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Introduction
The string algebras form for several reasons an interesting class of K-algebras.
From the point of view of representation theory, they form important examples
of non-commutative finite-dimensional algebras. Because of their elementary na-
ture, the string algebras can be examined by combinatorial and topological means,
as well as by methods of homological algebra. On the other hand, this doesn’t
mean that the description of their modules is easy – despite of the progress that
has been made over the years, their module categories are not yet fully under-
stood. The string algebras are complicated enough to display many important
concepts, and it appears that some questions about them have surprisingly topo-
logical flavour. From the point of view of an ordinary mathematician, string
algebras can be found at many other places – they are for instance of some im-
portance in physics.

In this thesis, we try to understand some aspects of the category of finite-
dimensional modules modR over a string algebra R. We shall try to describe the
classes in modR given by the cotorsion pairs in ModR. We will be able to do this
at least for some particular string algebras. Althought this description leads to
other questions, we will stop there.

In Chapter 1, we summarize the necessary terminology and state some impor-
tant results concerning indecomposable modules over string algebras and cotor-
sion pairs in general. This will allow us to reduce the desired description to the
understanding of decompositions of extensions into indecompodable modules.

In Chapter 2, we focus on tree algbras, which are especially well-behaved string
algebras, whose underlying quiver is only an oriented tree. First we give some
space to the study of extensions of pairs of indecomposable modules and to their
decompositions. Then we turn to establishing combinatorial closure properties,
which determine the intersection of left classes of cotorsion pairs in ModR with
modR.

We use Chapter 3 to outline the relevance of results of Chapter 2 concerning
their possible generalization to the case of any string algebras.

3



4



1. String algebras and their
modules
The aim of this section is to fix the necessary notation, introduce the string
algebras and state some long-known results about them.

1.1 Preliminaries and notation
Throughout the thesis, we work with left modules – the multiplication by the
elements of the ring is composed from right to left, in the same way as we compose
functions. Let K be a field. For a K-algebra R, we denote by modR the category
of finite dimensional left modules over R and by ModR the category of all left
modules over R. By indR we denote the set of representatives of isoclasses of
indecomposable finite dimensional modules over R. In the same sense we usually
don’t distinguish between isomorphic objects.

First we recapitulate some basic terminology of representation theory when
finite dimensional algebras are concerned. For a detailed treatment of these topics
see for instance Assem et al. [2006], Schiffler [2014] or [Auslander et al., 1997].

A quiver Q = (Q0, Q1) is an oriented multigraph, i.e Q0 is a set of vertices and
Q1 is a set of arrows, each arrow α ∈ Q1 having a unique source and unique target
in Q0. We use the superscripts instead of subscripts because of the necessity to
work with more quivers at once. To say that α is an arrow from u to v we write
α : u → v. Our quivers can have multiple edges or loops. We shall be mainly
interrested in finite quivers.

A path in a quiver is a sequence of oriented consecutive arrows joining two
vertices of Q. In particular, we regard every single vertex as a path of lenght
zero. In this context we write Qk for the set of paths of length k. Given a
quiver Q and a field K, we have its path algebra KQ, whose elements are formal
linear combinations of oriented paths in Q over K with pointwise addition and
multiplication extending the concatenation of paths. The arrow ideal Ia of KQ is
the ideal generated by all the arrows in KQ. It is clearly a two sided ideal which
consists of all the linear combinations of paths of length at least one.

From now on, let Q be a finite quiver. A two sided ideal I ≤ KQ is called
admissible, if Im

a ⊆ I ⊆ I2
a for some natural number m. The algebra KQ/I is

then called a bound quiver algebra. Since Q is finite and Im
a ⊆ I, this algebra is

finite dimensional. Bound quiver algebras form an important class of algebras –
when K = K, every finite dimensional K-algebra is actually Morita equivalent
to some KQ/I for a suitable finite quiver Q and admissible ideal I (by [Assem
et al., 2006, Corollary 6.10 and Theorem 3.7]). If R = KQ/I is a bound quiver
algebra and M ∈ mod R, we write Mv = v ·M . By the correspondence between
modules and linear representations, we then have M = ⨁︁

v∈Q0 Mv as a vector
space. We call these Mv the vertex subspaces.

We shall be interrested in some special classes of bound quiver algebras. At
this point we introduce the necessary terminology following Schröer [2016].
Definition. A bound quiver algebra KQ/I is called monomial, if I is generated
by paths.
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Definition. A special biserial algebra is a bound quiver algebra KQ/I with I
satisfying the conditions

• for every v ∈ Q0 there are at most two arrows begining at v and at most
two arrows ending at v,

• for every arrow α ∈ Q1 there is at most one arrow β ∈ Q1 with αβ /∈ I and
at most one arrow γ ∈ Q1 with γα /∈ I.

Definition. A string algebra is a monomial algebra, which is special biserial.

The string algebras and their module categories will be the main object of
our study. Still, in order to simplify things, we will often work with even smaller
classes of algebras.

Definition. A gentle algebra is a string algebra KQ/I which moreover satisfies

• the ideal I is generated by paths of length 2,

• for any α ∈ Q1 there is at most one β ∈ Q1 with 0 ̸= αβ ∈ I and at most
one arrow γ ∈ Q1 with 0 ̸= γα ∈ I, the equlities considered in KQ.

1.2 Indecomposable modules
Let K be a field and R = KQ/I a string algebra. When working in modR,
the Krull-Schmidt theorem ([Assem et al., 2006, Theorem 4.10]) applies, so every
M ∈ modR has a unique decomposition into indecomposable finite dimensional
modules.

The classification of indR is already known for some time; the first steps
were supposedly made by Gelfand and Ponomarev [1968] and have been later
generalized by Butler and Ringel [1987] into a complete classification. We now
formulate this result. What follows is summarized in almost every article treating
string algebras, for instance in Laking [2016].

1.2.1 Strings and string modules
Take a string algebra R = KQ/I. For every arrow α : u→ v of Q1 we introduce
a formal inverse α−1 : v → u. These inverses form a set Q−1. For every word w
over Q1 ∪Q−1, we can form its formal inverse word. A string s over R is a word
s = αϵn

n . . . αϵ2
2 αϵ1

1 over Q1 ∪Q−1, such that

• s is a walk in the undirected verison of Q,
so ∀i = 1, 2, . . . n− 1, the target of αϵi

i equals to the source of α
ϵi+1
i+1 ,

• s is a reduced walk,
so there are no neighbouring arrows which are mutually inverse,

• s doesn’t break any relation,
ie. no relation from I is a subword of s or its inverse.
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For every vertex v ∈ Q0 we define its trivial string, coresponding to the trivial
walk beginning and ending in v.

If t and s are mutually inverse strings, we regard them as the same. We shall
denote the set of strings over R up to this equivalence by St(R).

Luckily, there are other ways of defining strings – and we shall adopt the
following one. It can be convenient to view s as a sequnce of arrows and vertices
between them. Thus a string s is in fact a linear quiver together with a map of
quivers η : s → Q, such that no neighbouring arrows of s with the same source
or target map to the same arrow of Q1 and no linear subquiver of s maps to a
relation from I. We then write s0 for the set of vertices of the string s, s1 for the
set of arrows of s, and so on. Every string has precisely two outer vertices, the
rest of its vertices are inner.

For any string s ∈ St(R) we define the string module M(s) ∈ modR as follows.
For every u ∈ s0 we introduce an element eu and we let (eu)u∈s0 be a formal basis
of a vector space M(s) over K. Now it suffices to define the action of arrows of
Q1, which in turn uniquely determines the action of all elements of KQ on M(s).
So for any α ∈ Q1 and any eu, we define αeu = ev if there is an (necessarily
unique) arrow γ ∈ s1 with γ : u → v, η(γ) = α. In all other cases we define
αeu = 0.

Less formaly, we just put a copy of the one dimensional vector space K to
every vertex of s and define the action by identities on all the arrows of s. By
the construction, M(s) is a well defined KQ module. By the defnition of strings,
the action respects all relations from I, so M(s) is in fact a well defined KQ/I
module. The basis (eu)u∈s0 will be called the vertex basis of M(s), althought it
is not unique.

1.2.2 Bands and band modules
Again, bands can be defined a bit painfully as words in letters form Q1 ∪ Q−1

up to some equivalence which satisfy a few properties. So, a band b over R is a
nonempty word s = βϵn

n . . . βϵ2
2 βϵ1

1 over Q1 ∪Q−1, such that

• b is a cyclic walk in the undirected verison of Q,
ie. ∀i = 1, 2, . . . n modulo n, the target of βϵi

i equals to the source of β
ϵi+1
i+1 ,

• b is reduced,
so there are no neighbouring arrows which are mutually inverse,

• b doesn’t break any relation,
no relation from I can be a subword of any power of a or its inverse.

• b is primitive,
ie. it cannot be written as a proper power of another word w.

This time we don’t allow any degenerate bands. We consider bands only up
to formal inverses and cyclic rotations. We shall denote the set of bands over R
up to this equivalence by Ba(R).

As in the case of strings, we can rephrase the definition in a nicer way. A band
b is nothing more than a cyclic quiver together with a map of quivers η : b→ Q,
such that no neighbouring arrows of b with the same source or target map to the
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same arrow of Q1, no linear subquiver of any power of b maps to a relation from I
and the function η doesn’t have any smaller period than the lengt of b. We again
use the notation b0 for the set of vertices of the band, b1 for the set of arrows of
b, and so on.

At this point it it fair to say that these ”quiver” definitions of strings and bands
can be pushed even further into the world of topolology. We shall comment on
that in Section 3.1.

For technical reasons, we highlight one arrow in every b ∈ Ba(R). Given any
b ∈ Ba(R), n ∈ N and an indecomposable automorphism ϕ of the vector space
V = Kn, we construct the band module Mϕ(b) as follows. For every u ∈ b0

we take a vector space Vu
∼= Kn. We now define the action of any arrow α on

these vector spaces Vu, which in turn uniquely determines the module structure.
So, if there exists a non-highlited arrow γ ∈ b0, γ : u → v with η(γ) = α, the
arrow α : Vu → Vv will act as the n-dimensional identity. Further if there is the
highlited arrow δ ∈ b0, δ : u → v with η(δ) = α, the arrow α : Vu → Vv will act
as ϕ. In all other cases α acts as the zero map.

Again it is trivial that Mϕ(b) becomes a well defined KQ module, and by
the definition of bands it is in fact a KQ/I module. The union of the canonical
bases of Vu will be again called the vertex basis of Mϕ(b). We shall call the band
module Mϕ(b) primitive if the common dimension of subspaces Vu is 1.

1.2.3 The classification
It is rather straightforward to verify that string modules M(s) for s ∈ St(R) and
band modules Mϕ(b) for b ∈ Ba(R) with ϕ an indecomposable linear automorpism
up to equivalence are pairwise nonisomorphic indecomposable finite dimensional
modules over the string algebra R.

The promised classification simply states that these are all of them.

Fact. For R a string algebra the set indR consists precisely of string and band
modules.

We will use this result as often as possible. For more details and proof consult
Butler and Ringel [1987].

Althought we have defined a notation M(s) and Mϕ(b) for string and band
modules, we will sometimes omit the isomorphism ϕ from the notation of band
modules. When working with many modules at once, we will also dare to use
different letters instead of M , for instance N .

1.3 Closed classes of modules
First fix some more notation. Let R be a finite dimensional K-algebra. Again,
we shall consider all modules only up to isomorphism. Take the category modR,
with indecomposable modules indR. Denote by P all its projective modules and
by I all its injective modules.

For any class of modules A in modR, denote Add(A) the closure of A on finite
direct sums and direct summands in modR. Also denote by Ext(A) the closure
of A on extensions of pairs of modules. Althought it is more convential not to use
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capital letters in this context, we will be working inside modR the entire time,
so there should be no confusion.

Given a ring R, there are many important classes of modules in modR and
ModR. In this thesis we will be interrested in the left classes of cotorsion pairs.
All the necessary theory concerning these can be found in Göbel and Trlifaj [2012].

Definition. A pair (X ,Y) of classes in ModR is called a cotorsion pair if

Y = X⊥1 = {Y ∈ ModR | ∀X ∈ X : Ext1
R(X, Y ) = 0},

X =⊥1 Y = {X ∈ ModR | ∀Y ∈ Y : Ext1
R(X, Y ) = 0}.

The cotorsion pairs are precisely the pairs of closed classes under the Ga-
lois correspondence given by ⊥1. A cotorsion pair is determined by any of its
two classes. For any classes of modules A, B, we can form the cotorsion pair
(⊥1(A⊥1),A⊥1) generated by A and the cotorsion pair (⊥1B, (⊥1B)⊥1) cogenerated
by B. Especially interesting cotorsion pairs are the ones generated only by a sub-
class of finite dimensional modules A ⊆ modR. Our aim will be to characterize
the classes in modR induced by left classes of such cotorsion pairs; ie. to find
classes of the form ⊥1(A⊥1) ∩modR for A ⊆ modR.

Fact. For any A ⊆ modR, the class ⊥1(A⊥1) ∩modR equals to the closure of A
on projective modules, Ext and Add .

To check that ⊥1(A⊥1) is indeed closed on these is straightforward – since
every epimorphism onto a projective module splits, we get P ⊆ X . The closeness
on Add follows by additivity of Ext1

R, while the closeness on Ext follows from
looking on long exact sequences given by the Ext functor. The other direction
is the interesting one, the proof can be done for instance via [Göbel and Trlifaj,
2012, Corollary 6.14 and Theorem 7.17].

Motivated by this fact, we denote by A the closure of A ⊆ modR on Ext
and Add. As a consequence of Krull-Schmidt theorem, every such closed set A
is determined by its indecomposable modules.

The knowledge of such classes has further consequences concerning the struc-
ture of modR. But for the sake of this thesis, we will be concerned only with the
description of these. The previous fact reduces this description only to under-
standing the relationship of extensions and direct summands over a string algebra
R, which is the subject of what follows.
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2. Tree algebras

2.1 Extensions over tree algebras
The most innocently looking bound quiver algebras are those without any, even
unoriented, cycles. Therefore we shall start our study of string algebras there. It
would make sense to call a ”tree algebra” any algebra of the form KQ/I for Q
a tree. Since we are interested only in string algebras, we will use the following
definition.

Definition. A tree algebra is a string algebra KQ/I for Q an oriented tree.

There are plainly no band modules over tree algebras. Therefore by Sec-
tion 1.2.3 the only indecomposable finite dimensional modules over a tree algebra
KQ/I are the string modules. Since Q is by definition a finite quiver, there are
only finitely many strings, so KQ/I is of finite representation type.

2.1.1 Drawings of tree algebras
For any tree algebra R = KQ/I we can partition the arrows in Q1 into two sets
Ql and Qr, which will be called left and right arrows, in such a way that for any
α ∈ Ql and β ∈ Qr it holds that α · β = 0 = β · α. For any component of Q,
this partition is uniquely determined by the direction of any single arrow. Having
chosen such orientation, we can depict KQ/I in such a way that the arrows from
Ql point from upper left to lower right and the arrows from Qr point from upper
right to lower left.

Figure 2.1: A drawing of some tree algebra. Althought this picture fits into a two
dimensional grid, it doesn’t have to be the case in general, because the regular
tree T2 doesn’t fit there.

This shall be further refered to as the drawing of KQ/I. We will automatically
work with tree algebras with a fixed drawing. Notice that in such a drawing the
arrows with nontrivial composition must have the same direction.

For Q a tree, any string is uniquely determined by its two endpoints. By
fixing a drawing of Q, we automatically get a left-right orientation of all strings
of St(R). We then denote by l(s) ∈ Q0 the left end of a string s and by r(s) ∈ Q0

the right end of a string s.
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Notice that when KQ/I is a tree algebra, Q is a subquiver of the infinite
regular tree T2 – the regular tree with all incoming and outcoming degrees equal
to 2.

Figure 2.2: Infinite regular tree T2.

A tree algebra R = KQ/I is not fully determined by its drawing, because the
drawing needs not remember the entire ideal I. On the other hand, the drawing
remembers something of I – the ideal J generated by all the paths in Q2 of the
form στ , where the target of τ equals to the source of σ and σ, τ have opposite
directions, satisfies J ⊆ I. Moreover, KQ/J is already a string algebra.

In fact, such KQ/J is by definition a gentle algebra. On the other hand if
KQ/I is a gentle algebra, than there is an appropriate drawing with I = J . In
this sense the tree algebras which can be fully determined by their drawings are
precisely the gentle tree algebras.

In the survey of string algebras it will be sometimes useful to fix some drawing
and ignore the relations outside of J , which results into a gentle tree algebra. For-
tunately, many results work also for the original algebra, with implicit restrictions
given by the rest of I.

2.1.2 Action pictures
It is a basic fact that the modules over KQ/I correspond to K-linear repre-
sentations of Q which are trivial on I, ie. that the categories modKQ/I and
rep(Q, I) are equivalent. We will switch between these two viewpoints without
any unnecessary formalism.

Let R = KQ/I be a bound quiver algebra and M ∈ modR. Then M can be
depicted by the following multigraph with edges labelled by the arrows in Q1 and
numbered by the elements of K \ {0}: Given a basis E = (ei | i ∈ I) of M over
K, take the elements of this basis as vertices. For any α ∈ Q1 and any ei we have
unique form α · ei = ∑︁

j∈I λijej for some λij ∈ K. For all j ∈ I for which λij ̸= 0
we draw an edge from ei to ej, then number this edge by λij and label it by α.

Doing this for all α ∈ Q1 and ei, i ∈ I results in a decorated multigraph which
we shall call the action picture of M with respect to the basis E. The edges of
this picture will be called the action arrows and usually denoted by underlined
greek letters. Every action arrow is labelled by the corresponding arrow in Q1.

On the other hand, having such a multigraph yields an action of the arrows
of Q on the vector space spanned by the vertices. If this action respects all the
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necessary relations, we get a well defined R-module.
The action pictures are handy when working with extensions. Suppose we

have an extension X of N by M over a string algebra R. Viewing M and N
only as vector spaces over K, it splits. The non obvious part of the extension is
determined by the action of the arrows in Q1 on some basis EX of X. If we already
have a fixed bases EM of M and EN of N , we can only take EX = EM ∪ EM .

The action of Q1 on EN remains unchanged, since N is a submodule of X.
Because M is a factor of X, the action of Q1 on M is unchanged apart for some
additional nonzero action arrows into N . Put together, the action picture of X
with respect to this EX is obtained by taking the action pictures of M and N
and addinng some action arrows from EM into EN .

2.1.3 Overlappings of strings
We already know that a string s can be seen as a linear quiver together with
a map f quivers η : s → Q. But in the case of tree algebras, this η must be
always injective, so the strings are just linear subquivers of Q which don’t cross
any relations. Moreover, every such string is uniquely determined by its two
endpoints.

As we said earlier, the string module M(s) has then the vertex basis (ev)v∈s0 .
This basis has the property that the corresponding action picture is again just
the string s, with all edges numbered by 1 ∈ K and labeled in the obvious way.

Suppose s, t ∈ St(R). Then, since Q is a tree, these two strings have a unique
maximal common substring p = s ∩ t. We then call this p the overlapping of s
and t. If p is empty, we say that s and t have empty intersection.

To show the aim of the previous discussion, we give a straightforward lemma
which describes the additional action arrows in an extension between string mod-
ules. But first we formulate one trivial fact true for all string algebas.
Proposition 1. Let R = KQ/I be a string algebra, M ∈ mod(R) and v ∈ Q0.
Take any m ∈ Mv. Let Om = {α ∈ Q1 | m /∈ Ker(α)} ∪ {β ∈ Q1 | m ∈ Im(β)}.
Then |Om| ≤ 2
Proof. The arrows of Om must be incident with the vertex v, so trivially |Om| ≤ 4.
But if |Om| > 2, there would be two arrows α, β ∈ Om with αβ ̸= 0 and αβ ∈ I,
a contradiction.
Lemma 2. Suppose that KQ/I is a tree algebra, s, t ∈ St(R), p = s ∩ t. Then
the additional action arrows in any extension X of M(t) by M(s) with respect to
the union of their vertex bases Es = {es

u | u ∈ s0} and Et = {et
v | v ∈ t0} are

among the following.
(i) If p ̸= ∅, then for every arrow α ∈ p1, α : u → v, there is one possible

additional action arrow α : es
u → et

v.

(ii) If p ̸= ∅ and arrow β ∈ (s1∪ t1)\p1, α : u→ v for u ∈ s0, v ∈ t0 is incident
with an outer vertex of p, then there is one possible additional action arrow
β : es

u → et
v.

(iii) If p = ∅ and there is an arrow γ : u→ v such that either u = r(s), v = l(t)
or u = l(s), v = r(t), then there is one possible additional action arrow
γ : es

u → et
v.
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Figure 2.3: The possible additional action arrows, by rows cases (i), (ii), (ii), (iii).

Proof. For the basis of X we have the Es = (es
u|u ∈ s0) and Et = (et

v|v ∈ t0).
Any additional action arrow labeled by α ∈ Q1, α : u → v must run from some
es

u to some et
v.

If p = s ∩ t ̸= ∅ and α : u → v, u ∈ s0, v ∈ t0, then already α ∈ s1 ∪ t1,
because otherwise there would be a cycle in the tree Q. So we get immediately
the cases (i) and (ii), depending on whether α ∈ p1 or α /∈ p1.

On the other hand, if p = ∅, every such α : u → v, u ∈ s0, v ∈ t0 lies
outside of s1 ∪ t1. All the vertex subspaces Xw, w ∈ Q0 of the extension X are
either empty or one dimensional. Suppose that α : es

u → et
v was a nontrivial

action arrow. If u was an inner vertex of s, then es
u ∈ Mu but |Oes

u
| ≥ 3 in

the notation of Proposition 1, which is a contradiction with this proposition.
The same reasoning applies if v was an inner vertx of t, this time for et

v ∈ Mv.
Hence u is an outer vertex of s and v is an outer vertex of t. Having the left right
orientation from the drawing of KQ/I, the arrow α must be either α : r(s)→ l(t)
or α : l(s) → r(t), otherwise the additional action arrow would break a relation
from J ⊆ I. This yields the case (iii).

Notice that the case (iii) is disjoint with cases (i), (ii), which can often occur
simultaneously. When R is a gentle tree algebra, all the additional arrows from
cases (i) and (iii) are always well defined. The additional arrows from case (ii)
don’t need to be well defined even in the case of gentle tree algebras, but their
suitable nontrivial linear combinations are. In the case of non-gentle tree algebras,
many of the described additional action arrows can break relations from I, so
there are possibly less extensions. But it is the only difference.

2.1.4 Extension decompositions
Our main aim is to characterize extensions of finite dimensional modules over
tree algebras in terms of their unique decompositions. Similar characterization for
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extesions between string modules over gentle algebras was independently obtained
by Brüstle et al. [2018]. But we shall use many concepts form this section further.

Definition. Let R be a K-algebra, N , M be indecomosable modules in mod(R).
An extension E of N by M is then called interesting if and only if E ̸∼= N ⊕M .

To give some context to this defininition, we provide a well-known fact, which
asserts that inside modR the interesting extensions precisely correspond to the
non-split ones; nevertheless, the introduced terminology can be convenient.

Fact. Let R be a K-algebra and M , N ∈ modR. Then there exist an interesting
extension of N by M if and only if Ext1

R(M, N) ̸= 0.

Proof. By Yoneda definition of Ext1
R, it is trivial that if Ext1

R(M, N) = 0, there
is no interesting extension of N by M .

For the other direction, we need that M , N are finite dimensonal. We
prove that any exact sequence of the form 0 → N

f−→ N ⊕ M
g−→ M → 0,

where the morfisms f , g aren’t necessary the canonical ones, in fact splits. Us-
ing the HomR(M,−) functor, we get an exact sequence 0 → HomR(M, N) →
HomR(M, N ⊕ M) → HomR(M, M) of finite dimensional vector spaces over
K. The middle term is moreover (naturally) isomorphic to HomR(M, N) ⊕
HomR(M, M). Counting the dimensions, the last morphism must be surjective.
Hence there is some h ∈ HomR(M, N ⊕M) such that idM = gh, so the original
sequence splits as claimed.

Given a tree algebra R = KQ/I, we shall define relations ≥ and > on the
set St(R). The relation > will be in control of the decompositions of extensions:
when working with gentle tree algebras, there will be an interesting extension of
string modules M(t) by M(s) if and only if s > t. For non-gentle algebras, this
will be a necessary condition, the exisstenec of interesting extension depending
on relations of I.

Definition. Let s, t ∈ St(R) and p = s ∩ t their intersection. Denote by α the
rightmost arrow of s which lies to the left of l(p), if it exists. If l(s) = l(p), define
α = ∅. Similarly define β to be the rightmost arrow of t which lies to the left of
l(p), if it exists, and β = ∅ if l(t) = l(p). Then we define s ≥l t when one of the
following holds:

(i) p ̸= ∅, while α = ∅ or l(p) is the target of α, and similarly β = ∅ or l(p) is
the source of β,

(ii) p = ∅ and there is either an arrow γ : r(s)→ l(t) or an arrow δ : l(s)→ r(t).

If moreover l(s) ̸= l(t), we write s >l t.
We define ≥r left-right symmetrically, ie. as ≥l for the opposite orientation of
the drawing of Q.

15



s

t

p
α

β

p

Figure 2.4: Example situation of the definition yielding s ≥l t.

Definition. Let s, t be strings in St(R). Then we define s ≥ t if and only if
s ≥l t and s ≥r t. We write s > t if and only if s >l t and s >r t.

Remark. For > to hold we require both >l and >r to be strict at the same time.
This is strictly aganist the usual convention, but it will clarify what follows.

At this point it is also fair to comment on the properties of these relations.
Althought ≥ is reflexive and antisymetric, it is usually not transitive. The situa-
tion with > is even worse, because of its unconventional definition. Nevertheless
it makes sense to think about these relations as if they were orders.

On the other hand, if we look only at the strings from St(R) containing one
fixed vertex v0, the restricted versions of ≥l and ≥r become linear orders. The
restriction of ≥ is then at least a partial order.

Althought this definiton looks rather technical, it has nice graphical version:
s ≥l t means that there exists some additional action arrow from M(s) to M(t)
and the left side of the string t lies beneath the left side of the string s in the
drawing of Q. The relation s > t moreover states that the string t is strictly
beneath the string s in the drawing of Q on both sides. Here are some examples.

s

t

s

t

s

t

s

t

(b)(a)

(c) (d)

Figure 2.5: Examples of mutual position of pairs of strings. The vertices corre-
sponding to the same vertex of Q are bellow each other. In the examples (a), (b),
(c) it always holds s >l t and s >r t, hence s > t. Concerning (d), the relation
s > t is by definition equivalent to the existence of an arrow sourcing in the left
end of s and targetting in the right end of t.
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(e) (f)

(g) (h)

Figure 2.6: More examples. In (e), we have s >l t but s <r t, so these are
incomparable with respect to ≥ and >. In (f), althought t is somehow degenerate,
we have s < t. In the example (g) we have by definition s >l t and s <r t, as
in (e). Last of all, (h) satisfies s ≥l t and s >r t, but on the left sides the ends
coincide – so we have s ≥ t, but the sharp relation > does not hold.

Remark. Our relations ≥ and > are connected to the hammock posets intro-
duced by Schröer, which are in control of homomorphisms between the string
modules. These hammock posets determine the existence of homomorpisms and
their factorizations between string modules or band modules.

Therefore it makes sense that our relations are very similar to the reversed
relation of hammock posets – but for instance the pairs of strings s > t with
s ∩ t = ∅ don’t fit into this context.

In contrast with hammock posets, we do not work with pointed strings. The
disadvantage is that ≥ and > have worse properties – for instance they are not
transitive. On the other hand, we can compare any two strings without consider-
ing their mutual position. This wouldn’t work for string algebras in general, but
in the case of tree algebras it works nicely.

Since we shall compute our exensions directly, we won’t use the hammock
posets explicitely. Nevertheless these are most relevant. For more about the
hammock posets, we refer the reader to the original paper Schröer [1998], for
brief introduction see Laking [2016].

Before we finaly get to the heart of the matter, we provide few simple facts
and definitions.

Definition (Regluing of strings). Let R = KQ/I be a string algebra. Suppose
we have two strings s, t ∈ St(R). If there exists a string from l(s) to r(t), it is
unique. We denote it by ←→st . In the same manner, the unique string from r(s) to
l(t) will be denoted, if it exists, by ←→ts .

Proposition 3. Let R = KQ/I be a string algebra, X ∈ modR, and let Y be a
direct summand of X. Take y ∈ X and α ∈ Q1. Then

(1) αy ∈ Y ,

(2) if ∃x ∈ X with αx = y, then ∃x′ ∈ Y with αx′ = y.
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Proof. The first fact holds only because Y is a module. For the second one,
suppose X = Y ⊕ Z. Then for x′ = πY (x) ∈ Y it indeed holds that απY (x) =
πY (αx) = πY (y) = y.

Definition. If a subset Y of a module X satisfies these two properties from
Proposition 3 for any y ∈ Y and α ∈ Q1 , we say that Y is closed on images and
some preimages.

Such subsets are important, because every direct summand of X must be
closed on images and some preimages. In particular, for any element x ∈ X we
can look for a minimal set G(x) of nonzero elements of X which is closed on
nonzero images and some preimages and contains x.

Theorem 4. Let M(s), M(t) be string modules over a gentle tree algebra KQ/J .
Then there exist an interesting extension of M(t) by M(s) if and only if s > t.

Proof. Denote by p = s ∩ t the intersection of s and t, which can be empty or
an overlapping. We already know by Lemma 2 which additional action arrows
can appear in the action picture of X with respect to the union of vertex bases
of M(s) and M(t).

We begin by decomposing X into the vertex subspaces. Firstly, there are the
vertices v ∈ s0 ∪ t0 such that v /∈ p0. For every such vertex the dimension of Xv

is 1. The maps between two such vertices are almost always the same as before
the extension, either zero or given by the identity 1. The only other eventuality
is given by the possible action arrow of the form (iii) of Lemma 2.

Secondly, there are the vertices v ∈ p0, yielding subspaces Xv = span (es
v, et

v)
of dimension 2. For any arrow α ∈ p1, α : u → v, there is exactly one possible
additional action arrow labeled by α, namely α : es

u → et
v with some constant λα.

Hence the action of α on X has the form

Aα =
(︄

1 0
λα 1

)︄

with respect to the bases Eu = (es
u, et

u) of Xu and Ev = (es
v, et

v) of Xv. The
constant λα ∈ K is arbitrary, the case λα = 0 correspoding to no additional
action arrow with label α. So α acts from Xu to Xv as an isomorphism, which is
the identity in the first coordinate. This is an important property.

The only arrows we haven’t described so far are the ones joining some one
dimensional Xu with some two dimensional Xv.

Overlapping case
Suppose that the strings s, t overlap in p ̸= ∅. The possible additional action
arrows are given by (i) and (ii) of Lemma 2. We now pick a suitable x ∈Ml(s) and
look for a minimal G(x) closed on nonzero images and some preimages containing
x. In almost all cases it is fine to take x = es

l(s). The only exception will be the
case l(s) = l(p) ̸= l(t) with an arrow β ∈ t1, l(p) → v oriented from right to
left – if this happens, we take x = es

l(s) + λet
l(s) with the unique λ ∈ K such that

βx = 0. This choice will later guarantee that span G(x) is a string module.
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Figure 2.7:

We turn to describing G(x). Plainly G(x) contains all es
v for vertices v ∈ s0

between l(s) and l(p) inclusively, because the corresponding arrows of Q1 act
as one dimensional identities. Notice that es

l(p) does not interact with the other
arrow β incident with l(p) from the left, if such β exists: When l(s) ̸= l(p), this
is prohibited by the relations in J . If β targets in l(p), it is also easy since there
is no additional action arrow labelled by β. Of the last case we have taken care
of in advance by redefining x = es

l(s) + λet
l(s). All in all, by the choice of x, such

arrow does not contribute to G(x).
Now, since all the arrows α ∈ p1 act as the isomorphisms

Aα =
(︄

1 0
λα 1

)︄
,

closing on images and some preimages of these yiels for every v ∈ p1 precisely
one element in Xv of the form es

v +λvet
v, the constants λv ∈ K being given by the

compositions of the matrices Aα. Finally, we get some es
r(p) + λr(p)e

t
r(p). Taking

into account all possible extensions, it is easy to see that this λr(p) ∈ K can be
arbitrary. There are at most two arrows to the right of r(p) incident with it; at
most one of them belongs to s and at most one of them to t and by the properties
of drawings one of them sources in r(p) and the other one targets in r(p). Denote
them σ : r(p)→ u and τ : w → r(p), respectively.

For a moment, suppose that both σ and τ exist. Then στ ∈ I, so Im τ ⊆
Ker σ. Independently of any additional action arrows labelled by σ or τ , it holds
that rank σ = 1 = rank τ , so in fact Im τ = Ker σ.

Now, if σ ∈ s1 and τ ∈ t1, then there are no additional action arrow with these
labels. Hence σ(es

r(p) + λr(p)e
t
r(p)) = σ(es

r(p)) = es
u ̸= 0 and es

r(p) + λr(p)e
t
r(p) /∈ Im τ .

So only σ contributes to G(x). By closing G(x) on images and some preimages
of the remaining arrows of s1, we get span G(x) ∼= M(s).

On the other hand, if τ ∈ s1 and σ ∈ t1, the situation is more interesting and
the resulting G(x) truly depends on λ. For one specific κ ∈ K determined by
the action of τ , we get es

r(p) + κet
r(p) ∈ Im τ and again span G(x) ∼= M(s). But

for all other λ ̸= κ this is not the case, so from Im τ = Ker σ it follows that
σ(es

r(p) + λr(p)e
t
r(p)) is a nonzero multiple of es

u. By closing G(x) on images and
some preimages of the remaining arrows of t1, we get span G(x) ∼= M(←→st ).

If some of these σ, τ doesn’t exist, the above observations about the shape of
G(x) follow even more easily (to save work, we can just formally add such arrows
over possibly bigger algebra R and then use the same argument).

In the same way, we can take y ∈Mr(s) and form G(y); by left-right symmetry,
this works exactly the same as in the case of x and G(x). Now it is finally time
to determine the decomposition of X. Depending on the position of strings s and
t, there are two posibilities.
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(1) s >l t and s >r t, equivalently s > t

Then σ ∈ t1 and τ ∈ s1 and span G(x) is isomorphic either to M(s) or to
M(←→st ) as we have proved. Using the left-right symmetry, we also get that
the span of G(y) is isomorphic either to M(s) or to M(←→ts ).
If span G(x) ∼= M(s), the extension splits into X ∼= span G(x)⊕M(t). The
same happens if span G(y) ∼= M(s).
On the other hand, if span G(x) ∼= M(←→st ) and span G(y) ∼= M(←→ts ), we
claim that X ∼= span G(x)⊕ span G(y).

s

t

τ

σ

L

st

ts

Figure 2.8: The interesting extension in case s > t.

(2) s ≤l t or s ≤r t
Using the left-right symmetry, wlog assume s ≤r t. Then σ ∈ s1 and τ ∈ t1,
if they exist, and the span of G(x) is isomorphic to M(s). In this case we
claim that X ∼= span G(x)⊕M(t).

s

t

τ

σ

Figure 2.9: Wlog the case s ≤r t, when no interesting extension exists.

In both cases, we have found two well-defined indecomposale submodules A,
B and we claim that they provide the decomposition of X. In order to check
this, it suffices to show that they provide a direct decomposition as vector spaces.
Since X is finite dimensional and dim A + dim B = dim X, it suffices to show
that there is no equality of the form a = b for a ∈ A and b ∈ B, at least one of
them nonzero. But if such equality would hold, then the same would be true in
Xv for some v ∈ Q0. So in the end we would have A ∼= B. But this is obviously
not true since the strings corresponding to A and B have different shape (treating
separately s = t, which trivially results into a split extension).

Empty intersection case
Last of all, we assume that s ∩ t = ∅, but there is an interesting extension of
M(t) by M(s). So the case (iii) of Lemma 2 occurs; there exists either an arrow
γ : r(s) → l(t) or there exists an arrow δ : l(s) → r(t), the only additional
action arrow being either γ : es

r(s) → et
l(t) or δ : es

l(s) → et
r(t), respectively, with

some coefficcient 0 ̸= λ ∈ K. So we get (rescaling the elements of Et by λ) the
decomposition X ∼= M(←→st ) or X ∼= M(←→ts ), respectively.
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t
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Figure 2.10: The interesting extension in the empty intersection case.

To be absolutely honest, so far we have shown that s > t is a necessary
condition for such an interesting extension X to exist. It remains to show that
whenever s > t, we can truly construct the promised extensions. Because we are
working with gentle tree algebras, this indeed works – all additional arrows from
(i) and (iii) of Lemma 2 are always well defined, so in these cases it is trivial
to construct the desired extensions using just one additional arrow. The only
remaining case is when p = s ∩ t is a degenerate string, which sometimes forces
us to use two additional arrows – but nevertheless it suffices to check this only
for few small configurations. Hence we are done.

Remark. In the proof we have provided an explicit decomposition of the extension
into indecomposabe modules, which is then unique by Krull-Schmidt theorem. By
the knowledge of indecomposable modules over R , we could have avoided some
of the work – there simply aren’t any other possibilities how the decompositions
could look like.

Remark. Notice that when s ≯ t, the base change from previous proof only
changes the basis of M(s), whereas M(t) remains unchanged. This will be impor-
tant when working with extensions of other string algebras. This is just another
way of stating that whenever s ≯ t, the extension of M(t) by M(s) always splits.

It is straightforward to generalize Theorem 4 to tree algebras with relations.

Corollary 5. Let M(s), M(t) be string modules over a tree algebra R = KQ/I.
Then there exist an interesting extension of M(t) by M(s) if and only if s > t

and ←→st , ←→ts are both well defined strings over R. This interesting extension then
decomposes as M(←→st )⊕M(←→ts ).

Proof. Follows from the previous Theorem 4. If s > t and both ←→st , ←→ts are in
St(R), then the interesting extension of M(s) by M(t) is well defined and results
in X ∼= M(←→st )⊕M(←→ts ) by the argument of Theorem 4.

On the other hand, the proof of Theorem 4 shows that any interesting ex-
tension of M(s) by M(t) over the gentle tree algebra KQ/J decomposes as
X ∼= M(←→st )⊕M(←→ts ), so it does the same over R, hence the underlying strings
need to be in St(R). (The base change of subspaces Xv works always the same,
regardless of the relations in I.)

Remark. When dealing with extensions of decomposable finite dimensional mod-
ules, it is possible to give a similar combinatorial characterization (in terms of
their decompositions). The combinatorics turns to be very similar to the one just
shown, only allowing ”multiple jumps between strings”. This will be implicitely
treated in the following section.
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2.2 Closed classes for tree algebras

2.2.1 General observations
For a bound quiver algebra R, the indecomposabe modules of the class P of
projective finite dimensional modules are precisely the submodules of the regular
module R generated by the vertices, since their sum is R and they are indecom-
posable. In the case of string algebras, P consists of some string modules. Notice
that every element of P is minimal with respect to >.

Recall from Section 1.3 that for a subclass A ⊆ modR we shall denote by A
the closure of A on Ext and Add. Ultimately we wish to describe classes of the
form A ∪ P . We will further denote by Extind the closure on extensions of pairs
of indecomposable modules.

Definition. We say that a K-algebra R has the extension decomposition property
if and only if for any A ⊆ modR it holds that the closure A of A on Ext and Add
is the same as the closure of A only on Extind and Add.

Remark. The extension decomposition property doesn’t hold in general for (pos-
sibly infinite-dimensional) K-algebras. However, it turns out that it holds for the
algebras we are interested in. So it is a sensible thing to ask which algebras have
this property.

We now present few propositions which hold for arbitrary string algebras.
Althought we must pick words more carefully when proving them, the proofs are
almost the same as in the case of tree algebras.

Proposition 6. Let R by a K-algebra, A ⊆ modR. When computing A, it
suffices to take extensions by indecomposable modules.

Proof. Suppose that M , N ∈ A have decompositions M = ⨁︁m
i=1 Mi and N =⨁︁n

j=1 Nj. Consider some extension X of N by M . This extension is given by
some action arrows on the union of bases of modules Mi, i = 1, . . . , m and Nj,
j = 1, . . . , n.

In particular if m ≥ 2, one can view X as an extension of some module X ′,
which appears as an extension of ⨁︁n

j=1 Nj) by ⨁︁m−1
i=1 Mi, by Mm. Using this

observation repeatedly, it is sufficient to close A only on extensions of the form
Ext1

R(M,
⨁︁n

j=1 Nj) for M , Nj ∈ indR, as claimed.

Proposition 7. Let KQ/I be a string algebra. Suppose that Z is an extension
of N by M with M = ⨁︁m

i=1 M(gi), N = ⨁︁n
j=1 N(hj), Z = ⨁︁z

k=1 Z(qk) being the
decompositions into string and band modules. Then the endpoints of strigs among
q1, q2, . . . , qz form a subcollection of endpoints of strings among g1, g2, . . . , gm and
h1, h2, . . . , hn.

Proof. Take an arrow α ∈ Q1, α : u → v. For each Z(qk) from Z = ⨁︁z
k=1 Z(qk)

consider α as its linear endomorphism. Then rank α equals to the number of
occurences of α in qk times the common dimension dk of the subspaces sitting at
vertices of qk.

But for any α ∈ Q1, the additional action arrows in the extension Z don’t
decrease rank α, which must remain the same throught the base change leading
to the direct decomposition of Z. So fix a vertex v ∈ Q0 and focus on the vertex
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subspace Zv. There are at most four arrows incident with v, denote them by
α, β, γ, δ. We will compute rv = rank α + rank β + rank γ + rank δ in Z in two
ways (if there are less than four arrows incident with v, we define the remaining
ranks formally to be 0).

If v /∈ q0
k, then Z(qk) doesn’t contribute to rv. For any occurence of v ∈ q0

k

as an inner vertex, Z(qk) contributes by 2 · dk. If qk is a string, then for every
occurence of v ∈ q0

k as an outer vertex, Z(qk) contributes by dk = 1. Summing
over all summands, we get

rv = 2 · dim Zv −# of occurences of v as an outer vertex of qk.

Similarly, we can compute r′
v, the sum of these ranks before the extension.

If v /∈ gi resp. v /∈ hj, the corresponding module doesn’t contribute to r′
v. For

every occurence of v ∈ g0
i resp. v ∈ h0

j as an inner vertex, the module contributes
by two times the common dimension of its vertices. Finally, for every occurence
v ∈ g0

i resp. v ∈ h0
j as an outer vertex of a string, it contributes at least by 1.

Therefore

r′
v = 2 · (dim Mv + dim Nv)−# of occurences of v as an outer vertex of gi or hj

Since the extension doesn’t decrease the ranks, rv ≥ r′
v. We also know that

dim Zv = dim Mv + dim Nv. Comparing the two results, we are done.

Corollary 8. Let Z be an extension of N by M , with M and N having m and n
string modules in their unique decompositions. Than Z has at most m + n string
modules in its decomposition.

Proof. Every string has exactly two ends. So the Proposition 7 precisely bounds
the number of strings in the decomposition of Z by the number of strings in the
decompositions of M and N .

2.2.2 Closed classes for tree algebras
Take R = KQ/I a tree algebra. In Theorem 4 we have explicitly described the
possible decompositions of extensions of pairs of modules from indR. Now we
would like to use this description to find the classes A. If the tree algebra KQ/I
had extension decomposition, we would be done, the closure of any set of string
modules being given by the iterative use of the combinatorial closure property
from Corollary 5. Luckily, this is the case.
Remark. We can rephrase Proposition 7 to get that if Z is an extension of N by
M with M = ⨁︁m

i=1 M(si), N = ⨁︁n
j=1 N(tj), Z = ⨁︁z

k=1 Z(qk) being the decom-
positions into string modules, then the left endpoints (l(qk) | k = 1, . . . z) form
a subcollection of (l(si) | i = 1, . . . m) ∪ (l(tj) | j = 1, . . . , n) with multiplicities.
The same works symmetrically for the right ends.

To prove this modified version, it suffices to fix the vertex u and take the at
most two arrows σ, τ incident with u from the left. Then an analogous counting
argument for rank σ + rank τ together with στ, τσ ∈ I yields the result.

Theorem 9. Every tree algebra R = KQ/I has the extension decomposition
property.

23



Proof. Because of Proposition 6 it sufficess to check that every indecomposable
summand L of an extension X of ⨁︁n

i=1 N(ti) by M(s), where s, t1, t2, . . . , tn ∈
St(R), is in fact already in the closure of A = {M(s)} ∪ {N(ti) | i = 1, 2, . . . n}
on Extind and Add.

We shall prove this claim by induction. If n = 0 then L = M(s). If n = 1,
then L is a summand of an extension of N(t1) by M(s). In both cases the claim
holds trivially. Further suppose n ≥ 2.

If some N(tj) with the canonical inclusion is a direct summand of X, we can
rewrite X = N(tj)⊕ Y , so every other direct summand L of X is in fact a direct
summands of Y , which is an extension of ⨁︁i ̸=j N(ti) by M(s). Hence L is in the
closure of A on Extind and Add by the inductive assumption. Since N(tj) ∈ A,
in this case we are done. Therefore we can (using Corollary 5)further assume ∀i
that s > ti.

Now we make the crucial step: we pick some tj which is minimal with respect
to the relation ≥ on strings. Moreover, we take tj with tj ∩ s = ∅ first. We then
for a while forget all modules except for M(s) and N(tj) and perform the base
change from the proof of Theorem 4 on the extension of these two. If it splits, we
are done by the observation from preceeding paragraph, so we can assume that
this extension C of N(tj) by M(s) is interesting.

Looking at the action picture, we have thus obtained X as an extension of⨁︁
i ̸=j N(ti) by C. We now use the minimality of ti to pass to the induction

assumption. For clarity, we split the argument into two cases.
C is indecomposable (Which corresponds to the case (iii) of Lemma 2.)

Then we are almost immediately done, because we know that X is isomorphic
to an extension of the sum of n − 1 indecomposable modules N(ti), i ̸= j by
an indecomposable C. So if all N(ti) and C were elements of the closure of A
on Extind and Add, we would be done by the inductive assumption. But the
modules N(ti) are in A from the beginning, while C is an extension between two
indecomposable elements N(tj) and M(s) from A, so it lies in the closure of A
on Extind and Add too.

C is decomposable (So some of the cases (i), (ii) of Lemma 2 happened.) By
the characterization from Corollary 5, C = M(←→stj)⊕M(←→tjs) is the decomposition
into indecomposables. We can moreover assume that all ti have a nontrivial
intersection with s, otherwise there would be such minimal one and tj wouldn’t
be chosen properly. We look now at the action picture of X (with respect to the
union of vertex bases) of M(←→stj), M(←→tjs) and N(ti) for i ̸= j).

By the minimality of tj, no string ti satisfies both ←→stj > ti and ←→tjs > ti

simultanuosly. This can be seen as follows. From the decomposability of C we
know that s ∩ tj ̸= ∅. For any other ti we already have ti ∩ s ̸= ∅. If moreover
←→
stj > ti and ←→tjs > ti, we actually arrive at s ∩ ti ∩ tj ̸= ∅, so we can take some
vertex v0 from this intersection. But ≥l, ≥r are linear orders on the set of strings
containing v0. This implies tj >l ti and tj >r ti, hence tj > ti, contradicting the
minimality of tj.

Therefore we can split all the N(ti) into two collections B and C, such that
the modules from B have only trivial extensions by M(←→tjs) and the modules from
C have only trivial extensions by M(←→stj).

By a suitable base changes (done in any order accordingly to the proof of
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Theorem 4 for these pairs of modules without any nontrivial extension), the action
picture splits into two disjoint action pictures with no action arrows between;
one of them corresponding to an extension or a direct sum of modules from B by
M(←→stj), the other one corresponding to an extension direct sum of modules from
C by M(←→tjs), the original X being the direct sum of these two extensions. But B∪
C ⊆ A and both M(←→stj), M(←→tjs) are in the closure of A on Extind and Add. Since
both of the described extensions are extensions of at most n− 1 indecomposable
modules by one indecomposable module, the inductive assumption applies and
we are finally done.

Remark. It is fair to point out one technicality we have ignored in the proof: when
forming the decomposition C = M(←→stj) ⊕M(←→tjs), we should have checked that
these are truly well defined strings over R. This is the case; but the work can be
avoided by passing to some underlying gentle algebra KQ/J , doing the compu-
tations there and then returning to the original R, stating that the computations
with vector spaces were independent of the additional relations.
Corollary 10. Let R = KQ/I be a tree algebra and A ⊆ indR, then the smallest
left class of a cotorsion pair containing A is precisely the closure of A ∪ P on

(⋆) If s, t are strings in A with s < t and ←→ts , ←→st are in St(R), then ←→ts ,
←→
st ∈ A.

Proof. Previous Theorem 9, definition of extension decomposition property and
Corollary 5.

The proof of Theorem 9 in fact yields a nice algorithm for computing the
decomposition of any extension X into indecomposables. Althought we could
provide more explicit description, we won’t bother to formalize this at the mo-
ment. We will rather show how these decompositions look like by an instructive
picture.

s

t1

t2

t3

t4

t4st3

st1

t1t2

t2t4

Figure 2.11: The decomposition of extension of N(t1) ⊕ N(t2) ⊕ N(t3) ⊕ N(t4)
by M(s), where all the extensions of N(ti) by M(s) were interesting.

To summarize the outputs of this work, for a tree algebra R we have described
the closure of anyA ⊆ modR on Ext and Add in an elementary way, manipulating
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with elements of St(R). These strings are determined only by their endpoints,
so they can be represented by a subset of Q0 × Q0. The only combinatorial
closure property (⋆) permits to exchange endpoints of some pairs of strings; in
Q0 × Q0 this is represented by adding the ”middle” vertices of rectangles which
already have the ”upper” and the ”lower” vertex. This in turn yields the desired
description of classes A ∪ P with A ⊆ modR because the indecomposables of P
can be immediately read from Q and I.

2.2.3 Closed classes for gentle tree algebras
When working with a gentle tree algebra KQ/J , there is a bit nicer restatement of
(⋆) from Corollary 10, using the projectives P . Unfortunately this trick can have
problems when we permit more relations – nevertheless it can be often helpful
even in the case of arbitrary string algebras.

So start with a gentle tree algebra R = KQ/I. Suppose s, t ∈ St(R) with
M(s), M(t) ∈ A. We already know by Corollary 10 that if s > t (or vice versa)
and ←→ts , ←→st ∈ St(R), then ←→ts , ←→st ∈ A. The case when l(s) = l(t) or r(s) = r(t)
is not interesting – there is no interesting extension between M(t) and M(s) and
the strings ←→st , ←→ts are only s, t in some order.

Suppose now that s >l t and s <r t (or vice versa). In particular, s ∩ t ̸= ∅.
So take any u ∈ p0 and consider the projective Pu with underlying string q. Then
s ≥ q and t ≥ q. More precisely, we know that s >l q, s ≥r q, t ≥l q and t >r q.
We shall prove that M(←→ts ) ∈ A ∪ P .

If r(s) = r(q) or l(t) = l(q), then ←→ts = ←→tq or ←→ts = ←→qs , respectively. So
it suffices to use the interesting extension of Pu by M(t) or M(s). So we can
assume s > q and t > q. We can now obtain ←→ts in two steps. First take the
interesting extension of M(q) by M(t), which has M(←→tq ) as a summand. But
s >
←→
tq , so we can then extend M(←→tq ) by M(s) and get M(←→ts ) as a summand,

hence M(←→ts ) ∈ A.
Remark. The auxiliary extension of the projective module Pu can be often used
also in the setting of non-gentle tree algebras. For instance when u is an inner
peak of p and the desired string←→ts is well-defined, all the necassary strings really
exist. But in some degenerate cases there need not be a vertex u with these
properties and it can happen that ←→ts /∈ A ∪ P .

We now rephrase the discussion to form a lemma, which formaly staightens
the combinatorial closure properties for gentle tree algebras.

Lemma 11. Let R = KQ/I be a gentle tree algebra. Let s, t ∈ St(R) with M(s),
M(t) ∈ A ∪ P. When ←→ts ≤ s or ←→ts ≤ t, then M(←→ts ) ∈ A ∪ P.

Proof. From what we know, this is a straightforward case chase. By left-right
symetry, we consider only the first part of the lemma. Take s, t ∈ St(R) and
suppose ←→ts ∈ St(R).

If s ∩ t = ∅, then the condition ←→st ≤ s or ←→st ≤ t is indeed satisfied and
M(←→st ) ∈ A.

If s ∩ t ̸= ∅, there are two possibilities. The case s > t (or vice versa) is
covered by Theorem 4. On the other hand the case s ≥l t and s ≤r t (or vice
versa) is covered by the discussion above.
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3. Comments and conclusion
There is not enough space in this thesis to proceed further, but nevertheless I
would like to casually comment on some related topics.

3.1 String algebras and topology
As promised in the begining, there exist some geometrical viewpoints on string
algebras. Althought we won’t consider these, I would like to briefly present more
topological view on strings and bands, which can be of some help when considering
arbitrary string algebras.

Let R = KQ/I be a string algebra. Every string s ∈ St(R) is a word yielding
a path in Q. This path connects two vertices of Q and doesn’t cross any relation
from I. Moreover it doesn’t have αα−1 or α−1α as a subword for any α ∈ Q1,
so it is a reduced word in the corresponding free group. If we now view Q as
a topological space, the string s determines a path s̃ : ([0, 1], {0, 1}) → (Q, Q0).
Working with the words up to cancellation (as with elements of the free group),
s̃ is determined uniquely up to homotopy. The word defining the string s is
then the unique reduced word defining this path s̃. Conversely, when a path
s̃ : ([0, 1], {0, 1}) → (Q, Q0) doesn’t cross any relation from I, it can be shown
that it defines a unique reduced word s giving a well defined string. All in all,
strings correspond bijectively to those elements of the fundamental grupoid of Q,
which begin and end in vertices and can avoid relations from I.

In the same manner we can treat the bands – a band b determines a loop
b̃ : S1 → Q uniquely up to homotopy, no power of which crosses any relations
from I. Since we demand that the band b is primitive, b̃ is not a proper power of
any other element of the fundamental group of Q. Conversely, these topological
conditions characterize the elements b̃ of the fundamental group which are given
by some band b. The band b then corresponds to the unique reduced word
defining b̃. For a given band b, the corresponding band modules are indexed
by their dimension m and by some indecomposable automorphisms. This m is
intuitively related to bm.

Having this in mind, we can consider various covering spaces of the quiver Q.
The covering maps then induce homomorphisms of the quiver algebras. We can
then easily lift the monomial relations to get the covering algebra. Modules over
this algebra then naturally become modules over the original algebra. Having
such a covering space, we can also lift strings and bands.

In particular, we can take the universal covering quiver U of Q. If R was a
string algebra, this U is a subtree of the infinite oriented regular tree T2. Given
a, b ∈ St(R) ∪ Ba(R) for an arbitrary string algebra R, a and b usually have
more common maximal substrings, which can even overlap. But when we lift a
and b to a′ and b′ in U , they again have an unique maximal substring a′ ∩ b′.
This corespondence gives a clear way of describing the possible additional action
arrows in extensions of M(b) by M(a). Moreover, we can often locally work over
U and then project the results back to Q. For instance, if the lifts a′, b′ of a and
b don’t satisfy a′ > b′, we can perform the base change from Theorem 4 which
deletes all the action arrows corresponding to this intersection. By projecting
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this base change to the original modules, we get rid of all the action arrows in
the original extension between strings a, b. Hence we can wlog consider only
extensions when a′ > b′.

In this way, it is possible to recover a lot of concepts described earlier in the
case of tree algebras for arbitrary string alebras.

3.2 Questions and conjectures
We now take the liberty of posing a few related questions.

Question. Which K-algebras R have the extension decomposition property?

The extension decomposition property is formulated only in the language of
the category modR, so it is a homological property. Apart for some intristic
interest, this property simplifies the description of the classes in modR given by
cotorsion pairs: for instance when an algebra R of finite representation type has
the extension decomposition, the search for such classes boils down to calculating
finitely many Ext groups.

For this kind of trick, the extension decomposition property is unnecesarilly
strong – it suffices to know it only for classes contatining P . Also, althought we
have shown extension decomposition property for tree algebras, it was rather a
consequence than a method.

Question. Describe the classes A, where A ⊆ modR, over arbitrary string alge-
bra R.

This should be possible using similar combinatorial means as in the case of
tree algebras, although much more technical. In light of Proposition 7 it makes
sense to determine the strings in such a class first, because no string can arise
from extensions between bands. Having them, it is necessary to determine the
primitive bands – the ones which can be obtained by some interesting extension as
well as the ones which ”just appear”. Having these, the rest more or less follows.

This combinatorics should be similar to the one just exhibited – only there
can be many ”jumps” between strings and bands in single extension. It would be
also interesting to check the extension decomposition property for string algebras
in general, which appears to hold.

3.3 Conclusion
In conclusion, we have described the extensions and their decompositions in the
category modR for any tree algebra R = KQ/I by purely combinatorial means.
Moreover, we have used this to prove that tree algebras posess the extension de-
composition property, which enabled us to describe the desired classes induced
by cotorsion pairs by one combinatorial closure property (⋆) on the set of strings
St(R). It appears possible to employ the similar ideas for arbitrary string alge-
bras.

28



Bibliography
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