. 
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3.4.7 Determination of total antioxidant status 

To determine the TAS in both plasma and total erythrocyte samples, the Ferric Reducing 

Ability of Plasma (FRAP) Assay was used according to a method adapted from I. F. F. 

Benzie & J. J. Strain. (Benzie & Strain 1996) 

Ferric and ferrous ions can form a complex with TPTZ. The ion ferric to ferrous 

reduction can be monitored at low pH, as a blue colored complex of Fe2+-TPTZ with 

absorption maximum at 593 nm is formed. By comparing the absorbance change 

in samples with the absorbance in a set of standards of known concentration of ferrous 

ion, the FRAP values were determined. 

Total erythrocytes samples were diluted to 1:50, the plasma samples were applied 

directly to the plate. A set of standard solutions (ferrous ion concentrations 0.0 – 1.0 mM) 

was prepared to obtain the standard curve. A ferrous internal control ensured 

the validation and standardization of the procedure. 

The FRAP reagent (acetate buffer 300.0 mM + ferric ion 20.0 mM + TPTZ 

10.0 mM, 10:1:1) was added to all the samples and the absorption at 0 min and 4 min was 

measured spectrophotometrically at 37 ºC. After comparing the values with those 

obtained from the standard curve, total protein concentration was used to normalize 

the values of TAS. 

3.4.8 Quantification of total glutathione and oxidized 

glutathione 

To determine the reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, total 

GSH and GSSG were quantified in the total erythrocyte samples according to a method 

adapted from Shaik & Mehvar (Shaik & Mehvar 2006) and from Griffith (Griffith 1980).  

The principle of this spectrophotometric method is the enzymatic recycling 

of GSH by GR with consumption of NADPH. GSH oxidation by DTNB, is accompanied 

by formation of a yellow chromogen, 5-thio-2-nitrobenzoic acid (TNB), the quantity 

of which is monitored and thus, total GSH amount is determined as these two values are 

proportional (Figure 4). 
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Figure 4. Quantification of total glutathione and oxidized glutathione. Glutathione (GSH) can reduce 

different compounds, including 5,5’-dithiobis-(2-nitrobenzoic acid) (DTNB) while oxidizing itself 

(GSTNB). This reaction yields a yellow chromogen, 5-thio-2-nitrobenzoic acid (TNB) the amount 

of which can be monitored as it amount is proportional to available GSH amount. Oxidized glutathione 

(GSSG) is regenerated by glutathione reductase (GR) in a nicotinamide adenine dinucleotide phosphate 

(NADPH) consuming reaction. 2-Vinylpyridine serves as a masking agent. Adapted from Melo, 2017 

(Melo 2017). 

 

GSSG quantification employs exactly the same principle/protocol that total GSH, 

with only one additional step: to distinguish the GSSG in the total amount of GSH, 

an agent (2- Vinylpyridine) is used to mask reduced GSH (McGill & Jaeschke 2015). 

Total erythrocyte samples were diluted with HClO4 5%, 1:250 and 1:50 for total 

GSH and GSSG quantifications, respectively. Sets of standard GSH (0 – 15.0 uM) 

and GSSG (0 – 8.0 uM) solutions were prepared. Internal controls of GSH and GSSG 

were used to validate the results. 

To neutralize the samples, KHCO3 0.76 M was added to  samples/internal control 

and standard solutions. After centrifugation (16000 g, 2 min, 4 °C), the samples were 

transferred to a 96 well plate and the reagent solution (240 μM NADPH, 1.3 mM DTNB 

final well concentration) was added to each well and the plate was incubated for 15 min 

at 30 °C. Afterwards, GR (final well concentration of 2 U/mL) was added and a kinetic 

reading was performed at 412 nm for 3 minutes (30 seconds intervals). Values 

of the slope were used, plotted against the standard curve and finally, normalized by 

the total protein concentration for each sample to get the total GSH values. The GSSG 

quantification required a pre-incubation of the samples with 2-vinylpyridine (10 µL) for 

1 h at 4 °C.  
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3.5 Statistical analysis 

For statistical analysis, the Statistical Package for Social Sciences (IBM SPSS, version 

24.0, SPSS Inc) for Windows was used.  

Descriptive statistic tools were employed to characterize the data, including 

Shapiro-Wilk normality test. As some of our data presented non-Gaussian distribution, 

we used the non-parametric Wilcoxon Signed-Rank Test for related samples  to evaluate 

the differences between the studied groups (baby at birth and in 2 months of age). 

Spearman’s rank correlation coefficient was used to assess relationships between sets 

of data. Data are presented as median (interquartile range). The level of significance (p) 

was set at 0.05. 
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4 RESULTS 

The first task of our work was to obtain physiological data linked to OS. These can be 

divided into three groups: hematological data, biochemical data (both performed 

in the hospital) and our own measurements of RBC-specific OS related values 

(OS biomarkers). 

Hematological and biochemistry tests were performed at birth (from UCB 

samples) and then in two months (64 days in average, peripheral blood samples). 

Experimental values were obtained in our laboratory after receiving the follow-up 

samples matching the newborn samples, as the importance was given to having the same 

assay conditions for both of the paired samples. 

To assess the relationships between different parameters, Spearman's rank 

correlation coefficient was used. 

4.1 Hematological data 

RBC count, Hb, hematocrit, MCV, MCH, MCHC, RDW, reticulocytes and leukocytes 

count were measured. 

The results (Table 2) show that there was a significant difference (p<0.05) 

between newborn and 2 months follow-up measurements in all examined parameters. 

Significant decrease was observed in the following indices: RBCs, Hb, 

hematocrit, MCV, MCH, RDW, reticulocytes and leukocyte count. 

These changes were expected and are in an accordance what was already known 

(Esan 2016, Ogundeyi M.M. et al. 2011, Soldin et al. 2005) 

Comparison of the follow-up samples with reference values shows that apart 

from RDW, all data fall into the reference range (Soldin et al. 2005). Given references 

relate to peripheral blood samples of males, aged 61 d to <181 d, as in Pediatric 

Reference Intervals (Soldin et al. 2005). 
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Table 2. Hematological data of healthy newborns and of their 2 months follow-up. 

 newborn 2 months old p  

reference 

value - 

2 months 

RBC [x1012/L] 4.35 (4.21 - 4.57) 3.71 (3.54 - 3.85) 0.012  3.67 - 4.61 

Hemoglobin [g/dL] 14.8 (14.9 - 15.9) 10.8 (10.7 - 11.7) 0.012  10.5 - 13.0 

Hematocrit [%] 44.9 (43.4 - 46.8) 31.0 (30.5 - 35.5) 0.012  30.5 - 37.7 

MCV [fL] 103 (101 - 106) 84.7 (83.2 - 85.7) 0.012  79.6 - 86.3 

MCH [pg] 34.9 (33.6 - 35.2) 29.9 (29.3 - 30.5) 0.012  27.6 - 29.9 

MCHC [g/dL] 33.8 (33.0 - 34.1) 35.4 (34.9 - 35.6) 0.012  33.9 - 35.4 

RDW [%] 16.3 (16.3 - 17.3) 13.3 (12.8 - 13.7) 0.012  13.5 - 15.3 

Reticulocytes [x109/L] 166 (162 - 193) 72.7 (57.6 - 110) 0.017  37.0 - 104 

Leukocytes [x109/L] 16.0 (12.9 - 18.8) 8.4 (6.9 - 10.3) 0.012  7.9 - 13.4 
RBC, red blood cell; MCV, mean cell volume; MCH, mean cell hemoglobin; MCHC, mean cell hemoglobin 

concentration; RDW, red cell distribution width. 

Data are presented as median (inter – quartile range) values. p<0.05 between newborn versus 2 months old groups 

was considered statistically significant; Wilcoxon Signed-Rank Test was used.  

Reference values were obtained from Pediatric Reference Intervals (Soldin et al. 2005). 

 

Positive and statistically significant correlations were found between 

the gestational age and the count of leukocytes both in newborn and in 2 months samples 

(r = 0.766; p = 0.027; n = 8; r = 0.717; p = 0.046; n = 8, respectively). 

4.2 Biochemical data 

Uric acid (UA) concentration, bilirubin levels, liver enzymes (gamma-glutamyl 

transferase, GGT; aspartate aminotransferase, AST; alanine aminotransferase, ALT) 

and albumin concentration were quantified and calculated. 

The data can be seen in Table 3. Uric acid, GGT, AST, ALT (and thus AST/ALT 

ratio) and albumin values changed significantly over two months. A decrease was found 

in UA, GGT and albumin levels; AST, ALT and albumin levels showed a significant 

increase. 

The follow-up (2 months old) values were compared with reference values and all 

but direct bilirubin were within the reference range. Reference values relate to peripheral 

blood samples of infants, aged approximately 2 months (the age intervals differ), 

according to The Harriet Lane Handbook (Kahl & Hughes 2017). 
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Table 3. Biochemical data of healthy newborns and of their 2 months follow-up. 

 

newborn 2 months old p 

 reference 

value 

2 months 

Uric acid [mg/dL] 4.85 (4.35 - 5.88) 2.60 (2.43 - 3.00) 0.012  1.1 - 5.6 

Total bilirubin [mg/dL] 1.46 (1.23 - 1.65) 1.08 (0.45 - 1.59) 0.208  ˂ 1.2 

Direct bilirubin [mg/dL] 0.58 (0.46 - 0.66) 0.40 (0.20 - 0.55) 0.262  ˂ 0.2 

Indirect bilirubin [mg/dL] 0.90 (0.57 - 1.10) 0.68 (0.24 - 1.10) 0.528  ˂ 1.0 

GGT [UI/L] 148 (91 - 203) 53 (33 - 111) 0.025  8.0 - 90.0 

AST [UI/L] 28.5 (20.0 - 33.0) 37.5 (32.5 - 101) 0.035  9.0 - 80.0 

ALT [UI/L] 10.5 (5.3 - 12.8) 28.0 (25.3 - 72.0) 0.012  13.0 - 45.0 

AST/ALT 2.95 (2.35 - 3.38) 1.30 (0.85 - 1.53) 0.011  0.7 - 1.8 

Albumin [g/dL] 3.84 (3.70 - 3.92) 4.14 (3.97 - 4.41) 0.017  2.2 - 4.8 
GGT, gamma-glutamyl transferase; AST, aspartate aminotransferase; ALT, alanine aminotransferase. 

Data are presented as median (inter – quartile range) values. p<0.05 between newborn versus 2 months old groups 

was considered statistically significant; Wilcoxon Signed-Rank Test was used. 

Reference values were obtained from The Harriet Lane Handbook (Kahl & Hughes 2017). 

4.3 Oxidative stress biomarkers 

While assessing OS biomarkers we worked with different fractions of the blood samples: 

RBC membranes, total erythrocyte and plasma. 

All the presented OS biomarkers data are values that were normalized by protein 

concentration of each sample. Mentioned reference values were obtained in previous 

research and projects of our laboratory and belong to adult subjects, so they only serve 

as a rough comparison, since they are biased by age and development.  
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4.3.1 RBC membranes 

Three tests were performed using erythrocyte membranes from our subjects. Graphic 

representation can be seen in Figure 5. 

MBH percentage decreased significantly from newborn to 2 months follow-up; 

reference range for adults is 0.52 - 0.97 %. 

Statistically significant positive correlations were found in newborns between 

MBH and the following indices: membrane’s CAT activity (r = 0.810; p = 0.015; n = 8), 

total RBC GPx activity (r = 0.810; p = 0.015; n = 8), plasma LPO (r = 0.778; p = 0.023; 

n = 8). A negative statistically significant correlation was observed with GSH/GSSG ratio 

(r = -0.762; p = 0.028; n = 8). 

Quantification of CAT activity in membranes contrary to our expectation has not 

shown a significant difference between newborns and 2 months samples; reference range 

for adults is 6.5 - 57.1 nmol/min/mL/mGPt.  

Statistically significant correlations were discovered in these cases: membrane’s 

CAT activity in newborns correlates positively with GPx activity in 2 months samples 

(r = 0.762; p = 0.028; n = 8) and with plasma LPO in newborns (r = 0.717; p = 0.046; 

n = 8), and negatively with GSH/GSSG ratio in newborns (r = -0.762; p = 0.028; n = 8). 

LPO measured in RBC membranes seems to drop significantly after two months 

and a tendency to decrease to common adult reference range (0.012 - 0.017 μM/mGPt) is 

clear. Strength of this OS biomarker is also supported by statistically significant 

Figure 5. Oxidative stress biomarkers - RBC membranes of healthy newborns and of their 2 months 

follow-up: MBH, CAT, LPO. MBH, membrane bound hemoglobin; CAT, catalase activity; LPO, lipid 

peroxidation. Data are presented as median (inter – quartile range) values. p<0.05 between newborn 

versus 2 months old groups was considered statistically significant; Wilcoxon Signed-Rank Test was used. 
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correlations: a negative one was found between LPO 2 months and TAS 2 months 

(r = - 0.786; p = 0.021; n = 8); a positive link was discovered between LPO in newborns 

and CAT activity (measured in total erythrocytes, 2 months) and GPx activity (newborn) 

levels (r = 0.738; p = 0.037; n = 8 and r = 0.762; p = 0.028; n = 8, respectively) and, 

in the 2 months follow-up, there was an interesting (positive) connection with 

hematological indices, RBC count and Hb, in newborns (r = 0.714; p = 0.047; 

n = 8 and r = 0.759; p = 0.029; n = 8, respectively). 

4.3.2 Total erythrocytes 

Quantification of CAT activity, of TAS and of GPx activity was performed using total 

erythrocyte samples; results are presented in Figure 6. 

 

 

Figure 6. Oxidative stress biomarkers – total erythrocytes of healthy newborns and of their 2 months 

follow-up: CAT, TAS, GPx. CAT, catalase activity; TAS, total antioxidant status; GPx, glutathione 

peroxidase activity. Data are presented as median (inter – quartile range) values. p<0.05 between newborn 

versus 2 months old groups was considered statistically significant; Wilcoxon Signed-Rank Test was used. 

 

 CAT activity showed an increase from newborns to 2 months follow-ups, with 

reference values being 181 – 275 nmol/min/mL/mGPt. Positive and statistically 

significant correlation with gestational age was discovered in newborn samples 

(r = 0.766; p = 0.0278; n = 8); on the other hand, in the follow-up samples, it correlates 

negatively and significantly with follow-up reticulocytes value (r = -0.786; p = 0.021; 

n = 8). 

 Despite our expectations, TAS levels have not proven to change with statistical 

significance; both values met the reference range 0.040 - 0.056 mM. However, there are 

some interesting correlations (statistically significant): 2 months TAS samples showed 
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a positive links to reticulocyte count in newborns (r = 0.738; p = 0.037; n = 8) 

and to GSH/GSSG ratio in 2 months samples (r = 0.881; p = 0.004; n = 8). 

 For GPx, we recorded a significant decrease. From values above the reference 

range in the newborns, the levels dropped 2 months after birth; reference: 

51.5 - 88.7 mU/mL. 

While still using the total erythrocytes fraction, a set of tests to measure GSH 

related values was carried out (Figure 7).  

 

 

Figure 7. Oxidative stress biomarkers - total erythrocytes of healthy newborns and of their 2 months 

follow-up: glutathione. GSH, glutathione; GSSG, oxidized glutathione. Data are presented as median 

(inter – quartile range) values. p<0.05 between newborn versus 2 months old groups was considered 

statistically significant; Wilcoxon Signed-Rank Test was used. 
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None of the indices showed significant changes over the 2 months after birth. All 

the examined values (total glutathione, oxidized glutathione, reduced glutathione 

and reduced/oxidized glutathione ratio) were within the reference ranges: total GSH 

9.48 – 15.3 μM, GSSG 1.19 – 1.94 μM, reduced GSH 8.29 – 13.4 μM and GSH/GSSG 

6.89 – 6.97. 

Several statistically significant correlations support the data: positive correlation 

in newborns - total GSH and both reduced GSH and GSH/GSSG (r = 0.976; p < 0.001; 

n = 8 and r = 0.762; p = 0.028; n = 8, respectively). In 2 months samples there is 

a connection between total GSH and reduced GSH (r = 0.952; p < 0.001; n = 8). Oxidized 

glutathione has a negative link to GSH/GSSG, both in newborns (r = -0.738; p = 0.037; 

n = 8). On the other hand, GSH/GSSG correlates positively with reduced GSH, 

in newborns as well (r = 0.833; p = 0.010; n = 8). All these connections are not surprising, 

since they only support the knowledge of GSH metabolism.  

More of novelty could be these: reduced GSH in 2 months samples correlates 

significantly and positively with the reticulocytes count in newborns and negatively with 

the UA levels in newborns (r = -0.810; p = 0.015; n = 8 and r = -0.735; p = 0.038; n = 8, 

respectively). GSH/GSSG ratio in newborns showed a negative link to plasma LPO 

in newborns and a positive one to reticulocytes count in newborns (r = -0.766; p = 0.027; 

n = 8 and r = 0.762; p = 0.028; n = 8, respectively). 
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4.3.3 Plasma  

LPO and TAS were determined in the plasma fraction of the samples. Graphic 

representation of the evolution of the values can be seen in Figure 8.  

 

 

Figure 8. Oxidative stress biomarkers – plasma of healthy newborns and of their 2 months 

follow – up: LPO, TAS. LPO, lipid peroxidation, TAS, total antioxidant status. Data are presented as 

median (inter – quartile range) values. p<0.05 between newborn versus 2 months old groups was 

considered statistically significant; Wilcoxon Signed-Rank Test was used. 

 

Contrary to LPO measured in membranes, plasma LPO has not shown 

a significant difference, though a decrease was observed. Both LPO plasma values seem 

to be even lower than the reference ones; reference for adults: 0.022 - 0.043 μM. 

TAS decreases in time; reference range being 0.28 - 0.40 mM. 
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5 DISCUSSION 

Erythrocytes, cells responsible for O2/CO2 transport in the human organism, are 

continuously exposed to ROS, either from endogenous or exogenous origin. Though they 

are equipped with a powerful AOX defense system, these mechanisms can get 

overwhelmed on some occasions, resulting in damage to both RBCs and other cells 

and tissues. A state when harmful pro-oxidants outweigh the AOX capacity and, thus, 

disturb the balance, is called OS. The cause of OS is usually associated with various 

pathologies and diseases, but it has been documented in healthy newborns as well. 

Neonates, after being suddenly exposed to relatively hyperoxic extrauterine environment, 

with their immature organisms working autonomously for the first time, are extremely 

susceptible to FR. By evaluating reliable biomarkers of OS, we can analyze how 

the newborns cope with this newly acquired autonomy. 

In this study we present experimental data obtained by measurements of several 

OS biomarkers, we follow the changes in hematology and biochemistry of neonates 

and with the support of correlations we estimate the connections and mechanisms among 

various AOX agents, focusing on the erythrocyte as a model of OS.  

5.1 Hematological data 

Although basic hematology assays are carried out in every hospital laboratory on a daily 

basis, it is not very common to have them from healthy newborns, right after birth, 

from the UCB. But these values, when compared with a follow-up, assayed under 

the same conditions, give us a precious insight on how the biochemistry of a newborn 

infant changes with age and the hematological values themselves are often required for 

monitoring and diagnosis of a possible pathology.  

All the measured hematological parameters were found to be normal (Table 2), 

and they correspond with common knowledge about the topic (Esan 2016, Ogundeyi 

M.M. et al. 2011, Soldin et al. 2005). Overproduction of various blood elements 

and substances is an important part of the organism preparing for being literally cut off 

the mother. All the components necessary for gas carriage, as well as white cells 

responsible for the so needed immunity, exceed the counts that are usually found in older 
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children and adults. Attention must be paid while comparing values with reference 

ranges; not only the age of an infant matters but also the type of collected blood – venous 

versus UCB. In our study, newborn samples don’t have reference values to compare them 

to as there are no official ranges for cord blood, which is an improvement given to this 

field of knowledge by this work. Little insight can be seen from the work 

of Catarino et al. (Catarino et al. 2009) who also evaluated UCB for several parameters 

as we did, plus, they worked with a Portuguese population as well, while our reference 

values for 2 months samples come from American authors and population (Soldin et al. 

2005). A different set of reference ranges can be found in the work of Qaiser, Sandila, 

Ahmed, & Kazmi (Qaiser et al. 2009) who worked with Pakistani newborns, measured 

values are in accordance with our results. Another study was conducted by Ogundeyi 

M.M. et al. in Nigeria. The researches there worked with around 150 infants whose 

samples of venous blood were taken at birth, in 3 days and in 6 weeks of life. Although 

we cannot directly compare the values with our results, the tendency of the indices 

to drop in time is obvious and corresponds with our findings and general knowledge 

(Ogundeyi M.M. et al. 2011).  

It was described that in the neonatal period the complete blood count highly 

correlates with birth weight, blood sampling site, crying, physical therapy, mode 

of delivery and gestational age (Esan 2016). In accordance, we found a positive 

correlation of gestational age (38-70 weeks) with the leukocytes count in our newborns. 

5.2 Biochemical data 

Liver, besides its metabolic and other functions, is the principal detoxifying organ in 

the human organism (Casas-Grajales & Muriel 2015). 

UA, as powerful plasmatic AOX, providing up to 60% of AOX capacity 

of plasma (Fabbrini et al. 2014), acts as a FR scavenger and chelator of transitional 

meatal ions (Kang & Ha 2014, Pasalic et al. 2012). But the role of UA in the AOX 

defense system is somehow dual: while it neutralizes peroxynitrite and hydroxyl radicals 

to inhibit protein nitration and LPO, the reaction, in which the UA is formed, produces 

ROS as by-products (Kang & Ha 2014, Pasalic et al. 2012). UA is the end product 

of purine metabolism in humans, the reaction being catalyzed by xanthine oxidase: 
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hypoxanthine is oxidized to xanthine, xanthine to UA. In both reactions, molecular O2 is 

reduced and superoxide radical and H2O2 are formed (Casas-Grajales & Muriel 2015). 

In newborns, it is normal that serum UA is increased. Raivio stated that the mean 

value in cord blood is 6.0 mg/dL, increases to 7.0 mg/dL in the next 24h and decreases 

to 3.5mg/dL over next three days (Raivio 1976). High UA levels could be explained by 

many morphological changes occurring in the blood of the neonate: nuclei of the former 

RBCs disappear, polynuclear neutrophils predominance changes in favor 

of lymphocytes, total leukocyte count drops significantly, which results in a large amount 

of purines (Kingsbury & Sedgwick 1917).  

Bilirubin, a natural AOX, is well-known as the end product of heme metabolism. 

Heme is released from aging RBCs and in the turnover of heme-containing enzymes. 

Free-heme can be toxic though, so a family of heme oxygenase enzymes degrades it: 

the heme ring is cleaved to form biliveridin which can be reduced to bilirubin 

in the NADPH consuming reaction catalyzed by biliveridin reductase (Sedlak & Snyder 

2004). Bilirubin is toxic and insoluble and thus must be conjugated with glucuronic acid 

before excretion into the bile. Or, bilirubin can be oxidized back to biliveridin, while 

reducing ROS. This biliverdin – bilirubin cycle appears to affect OS–induced membrane 

lipid degradation. Although concentrations of bilirubin are relatively lower than the ones 

of GSH, the continuous recycling of biliverdin to bilirubin amplifies its effect by more 

than 10 000 times and therefore even small increase in bilirubin levels could account for 

a significant increase in its AOX potency (Marconi et al. 2018). 

A significant number of term and pre-term newborns display some level 

of neonatal jaundice. It is accompanied by an increase in serum of (unconjugated, 

indirect) bilirubin levels, mostly caused by breakdown of RBCs. Extremely high levels 

of unconjugated bilirubin can be neurotoxic, leading up to kernicterus, but majority 

of the jaundice cases, a “physiologic jaundice”, respond well to phototherapy, which is 

a gentle and effective way of reducing bilirubin levels (Mitra & Rennie 2017, Sedlak & 

Snyder 2004). 

Our results (Table 3) are in accordance with known reference ranges and follow 

expected developmental tendencies in healthy, term infants. We recorded a significant 

decrease in UA levels, slight changes in liver enzymes levels that settle up at known 

physiological values in follow-ups and significant increase of albumin. Reshad et al. 
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suggested that association between UCB albumin levels and the tendency to develop 

significant neonatal hyperbilirubinemia in both term and preterm neonates could lead 

to albumin´s application as a marker in screening the newborn infants for possible 

development of neonatal hyperbilirubinemia (Reshad et al. 2016). 

5.3 Oxidative stress biomarkers 

The focus of our work was pointed towards the AOX capacity of RBCs. Even though we 

expected more of our biomarkers to document significant changes between newborn 

versus follow-up, the fact that several of them exhibited a significant difference despite 

the small number of samples (n = 8) suggests that those biomarkers are strong 

and reliable ones (MBH, LPO membranes, GPx, CAT total erythrocytes, plasma TAS) 

(Figures 5, 6, 7 and 8).  

Since no official reference values for OS biomarkers in newborns exist, we could 

only compare our follow-up data with experimental values obtained in previous research 

of our laboratory from samples of adult individuals and there was no reference 

for the newborn samples (from UCB).  

In RBC membranes, the decrease in the MBH and LPO (Figure 5), which are 

generally believed to be good OS biomarkers (Ayala et al. 2014, Pandey & Rizvi 2010, 

Rizvi & Maurya 2007, Sharma & Premachandra 1991, Welbourn et al. 2017), 

corroborates the theory of the OS being at its highest right after birth, reflecting 

the sudden exposure to relatively hyperoxic environment (Perrone et al. 2010). Contrary 

to our expectations, plasmatic TAS decreased (Figure 8). For a better explanation, this 

assay would probably need to be repeated to discover whether this preliminary result 

would change with a larger number of samples or whether it would follow the same trend 

(decreasing after birth). The latter option could represent a developmental stage in infant 

where plasmatic TAS in 2 months of age is decreased and then increases with age. 

Strength of the MBH and LPO as biomarkers can be supported by several correlations: 

not only they correlate with each other, but a negative link between LPO and total 

erythrocytes TAS was found in the follow-up samples thus, the lower the OS levels get, 

the higher the AOX capacity is. Activity of GPx, which decreased over 2 months after 

birth, also seems to have a significant positive correlation with the two biomarkers while 

the other AOX enzyme, CAT, significantly increases (Figure 6). This observation could 
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be explained by the different targets of these enzymes. Although both of them detoxify 

the cell from H2O2, CAT is described to work at higher H2O2 concentrations, of mostly 

exogenous origin, while GPx, on the other hand, catalyzes the decomposition of low 

levels of endogenous H2O2, often generated by auto-oxidation of Hb (Rocha et al. 2015). 

The decrease of GPx activity could be explained by the newborn´s adaptation to the outer 

environment accompanied by the documented reduction of birth-related OS. However, 

the newly acquired autonomy of the older infant brings along an increasing exposure 

to various oxidants of exogenous origin. Here, supposedly, CAT steps in, to protect 

the cells, and thus its activity is increased.  

Although OS is usually related to pathological conditions, many studies 

(Norishadkam et al. 2017, Ozsurekci & Aykac 2016, Perrone et al. 2010), including our 

work, show that it also accompanies a physiological event such as birth of a healthy, 

full- term baby. Broader collection of physiological reference values for OS biomarkers 

and proper knowledge of the mechanism behind them could help physicians 

in the evaluation of development of newborns or early prediction of potential future 

disorders. 

Nevertheless, we cannot omit the role of these oxidative damage parameters 

in various OS related diseases; several of them were described in the literature: chronic 

lung diseases, intraventricular hemorrhages of newborns, necrotizing enterocolitis 

(Norishadkam et al. 2017, Perrone et al. 2010), bronchopulmonary dysplasia, retinopathy 

of prematurity, patent ductus arteriosus, periventricular leukomalacia, respiratory distress 

syndrome, intrauterine growth retardation, congenital malformation (Ozsurekci & Aykac 

2016). Reference values of OS biomarkers could be a valuable source of information for 

the diagnosis, effective treatment and disease monitoring. 

Tsukahara also suggests that restoration of redox balance either by decreasing 

exposure to ROS or by augmenting AOX capacity represent a promising way 

of therapeutic intervention in OS related diseases. Classic AOXs include tocopherols, 

carotenoids and ascorbate but it has been suggested that their effect is only symptomatic, 

since they scavenge already existing ROS and, thus do not serve as a causal treatment 

(Tsukahara 2007).  

Several AOX strategies were involved in clinical trials in the pediatric field, 

including administration of corticosteroids for bronchial asthma and bacterial meningitis, 
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melatonin for neonatal asphyxia and epilepsy, tocopherols and ascorbates for endothelial 

dysfunction in hyperlipidemia, L-arginine for endothelial dysfunction in cardiac 

transplantation, folinic acid, betaine and methylcobalamin for autism (Tsukahara 2007), 

enteral glutamine and arginine for prevention of necrotizing enterocolitis, epicatechin 

(for blockage of peroxynitrite-mediated tyrosine nitration and peroxynitrite formation) 

in ischemic proliferative diseases of the retina (Ozsurekci & Aykac 2016). Some 

favorable results of these strategies were described but still, further studies with broader 

population are required, and, as Tsukahara mentions, other techniques for measurement 

of OS status because the establishment of reference values for OS biomarkers is 

paramount for these studies. 

Generally, we believe that OS and its mechanisms need to be further explored, 

new studies conducted, and data collected. Our contribution, despite the limited number 

of subjects, provides insight in the issue as we bring a number of reference values for OS 

biomarkers in early infancy Portuguese individuals which, to our knowledge, have not 

been described before. 
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6 CONCLUSION 

In the present work we focused on the study of OS in newborns with the aid 

of appropriate biomarkers of OS, focusing mainly on the erythrocyte. 

We obtained physiological OS-related data, including complete blood count, 

general biochemical data and experimental values, from a small population of Portuguese 

healthy, full-term newborns. The sample collections occurred twice: at birth 

and in 2 months of age. By observing how the values change, newborn versus follow-up, 

we gained a good insight about the development of the infant. 

Both hematological and biochemical data follow the reference values, 

as anticipated. Our experimental values support the theory of so called hyperoxic 

challenge which induces high levels of OS in healthy neonates: several of our biomarkers 

recorded a significant change in OS levels. MBH and LPO in membranes decreased as 

well as GPx activity, while CAT activity in total erythrocytes increased. The first three 

biomarkers document neonate´s adaptation to the environment and CAT/TAS values 

suggest autonomy development of the newborn, who starts to encounter various 

exogenous oxidants. 

As there are no official reference values for OS biomarkers in newborns, our 

results are a novelty and provide an invaluable progression in this field of knowledge, 

though our number of samples is small and further studies are warranted. 

OS has been linked with a number of pathological conditions both in newborns 

and older individuals. Proper knowledge of the mechanisms behind OS and oxidative 

damage and large quantity of reliable data documenting the OS-related reference values 

could be a precious tool in the assessment of human health and disease. 
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7 LIST OF ABBREVIATIONS 

·OH hydroxyl radical 

2,3-DPG 2,3-diphosphoglycerate 

AIDS acquired immune deficiency syndrome 

ALT alanine aminotransferase 

AOX antioxidant 

AST aspartate aminotransferase 

ATP adenosine triphosphate 

BFU-E burst-forming unit - erythroid 

BSA bovine serum albumin 

CAT catalase 

CFU-E colony-forming unit - erythroid 

CMP common myeloid progenitor 

CO2 carbon dioxide 

Cys cysteine 

CysP peroxidatic cysteine 

deoxyHb deoxyhemoglobin 

D.F. dilution factor 

DTNB 5,5´-dithiobis-2-nitrobenzoic acid 

EHM extramedullary hematopoiesis 

FAD flavin adenine dinucleotide 

FR free radicals 

FRAP ferric reducing ability of plasma 

G-6-P glucose-6-phosphate 

GGT gamma-glutamyl transferase 

Glc glucose 

GLUT1 glucose transporter 

GPx glutathione peroxidase 

GR glutathione reductase 

GSH glutathione 

GSSG oxidized glutathione 

H2O water 

H2O2 hydrogen peroxide 

Hb hemoglobin 

His histidine 
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HPX hypoxanthine 

IL interleukine 

K3EDTA tripotassium ethylenediaminetetraacetic acid 

Km Michaelis constant 

LDL low-density lipoprotein 

LPO lipid peroxidation 

MBH membrane-bound hemoglobin 

MCV mean cell volume 

MCH mean cell hemoglobin 

MCHC mean cell hemoglobin concentration 

MDA malondialdehyde 

metHb methemoglobin 

NADP nicotinamide adenine dinucleotide phosphate 

NADPH reduced nicotinamide adenine dinucleotide phosphate 

O2 oxygen 

O2
– superoxide anion 

OS oxidative stress 

Prx peroxiredoxin 

PS phosphatidylserine 

PUFA polyunsaturated fatty acid 

Purpald 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole 

R.T. room temperature 

RBC red blood cells 

RDW red cell distribution width 

RNA ribonucleic acid 

ROS reactive oxygen species 

Sec selenocysteine 

SOD superoxide dismutase 

TBA thiobarbituric acid 

TBARS thiobarbituric reactive substances 

TNB 5-thio-2-nitrobenzoic acid 

TPTZ 2,4,6-Tris(2-pyridyl)-s-triazine 

Trx thioredoxin 

UA uric acid 

UCB umbilical cord blood 

XAN xanthine 
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