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Abstract: Theoretical and ab initio description of realistic material behavior is
complicated and combinations of various scattering mechanisms or temperature
effects are often neglected, although experimental samples contain impurities and
modern electronics work at finite temperatures. In order to remove these knowl-
edge gaps, the alloy analogy model is worked out in this thesis and implemented
within the fully relativistic tight-binding linear-muffin-tin orbital method with
the coherent potential approximation. This first-principles framework is shown
to be robust and computationally efficient and, consequently, employed to in-
vestigate bulk solids and their spintronic applications. Unified effect of phonons,
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electrical transport (longitudinal and anomalous Hall resistivities) and scattering
mechanisms are explained from electronic structures. Moreover, novel data help
to identify defects in real samples and experimentally hardly accessible quantities
are presented, such as spin polarization of electrical current. Calculated results
for both zero and finite temperatures are reliable not only for non-magnetic and
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Introduction

Electrical devices are a part of our everyday life. Computers or gadgets are
common and user-friendly; moreover, technology is improved almost every day.
Many novel technological approaches are based on discoveries of new physical
phenomena, material behavior, or design of complex structures. For example,
manipulation of electron spin became in the center of attention of many scientific
groups, which led to a new field of physics - spintronics. For these purposes, es-
pecially magnetic solids and their transport properties are of a great importance.

Many material properties directly depend on finite temperatures and some
of them even dramatically change when temperature is varied, e.g., magnetic
properties of solids around their critical temperatures. Experimental examination
of all of the material properties and parameters is an almost impossible task;
therefore, ab initio techniques of modern electron theory of solids are used to
design novel materials and related phenomena. Moreover, calculations are the
only way to study some of the effects which are not even directly observable in
experiments.

More than fifty years after the Hohenberg-Kohn theorems were published,
giving rise to nowadays generally used density functional theory, ab initio treat-
ment of temperature-induced effects is still a challenging task. On the other
hand, finite-temperature phenomena should not be neglected because they may
strongly influence, e.g., spintronic devices. Especially electrical transport proper-
ties and their correct and efficient first-principles description are essential for the
purposes of novel electronics; moreover, their description is needed for complete
understanding of basic physical phenomena.

Aims of the thesis Based on the short overview presented above, this thesis
is focused especially on:

1. implementation of the alloy analogy model (AAM) for chemical and spin
disorder and atomic displacements within the tight-binding linear-muffin-
tin orbital (TB-LMTO) method with the coherent potential approximation
(CPA),

2. realistic description of finite temperatures, i.e., a combined effect of atomic
displacements and fluctuations of magnetic moments on the electronic struc-
ture and transport properties, and

3. study of spintronic materials influenced by various types of disorder (impu-
rities, phonons, and magnons).

In details, the AAM deals with atomic displacements (shifts of nuclei from
equilibrium positions, phonons) and magnetic disorder (fluctuations of magnetic
moments, magnons) similarly to a description of multicomponent alloys. Pre-
sented methods are based on the AAM implemented within the CPA. This thesis
presents theoretical investigation of spin-dependent transport in magnetic solids,
numerical treatment of materials or phenomena relevant for spintronics (such as
spin-disorder resistivity and structural and magnetic anisotropy), and implemen-
tation of the AAM in the existing TB-LMTO ab initio numerical codes.



Especially electrical transport properties are studied in this thesis for temper-
atures 7' both 7" = 0 and 7" > 0. Finite-temperature phenomena (phonons and
magnons) are employed as a scattering mechanism, which gives finite electrical
conductivities even for systems without chemical impurities. A combined effect
of different disorders is also studied both in the scalar-relativistic and in the full
Dirac approaches and calculated results agree to great extent with literature. The
AAM is also used by other authors but nearly no applications of this model to
electrical transport properties in complex systems (Heusler alloys, antiferromag-
nets, etc.) have been published; see Sec. 2.1 for an overview of approaches.

Structure of the thesis To investigate accurateness and robustness of pre-
sented methods, the treatment of finite temperatures was firstly tested on sim-
ple systems (transition metals, binary alloys). Afterwards, the combination of
phonons, magnons, and impurities for complex systems (especially NiMnSb and
CuMnAs) were studied. The thesis is structured in the following way: (i) Current
knowledge and existing ab initio methods are introduced in Chapter 1, whereas
later parts of the thesis show novel approaches and results. (ii) Our techniques
developed or modified in order to deal with finite temperatures are presented in
Chapter 2. (iii) The Chapter 3 is focused on numerical details of our methods
and implementation of AAM. (iv) Calculated electrical resistivity and conduc-
tivity are discussed in Chapter 4 and the agreement with experimental or other
theoretical data is shown for transition metals and random alloys. Moreover, it
also shows investigation of spin-resolved conductivities and spin polarization of
electrical current, which are of extreme importance for spintronics. (v) Last but
not least, Chapter 5 is devoted to comprehensive studies of half-Heusler NiMnSb
and antiferromagnetic CuMnAs.

Overview of publications Results presented in this thesis may be mostly
found in following publications that were published (P) or submitted (S); two
manuscripts are in preparation (IP) and close to a submission:

- Ref. [1] (P): An implementation of the AAM within the scalar-relativistic for-
malism is tested on the electrical resistivity of transition metals; finite tem-
perature is described only by atomic displacements.

- Ref. [2] (P): Ni and Cu-Ni alloys are studied by the fully-relativistic approach;
the electrical resistivity and anomalous Hall conductivity with atomic dis-
placements are demonstrated together with the high-temperature state (dis-
ordered local moments with high magnitudes of displacements).

- Ref. [3] (P): A necessity to include spin fluctuations (stabilized by magnetic
entropy) for a study of Fe and Fe-Si random alloy at the conditions of the
Earth’s is presented together with a discussion of atomic displacements at
high temperatures.

- Ref. [4] (P): Longitudinal conductivity, the anomalous Hall effect, and spin-
resolved electrical transport are investigated in Pd and Cu-Ni alloys to show
an importance of the fully-relativistic transport calculations with atomic
displacements.



- Ref. [5] (P): Disordered Ni-Fe alloy is described with atomic displacements and
with an extension of the disordered local moment with fixed spins for two
magnetic species.

- Ref. [6] (P): A pilot study of half-Heusler alloy NiMnSb with both phonons and
magnons which shows half-metal’s electrical transport properties including
the spin-polarization of the electrical current up to the Curie temperature.

- Ref. [7] (P): The spin-disorder resistivity obtained within the scalar-relativistic
formalism agree with experimental data for a wide range of magnetic ma-
terials.

- Ref. [8] (P): Different scattering mechanisms (chemical disorder, phonons, mag-
netic fluctuations, and electron-electron correlations) are investigated for
iron-based alloys at the Earth’s core conditions to investigate a validity of
the Matthiessen’s rule.

- Ref. [9] (S): Detailed investigation of NiMnSb presenting satisfactory agree-
ment of the AAM with experimental data; both the temperature-induced
disorder and chemical impurities are included for a treatment of electri-
cal resistivity, the anomalous Hall effect, and the spin-polarization of the
electrical current.

- Ref. [10] (IP): Anisotropy of resistivity induced by the hexagonal structure of
Co, Ru, Os, and Co-based alloys is studied with finite temperatures being
used as one of the scattering mechanisms.

- Ref. [11] (IP): Comprehensive study of electrical transport properties of bulk
tetragonal CuMnAs comparing experimental and calculated data, includ-
ing finite-temperature resistivities and anisotropic magnetoresistence for
various chemical impurities.

A complete list of publications including full names of the articles and authors is
at the end of this thesis.






1. Electronic origins of materials
behavior



1.1 Material properties

Crystalline solids, which are in the center of attention of this thesis, exhibit
various properties. With an increasing performance of computers, not only ex-
perimental techniques are used to characterize materials but also the ab initio
methods are employed. They are based on diverse theoretical and experimental
approaches and they may describe a wide range of material behavior [12, 13].

We focus on bulk magnetic materials that are relevant for spintronic appli-
cations. Among all possible properties, the most important for this thesis is the
electrical transport of materials influenced by disorder, especially by chemical im-
purities and finite temperatures (phonons and magnons). This Chapter presents
material properties that are studied on specific systems in the later parts of the
thesis.

1.1.1 Magnetism

Magnetism is, in general, caused by electrical current, i.e. moving electrons,
or magnetic moments of particles. This thesis is focused on transition-metal
based magnetic materials. Their magnetism mostly arises from uncompensated
spin magnetic moments of electrons. We note that nuclei may be also a source
of magnetism, but it is negligible with respect to the magnetization caused by
electrons [14]. The orbital magnetic moment of the electrons in solids is usually
a few percents of their total moment (sum of spin and orbital moments).

Based on behavior in an external magnetic field, materials may be divided
into several groups: diamagnets, paramagnets (PM), ferromagnets (FM), antifer-
romagnets (AFM), and ferrimagnets [14-16]. Moreover, other kinds of magnetism
exist, e.g., superparamagnetism or spin glasses, but they are beyond the scope of
this thesis.

All materials tend to oppose their orbital magnetic moments to an external
magnetic field, this property is called diamagnetism. The diamagnetism is usually
overwhelmed by another kind of magnetic response and the pure diamagnetic
response is observed only in materials having no unpaired electrons.

The PM materials have unpaired electrons and an applied magnetic field aligns
the electrons’ spins to be parallel to the field. It produces net attraction of the
material to the field. In the first approximation, the magnetization M of the PM
materials is proportional to the magnetic field H. The Curie’s law then states [15]

“q, (1.1)

M: H:
XHE=

where y is a material-specific susceptibility. The second part of the Eq. 1.1, where
C' is the Curie constant, describes a decrease of the magnetization for nonzero
temperature T

The magnetic moments of the FM materials are aligned by the external field
similarly to the PM systems; moreover, the moments have a tendency to be par-
allel to each other. They are aligned in this way bellow the Curie temperature T
and for T" > T the temperature-induced fluctuations of the magnetic moments
overwhelms the decrease of energy caused by the FM order. For the susceptibility



above Tg, the following holds (the Curie-Weiss law, [15])

. C
T T

The AFM materials have zero net magnetization, which is caused by compen-
sation of the magnetic moments on different sublattices. The compensation may
be based on strictly opposite magnetic moments (on two sublattices) or on more
directions of the moments canceling out each other (noncollinear AFM). Various
directions of the moments also lead to geometric frustration observed for some of
the AFM, i.e., a possibility of different ground states [17]. The AFM behavior is
observed bellow the Néel temperature Ty .

The ferrimagnets have also antiparallel alignment of the magnetic moments,
but the magnitudes on the different sublattices are not identical, which results in
nonzero net magnetization.

X (1.2)

1.1.2 Chemical disorder

Real crystalline materials, which can be found in nature, are almost never per-
fectly pure and ideal because they are influenced by both chemical impurities
and geometrical defects. Similarly, it is difficult to prepare ideal samples, even by
state-of-art experimental methods. For example, in Sec. 5.1 we study half-Heusler
NiMnSb and we note that defects are discussed intensively in literature even for
thin layers created by state-of-art molecular beam epitaxy [18]. The situation
is even more complicated in more complex materials such as antiferromagnetic
CuMnAs, see Sec. 5.2 or Ref. [19]. Because of that, combined experimental and
theoretical effort for identification of defects in real samples is of extreme im-
portance. Material behavior influenced by chemical disorder has been a point
of interest of many studies and substitutional disorder (in random alloys on a
non-random lattices) is usually treated by the CPA (Sec. 1.2.5 or Ref. [12]) or
supercell techniques. For purposes of this thesis, we consider chemical disorder
to be well described by uncorrelated impurities on different atomic sublattices
that are analytically averaged by the CPA. The ab initio approaches are usually
based on an assumption that impurities causing a microscopic fluctuations in
chemical composition do not influence original symmetry of a perfect crystal on
a macroscopic scale.

Specific selections of chemical disorder extremely depend on studied systems
and relevant experimental data. Criteria for examination of impurities are usually
based on their formation energies and agreement of the residual resistivity (later
po in Fig. 1.1) with experiments. However, the impurities may influence not only
po but also slopes of resistivities as functions of temperature, see later Sec. 5.1.

1.1.3 Finite-temperature phenomena

Electrical transport at finite temperatures Zero-temperature electrical
transport properties are influenced mainly by chemical disorder or by electron
scattering related to noncollinear magnetic moments, e.g., in AFM materials.
Although many ab initio studies describe systems without temperature-induced
disorder, real-life material behavior may vary dramatically with changing tem-
perature. For electrical transport properties, the most important temperature



dependent scattering mechanisms are phonons (displacements of nuclei from their
equilibrium positions) and magnon (fluctuations of magnetic moments).

An illustration of different scattering mechanisms influencing transport prop-
erties is shown in Fig. 1.1. (The illustration is only schematic; e.g., depending on
the contributions of magnetic disorder, the shown extrapolation may be quadratic
instead of linear.) Validity of the Matthiessen’s rule is assumed in this Figure,
i.e., the total resistivity is given by the sum of different contributions (inverse
values of scattering times coming from the different mechanisms add up).

PsDR

Resistivity

Temperature

Figure 1.1: If we assume validity of the Matthiessen’s rule, different scattering
mechanisms linearly contribute to the total resistivity. In this schematic depen-
dence of resistivity in a magnetic material piymp. = const., pphon. ~ T, pst ~ T?
(bellow T¢), and the total resistivity is the sum of them. Extrapolation from the
temperatures above T to T' = 0 gives the spin-disordered resistivity pspr.

The total longitudinal resistivity p then has an approximate form [20]
p(T) ~ pimp, + AT + BT (1.3)

which was originally obtained for Heusler alloys [21] and where A and B are
material specific parameters. Number of chemical impurities does not change
with temperature; therefore, the resistivity caused by them pin,, is assumed to
be constant and equal to the residual resistivity at zero temperature. The lin-
ear dependence on temperature comes from phonons (pphon.) and it is valid for
temperatures above the Curie temperature, i.e., for T' > T [20, 22]. This depen-
dence comes from the number of phonons that contribute to the scattering. For
temperatures much lower than the Debye temperature ©p, the behavior of the
resistivity is more complicated and one can expect the dominant contribution of
the Bloch T° law giving [22, 23]

p~T° for T<KOp. (1.4)

10



This thesis deals with the most basic scattering effect in crystalline solids, i.e., dis-
placements of nuclei from their equilibrium positions. For this purpose, we omit
more advanced phenomena that may affect the temperature-dependent electrical
transport. We also omit phenomena related to complex behavior of the electronic
structure such as the Kondo effect [15] or the decrease of resistivity with increased
temperature in metallic systems [24] that are not directly included in the linear
response theory.

Spin fluctuations (resistivity pg) play important role at high temperatures
(with respect to the T¢-) in materials with nonzero magnetic moments, see later
Fe or Ni in Sec. 4.2. The contribution of magnons is approximately quadratic
on temperature; therefore, the low-temperature behavior is usually given by im-
purities and phonons. Disorder caused by fluctuating magnetic moments reaches
the maximum at T and above it a ferromagnetic material behaves like a param-
agnetic one. Spin-disordered resistivity pspgr may be obtained from both experi-
mental and theoretical data by extrapolating a high-temperature resistivity from
the region with constant pg, i.e., T' > T, to the zero temperature and as such it
describes the effect of magnetic disorder alone.

We would like to emphasize that Eq. (1.3) is only approximate and many
experimental studies interpolate measured data in order to obtain more precise
dependence for investigated materials [25]. For examples, semi-Heusler compound
NiMnSh (T = 730 K) has p ~ T'35 for T below the room temperature and
p ~ T? for less than 50 K [26].

Deviation from Matthiessen’s rule, i.e., the resistivity is not given by a mere
addition of independent contributions originating from individual effects, was
observed for BCC iron at ambient [27].

Phonons Phonons, i.e., collective movement of atoms in studied (elastic) bulk
solids, are usually treated as quantized vibrations of interacting particles. They
are characterized by modes of vibrations having energies and, consequently, by
phonon spectra specific for each material. Phonons may be described by both
classical and quantum models, as well as by ab initio approaches, and they are
closely related to a wide range of phenomena such as heat capacity or magne-
tostriction [13, 15, 23|. Here we present only the most important characteristics
of atomic vibrations relevant for our purposes.

The Debye and Einstein models describe phonon spectra by normal-mode dis-
persion relations of simple structures [23]. The first one approximates all branches
of the spectrum by the same linear dispersions and, moreover, integration over
the Brillouin zone is replaced by an integral over a sphere (maximal phonon fre-
quency wp). It is also convenient to introduce the Debye temperature ©p (the
temperature above which all modes begin to be exited) by the relation

hw (672N \"?
eD:kB< . ) , (15)

where h is the reduced Planck constant, kp is the Boltzmann constant, v is
the constant velocity of sound, and N is the number of atoms in the volume V'
[15]. The Debye temperature typically ranges from 100 K to 600 K for transition
metals, it may be used as a single empirical parameter in a relation for the
specific heat, and (in the harmonic approximation) it also connects the specific

11



heat to phonon spectra [23]. In the Debye model, also the optical branches of the
phonon spectrum are approximated by a linear relation; it may be improved by
the Einstein model which describes the optical branches by constant frequency.

Limitations of both models can be shown in terms of the phonon density of
states. For the Debye approach, it is parabolic below wp and zero for frequencies
w > wp [23]; however, this is not always true for real phonon density of states.
Figure 1.2 shows measured data for iron at several pressures [28] and the densities
may be even more complicated for more complex systems. Despite that, the
mean-squared displacement of atoms (a deviation of particles due to temperature-
induced excitation) derived from the Debye model is often used and it gives
satisfying results for many materials [29-32], see later Sec. 2.3.1. We note that
even ab initio treatment of phonons often neglects their mutual relations with
magnons or other effects and advanced methods such as atomistic spin dynamics
simulations [33] are needed for more proper description.

BUU_""l""I""I""I""l""l""l""
[ lron
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Figure 1.2: Phonon density of states of iron is parabolic-like only for small ener-
gies. Obtained from Ref. [28], vertical offset used for different measurements.

Magnetic disorder caused by finite temperatures Magnetic materials
consist of atoms that have their magnetic moments mutually aligned. The main
contribution to atomic magnetic moments comes from the spin of their un-
paired valence electrons and the minor one is caused by their orbital angular mo-
menta. Materials with positive interatomic exchange interactions in the Heisen-
berg Hamiltonian favor spontaneous order with parallel magnetic moments — fer-
romagnets; compared to that, negative results in antiferromagnetic ordering [15].

For nonzero temperature, the exchange interaction competes with thermal
fluctuations of local moments. If temperature is higher than a critical point,

12



temperature-induced fluctuations are stronger than the magnetic interaction.
Consequently, it leads to paramagnetic behavior of previously ordered materi-
als. This is an effect of the second-order phase transition and the critical point
is called the Curie (T for FM) or Néel (T for AFM) temperature. Typical
Curie temperature is several hundred kelvins (TF° ~ 1043 K, T5° ~ 1400 K,
TN ~ 627 K) and magnetization of FM, which is largest at zero temperature,
vanishes at this point.

In the first order approximation for low temperature 7', the dependence of

spontaneous magnetization for systems with negligible magnetic anisotropy is
described by the Bloch’s law [23]

m(T):1—<TC

with m(T) = M(T)/M(T = 0) being reduced spontanecous magnetization. For
example, M (T =0) = 2.23up for Fe and M (T =0) = 0.69up for Ni. A better
description is obtained by fitting experimentally observed magnetization to a
function [34]

Tfp (1.6)

TY=|1—-s(— —(1— — 1.7
m(T) [ S<T0> (=9 (TC) ] (.7
with empirical parameters p and s (Fe: p =4, s = 0.35; Ni: p =5/2, s = 0.15).
This dependence is shown in Fig. 1.3 for Fe and Ni. We note that for T' = T},

where the magnetization of Ni vanishes, the magnetization of iron is still above
90 % of its maximal value.

m=1

0 627 1044
Temperature, T[K]

Figure 1.3: Reduced spontaneous magnetization decreases slowly from tempera-
tures higher than approximately half of the Curie temperature; above this value
the decrease is much more significant. It is illustrated on comparison of Ni and
Fe having TX ~ 0.6T5°.

Better and more precise dependence of magnetization on temperature is ob-

tained by ab inito simulations [29, 32, 33, 35], but expression (1.7) is accurate
enough to, e.g., obtain temperature dependence of resistivity, see later Sec. 4.2.
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1.1.4 Electrical transport

A detailed description of electrical transport properties and their evaluation
within the TB-LMTO method with the CPA is described later in Sec. 1.3 and
2.4. Here we present a short summary of the electrical transport from the point
of view of material behavior. For details, see, e.g., [15].

A basic division of materials based on their electrical transport properties
leads to three groups: conductors, semiconductors, and insulators. Insulators
contain no free charge carriers; therefore, they do not conduct electric current.
The presence of no free charge carriers is related to their large energy-gap (large
energy difference between the valence and conduction band) and no electron states
at the Fermi level. Semiconductors have the energy gap of a few eV, e.g., from
almost zero to approx. 2eV (2.3eV for GaP, 2.5eV for CdS) [15]. However, there
are also the wide-bandgap semiconductors having the gap even about 4eV and
sometimes also diamonds (with impurities) are considered to be semiconductors
with the gap about 5.4eV [15]. The large gap is suitable, e.g., for optics or
radars. We note that the division is not given strictly and the possibility of
nonzero electrical conductivity depends on many external phenomena such as
temperature or applied voltage, which may excite charge carriers.

For the purposes of this thesis, the conductors are the most important. We
focus on metals having free electrons because of their metallic bonding and we
only note that also other mechanisms of electrical conduction exist, such as solved
ions in melting or dissolving salts. From the point of view of the electronic
structure, metals have nonzero density of states (DOS) at the Fermi level, i.e.,
no energy gap. Because of that, the carriers may move from the valence to
conduction band when only a small voltage is applied. Although most of the
metals have carriers on the Fermi level because of a crossing of energy bands,
semimetals have the lowest part of the conduction band in a different part of
momentum space than the top of the valence band. Therefore, there is no crossing
of the bands and semimetals can be formally described as semiconductors with
the negative band gap. For example, alkaline earth metals are the most famous
semimetals, but we do not investigate semimetals in this thesis. Half-metals are
metals which conduct electric current only for one spin channel, the second is
insulating [36]. It is caused by the nonzero total DOS for one spin orientation
but zero for the opposite one. Half-metals have many potential applications in
spintronics, one of the most famous half-metallic compounds is a class of Heusler
alloys; Sec. 5.1 of this thesis is focused on half-Heusler NiMnSh, including a
discussion of its half-metallic character.

The temperature-dependent resistivity behaves differently for the above men-
tioned groups of materials. In a typical metallic systems influenced by phonons
and magnons, the electrical resistivity increases with temperature (see Fig. 1.1).
On the other hand, insulators do not conduct electric current at any temperature;
therefore, the conductivity is always zero. Semiconductors have zero conductivity
without temperature-induced disorder; however, increasing temperature may ex-
cite carriers to the conduction band and the electrical conductivity then becomes
nonzero. Therefore, in contrast to metals, electrical resistivity of semiconductors
decreases with temperature.

The electrical properties of monocrystals are usualy described by a tensor
of electrical conductivity o with components o,,, where p,v € {z,y,z}. It
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characterizes a response (in terms of the current density j) of a material when
the electric field (with intensity E) is applied. The Ohm’s law then states

j=0E. (1.8)

The often used resistivity tensor p is given as the inverse value of the conductivity,
i.e., p = o0~!. The antisymmetric part of the conductivity tensor describes the
anomalous Hall conductivity (AHC).

Both the electrical resistivity and the electrical conductivity are intrinsic prop-
erties, i.e., they do not depend on geometrical characteristics of samples. There-
fore, they are used in this thesis focused on ab initio calculation of material
properties. The most simple connection to real measurements can be done for an
ideal wire with the length [ and the cross-sectional area A. It has resistivity pg.

if the measured electrical resistance R,, along the x—direction is

!
Ryy = — oy . 1.9
il (1.9)

To eliminate an influence of the shape, more advanced multiple-probes techniques
such as the van der Pauw method are often used for measurements.

1.1.5 Galvanomagnetic phenomena

Knowledge of the electrical conductivity tensor opens a possibility to study also
the anomalous Hall effect. If the magnetization in a system points to the z—axis,
we have for the AHC

AHC = 04y, (1.10)

which is a nondiagonal element of the conductivity.

The AHC is often divided into intrinsic and extrinsic contributions. The first
one depends only on the electronic structure of a material, whereas the second
one is explained by the side jump and skew scattering mechanisms [37]. The
intrinsic AHC, independent on the longitudinal o,,, can be obtained in terms
of geometric Berry-phase curvatures and, therefore, it is a property of a perfect
crystal [37]. Later, see discussion of AHC and its contributions in NiMnSb in
Sec. 5.1.

The anisotropic magnetoresistance (AMR) is defined by [38, 39]

AMR = AL =P+ (1.11)
Pavg.

where p| and p, are the longitudinal resistivities for currents parallel and perpen-
dicular, respectively, to the magnetization and p,ye. is an average resistivity. As-

suming cubic symmetry (the magnetization in the z—direction, 0,, = 0y, # 0..),
one can immediately obtain

AMR = 222~ Puz (1.12)
Pavg.

We note that the definition of the AMR may slightly differ according to different
authors [38-41]: The average resistivity may be (pH + 2pL) /3 or gp” + pL) /2,
but since p; and p, are usually close to each other, the difference is typically
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negligible. Moreover, the sign of the AMR depends on the definition, i.e., the
order of terms in the numerator of Eq. (1.11) or (1.12). The standard definition of
the AMR (1.11) can be extended and its origin explored in terms of noncrystalline
and crystalline components, see Ref. [42] for cubic systems.

1.1.6 Spintronics and related materials behavior

Spintronics is a field of physics focused on manipulation with spins of electrons.
There is no exact year when the spintronics was founded; however the spin-
resolved conductivity became more important after it had been described by the
two-current model [43, 44]. In recent years, it resulted in many novel employed
techniques, discovered phenomena, and designed devices. For detailed review
of spintronics, we refer to [45] and for summary of spintronic materials to [46].
Moreover, the AFM spintronics became popular, see Ref. [47, 48]. Although a
complete overview of current spintronic topics is beyond the scope of this Section,
we comment about some of them.

Longitudinal electrical transport and the spin polarization The longi-
tudinal electrical transport had been studied even many years before the spin
degree of freedom and related properties of electrons were discovered. On the
other hand, when the majority-spin and minority-spin channels of the electri-
cal current can be distinguished, it is convenient to define the spin polarization,
see later Eq. (2.51). (The notation of the carriers majority and minority spin is
usually used in FM materials [45].) The polarization is closely connected to the
spin injection of the polarized electrons and especially half-metallic materials are
studied because of their ideal polarization being almost unity. Theories and ex-
periments related to the spin injection are summarized in Ref. [45]. We note that
not only electrical injection but also optical methods may be used to generate
the spin-polarized currents [45].

Hall effects The family of the Hall effects contains phenomena related to trans-
verse electrical transport influenced by a magnetic field or local magnetic mo-
ments. The external field is necessary for the (original) ordinary Hall effect and
the quantum Hall effect; the field of local moments is sufficient for an observation
of the anomalous Hall effect. The spin Hall effect describes an electric current
causing a spin current. It is caused by both the intrinsic (asymmetries in the ma-
terial lead to disordered trajectories of carriers due to spin-orbit interaction) and
extrinsic (spin-dependent Mott scattering) mechanisms [49]. In two-dimensional
semiconductors with strong spin-orbit coupling, such as in HgTe, the quantum
spin Hall effect may be observed [50]. It results in edge channel transport of cur-
rent in absence of external magnetic field. Moreover, also fractional Hall effects
exist, but they are above scope of this thesis.

The interaction between the charge carriers and the moments is related to
the relativistic phenomena (spin-orbit coupling); therefore, they are closely con-
nected to the spintronic field of interest. For specific applications, there are many
possible usages of the Hall effects. For example, the anomalous Hall effect [37] in
antiferromagnets was proposed to be used for switching and memory devices [51]
and it was recently turned on and off by the strain in MnsPt [52]. Similarly, the
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spin Hall effect [53] was predicted to be able to induce measurable spin polariza-
tion [54]. We note that some of the Hall effects may be undiscovered; see, e.g.,
the recently described crystal Hall effect [55].

Real spintronic devices Much effort has been devoted to research and de-
sign of novel electrical devices based on spintronic principles. If not only the
presence of electrons but also their spins can be manipulated, it could lead to
much better efficiency of the devices or even to a construction of completely new
components for the present electronics. For a review of spintronic-based random
access memories, see [56]. To name some of the novel devices or possible ap-
plications of spintronics, the electric currents were proposed to be used for an
ultrafast spin-axis reorientation in AFM in 2014 [57]. It was used only two years
later to manipulate the magnetic moments in AFM CuMnAs [58], and in 2018
the spin-orbit torques were used to achieve a large change of resistivities in AFM

MnyAu [59].
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1.2 Density functional theory

In this section, we introduce the density functional theory (DFT) and methods of
ab initio calculations. Especially those used in the rest of this thesis are described
in more details and with the focus on electrical transport properties. The starting
point is to find a solution of the Schrodinger or Dirac equations for a many-
body system. Exchange-correlation potentials are then discussed and the fully-
relativistic DFT is described. Last but not least, the tight-binding (TB) linear-
muffin-tin orbital (LMTO) method and the coherent potential approximation
(CPA) are introduced.

1.2.1 Short overview of DFT approaches

Calculations from the first principles, or ab initio calculations, represent a generic
name for a large area of computational methods that focus on obtaining results,
usually material properties, “from the very beginning”. It means that no assump-
tions or models should be taken into account except of basic physical laws and
values of physical constants. In the condensed matter physics, quantum mechan-
ics is considered to be the set of these established laws of nature and the “begin-
ning” is usually based on solving the Schrodinger or Dirac equation. Solutions
are often obtained within the Born-Oppenheimer approximation that assumes
fixed positions of nuclei. This approximation is usually sufficiently accurate for
crystalline solids studied in this thesis.

The DFT treats all ground-state properties of many-electron systems as func-
tionals of electron density. Although it may be considered as a rough approxima-
tion, it provides an exact theoretical framework and it gives reasonable results, it
may be modified for a wide range of purposes, and it makes numerically expen-
sive tasks solvable. For example, iron is one of the most common elements and
it consists of a nucleus and twenty six electrons per atom. If we only wanted to
represent just electrons in a computer it would require three spatial coordinates
and three values to represent momentum (or velocity) of each of a huge number of
electrons. A basic single-precision floating-point format of one number is usually
occupying 32 bits and taking into account memory size of present computers, a
proper description of these electrons would not be possible for a larger system
than a cube having sides of few nanometers. Therefore, developing efficient and
reliable approximate methods like the DFT is of extreme importance.

An origin of the DFT may be found in 1960s, when the theorems of Hohen-
berg and Kohn were derived and Kohn-Sham equations introduced. Before that,
approaches to calculate the wave function of atoms and solids had been proposed
and developed, e.g., by Hartree [60, 61], Slater [62], Bloch [63], Dirac [64, 65], or
Fock [66]. For the historical overview of the methods, we refer to [67].

In recent time, “beyond-DFT” methods [68, 69] become more popular be-
cause of increasing computational power and necessity to describe more sensitive
effects like properties of strongly correlated or topologically nontrivial materi-
als. For practical purposes, the DFT is used with the local-density approxi-
mation (LDA), which is an approximate method for a description of the ex-
change—correlation (XC) energy functional. It can be generalized to a form of
the local spin-density approximation (LSDA), that includes electron spin or, e.g.,
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with incorporating changes in the electron density like the generalized gradi-
ent approximations (GGA). Based on purposes of the calculations, the DFT is
used in many computational codes with additional approximative tool like the
atomic sphere approximation (ASA), the LMTO and Korringa—Kohn—-Rostoker
(KKR) methods for solving the single-particle Schrodinger equation. The CPA
or supercell techniques are often used to describe disordered solids. Further-
more, more complex quantities including electrical transport properties can be
computed based on electronic structure of materials.

For a description of ab initio methods, we mostly follow [12], [13], [70], [71],
and [67]. For calculations presented in this thesis, the TB-LMTO formalism with
the atomic sphere approximation (ASA) is used. Together with the CPA and the
Kubo-Greenwood formula [72, 73], especially in the fully-relativistic framework
[74], it represents an efficient and reliable framework for solid magnetic systems.

1.2.2 Many-electron systems

The time-dependent Schrodinger equation with a time variable ¢ and the reduced
Planck constant A gives a description of a system evolving in time:

d N
h— =H 1.13
19y = 1) (113)
and for the stationary (time-independent) states, it simplifies to
Hy)=Ey) . (1.14)

A non-relativistic many-electron system is described by a Hamiltonian Hin a
form

. h2 N
H:_72V2+Z v(r;) Z— (1.15)
47T€ 0ics T
and by the wave function w(rl, S1;Tg, S2;...; TN, Sy) for N electrons with a posi-

tion r; and spin s; for the :—th electron. The mass of electron is denoted m, its
charge is e, and ¢; is the vacuum permittivity. The distance between particles ¢
and j is r;; and E is the total energy. An external contribution to the potential
v(r) is usually assumed to be the Coulomb interaction between electrons and
nuclei with charges eZ; (Z; is the number of protons of J—the nucleus):

62 ZJ

47‘(’60 =T g

v(r;) = (1.16)
The notation >, ; in Eq. (1.15) is introduced to prevent double counting of the
electron-electron interaction.

The Schrodinger equation, physical condition to minimalize energy of systems,
and mathematical expression for the wave function of a many-body system in a
form of the Slater determinant lead to an exact treatment of the Pauli exclusion
principle in a form of Hartree-Fock equations [13] expressed as

/(MM 1‘2] ¢j(r1)—

d’ra ¢4(ry) = E]'Aﬁbj(rl) g

h? V2
_T pholn)+ dmey ;= 1 1.17
/¢* ry ¢] 1‘2) ( . )

47T€0 =
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where EJ)‘ has a meaning of physical energy, but it mathematically corresponds
to the Lagrange multiplier. Eq. (1.17) neglects correlation effects, it is solved
by self-consistent methods leading to a description of the electronic structure of
atoms or molecules, but it is computationally difficult to use for calculations of
metallic solids [13].

To find a solution of the many-body system, theorems of Hohenberg and Kohn
may be employed (we refer, e.g., to Ref. [13] for details). It results in a description
of the system by the electron density n(r) for the many-body wave function ¢ of
N = [n(r)d®r particles given by

n(r)y=N > / ../|¢S(r,51;r2,52; o, se) P Py dPrs L. APy, (1.18)
N

$1,52,..-8

where s; runs over two possible values of spin of the electron i and d’r; are spatial
integrations. We note that there is no integration over d°r and the final electron
density is a function of just x, y, and z coordinates instead of a complex expression
depending on 3N spatial variables. Within the Dirac bra-ket notation, Eq. (1.18)
is

nlr) = (0 Y60 i) o) (119)

Based on functionals of the electron density, Walter Kohn and Lu Jeu Sham
proposed in 1965 a method for numerical implementation of the DFT [75]. They
introduced a system of non-interacting electrons generating the same density as a
real system of interacting particles. It leads to the Kohn-Sham equations [13, 75]
and the ground-state density (with the spin index omitted) is given by

N

n(r) = |6i(r)]* (1.20)

i=1

where ¢; are called the Kohn-Sham orbitals. These orbitals are obtained as
solutions of a one-electron Schrédinger equation with an effective (Kohn-Sham)
potential veg[n|(r). For a single electron, i.e., a particle moving in an effective
field described by the Kohn-Shamn potential, the following holds

2
e 5 n(rp) dEyc[n]
1.21
dreg /d 1 lr; —r| * on(r) ’ (1.21)

veri[12)(r) = v(r) +

where v(r) is an external potential and the last term in Eq. (1.21) is usually
called the exchange-correlation potential

welnl(r) = 225 (1.22)

The exchange-correlation potential is (together with the corresponding energy)
the only unknown quantity in the Kohn-Sham approximation. The electron
density with this potential is then given by a self-consistent solution of the Kohn-
Sham equations.
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Spin-polarized systems For clarity, the equations above were written without
the spin index. When the spin-polarized case is studied, the electron density for
the up-channel n, (r) may be different from the down one n_(r) and the total
one is given by their sum

n(r) = ny(r) +n_(r). (1.23)
The partial spin-resolved densities are

ne(r) = (V] 3 0(r — 1:)ds 7

), (1.24)

where o7 denotes the z—component of the spin operator (electron 7).

In addition to the electron density, the spin density m(r) enters the effec-
tive potential veg[n, m](r). If the spins are oriented along the z—direction, i.e.,
m = (0,0, m), then the magnitude of the spin density is given by

m = ug(ny —n_) (1.25)

and its direction coincides with that of the exchange magnetic field.

Equivalently to the non-magnetic case, veg[n, m](r) for a magnetic system is
given in by the functional derivative of the energy functional with respect to the
particle density [12]. The total Kohn-Sham Hamiltonian is then given by the
original non-magnetic term with added magnetic contribution

A

Hy = o - Beg[n, m], (1.26)
where o is Pauli matrix and the effective magnetic field is [12, 76]

dEye[n, m]
dm(r)

Here, pup is the Bohr magneton and By is the external magnetic field.

Bualn, m](r) = 5B (r) + (1.27)

Other methods Non-self-consistent approaches to the DFT also exist. They
may be based, e.g., on the Harris functional which makes them less accurate but
sufficient for many systems [77]. These methods are not discussed or used in this
work any further.

1.2.3 Exchange-correlation potentials

Local density approximation The local density approximation (LDA) is an
approach for determination of the exchange-correlation energy Fy.[n].

The LDA is based on an assumption that the exchange-correlation energy
functional depends only upon the value of the electronic density at each spatial
point. The exchange-correlation energy per particle &, is given by

EPA ] = [ n(0)Eln(v)]d’r (1.28)

obviously, &, contains contributions from both the exchange and correlation
terms, as well as F,.[n] does. For a uniform electron gas with n = n(r), the
potential (1.22) becomes

LDA [n] 5E>]:(PA [n]

e = “on() = Exe[n(r)] + n(r)

A&y n]

v dn

(1.29)

n=n(r)
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The total exchange—correlation energy was reformulated in the term of the
energy per particle, but the overall task has not been very simplified yet. To do
that, it is useful to divide &y.[n| into an exchange part &[n| and a correlation
part &:[n]

Exe[n] = E[n] + & [n] (1.30)
because the first one can be expressed as
3 /3 1/3
Eln) = -2 (Wn(r)) . (1.31)

Local spin-density approximation Spin-polarized systems with the differ-
ent spin-up and spin-down electron densities are treated by the local spin-density
approximation (LSDA). The difference between exchange-correlation interactions
is related to an alignment of the spins to a configuration that may favor ferromag-
netic state. In order to quantitatively describe magnetic systems, two electron
densities for opposite spin channels (denoted as + and —) are used and the
exchange-correlation potential becomes

SELPAn, n_](r)

oA () = R PR (1.32)
where
EEPA 0 )(r) = [ n()Elng, n-))d’r (1.33)

Both vL5PA%[n, n_](r) and ELSPAn, n_|(r) depend on both ny and n_.

LDA-+U One of the weaknesses of the LDA is a treatment of correlation effects
between electrons. It is mostly seen for metals with partially filled d or f orbitals
because these elements have a large energy difference between occupied states and
the unoccupied ones. A commonly used attempt to remove this systematic error is
LDA+U method where “U” comes from the standard Hubbard Hamiltonian, i.e.,
from its on-site repulsion term having the magnitude of the interaction usually
denoted “U” [13, 78]. The full energy-dependent selfenergy is replaced by an
energy independent non-local term coming from the screened Coulomb potential.
To introduce the LDA+U, the total number of localized electrons in the d shell
(for which the corrections are usually used) is Ny and it is given by the sum of
orbital occupancies d;:

Ny = Zdi. (1.34)

The LDA+U energy EV is obtained as the energy E'P* with two corrections
(exchange effects are neglected):

U U
EY = EMPA _ 7N (N —1)+ 3 gdidj : (1.35)
17]

This form with the Hubbard term (last term on the right side of the previous
equation) is chosen because now one obtains the orbital energies as

& = gf. =&AL U (; - di> : (1.36)
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which has an obvious interpretation: The occupied orbitals (d; = 1) are shifted
by +U/2 and the unoccupied ones by the same value with opposite sign. We
note that U is now a strength of the interaction which is, especially because of
practical reasons, considered to be a constant input parameter of many LDA+U
first-principles codes. On the other hand, the U may be also obtained during
self-consistent calculations as the energy difference corresponding to the changing
number of localized electrons [13].

Generalized gradient approximation In general, the LDA underestimates
the exchange energy and overestimates the correlation energy. To correct it, the
energy may be expressed not only in terms of the electron density but also of

its derivatives. This expansions is called the generalized gradient approximation
(GGA) [79] and can be expressed as

ESM ] = [ n(0)&eln(r), Vn(n)d's (1.37)
or for the spin-polarized case

ESCAp] = /n(r)EXC[n+(r),n_(r),Vn+(r),Vn_(r)]d3r. (1.38)

1.2.4 Fully-relativistic DFT

Non-magnetic case The non-relativistic DFT presented so far gives reason-
able results for a number of elements and phenomena; on the other hand, the
relativistic theory is necessary for an investigation of heavier atoms or effects de-
pending on a proper description of spin. Instead of the Schrodinger Eq. (1.14),
the Dirac one is employed for these purposes [12]:

[co-p+ (8= L) me+ V(r)L] v = Exy. (1.39)

In this notation, the wave function for one electron v; is a bispinor containing a
large ¢ and a small x component

w:<¢>, (1.40)

X

each of them having two components (one component for one spin). Therefore,
the potential V' (r) is multiplied by the 4—dimensional unit matrix I;. The 2 x 2
Pauli matrices o are included in the matrix

0 o
a:<a O) (1.41)

and p = —thV is the standard momentum operator. The matrix £ is composed
of 2—dimensional unit matrices I

3= < {)2 _012 ) , (1.42)

where o are Pauli matrices. The energy E does not include the rest energy of
the electron.
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For the relativistic case, the effective potential analogical to (1.21) is [12]

B e? 5 n(ry)  0E[n]
ver(r) = v(r) + T /d rq P— + Sn(r) (1.43)

but we note that the electron density differs for the relativistic theory [12]. This
effective potential together with the Dirac Eq. (1.39) is known as the Kohn-Sham-
Dirac equations.

Spin-polarized case When an external magnetic field B(r) is taken into ac-
count, the Dirac Eq. becomes

[ca- (p—eA(r) + (B — L)mc® + V(r) L] ; = B (1.44)

with the vector potential A(r) satisfying B(r) = V x A(r).
For practical purposes [12], the magnetic field due to exchange and correlation
is usually taken into account by an additional Hamiltonian contribution

A o 0
=5 (7 ) Bl ml) (1.45)
which then enters the Dirac Eq. (1.39) as a correction to the original Hamiltonian:

{004 P+ (8= L)me® + V(r) I, + I:—,B} Vi = By (1.46)

The effective potential is now dependent on r and also on the spin density m,
as well as other quantities, but (1.43) can be still used. The effective magnetic
field now plays a role of an effective spin-dependent potential similarly to the
non-relativistic case (1.27).

1.2.5 TB-LMTO technique

The tight-binding linear muffin-tin orbital (TB-LMTO) method with atomic
sphere approximation and the multicomponent coherent potential approxima-
tion (CPA) [12] is used to obtain most of the results presented in this thesis. A
complete description of the framework is beyond the scope of this work; therefore,
we address the most important parts, relevant especially for the fully-relativistic
calculations of electrical transport (see later Sec. 1.3.2), and for details we refer
to [12, 74, 80-82].

The formalism may be used in both the non-relativistic and fully-relativistic
approaches. In the former, the Schordinger equation is solved and quantum
numbers L = (I,m) label different solutions, whereas the Dirac equation and
composed quantum numbers A = (k, ) are used in the latter. Numerically,
dimensions of all the matrices are twice larger in the relativistic framework. For
detailed description of differences, we refer to [12].

In the TB-LMTO approach with the CPA, we use the one particle Green’s
function G(z)

¢ =(-a)" = [" L st — Byat (1.47)

—0 2 —1
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for a complex variable z and we introduce 70 as an infinitesimally small imaginary
value (necessary for an integration in the complex plane) to define

G.(E) = G(E +i0), (1.48)

where E is real energy. The hat symbol over the Green’s functions and other
operators is omitted for brevity and to be consistent with literature [74, 80, 81].

In the orthonormal TB-LMTO approach, the fully-relativistic Hamiltonian
for a spin-polarized system H*" is [74]

H = O 1 (VA) 50 (1-45°) ' VA, (1.49)

where the S° is the matrix of canonical structure constants and C, v/A, and
v are site-diagonal matrices of the potential parameters. The coordinates are
represented by diagonal matrices (X, )rrsr/z's = XrOrLs R L's (atoms located
at the position R, L is the angular momentum index, and s denotes spin index)
and for the velocity (current) operators the following holds [74]

V, = i [X, H""] = (VA) F ', (F*) VA, (1.50)

where v, = —i[X,, 5], S are screened structure constants with screening con-
stants ag , employed. For the F-matrices, F' =1+ S*(a — ) holds.
The screened structure constants are given by

§*=5%(1- 0450)_1 (1.51)

and the screened potential functions are

-1

P (z) = (\/Z (z—C)" (\/Z)+ +v— a) : (1.52)

The form of (1.51) and (1.52) implies that the LMTO technique treats structure
constants (geometrical properties of a studied system) and potential functions
(atomic parts, scattering properties) separately. The similar conclusion holds
also for for the KKR method, whereas many other approaches employ combined
forms of these properties.

We note that the effective velocity operators v, are non-random, whereas
V,, and VA are random. Only intersite hoppings are described by the velocity
operators. For details of the notation, see Ref. [12]. The Green’s function is then
given by [74]

-1

G(z) = (z—Hm"th)_l = (\/Z>_1 Ftla—~+g(2)F] {(\/Z)Jr ,  (1.53)
where the auxiliary Green’s function
9(z) = [P*(z) — 5] (1.54)

is more suitable for the numerical calculations because of its simpler form [12].
These relations are later used for electrical transport properties in Sec. 1.3.2.
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1.2.6 Coherent potential approximation

The CPA is generally used to treat a substitutional disorder on a non-random
lattice. In this thesis, it is also employed for the alloy analogy model (see later
Sec. 2.1). Principles and description of the CPA are taken mainly from Ref. [12]
and Ref. [82].

The primary aim of the CPA is to deal with distinguishable atomic species
(component Q) on the same atomic positions (site R). If they have concentra-
tions cg, occupation indices are 7716;2{ (ng = 1 if site R is occupied by atomic species
@ and 773 = 0 otherwise), the configurational averaging and the single-site ap-
proximation result in the on-site block of the auxiliary Green’s function in a form
of

o 1 o
QR’%(Z) - a <771(52th,R(Z)> (1.55)
R
and in the on-site blocks of the averaged auxiliary Green’s functions

Tar(z) = BiR%(2). (1.56)
Q

A single impurity is assumed to be inside an effective medium described by the
coherent potential functions P“(z) which is related to the complete average aux-
iliary Green’s functions by

Faw(2) = [[P*(2) = 5] (1.57)

RR ’
where P%(z) is in general a non-random site non-diagonal matrix describing prop-
erties of effective, non-random atoms. The evaluation is simplified within the
approximation of

Pﬁ7R/(Z) == IPIO{(Z)(SR’R/ . (158)

Site non-diagonal elements of a general P®(z) and local environment effects are
neglected within the single-site approximation. For systems with a single sublat-
tice (Bravais lattice), the on-site blocks in Eq. (1.57) are

Fanlz) = 3 [P (=) — ")) (1.59)

where k denotes a vector from the Brillouin zone, N is the number of sites R,
and S*(k) are given by the lattice Fourier transformation of real-space structure
constants. For systems with several sublattices, a more general formula has to be
used [12].

For practical numerical purposes, it is convenient to introduce the coherent in-
teractor Q% (z) describing a coupling between the atomic site R with the auxiliary
Green’s function gg g to all the others

o -1
0% (2) = Pa(2) — |gar(x)] - (1.60)
With the coherent interactor, we can writhe the CPA-condition in a form
o] «a -1 —«
SR [ - ()] =de(). (1.61)

Q
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Eq. (1.59) and (1.61) can then be evaluated together to iteratively obtain their
solutions.

Numerically, the coherent interactor is calculated self-consistently (iterations
labeled by (n)) for all the sites R together with (1.59) to converge the coherent
potential functions. It can be done in three iterative steps described by the
following relations:

Pr'"(z) = {Z i [PR7(z) — 05" (2)] } + O™ (2), (1.62)
Q
Gk () = {[Pr" ) -8} (1.6
and
R () = PR - [lRR )] (1.64)

When the potential functions Pﬁ’Q(z) are considered to be iteration-dependent,
this approach can be combined with the LSDA self-consistent calculations [12].

Later introduced atomic displacements (Sec. 2.1) modify the potential func-
tions Py before they are used to obtain the coherent potential functions P& (z).
Therefore, the atomic displacements are included purely in the CPA self-consis-
tent approach, not in the self-consistent convergence of the potential functions
within the LSDA, see Sec. 3.1 for details.

In studies of transport properties, a configuration averaging of a product of
two Green’s functions leads to the so-called vertex corrections, which can be also
treated within the CPA, see Appendix of Ref. [82] for details. Generally, terms
such as Tr (g(z1) Ag(22) B) containing auxiliary Green’s function g with two energy
arguments z; and 2o and non-random matrices A and B are of interest. It can
be approached by expressing an averaging as

(9(21)Ag(22)) = G(21)Ag(22) + g(21)1' (21, 22)9(22) , (1.65)

where the first term on the right-hand side gives the coherent contribution and
the second one results in the vertex corrections given by I'(zy, 2z2) in a form of

[(21, 22) = (T(21)g(21) Ag(22) T (22)) (1.66)

Here, T'(z1) and T'(z2) denote the total T-matrices, which can be expressed by the
single-site T-matrix, see Ref. [82] for details (including the CPA-like decoupling
and employing the self-consistency conditions). After several mathematical steps,
a result for the studied term is obtained:

Tr (g(21)Ag(22) B) = Tr{g(z1)Ag(22) B} + Tr (g(21) Ag(22) B), - (1.67)

For the explicit expression of the vertex-correction part Tr (g(z1)Ag(z2)B)
Ref. [82].

see

ve?
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1.3 Electrical transport

Electrical transport properties of solids are often described by formalism which
was introduced by R. Kubo [72] and D.A. Greenwood [73] more than sixty years
ago. The formalism was later improved, e.g., by Bastin et al. [83] or P. Streda
[84]. Although it is a powerful framework, most of the ab initio studies employ
this method only for zero temperature.

An approach for calculating electrical transport properties is described in this
section; namely, we focus on the linear response theory and a material behavior
connected to the conductivity tensor at zero temperature. An influence of the
Fermi-Dirac distribution at finite temperatures is described in Sec. 2.3.3 and an
approach for calculations of the spin-resolved electrical conductivity is shown in
Sec. 2.4.

The linear response theory related to the electrical transport is introduced
here because it is used in this thesis. We note that there are other approaches
like the Drude theory or the Boltzman equation; moreover, different transport
properties like heat transport may be studied [13].

1.3.1 Linear response theory

The linear response theory describes a system and its response to a small external
perturbation as linear [13] and we first derive a general response that is later
related to the electrical transport. The following notation is used:

e An investigated system is described by the Schrodinger equation (1.13).
e A time-independent Hamiltonian is H.

A time-dependent wave function of the perturbed system is z/;(t)

An external perturbation is included in H®®,

A perturbation is switched on in time ty (H™* = 0 for t < t;).
e A studied observable of the system is represented by the operator O(t)
e A general operator A(t) satisfying A(t) = 1 for t < t, is assumed.

For the perturbation, i.e., for t > ¢y, the Schrodinger equation can be written in
the form

o) = [+ 8] fie) (1.68)

For later, we set A = 1. A solution of the previous equation may by assumed in
a form

(1)) = e A [9(0)) (1.69)

and employing an expansion of the perturbation (FI =t heing a small perturbation
of H), we obtain an approximate relation for the wave function in the interaction
representation (denoted by a subscript I)

90) =) — i [ AP O+ (LT0

28



Because the wave function for ¢ = 0 is the same in the Schrodinger, Heisenberg,
and interaction representation, a small change of a general observable in the first

order ¢ <O(t)> is

) ¢ . .
5<cnﬂ>::z/;<¢d[Lﬁmuq,ofaﬂyw@cnx (1.71)
which is the basic relation for the linear response theory. For a detailed derivation
we refer to [13].

In this thesis, we focus on the electrical transport properties. For this purpose,
general Eq. (1.71) should be used to investigate a collective motion of particles
(electrical current) in a presence of an electric field Eg. The current is given by a
summation over the moving particles with momentum p;, masses m;, and charges
e;, i.e.,

1

i(r) = 226 [Pi(r)d (r — i) + 6 (r — ;) pi(r)] - (1.72)

The Hamiltonian of the perturbation caused by the electric field
E(r,t) = Egelar—+! (1.73)

with a corresponding vector potential A(r,¢) and the Coulomb gauge is
- 1
Hm:——/Amﬂj@m% (1.74)
c

or equivalently _
& L. —iw
H™ = ;.](q) o DC (1.75)

In the relations above, q stands for a vector of the reciprocal space Eq. (1.75)
was obtained from Eq. (1.74) by integration over the real-space variable, and it
is expressed in terms of the Fourier component of the electrical current

ja) =2 % (pie™™™ + e p;) . (1.76)

To introduce an induced current J(r, t) (experimentally measured), we assume
the carriers to be identical particles with a density ng in a volume 2. We can

then write e

I(r,t) = % Zpi5(r —13) = - > (pi) (1.77)

(2

and in a presence of the vector potential this becomes

noe’

I(r,t) = (j(r)) +i

— E(r,t). (1.78)

Within the linear response theory, the term given by the average of the current
(j(r)) is proportional to the electric field, similarly to the second term in Eq.
(1.78). The constant of proportionality is given by the Kubo formula. We note
that the current in the absence of the perturbation is zero, which justifies a study
of the first-order change o <é(t)> For an investigation of electrical currents within

the linear response theory, we employ Eq. (1.71) with the induced current J(r,?)
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as the observable quantity (represented by O) and the perturbation in the form
of Eq. (1.74) or (1.75), i.e.,

Gl =i (ol [Ap(e ), Jule )] i) at, (179)

where p € {z,y, 2z} (and later also v) is a spatial coordinate. It is convenient to
express time-dependent quantities in the interaction representation (for a unper-
turbed Hamiltonian Hy and general operator O(t) — ef0tOe~#0%) which results
in

5 (e, 1) = 3 B (r. e
V (1.80)

A

O ol [l 0), Gl )] )

Electrical conductivity o, the coefficient of the proportionality between the
electric field and the current (j(r,t) = oE(r,t)), is obtained after integration of
Eq. (1.80) over the real space (a Fourier transformation: r — q) and employing

Ju(—a,t) = j;(q,t):

1 e?

t
_ 4 iw(t—t') St 2 / L
o) = = [0 ol [ (a0, dula )] o) at' + 725, (181)
which is the Kubo formula for the electrical conductivity [13].

1.3.2 Static electrical transport

The form (1.81) of the Kubo formula may be used to calculate also frequency-
dependent (optical) conductivities; however, it is not convenient for the TB-
LMTO method with the CPA (the approach mostly used in this thesis). For
such purposes, we will investigate a complex admittance x ;5 which is defined
as a proportionality factor between the response of the system (observable fl) to
a time-independent perturbation (operator B), a possible time-dependence may
be introduced in the relation of proportionality [13]. If we introduce a complex
energy variable z, eigenfunctions |m) and eigenenergies E,, for a general operator
(and, explicitly, second ones |n) and E,), and matrix elements A, = (m| A |n),
then we obtain after performing contour integration in a complex plane (see
Chapter 19 of [13] for details) the response function

Xap(z) =~ Z <fiEjl>E; i(gz) BnmAmn> ) (1.82)

mn

A prefactor was omitted in Eq. (1.82) because its exact form depends on defini-
tions of the matrix elements and physical quantities. The prefactor would also
include normalization given by the volume of the primitive cell (V4) and the num-
ber of cells in a big crystal with periodic boundary conditions (). We note that
the real part of z goes to zero for the DC conductivity. The brackets in Eq.
(1.82) indicate an average over the sample including the configuration averaging
(74, 80, 81, 83].
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Employing Green’s functions (1.47) and (1.48) with the TB-LMTO formalism
introduced in Sec. 1.2.5, several identities for the Green’s functions, and the limit
of z — i0+ (the plus sign denotes a positive value of the imaginary part), the
following relation for the response is obtained:

B = —200 L ()T (AG(2)A[G 4 (x) — G_(2)) (1.83)

~A[Gi(x) = G_(x)] AG. (v) ) d,

where the Fermi-Dirac distribution is written as f(FE), the energy derivative is
denoted by the prime, ie., G' = %9, and A = —i[B, H] (a time derivative).
The prefactor oy = e*h/(47VyN) in (1.83) was chosen to be later consistent
with expressions for the electrical conductivity. The static conductivity, obtained
from Eq. 1.83 when the current operators (A — V') are employed, was derived
by A. Bastin et al. in 1971 [83]. Similarly, we will now use the coordinate
operators X (perturbation B), the current operators V' (observable A) and the
Her™" containing the spin-orbit interaction; see Sec. 1.2.5 or Ref. [74] for details
of the formalism. With the Green’s functions defined by (1.53), the conductivity
tensor is given by the Kubo-Bastin formula [81, 83]

Ow = =200 [ F(EYT (VuGL(E)V, [G4(E) — G_(E)]

(1.84)
~V,[G(E) = G_(B) V,G(E))dE
or in the terms of the auxiliary quantities [81]
O = =200 [ F(E)Tr (v,g(E)v, g+ (E) — g-(E)] Lss)

~0,[94(E) = g-(E)] v,g’(E)) dE.

The latter form is useful for configurational averaging within the CPA with the
vertex corrections included [85].

1.3.3 Fermi-surface and Fermi-sea terms

The full conductivity tensor is calculated by employing the Kubo-Bastin formula
which can be separated into [81]

G = o) 012) = o) 1 glive) 4 o

(1.86)

where the UI(}V) term (in Ref. [81] called Fermi surface) can be separated into the
coherent part UE;COh'), and vertex corrections crfw ), and the al(fy) term (Fermi
sea [81]) is given by integration over the valence energy spectrum. The evaluation
of vertex corrections a;glgv'c') was formulated in the Appendix of Ref. [82].

The separation of the conductivity to the Fermi-surface and the Fermi-sea
term is, technically, done by integrating Eq. (1.85) by parts. It results in the

Fermi-surface

o) = oo [ F(E)TY (0ug, (B, [g4(B) — g (E)
~ou[94(E) = g (E)] vug(E)) dE
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and the Fermi-sea

o) = Uo/f(E)Tr (vug+ (E)vngy (E) = vug! (E)v,g4 (E)

(1.88)
—vu9-(E)v,g' (E) + v,g (E)v,g_(E))dE

contributions separated [81]. The energy derivative of the Fermi-Dirac distribu-
tion, f’(£) in the Fermi-surface term, goes to the Dirac delta-functions for zero
temperature T'; therefore the integration may be omitted and only the Green’s
functions at the Fermi energy F = Ep remain

o)(T = 0) = 0gTr (v, [9+(EF) — 9—(Er)| vug—(Er)
~vu9+(Er)v, [9+(EF) — g-(EF)])

which can be found also in [74]. The Fermi-sea term for zero temperature is
written as a contour integral in the complex energy plane [81]

(1.89)

o(T =0) =00 [ Tr{{n,g(z)u, - 0,d(=)0] )P (g} dz, (1L90)
where g(z) denotes a configuration average of the g(z) in the single-site CPA

(9(2)) =g(z) =[P —5]"". (1.91)

Here, P(z) is a nonrandom site-diagonal matrix of the potential functions and
P’(z) is its energy derivative. Eq. (1.90), despite having formally a form of
the coherent part of the conductivity tensor with vanishing vertex correction,
contains P’(z) which has a form of the vertex correction (¢P’¢g). The latter is
related to the Ward identity for the particle number conservation and to the
energy dependence of the averaged single particle Green’s function [81]. For
details about conﬁguratlonal averaging of the 0 ) term we refer to Ref. [81].

We note that the ¢?) term is antlsymmetrlc and thus vanishes for the lon-
gitudinal conductivity. Moreover, it should be emphasised that the following
quantities are invariant within the TB-LMTO method [81]:

e Total conductivity tensor o,
e the vertex corrections to the Fermi-surface term 0/(} Ve

e the sum O'E,’wh') + ‘7;(3)7 and

e the symmetric part of the coherent part of the Fermi-surface term, i.e.,
(0./(} ,coh.) 4 O' lcoh ) /2

The invariant properties of the Fermi-sea and Fermi-surface terms above described
are essential for an investigation of the AHC, see bellow.
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2. Development of methods
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In the first two sections of this chapter we introduce general techniques for a
description of disorder, i.e., atomic displacements and disordered magnetic mo-
ments. In principle, they can be employed to study various ranges of structural or
magnetic fluctuations. Because we focus on a treatment of finite temperatures,
Sec. 2.3 shows their connections to nonzero temperatures. Last but not least,
an approach for treatment of a spin-polarized current within the linear response
theory is shown.

2.1 Alloy analogy model within LM TO-CPA

The alloy analogy model (AAM) formally describes shifts of nuclei from their
equilibrium positions (phonons) similarly to treatment of multicomponent alloys.
The aim of this Section is to develop a transformation of the TB-LMTO potential
functions to describe displacement of nuclei.

First, we describe basic principles of the AAM. Then, we present a short
overview of similar techniques from literature and the rest of this Section describes
a mathematical derivation of the AAM for the TB-LMTO method with the CPA.

Atoms in a studied bulk system are distributed in the whole sample, but to
demonstrate their displacements, we choose an original reference frame O and
a new one O = O + u, where u stands for a displacement vector. The same
notation (the tilde) is used also later to denote potential functions in the shifted
origin. Fig. 2.1 schematically illustrate atomic displacements: the identical atoms
form a 2D crystalline lattice (having only one sublattice) and they are displaced
from their origin O to the new one O. Distances in Fig. 2.1 do not correspond
to a real physical system, the scheme of the displacements is the same as in
3D bulk materials, and any of the nuclei can be displaced. We note that the
same displacement is used for all of the atoms that are identical within the CPA
(mathematically not distinguishable atoms at the same sublattice).

o o~ o~ o~

O

y_®
) ad Oo/ o o

Figure 2.1:  Atoms form a periodic lattice and all of the identical atoms with the
origin O (blue) are displaced to the new one O (red). The displacement vector u
is the same for all of the identical atoms, but for clarity, only one of the atoms
(dark blue and dark red) has the origins and the vector labeled.

Within the CPA, the originally identical atoms are considered to be distin-
guishable, similarly to a random alloy. Fig. 2.2 schematically shows an atom
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on a single crystallographic position, which was taken four times (with nonzero
arbitrary concentrations, see Eq. (1.56)). Each of the mathematically different
atoms is displaced to a different direction characterized by the vector u, which
is independent for the different atoms. We note that for the formalism, it is not
important whether the atoms are physically identical (e.g., several atoms of Fe
results again in pure Fe) or not (random alloys).

U, ul/.
®
.‘73 \uz

Figure 2.2: A single atom is treated by the CPA as several distinguishable ones
and each of them may be displaced to any direction and with any magnitude.
The transformation is done using the later derived Eq. (2.41) describing a change
of scattering properties.

For a scheme describing technical implementation of the AAM within TB-
LMTO with the CPA, see Sec. 3.1.

2.1.1 AAM - overview of literature

There are several ways how to deal with the lattice vibrations at finite tempera-
tures. It can be approached using the Boltzmann formalism with the relaxation
time approximation [86] or employing calculations of phonon properties [87, 88].
The model of frozen lattice displacements is often used in the calculations of
transport properties. Atoms are moved randomly from their equilibrium posi-
tions in a perfect periodic crystal and the studied properties are calculated for
this disordered system. The resulting quantity should be averaged over many
configurations of random displacements of the atoms. The situation resembles a
chemical disorder and because of this similarity, the AAM obtained its name [89].

The AAM has been recently implemented for a study of transport properties
by several groups. Based on numerical codes they used, the AAM employs various
techniques.

The CPA and the Korringa-Kohn-Rostoker (KKR) method with the
Kubo-Bastin equation [29, 31, 89] For the description of the temperature-
induced lattice vibrations, the AAM was introduced and worked out within the
KKR Green’s function formalism and the CPA [89]. Authors focused on the
Gilbert damping parameter calculated via the Linear Response Formalism and
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the Debye theory was used to assign temperature to the random thermal dis-
placements of nuclei.

In Ref. [29], the AAM was used together with Monte Carlo simulations de-
scribing spin fluctuations to examine temperature dependent electrical resistivity
and Gilbert damping. The KKR method with the CPA was used in that study
to examine iron, nickel and copper from the first principles

Similarly to the electrical transport properties, also spectroscopic properties
of solids may be obtained with the AAM [90].

Supercells with the TB-LMTO method and the Landauer-Biittiker for-
mula [27, 32] The TB-LMTO method with the supercell technique was used in
[91] to investigate Fe, Co and Ni and a dependence of the resistivity and Gilbert
damping on the root-mean-square displacement of the nuclei. The Landauer-
Bittiker formalism was employed for that purposes.

The supercell technique can also treat the spin disorder in the form of frozen
random magnetic moments. The DLM state and the spin-disorder resistivity
and the combined effect of the lattice displacement and of the spin disorder were
studied in Fe and Gd [27].

A similar technique has also been used in a more recent study [92] where the
calculated phonon spectra were connected to the displacement of nuclei in the
supercell. This approach gives a very good agreement with experimental data for
Cu, Pd, Pt, Fe and for random Ni-Fe alloys (permalloy).

Our approach based on the TB-LMTO method with the CPA numerical
codes [1, 2, 4, 6] For all of the supercell techniques, it is necessary to perform
numerically expensive averaging over random configurations realizing the studied
system. The AAM-CPA is numerically more efficient, but the supercell AAM
allows, at least in principle, e.g., to include correlated spin-fluctuations near the
Curie temperature (the magnetic short-range order). Although this may be a
huge disadvantage of the CPA, it does not usually cause any problems and it
may be compensated by more detailed studies that are possible because of its
effectiveness. It was shown especially in our studies focused on a description of
systems, for which the AAM had not been employed before.

In Ref. [2], Ni and Cu-Ni alloys are treated by the fully-relativistic approach
with a focus on the longitudinal resistivity and AHC. For similar systems, we
also investigated the spin polarization of the electrical current [4] influenced by
various alloying. Half-Heusler FM NiMnSb with both phonons and magnons was
studied up to the Curie temperature [6].

2.1.2 Displacement matrix

Considering the TB-LMTO method where combinations of regular and irregu-
lar solutions of spherical Schrodinger equation (Laplace equation) are used for
definition of LMTO orbitals [12], we may describe the homogeneous polynomials
regular at zero by real spherical harmonics Y7,

Jp(r) = J(r)YL(%), (2.1)
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where

Jir) = L (;)l . (2.2)

20+1
In Eq. (2.1) and (2.2) L = (I,m), r = |r|, # = r/r, and w is a length scale. An
arbitrary prefactor ¢ # 0 (does not depend on L) has the value of ¢ = 1/2 in
Ref. [12].
Translation of the origin J(r) — Ji(r — u) can be performed using displace-
ment matrices Dy (u) described by the relation

(r—u) ZJL/ )Dpiz(u) ; (2.3)

this treatment corresponds to a linear transformation of the coordinates and will
be considered to be the implicit definition of the displacement matrices.

In order to describe the atomic displacements, the linear operators of the
transformations must be known. For the displacement matrices defined in (2.3)
the relation

T D)Y@ = )N Crppr funNY
Diri(u) = dn ; QU — D@ + D <w> Yir(@) 24
holds, where Gaunt coefficients Cp /. are
Crin = / Y (8) Y2 (£) Yo (F) dS2. (2.5)

Employing (2.2), the displacement matrices may be expressed as

A 1=/ +1" (_1)l//(2l o 1)!!CLL’L”
DL’L(U) = Z (2[’ . 1)”(2[” _ 1)” JL//(U) . (26)

q !

Proof: Relation between the complex spherical harmonics V() for L = (I,m)
and the real ones is given by a unitary linear transformation

B) = 3 A Vi (£). (2.7)

where Aﬁf}m, are some coefficients. For our purposes, it is not necessary to know
their explicit form, we just need their property

S (AD) AL = G (2.8)

Complex spherical harmonic functions create a basis with the relation of or-
thonormality
[ Vi@V (#)a0 = ou (2.9)
the plane wave ¢’ in this space can be expand into this basis with the spherical
Bessel functions j;(z) used as the coefficients of the series (Rayleigh Eq. [93]):

T = dr S ity (k) Vi (k) Vi (#) - (2.10)
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By using Eq. (2.7) and (2.8), the last identity can be recast into the form with
real spherical harmonics:

T = 4 S il (kr) Yy (k) Vi (R) . (2.11)

Let us briefly show how to combine these equations in order do describe the
displacement. The expansion of the spherical wave can be rewritten employing
(2.11) and then we make a substitution R = r — u to simplify a notation of the
new coordinate system:

ezk-R _ ezk- (r—u)

=47 Y i'ji(kR)YL(k)YL(R)

_ (Zz (k)Y (k ) (Zz g (k) YL’(R)YL’<_ﬁ)>
= (a0 (S i) ) (S v (720
~ 2 (3 z’l’jmkmn«ﬁ)n/@)) (> 1>”’zl”jz~<ku>YL~<E>YL~<ﬁ>> .

L/ LII
(2.12)
In the third step, we used
Yi(—) = (-1)'Y; () (2.13)

and the last identity was obtained by changing summation indices.
Now, using Eq. (2.12), multiplying both sides of the equation by Y; (k), inte-
grating over k, considering orthonormality

/ Y (#)Y; (#)dQ = 6, (2.14)
and definition of Gaunt coefficients (2.5), one may get
1 jl<kR YL =4m Z ZN l+l”CLL/L//jl/(k7’)YL/( )jy/(l{U)YLu(ﬁ) . (215)

L/L//
These steps are obtained by algebraic substitutions, reorganizing the terms and

dividing it by the part, which is same in the both sides of the equation.
Asymptotic behavior of the spherical Bessel function is

, N (kr)!
jl(k?”) ~ W for kr < 1. (216)
Inserting the asymptotics for kr < 1 into Eq. (2.15), considering
CLL’L” =0 for [ >1 + " (217)

and comparing the coefficients at the terms proportional to &' on both sides of
the equation, the following identity is obtained:

R! R
1
"y (R) =
ot ®)
[ Tl/ U,l// (218)
=4 1 +C i —————Y7 (D) ———=Y; (1) .
WL,L,,%/H,,( T G 20 + 1)l v(®) @+t (®)
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It can be further simplified when Eq. (2.2) is employed after dividing Eq. (2.18)
by 2w = 2w" . Furthermore, imaginary unit cancels because of the same power
of [ =1'"4+1". The final result corresponding to a translation of J;, is then

1 (2l - 1)” JL/(r)

LR =4r Y (-1) Cuw 8 (“) vty 219)

LI =l (20" + 1)!!

Eq. (2.4) for the transformation of the origin of the coordinates in the terms
of matrix operation is the direct result of this identity. It is obtained when this
relation is plugged into Eq. (2.3), both sides of the equation are compared and
corresponding terms are cancelled. The conditions for [ are taken into account
once more and the desired transform is obtained.

2.1.3 Properties of the displacement matrix
The properties of the representation matrix given by Eq. (2.4) are following:
1. Dyp(u) =0 for I >,
2. Dpp(u) =6pp for l =1/,
3. Dy/r(u) is a harmonic polynomial of a degree [ — I for [ > I',
4. D(0) =1,
5. D7'(u) = D(—u),

6. D(u)D(v) = D(v)D(u) (Physical interpretation: It does not depend on
the order of displacements.), and

7. D(u+v) = D(u)D(v) (Physical interpretation: Two displacements should
be equivalent to the sum of them.).

2.1.4 Transformation of the potential functions

The previous sections describe the derivation of displacement matrices for the
polynomials J;, related to the regular (at » = 0) solutions of the Laplace equa-
tion. The second kind of possible solution leads to polynomials regular in infinity
(r — o0) and irregular at zero. A vector space can be also constructed using
them, and the basis may by chosen in the following way:

Ki(r) = Ki(r)Y, (%) , (2.20)

where

Ki(r)=¢ <w>l+1 (2.21)

r

with an arbitrary prefactor ¢’ # 0 different from the previously introduced g;
¢ =1 in Ref. [12]. The translation of the origin is given by a formula similar to
the previous one, now in the terms of K :

I'—ll ZKL/ DLL’ ) . (222)

39



The sum above should be absolutely convergent for u < r and this relation can
be proven from the previous properties and the expansion (valid for r +2u < |r'|)

|rwf’q1:,| = Ar SR ) = 4n 3 e - WL ) (2.23)

Once we have identities (2.3) and (2.22), we can describe a displacement of the
potential functions, because these relations leads to translational invariance of
the Wronskian relations

{JL, KL/} = —wqq’éLL/ (224)
which is an analogy with Eq. (2.24) in [12].

Spin polarization must be assumed for many materials in order to get realistic
results from the calculations. Let us introduce subscript s = —%, % which labels
spinors with quantum numbers Ims = Ls. Then we can write for the solutions

of the Schrédinger equation:

Jrs(r) = Jp(r)xs and Kp(r) = Kp(r)xs (2.25)

1 0
Xs=+1/2 = < 0 ) and Xs=-1/2 = < 1 ) . (226)

All of the indices for the quantum numbers can be doubled to make the notation
easy to understand:

with

L — Ls . (2.27)
In particular, the displacement matrices with spin are given be
DL’s’,Ls(“) = DL’,L(u)(;s’s . (228)

Relations for modifications of unscreened potential functions P},;(F) used in
the LMTO method are introduced in this section. Potential functions come from
a solution of a single-site problem, they describe the properties of the individual
atomic spheres and are required for the ab initio calculations.

Let N be a general index of quantum numbers

1. N = L for non-relativistic and spin-less case and
2. N = Ls if spin is taken into account (and also in the relativistic case).

For simplicity, the previously introduced (2.3) and (2.22) can be rewritten as

Jn = DunJu (2.29)
M
Ky = %j (D*l)NM Ky (2.30)
with the inverse relations
Jy = %{: (D7), Ju (2.31)



Ky=> DnuKu - (2.32)
M

Potential functions in the canonical (unscreened) LMTO representation and in
the ASA are defined by Eq. (2.25) in [12]

0 _ {Kl(r)790<7'7 E)}
PRZ(E) - {JKT),QO(T, E)} |T:5R ’

where ¢ are radial amplitudes given by a solution of a radial Schrodinger equation
and sy is an atomic sphere radius!. In a general case, one has to use a matrix
notation:

(2.33)

Phn = YA en} [{4 0} 7], (2.34)
A k]
and in a shorter form with matrix indices omitted

PP ={K,o}{J o} . (2.35)

Labels A go through all linearly independent reqular solutions of the single site
problem [12]:

1. A = L for the non-relativistic and spin-less calculations,
2. A = kpu for the relativistic non-magnetic system, and

3. A =lp) in a general spin-polarized relativistic case.

Notation {A, B} means a Wronskian given by elements {4;, B;} = {A, B}, ;; A
and B are general functions. In analogy with Eq. (2.34) and (2.35), it can be
written with respect to displaced origin O = O + u:

Pl =2 {Fw, o) {737, (2.36)

P’ ={K,oH{J o} (2.37)

Since the displacement matrices Dy, (u) are real, see (2.4), we may combine
the equations above in order to get Wronskians for the shifted origin:

{JN,goA}—%(Dl)MN{JM,m, {Jey=(D") {(Jg}. (239

{Kn, 02} =Y Dyu{Ku, o2} and  {K, ¢} = D{K, ¢} . (2.39)
M
When we plug the Wronskians to each other, we get
~ ~ _1 ~ ~
PP = (K¢} (D7) {e}] = DIRHIe) DT (2.40)

Definition of potential functions can be used now and we finally get

P’ = D(u)P°D% (u) . (2.41)

!The radius determines the region where the atomic sphere approximation is used
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Let us remind, that PV is in the original coordinates and corresponds to the ideal
crystalline lattice, whereas P° describes the potential function with respect to the
displaced origin. Since we investigate the single-site problem and use the ASA,
the potential functions PP are spherically symmetric, in contrast to PP.
Unscreened potential functions may be modified to a new origin by Eq. (2.41);
for the transformation to the screened representation (functions P®) one has to

use .
P =P (1-aP’) . (2.42)
Unscreened P° can be obtained in the numerical codes for the electrical transport

in the same way as P® if & = 0 is used. The computational order is following:

1. Set a = 0 and get P°,
2. transform P° to P° using (2.41),

3. calculate P* with (2.42) and use it for the following numerical steps.

Green’s functions, conductivity etc. are then calculated in the original way
with the new P* and with the screened structure constants (S*) of the ideal
crystalline lattice.

2.1.5 Fermi-sea term

To evaluate the Fermi-sea term within the fully-relativistic LMTO approach and
related properties, derivatives of the potential functions with respect to the com-
plex energy z are needed, see Eq. (27) in Ref. [81]. With the same notation as
above, it holds
dpP®
dz

(1-Pa) =—(1-aP’) . (2.43)

Proof: Eq. (2.43) is a direct result of the energy derivative combined with Eq.
(2.42):

P —ap) 4 P (1 0P el (1)
_ (1 + (1 - Pooé)*1 P0a> de:O (1 - ozpo)*1 = (2.44)
= (1 - Pooz)i1 (1 — (Pa — Pooz)) ddio (1 - aPO) gy

The derivatives of the unscreened potential functions are then transformed
by the energy-independent displacement matrix D similarly to P? in Eq. (2.41),
specifically

p° p°
ddz = D(u)ddZDT(u) : (2.45)
For practical purposes, the first step of the numerical approach is an evaluation
of P° and of its energetic derivative from the LMTO potential parameters, which
is then used in both Eq. (2.41) and (2.45). Similar numerical approaches hold
for the matrix inversions (1 — P°«)~" and (1 — aP®)~", that are also computed
only once. Therefore, obtaining the Fermi-sea term for the displaced nuclei is

numerically almost the same as calculating the standard Fermi-surface term.
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2.2 Models of magnetic disorder

The total magnetic moment decreases with increasing temperature for ferromag-
netic (FM) materials, see Sec. 1.1.3. It is caused by fluctuating magnetic moments
which occur also in systems with different magnetic properties (ferrimagnets, an-
tiferromagnets). To describe these phenomena, two models of magnetic disorder
were assumed: (i) the uncompensated disordered local moments and (ii) tilt-
ing of the moments. The second one is more general, but both describe only a
“static fluctuation” using an averaging within the CPA. If not stated otherwise,
for description of magnetic behavior we use local magnetic moments per atom.

Uncompensated disordered local moments The disordered local moment
(DLM) approach [94, 95] is based on a description of a paramagnetic (PM) state as
a system consisting of uncorrelated magnetic moments (randomly oriented spins).
The magnetic moments are aligned in one direction in an undistorted FM state,
they start to fluctuate with increasing temperature and the high-temperature
limit (beyond the Curie temperature) of the system is described by the moments
heading (randomly) to any direction. In the paramagnetic state, the energy of
temperature-induced fluctuations of magnetic moments is larger than the energy
necessary to sustain the magnetic order.

Not only electronic structure, but also a two-particle quantity such as electrical
conductivity can be for a system without the spin-orbit interaction described
within the CPA [96, 97]. Therefore, a material having magnetic moments in all
of the directions is mathematically equivalent to a system with the same total
magnetization (equal to zero) but with the moments heading only in two opposite
directions. This description of the high-temperature limit of the system in the
form of paramagnetic (antiferromagnetic) structure simplifies the description of
the magnetically disordered materials.

The DLM approach was used, e.g., to examine Heusler alloys [96] or spin fluc-
tuations in Fe and Ni [98]. Dependence of physical quantities on the magnetiza-
tion, and consequently on temperature, cannot be obtained within this model be-
cause the total magnetization is equal to zero (PM state). This high-temperature
limit may be used to extrapolate the spin-disorder resistivity p°P from the electri-
cal transport properties influenced by a combined effect of phonons and magnons.
Same extrapolation could be done for measured data, the p°® than has a clear
interpretation (coming from a pure influence of magnetic disorder) and calculated
p°P agrees with experimental results. It was proven in studies incorporating both
phonons and the DLM: Fe [1], Ni [2], and iron at extreme conditions [3].

The uncompensated DLM (uDLM) model [20, 99, 100] examines systems be-
tween the FM state and the PM one (DLM). Magnetic disorder is treated similarly
to substitutionaly disordered alloys having two components of identical atoms
with magnetic moments heading to opposite directions. Concentration of atoms
“A” having the opposite moments (- ) ranges from zero (FM) to 0.5 (DLM). To-
tal magnetic moment is given by a sum of the two components M (z,+) + M (z,-)
with z,+ = 1 — x5~ (concentration of original atoms) and M (z,+) having oppo-
site sign (direction) than M (z,-).

The total magnetization monotonically decreases from its maximal value (for
xx- = 0) to the minimal (M = 0 for z,- = 0.5). The direct dependence of
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the magnetization on temperature is not obtained even by this model, but its
decrease with x,- may be connected to experimentally known data describing
M (T) [34]. Tt results to the dependence x,-(T") and, ultimately, to temperature
dependence of other physical quantities such as electrical transport properties.
Because local moments of some elements within the DLM method may col-
lapse to zero (e.g., Ni), we also employed the fixed-spin moment (FSM) method
[101, 102], see Sec. 4.3.2 or Ref. [5]. The FSM method prescribes values of the
local moments and their final value is obtained by minimizing the free energy and
stabilized by the magnetic entropy effects [3, 103, 104]. The application of the
DLM-FSM method applied on random fcc Ni-Fe alloys is presented in Sec. 4.3.2.

Tilting of magnetic moments Magnetic disorder in real systems would more
likely consist of fluctuations of magnetic moments around their equilibrium po-
sitions. Changing directions of magnetization within the uDLM, even for small
x -, requires lot of energy and it would be better to describe low-energy magnetic
fluctuations by another model.

For these purposes, we introduce a model that is based on tilting several
(n) moments of the same atom and on the same crystalographic position. It is
done within the CPA, similarly to the DLM approach, and a concentration of
the original atom (for a given crystalographic position) is equally divided among
these n atoms. Sum of the concentrations equals to the concentration of the single
original atom in the FM alignment. In the framework of noncolinear magnetism,
the moments of the new “virtual” atoms are chosen to head to different directions
respecting a symmetry of the material; moreover, they head symmetrically with
respect to the original direction. A similar model was also employed within the

TB-LMTO method with the CPA and supercells [32].

%,

Figure 2.3: Tilting of magnetic moments from a single equilibrium direction
(blue) the four new ones (red). Increasing angle of tilting 6 corresponds to rising
temperature with a limit § = 7/2 representing states at and above the Curie
temperature.

For our purposes, n = 4 is sufficient and the new moments lie on a cone around
the original direction. The cone is parametrized by a vertex angle #: 6 = 0 for

FM and 6 = 7/2 for PM (or DLM with moments in the plane perpendicular

44



to moments in the DLM state), see Fig. 2.3. Mathematically, an alloy was
constructed by substituting magnetic atoms oriented along the z-direction by the
four magntic moments tilted by the Euler angle 6 from the z-axis symmetrically
in the four directions x, y, —z, and —y; the four directions are parametrized by
the Euler angle ¢ € {0.0,0.57, 1.0, 1.57}.

In principle, any number of directions may by used; moreover, different di-
rections could be chosen with different weights (different concentrations of com-
ponents for the random alloy). This could be employed, e.g., when probability
distribution of magnetic moments (and their magnitudes and directions) on tem-
perature is known. Complex methods like Monte-Carlo simulations give such
data [29]. Much simpler approach is based on varying the angle 6 to obtain M (6)
dependence and then, similarly to the uDLM method, experimental or other data
of M(T) are used to obtain § angle (being parameter of further calculations) as
a function of temperature, see Sec. 2.3.2.
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2.3 Description of nonzero temperatures

The previous sections introduced methods for a description of atomic displace-
ments or magnetic disorder. These effects play an important role for a study
of finite-temperature phenomena, but a proper implementation is needed to de-
scribe the specific values of the temperature. The modification of the potential
functions (Sec. 2.1) can be used to displace nuclei, but the magnitudes and direc-
tions of the displacement vectors u must be used as input parameters; it holds
similarly for the fluctuation of the magnetic moments (Sec. 2.2, parameters 6 or
x - ). Strictly speaking, necessity of the input parameters is not consistent with
the philosophy of the first-principles calculations, which should be done “from
the beginning” without additional assumptions or special models. Methods for
obtaining the parameters by ab inito techniques exist, e.g., calculating phonon
spectra [92] or Monte-Carlo simulations [29], but their inclusion is beyond the
scope of this work and models like the Debye theory of fitting of experimental
data are sufficient for our purposes.

2.3.1 Displacements of atoms at finite temperatures

Magnitudes of displacements: Debye theory The directions and magni-
tudes of the random displacement vectors must correspond to the temperature T’
of the system. Let us define the mean square displacement

(u?) = ;]; |, (2.46)

where N is the number of displacement vectors. Considering three spatial dimen-
sions, the Debye theory then leads to (e.g. [105, 106])

(u?) o (Dl 0 1) , (2.47)

- M/{ZB@D T 4
where o ,
D n [ "
T = T and Dn(x) = EA et _ ]_dt (248)

Here D,(x) is known as the Debye function (n = 1,2,3,...), i is the reduced
Planck constant, M is the atomic mass, kg is the Boltzmann constant and ©p
denotes the Debye temperature. The last term in the bracket (i.e., 1/4) is impor-
tant especially for low temperatures and; therefore, can be often neglected.

We note that the Debye theory represents a simplified model for the mag-
nitudes of the atomic displacements that is valid, e.g., only for atoms having
identical masses. On the other hand, the Debye theory is also used by other
authors [29-32] with good results and we obtained agreement with experimental
data even for Cu-Ni [4] and Co-Ni random alloys and for more complex systems
like NiMnSb [6, 9], see Sec. 4.3 and 5.1.

A ratio of masses for the Cu-Ni alloy is [m(Cu) : m(Ni) ~ 1:0.92], i.e., the
atoms are very similar. NiMnSb has [m(Ni) : m(Mn) : m(Sb) ~ 1:0.93 : 2.07];
therefore, a proper choice of atomic displacements was investigated for two cases:
a) the magnitudes identical for each atoms or b) the magnitudes scaled according
to atomic masses [9]. For this system, we have found deviations of order 5 %
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for /(u?) = 0.20 and 0.25ap. Compared to other possible uncertainties, e.g., a
difference between spd- vs. spdf-basis or chemical impurities in samples, the error
is small and may be usually neglected.

The magnitudes of the displacements coming from the Debye theory are not
directly connected to the number of phonons (in the system at given temperature).
Therefore, phenomena like the Bloch T° law [22, 23] or other more complex
effects (see Sec. 1.1.3) are omitted. Similarly, differences between the Debye and
Bloch—Griineisen temperatures [107, 108] are neglected. We also consider phonons
to be described by the single value of the mean-square displacement and no
difference between optical phonons and acoustics phonons is taken into account.
For the proper description of temperatures far bellow the Debey temperature,
it would be necessary to assume lower amount of phonons, which would lead
to lower root-mean-square displacements. Such a complex behavior is observed,
e.g., in data obtained by VASP code (see later Fig. 2.6), but the effects may be
neglected for an investigation of a wide range of temperatures.

Although the Debye theory gives reasonable results for many materials, it is
still a model having many limitations. For example, it was derived with assump-
tions that the integrated density of states is proportional to 3n (n = the number
of atoms in the unit cell) and that the dispersions of phonons may be described
by phase velocities [15, 109, 110]. The assumptions are supported by the numbers
of freedom related to the oscillators (atoms) and isotropic character of studied
systems. A complete revision of the assumptions and the validity of the Debye
theory is beyond the scope of this thesis, but we note that a discussion of different
approximations is included in many material-specific studies. While the 3n factor
and the Debye theory holds reasonably for iron [111], it must be modified, e.g.,
for cubic KMgF3 perovskite [112]. The Debye theory is used or discussed also by
other authors employing the AAM [27, 29, 31, 32, 92].

Last but not least, the Debye temperature may be temperature-dependent
quantity which is related to an expansion of lattice constants and an interpretation
of experimental data [113]. No comprehensive study of the assumptions and the
validity of the Debye theory has been found, but for simpler systems like Fe it
agrees with experimental literature [111]. If not stated otherwise, in this thesis
we use the Debye formula from the quantum averaging (2.47). For simplicity, we
neglect the zero-temperature fluctuations (the 1/4 term).

Directions of displacements The nuclei must be displaced in a way which
corresponds to stochastic motions of particles. There are two kinds of approaches:
The first method defines N directions regularly distributed around the origin and
lying on a sphere with a radius equal to the magnitude of the displacement. In
this case, the directions are well defined and it is easy to reproduce them; on the
other hand, they may not correspond to the random thermal movement. The
second approach constructs N (pseudo-)random directions of the vectors with
the given magnitude. Furthermore, not only random directions, but also random
magnitudes having defined mean values and dispersions can be used. Advantages
and disadvantages are opposite to the first approach: it is hard to reproduce
the directions, but it describes the stochastic movement in a better way. Both
methods should give the same results for large V.

Since we are focused on metals with cubic symmetry (FCC or BCC), one
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can choose N = 8 in the first method and set the directions pointing along the
body diagonals of the cube; to be specific, we are talking about the vectors
(1,1,1), (1,1,-1), (1,-1,1), (1,—-1,-1), (—-1,1,1), (—=1,1,-1), (—1,—1,1) and
(—1,—1,—1). Let us mark this set of the vectors as XY Z. To study an influence
of an asymmetry of the displacements, we denote the set {(0,1,1), (0,1,—1),
(0,-1,1), (0,-1,-1), (1,0,1),(1,0,—1), (—1,0,1), (=1,0,—1)} as XZ. Let us
denote the resistivity p for these sets as pxyz and pxz.

Fig. 2.4 shows the electrical resistivity as a function of the root-mean-square
displacement /(u?). The corresponding temperature was calculated for each
displacement using Eq. (2.47), see secondary horizontal axes on the graphs. The
detailed knowledge of the temperature as a function of the displacement is not
perfectly clear at present. It may influence a comparison with experimental data
which are usually presented as a p(T') dependence; the same conversion was used
for data from [29]. The term 1/4 in the bracket of Eq. (2.47) was omitted in the
conversion (in order to get p = 0 for T' = 0), this leads to an error of 7 % at

\/(u?) = 0.15ap and lesser than 2 % for /(u?) > 0.23 ag (ap is the Bohr radius).
The error given by the Debye model is estimated to 5 %.
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Figure 2.4: Dependence of the resistivity on the numerical parameters: directions
(random RN D and regularly distributed XY Z) and number N of the displace-
ment vectors for FM iron. The inset graph shows the dispersions for different
configurations of random displacement vectors.

The input parameters of the calculations include also directions of the dis-
placement vectors. We present Fig. 2.4 (resistivity of FM iron) to illustrate the
dependence of the resistivity on the directions of the displacement. Our results
exhibit only negligible dependence on directions of the displacements if they were
distributed regularly around an origin. It even does not depended on the number
N of directions (it has been examined for 8 < N < 32; this does not hold for the
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random vectors), see Fig. 2.4 for pxyz = pxz (the two curves overlap). These

vectors were scaled to correspond to the given /(u?) and we generated several
(K) configurations of random vectors for each N. The data ppyp n—s for N =8
correspond to the arithmetic mean over K = 32 independent configurations. If we
use N = 32 random directions, the vectors are apparently randomly distributed
to all directions and the resistivity pryp n—32 overlaps with pxy, already if the
mean value from K = 4 configurations is taken. The scatter of the resistivity
values for different configurations of random vectors for N = 8 is displayed in the
inset of Fig. 2.4.

Directions of displacements in tetragonal CuMnAs Various tests were
performed to verify that a choice of atomic displacements does not influence
results. Here we show data from one of the tests, i.e., for tetragonal CuMnAs
(see details in Sec. 5.2) with a ratio of the lattice constants ¢/a = 1.65 [114].
We calculated electrical resistivities for the two following choices of the directions
(summarized in Fig. 2.5):

1. The directions were the same as for the previously mentioned cubic systems,
i.e., pointing along the body diagonals of a cube. This set of displacements
is labeled as “cubic” in Fig. 2.5.

2. The displacement vectors headed towards the body diagonal of the tetrag-
onal cell, i.e., they were scaled by the factor ¢/a with respect to the cubic
structure (labeled “tetragonal”).

600 . . .
Pxx ==*" Pzz = - /Cé——_’-(
cubic o 2
E' teutrrllgonal A /,"G
S 400 -9
g L
< ®--C"
=
>
@ 200 | .
§ ‘=._:'—€)
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@0 @O
O ! ! !
0 0.1 0.2 0.3

Displacement of atoms, V< # > [ag]

Figure 2.5: Both p,, (red dotted lines) and p,. (blue dashed lines) are identical
for the cubic (circles) and tetragonal (triangles) directions of the displacements
in tetragonal CuMnAs.
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Although the directions differ, the magnitudes may be easily compared and they
are shown on the horizontal axis in Fig. 2.5. The in-plane p,, and out-of-plane p,.
resistivities are almost identical for both choices (“cubic” and “tetragonal”). This
justifies employing the AAM even if the proper directions of the displacements
are not perfectly known.

More accurate determination of the atomic displacements Modern tech-
niques like atomistic simulations can give more accurate results for both the mag-
nitudes and directions of the displacements at finite temperatures. While the
magnitudes can be obtained analytically from the Debye theory, the simulations
are numerically expensive. They are necessary when the Debye approximation
fails; two such conditions were met.

Firstly, employing Eq. (2.47) and the AAM results in electrical resistivities
that agree with experimental data for many transition metals and alloys, see
Chapter 4. On the other hand, the identical approach does not work for copper,
silver, and gold. It was assumed that the inaccuracy is caused by the less localized
valence s and p orbitals (compared to d shells) [1], but it was later found that the
error comes from the Debye theory. The VASP (and phonopy) package within
the scalar-relativistic approach was used to obtain temperature-depended values
of y/(u?) for different materials. The magnitudes agree with the Debey theory for
metals that were well described also without VASP but differ two or three times
for Cu, Ag, and Au — previously problematic elements.

This work: VASP —+—

151 This work: Debye |
Exp.: Matula - &-
Theo.: Ebert ---o--

10 .

Resistivity, p [uQ cm]

0 200 400 600 800 1000

Temperature, T [K]

Figure 2.6: Obtained results compared with both experimental data [115] and
calculations [29] reveals a huge error coming for the Debye theory for Cu while
the root-mean-square displacement from the VASP package agree perfectly.

Resistivity of Cu as a function of temperature is shown in Fig. 2.6. The
experimental data [115] were, naturally, measured as a function of temperature,

our results calculated as p(y/(u?)) and converted to the temperature-dependence
by (i) the Debye theory and (ii) VASP displacements. The magnitudes of the
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displacements are not shown on the secondary horizontal axis because they differ
for the approaches. Authors of the theoretical study [29] also employ the Debye
theory, but their results agree with the same experimental data (and our results
with VASP). Our VASP- and Debye-results differ by the same factor and we note
that it is the same number coming from the degrees of freedom (see the previously
discussed limitations of the Debye theory). On the other hand, Ref. [29] also
shows data for Fe and Ni (also without the factor of 3 in the Debye theory)
that agree with our calculations (both Debye- and VASP-based). A source of the
disagreement remains unclear.

Secondly, for the conditions of the Earth’s core, see Sec. 4.5. Iron and iron-
based alloys were studied at high pressure (350 GPa) and high temperature
(5000-6000 K). The Debye theory describes only the ambient conditions and for
the root-mean-square displacements obtained for standard pressure and 5500 K

were y/(u?) = 0.82ap. On the other hand, finite temperature ab initio molecular
dynamics (AIMD) within the VASP code results in 4/(u?) = 0.59 ag [116].

Atomic displacements: Thermal expansion and spin-orbit interaction
With VASP software we also checked an influence of thermal expansion and the
spin-orbit interaction on magnitudes of the displacements. Fcc-Pt was chosen for
this purpose because both phenomena could be important. For an influence of
the spin-orbit see Fig. 4.3 showing electrical resistivity and a correction of 20 %
caused by this effect (at 1000 K). An expansion of the lattice parameter increased
a volume by 3.4 % (1000 K), which agrees with the measured volumetric thermal
expansion being about 3 % [117].
Root-mean-square displacements for 1000 K was obtained:

e Scalar-relativistic without thermal expansion: y/(u?) = 0.2648 ag,
e spin-orbit interaction without thermal expansion: /(u?) = 0.2623 ag, and

e scalar-relativistic with thermal expansion: y/(u?) = 0.2644 ap.

These corrections correspond to 0.9 and 1.5 %, respectively. The thermal expan-
sion for Ag results in the correction of 1.9 %.

Because both effects were found to be negligible within the whole relevant
temperature range (1000-2000 K); the corrections to the magnitudes of the dis-
placements are neglected in the rest of the thesis.

2.3.2 Fluctuations of magnetic moments

An increase of both the angle of tilting # and concentration of moments with the
opposite direction x,- (Sec. 2.2) monotonously decreases the total magnetiza-
tion of a ferromagnetic system. The same happens when temperature increases
towards the Curie point, see Fig. 1.3; therefore, # and z,- can be unambiguously
connected to the temperature below T¢.

Authors of [29] employ Monte-Carlo simulations in a combination with fitting
the experimental data to obtain the connections between the directions of the
moments and the temperature. This approach is beyond the scope of this work; on
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the other hand, measured temperature-depended magnetization M (T') is available
for many systems and by fitting M (0) or M(x,-) the dependences T'(f) and
T'(x5-) (or inverse ones) may be obtained. With this approach, perfect agreement
of our calculated electrical resistivity and experimental data from literature was
obtained for ferromagnetic Fe and Ni (not published)and NiMnSb [6, 9], see Sec.
4.2.

To demonstrate this approach, we present Fig. 2.7, where the dependence of
the energy difference F — E from the undistorted ferromagnetic NiMnSb (Ej)
on the spin magnetic moment p (local moment per atom) is shown; pu; is the
average of all local magnetic spin moments projected onto the direction of the
original magnetization. The disordered PM state corresponds to ps; = 0 while
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Figure 2.7: For stoichiometric NiMnSb, the uDLM (red dashed lines with squares)
and the tilting (blue dot-dashed lines with circles) models give the same total en-
ergy (F) from the undistorted state (Ey) as a function of the magnetic moment
ps. Temperature T, (top horizontal axis) obtained by fitting approximate for-
mula [34] to the experimental magnetization data [118]. Inset: The spin magnetic
moment as a function of model parameters zy;,- or 6.

the undistorted system has ps = 4pp. With increasing 6 or x,.,- the total
magnetization of stoichiometric NiMnSb decreases from M = 4.0up per formula
unit (local moments are my; = 0.26p5, mym = 3.75up, mgy, = —0.05up, and the
empty-sphere moment Mmempty = 0.08115) to zero. Almost identical parabolic-like
dependences FE(us) are obtained for both models, which can be understood in
terms of the classical Heisenberg Hamiltonian (note that pug is proportional to
cos) = 1 — 2xy,-). The equivalence of both models of the magnetic disorder
for the F(us) does not hold for the transport properties, see Sec. 5.1. We fitted
the measured magnetization [118]; both the zero- and Curie-temperature limits
were fixed. The Bloch T%/? law is approximately valid up to temperatures of
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Tc/3 [118]; however, with this more advanced formula [34] we reproduced the
magnetization satisfactorily for Tp,s from 0 to to T = 730 K. This temperature
scale is depicted in Fig. 2.7 on the top horizontal axis. The experimentally
observed change of saturation magnetization is about 10 % of the original value at
the room temperature [118-120], which corresponds to x;,- =~ 0.04 or 6 ~ 0.14.
We note that the experimental data [118] are available only up to 300 K; beyond
this temperature the extrapolation based on the approximate equation obtained
from [34] is used.

The electrical transport properties with included spin-fluctuations are shown
in Sec. 4.2 and 5.1.

2.3.3 Fermi-Dirac distribution

Transport properties in our first principles calculations are obtained using the
linear response theory and Kubo formula [72, 73], see Sec. 1.3. The Fermi-Dirac
distribution f(E) in the Eq. (1.87) is usually assumed to describe conditions of
the zero temperature. For such case the following holds

Af (E)|r=o

5 = —0(E~ Er), (2.49)

which effectively cancels out the integration over the energy variable in Eq. (1.87).
The integration may become of significant importance for larger temperatures,
i.e. for the case when the derivative of the Fermi-Dirac function has a larger
support or the density of states is an odd function around the Fermi level Fp.
The conductivity tensor is then

Of(E)

int. o0 0
o= /_OodEUW(E)iaE

= (2.50)
where JSV(E) is the zero temperature conductivity obtained for 7" = 0 with an
assumption of (2.49).

The effect of the broadened Fermi-Dirac distribution may be investigated
whenever the electrical conductivity is calculated; e.g., also for the temperature-
depended spin-polarized conductivity. We note that the inclusion of this phe-
nomenon is computationally expensive because the aﬂV(E) must be calculated
for a wide range of energies. It was found that twenty or more energy points
(depending on the shape of o), (E)) are needed to obtain negligible error within
the numerical integration. On the other hand, the corrections for the resistivities
given by the temperature-depended Fermi-Dirac distribution were obtained in
the orders of a few percent, see Sec. 4.4; therefore, it was not applied for more
advanced studies.

93



2.4 Spin-resolved electrical transport

In this Section, a formalism and an approach for treatment of the spin-resolved
conductivity is introduced. It is used to evaluate the spin polarization of the elec-
trical current, which characterizes an efficiency of the longitudinal electrical trans-
port for electrons with opposite spin quantum numbers. The spin-nonconserving
term is also defined.

Electrical transport properties within the linear response theory are calculated
by employing Eq. (1.85). The TB-LMTO method neglects electron motion inside
the Wigner-Seitz cells, the velocity operators describe only intersite hoppings [80],
and the resulting effective velocity operators are spin-independent. Therefore,
the coherent part of the conductivity tensor (obtained from the configurationally
averaged auxiliary Green’s functions g5 (£)) may be projected onto the spin-up
and spin-down directions for the spin indices s =1 and s =], respectively.

The polarization of the spin-resolved currents

coh,T coh,|
g — 0
pﬂ N (2_51)

o+ o
describes a quality of the spin-dependent transport [4, 45, 121]. The polarization
equals one for an ideal halfmetal (with exactly one of the spin-channels insulat-
ing); if both channels are identical, e.g., for nonmagnetic materials, P = 0.
In the relativistic treatment of the transport, strictly speaking, one cannot de-
fine the spin-resolved currents precisely because of nonzero spin-flip contribution
to the total conductivity (spin-nonconserving term)

O_Zzh,ﬂip — O-,LCL(,I)lh _ Z O-f;;h’s . (252)

S:Tvi

The spin-flip contribution was found to be small compared to the total (coherent)
conductivity for the Cu-Ni alloy in a wide range of magnetic moments [4]. On the
other hand, the spin-flip contribution is essential, e.g., for the Ni-rich NiFe alloys
[74]. Calculating the coherent part of the conductivity tensor projected onto the
spin-up and spin-down directions for the spin indices s =1 and s =, respectively,
is a sufficient approximation for halfmetals. The projected conductivity is then

ot = o0 [ 4B /(Br) Tr {0, (Er)u, [32(Er) — 52 (Er)]

(2.53)
—v, (35 (Br) — 3" (Er)| w0 (Er) } |
where g3 (F), and v, are averaged spin-resolved Green function and velocity op-
erator, respectively, expressed in the auxiliary form suitable for the numerical
implementation within the relativistic TB-LMTO formalism after performing
the configurational averaging. A real-energy variable is denoted E and f'(E)
is the energy derivative of the Fermi-Dirac distribution. To simplify the nota-
tion, g+(F) = g(E +0) is used. In Eq. (2.53), o9 = €?/(47VyNy) depends on
the charge of the electron e, on the volume of the primitive cell Vj, and on the
number of cells Ny in a large finite crystal with periodic boundary conditions.
If there was no spin-orbit interaction (in the two-current model [122]) the sum
azzh’T + Uzc;lh’i would correspond to the total coherent conductivity.
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To investigate an influence of the spin-flip term of the coherent conductiv-
ity and vertex corrections, the formula with the total conductivity Ufﬁf‘ in the
denominator was also used

O.coh,T o O.coh,i
p, = (2.54)

ot
The relations above do not explicitly dependent on temperature. We note that
the effect of broadened Fermi-Dirac distributions (at finite temperatures) on the

polarization P, can be obtained similarly to corrections of the total conductivity,
see Sec. 2.3.3.
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2.5 Properties and limitations of the AAM

Many effects may be responsible for disagreement of experimental literature or
theoretical data of other authors with our results from the AAM. Apart from
the standard TB-LMTO method with the ASA and CPA, the most important of

them which may play a role for different systems are:
e Chemical impurities in measured systems are usually not precisely known.

e Changes in lattice constants due to temperature are neglected similarly to
usually omitted changes caused by alloying.

e Correlations between atomic displacements for neighboring atoms are ne-
glected within the CPA.

e Correlations between magnetic fluctuations for neighboring atoms are ne-
glected within the CPA.

e The relaxation of the one-electron potentials due to the displacements are
not taken into account for our implementation of the AAM.

e Directions of magnetic moments for both the uDLM approach and tilting
model are fixed.

e The Debye theory holds only for small magnitudes of displacements, the
Debye temperatures are often not exactly known, and the magnitudes of
displacements should differ for atoms with different masses.

e Magnetic disorder is compared to experimental data of the total magneti-
zation, but neither tilting of the moments nor uDLM approach is perfect.

Some of the described limitations are not directly caused by the AAM but
by its implementation within TB-LMTO-CPA or by employing other techniques.
Therefore, they could be removed by different approaches, e.g., molecular simu-
lations instead of the Debye theory, but it goes beyond the scope of this thesis.

Despite of these limitations of the AAM, it is still a powerful framework. We
tested the approach on many systems and it agrees well with experimental results
or theoretical data of other authors, see Chapter 4. On the other hand, these
limitations must be taken into account during each interpretation of the results.
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2.6 Summary of the results

In this Chapter, the methods of our finite-temperature calculations were intro-
duced. The main outcomes are the following:

e The technique for the treatment of the atomic displacements within the
TB-LMTO method with the CPA was derived. Mathematically, it can be
used for the transformation of any potential function, but an application of
the approach remains for the later chapters.

e Two models of the magnetic disorder were described, i.e., the DLM (and
uDLM) method and the approach of tilting of the local moments. They can
be used to decrease the total magnetization of a magnetic system.

e The relations between finite temperature and both the atomic displacements
and spin fluctuations were discussed.

e The spin-resolved electrical conductivities and the spin-polarization of the
electrical current were introduced.
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3. Details of numerics and
applications
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This section focuses on technical aspects of the AAM, i.e., on its implemen-
tation within the TB-LMTO approach with the CPA. First, a modification of
the numerical codes which leads to an incorporation of the atomic displacements
is described. Then, numerical properties of our methods are discussed together
with examples of numerical expenses. For both the physical and mathematical
descriptions, see Sec. 2.1.

3.1 Scheme of finite-temperature calculations

Methods and quantities related to finite temperatures and their implementa-
tion within our formalism (TB-LMTO method, CPA) are schematically shown
in Fig. 3.1. Atomic displacements described in Sec. 2.1 were included in numer-
ical codes evaluating electrical transport properties and properties of electronic
structure (black text in Fig. 3.1 in green rectangles); however finite temperatures
are related to more steps of our methods.

In the first step of the standard (7" = 0) framework, the potential functions
P are self-consistently calculated within LSDA, see Sec. 1.2.5 for the notation or
Ref. [12] for details. They are then used to obtain the coherent potential functions
P for the CPA. From converged P, the Green’s functions and, consequently,
electrical transport or electronic properties are then calculated. This approach
would be described in Fig. 3.1, if “Atomic displacements” were omitted.

The inclusion of atomic displacements is shown in Fig. 3.1 in the bottom part
related to the “Atomic displacements” and the modified sections of calculations
are labeled by black text. It differs from zero temperature in the transformation of
the potential functions (2.41), i.e., P (previously converged for T"= 0 within the
LSDA) are modified and then used to obtain P employed in the CPA. This means
that the effect of the displacements on the self-consistent electronic structure
(TB-LMTO potential functions) is neglected similarly to other finite-temperature
studies [27, 29, 31, 32]. Despite this approximation, the AAM within the TB-
LMTO gives results that agree with experimental data, see later sections.

Fluctuations of magnetic moments, caused by finite temperatures or other
effects, can be included in the the self-consistent calculations of P. Both the
uDLM approach or tilting of the moments (Sec. 2.2) are included from the be-
ginning similarly to, e.g., the geometry of a studied system.

We emphasize that Fig. 3.1 shows a simplified structure of our framework.
For example, a geometry may be specified by varying a lattice constant and
searching for energy minimum or there are not many atomistic simulations that
could deal with both magnons and phonons on the same level. Similarly, “Atomic
displacements” may be considered as results of the atomistic simulations or inputs
for the following calculations.
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Figure 3.1: Mlustration scheme of the AAM within the TB-LMTO approach with
the CPA. Finite-temperature topics related to this thesis are marked by green and
parts modified because of the atomic displacements are labeled by black text.
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3.2 Numerical details

3.2.1 Formalism and employed frameworks

Basic physical approximations If not stated otherwise, the fully-relativistic
TB-LMTO method with the atomic sphere approximation and the CPA [12]
is used in this thesis, see Chapter 1. For the parametrization of the local den-
sity functional, the Vosko-Wilk-Nusair exchange-correlation potential [123] is em-
ployed.

Most of the calculations neglect Hubbard U. For a fully-relativistic LSDA+U
scheme with nonzero U for d-orbitals of Mn, see Sec. 5.1 with Ref. [6] and Sec. 5.2
with Ref. [11].

Electrical transport properties are investigated by the linear response theory
with the Kubo-Bastin formula [74] introduced in Sec. 1.3.2. CPA-vertex cor-
rections [82] are included and for more complicated systems, especially NiMnSh
(Sec. 5.1), the Fermi-sea contributions [81] to the total conductivity tensor are
taken into account. We note that the only intersite hoppings are described by the
velocity operators [80]. A small imaginary part of energy of 107> Ry is added for
numerical purposes (the CPA-self-consistency and the evaluation of the Green’s
functions). The model of finite relaxation time is obtained by increasing this
value; e.g., see Fig. 5.7.

The alloy analogy model (AAM) is used for treatment of finite temperatures
with both the atomic displacements (phonons) [1, 2, 4] and magnetic fluctuations
(magnons) [6], see Sec. 2.1 for details. For most cases, the magnitudes of the
displacements are connected to the temperatures by the Debye theory [105, 106].
The fluctuations of moments are treated by the disordered local moment (DLM)
approach [94-97] or with a model assuming tilting of the moments [6, 32]. The
atomic displacements are given in units of the Bohr radius ag = 0.529 A.

Input data required by the AAM Although the TB-LMTO framework with
the CPA is an ab initio method, i.e., it calculates results “from the beginning”,
parameters such as chemical compositions or geometries are often taken over from
literature. For finite temperatures, displacements (especially their magnitudes)
and magnetization are also obtained by other means than from the full ab initio
approaches. For most of the results, we employ the quantum averaging result-
ing in the Debye formula (2.47) with the zero-temperature fluctuations omitted
(the 1/4 term). To acquire results completely “from the beginning”, both sets of
parameters could be taken from atomistic simulations; however, it represents a
difficult task, that is beyond the scope of this thesis and is not directly connected
to the implementation of the displacements or magnetic fluctuations within the
TB-LMTO method. To focus on the implementation, we obtained most of the
magnitudes of the displacements by the Debye theory, see Sec. 2.3, which was for
simple systems compared to experimental data [111]. The Debye theory may not
be correct for more complex systems. Similarly, temperature-dependent magne-
tization was obtained by fitting experiments, see Sec. 2.2 or later 5.1.

LMTO basis: spd vs. spdf Because of the summation over the quantum
number L, linear transformation given by Eq. (2.41) the spdf-basis has to be
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employed for nonzero temperatures even for transition-metal based systems [1—
4, 6]; see also later Fig. 4.3. The necessity of the spdf —basis is the main reason
which makes calculations with atomic displacements numerically more expensive
than the zero-temperature studies. Examples of CPU-times for fully relativistic
spdf —calculations without the Fermi-sea term are later given in Fig. 3.2; analog-
ical calculations of NiMnSb with the spd—basis (usually performed for residual
resistivities) are about ten times numerically cheaper (than the spdf —basis) and
inclusion of the Fermi-sea term (spdf —basis) is about two times more expensive
(than the spdf —basis only with the Fermi-surface term).

We studied the effect of including the f-orbitals in the basis. Very often TB-
LMTO studies neglect an influence of the the f-orbital without proper justifica-
tion; however, the proper inclusion of f-orbitals might influence the calculation
results. For comparison of the influence of the TB-LMTO basis on the AHC
see later Fig. 5.10. It should be noted that a larger basis within the TB-LMTO
approach does not imply a better accuracy.

3.2.2 Numerical precision and expenses

Numerical precision To achieve a reliability of the numerical approaches, all
of the TB-LMTO potential functions were obtained by a self-consistent calcula-
tion that converged at least to thirteen digits (of the total energy value).

The number of necessary k—points for calculations of electrical transport sig-
nificantly depends on investigated systems. The imaginary part of the selfenergy
is larger, when impurities, phonons, magnons or multiple sublattices are present.
Then, for a larger imaginary part of the energy, a sampling of the Brillouin zone
may be of lower density (lesser number of k—points) compared to ordered materi-
als. Typical number of necessary k—points is approx. 300% for cubic systems. All
of the presented calculations were checked for different number of the k—points
and the final results are influenced by the finite number of the k—points lesser
than 1%.

A numerically expensive part of the DOS calculations comes from the evaluat-
ing of a large number (hundreds) energy points. Only a few thousands k—points
are needed for the DOS. In contrast, Bloch spectral functions are usually evalu-
ated for a few energies and a fine k—space mesh. Last but not least, calculating
bandstructures requires negligible time compared to other numerical codes.

Numerical parallelization and computational limitations Although the
spdf-basis is employed for the AAM, the TB-LMTO approach with the CPA
still represents a numerically efficient framework. To use the AAM for multi-
sublattice systems, we have parallelized the numerically most expensive sections
of our codes. In Fig. 3.1, parallelized parts of the approaches are marked by black
border. Because of these two aspects, our investigations of half-Heusler NiMnSh
(four sublattices) [6] and antiferromagnetic CuMnAs (six or eight sublattices)
represent studies of electrical transport in the most complex solids described at
nonzero temperatures so far.

Most of our ab initio calculations were performed on a single node with multi-
ple threads. Technically speaking, it was done only with OpenMP (Open Multi-
Processing) library without MPI (Message Passing Interface). This framework
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results in the best efficiency of our multi-thread programs and it is easier to
implement than MPI. Although MPI can be used as well, similarly to hybrid
MPI-OpenMP, running several instances of the codes (each of them on different
node) is more suitable and efficient for our purposes.

The numerically most expensive part is usually the integration over the Bril-
louin zone that can be divided into any number of threads; other parts of the
codes are parallelized as well. The high performance computing (HPC) is success-
fully used with our approaches, i.e., we have experience with Metacentrum and
IT4Innovations resources. With the HPC, an almost ideal performance indicator
resources_used.cpupercent is achieved. It says how much of CPU-time is used for
parallelized calculations, i.e., how much faster is the code if it is run with ngy,
threads. The maximal value corresponds to the number of the threads. With the
AAM, the factor is larger than 0.9ny, for tasks with a prevalent numerical inte-
gration over the Brillouin zone (electrical transport properties) and even larger
than 0.99ny, for calculating density of states.

Examples of computational expenses To compare numerical expenses for
different systems, we performed finite-temperature electrical transport calcu-
lations with the same numerical codes with the OpenMP parallelization (24
threads) on the HPC Salomon cluster of IT4Innovations national supercomputing
center (Czech Republic, Ostrava). The Fermi-sea term was omitted in the statis-
tics and following values do not include time necessary for the self-consistent
calculation of the TB-LMTO potential functions that does not depend on the
inclusion of the displacements.

CPU-times for different number of k—points in the Brillouin zone (BZ) npz
for bee Fe with the spdf —basis summarized in Tab. 3.1 show only negligible de-
pendence on magnitudes of the displacements |/ (u?) or magnetic disorder (tilting
angle #). The fitted linear dependence on ngy is depicted in Fig. 3.2. Zero-
temperature calculations with the spdf —basis are approximately four to five times
more expensive than with the spd—basis.

Table 3.1: CPU-time in hours for bce Fe calculated with 24 threads in the
spdf —basis linearly depends on the number of k—points in the Brillouin zone
npz, but it is independent on parameters of finite temperatures.

Number of points in the BZ, ngy

(u)[ag] | 6 |4-10° 32-10° 108-10° 256 - 10°

0.0 007 | 19.0 54.1 150 338
0.0 0.1m | 18.6 53.8 150 335
0.2 007 | 17.2 52.7 148 334
0.2 01x | 179 52.9 149 336

Numerical expenses increase especially for multi-sublattice systems. Con-
verged results for NiMnSbh are obtained for > 1.6 - 105 k—points (~ 340 CPU-
hours). It is possible to perform even more precise integration over the Brillouin
zone; however, the expenses increase significantly, see Fig. 3.2. For comparison,
AFM CuMnAs (six sublattices) with ng; = 8-10° requires (640+75) CPU-hours,
whereas only (386 & 154) CPU-hours is needed with the spd—basis (zero temper-
ature); the statistics was performed on 21 different possible impurities. One can
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see also Fig. 3.2, where errorbars are given by the standard deviations that were
obtained from calculations with displacements and relevant chemical impurities
(see Chap. 5). The errorbars may be also influenced by running the codes on
different machines (different hardware configurations). For these more complex
systems, CPU-time may slightly depend on the magnitudes of the displacements
(= 10 % of the CPU-time); however, there is no obvious function describing this
dependence and some larger magnitudes may be even numerically cheaper than

smaller ones.
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Figure 3.2: CPU-time dependence on ngy was fitted by the linear function and
plotted in the logarithmic scale for bee Fe (red circles), half-Heusler NiMnSb
(blue triangles) and tetragonal CuMnAs (green squares). Errorbars for Fe are
negligible. All calculations were performed for the spdf —basis and U = 0.

Requirements of RAM are usually relatively modest. The above mentioned
calculations of Fe and CuMnAs used 960 MB and 21 GB RAM, respectively; a
consumption of virtual memory is about two times larger. Standard deviations

of these values are less than 1 %.
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3.3 Summary of the results

In this Chapter we described the technical details of the novel ab initio ap-
proaches, as well as we discussed numerical aspects of the employed methods.
The most important results are:

The AAM can be implemented within the previously used and tested TB-
LMTO method with the CPA. Technically, the implementation is based
on the modification of the potential functions P, while most of the other
algorithms remain unchanged.

Because of the transformation of the potential function, the spdf—basis
must be used instead of the standard spd—basis. From the numerical point
of view, this is the most important drawback because it increases dimensions
of the employed matrices and, consequently, the CPU-time.

The numerical efficiency of the AAM within the CPA is almost independent
on the number of displaced atoms or tilted magnetic moments.

With standard numerical resources, we have enumerated even temperature-
dependent electrical transport properties in AFM CuMnAs with six sub-
lattices (eight if the empty spheres are used to fill empty space between
atoms). We consider even more complex systems to be treatable by the
AAM.

The structure of our numerical codes allows the perfect CPU-parallelization.
The numerical most expensive parts consist of the integration over the Bril-
louin zone or similar loops; therefore, their steps can be evaluated indepen-
dently.
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4. Electrical transport at finite
temperatures
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4.1 Pure transition metals

Transition metals without chemical disorder represent ideal candidates for testing
of novel ab initio frameworks, i.e., implementation of the AAM within the TB-
LMTO method with the CPA. Both the experimental values and theoretical data
of other authors are available in literature, which can be used to compare with our
novel results. Moreover, there are several nonmagnetic metals as well as metals
with nonzero local magnetic moments. According to atomic masses, relativistic
effects may be taken into account or neglected, but the masses are identical in
a whole system (without chemical disorder), which simplifies a selection of the
atomic displacements. Because of the many different properties but a relatively
easy description, we choose the pure transition metals to the first systems for
finite-temperature studies. The Fermi-sea term was omitted during the studies
presented in this Section.

4.1.1 Cubic systems

Introduction Among the pure transition metals, cubic systems are the most
simple ones, at least when transition metals are compared by number of atoms
and complexity of atomic displacements described by the AAM. We focus on
BCC and FCC structures. The structure is chosen for each metal according
to its common occurrence in nature; however, some of them are allotropes: For
example, Fe at ambient pressure has the BCC lattice (aw—iron) up to 7" ~ 1200 K,
FCC above this temperature (y—iron), and again BCC structure close to the
melting point (d—iron, approx. 1700-1800 K). At finite temperatures, each of the
distinguishable atoms in the cubic structures were displaced along [111] direction
of the crystalline structure, see Sec. 2.3 for details.

Figures in this section for materials with neglected magnetic disorder show the
electrical resistivity as a function of the root-mean-square displacement 4/(u?).
The corresponding temperature was calculated for each displacement using Eq.
(2.47), see secondary horizontal axes on the graphs. It may influence a comparison
with experimental data, which are usually presented as a p(T') dependence; the
same conversion was used for data in Ref. [29]. The error given by the Debye
model is estimated to 5 %.

Most of the results presented here were published in [1] and [4]. Even for
scalar-relativistic approximation we obtain an agreement with literature. This
approach does not allow an investigation of more complex phenomena such as
galvanomagnetic properties (anisotropic magnetoresistance, anomalous Hall ef-
fect). On the other hand, present results show good agreement with experimental
data. Therefore, the scalar-relativistic method is good approximation that shows
an applicability of the alloy analogy model implemented within the TB-LMTO
formalism.

Electrical resistivities Temperature dependent resistivity for some of the
transition metals is presented in Fig. 4.1-4.3. Our calculations, which took into
account only lattice vibrations, are for these metals in good agreement with both
different calculations and experimental results. Underestimation of measured val-
ues is often related to unknown disorder in real samples. It is clearly visible in
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Fig. 4.1, where the nonzero experimental residual resistivity corresponds to a dif-
ference between measured data and calculated results in the whole temperature
range. Moreover, different samples have different resistivities, see experimental
values in Fig. 4.1 or 4.2.
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Figure 4.1: Our scalar-relativistic results for Rh (solid line) are compared with
experimental data [124, 125]; the difference is almost identical for each displace-
ments and it corresponds to the residual resistivity.

We also investigated stoichiometric Pd (Fig. 4.2), but the correction given by
the full Dirac approach is obtained much smaller than the change of resistivity due
to phonons. A discrepancy between measured values is larger than a difference
from the calculated data; therefore we consider our results to agree well with
measurements.

Now we focus examination of fully-relativistic effects on nonmagnetic pure
metals with a strong spin-orbit interaction, i.e., platinum and palladium. Fig. 4.3
— left shows the dependence of electrical resistivity on displacements of atoms for
platinum. The obtained theoretical results are in good agreement with both ex-
perimental data and calculations of other authors. Errorbars show an uncertainty
(approx. five to ten percents of the resistivity) of the displacement—-temperature
conversion caused by a discrepancy of the Debye temperature presented in litera-
ture. Experimental data were taken from Ref. [126]. The difference between the
scalar-relativistic calculations and fully-relativistic ones is expected for a heavy
element such platinum. It was found to be much smaller or negligible for Fe, Co,
Ni or Cu. We obtain the agreement with experiments also for palladium, which
is not shown here.

The results shown in Fig. 4.1-4.3 are satisfactory, whereas calculations for
copper (see Fig. 2.6 and Sec. 2.3) do not agree with experimental data unless
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Figure 4.2: Scalar and fully-relativistic calculations of Pd are in good agree-
ment with experimental data [115] and the relative difference between the scalar-
relativistic and the fully-relativistic calculation is the same (5 %) in the whole
calculated temperature range.
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VASP software with the phonopy package is employed (see previously shown
Fig. 2.6).

Anomalous Hall effect The fully-relativistic results for the electrical resistiv-
ity are almost the same as the scalar-relativistic ones. It is not surprising for
Ni because of its small spin-orbit coupling which, however, the fully-relativistic
calculations are indispensable for all galvanomagnetic phenomena, such as the
anomalous Hall effect (AHE).

Temperature, T[K]

>0 200 400
~;<_, __—x—-——x——-'—x——-—x-— J*ﬁ
if’-i-':." ==

This work: Total ——

This work: Vertex —x— |
Theo: LSDA+U ---e---
Exp: intrinsic - - -
Exp: total - = -

0.1 0.2
Displacement, V< # > [ag]

Figure 4.4: Anomalous Hall conductivity of Ni, experimental and other theoreti-
cal data are taken from [31] and [127].

Our temperature-dependent calculations for stoichiometric Ni incorporating
only phonons which describe both the paramagnetic and ferromagnetic state agree
with data of other authors; see later Fig. 4.9 presenting also an inclusion of the
magnetic fluctuations. Without the magnetic disorder, the FM state is well de-
scribed up to the room temperature. The AHE for pure Ni within this tem-
perature range is presented in Fig. 4.4. Our data exhibit good agreement to
both theoretical and experimental results, especially for the coherent part of the
anomalous Hall conductivity corresponding to the so-called intrinsic contribu-
tion. The difference between the KKR values and the presented LMTO data is
significant especially at zero temperature and it mainly comes from the LSDA+U
approach in the KKR technique [31] in contrast to the pure LSDA in our scheme.
The incoherent (vertex) part, equivalent to the extrinsic contribution to the AHE,
is very small even at the room temperature. The total AHE is several orders of
magnitude smaller than diagonal elements of the conductivity tensor; therefore,
it is much more sensitive to numerical methods and other approximations. The
obtained calculated data prove the reliability of our approach.
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Calculated AHC for Fe is later shown in Tab. 4.6 with included influence of
the Fermi-Dirac distribution at high temperatures.

4.1.2 Hexagonal systems

Hexagonal Co, Ru, and Os show anisotropy between electrical transport prop-
erties in the in-plane direction (o,,) and the perpendicular one (o,,); therefore,
it can be used to verify validity of the AAM for non-cubic systems. Moreover,
the anisotropy is one of the basic physical properties and as such it deserves a
detailed study. It has also a potential application in novel spintronic memories
which are often based on multi-sublattice materials or layered structures [59, 128].
Because of our ab initio framework, different phenomena like a role of the spin-
orbit interaction may be studied. The AAM and finite temperatures were used
as a scattering mechanism, which leads to finite conductivities for metals without
chemical disorder [10]. For the anisotropy induced by the hexagonal structure of
random alloys see later Sec. 4.3.3.

The fully-relativistic calculations of electrical transport properties with eight
directions of atomic displacements respecting the symmetry of materials were
employed. Experimental Debye temperatures for Co (445 K [129]), Ru (550 K
[130]), and Os (467 K [130]) were used. We also assumed experimental lattice
constants: a = 2.503 A and ¢ = 4.058 A for Co [131], a = 2.270 A and ¢ =
4.274 A for Ru [132], and a = 2.432 A and ¢ = 4.315 A for Os [133].

Good agreement with literature (Ref. [134] for Co and [130] for Ru and Os)
was obtained for resistivities with atomic displacements (without spin fluctua-
tions and impurities), see Fig. 4.5. Omitting chemical impurities and magnetic
disorder is probably the reason why theoretical data underestimate experimental
values. Results for hexagonal Co with magnetic disorder are shown in Sec. 4.2.3.
The deviations may be also caused by neglecting correlation between atomic dis-
placements of the different atoms.

A strong dependence of the anisotropy on the magnetic state was observed for
Co, compare the FM state in Fig. 4.5 (a) with the nonmagnetic (NM) one in Fig.
4.5 (b). For the first one, p,, < p., which agrees with experimental data, whereas
the second one gives p,, > p,.. For Ru and Os (both are also NM), also p,. > p..
holds. The difference in the anisotropy can be related to the spontaneous FM
order of Co and the role of a different number of valence electrons is of minor
importance. The anisotropy of FM Co is opposite with respect to Ru and Os
and the effect was explained on the basis of the strong itinerant ferromagnetism
of Co [10].

To estimate the effect of the spin-orbit interaction on transport properties, we
employed also the scalar-relativistic approach. The trends are similar to the fully-
relativistic method and the differences in resistivities are up to ~ 10 %, see Tab.
4.1 for finite temperature given by phonons (y/(u?) = 0.2ag). The anisotropies
(pzz/p--) are almost identical for both approaches. It can be concluded that
the spin-orbit interaction has only a small influence on the studied anisotropy of
longitudinal resistivity.

In the two-current model [43], the total conductivity is obtained as a sum of
two conductivities for opposite spin channels (majority spin 1 and minority spin
1). Scalar-relativistic results (in terms of resistivities) for these two channels are
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Figure 4.5: Fully-relativistic calculations (solid lines, full symbols) with only
phonons included. Data for FM Co (a) show an opposite anisotropy than for
NM Co (b); for both Ru (c) and Os (d) the anisotropy is the same (pge > p..)-
Experimental data (dashed lines, empty symbols) are obtained from Ref. [134]
for Co and from Ref. [130] for Ru and Os. p,, is shown by the red circles, p,, by
the blue triangles.

also presented in Tab. 4.1. The resistivity of the minority spin channel is more
then ten times larger than the resistivity of the majority channel; therefore, the
electrical current is given and characterized mainly by the spin-1 carriers. The
majority channel has almost the same anisotropy p../p.. as the FM case, while
the minority one is similar to the NM system. It leads to the conclusion that
the anisotropy in the real FM Co is caused by the strong spin dependence of
the resistivity. It also agrees with the difference in the electronic structure in
FM Co (not shown here): the Fermi level of the majority valence band is in the
sp—like states (above the d—band) and the broad sp—band implies high velocities
of electrons. On the other hand, the minority d—band is not completely filled
and this narrow band determines smaller velocities than the sp—one.

Although experimental data of resistivities are underestimated, the anisotropy
(042/0.,) is described correctly, see Table 4.2 for two selected temperatures of
Ru and Os. For both materials and in the whole calculated temperature range

(y/(u?) < 0.4ag), 04z > 0,., which agrees with experimental data.
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Table 4.1: Calculated resistivities for \/(u?) = 0.2 ag without magnetic disorder
give pge/p.. < 1 only for FM Co and its spin-up channel and the anisotropy
is almost identical in both the scalar and fully-relativistic approaches. The ma-
jority and minority channel in the two-current model are denoted by 1 and [,
respectively.

Scalar-relativistic Fully-relativistic
Pz Pzz Puz/Pez | Pax I
pSem] [pQem) pSem] [pQem)

Co FM 5.33 6.02 0.89 5.46 6.77 0.81
CoFM 1| 5.71 6.87 0.83 - - -

CoFM | | 80.1 49.0 1.63 - - .
Co NM 24.2 15.9 1.52 24.8 16.5 1.50
Ru 19.8 14.8 1.34 20.2 15.1 1.34
Os 30.5 20.5 1.49 34.6 22.8 1.52

Table 4.2: Calculated electrical resistivities (p°¢, scalar-relativistic) of hexagonal
Ru and Os underestimate measured data (p*®-) [130], but the anisotropy p./p--
is obtained correctly. Magnitudes of atomic displacements (calculated values)
correspond to the temperatures (experimental data) in the same columns.

’ \ H Ruthenium \ Osmium ‘

V) fas] | 013 023|010 020
Cale. pCe[uQem] || 7.97 255 | 8.80 34.6
pee [uQem] || 5.88  19.0 | 5.67 22.8
pedle: fpeale. |l 135 1.34 | 156  1.52

zZ

T [K] 450 1200 | 400 1200
pZP[uQem] [ 12,9 389 [ 157 515
PSP [uQem] || 8.82 273 | 9.27 326
PEP- [ peXP- 1.46 1.42 | 1.69 1.58

zZZ

Exp.
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4.2 Transition metals with magnetic disorder

In this Section we describe finite-temperature behavior of transition metals with
the magnetic disorder (Sec. 2.2) taken into account. First, only the fluctuations
of the magnetic moments described by the DLM approach are presented. Then,
the combined effect of the atomic displacements and spin fluctuations for Ni and
Fe is shown to give good agreement with experimental data. Last but not least,
the Matthiessen’s rule for phonons and magnons is discussed for hexagonal Co.

4.2.1 Pure metals: Disordered local moments

Spin disorder, giving important contribution to electrical transport properties,
especially for magnetic materials, can be described in the most simple approxi-
mation by the DLM state. The resistivity in the PM state of iron with nonzero
local moments treated by the DLM approach is shown in Fig. 4.6. Measured val-
ues of the spin-disorder resistivity at zero temperature vary from 77 to 100 uf2 cm
and the calculated ones are (129 & 1) uf2 cm [27]. Our extrapolations from high-
temperature limit (7" > 1000K ~ T¢) to T' = 0 give (89 £ 1) uf2 cm; the uncer-
tainty is given only by the fit.

Temperature, T [K]
0 500 1000 1400

T

T

120 et ]

40 ¢ This work: FM 1
This work: DLM —e—

Fit (from T> 1000 K)
Glasbren‘ner: DLM ---+--

0 0.1 0.2 0.3
Displacement, < (7 > [ale

Resistivity, p [uQ cm]

Figure 4.6: Calculated electrical resistivity of iron in the FM state (without
magnetic disorder) and in the DLM approach. Obtained results are compared
with [27] and the spin-disorder resistivity of (894 1) uf2 cm was obtained by
extrapolation from 7" > 1000K.

The combined effect of spin disorder and displaced nuclei has recently been
studied for iron and gadolinium [27] using the DLM state. A straightforward
application of this procedure for nickel is not possible because the Ni magnetic
moment in the DLM state collapses. In the present study, the DLM state was
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obtained for a fixed magnetic moment of 0.42 up according to [96, 97|, and [98],
which corresponds to the value at the Currie temperature (632 K).

Temperature, T [K]
0 300 600 900

Resistivity, p [uQ cm]

0.03 0.06 0.09 0.12
Mean square displacement, < ¢ > [a%]

Figure 4.7: Scalar-relativistic calculations of nickel: Comparison of resistivity
for ferromagnetic (FM), paramagnetic (PM), disordered local moment (DLM)
state, and values resulting from the Matthiessen’s rule (Matt.). The presented
dependence on the mean square displacement indicates linear behavior of the
resistivity at high temperatures.

The temperature-dependent electrical resistivity in the DLM state of Ni cal-
culated by the scalar-relativistic approach is shown in Fig 4.7; for comparison
the values in the PM (with zero Ni magnetic moment) and FM states (Fig. 4.9)
are shown as well. The spin disorder resistivity (resistivity in the DLM state
without atomic displacements) is psp = 21.9 p2 cm, which is in good agreement
with previous results [96]. This value is close to the resistivity extrapolated to
zero temperature by a linear function from the high-temperature limit, which
amounts to Pextrap = (25.8 £0.2) uQ2cm (the error comes from the uncertainty
of the fit). The relative difference of both values is smaller than the differences
reported for iron and gadolinium [27]. This feature reflects the validity of the
Matthiessen’s rule within the present model with spin fluctuations correspond-
ing to high temperatures (above the critical temperature) similarly to Ref. [27].
This rule assumes additivity of the resistivity contributions due to the spin disor-
der and the phonons, as documented in Fig. 4.7 by the Matthiessen’s resistivity
puate.(T) = ppm(T) + psp, which is very close to the values of ppv (7).

4.2.2 Pure metals: Tilting of magnetic moments

The model of tilting magnetic moments (Sec. 2.2) was employed to describe elec-
trical resistivity of Fe and Ni with both the atomic displacements and magnetic
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Figure 4.8: Our calculations with magnetic disorder (black solid line with circles)
agree with both experimental (red dash-dotted line) [135] and theoretical (blue
dotted line) [29] data. Low-temperature limit (the FM state, only phonons) and
the high-temperature one (DLM state with phonons) are shown by gray dashed
lines.

Temperature, T [K]
0 100 300 500 900 1400

40 . ‘ . ‘ e
Mag. disorder —+— o
— Scalar rel.: PM . <
g Scalar rel.: FM S
a Ebert: FM —eo— L
g Ebert: PM — e— [
Q Ahmad: Exp. ---=---
= 20 |
=
@
(%0}
(O}
o
0 ===
0 0.2 0.4

Displacement, V< ¢ > [ag]

Figure 4.9: An agreement with the measured temperature dependence of the elec-
trical resistivity for nickel [136] (blue full squares) is obtained for our calculations
with combined effect of magnons and phonons (solid black line with crosses).
Without the magnetic disorder, our FM (gray stars) and PM (gray crosses) data
also agree with literature (green empty and red full circles) [29].
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disorder. Each (physical) atom was taken into account (within the CPA) thirty
two times: eight times because of the displacements and each of them with four
different directions of the magnetic moments. We note that it had almost no
influence on the numerical expenses (compared to undistorted Fe), see Sec. 3.2.
If necessary, chemical impurities can be included in the framework as well. The
moments were tilted from the z axis to the directions of the x, —z, y, and —y
axes by the angle 0. Increasing the tilting angle 6 decreased the overall magneti-
zation M of the system because the moments compensated each other. Different
angles were than connected to the temperature using a simple analytical formula
presented in [34]. The Debye theory was employed to obtain magnitudes of the
atomic displacements for the given temperatures. Our fully-relativistic transport
calculations then agreed perfectly with measured ([135] and [136]) or calculated
[29] resistivities of iron and nickel, see Fig. 4.8 and 4.9, respectively.

4.2.3 Hexagonal Co: Tilting of magnetic moments

Here we describe study of hexagonal Co with magnetic disorder described by the
model of tilted moments. For electrical transport of the hexagonal metals without
the magnetic disorder see Sec. 4.1.2.

The magnetic disorder is described by the moments tilted to twelve angles
equidistantly distributed over [0, 27| (around the direction of the original magne-
tization). The decreased magnetization was mapped to experimental data by a
simple model described in Ref. [34].

Tab. 4.3 presents resistivities in hcp Co influenced by both the spin fluctua-
tions and atomic displacements. Although the magnetic disorder results in the
opposite anisotropy with respect to phonons, the overall p,./p.. is dominated
by the second effect. We note that the influence of these phenomena is com-
parable to chemical impurities, see later Sec. 4.3.3. The parameters chosen for
data in Tab. 4.3 roughly correspond to the room temperature (y/(u?) = 0.175 ag,
0 = 0.0457) and the Curie temperature of Co is about four times larger but
despite that, the Matthiessen’s rule is violated by ~ 30 %. We note that the
comparable conditions (room-temperature parameters, same methods) for Fe give
the violation of the Matthiessen’s rule only by ~ 7 %.

Table 4.3: Calculated resistivities in Co within the fully-relativistic framework
for \/@ = 0.175ap and 0 = 0.0457 show the small influence of the spin fluctua-
tions (p*f) compared to phonons (pP*) and the violation of the Matthiessen’s rule
(combined effect of phonon and magnons is denoted pP"*f while the bare sum is
shown in the last row).

Pea[pflem]  po[pQlem]  pus/p..
pPh 4.19 5.19 0.81
ot 0.95 0.72 1.31
pPhst 7.20 8.06 0.89
PP+ pf 5.14 5.91 0.87
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4.3 Alloys

Our implementation of the AAM successfully describes pure transition metals
without chemical impurities; therefore, alloys of these metals represent the next
logical step for testing of the framework. There are several new properties that
we take into account: (i) Atoms have nonidentical masses, which complicates
the selection of atomc displacements; (ii) different chemical compositions may
be used to vary magnetic moments of a studied system; and (iii) the electrical
resistivity is nonzero even at T' = 0 (the residual resistivity). Similarly to the
pure metals, we focus on electrical transport properties and, despite these new
effects, our calculated results agree with literature for most of the systems.

4.3.1 Random Cu-Ni and Co-Ni alloys

Random Co-Ni and Cu-Ni alloys are perfect candidates to study the electrical
conductivity and anomalous Hall conductivity at finite temperatures. Depending
on composition, the magnetic moment changes significantly and almost linearly
when plotted as a function of number of electrons, see Fig. 4.10. We note that
Co has 27 electrons, 28 correspond to Ni, and Cu is characterized by 29 elec-
trons. The virtual crystal approximation (VCA) describes random alloys as pure
metals with non-integer nuclear charge, whereas the CPA takes into account real
concentrations of the true alloy species.

The anomalous Hall effect is extremely dependent on the magnetization of the
system; therefore, we plot a comparison of the AHC for the VCA and CPA in Fig.
4.11. Both approaches agree qualitatively and give identical results for the pure
elements. For future study, we focus on the Cu-Ni and Co-Ni alloys with different
compositions, i.e., different magnetic moments. In this section, only phonons are
taken into account as the temperature-induced disorder. The magnetic fluctua-
tions could be incorporated similarly to Ni (Sec. 4.2) or to complex NiMnSb (Sec.
5.1).

The electrical resistivities of ferromagnetic Cug;Nigg9 and PM (with zero
Ni magnetic moments) Cugg9Nigo; random alloys are shown in Fig. 4.12. The
relation between displacement and temperature is not presented here because the
Debye temperatures differ a lot, as well as the conversions. For instance, the
maximal displacement y/(u2?) = 0.2 ap corresponds approximately to 350 K for
x =0.99 and to 120 K for x = 0.01. The experimental data [137] are measured
as a temperature dependence. Therefore, the comparison of the theory and ex-
periment may be influenced by the validity of the Debye theory and reliability
of the Debye temperatures. The increasing difference for higher displacements
between the experimental values and theoretical results for Cug 1 Nig g9 is caused
by the spin disorder omitted in the theory similarly to the case of pure nickel
(see Fig. 4.9). Small differences between the calculated and measured electrical
resistivity, visible even at zero temperature, are probably caused by imperfections
of the experimental samples.

In the present treatment of binary alloys, the same magnitudes of the displace-
ments for both elements have been assumed even though their chemical nature
and atomic masses differ (the mass difference for Cu-Ni alloy is approximately
3 %). The same simplification has been used in previous CPA [29] and supercell
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Figure 4.10: The average magnetic moment per atom of the Co-Ni and Cu-Ni
random alloys decreases almost linearly with the number of electrons in both the
virtual crystal (red squares) and coherent potential (blue circles) approximations.
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virtual crystal approximation (blue circles) for non-integer number of electrons,
the AHC qualitatively agrees with the more advanced CPA (black line: total
AHC; gray stars: coherent part).
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[92] studies. Simple improvements accounting for the mass difference have been
suggested [138] but the obtained corrections are so small (changes of resistivities
by a few percents) that we do not show these results here. The most general
tool to remove this approximation seems to be the ab initio molecular dynam-
ics, which could provide more realistic values of the displacements for both alloy
species; however, this goes beyond the scope of this thesis.

6 ‘
Dashed line: C. Y. Ho (experiment)
Full line: This work, fully relat.
4 | Cup 01Nig g9 S

Cug g9Nig o1

Resistivity, p [uQ cm]

0 0.1 0.2
Displacement, V< u? > [ag]

Figure 4.12: Fully-relativistic calculation (the solid line) of electrical resistivity for
Cu;_,Ni, compared with experimental values (dashed lines) [137]. The bottom
curve showing theoretical data (red, squares) is for x = 0.01 and the top one
(blue, circles) for x = 0.99.

The calculated results for concentrated Cu-Ni alloys are summarized in Fig.
4.13. The data reflect a transition between the FM Ni-rich alloys and the PM
Cu-rich systems. It should be noted that this trend is solely due to the varying
local moment of Ni atoms, whereas the Cu local moment is negligible for all
concentrations.

The change of the longitudinal conductivity with the temperature (from 7" = 0
to the room conditions) is usually larger than an effect coming from chemical dis-
order in a dilute limit or from vertex corrections of the conductivity. This is
demonstrated in Fig. 4.14 — left for Ni-rich Cu-Ni alloys. The electrical con-
ductivity has a decreasing trend when the atoms are displaced, similarly to the
decrease coming from increasing chemical disorder; both effects increase electron
scattering. Similarly to the case of pure platinum, the incoherent part of the
conductivity is significantly smaller than the total conductivity.

The scalar-relativistic approach gives reasonable agreement with the full Dirac
method for the longitudinal conductivities; however, the fully-relativistic treat-

ment is necessary to describe galvanomagnetic phenomena, such as the anomalous
Hall effect (AHE). The AHE is described by the nondiagonal elements of the con-

81



50

Exp.: T=0K —e—

V< # >=0.00 ag ——

— 0.02ag - -% -

5 0.04ag —-x---
g 0.06 ag
N 0.08 ag
s 0.10ag

2 015ag v --

'g 020 ag - -o -

o 0.25ag --o--

0 0.2 0.4 0.6 0.8 1
Nickel concentration, x
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Figure 4.15: Anomalous Hall conductivity for Cu-Ni alloy, phonons only. Con-
version between the displacements and temperature (secondary horizontal axis)
was obtained for pure Ni.

ductivity tensor, which are several orders of magnitude smaller than the diagonal
ones. Agreement of calculated results with data from literature proves reliability
of our method. Such agreement for pure nickel was documented in Ref. [2] (see
also Sec. 4.1.1) and here we present the calculated AHE results for the Cu-Ni
alloy, see Fig. 4.15 — right. For all alloys studied, the anomalous Hall conduc-
tivity (AHC) decreases monotonically with the increasing magnitude of atomic
displacements.

With increasing copper content, the AHC decreases as well due to decreasing
average magnetic moment per atom (from 0.68 pp for pure Ni to 0.64 pup for
Cug5Nig.g5, which is in good agreement with experiment [139, 140]). An ex-
ception was obtained for very low concentrations of copper (< 1%), where the
coherent part is responsible for higher AHC (compared to pure nickel) for dis-
placements /(u?) 2 0.02ap and the vertex part for lower displacements. Data
for higher concentration of copper were also obtained (not shown here); the AHE
is almost negligible for more than 20 % of copper, but it cannot be included in
one figure because of the displacement—temperature conversion that dramatically
differs for different compositions.

Our results for the AHC of Co-Ni random alloy with atomic displacements
are presented in Fig. 4.16. The magnetic moment of the random Co-Ni alloy
increases with increasing Co concentration (see Fig. 4.10) and the also the AHE
depends on Co content. This trend is independent on the magnitudes of atomic
displacements. The magnetic disorder is not assumed for these calculations be-
cause the Curie temperature of Ni is higher than 600 K and it increases with
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increasing Co content.
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Figure 4.16: Calculated anomalous Hall effect (solid lines) of Co,Nij_, is com-
pared with theoretical calculations using LSDA+U [31] (dotted line) and experi-
mental data [127] (dashed line) for pure Ni. The dependence on Co concentration,
x, is not monotonic with increasing amount of Co; on the other hand, increasing
temperature monotonically decreases the AHC. Conversion between the displace-
ments and temperature (secondary horizontal axis) was obtained for pure Ni.

4.3.2 Random Ni-Fe alloys

In Ref. [5] we focused on random fcc Ni-Fe alloys and their resistivities influenced
by the spin disorder. The spin-disorder resistivity (SDR) above the Curie tem-
perature was approached from the point of view of residual resistivities described
by the DLM approach. Moreover, the fixed-spin moment (FSM) method was ex-
tended for two independent magnetic moments and the paramagnetic state was
determined by minimizing the corresponding free energy [5]. The SDR was ob-
tained from experiments by extrapolating the high-temperature resistivities (see
schematic Fig. 1.1). Ni-Fe has many appropriate experimental data available,
but a comprehensive ab initio study was missing. Last but not least, longitudinal
spin fluctuations on Ni make the alloy even more theoretically interesting.

The alloy was described within the CPA as a four-component system with
two directions of magnetic moments (pointing upwards 1 and downwards |) and
the concentration of components x: Ni?kx) /2 Ni\(Llfzp) /2 Fel /2 Fei J2- Because the
local moment of Ni within the DLM approach collapses to zero for some cases,
it was stabilized by the FSM method [101, 102]. The magnetic entropy effects
[3, 103, 104] stabilized the local moments. The minimization of the free energy
included the randomness of the directions and longitudinal spin fluctuations, but
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the employed entropy (we used S o In(1 + m), where S is the entropy and m
denotes local moments) is still under discussion; see Ref. [5] for more details and
the Appendix of this Reference for a description of the extension to the two local
moments.

The local moments slightly depend on spaces between Fe atoms and Ni ones
and to describe it correctly, we used space-filling spheres which had the identical
radii for both components. We investigated moments for x < 0.5 where the
alloys had the fcc structure: The moments decrease weakly with increasing Fe
concentration, the dependence is almost linear and it reproduces experimental
data [141]. For this range of the magnetic moments, the calculated SDR also
agreed with measurements [142], but the DLM-FSM method (instead of just
DLM) must have been used for the better agreement (especially for z = 0.0). We
refer to the published results [5] for more information and figures.

The presence of two spin channels (electrical conductivity) may lead to a vi-
olation of the Matthiessen’s rule [44], but the experimental acquirement of the
SDR assumes its validity. Therefore, we investigated a possibility to sum con-
tributions given by different scattering mechanisms, i.e., impurities, atomic dis-
placements, and spin fluctuations (described by the DLM-FSM method). Results
of the scalar-relativistic calculations of the electrical resistivities are presented in
Fig. 4.17 and 4.18 for x = 0.50 and x = 0.25, respectively. Data are shown up to
large (not physical) magnitudes of displacements and the Curie temperature for

both composition corresponds to y/(u?) ~ 0.35ap.

Temperature, T [K]
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Figure 4.17: Electrical resistivity of Nig 50Feq 50 with included phonons and chem-
ical disorder (blue dashed line with empty squares) has similar trend to the values
with spin fluctuations (red solid line with circles). The Matthiessen’s rule is vio-
lated for larger displacements (sum of contributions is shown by the dotted gray
line with full squares; see text for detailed description).
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Figure 4.18: For Nig75Feg .05, the electrical resistivity differs from the one for an
alloy with equal concentrations (Fig. 4.17) especially in the data for the system
included phonons and chemical disorder (blue dashed line with empty squares).
Results for the spin fluctuations (red solid line with circles) are shifted by the
different SDR. Sum of the contributions based on the Matthiessen’s rule are shown
by the dotted gray line with full squares; see text for detailed description.

In both Fig. 4.17 and 4.18, the gray dotted lines show resistivities that would
correspond to the Matthiessen’s rule for the phononic and magnonic contribu-
tions. It was obtained as the sum of the temperature-depend resistivity calcu-
lated only with phonons and impurities (p"™P) with the magnetic contribution at
zero temperature. Because we study random alloys, the magnetic contribution
at T'= 0 is given by the DLM resistivity without the contribution of impurities,
i.e., pmPSPIN(T = () — pmPO(T = (). For the relevant region of temperatures
(T" < 1000 K), the Matthiessen’s rule is violated only slightly; larger deviation
is observed for x = 0.50 than for x = 0.25. If the calculations are extended to
higher temperatures (larger magnitudes of displacements), the Matthiessen’s rule
does not hold anymore; see Fig. 4.17 and 4.18.

4.3.3 Hexagonal random alloys

An effect of finite temperatures (phonons and magnons) on anisotropy of tran-
sition metals (Co, Ru, and Os) was shown in Sec. 4.1.2. Both the atomic dis-
placements and spin fluctuations lead to finite conductivities; here we show an
influence of chemical disorder on the anisotropy, see also Ref. [10] for details. We
focus on electrical transport in random equiatomic Os-Ru alloy and Co-rich Co-
Ni and Co-Ni-Fe alloys: a) Cogg5Nig 15 is a stable (around room temperatures)
binary alloy [143], b) OsgsRugs0 is stable at high temperatures [143], and c)
Cog.s4Fep psNig.os is a hypothetical alloy with the same number of electrons as Co.
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The resistivities p,, and p,, and their anisotropy p../p.. behave similarly to pure
Co, Ru, and Os (Sec. 4.1.2), see Tab. 4.4 for the fully-relativistic results. It means
that the impurities represent scattering mechanisms comparable to atomic dis-
placements or magnetic fluctuations. The particular scattering mechanism is of
minor importance for the anisotropy (of resistivities) with respect to the presence
of a spontaneous FM order.

Although the behavior is similar for phonons, magnons, and impurities, we
emphasize that the first two effects are always present in the finite-temperature
measurements and their contributions are hardly distinguishable. On the other
hand, the chemical composition may be used to tune the resistivities and the

anisotropy Puz/Puz-

Table 4.4: Calculated resistivities in hexagonal alloys (7" = 0) show a large
importance of magnetism on the anisotropy. For comparison, data for pure Co

with (/(u?) = 0.2 ap are stated, see Tab. 4.1 for more results.

Pz em]  po[pQem]  pug/p-.
Co FM 5.46 6.77 0.81
Co NM 24.8 16.5 1.50
Coy.85Nig.15 FM 0.67 0.85 0.78
COO.g5NiO‘15 NM 12.0 9.53 1.26
COO.84F60_08N10_08 FM 1.91 2.18 0.88
000.84Feo_08Nio_08 NM 11.6 8.95 1.30
Osg.50Ru0.50 3.98 2.86 1.39
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4.4 Influence of the Fermi-Dirac distribution

In Sec. 2.3.3, we described a possible influence of the Fermi-Dirac distribution at
finite temperatures to the electrical transport properties. Here we examine Pt
and Pd, which are ideal candidates for this study because of the large change of
the density of states (DOS) around the Fermi level. The described effect is small
and similar negligible influence was obtained also for Co, Fe, and Rh (not shown
here). It justifies omitting this phenomenon for other calculations.

The energy dependent conductivity appearing in Eq. (2.50) is shown in Fig.
4.19 for Pd and in Fig. 4.20 for Fe. Energy ranges were determined by the Fermi-
Dirac distribution and chosen in the way that the contribution to the original
isotropic conductivity oo(Fr) given by the Fermi-Dirac distribution was

|0f(E)

T | > 1075 (4.1)

for each studied temperature.

Conductivity, GO(E) [106 S m'1]

Energy, E - E [RY]

Figure 4.19: Electrical conductivity o°(E) for Pd is dependent on the energy
E — EF, but its integrated value does not differ much from ¢°(E = Er); therefore,
the correction obtained using (2.50) is small.

In Tab. 4.5 (Pd) and 4.6 (Fe) we present corrections to the resistivities (de-
noted Resist.). The correction for the lowest investigated temperature of Pd
(T=80 K) is below our numerical precision; therefore, it is not presented. Original
values (calculated with zero-temperature Fermi-Dirac distribution) are denoted
by the superscript “0” and the quantities calculated with Eq. (2.50) have the
superscript “int.”

The larger corrections in Fe compared to Pd are caused by the shape of the
energy-dependent conductivities (Fig. 4.19 vs. 4.20), which could be traced back
to different shapes of the DOS around the Fermi level (not shown here). Obtained
corrections for the AHC (Tab. 4.6) have the same orders of magnitudes as for the
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Figure 4.20: Electrical conductivity ¢%(E) for FM Fe is strongly dependent on
the energy F — Fr. The conductivity for 7' = 110 K is divided by two.

resistivities. It is caused by the relative corrections being similar for all elements
of the conductivity tensor.

Table 4.5: Corrections to the electrical resistivity of Pd caused by the

temperature-dependent Fermi-Dirac distribution are negligible.

T [K] 400 720 1130 1450
(u?) [ap] 0.284 0.379 0.474 0.537

P° (1€ cm] 22.1 299 458 539

Resist. | p™ [uQ cm] | 22.1  30.0 46.6 55.1

Correct. [%] | <0.1 0.2 1.9 2.3

In Sec. 4.5 we focus on the electrical transport at extreme conditions in the
Earth’s core. For temperature of 6000 K, the corrections to the electrical re-
sistivities caused by the Fermi-Dirac distributions for iron were obtained [3]:
nonmagnetic Fe results in 1.6 % and DLM Fe results in 2.7 %. We note that
these corrections hold for high pressure (350 GPa); therefore, they can be hardly
compared to values in Tab. 4.6. On the other hand, these small numbers justify
omitting the effect of the Fermi-Dirac distribution in the rest of this thesis.
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Table 4.6: FM iron: Corrections caused by the temperature-dependent Fermi-
Dirac distribution are larger than for Pd (Tab. 4.5) and they are similar for the
resistivities and the AHC.

T [K] 110 660 990 1170 1600
V(w2 [ag] 0.126 0.284 0.347 0.379 0.442
PO [ cm] 185 261 397 472 627
Resist. | p™ [ cm] 4.88 264 399 471  60.7
Correct. [%)] 0.6 0.9 0.5 —04 -—-32

o0 [I0"Sm ] | 585 521 489 470 4.35
AHC | o [10* Sm~Y] | 5.81 514 472 449 4.04

Xy

Correct. [%)] -0.7 —-14 -32 —-45 -T738
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4.5 Extreme conditions in the Earth’s core

In other parts of this thesis, we focused on ambient conditions, i.e., on tempera-
tures up to the melting point and the standard pressure. This Section describes
extreme conditions of the Earh’s core. It may be surprising, but our formalism
works even for these conditions and the results were published in [3] and [8].

For the purpose of this topic (conditions in the Earth’s core), the spin fluctua-
tions are incorporated as the DLM state, which reproduces well high temperatures
(about 5500 K). The Wigner-Seitz radius r, is assumed to correspond to a vol-
ume reduction to 60 % (bcc lattice constant 2.418A, r,, = 2.25 ap, pressure
of 350 GPa) with respect to the ambient case. The identical r,s was used for
all compositions of the iron-based alloys, which should be a good approxima-
tion for a low amount of impurities. For ambient conditions (r,s = 2.66 ag),
the resistivity is almost the lowest (among the investigated values), while the
assumed high-pressure conditions result in two times larger (this factor holds for
v/ (u?) = 0.5ap), see Fig. 4.21 that was obtained only for the change of the volume
without additional conditions on magnetic moments. We note that the magnetic
moment collapses to zero for r,, < 2.3 ap (Fig. 4.22).

100 {fws =
2.64 ag —+—
260 aB ——
2.50 aB —A—
2.40 ag —&—
2.30 ag
2.20 ag

50

Resistivity, p [uQ cm]

0 0.2 04 0.6
Displacement, V< 7 > [ag]

Figure 4.21: NM Fe within the scalar-relativistic framework and without the
magnetic disorder changes its electrical transport with the decreasing Wigner-
Seitz radius.

The Debye theory cannot be expected to give accurate magnitudes of dis-
placements for the extreme temperature and pressure. (The Debye temperature
for ambient conditions of 477 K was used.) Fortunately, the Earth’s core was
previously studied by the VASP code employing ab initio molecular dynamics
(AIMD) [116]. Results from this work are compared to the Debye model in Tab.
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Figure 4.22: The local average magnetic moment per atom of Fe decreases with
the decreasing Wigner-Seitz radius.

4.7; because of the high difference, data from the molecular dynamics were used
for our purposes.

Table 4.7: Root-mean-square displacements obtained for high temperatures from
the Debye theory compared to [116]

Temperature, Displacement, \/ (u?)[ap]
T K] Martorell [116] Debye (©p = 477 K)
2000 0.31 0.49
5500 0.59 0.82
6500 0.68 0.89
7000 0.80 0.92

A pioneering work of Ref. [3] and [8] was based on considering the spin dis-
order in Fe and Fe-based alloys in the Earth’s core. Although they are magnetic
(at ambient conditions), previous studies neglected that. It was shown that the
magnetic entropy allows an existence and stabilizes robust local moments of order
from 1.1 to 1.3 pp for temperatures 5000-6000 K. It was calculated using (i) the
combination of the disorder local moment and fixed spin moment methods or (ii)
the classical model of local spin fluctuations; for details see Ref. [3]. The spin-
disorder resistivity for the relevant conditions was found to be about 20 ulcm,
which agrees perfectly with calculations using molecular dynamics [144]. A scat-
tering on phonons was found to be several times larger. However, the effects are
not additive, see later a discussion of Fig. 4.23.

Fig. 4.23 shows a behavior of pure iron and random FegsNig 15 alloy at the
Earth’s core conditions for magnetic disorder both incorporated and neglected.
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Figure 4.23: A comparison of electrical resistivity at Earth’s core conditions
for iron (empty symbols) and FegsNip 15 alloy (full symbols) without and with
magnetic disorder (squares and circles, respectively) results in a violation of the
Matthiessen’s rule for both the spin disorder (dashed gray line with crosses) and
impurities (dotted gray lines with stars).

A difference in resistivities is getting smaller for increasing magnitudes of the dis-
placements, which implies a violation of the Matthiessen’s rule, i.e., an additivity
of scattering contributions coming from different effects (impurities, phonons,
spin disorder). The gray dotted and dashed lines showing the validity of the
Matthiessen’s rule in Fig. 4.23 are obtained similarly to the previously shown
Fig. 4.17 and 4.18: they present a sum of the temperature-dependent resistivity
for pure iron with the zero-temperature value for iron with the spin fluctuations
and Ni-Fe alloy without the spin disorder, respectively. If all of the scatter-
ing mechanisms (phonons, magnetic disorder, impurities) are taken into account,

then the Matthiessen’s rule overestimates the resistivity for \/(u?) = 0.59 ap by
30 % (100 vs. 77 pf2cm).

For a summary of resistivities for Fe with different chemical impurities, see
Fig. 4.24. Fe random alloys with different content of Ni, O, S, and Si are shown
in Fig. (a), (b), (c), and (d), respectively; Fig. (e) compares the resistivities for
15 % of impurities. All of the results were obtained for the high-pressure systems
with r,s = 2.25 ag. While the Fe-Ni alloy is almost independent on amount of
Ni, the large dependence is obtained for other elements, especially for S and Si.

We note that the resistivities of alloys are shown as functions of y/(u?). The
conversion between the displacements and temperature may differ for different
alloys because the Debye theory cannot be reliably used for these conditions and
investigation similar to [116] is beyond the scope of this thesis. Moreover, an
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Figure 4.24: Electrical resistivity of alloys at Earth’s core conditions

(rws = 2.25 ap with included chemical disorder, lattice vibrations, and spin-

disorder exhibit for all impurities (Ni — Fig. (a), O — (b), S — (¢), Si — (d))
similar metallic-like behavior even for high magnitudes of the displacements; for
comparison see Fig. (e).
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ideal framework that would give a proper y/(u?)(T") dependence with all of the
important phenomena (finite temperatures with magnetic disorder, high pressure,
etc.) included is still missing. Therefore, Fig. 4.24 (e) does not states that the
temperature-dependent resistivities of the Fe-S and Fe-Si alloys are identical.
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4.6 Spin-resolved transport

Not only the longitudinal resistivity and the AHC may be studied by the linear
response theory, but also the (longitudinal) spin-resolved electrical conductivity
(Sec. 2.4) may be examined. It is the central topic of this Section and we focus
on both the nonmagnetic and magnetic systems. Some of the results presented
here were published [4], but the tested robustness of the approach was also used
for NiMnSb [6, 9], which is a much more difficult system (see later Sec. 5.1).

4.6.1 Platinum

The spin-resolved coherent and incoherent (vertex) parts of the longitudinal con-
ductivity for platinum are displayed in Fig. 4.25. As can be seen, the vertex part
of the conductivity is small for all displacements. Therefore, the coherent con-
tribution corresponds almost exactly to the total conductivity. Moreover, both
spin-up and spin-down coherent conductivities are identical, as they should be for
a nonmagnetic system, and their sum is almost equal to the total coherent con-
ductivity, which makes the spin-flip contribution to the conductivity negligible.
One can conclude from Fig. 4.25 that the combined effect of the vertex corrections
and the spin-flip contribution leads to a difference that is much smaller than er-
rors related to experimental values (comparison of calculated and measured data
or imperfections of samples).

No difference between the spin-up channel and the spin-down one were ex-
pected and it leads to zero polarization (not shown here) of the spin-resolved
electrical current. Therefore, Pt is not interesting for our future studies, but it
showed the reliability and accurateness of our approach.

Temperature, T [K]
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Figure 4.25: Electrical conductivity of Pt separated to the (spin-resolved) coher-
ent and vertex contributions; difference between spin-up and spin-down channels
is negligible.
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4.6.2 Cu-Ni random alloys

The nonmagnetic system, as well as Pt, is obtained for the Cu-Ni alloy having
its composition close to Cu, see Fig. 4.10. By varying the composition, pure Ni
with magnetic moment of © = 0.69up is obtained. It makes the Cu-Ni system a
perfect candidate for investigation of the spin-resolved conductivity.

First, we discuss the combined effect of atomic displacements and chemical
disorder on the spin-resolved conductivities for the random Cu;_,Ni, alloys. The
spin-resolved coherent conductivities and the incoherent (vertex) conductivity for
pure nickel are displayed in Fig. 4.26 and, compared to Pt, they have nonidentical
spin-up and spin-down channels. The spin polarizations of the current P for pure
Ni and Cug5Nigg5 alloy are shown in Fig. 4.27. For all FM Cu-Ni alloys, the
polarization P is positive, which reflects a higher conductivity in the majority
(spin-up) channel than in the minority (spin-down) one. For pure Ni, the spin-
up conductivity is almost exactly three times larger than the spin-down one in
the entire interval of displacement magnitudes, which results in P =~ 0.5. Both
features are strongly modified by Cu alloying: the spin polarization is enhanced
and its value decreases with increasing y/(u?) because the spin-up conductivity
decreases faster than the spin-down one.

Temperature, T[K]

1 250 200 500
A Total ——
0 Coherent -3 -
\ Coherent: Up —o--
N Coherent: Down —e--
] 3 Vertex

Conductivity, o, [10% - S cm™]

Displacement, V< ¢ > [ag]

Figure 4.26: Electrical conductivity of nickel separated to the (spin-resolved)
coherent and vertex contributions.

The conductivity of cubic ferromagnets is anisotropic. It gives rise to the
anisotropic magnetoresistance effect. In this work, magnetization was chosen
to be in z-direction, which leads to two different longitudinal conductivities,
Ozp = Oyy and o,,. One can see that the anisotropy of the polarization P is
rather weak in the studied range of displacements for both systems (Fig. 4.27).

The calculated concentration dependence of the residual resistivity agrees
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Figure 4.27: Polarization of the coherent conductivities for pure nickel (circles)
and Cug g5Nig g5 alloy (squares); dashed lines: current in the direction of magne-
tization (P,,), solid lines: current in the plane perpendicular to magnetization

(Puc).

qualitatively with the experiment [137]; the maximum resistivity is found at the
critical concentration for the disappearance of ferromagnetism (see Fig. 4.13).
The inclusion of atomic displacements leads to an increase of the resistivity in
all cases, in contrast to the spin polarization P which decreases with increasing
v/ (u?) (Fig. 4.28).

The concentration trend of the spin polarization is not monotonic. Vanishing
P is obtained for PM alloys in full analogy with nonmagnetic platinum. In FM
Cuy_.Ni, alloys with > 0.5, the polarization exhibits strongly positive values
(P zZ 0.5), which is surprising if we take into account the strong variation of
the alloy magnetization in this concentration range (Fig. 4.28). Note that the
calculated magnetizations for z = 0.5 and x = 1 differ more than by a factor
of three. The high stability of the polarization P with respect to the atomic
displacements has been obtained with the assumption of a perfect FM order, i.e.,
with neglected temperature-induced magnetic fluctuations. It can be expected
that the polarization of the current will be reduced by these spin fluctuations;
however, their inclusion goes beyond the scope of the present study.
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Figure 4.28: Polarization of the spin current calculated for Cu;_,Ni, alloy as a
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4.7 Summary of the results

This Chapter showing calculations of electrical transport at finite temperatures
summarizes data for a wide range of materials. Most of the presented systems
were also used to test the AAM and its implementation. The attention should
be paid especially to these results:

Temperature-dependent electrical transport of nonmagnetic pure transition
metals such as Pt or Pd can be straightforwardly described by the AAM.
For magnetic systems (Fe and Ni), the agreement with experimental data
is obtained after inclusion of spin fluctuations; the experimental magneti-
zation is used for this purposes.

The binary random alloys can be described with the approximation of iden-
tical displacements for atoms with different masses. It was tested especially
on Co-Ni a Cu-Ni alloys, which significantly change their magnetic moments
depending on the chemical composition.

For simplicity, most of the examined systems have a cubic structure, but we
also successfully employed the AAM for the purposes of hexagonal systems,
i.e.;, Co, Ru, Os, and their alloys. The finite-temperature phenomena are
used as one of the scattering mechanisms and in addition to their influence
on the transport, we focus on explaining the magnetic state and anisotropy
of the resistivities.

The role of the broadened Fermi-Dirac distribution (within the linear re-
sponse theory) is small and may be neglected for most of the studies.

Not only standard systems and ambient conditions may be described by the
AAM, but also the conditions of the Earth’s core were successfully studied.

Because of spintronic applications, we investigated also the spin-resolved
electrical transport, especially in Cu-Ni alloys.
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5. Comprehensive study of
selected materials
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5.1 NiMnSb

In this section we present results for half-Heusler NiMnSb compound [6, 9]. Be-
cause the AAM was successfully applied to transition metals and binary alloys,
we then focused on simulating the temperature dependence of conductivity, AHC,
and spin polarized conductivity of this prototypical half-metalic system.

In contrast to so far investigated materials within AAM, half-metallic ferro-
magnet [36] NiMnSb is more complicated in terms of two magnetic sublattices
with ferromagnetic and antiferromangetic exchange interactions and a wide range
of possible structure defects with similar formation energies [145]. This makes it
difficult to compare calculations and experiment. On the other hand, NiMnSbh
has been intensively studied for over 25 years including AHC and electric resis-
tance [26, 146-148], which makes it good for testing of new ab initio methods.
Moreover, novel spintronics effects such as room-temperature spin-orbit torque in
strained NiMnSb may be observed due to Dresselhaus symmetry [41]. NiMnSh
has large Curie temperature of 730 K [147], it makes it an ideal candidate for
spintronic applications for which our investigation and knowledge of temperature-
dependent transport properties are essential.

Half-metallic NiMnSb NiMnSb has the cubic crystal structure C'1, and the
experimental lattice constant aj..;, = 5.927 A is used [147]. Without chemical
disorder, NiMnSb consists of four FCC sublattices Ni-Mn-empty-Sb equidistantly
shifted along [111] direction, see Fig. 5.1. The empty sublattice denotes intersti-
tial sites, i.e., empty positions in the half-Heusler lattice which would be occupied
in the full-Heusler structure. We investigate Mn-rich and Ni-rich alloys with sub-
stitutional disorder, i.e., systems with sublattices (Ni;_,Mn,)-Mn-empty-Sb and
Ni-(Mn;_,Ni, )-empty-Sb, respectively, with y € [0,0.2]. Notation Ni,Mn,_,Sb
with = from 0.8 (Mn-rich) to 1.2 (Ni-rich) is used for brevity.

Figure 5.1: FCC C'1, structure of half-Heusler NiMnSh: Ni, Mn, and Sb atoms
are shown by the grey, violet, and bronze (orange) colors, respectively. Created
with [149].

These defects are consistent with literature [41] and they have low forma-
tion energies [145]: 0.49 and 0.92 ¢V per formula unit for Mn- and Ni-rich case,
respectively. Lower formation energies were obtained for Ni- and Mn-atoms occu-
pying the interstitial crystallographic positions (0.20 eV and 0.73 €V per formula
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unit, respectively), but our calculated resistivity as a function of temperature
significantly underestimates experimental values for these systems.

NiMnSb is half-Heusler ferromagnet known for the presence of states only for
one spin at the Fermi level [150, 151]. The measured value of the spin polar-
ization of the electrical current is from 45 to 58 % [119, 148, 152, 153] at low
temperatures and about 50 % at room temperature [154]; spin polarized photoe-
mission experiments show the spin polarization of the emitted electrons about
50 % at 300 K [155]. The polarization of the ballistic transport for correlated
electrons about 50 % was calculated for Au-NiMnSb-Au heterostructures by the
SMEAGOL DFET code [156].

In previous reports, the Debye temperature was theoretically estimated to
be between 250 and 300 K [26], measured (312 4+ 5) K [157] or 322K [158] and

calculated 327K [159] and 270 K [160]. We used ©p = 320K (see later Fig. 5.7);
the above scatter in Debye temperature values leads to approx. 10 % error in the

root-mean-square displacement |/ (u?). The best agreement between experimental

data [26, 148, 161] as concerns the slope of the calculated temperature dependence
of the resistivity is obtained for ©p = 350 K and 2 % Ni-rich NiMnSb.

The TB-LMTO method (both LSDA and LSDA+U) was previously used to
estimate the Curie temperature, exchange interactions, magnon spectra, and mag-
netic moments in Niy_,MnSb alloys [162, 163]. A saturation magnetization of
NiMnSb is changing only slightly (by 5 to 10 %) from zero to room temperature
[118-120] and the magnetic moments were investigated by a polarized neutron
diffraction [146]. Treating NiMnSb within LDA+U (for temperature 7' = 0)
results only in a small correction to magnetic moments [99, 163].

Computational details The mesh of 150 x 150 x 150 k-points in the Brillouin
zone was used for transport calculations if not specified otherwise. Smaller num-
bers of k-points as for, e.g., pure metals, are required because of a large self-energy
term originating from chemical or temperature disorder. Increasing the mesh to
200? k-points leads to a correction of 0.05 % for the isotropic resistivity.

NiMnSb has [m(Ni) : m(Mn) : m(Sb) ~ 1:0.93 : 2.07]; therefore, a proper
choice of atomic displacements was investigated for two cases: (a) the magni-
tudes identical for each atom or (b) scaled according to atomic masses. The
TB-LMTO approach assumes empty spheres at the empty positions in the half-
Heusler lattice which would be occupied in the full-Heusler lattice. The potential
functions of the empty sphere may be (i) formally displaced like other nuclei or
(ii) independent on atomic shifts. We have tested all four possibilities, i.e., com-
binations of models (a) and (b), and (i) and (ii) above. We have found deviations

in the isotropic resistivities of the order of 5% by assuming ,/(u?) = 0.20 ap
and 0.25ap, where ap is the Bohr radius. This value should be considered as
a systematic error of the AAM (later shown by error bars in Fig. 5.7). In the
following sections, identical magnitudes of the displacements are assumed for all
atoms. Each atom was assumed to have eight different directions of displacements
(within the CPA) uniformly distributed around its equilibrium position.
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5.1.1 Electronic structure at zero and finite temperatures

Chemical disorder at zero temperature The magnetic moment of the sto-
ichiometric NiMnSb is m = 4.0up per formula unit, which agrees well with the
half-metallic character (the Fermi level in the minority gap), with its integer
number of electrons per formula unit, and it is in good agreement with exper-
imental data [146] and previous calculations [41, 99]. In Fig. 5.2 we show the
average moment, local magnetic moments, as well as local Mn- and Ni-impurity
magnetic moments on Ni- and Mn-sublattices, respectively. Local moments per
atoms for the stoichiometric system are my; = 0.26ug, mym = 3.75up, ms, =
—0.0545, and Mempty = 0.08up; for 10 % Ni-rich my; = 0.20up, mym = 3.69u5,
mgp = —0.071g, Mempty = 0.06415, and Mimpuity = —0.64up; and for 10 % Mn-
rich my; = 0.24up, myn = 3.68up, msy, = —0.05up, Mempty = 0.08up, and
Mimpurity = —1.8841p (the Mempy denotes moment induced on empty spheres at
the interstitial positions). Both Mn and Ni impurities tend to couple antiferro-
magnetically and thus decrease the net moment with increasing disorder; however,
the main reason for the moment reduction is slightly different for the Mn- and
Ni-rich systems: In the former one, Mn atoms on the Ni sublattice have opposite
directions of the magnetic moments with respect to Mn atoms on their own sub-
lattice and the sum of all the moments decreases with increasing concentration
of antiparallel Mn moments. For the Ni-rich case, the concentration of Mn atoms
having large moment decreases and they are replaced by Ni having moments
much smaller (five to thirty times, see Fig. 5.2); moreover, with the antiparallel
orientation.

4 Mn -
o0 o= &6 0—0—0 ©o6-- —0—0-6-6-0—9
3.
El Total (average)
& 2 :
E
o
S .
o Ni
© B -3 O 8 8-8-0-B 5 O 808-8-0 -5 O © 8- 8-5 -
c O kb aaa-AAA A A-AAL A A A A_A--AA-B-F
S Sb
= - .

Mn-impurity Ni-impurity
-2
0.8 0.9 1.0 1.1 1.2
Ni Mn,_ Sb, x

Figure 5.2: Total averaged magnetic moment (per formula unit) of Ni- and Mn-
rich NiMnSb and spin magnetic moments of individual atoms for zero temper-
ature. The Ni/Mn-impurity dataset presents the local magnetic moments of Ni
and Mn atom placed on the crystallographic position of the second atom.
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Magnetic disorder at finite temperatures We investigate the influence of
magnetic disorder on the electrical transport within the uDLM approach and the
model of tilted local moments. For detailed description of the approaches, see
Sec. 2.2.

The mean-field alloy was constructed by substituting a given site occupied by
a single local moment oriented along the z-direction by 4 different local mo-
ments tilted by the Euler angle 6 from the z-axis symmetrically in the four
directions z,y,—x, and —y and parametrized by the second Euler angle ¢ €
{0.07,0.57, 1.0, 1.57}. Four directions are sufficient for our case. This approach
interpolates between fully-ordered spin ferromagnetic (FM) state (7T"= 0 K) and
fully disordered spin state (DLM, T above the Curie temperature). Attempts to
make descriptions of magnetic disorder more realistic were published [29, 32, 33],
but a fully ab initio theoretical estimate of temperature-dependence of total mag-
netization M. (T") can be also rather inaccurate because it employs the classical
Boltzmann statistics (Monte Carlo) method (see the discussion in quaternary
Heusler alloys [20]).

We aim to estimate only the strength of the magnetic disorder contribution
relative to the contribution from phonons and chemical disorder. The order of
magnitude is determined from the energy difference between the disordered DLM
state and the FM ground state which amounts to AE ~ 12 mRy (0.16 eV)
per formula unit. In such approximation, room temperature disorder roughly
corresponds to ¢ = 0.10m. A comparison to an experimentally observed change
of the saturation magnetization [118-120] would give ¢ = 0.157. The use of
experimental M, (T"), if available, may be a better choice, but, in general, an
accurate relation of the tilting angle as a function of the temperature is missing.

With increasing 6 or x,,-, the total magnetization of stoichiometric NiMnSb
decreases from M = 4.0pp per formula unit to zero. The total energy E as
a function of the spin magnetic moment ug is displayed in Fig. 2.7, where the
disordered PM state corresponds to s = 0 while the undistorted system has
s = 4up; ps is the average of all local magnetic spin moments projected onto
the direction of the original magnetization. The equivalence of uDLM and tilting
models of the magnetic disorder for the E(us) dependence cannot be extended
to the transport properties, see later. The fit of the temperature-dependent
magnetization by the measured one was described in Sec. 2.3.2. Based on the
fit, spin disorder is not dominant at the room temperature, but it gives a major
contribution close to the Curie temperature.

Density of states and Bloch spectral function The spin-resolved densities
of states (DOS) of the studied system are displayed in Fig. 5.3. The stoichiometric
NiMnSb is the half-metal as it is indicated by the DOS in Fig. 5.3 (b). Our results
are in agreement with literature [99]. The influence of atomic displacements
slightly broadens peaks in the DOS (see Fig. 5.3 for 540 K) but the DOS around
the Fermi level is almost the same. The half-metallic character is thus preserved
even at nonzero temperatures.

The behavior of Ni-rich and Mn-rich samples differs significantly. Mn atoms
on Ni sublattice preserve the half-metallic character of the alloy, see Fig. 5.3 (a),
while Ni atoms on the Mn sublattice give a nonzero DOS at the Fermi level (Fig.
5.3 (d) and later Fig. 5.4). This leads to an increase of the conductivity. Later
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Figure 5.3: Temperature and alloying disorder dependence of the half-metallicity
in NiMnSb. Atomic concentrations are used as weights of the local DOS and
data for impurities (Mn and Ni). (a) The 10 % Mn-rich NiMnSb preserves
the half-metallic character for all of the considered atomic displacements. Mn-
impurity virtual bound state forms in the majority spin-channel. (b) Stoichio-
metric NiMnSb exhibits the half-metallic band-gap also at the room temperature.
Inset (c) shows that magnetic disorder (tilted magnetic moments with 6 = 0.1m)
has almost no influence on DOS, especially in the minority channel. (d) The 10 %
Ni-rich NiMnSbh is no longer half-metal and the states around Er are almost in-

dependent on temperature.
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Figure 5.4: Total DOS at the Fermi level (solid lines) as well as the local DOS for
Ni impurities (dashed lines) are increasing with higher substitution of Mn atoms
by Ni. The spin-up states (red lines, squares) are dominant for less than 10 %,
after 12 % the spin-down states (blue lines, circles) prevail. The total DOS (sum
of the spin channels, not shown here) increases monotonically.
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presented electrical transport calculations are in agreement with these changes.
The inset (Fig. 5.3 (c¢)) shows a minor influence of the magnetic disorder (tilting
of moments with # = 0.17) on the DOS of stoichiometric NiMnSb at both zero
and finite temperature (7" ~ 220 K).

Fig. 5.4 presents the DOS at the Fermi level for the Ni-rich NiMnSb. The
negligible DOS in the minority channel is preserved for small amount (up to 2
%) of Ni impurities. With increasing Ni concentration, the difference between
spin-up and spin-down DOS is getting smaller. They become equal at approx.
11 % of impurities and the spin-down states are dominant after this value.

The electronic structure can be also visualized by using the spin-resolved
Bloch spectral functions A*(k, E') [12], where s € {1,]} is the spin index, k is
a reciprocal-space vector and E is the electron energy. For 6, 10, and 14 % of
Ni-rich NiMnSb, we plot in Fig. 5.5 the Bloch spectral function for £ = Er and
in Fig. 5.6 the energy-dependent spin-resolved Bloch spectral function along the
L —I' — X path in the reciprocal space.

We observe that at 10 % of Ni impurities in the Ni-rich system new minority-
spin bands smeared due to disorder emerge at the Fermi surface (region marked
by the violet circle in Fig.5.6 (b)), also visible for 14 % but absent for 6 %.
These bands may be responsible for the AHC slope change, Fig. 5.11, where we
observe smearing out of the spin-down band at the I'" point and emergence of
more spectral weights at around the X point for the critical Ni disorder. See also
Fig. 5.5 for k, = 0 and total DOS at the Fermi level in Fig. 5.4.

2n/a

0 K 2n/a 0 K 2n/a 0 K 2n/a

0 10 20 30 40 50 > 60
Majority spin: Bloch spectral function (states/spin/energy)

10 12
Minority spin: Bloch spectral function (states/spin/energy)

Figure 5.5: Bloch spectral functions displayed for the Fermi level and k, = 0 for
the majority spin (a), (b), and (c¢) and the minority one (d), (e), and (f); (a)
and (d) for NiLOGMnO.g;le, (b) and (e) for Nil.loMno.gosb, and (C) and (f) for
N11.14Mn0_868b.
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Figure 5.6: Bloch spectral functions of (a) NijgsMngosSb, (b) Nij 19Mng.goSh,
and (c) Nij 14MnggeSb for spin-up (upper panels) and spin-down (lower panels)
channels.

5.1.2 Temperature dependent resistivity and AHC

Chemical disorder and phonons NiMnSb has almost linear dependence of
the resistivity on temperature (from 100 to 300 K), which indicates that phonons
are the most important scattering mechanism [147]. Calculated temperature de-
pendence of the resistivity and the anomalous Hall effect (resistivity pyy) are
shown in Fig. 5.7. The results are in agreement with experimental data; mea-
sured resistivities are taken from Refs. [26] and [161], and experimental py, was
obtained by combining Refs. [147] and [161]. The quadratic (nonlinear) behav-
ior of electrical resistivities as a function of temperature is important especially
for low temperatures (7' < 100K) and experimental resistivities exhibit only a
small deviation from the quadratic form [118]. The residual resistivity and the
weak influence of magnons are in agreement with other studies [26, 41, 161]. It
is consistent with the high Curie temperature, resulting in a weak influence of
magnetic disorder and it also agrees with the DOS showing a negligible influence
of the magnetic disorder on the number of carriers at the Fermi level (Fig. 5.3
(0)).

The comparison of calculated and measured p and py, indicates that the pres-
ence of the Mn-rich phase in real samples is unlikely because an increasing pres-
ence of additional Mn atoms dramatically increases both the resistivity and pyy
at the zero temperature and, moreover, slopes of these quantities as a function
of temperature are much higher than the measured counterparts [146, 147], see
Fig. 5.7. The calculated transport properties as a function of Ni impurity are
non-monotonic, both the resistivity and py, have maxima around a 10 % Ni-
rich sample. The measured residual resistivity could correspond to a presence of
additional Ni atoms on the empty atomic sites (unoccupied positions of the half-
Heusler structure); however, the calculated results contradict the experimental
data that exhibit much steeper temperature dependence of both the resistivity
and the py, for these defects.

Comparing our theoretical results with data from literature (especially Ref.
[147] and [161]), the best mutual agreement is obtained for Ni-rich sample with
1 to 2 % of Mn atoms replaced by Ni; we note that the exact composition and
chemical disorder in the experimental samples is unknown. In real samples, a
wide range of different defects may occur, but a systematic investigation of the
huge number of different combinations of such defects goes beyond the scope of
this study.
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Figure 5.7: (a) The isotropic resistivity and (b) anomalous Hall effect (p,,) of
Ni- and Mn- rich NiMnSb monotonously increase with increasing temperature.
Experimental results [26, 147, 161] agree with our theoretical data obtained for
Ni-rich case with low concentration of impurities. (c¢) The model of FRT (stoi-
chiometric NiMnSb) for an unknown disorder qualitatively agrees with calculated
data at nonzero temperature.

Magnetic disorder up to room temperature In calculations including the
magnetic disorder that corresponds to room temperature, transport properties
differ less than by 1 % when only Mn moments are tilted or when moments of all
atoms are tilted. It is caused by a dominant contribution to the total moment
from Mn atoms. The influence of magnetic disorder on the electrical resistivity
for the stoichiometric NiMnSb is negligible up to room temperature as can be
seen in Tab. 5.1. The experimentally observed [118-120] decrease of saturation
magnetization of 10 % for room temperature leads to 3.6up (the same decrease
from the original value of 4.0u5). For theoretical magnetic disorder (0§ = 0.14)
which corresponds to the same change, we obtained electrical resistivity between
p =17 uQlcm and p = 25 pfdem (see the caption of Tab. 5.1). It is in perfect
agreement with experimental values of p = 23 uf) cm.

The small influence of magnetic disorder (predicted by both models) on elec-
trical transport properties agrees with literature [161] and it is supported by
negligible influence on the DOS at the Fermi level, see the inset in Fig. 5.3 for
6 = 0.1m The calculated weak dependence of the resistivity on magnetic disorder
justifies neglecting magnetic disorder in further discussion for 7" < 300 K. The
uDLM model has the same dependence of the energy difference (of the disordered
state from the undistorted one) on the total magnetization, but the resistivity
increases faster than with the tilting model, see later Fig. 5.8.

Chemical impurities decrease the total magnetic moment similarly to the pure
magnetic disorder. If the scattering properties are considered as a function of
the alloy magnetization, results obtained by the different scattering mechanisms
(magnetic disorder and chemical impurities) quantitatively agree with each other.

Magnetic disorder close to Curie temperature The combined influence
of phonons and magnons on the resistivity is shown in Fig. 5.8 (a) and (b)
for stoichiometric NiMnSb; the case without displacements (7, = 0) described
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Table 5.1: Pure NiMnSb: Isotropic resistivity (in pf2cm, ten rows and three
columns in the right bottom block of the Table) for different magnitudes of dis-
placements (y/(u?)) and tilting angles () are almost identical to the aligned
moments (f# = 0). Empty values in the Table were smaller than the numer-
ical accuracy. The room temperature roughly corresponds to /(u?) ~ 0.21 ap
for ©p = 300K (between the two bold values) and the experimental decrease of
saturation magnetization is up to 10 % (to 3.6up) [118-120].

Tilting angle, || Total mag. Displacement, \/ (u?)
0 moment | 0.00 ag  0.20 ag  0.25 ap
0.007 4.04 g - 150 234
0.01x 4.04 pp - 15.0 23.4
0.04m 4.01 pp - 15.0 23.5
0.07m 3.93 up 0.20 15.2 23.6
0.107 3.82 up 0.47 15.6 24.0
0.147 3.98 up 1.38 16.7 25.2
0.20m 3.16up 6.47 22.4 31.8
0.30m 2.25up 42.5 59.3 68.3
0.40m 1.17up 120 133 140
0.507 0.00up 173 180 184

within both the spd—basis and spdf —basis gives almost identical results. For both
models, the low- and high-temperature limits are identical and the contribution
of phonons is similar (at given magnetic temperature).

The Matthiessen’s rule (total resistivity is the additive sum of the phonon
and spin-disorder contributions; see Fig. 5.8 (c¢) for the tilting model) is vi-
olated, especially in the highly-disordered region. For the tilting model with
6 = n/2 and /(u?) = 0.40ap, Pmag = 173 uQcm, pon = 59 uQcm (together
Pmag + Pph = 232 uQ2cm), whereas combined effect gives pmag+pn = 200 p€2 cm.
Similar conclusions were obtained for the uDLM model.

The resistivity p as a function of p, (the orbital magnetization is approx. 1 %
of the pg) shown in Fig. 5.8 (d) is useful for a comparison of both models of
the magnetic disorder (similarly to Fig. 2.7 for the total energy E). Although
E(us) obtained by both models is practically the same, the resistivities differ
appreciably. The difference in p is the highest for p; between 1.5u5 and 3.0up,
which is caused by the difference in ps(xyy,-) and ps(0) dependences, see inset
of Fig. 2.7. Both models are similar for the undistorted system (7" — 0, i.e.,
Typy- — 0 or & — 0) and smaller moments (' — T, i.e., xy,- — 0.5 or
0 — 7/2). The obtained p values indicate that the spin-flip in the uDLM model
represents a stronger scattering mechanism than the tilting of moments around
their equilibrium direction.

In Tab. 5.2 we present comparison of experimental data [147] with both mod-
els of magnetic disorder. Each value (at the given temperature) is obtained by
the proper combination of atomic displacements (Debye theory) and magnetic
disorder. Except regions of low (us — 4up) and high (us — 0) disorder, the
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Figure 5.8: FM and PM resistivity is the same for the tilting (a) and uDLM
(b) approach. The phononic contribution is also similar, but the resistivity as a
function of parameters 6 or x,;,- differs significantly. (¢) The contributions to

the resistivity due to pure spin-disorder (croses for |/(u?) = 0ag), and combined

effect of spin-disorder and phonons (triangles for /(u?) = 0.40ap) are shown.
The sum of spin-disorder and phonon-contributions (Matthiessen’s rule) is shown
by the green line indicating its violation with increasing temperature (decreasing
magnetic moment). The disagreement between both models in p(us) is the largest
between 1.515 and 3.0up (d). The temperature T, is obtained via the Debye
theory assuming only phonons and the u4 decreases due to the magnetic disorder.

uDLM model overestimates experimental data and the resistivities obtained by
the tilting approximation. The overestimation is approx. 80 % at 500 K, while
the tilting approach gives an error lower than 6 % up to 600 K.

The maximally disordered state corresponding to T' = T is parametrized by
\/(u?) =0.38ap (Ton = 730 K) and 0 = 7/2 or zy,- = 0.5 ( Thnae = 730 K). Both
models result in the same resistivity for this state of 197 uf2cm, which is about
70 % larger than the measured value (116 p2cm). We note that resistivity at
the Curie point may be reduced by employing the LSDA+U scheme with nonzero
Hubbard U for d-orbitals of Mn atoms, e.g., for U = 0.10 Ry and U = 0.15 Ry, the
tilting model yields 117 p£2cm and 96 p€2 cm, respectively. For U # 0, values of
(nonzero) magnetic moments also slightly change (increase by five to ten percents)
compared to U = 0 used in this work; therefore detailed investigation is beyond
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Table 5.2: The tilting model gives better agreement with experimental data [147].
For each temperature, the appropriate magnitude of atomic displacements was
assumed (Debye theory), as well as corresponding values of measured 6 and ;-
(parameters obtained by the fit of measured M(T) dependence [118] are also
shown).

Exp. [147] Tilting uDLM
T | plpem] | 6 ppQem] | 2y~ p [p2cm]
500 8 0.227 8 0.10 88
600 68 0.27 72 0.17 91
695 97 0.36r 131 0.28 136

the scope of this study.

Qualitative description of the AMR by the FRT model The FRT model
corresponds to the spin- and orbital independent scatterings, which is technically
realized by adding a finite imaginary constant (Im z) to the Fermi energy in
corresponding Green functions in the Kubo-Bastin equation. The FRT model
assumes zero vertex corrections and does not allow to separate out the phonon and
spin-disorder contributions to the conductivity tensor. For the total resistivity
obtained by the FRT model, see Fig. 5.7 (¢). The calculated negative AMR
(given be Eq. (1.12)) sign for Hall bars oriented along the [110] directions within
the FRT is consistent with previous estimates of AMR in NiMnSb [41], i.e.,
p(m | j) < p(mLj), where p is the longitudinal resistivity and j the electric
current. Remarkably the AMR value is well described within the FRT applied
in combination of the 10% Ni-rich disorder. Our calculated value changes from
(pm”E[llO] - pmJ_E[ll()]) / (PmuE[uo} +pmJ_E[110]) = —1.6% (for Im z = 107 Ry
corresponding to low temperatures) to —0.3 % (roughly to the room temperature
residual resistivity values, Im z = 31073 Ry), while the experiment shows AMR
of —0.08 % [41]. The sign of the AMR is the same as in Mn-doped GaAs and
opposite to the typical transition metal ferromagnets Ni, Co, and Fe.

5.1.3 Anomalous Hall effect mechanism

We calculated the aﬂ(vly) and O'g/) contributions to the anomalous Hall effect at zero
temperature. In Fig. 5.9 we show the separation of the AHC into o(}) and o{2)
contributions; for a detailed analysis of the contributions see later Fig. 5.10. We
observe a strong dependence of the AHC magnitude on the type of disorder. In
general, the AHC is much larger for the Ni-rich system (o, ~ 103S/cm) than
for the Mn-rich NiMnSb (o,, ~ 10' S/cm). Both the Mn and Ni rich cases show
the same positive sign of the AHC in agreement with experimental literature
26, 41, 161]; an exception of a small negative AHC is found for the 2 % Mn-rich
material due to large negative vertex corrections. For concentrations of chemical
impurities going to zero (dilute limit), the divergent behavior of the vertex part
of the total AHC is observed for both the Mn-rich and Ni-rich cases. Similar
behavior is obtained in binary transition-metal alloys due to the skew-scattering
mechanism [164].

In Fig.5.10 we show the comparison between spd—basis and spdf—basis for
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Figure 5.9: Negative sign of the calculated (T" = 0) total AHC o, (black solid
line) was observed only for NiggsMnj ¢2Sb, which is caused by a small contri-

bution of the intrinsic term (red dashed line with squares) but dominant vertex
corrections (blue dashed line with circles).
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Figure 5.10: o)) (left axes, red lines) and 0(2) (right axes, blue lines) contribution
to anomalous Hall effect in NiMnSb calculated in the formalism of the spd- (solid
lines) and spdf-basis (dashed lines): (a) Total conductivity, (b) ratio between o2
and surface terms, (c) coherent conductivity, (d) vertex conductivity.
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T=0. The importance of f—orbitals for zero-temperature calculations increases
with the larger chemical disorder. Moreover, it presents different mathematical
contributions to the total AHC (Fig.5.10 (a)) with varying ratio between the
Fermi-surface term and Fermi-sea term (Fig.5.10 (b)): the coherent and vertex
parts (Fig.5.10 (c) and (d)). Discussion of the contributions obtained within the
TB-LMTO approach is given in Sec. 1.3. The total value of the AHC (compare
Fig. 5.9 and 5.10) is given by the sum of a%) and J;Zy) terms. The major contri-
bution comes from the former one which is about two orders of magnitude larger
than ag), see Fig. 5.10. This justifies omitting afy) in the temperature-dependent
calculations. While the concentration dependence of aély’c"h)

parts (one in the Mn-rich region, the second one for the Ni-rich system), Jg(ﬁly""c')
diverges for small concentrations of impurities. The small magnitude of the Fermi
sea term allows us to neglect the ¢(® term in the temperature study of the AHC
by the alloy analogy model which substantially speed up our calculations.

In Fig. 5.11 (a), nonmonotonic behavior of the resistivity in the Ni-rich region
is displayed and compared to increasing resistivity for increasing Mn impurities
in the Mn-rich system; this trend is independent on temperature. In panels (b,
d) we present the anomalous Hall versus longitudinal conductivity dependence
for both the Mn-rich and Ni-rich calculations.
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Figure 5.11: Total resistivity (a) for zero and finite (540 K) temperature is mono-
tonic in the Mn-rich region, but it has a maximum in the Ni-rich case at 10 %
and 8 % of Ni impurities for 7" = 0 and 540 K, respectively. Zero temperature
AHC plotted as a function of the total conductivity has (b) two piecewise linear
parts for the Ni-rich NiMnSb, one having a negative slope (fitted from 1, 2, 4,
6, 8, and 10 % of Ni) and the second with a positive slope (10, 12, 14, 16, 18,
and 20 % of Ni). The parts are distinguishable when the resistivity for the same
data is plotted (c). The same dependence in the Mn-rich region (d) exhibits a
linear (2, 4, and 6 % of Mn impurities) and a nonmonotonic (8, 10, 12, 14, 16, 18,
and 20 % of Mn) behavior; a ratio of resistivities (e) show a smooth transition
between both parts.

A linear fit of the dependences is shown in Fig. 5.11 (b, d). In the insets (Fig.
5.11 (c,e)) we show also the experimentally relevant anomalous Hall angle p,, /pas
obtained by the full inversion of the conductivity tensors (instead of the usually
used approximation p, ~ 0.,/02,). A part of the Ni-rich branch belongs to a
rather high conductivity regime (10° S/cm) and follows linear dependence o, ~
0. signaling the dominating extrinsic, skew-scattering mechanism of the AHC
[37, 165]. In contrast, the behavior of Mn-rich system with higher conductivities
is non-monotonic but different from a power dependence reported in literature
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[37]. Tt is rather linear for larger conductivities (small Mn disorder below 6 %),
where the AHC is influenced by the disorder [165], see Fig.5.11 (d).

Interestingly for Ni-rich branch around ~10 %, the slope of the AHC as a
function of o, changes sign. It signals multiband character of the transport
(Fig.5.11 (b)), see also Fig. 5.5 and its description. As long as the Friedel sum
rule [37, 166] can be applied, the change of the AHC sign can be attributed to
the change of the dominating spin channel at the concentration of ~10 % Ni-rich
(Fig. 5.4).

We note that the half-metal and multi-band character of the transport in
NiMnSb can be responsible for notably different behavior than that generally
reported in metals. For metals, only one slope exists (variations of disorder are
typical on the level of a few percents) and it is difficult to achieve more than one
conductivity regime [37, 165].

5.1.4 Spin-resolved electrical conductivity

To obtain maximal efficiency of the spin-polarized currents, their polarization P
should approach unity and both the spin-flip part (of the coherent conductivity)
and the vertex part (of the total conductivity) should be negligible. Ni-rich
NiMnSb has ten or more times larger conductivity of the majority channel than
similar concentration of the Mn-rich material and, unlike the minority channel,
it strongly depends on temperature (especially Ni-rich), see Fig. 5.12.

102 | Spin-flip term
= —
5 5
2 2 ©
e 6 10°
g z
o =
© =
. [}
< =)
o ©
o g 2
% o 10
LiNe P> T
[ag] | [K] Vertex part
= € 15|| 000 | 0 —+
g 100 S 0.09 95
2 2 0.17 | 220 —»-
© % 0.20 | 280 —-
< © 10| 0.26 | 420 —
s Z 0.30 | 540 —
© B 0.38 | 820
-g =1
8 s 5
& o 8 @
Spin L Al
0.01 ‘ 0
0.8 0.9 1.0 1.1 1.2 0.8 0.9 1.0 14 1.2
Ni,Mn,_Sb, x Ni,Mn,_,Sb, x

Figure 5.12: The spin-resolved in-plane (perpendicular to the magnetization)
coherent conductivity for the majority channel (a) differs by several orders of
magnitude for the Mn- and Ni-rich cases. On the other hand, the conductivity
for the minority channel (b) is almost independent of the temperature, except
of extreme displacements in the Mn-rich case. Both the spin-flip term (c) and
vertex part of the conductivity (d) are larger for the Ni-rich system than in the
Mn-rich region.

The spin-resolved conductivity is crucial for spintronic applications, but its
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measurement is difficult. The total conductivity is the largest (infinitely high) for
stoichiometric NiMnSh with resistivity going to zero. For most of the impurities
and temperatures, the conductivity of the majority spin channel is at least two
orders of magnitude larger than the vertex contribution and about four orders
of magnitude larger than the spin-flip term (Fig. 5.12). The spin-flip term (Fig.
5.12 (c)) and the vertex contributions (Fig. 5.12 (d)) are at least three orders of
magnitude smaller than the conductivity of the majority channel. These features
justify the simple definition of the spin polarization of the current in terms of the
coherent majority and minority conductivities in Eq. (2.54).

The Mn impurities do not destroy the half-metallic character of the system
while the Ni impurities lead to nonzero density of minority carriers at the Fermi
level (Fig. 5.3). It leads to the spin polarization that is almost unity for the
Mn-rich case (for all temperatures) and in the Ni-rich region it decreases with
increasing impurity concentration or increasing temperature, see Fig. 5.13. How-
ever, even at room temperature and in the Ni-rich case, P > 0.9, which ensures
highly polarized electrical current. The influence of the spin-flip term and vertex
contributions on the polarization P is small, see Fig. 5.12, which justifies employ-
ing Eq. (2.54). Influence of the spin-flip term and vertex contributions is obtained
by comparing the P calculated by Eq. (2.51) and (2.54). The major difference is
caused by the temperature-nonmonotonic behavior of the vertex part.
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Figure 5.13: The polarization defined by Eq. (2.51) for the in-plane direction
is almost unity for the Mn-rich NiMnSb (small total conductivity), see Fig. (a).
The polarization calculated with the total conductivity (Eq. 2.54) is similar (Fig.
(b)), which is caused by the small but temperature-dependent spin-flip and vertex
terms.

For any magnitude of atomic displacements, other scattering mechanisms
(uDLM, tilting of moments, chemical disorder) result in spin-up conductivities
about five orders of magnitude higher than the spin-down conductivity in a re-
gion of small disorder, see Fig. 5.14 (a) and (b) for the stoichiometric NiMnSh
described by the tilting model. The difference is getting smaller with decreasing
total magnetic moment and it vanishes in the PM state (0 = 7/2 in the tilting
model).

The uDLM model causes larger conductivity of the minority channel (larger
DOS in the minority channel at the Fermi level) with increasing z,-. The mag-
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Figure 5.14: For § — 0, electrical conductivity of the spin-up channel (a) is more
than five orders of magnitude larger than that of the spin-down channel (b). No
chemical impurities are assumed; therefore, the conductivity diverges without any
disorder (0 = 0, y/(u?) = 0). Both conductivities are the same for the PM state
(0 = 7/2). The spin-flip term (c) and the vertex corrections (d) are of minor
importance (as compared to the dominating spin-up conductivity).

netic disorder is dominant close to the Curie temperature, Fig. 5.15, where spin
fluctuations lead to P = 0, which could not be achieved by phonons themselves.
For room temperature (2pz,-] < 0.04), P > 0.98 and the decrease is even smaller
for the model of tilted moments.

In the region with high polarization of the spin polarized current (6 < 7/4),
see also Fig. 5.15, the spin-flip term and the vertex part of the total conductivity
(Fig. 5.14 (c) and (d)) are smaller than the spin-up conductivity. Except of
vertex corrections for 7, = 0, the difference is at least three orders of magnitude.
The magnitude of vertex corrections is always the highest for small, but nonzero
disorder and they are about ten times smaller for the uDLM approach compared
to the tilting model.

Because of the half-metallic character of NiMnSh, the small spin-flip term, and
negligible vertex corrections, the spin-polarization of the electric current is well
defined; it is shown in Fig. 5.15. The value of P is almost unity for the perfect
system (note that P = 1 holds exactly for half-metallic systems without spin-orbit
interaction) and it is monotonously decreasing towards the Curie temperature
(P = 0 for us = 0). We predict the polarization to be larger than 90 % for
realistic combination of disorders at room temperature. None of the phenomena
(magnons, phonons, chemical disorder) is dominant and all of them decrease the
polarization by a few percents. The experimental values of P ~ 50 % [119, 148,
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Figure 5.15: Both models give correct polarization for FM and PM (P = 1 and
0, respectively) NiMnSb without magnetic, but dependences P(u) are different.
The phonons taken into account for the tilting model have smaller influence on
the polarization than the magnetic disorder.

152-155] could be explained by more complex combination of various types of
disorder or, e.g., by strain in the samples.

We focused on systems similar to samples from literature (about 1 to 2 % Ni-
rich), but experimental P(7T") was measured with a wide range of samples: 44 %
for a free surface of a bulk material with Mg = 3.6up [153], 45 % for a thin film
with Mg = 4.0up [148], 45 % for bulk NiMnSb with Mg = 3.6up [119], 58 %
for thin films [152], and from 20 to 50 % depending on temperature in polycrys-
talline samples [155]. Saturation magnetization Mg < 4.0pp indicated disordered
samples, but the disorder is unknown, which makes it hard to reproduce. The
discrepancy is not caused by the magnetic disorder [6]. It is dominant close to the
Curie temperature, where spin fluctuations lead to P = 0; the zero polarization
cannot be achieved by phonons themselves. For room temperature, the decrease
of the polarization caused by the magnetic disorder is negligible, i.e., P > 0.98
for 0 ~ 0.14.

We also investigated the polarization anisotropy. Similarly as the small AMR
(difference between o, and 0,, = 0, is around 0.25%), the polarization P,, is
almost the same as P,, = P,,. The polarization for Mn- and Ni-rich cases with
impurities occupying the empty crystallographic position of the Heusler structure
was also calculated. The Ni atoms on interstitial positions behave similarly to
the Ni-rich system with Mn atoms substituted by Ni impurities; on the other
hand, for the 20 % Mn-rich case with access Mn in the interstitial positions,
P(0 K) ~ 91 % and P(400 K) ~ 87 %. This demonstrates a strong dependence
of the polarization on the kind of chemical disorder.

118



5.2 CuMnAs

Tetragonal CuMnAs is an antiferromagnetic (AFM) material with the Néel tem-
perature about Ty = 480 K [167]. It represents an interesting material not only
because of AFM spintronic applications [47, 48, 57-59, 167] but also because
of novel phenomena related to basic science. Moreover, unique bulk samples of
tetragonal CuMnAs were prepared in our department, therefore, our ab initio
calculations and experimental measurements of electrical transport were used to
support each other [11].

AFM CuMnAs can be found with an orthorhombic and tetragonal structure.
The former is more common for bulk samples, but the latter, usually existing
only in thin layers, is more interesting for spintronic applications, e.g., because
of demonstrated electrical switching [58]. For an overview of possible structures,
see Ref. [19].

5.2.1 Formalism and computational details

This study is focused on tetragonal AFM CuMnAs, its orthorhombic phase is
neglected. Both geometry and lattice constants corresponding to previous litera-
ture (structure “II” in Ref. [114]) are used for all compositions and temperatures:
lattice parameters of bulk P4/nmm CuMnAs are a = b = 3.82 A and ¢ = 6.318 A.
See also Fig. 5.16 with shown AFM magnetic moments of Mn atoms. We note
that there is a huge discrepancy in reported compositions and lattice parameters
for the bulk CuMnAs [19]. For additional information regarding thin films, bulk
systems, and applications related to the structure of CuMnAs, we refer to [47, 58]
and [167].

Figure 5.16: AFM P4/nmm structure of CuMnAs: Cu, Mn, and As atoms are
shown by blue, violet, and green color, respectively. The opposite in-plane AFM
moments on Mn atoms are denoted by red arrows. Created with [149].

To determine the most appropriate structure, we theoretically examined tetra-
gonal CuMnAs with different lattice parameters. Most of the results depend only
slightly on reasonable small (a few percents) changes of the lattice parameters
[19]; therefore, they are omitted in the future sections. Because of the TB-
LMTO method, we have also tried to formally (mathematically) place LMTO
empty spheres in empty crystallographic positions. Specifically, two spheres were
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assumed with coordinates [0,0,0.5] and [0.5,0.5,0.5] with respect to the atomic
unit shown in Fig. 5.16. The influence of the spheres was neglected in results
presented in this thesis.

Electronic structure and electrical transport properties may by influenced
strongly by chemical composition; therefore, non-stoichiometric CuMnAs with
impurities should be investigated. For simplicity, impurities (“imp”) occupying
“host* sublattices are later denoted as impy, . In this notation, "vac®* stands for
vacancies, i.e., empty TB-LMTO spheres with radii identical to original atoms.
Based on experimental data [19] and formation energies [114], we focused es-
pecially on Cu-rich samples (As sublattices unchanged) with Cuyy,. Magnetic
impurities of Mn atoms on Cu and As sublattices (Mnc, and Mnyg, respectively)
were assumed to be in the DLM state. Concentrations of impurities are stated
per formula unit.

A mesh of at least 8-10% k—points was used for transport calculations, which
is sufficient because of the complexity of the system; increasing it to thirteen
millions, obtained corrections are smaller than one percent of the resistivity.

Atomic displacements (y/(u?), later shown in the Bohr radius ag), were con-
nected to temperature by the Debye theory with zero-temperature fluctuations
omitted similarly to [2, 4, 29]. Because of absence of experimental data for the
Debye temperature ©p for tetragonal CuMnAs, we used ©p = 274 K measured
for an orthorhombic sample [168].

5.2.2 Electronic structure

The electronic structure of tetragonal AFM CuMnAs was unclear for a long time,
but the GGA+U calculations of the bandstructure with the Hubbard 1.7 eV seem
to correspond to data from ellipsometry [169]. In Fig. 5.17, we present bandstruc-
tures (left panels) and total DOS (right panels) to compare calculations employing
the spd—basis (top Figures) with the spdf —data (three bottom rows). All of the
results agree qualitatively with literature [169, 170].

In the bandstructure, the most important differences can be found around the
X, I', and M points in bands close to the Fermi energy Er. Similar behavior is
found for the spdf —basis and for the spd—case (not shown here in details). At
the X-point, a conduction band lies on the Fermi level for 0.10 Ry, while it is
above and bellow this energy for 0.15 Ry and 0.00 Ry, respectively. Bands at the
['—point bellow the Fermi level (E ~ Er — 0.05Ry) exhibit different splitting for
0.00Ry and U # 0.00 Ry but the examined parameters almost unchange these
bands closer to the Fermi level. The bottom of the conduction band at the M-
point is above the Fermi level for 0.00 Ry and it moves bellow this energy for the
increasing U.

Comparing electronic structures obtained by the two different bases, the
largest difference is at the M-point, i.e., the bottom of the conduction band is
much closer to £ = Ef for the spd—calculations than for the spdf—ones. This
characteristic may be responsible for the Fermi level being much closer to the
increased DOS above this energy for the smaller basis, compare Fig. 5.17 (e) vs.
Fig. 5.17 (h). The Fermi level is located in a (nonzero) minimum of the total DOS.
With increasing U, the minimum gets closer to zero value of DOS and the energy
range (with small value of the total DOS) is broadened, see Fig. 5.17 (f)—(h).
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Figure 5.17: Bandstructures (a)—(d) and total DOS (e)—(h) of CuMnAs depend
on the employed basis, see Figs. (a) and (e) for the spd—basis and the rest for
the spdf —one. States around the Fermi level are also influenced by the Hubbard
U: Figs. (a), (b), (e), and (f) are obtained for 0.00 Ry; (c) and (g) for 0.10 Ry;
and (d) and (h) for 0.15 Ry.
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To understand the ground-state electronic structure of CuMnAs and to get its
proper description within our TB-LMTO method, many calculations with differ-
ent parameters were performed. Results presented here are for conditions which
have the best agreement with literature [19, 169, 170]. However, the electronic
structure does not lead to precise determination of these parameters, e.g., the
Hubbard parameter for a real system may range from 0.00 Ry to U =~ 0.20 Ry.

Table 5.3:  Mn local spin magnetic moment (in pp) of a single atom in the
AFM state depends much more on employed U than on concentration of Cuy,
impurities. Both AFM (opposite) Mn atoms have the same magnitude of the
moments.

Cup, concentration

URyl| 0% 2% 5% 10%
0.00 3.71 3.71 3.72 3.73
0.10 4.08 4.08 4.07 4.07
0.15 420 4.20 4.20 4.19
0.20 430 4.30 4.30 4.29

For the realistic parameters, i.e., for U < 0.20 Ry, Wigner-Seitz radius of r,; =
2.9144 ap (1.542A), and a chemical disorder observed in experiments (Cuyy, <
10%), we examined DOS (not shown here) and local spin magnetic moments
(see Tab. 5.3). Although all local moments in the AFM state compensate each
other, the local magnetic moments of Mn atoms are large. They depend much
more on the Hubbard U (almost linearly) than on the concentration of impurities.
Induced moments on other atoms are about hundred times smaller, as well as Mn

orbital moments.

5.2.3 Canting of magnetic moments

To describe CuMnAs with noncollinear magnetic moments, the local magnetic
moments of Mn atoms (in the a — b crystallographic plane, see Fig. 5.16) were
rotated towards each other, while still being in the same plane. For verification
of our method, not only the Mn moments were canted but we also investigated
systems where all of the moments were canted (including induced moments).
These two approaches lead to almost identical results for both the electronic
structure and resistivities.

We use a nomenclature of "the canting angle® even for large deviations of the
magnetic moments from their original directions. In AFM materials, the canting
usually describes a small deviation of the moments caused by an antisymmetric
form of exchange coupling and resulting canting angles of about 1° [171]; see Ref.
[172] for canted AFM moments in half-Heusler CuMnSb with observed angles
of 11°. Here we consider canting of moments due to an external magnetic field
which is described, e.g., in [47] and see the same reference for an illustration of
the canting caused by the local spin-transfer torque.

The canting angle of ¢ = 0 corresponds to the AFM state and for ¢ # 0, all of
the magnetic moments were canted towards the same direction. For example, if
two opposite AFM moments are along —a and +a direction, then the increasing
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¢ rotates both moments towards the +b direction. The angle of ¢ = 7/2 results
in FM CuMnAs.

Complementary to Tab. 5.3, in Fig. 5.18, we present values of local magnetic
moments of a single Mn atom for disordered (Fig. 5.18 (a)) and stoichiometric
(Fig. 5.18 (c¢)) CuMnAs for different orientations of Mn moments in the a — b
plane. Panel (a) shows the Mn local magnetic moments, while (c¢) contains a
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Figure 5.18: For 0.00 Ry ((a) and (b), full symbols) and stoichiometric CuMnAs
without impurities ((¢) and (d), empty symbols), the local spin Mn magnetic
moments ((a) and (c), red lines) and energy difference per formula unit from
the AFM state ((b) and (d), blue lines) are symmetric with respect to the AFM
state (¢ = 0) and except of the moments for U > 0 Ry, the dependencies have a
sine-like shape.

change of the moment from the corresponding AFM state (shown in Tab. 5.3).
Fig. 5.18 also shows an energy difference of the given state (with canted mo-
ments) from the AFM one. For each concentration of the Cuyy, impurity (Fig.
5.18 (b)) and Hubbard U (Fig. 5.18 (d)), the differences are calculated from the
corresponding AFM state. All data are expressed per formula unit, calculated
with the spd—basis and obtained by the full Dirac apporach. The following con-
clusions can be made: (i) Both the magnetic moment and energy difference have
the sine-like dependence on the canting angle (m ~ sin¢ and E ~ sin¢) and
they have a minimum for ¢ = 0. This dependence of the moments is less obvious
for nonzero U. (ii) The AFM state is preferred for each of the impurities and
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values of U. (iii) The influence of various U is more important than canting of the
angles. For example, energies per formula unit for the AFM ground states with
0.00 Ry and 0.10 Ry differ by approx. 100 mRy. (iv) The behavior is symmetrical
for opposite angles of tilting (—¢ and +¢).

Both the magnetic moments and energy differences are almost independent
on the employed basis (the spd—basis vs. spdf—one) or for the systems with
empty LMTO spheres placed on interstitial positions. For the scalar relativistic
approach, the energy difference is about two times smaller than for the fully
relativistic one.

Motivated by possible experimental data, we investigated also a possibility
of the moments to be canted by an external magnetic field. For this purpose,
we roughly compared energy of the magnetic field with the energy difference for
CuMnAs with canted moments. Experimentally accessible fields of approx. 10 T
could be able to cant the moments by ¢ < 0.3w. This value is important for the
future analysis of changes in resistivities.

5.2.4 Residual resistivities

The spdf —basis is used for later presented temperature-dependent calculations
and the full Dirac approach is necessary for proper inclusion of magnetism. There-
fore, we calculated residual resistivities for defects presented in Ref. [114] to com-
pare these approaches with the scalar-relativistic formalism employed in that
study. Both the spdf —basis and fully-relativistic method increase resistivities for
most of the impurities with respect to spd—basis and scalar relativistic approach.
The increase is large especially for disorder with As atoms (impurities with large
formation energies), see Tab. 5.4 for details.

Table 5.4: While the fully-relativistic results with the spd-basis represent small
corrections (approx. 10%) to the scalar-relativistic resistivities, employing the
spdf-basis influences p,, even by 45% (Asyy,). Formation energies and scalar-
relativistic p,, are stated in [114]; resistivities (in {2 cm) were calculated for 5 %
of impurities. 0.00 Ry was used for all of the calculations. The last row (Cu<>Mn)
shows data for a swap of 5% Cu and Mn atoms.

Formation | Scalar-rel., spd | Fully-rel., spd | Fully-rel., spdf
Defect || energy [€V] | pos P Poz Pz | Pas P
Vacym —0.16 36 155 32 154 31 184
Vaccy —0.14 12 44 12 54 16 79
Mnc, —0.03 111 171 115 203 112 263
Cuyn 0.34 24 122 22 130 23 131
Cuas 1.15 107 273 109 377 121 481
Ascy 1.73 94 219 98 257 114 359
Asyin 1.79 113 262 124 240 141 476
Mn g 1.92 122 151 130 270 147 423
Vacag 2.18 174 203 182 246 210 306
Cu<>Mn - 124 267 123 304 120 393

The variance of results obtained by different approaches is related to the
complexity of CuMnAs. Especially differences between the calculations with two
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different bases should be considered as systematic uncertainties of our methods.
Although the differences are even about 30 %, trends are preserved.

If it were possible to cant or rotate local magnetic moments by external mag-
netic field, it should be also possible to observe a change of electrical transport
properties. In Sec. 5.2.3, we discussed local magnetic moments and energy dif-
ferences from the AFM state for CuMnAs with canted local magnetic moments.
Based on an estimation of the magnetic field and its strength, the experimentally
achievable canting angle is between ¢ = 0.17 and ¢ = 0.3mw; therefore, the FM
state cannot be obtained.

In Fig. 5.19 (fully relativistic, spd—basis), we show residual resistivities for
CuMnAs with canted magnetic moments and Cuyy, impurities. The FM state,
although it is not energetically preferred, has the lowest resistivities. The non-
monotonic behavior and maxima around ¢ ~ 0.257 correspond to angles, where
non-monotonic behavior of the magnetic moments is observed, see Sec. 5.2.3.
The in-plane resistivities p,, (Fig. 5.19 (a)) are about five times smaller than
the resistivities along the fourfold axis p,. (Fig. 5.19(b)) and this anisotropy is
similar for the different impurities.
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Figure 5.19: Mn magnetic moments of CuMnAs were canted in the a —b plane (of
the crystal structure) from the antiparallel (AFM) direction towards each other,
so that the canting angle of ¢ = m/2 corresponds to the parallel (FM) state and
¢ = m is again the AFM state. Residual resistivities (a) py. = pyy and (b) p., are
shown for 1, 2, 5, and 10 % of Cuy, by circles, triangles, squares, and pentagons,
respectively.

To verify a symmetrical behavior of resistivities with respect to the rotated
moments, we plot the residual resistivity of a (hypothetical) FM system in Fig.
5.20 (fully relativistic, spd—basis). The magnetic moments were placed into par-
allel directions and together rotated by the angle ¢ in the a — b crystallographic
plane. For CuMnAs with 5% of Cuy,, changes in both in-plane and out-of-plane
resistivities are negligible. The data are symmetrical with respect to ¢ = 0 and
¢=m/4

The analysis with the canted magnetic moments was verified for CuMnAs
without chemical disorder but within the finite relaxation time model. Results
similar to Fig. 5.19 were obtained for six different values of the imaginary part
of the self-energy (increased by up to 1072 Ry). Zero-temperature results pre-
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Figure 5.20: CuMnAs with 5% of Cuyy, was assumed to be in the FM state (Mn
moments parallel) and all of them were rotated in the a — b plane (of the crystal
structure), so that ¢ = m/2 corresponds to the perpendicular direction with
respect to the original one. Residual resistivities py., pyy, and p.. are denoted by
the dashed, dotted and dash-dotted lines, respectively. 0.00 Ry is shown by red
lines with empty symbols, 0.15 Ry by blue lines with full symbols.

sented above for the canted and rotated magnetic moments were obtained with
the spd—basis. The same examination of the residual resistivities was performed
also with the spdf—basis and obtained values are almost the same. Moreover,
the spdf—basis and atomic displacements let to a dependence of the (finite-
temperature) resistivities on the canting angle comparably to Fig. 5.19. This leads
to the conclusion, that different scattering mechanisms (impurities, phonons, and
FRT model) behave equivalently.

5.2.5 Finite-temperature resistivities

Finite temperatures influence material behavior and spintronic devices operating
at real-life conditions; therefore, they should be taken into account during inves-
tigations of relevant materials. Moreover, understanding temperature-dependent
phenomena and contributions of different effects may be crucial from a point of
view of basic science. In this Section, electrical transport in CuMnS influenced
by finite temperatures is discussed.

Atomic displacements and chemical impurities Calculated finite-tempe-
rature longitudinal resistivities for AFM CuMnAs with 5%, 10 %, and 15 % of
Cupr, are shown in Fig. 5.21 and both vacy, and vace, are shown in Fig. 5.22.
The uncertainty in the Debye temperature and a presence of atoms with different
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Figure 5.21: Calculated resistivities in the in-plane (red dotted lines) and
z—direction (blue dashed lines) with 0.00 Ry (empty symbols) for 5% (circles),
10 % (triangles) and 15 % (squares) Cupp, are compared with experimental data
[11] (full lines). The slope of p(T) agrees with measurements, which does not
hold for 0.1 Ry (full circles for 5% of Cupmy).

masses lead to a conversion between temperatures and atomic displacements that
is not reliable; therefore, a dependence on /(u?) is primarily used for theoretical
data.

Without the Hubbard U, a temperature dependence of resistivity (Fig. 5.21)
is similar to measured data and differences between the measured values and
calculated results are almost independent on temperatures. From all of the in-
vestigated impurities, resistivities for Cuyy, in a concentration between 10 % and
15 % show the best correspondence to experimental data. Although nonzero U
leads to an improvement in the electronic structure [169], calculated p(7T) for
0.10, 0.15 and 0.20 Ry contradicts measurements, see Fig. 5.21 for the first value.

A slope of p(T'), which agrees with experiments, is obtained also for vacyy, and
vaccy, see Fig. 5.22: however, calculated data underestimate measurements even
for 15 % of vacancies. For most of the examined defects, the residual resistivity
may be tuned by changing concentrations of the impurity (the dependence on the
concentration is almost linear for Cuyy, and Mng,). We calculated temperature-
dependent resistivities for all of the defects stated in Tab. 5.4 and the slopes of
p(T') extremely differ for individual impurities, but they are almost independent
on their concentrations. Based on these data, we consider: (i) Cupy, vaco,, and
vacy, to be realistic, (ii) Mng, not present in the real samples (p(T') almost
constant), and (iii) impurities with As atoms having a low probability to be
observed. This agrees with probabilities given by the formation energies [114]. It
should be emphasized that this could not be obtained without the inclusion of
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Figure 5.22: Calculated resistivities (0.00 Ry) in the in-plane (red dotted lines)
and z—direction (blue dashed lines) agree qualitatively with experimental data
[11] (full lines) for Mn (empty symbols) or Cu (full symbols) replaced by vacancies.
The temperature-dependent behavior is similar for both 5% (circles) and 15 %
(squares) of impurities.

the atomic displacements.

If the Matthiessen’s rule holds, i.e., the total resistivity is given by a sum of
contributions for different scattering mechanisms, the measured resistivities of the
Cu-rich samples may be obtained for 10 % of Cu atoms moved to Mn sublattices
(10 % vacancies on Cu positions, 10 % Cu atoms on Mn positions, and 10 % Mn
atoms missing). We investigated combined effects of these two impurities but
the resistivities are not additive, see Fig. 5.23 for a comparison with Fig. 5.21
and 5.22. It can be concluded, that the Matthiessen’s rule does not hold for
combinations of most of the chemical defects, atomic displacements, and spin
fluctuations.

Magnetic disorder Significant underestimation of experimental data [11] ob-
served for high temperatures (7" 2 200 K) is attributed to the magnetic disorder
(Ty = 480 K [167]). The AAM may describe also disordered spins (see Sec. 4.2
or Refs. [6, 32]), but their proper inclusion is beyond the scope of this study.
Therefore, we present results only for /(u?) < 0.35ap (approx. T < 230 K),
where the major contribution comes from phonons. Table 5.5 shows results for
CuMnAs with magnetic disorder and possible impurities. The high-temperature
measured values may be compared with a sum of several contribution: a) residual
resistivities for 10 % Cumy (pre = 40 uQem, p,, = 317 uQ2cm), b) DLM state with
10% Cumn (pzz = 249 uQlem, p., = 513 uQdem), and ¢) an extrapolation of the
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Figure 5.23: Calculated resistivities (0.00 Ry) in the in-plane (red dotted lines)
and z—direction (blue dashed lines) for a combined effect of vacg, and Cupy,
for concentrations of both impurities 5% (circles), 10 % (triangles), and 15%
(squares) underestimate the experimental data [11]. Comparing these data with
with results presented in Fig. 5.22, invalidity of the Matthiessen’s rule for different
impurities is obtained. Moreover, they are not monotonic with respect to the
concentrations.

phonon contribution from /(u?) < 0.35ap (Fig. 5.21) to \/(u?) ~ ap. All of
the mechanisms together result in p,, = 459 pQdcm and p,, = 1218 uf2ecm. Con-
sidering a huge uncertainty in impurities and previously shown overestimation of
resistivities in NiMnSb given by the Matthiessen’s rule [6], it is in good agreement
with experiments (400 K).

Anisotropy of resistivities Large anisotropy of resistivities is observed in
experimental samples and the anisotropy are also different for various impurities
assumed in the calculations. In bulk tetragonal samples, measured anisotropy
P22/ Pee 18 6.8, 6.6, and 5.9 for 0, 100, and 300 K, respectively [11]. We show the
calculated anisotropies in Tab. 5.6 for the same defects as in Tab. 5.4. In addition,
data for nonzero Hubbard U are presented. In general, nonzero U increases the
anisotropy and for some of the defects even twice or more, see, e.g., Cu-Mn swap
and Mng,. On the other hand, differences between the employed basis (spd vs.
spdf) are not so large and the scalar-relativistic data for U = 0.0 Ry are similar
to the fully-relativistic results (with the same parameters).

Comparing all data, i.e., anisotropies, residual resistivities, and temperature-
dependent resistivities, especially Vacyy,, Vacoy, Mngy, and Cuyy, are preferable
to be present in real samples. These are also the defect having low formation
energies [114].
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Table 5.5:  The best high-temperature agreement for p,, is obtained with 10 %
of Cuyg,; however, the huge measured anisotropy is not reproduced by the DLM
state without phonons (0.00 Ry, spdf —basis).

Pax [pS2em]  p.. [pSdem]
Measured at 200 K [11] 103 656
Measured at 300 K [11] 150 885
Measured at 400 K [11] 224 1119
Stoichiometric DLM 276 489
DLM with 5% Mncy, 280 437
DLM with 10 % Cuyy, 249 513

Temperature-depend resistivities for U = 0.0 Ry mostly preserve the aniso-
tropy observed for the residual resistivity, while U = 0.1 Ry causes huge increase
of p,. with temperature (relative change of p,, is smaller), see Fig. 5.21 or other
previous figures for examples.

Table 5.6: Anisotropy of resistivities for CuMnAs calculated with 5 % of impuri-
ties depends especially on the defect and a value of the Hubbard parameter. The
second row shows a value of U in Ry.

Scalar rel., spd | Fully rel., spd Fully rel., spdf

Defect 0.00 Ry 0.00Ry 0.10Ry | 0.00Ry 0.10Ry
Vacyn 4.31 4.81 7.02 5.94 8.84
Vaccy 3.67 4.50 6.23 4.94 8.52
Mng, 1.54 1.77 5.17 2.35 6.12
Cun 5.08 5.91 5.09 5.70 7.48
Cuag 2.55 3.46 6.85 3.98 7.97
Ascy 2.33 2.62 4.74 3.15 5.66
Asym 2.32 1.94 3.43 3.38 3.84
Mn pq 1.24 2.08 5.51 2.88 9.59
Vacas 1.17 1.35 4.80 1.46 5.48
Cu+Mn 2.15 2.47 4.96 3.28 6.20
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5.3 Summary of the results

Our finite-temperature calculations of electrical transport properties in prototyp-
ical half-Heusler NiMnSb alloy agree with experimental data from literature. The
main conclusions of our study are:

Both the longitudinal and anomalous Hall resistivities of the Ni-rich system
(especially for 1 to 2 % of Ni atoms on the Mn sublattice) agree with
measured data and also the sign of AMR is consistent with experimental
literature.

The combination of magnons and phonons reproduces fairly well the exper-
imental resistivity even at high temperatures. It is not achieved by a bare
contribution of one of the two effects and the Matthiessen’s rule is valid for
temperatures up to about 650 K, but it is violated by about 16 % at the
Curie point (730 K).

The effect of the Fermi-sea contribution to the AHC is generally weak al-
though it is stronger for the Mn-rich case. The AHE in Ni-rich NiMnSb
is dominated by the o(!) part (“integration over the Fermi sheets”) of the
conductivity, while for the Mn-rich case, the o(? ("complex integration over
the valence spectrum”) term represents a sizable contribution of the order
of 20 %. Qualitatively different behavior of the AHC was observed for the
Mn- and Ni-rich systems.

Both models of the magnetic disorder yield the same dependence of the total
energy on the alloy magnetization, but the tilting model is more realistic
for a description of electrical transport. The uDLM model overestimates
the influence of spin fluctuations on the electrical resistivity.

The calculated spin-current polarization is typically greater than 0.9 at
room temperature for studied concentrations of the impurities and its be-
havior correlates with the half-metallic-like character (small amount of
states in the minority channel). Its values overestimate available experi-
mental data and the calculations indicate the possibility to influence current
spin polarization by tuning chemical composition.

AFM CuMnAs with six sublattices is probably the most complex system for
which the AAM was employed to study the finite-temperature electrical transport
properties. Despite that, the formalism was used successfully and no physical
limitations were found. The following conclusions can be made:

Obtained electronic structure is in agreement with literature and based on
the bandstructure or total DOS, the correct Hubbard U cannot be precisely
determined. The correct symmetry with respect to the canted and rotated
magnetic moments is obtained.

Without the temperature dependence, the zero-temperature (residual) re-
sistivity could be ambiguously ascribed to several different chemical impu-
rities. Our calculated temperature-dependent resistivity agrees with exper-
imental data for approx. 10% Cu atoms on the Mn sublattices; a combi-
nation of various chemical defects is also possible. The high-temperature
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DLM p,, agrees with experimental data, but the measured increase in p,,
is not reproduced by the DLM state.

Calculated resistivities, which we obtained for nonzero Hubbard parame-
ters, increase much faster (probably not realistically) with temperature than
experimental values. Therefore, our results show that U = 0.00 Ry gives
the best agreement with experiments.

Although the numerical expenses of the finite-temperature calculations are
higher for CuMnAs compared to materials with a lower number of sublat-
tices, the AAM can be probably used even for more complex materials.
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Conclusions

This thesis is focused on theory of spin-dependent transport in magnetic solids.
For the purposes of both describing novel physical phenomena and studying ma-
terials relevant for spintronics, we have implemented the AAM within ab initio
numerical codes based on the relativistic TB-LMTO method and the CPA. This
first-principles framework opened possibilities to investigate an influence of fi-
nite temperatures for a wide range of materials, even those with nontrivial mag-
netic structures. Because knowledge of electrical transport properties in these
materials is essential for electronic applications, the conductivity (or resistivity)
influenced by atomic displacements and fluctuations of magnetic moments was
studied. Moreover, due to spintronic applications, part of the results describes
also the spin disorder and spin polarization of electrical current. The aims of this
thesis (which are stated in the Introduction) are now addressed in details and
then possibilities for further studies are described.

Implementation of the AAM within the TB-LMTO method with the
CPA The AAM describing atomic displacements was successfully developed
(Sec. 2.1) and incorporated (Chapter 3) within the ab initio TB-LMTO method
with the CPA. Both physical and numerical properties of the model were tested
to verify its robustness and efficiency. Although the AAM has a number of lim-
itations (Sec. 2.5), it was found to be suitable and usable for many systems.
This thesis is focused on magnetic and spintronic materials; therefore, especially
electrical transport in transition metals and their alloys (both random and non-
random) was described and most of the results agree well with literature (Chap-
ter 4). Because the framework is numerically cheap, compared to other similar
techniques, it can be used even for complex systems and it allows one to effi-
ciently describe the combined effect of different finite-temperature phenomena or
scattering mechanisms on electrical transport (Sec. 2.3).

Realistic description of finite temperatures The AAM was used to ap-
proximate phonons and two models of magnetic disorder (uncompensated disor-
der local moments, tilting of magnetic moments) were employed to treat magnetic
solids at finite temperatures. Moreover, the effect of the broadened Fermi-Dirac
distribution (entering the linear response theory for 7' > 0) was investigated,
found to be small (Sec. 4.4), and, therefore, neglected in most of the calculations.
For the description of phonons, directions of displacements are of minor influence
(Sec. 2.3.1). The magnitudes of the displacements were mostly obtained from the
Debye theory; more proper values were taken from the VASP software or the high-
temperature simulation of molecular dynamics could be also used (Sec. 2.3.1) but
these advanced methods were not necessary for most of the systems. Similarly,
the total magnetization as a function of temperature was obtained from litera-
ture and used as an input parameter (Sec. 4.2); although it can be obtained by ab
initio techniques which, however, would be beyond the scope of this thesis. The
presented formalism was successfully used to describe even extreme conditions in
the Earth’s core (Sec. 4.5).
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Study of spintronic materials influenced by various types disorder The
developed and tested formalism can be not only used to reproduce data from
literature but also to predict behavior of novel systems and relevant material
properties. For purposes of spintronic applications, the spin-resolved electrical
conductivity was examined for systems with different chemical composition and
magnetization and the studied materials were also disordered by finite tempera-
tures (Sec. 4.6). Techniques previously tested on pure metals and random alloys
(Chapter 4) were then applied on half-Heusler NiMnSb alloy (Sec. 5.1) and an-
tiferromagnetic CuMnAs compound (Sec. 5.2). Both of them are multisublattice
alloys, they can be influenced by various impurities, and the composition is not
exactly known in experimental samples. Not only do the finite-temperature re-
sistivities agree with experimental data, but our data also helped to identify the
possible defects.

For half-Heusler NiMnSbh, important spintronic phenomena such as the spin
polarization of electrical current were investigated. Moreover, contributions of
atomic displacements and spin fluctuations at 7" > 0 to the scattering mecha-
nisms were examined and the influence of electronic structure on transport prop-
erties, both the longitudinal conductivity and anomalous Hall conductivity, was
discussed.

In tetragonal CuMnAs, both the electronic structure and electrical resistivi-
ties were studied. This antiferromagnetic material is important because of a wide
range of spintronic applications; therefore, we focused on its chemical composi-
tion, non-collinear magnetic moments, and a role of temperature. Above that,
hypothetical cases such as ferromagnetic CuMnAs were investigated.

Although we have shown that our approaches to finite-temperature effects
are suitable for many purposes, there are still open topics that could be ad-
dressed in future studies. From a technical point of view, various simplifying
assumptions were employed. It could be improved or replaced by more advanced
techniques. For example, instead of the Debye theory or fitting of measured
temperature-dependent magnetization, ab initio methods could lead to more ac-
curate results. This thesis is focused especially on the longitudinal electrical
transport and anomalous Hall conductivity, but there are other phenomena that
could be described by the linear response theory on an equal footing such as
the Gilbert damping, spin Hall effect, and spin-orbit torques. We introduced a
formalism and methods to deal with finite-temperature phenomena, however a
complete combination of different scattering mechanisms (impurities, phonons,
and magnons) are beyond our capabilities. Above that, the AAM could be com-
bined with other temperature-dependent effects such as a change of geometry
(dependence of lattice parameters on temperature). Last but not least, even
more complex materials than CuMnAs and advanced systems such as layered
structures could be examined.
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