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ABSTRACT 

 

In this Ph.D. thesis, we aimed to focus on molecular mechanisms that underlie the roles 

of hexokinases in health and disease. First, we focused on the molecular basis of GCK-MODY 

and possibilities how to predict effects of variations in genes causing Mendelian disorders in 

general. We performed in vitro experiments on GCK and its variants carrying activating, neutral 

or inactivating variations. Subsequently, we compared these experimental results with 

outcomes from the state-of-the-art prediction algorithms with distinct backgrounds. As a result 

of analyses, we realized that the prediction algorithms commonly suffered from low specificity. 

Therefore, we suggested a method how to tailor numerical outcomes of these prediction 

algorithms in order to increase specificity. Furthermore, we determined pH optimum of human 

GCK and HK2 and investigated the influence of ATP concentrations on buffering capacity of 

commonly used buffers in hexokinase assays. 

In the part concerning the role of HKs in tumorigenesis, we studied in vitro somatic 

cancer-associated variations in GCK, which did not give meaningful evidence for a role of GCK 

in tumorigenesis, although a subset of somatic cancer-associated variations were activating, 

thus potentially advantageous for tumors. Therefore, we rather moved to the study of HK1 and 

HK2, which have been reported as important isoenzymes for cancer cells, on the model of 

ovarian cancer cell line. We have prepared HK1 and HK2 knockout cell lines using 

CRISPR/Cas9 system. Afterwards, we studied changes of expression levels of proteins 

involved in metabolic and signaling pathways. We have observed changes indicating that the 

HK1 KO cells trigger cell survival and proliferation. Nevertheless, HK2 KO cells remain to be 

studied in a similar manner and further supportive experiments are about to be conducted in a 

near future.  



 

 

ABSTRAKT 

 

V předkládané doktorské práci bylo našim cílem objasnit molekulární mechanismy role 

hexokinas ve zdraví a nemoci. Nejprve jsme se zabývali molekulární podstatou GCK-MODY 

a možnostmi, jak obecně predikovat efekty mutací v genech kódujících Mendelistická 

onemocnění. Provedli jsme in vitro experimenty s GCK a jejími variantami nesoucími 

aktivační, neutrální a inaktivační mutace. Následně jsme porovnali výsledky experimentů 

s výstupy z nejmodernějších predikčních algoritmů, které mají rozdílný základ. Díky analýzám 

jsme zjistili, že predikční algoritmy obecně trpí nízkou specificitou. Proto jsme navrhli metodu, 

jak upravit numerické výstupy predikčních algoritmů, aby se zvýšila specificita. Navíc jsme 

určili pH optimum lidské GCK a HK2 a zkoumali jsme vliv koncentrací ATP na pufrovací 

kapacitu pufrů běžně používaných v hexokinasových stanoveních. 

V části týkající se role hexokinas ve vzniku a rozvoji nádorů jsme studovali in vitro 

somatické mutace GCK nalezené v nádorech. Ačkoliv část těchto mutací byla aktivačních, a 

tedy potenciálně výhodných pro nádory, studie nepřinesla významnou evidenci role GCK pro 

vznik nádorů. Raději jsme se tedy posunuli ke studii HK1 a HK2 na modelu ovariální nádorové 

linie. U HK1 a HK2 bylo již uvedeno, že jsou důležitými isoenzymy pro nádorové buňky. 

Připravili jsme buněčné linie neexprimující HK1 a HK2 metodou CRISPR/Cas9. Poté jsme 

zkoumali změny úrovně exprese proteinů z metabolických i signálních drah. V nádorových 

buňkách nexprimujících HK1 jsme pozorovali změny napomáhající zvýšenému přežívání a 

proliferaci buněk. Nicméně stále zbývají k podobnému prostudování nádorové buňky 

neexprimující HK2 a naše současné výsledky musíme podpořit dalšími experimenty. 

  



 

 

INTRODUCTION 

 

Human hexokinases 

Hexokinases, enzymes catalyzing the first irreversible step of glycolysis, are present 

across species. They phosphorylate glucose to glucose 6-phosphate where ATP or ADP are 

donors of phosphate group. The fate of glucose 6-phosphate is tissue-specific and depends on 

metabolic demands of the cell, so it can serve primarily for ATP/energy production through 

glycolysis, biosynthesis through pentose-phosphate pathway or energy storage in glycogen. 

Four isoenzymes of ATP-dependent hexokinases, HK1-4, are expressed by mammalian 

cells, although their presence and expression levels differ among tissues (Wilson, 2003). HK1-

3 are structurally similar hexokinases with much higher affinity to glucose (KM about 0.02 mM) 

compared to HK4, primarily known as glucokinase (GCK), which serves for maintenance of 

the physiological blood level of glucose (KM about 5 mM). According to the sequence analysis, 

GCK (50 kDa) is supposed to be the ancestral hexokinase and other hexokinases (100 kDa) 

arisen from duplication of its gene (Tsai & Wilson, 1997; Aderhali et al., 1999). HK1-3 are 

assembled from one polypeptide chain into two sequentially homologous domains connected 

by an α-helix. Unlike HK1 and HK3 with the catalytically active C-terminal domain, HK2 has 

both domains catalytically active (Tsai & Wilson, 1997).  

HK1-3 and GCK follow distinct enzyme kinetics in the course of glucose 

phosphorylation. HK1-3 proceed their reactions according to the Michaelis-Menten kinetics, 

whereas GCK follows the Hill cooperativity kinetics (Tsai & Wilson, 1997; Davis et al., 1999). 

Unlike GCK, HK1-3 are inhibited by the product, glucose 6-phosphate. Furthermore, HK2 and 

HK3 are also inhibited by inorganic phosphate, whereas inhibition of HK1 is antagonized by 

inorganic phosphate. The inhibition by inorganic phosphate manifests independently on effects 

of glucose 6-phosphate (Tsai & Wilson, 1997; Aleshin et al., 1998; Aleshin et al., 2000). 



 

 

HK1 and HK2 are mostly localized on the outer mitochondrial membrane, HK3 is in a 

perinuclear compartment (Wilson, 2003) and GCK is in the cytosol. In the liver, GCK is 

regulated by the interaction with the glucokinase regulatory protein (GKRP), which acts as a 

competitive inhibitor of glucose binding to GCK. This interaction is supported by fructose 6-

phosphate and suppressed by fructose 1-phosphate. The complex GCK-GKRP is recruited into 

the nucleus, until the glucose concentration is elevated; then the complex dissociates and GCK 

returns to the cytosol (Beck & Miller, 2013). HK2 can translocate between mitochondria and 

the cytosol depending on glucose, glucose 6-phosphate and PKB/Akt, regardless ATP, whereas 

HK1 remains bound to mitochondria. Consistent with the above-described differences in their 

localization, HK1 mainly promotes glycolysis, whereas HK2 is involved in both glycolysis and 

glycogen synthesis (John et al., 2011). 

 

Hexokinases in metabolic diseases 

Variations in human hexokinase genes can cause disorders of various severity, 

depending on heterozygous or homozygous manifestation of the variations as well as on the 

functionality of the transcribed protein. Besides the effects of germline variations in HK1 and 

GCK (see below), the aberrant expression and activity of HK2 has a prominent role in cancer 

metabolism (see the chapter Hexokinases in cancer metabolism). 

HK1 is a key enzyme in red blood cells, since they rely on the glycolytic pathway 

providing them energy. Disruptions and deleterious variations in HK1 genes can lead to non-

spherocytic hemolytic anemia (NSHA), autosomal recessive Russe type hereditary motor and 

sensory neuropathy (Charcot-Marie-Tooth disease type 4G), or autosomal dominant retinitis 

pigmentosa. Non-spherocytic hemolytic anemia is characterized by severe, chronic hemolysis 

manifesting in the infancy. NSHA is inherited in an autosomal recessive manner (Paglia et al., 

1981; Rijksen et al., 1983; de Vooght et al., 2009). Charcot-Marie-Tooth disease type 4G 



 

 

(CMT4G) is characterized by the onset during early childhood. The CMT4G patients suffer 

from progressive distal muscle weakness and atrophy, delayed motor development, foot and 

hand deformities. CMT4G affects particularly the members of the Gypsy ethnic (Jerath & Shy, 

2015).  

The third HK1-associated disease, retinitis pigmentosa (RP), is a dystrophic disorder of 

the retina causing profound loss of vision or blindness. The symptoms of RP are night blindness, 

progressive loss of peripheral vision, leading to complete blindness. Variations in a number of 

genes can cause RP; in addition to autosomal dominant variations in HK1 gene, variations in 

RP65 gene can also result in RP (Sullivan et al., 2014; Wang et al., 2014). Moreover, the gene 

therapy for RP caused by RP65 mutations has been approved in the EU and USA (this gene 

therapy product is known under the commercial name LUXTURNA, produced by Novartis). 

This gene therapy is based on the adeno-associated virus delivery system. In the future, this 

treatment strategy could also be promising for RP caused by variations in HK1 and other genes. 

GCK and its variations are associated with monogenic diabetes, since GCK regulates 

insulin secretion in the pancreatic β-cells. Variations in GCK can cause both hyperglycemia and 

hypoglycemia. Heterozygous inactivating variations in GCK result in maturity-onset diabetes 

of the young (GCK-MODY), manifesting with mild hyperglycemia, which is often detected 

later during life. Until now, hundreds of inactivating variations in GCK have been reported. In 

contrast to mild effects of heterozygous inactivating variations, homozygous inactivation of 

both GCK alleles manifests already at birth as a more severe disorder, termed permanent 

neonatal diabetes mellitus (PNDM).  GCK may also be affected by activating variations. These 

are mostly located in the heterotropic allosteric activator site of GCK and cause 

hyperinsulinemic hypoglycemia. GCK-MODY and GCK-induced hyperinsulinemic 

hypoglycemia are inherited in an autosomal dominant manner (Gloyn, 2003; Osbak et al., 

2009).  



 

 

Hexokinases in cancer metabolism 

Glucose is an essential source of cellular energy and serves as a carbon source for 

anabolic pathways in mammalian cells. Most differentiated cells convert glucose to pyruvate 

via glycolysis. Afterwards, pyruvate is metabolized via the tricarboxylic acid (TCA) cycle and 

electron transport chain in mitochondria. In that process, known as ‘oxidative phosphorylation’, 

pyruvate is oxidized to CO2 and H2O. The proton-motive force, generated by electron transport 

chain, is exploited for ATP synthesis from ADP and inorganic phosphate in the presence of 

Mg2+.  

In contrast, many tumor cells prefer the less efficient conversion of glucose to lactate, 

regardless the presence of oxygen. This specific phenotype was first described by Otto Warburg 

in the 1920s and is commonly called the ‘Warburg effect’ or ‘aerobic glycolysis’ (Warburg & 

Dickens, 1930; Pedersen, 1978). Aerobic glycolysis produces only two ATPs per glucose 

molecule, whereas oxidative phosphorylation produces up to 36 ATPs per completely oxidized 

glucose molecule. Warburg originally pointed out that cancer cells suffer from a mitochondrial 

defect that results in impaired aerobic respiration. However, subsequent studies reported normal 

mitochondrial function in most cancer cells (Fanti et al., 2006; Moreno-Sanchez et al., 2007).  

Some studies showed that ATP may never be limiting in proliferating cells as long as 

they can be supplied with nutrients in circulating blood (DeBerardinis et al., 2008). 

Nevertheless, ATP-deficient cells often undergo apoptosis (Vander Heiden et al., 1999). 

Signaling pathways can sense ATP concentration within the cell. For instance, adenylate 

kinases convert two ADPs to one ATP and one AMP, thus the increase of AMP activates AMP-

activated protein kinase (AMPK). The AMPK activation depends on the tumor suppressor 

protein LKB1 and leads to phosphorylation of several proteins, for instance Raptor in mTORC1 

or acetyl-CoA carboxylase 1, in order to improve energy status in the cell (Hardie, 2007). 



 

 

Interestingly, some tumors consist of two metabolically different subpopulations of 

cancer cells that function in symbiosis. The cells in one subpopulation employ the ‘Warburg 

effect’ to produce and secrete lactate, whereas the cells in the second subpopulation import and 

utilize lactate as their main energy source. The first subpopulation is considered to reflect more 

hypoxic conditions than the second one (Feron, 2009; Kennedy & Dewhirst, 2010). 

The fact that hexokinase is bound to the outer mitochondrial membrane is advantageous 

for tumor cells, since hexokinase obtains access to newly generated ATP and can escape 

inhibition by glucose 6-phosphate (Bustamante et al., 1977). Furthermore, HK2 was proved to 

be overexpressed in malignant tumors and interacting with the voltage-dependent anion channel 

(VDAC) (Nakashima et al., 1986). HK2 overexpression appears to be rational because of its 

high affinity to glucose, both catalytically active domains and the hydrophobic N-terminal 

domain allowing the binding to the VDAC protein (Bustamante & Pedersen, 1980; Arora & 

Pedersen, 1988).  

Proliferating cells have anabolic demands and need to produce a large amount of 

nucleotides, amino acids, and lipids. Apart from ATP, these cells require acetyl-CoA, NADPH 

and equivalents of carbon. Most mammalian cell lines in culture catabolize glucose and 

glutamine, which provide most of the carbon, nitrogen, free energy and reducing agents, such 

as NAD(P)H, necessary for cell growth and division. NADPH is produced in the pentose 

phosphate pathway, via the conversion of malate to pyruvate catalysed by malic enzyme and 

via the conversion of isocitrate to α-ketoglutarate catalysed by isocitrate dehydrogenase 1 

(IDH1) (Vander Heiden et al., 2009). 

Glucose addiction of proliferating cancer cells and their disability to metabolize non-

glycolytic energetic substrates can be mediated by the activation of the phosphoinositide 3-

kinase (PI3K)/Akt signaling pathway (Buzzai et al., 2005). PI3K/Akt signaling stimulates 

glucose uptake and metabolism in cancer cells and plays a key role in the regulation of cell 



 

 

growth. PI3K signaling through PKB/Akt regulates expression of glucose transporters, 

increases glucose conversion by hexokinase and stimulates phosphofructokinase (PFK) 

expression (DeBerardinis et al., 2008).  

Interestingly, metabolic enzymes can also contribute to tumorigenesis, since germline 

variations in the TCA cycle enzymes succinate dehydrogenase, fumarate hydratase, or cytosolic 

IDH1 activate glucose utilization in some tumors under hypoxic conditions (Baysal et al., 2000; 

King et al., 2006; Parsons et al., 2008). Proliferating cells preferentially express pyruvate 

kinase M2 (PKM2), which is regulated by tyrosine-phosphorylated proteins; thus, tyrosine 

kinases are also involved in regulation of glucose metabolism. PKM2 is an isoform of pyruvate 

kinase with low activity, thereby directing the carbon utilization for either biosynthesis or 

complete catabolism (Christofk et al., 2008a; 2008b). Concerning tyrosine kinases, the 

prototypical tyrosine kinase c-Src was found that could phosphorylate human HK1 at Tyr732 

and HK2 at Tyr686, thereby activating them. The phosphorylated HK1 at Tyr732 corresponds 

to the incidence of metastasis of various tumors, thus the phosphorylated HK1 could serve as a 

marker for metastasis risk (Zhang et al., 2017). 

The transcription factor hypoxia-inducible factor (HIF)-1 orchestrates the cellular 

response to hypoxic conditions. HIF-1 regulates transcription of multiple genes, including HK2, 

thereby resulting in a hypoxia-tolerant state of the cell (Majmundar et al., 2010) and 

contributing to proliferative metabolism (DeBerardinis et al., 2008). Another pro-survival 

effect of HK2 manifests in neurons, in which HK2 interacts with phosphoprotein enriched in 

astrocytes (PEA15) to inhibit apoptosis under hypoxia (Mergenthaler et al., 2012).  

The tumor suppressor p53 controls metabolic genes and influences glucose metabolism. 

p53 induces expression of TIGAR (Tp53-induced glycolysis and apoptosis regulator), which 

leads to PFK inhibition and directs glucose into the pentose phosphate pathway, thereby 

facilitates NADPH production (Bensaad et al., 2006). This may be a response defending the 



 

 

cells against oxidative stress, since NADPH reduces glutathione that defends cells against 

reactive oxygen species (ROS). Moreover, the p53-inducible protein TIGAR acts as fructose-

2,6-bisphosphatase, and, under hypoxia, it re-localizes to mitochondria and complexes with 

HK2, thereby increasing HK2 activity (Cheung et al., 2012). 

Pro-inflammatory cytokines promote glycolysis in breast cancer cells by upregulation 

of specific microRNAs, such as miR-155 that upregulates HK2 by either activation of signal 

transducer and activator of transcription 3 (STAT3), or repressing mir-143 that acts as a 

negative regulator of HK2 (Gregersen et al., 2012; Jiang et al., 2012; Fang et al., 2012).  

In colorectal cancer cell lines, HK2 inactivation increased expression of HK1. Silencing 

of both HK1 and HK2 led to decreased cell viability (Kudryavtseva et al., 2016). 

Overexpression of multiple glycolytic enzymes, including HK2, was observed in primary 

pancreatic ductal adenocarcinoma (PDAC) patient tumors. PDAC is a KRAS-driven cancer with 

a poor prognosis and a high incidence of metastasis. HK2 was shown as highly expressed in 

PDAC metastases. Consistently, HK2 knockdown resulted in the decrease of primary tumor 

growth in cell line xenografts and the lower incidence of lung metastasis (Anderson et al., 

2017). Using the model of primary PTEN/TP53 null mouse prostate cancer, the elevated HK2, 

resulting from the activated PKB/Akt, was shown in an androgen-deprived environment, thus 

ensuring survival of cancer cells. Consistently, HK2 inhibition in prostate cancer cells caused 

decreased cell viability. This finding is conflicting with androgen deprivation therapy as the 

accepted treatment for progressive prostate cancer (Martin et al., 2017). 

Based on the results of a pan-cancer copy number alteration profiling, glycolytic 

enzymes, including HK1-3, have been found amplified in patient tumors as well as 

experimental systems. HK2 amplification appears to be related to p53 variations, whereas HK1 

and HK3 amplifications are related to amplifications of the oncogenes MYC and MDM2, and 

deletion of the tumor suppressor CDKN2A. These alterations have been revealed in a case of 



 

 

breast invasive carcinoma, lung squamous cell carcinoma, ovarian serous cystadenocarcinoma, 

and serous uterine corpus endometrial carcinoma (Graham et al., 2017). According to a meta-

analysis of 1,932 patients from 15 studies, HK2 overexpression has been indicated as a poor 

prognostic marker for gastric cancer, hepatocellular carcinoma and colorectal cancer, but not 

for PDAC. Moreover, HK2 overexpression was remarkably correlated with tumor size, positive 

lymph node metastasis, advanced clinical stage and high levels of α-fetoprotein (Wu et al., 

2017). Unlike HK2 overexpression in hepatocellular carcinoma, GCK expression is suppressed. 

In a mouse model of liver tumorigenesis, HK2 deletion decreased the incidence of tumors. 

Consistently, HK2 knockdown in human hepatocellular carcinoma cells inhibited 

tumorigenesis and led to cell death. Furthermore, serine and glycine uptake and oxidative 

phosphorylation were increased, and served as compensatory mechanisms (DeWaal et al., 

2018).  

In liver cancer cells, glycolytic activity is inversely correlated with autophagy level. In 

this model, HK2 was found to be ubiquitylated at Lys63 by the E3 ligase TRAF6 and further 

processed by autophagic degradation, when autophagy mechanisms proceeding properly (Jiao 

et al., 2018). Another role of HK2 in autophagy has been studied for its connection with 

telomerase, a ribonucleoprotein complex of telomerase reverse transcriptase (TERT) and 

telomerase RNA component (TERC). HK2 inhibition in HepG2 cells suppressed TERT-

induced autophagy, since TERT promotes autophagy through an HK2-mTOR pathway, in 

which HK2 activation silences mTOR activity. Furthermore, telomerase binds to the HK2 

promoter through TERC, thereby promoting HK2 expression (Roh et al., 2018).  

As mentioned above, HK2 is ubiquitylated at Lys63 by TRAF6, but Lys63-linked 

ubiquitination is also mediated by the HectH9 E3 ligase. Moreover, HectH9 ubiquitylates the 

p53 tumor suppressor at Lys48, thereby downregulating p53. HectH9 is upregulated upon 

hypoxia and promotes tumorigenesis (Bernassola et al., 2008). In addition to the above-



 

 

mentioned report on autophagy (Jiao et al., 2018), Lys63-linked ubiquitination enables HK2 to 

bind to mitochondria and promotes glycolysis (Lee et al., 2019). 

 

CRISPR/Cas systems  

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-

associated (Cas) systems serve in bacteria and archaea as RNA-navigated adaptive immune 

systems which protect these organisms against nucleic acids from invading viruses and 

plasmids (Wiedenheft et al., 2012). In these bacterial adaptive immune systems, RNAs 

complementary to nucleic acids originated from invaders detect and silence foreign nucleic 

acids. CRISPR/Cas systems consist of cas genes organized in operons and CRISPR arrays 

which target particular sequences in the genome and are interspersed with identical repetitive 

DNA (Wiedenheft et al., 2012). The common components of all CRISPR/Cas systems are the 

cas1 and cas2 genes (Amitai & Sorek, 2016). Furthermore, phylogenetic analyses of Cas1 

revealed existence of several versions of CRISPR/Cas systems (Kunin et al., 2007).  

CRISPR/Cas-mediated immunity proceeds in three steps. In the first (adaptive) phase, 

a short fragment of foreign DNA (the protospacer) is integrated primarily at the leader end of 

CRISPR locus. Afterwards, in the expression (second) and interference (third) phases, the 

repeat-spacer sequences are transcribed into a precursor CRISPR RNA (pre-crRNA), which is 

cleaved enzymatically. The yielded short crRNA can interact with complementary protospacer 

sequences of invading viral or plasmid targets. The silencing of foreign nucleic acids is 

processed by Cas proteins which form complexes with the crRNAs (Haurwitz et al., 2010; 

Deltcheva et al., 2011). 

According to the latest classification, the CRISPR/Cas systems are divided into two 

distinct classes, based on the characteristics of the effector module. The Class 1 systems include 

the most common and heterogeneous type I, type III that is more common in archaea than 



 

 

bacteria, and the rare type IV. The common features of the type I and III CRISPR systems are 

specialized Cas endonucleases processing the pre-crRNAs and large multi-Cas protein 

complexes which recognize and cleave foreign nucleic acids based on the mature crRNAs 

complementarity (Jackson et al., 2014; Zhao et al., 2014; Koonin et al., 2017).  

On the other hand, the Class 2 consist of a single, large, multidomain protein and 

includes three subtypes. The first Class 2 subtype is the well-characterized type II, in which the 

Cas9 endonuclease is considered the only protein responsible for RNA-guided silencing of 

foreign DNA (Sapranauskas et al., 2011), and the second subtype is represented by the type V 

with the putative Cpf1 endonuclease. Due to metagenomics analyses, the Class 2 has been 

completed with the third subtype, type VI, with domains displaying RNase activity, such as 

Cas13 (Jinek et al., 2014; Abudayyeh et al., 2017; Koonin et al., 2017). 

 

RNA-guided CRISPR/Cas9 

The first evidence of the CRISPR/Cas employment in RNA-programmable genome 

editing has been published by Jinek et al. (2012). They proved that the Cas9 protein needs a 

base-paired structure located between the transactivating crRNA (tracrRNA) and the targeting 

crRNA in order to cleave the targeted DNA sequence. The cleavage of the Cas9 endonuclease 

is directed by both complementarity between the crRNA and the target protospacer DNA and a 

short motif, which is known as the protospacer adjacent motif (PAM) (Fig. 1).  

Moreover, the cleavage mechanism of the Cas9 endonuclease has been revealed. To 

trigger the Cas9-mediated cleavage of plasmid DNA, both the mature crRNA and the trans-

activating tracrRNA are necessary. The trans-activating tracrRNA has two crucial functions – 

initiating the pre-crRNA processing by the enzyme RNase III (Deltcheva et al., 2011) and 

activating the crRNA-navigated DNA cleavage by Cas9 (Jinek et al., 2012).  



 

 

 

Fig. 1. Scheme of DNA cleavage by the complex assembled from Cas9, tracrRNA and crRNA. 

In the top, Cas9 is guided by the activating tracrRNA and targeting crRNA. In the bottom, the 

fused crRNA and tracrRNA, a chimeric RNA is used for the engineered CRISPR/Cas9 (Jinek 

et al., 2012). 

 

The cleavage of plasmid DNA by Cas9 produces blunt ends at a position 3 bp upstream 

of the PAM sequence. Within short double-stranded DNA duplexes, the DNA strand 

complementary to the crRNA is cleaved at a site 3 bp upstream of the PAM sequence. In 

contrast, the non-complementary DNA strand is cleaved at one or more sites within 3 to 8 bp 

upstream of the PAM. The PAM sequence is recognized specifically by Cas9 as a prerequisite 

for DNA binding and following strand separation prior to Cas9 cleavage. The PAM sequence 

and position is varying according to a CRISPR/Cas system type (Mojica et al., 2009). The 



 

 

turnover number of Cas9 is comparable to that of restriction endonucleases and ranges from 0.3 

to 1 min-1 (Jinek et al., 2012).  

Based on the structural study, Cas9 consists of domains homologous to HNH and RuvC 

endonucleases (Makarova et al., 2011). The HNH domain cleaves the complementary DNAs 

strand, whereas the Cas9 RuvC-like domain cleaves the non-complementary DNA strand (Jinek 

et al., 2012). The endonuclease Cas9 from Streptococcus pyogenes (SpCas9) can be navigated 

by a sgRNA to any genomic locus followed by a 5’-NGG PAM sequence and a 20-nucleotide 

guide sequence within the sgRNA, responsible for genome targeting, thus SpCas9 can be easily 

engineered according to a gene of interest (Jinek et al., 2012). 

 

CRISPR/Cas9 and other genome editing technologies 

Compared to other genome editing technologies, including zinc-finger nuclease (ZFN) 

(Miller et al., 2007) and transcription activator-like effector nucleases (TALENs) (Hockemeyer 

et al., 2011; Zhang et al., 2011), CRISPR/Cas9 represents a system that is significantly easier 

to design, specific, efficient and suitable for high-throughput gene editing in different cells and 

organisms. In general, custom ZNFs are difficult to engineer, which severely decreases their 

potential to become a widespread technology (Wood et al., 2011).  

In contrast to TALENs, which require the design of two new TALEN genes for every 

new DNA sequence (Schmid-Burgk et al., 2013), Cas9 can be targeted to the desired genome 

site by simply designed oligonucleotides encoding a 20-nucleotide guide sequence. Given the 

cleavage pattern, TALENs cleave nonspecifically in the 12-24-bp linker between the pair of 

TALEN monomer-binding sites (Miller et al., 2011), unlike the specific cleavage 3 bp upstream 

of the PAM sequence by SpCas9 (Jinek et al., 2012). Another advantage of SpCas9 stems from 

the fact that Cas9 can target multiple genome loci simultaneously by delivery a combination of 

sgRNAs to the cells (Ran et al, 2013a).  



 

 

DNA repair induced by CRISPR/Cas9 

The Cas9 endonuclease promotes genome editing by introducing a double-strand break 

(DSB) into a targeted gene. Then, the cleaved locus undergoes one of two major DNA repair 

pathways – the error-prone non-homologous end-joining (NHEJ) or the high-fidelity 

homology-directed repair (HDR).  

In mammalian cells, NHEJ is the preferential pathway for DSB repair. In the course of 

the NHEJ process, DSBs are re-ligated which leads to the formation of insertion/deletion (indel) 

variations. NHEJ can result in gene knockouts, when indels occur within an exon (Barnes, 

2001).  

An alternative pathway of DNA repair is HDR. HDR require the presence of a repair 

template, which is provided endogenously during the S and G2 cell cycle phases, since HDR is 

generally active in dividing cells, or can be introduced exogenously (van den Bosch et al., 

2002). The exogenous repair template can either be provided in the form of double-stranded 

DNA with homology arms flanking the insertion sequence, or single-stranded DNA 

oligonucleotides (Saleh-Gohari & Helleday, 2004). In some models, particularly for cancer 

research, HDR is disadvantaged because of variations occurring in key proteins that are 

involved in this type of DNA repair. For instance, HDR requires the recruitment of BRCA genes 

that are often mutated in some cancer cell types, to DSB sites.  

The choice between NHEJ and HDR is regulated by the 53BP1 protein. This pro-NHEJ 

factor limits homologous recombination by blocking DNA end resection as well as inhibiting 

BRCA1 recruitment to DSB sites (Hustedt & Durocher, 2016). To increase HDR efficiency in 

CRISPR/Cas9 editing, Canny et al. (2017) developed an inhibitor of 53BP1 based on the 

ubiquitin structure, since 53BP1 recognizes histone H2 ubiquitylated on Lys15 (Fradet-

Turcotte et al., 2013). The inhibition of 53BP1 significantly increased efficiency of HDR-based 

genome editing in human and mouse cells. For the same purpose, the regulation of BRCA1-



 

 

PALB2-BRCA2 complex assembly has been suggested promoting HDR during G1 phase of 

the cell cycle, since the BRCA2 recruitment to DSBs is blocked by the inhibition of BRCA1-

PALB2-BRCA2 assembly in G1 cells (Orthwein et al., 2015).  

 

CRISPR/Cas9 in genetic engineering 

For the practical and widespread use in genome engineering, the human codon-

optimized Cas9 from S. pyogenes and a chimeric (the fused crRNA and tracrRNA) sgRNA 

were created (Jinek et al., 2012; Ran et al., 2013a; Fig. 1). Furthermore, the engineered Cas9 

endonuclease was used for enhancement of genome editing specificity, since specificity of the 

wild-type Cas9 can be influenced by multiple mismatches between the sgRNA and its 

complementary target DNA sequence (Ran et al., 2013b). This unspecific base pairing can lead 

to potential off-target DSBs and indel formation (Fu et al., 2013). In the improved strategy, the 

D10A mutant nickase variant of Cas9 (Cas9n) was combined with a pair of sgRNAs 

complementary to opposite strands of the target site. This applied design relies on the 

synergistic interaction of two Cas9n, similarly to dimeric ZFN and TALENs, thus minimizing 

off-target mutagenesis, since individual nicks (single-strand DNA breaks) are predominantly 

repaired by the high-fidelity base excision repair pathway (Wood et al., 2011). 

To overcome the limitation of gene targeting in genetic screens, the combinatorial 

screening using orthogonal Cas9 endonucleases from Staphylococcus aureus and Streptococcus 

pyogenes was developed, thereby combining two PAM sequences and increasing the choice of 

targeted sites (Najm et al., 2018). 

Based on the CRISPR/Cas9 system, a method called CRISPR interference (CRISPRi) 

has been developed in order to repress expression of targeted genes. This method employs a 

catalytically dead Cas9, which lost endonuclease activity due to variations, but is still able to 

form complexes with sgRNAs. The RNA-guided dCas9 can specifically interfere with 



 

 

transcription processes and is associated with likely negligible off-target activity (Qi et al., 

2013). The modified method for silencing was achieved by a fusion of dCas9 with the Krüppel-

associated box (KRAB) domain, since KRAB is an effective transcription repressor that recruits 

a heterochromatin-forming complex that causes histone methylation and deacetylation 

(Thakore et al., 2015).  

 

Other CRISPR/Cas systems in genetic engineering 

Zetsche et al. (2015) identified another Cas effector, called Cpf1 (CRISPR from 

Prevotella and Francisella 1) that have some distinct features from Cas9 and is useful for 

genome editing in human cells. This putative Class 2 CRISPR system, a type V CRISPR/Cas 

system, has been indicated in several bacterial genomes (Schunder et al., 2013). Unlike Cas9 

systems, Cpf1-associated CRISPR arrays do not require trans-activating crRNAs. In contrast 

to the G-rich PAM sequence for Cas9 systems, Cpf1-crRNA complexes cleave the target DNA 

based on a T-rich PAM sequence. Cpf1 introduces a staggered DSB with a 4- or 5-nucleotide 

5’-overhang. The mechanism and structure of Cpf1 has been revealed a year later (Fonfara et 

al., 2016; Yamano et al., 2016). Unlike Cas9, Cpf1 contains the RuvC domain but lacks a 

second endonuclease domain, the remaining domains are responsible for the sequential 

cleavage of the non-target and target strands, thus generating cohesive DSBs.  

Two independent studies proved that use of CRISPR/Cpf1 from Acidoaminococcus sp. 

(AsCpf1) and Lachnospiraceae bacterium (LbCpf1) results in fewer off-target effects than in 

the case of Cas9 endonucleases. The first study reported that Cpf1 tolerates single or double 

mismatches in the 3’PAM-distal region rather than in the 5’PAM-proximal region (Kim et al., 

2016), concurrently the second study confirmed this finding (Kleinvister et al., 2016). 

Moreover, the use of the preassembled, recombinant AsCfp1 and LbCfp1 ribonucleproteins has 

been suggested in order to overcome the off-target activity (Kim et al., 2016). 



 

 

In 2017, Abudayyeh et al. reported the Class 2 type VI RNA-guided RNA-targeting 

CRISPR/Cas effector Cas13a, which can be engineered for RNA knockdown and binding in 

mammalian cells. Based on the screening of fifteen orthologs, Cas13a from Leptotrichia wadei 

(LwaCas13a) has been determined as the most efficient. LwaCas13a can be heterologously 

expressed in mammalian and plant cells providing the efficient level of knockdown with 

significantly higher specificity compared to RNAi. CRISPR/Cas13 has been also proposed as 

a highly sensitive, rapid and undemanding viral diagnostic platform (Myhrvold et al., 2018). 

Recently, the third genome-editing platform called CRISPR-CasX has been introduced 

(Liu et al., 2019). CRISPR/CasX was proved to modify genomes of Escherichia coli and 

humans. According to metagenomics analysis of microbial DNA, CasX defended against 

bacterial transformation by plasmid DNA. Interestingly, CasX shows no sequential similarity 

to other CRISPR-Cas enzymes, except for the presence of a RuvC nuclease domain. However, 

the RuvC domain of CasX has less than 16% identity with RuvC domains of either Cas9 or 

Cas12a. CasX probably evolved from a TnpB-type transposase by an independent insertion into 

ancestral CRISPR loci. Based on cryo-electron microscopy structures of the CasX, gRNA and 

double-stranded DNA assembly, an ordered no-target and target-strand cleavage mechanism 

has been revealed. This mechanism may explain better cleavage mechanisms of CRISPR/Cas 

enzymes with a single active site, such as Cas12a (Fonfara et al., 2016; Yamano et al., 2016). 

CasX introduces a staggered DSB in DNA at sequences complementary to a 20-nucleotide 

sequence of its gRNA and adjacent to a TTCN PAM sequence. CasX originated from 

Deltaproteobacteria (DpbCasX) and Planctomycetes (PlmCasX) are useful both for genome 

editing with efficiency comparable with Cas9, and CRISPRi as an engineered deactivated CasX 

(Liu et al., 2019). 

  



 

 

CRISPR/Cas systems in therapeutic genome editing 

First, Schwank et al. (2013) optimized the CRISPR/Cas9 system for the correction of 

the cystic fibrosis transmembrane conductor receptor (CFTR) locus by HDR in primary adult 

stem cells derived from cystic fibrosis patients. A year later, the CRISPR/Cas9 editing by HDR 

was used for the correction a FAH (a gene encoding fumarylacetoacetate hydrolase) variation 

in hepatocytes in a mouse model of the human disease hereditary tyrosinemia. The procedure 

that led to the expression of the wild-type FAH protein was successful in 1/250 liver cells (Yin 

et al., 2014). In the same year, the exploitation of the CRISPR/Cas9 system for rapid 

development of mouse liver cancer models was published, when targeting the tumor suppressor 

PTEN and p53 in vivo in wild-type mice (Xue et al., 2014). CRISPR-Cas9 genome editing was 

feasible for the primary open-angle glaucoma treatment, caused by variations in myocilin gene 

in the in vivo mouse model (Jain et al., 2017). 

The breakthrough in genome editing using CRISPR/Cas9 has brought the ability to 

conduct genome-wide screens in human cells (Chow et al., 2017; Joung et al., 2017). Genome 

engineering of human pluripotent stem cells remained difficult, with lower efficiencies 

compared to some tumor cell lines or mouse embryonic stem cells. The explanation was given 

by a study pointing out that DSBs induced by Cas9 trigger a TP53-dependent toxic response, 

thus killing most human pluripotent stem cells. Unfortunately, transient TP53 inhibition could 

lead to a higher mutational risk implicating a risk of cancer (Ihry et al., 2018).  

Regarding expanding possibilities of CRISPR/Cas systems in gene therapy, the stronger 

attention has been paying on the safety and reliability of potential CRISPR-based therapeutics. 

Since the on-target and off-target effects vary greatly with individual sgRNAs, many efforts 

have been made to improve the computational design of sgRNAs with predicted off-target sites 

in order to minimize the off-target effects and concurrently maximize the on-target activity 

(Doench et al., 2016). Furthermore, the human genome contains many disease-unrelated 



 

 

genetic variations in every individual patient; these variations might also influence effects 

caused by Cas endonucleases. By analyses of the Exome Aggregation Consortium and 1000 

Genomes Project datasets, the design of patient-specific sgRNAs has been proposed for 

ensuring the safety of CRISPR-based therapeutics and the pre-therapeutic whole genome 

sequencing has been suggested (Scott & Zhang, 2017).  

Deep-sequencing data from 81 genome-editing projects on mouse and rat genomes 

allowed to predict 1,423 off-target sites and confirm 32 of them, thereby showing that the 

improved design for CRISPR/Cas9 reduced off-target variation rates (Anderson et al., 2018). 

Furthermore, Anderson et al. (2018) studied the impact of genome editing in ten mouse embryos 

treated with a sgRNA and found 43 off-target effects, 30 of which were predicted. 

Unfortunately, further explorations the repair of DSBs induced by CRISPR/Cas9 indicated 

adverse on-target effects, such as large deletions (over many kilobases) and more complex 

genomic rearrangements (e.g., crossover events), in mouse embryonic stem cells, mouse 

hematopoietic progenitors and a human differentiated cell line (Kosicki et al., 2018).  

  



 

 

AIMS 

 

1/ Preparation of the recombinant GCK and its variations, their biochemical 

characterization and the comparison of experimental results with outcomes from 

prediction methods (Šimčíková et al., 2017). 

We aimed to prepare and characterize of GCK variants primarily found in Czech patients 

suffering from GCK-MODY, and measure their kinetic characteristics and stability. We aimed 

to compare these experimentally obtained results with the outcomes of prediction methods, 

which are used in personalized medicine. We aimed to test outcomes these prediction methods 

by the comparison of their outcomes with experimental data on GCK variants that were 

generated in the present study as well as with those that were previously published. 

 

2/ Determination of pH optimum of human GCK, pH influence on GCK and HK2 and the 

influence of ATP concentrations on buffering capacity (Šimčíková & Heneberg, 2019). 

We aimed to determine pH optimum of GCK and investigate pH influence on GCK and HK2 

activity. We aimed to investigate the influence of ATP concentrations on buffering capacity of 

buffers often used in hexokinase activity assays. 

 

3/ Study of GCK activating variations (Těšínský et al., 2019). 

We aimed to study GCK activating variations, determine their kinetic parameters and 

temperature stability in the structural context of the GCK molecule. 

 

4/ Tailoring of prediction methods for their use in personalized medicine (Šimčíková & 

Heneberg, subm.). 



 

 

We aimed to extend the outcomes of Aim #1 to predictions of effects of other genes that are 

causative for Mendelian diseases. We aimed to build datasets of genes, the variations of which 

variations cause human inherited diseases and apply the state-of-the-art prediction methods to 

the datasets analysis. We aimed to improve settings of prediction methods and validate 

suggested settings. 

 

5/ Characterization of effects of HK1 and HK2 deletions in ovarian cancer cell lines. 

We aimed to implement CRISPR/Cas9 technology in order to produce knockout cell lines. As 

a proof of concept for genome editing experimental design, we aimed to use the HEK293T cell 

line. To analyse the effects of HK1 and HK2 deletions, we aimed to prepare knock-outs in the 

ovarian cancer cell line TOV-112D, since ovarian cancer cells, unlike other types of cancers, 

expresses preferentially the HK1 isoenzyme. We aimed to investigate the adaptation of HK1 

knockout cells and changes in expression levels of metabolic enzymes and proteins involved in 

signaling pathways. 

 

  



 

 

EXPERIMENTAL PROCEDURES AND METHODS 

 

Preparation of the recombinant GCK and its variants (Šimčíková et al., 2017; Šimčíková 

& Heneberg, 2019; Těšínský et al., 2019) 

We expressed glucokinase (GCK) from the expression vector, pGEX-5X-2, with an 

insert that encoded the wild-type GCK isoform 1; the expression vector was provided as a kind 

gift from Dr. Navas (Universidad Complutense de Madrid) (Garcia-Herrero et al., 2007). We 

introduced variations into the expression construct via site-directed mutagenesis (QuikChange 

site-directed mutagenesis kit, Agilent Technologies, Santa Clara, CA). We verified all the 

constructs via bidirectional Sanger sequencing.  

We prepared GCK and its mutant forms as fusion proteins with N-terminal glutathione-

S-transferase (GST) in the Escherichia coli BL21 Gold(DE3) strain (Agilent Technologies, 

Santa Clara, CA). We grew the cells at 37°C to OD 0.7, and induced the expression by adding 

IPTG to a final concentration of 0.2 mM. We incubated the culture at 22°C for 16 hours with 

orbital shaking (240 rpm). Afterwards, we harvested the cells by centrifuging, and resuspended 

the pellets in a breaking buffer (25-fold smaller volume than the culture volume; PBS, pH 7.4 

containing 4 mM MgCl2, 1 mM PMSF, 5 mM DTT, 0.5% Triton X-100, lysozyme and DNase 

I) followed by 30 min of incubation at room temperature. We lysed the cells via mild sonication 

on ice. We centrifuged the lysate (4°C; 20,000×g) and immediately incubated the supernatants 

with Glutathione Sepharose (GE Healthcare Life Sciences, Chicago, IL). Subsequently, we 

washed the beads twice and eluted GST-GCK with 50 mM Tris, 200 mM KCl, pH 8.0, 

containing 5 mM DTT and 10 mM glutathione. We performed the entire purification procedure 

at 4°C.  

  



 

 

Preparation of the recombinant HK2 (Šimčíková & Heneberg, 2019) 

We introduced the insert encoding HK2 into pET-28a(+) and expressed HK2 in 

BL21(DE3)pLysS E. coli. We induced HK2 expression by the addition of 1 mM IPTG and 

subsequently cultivated the cells for 16 h at 22 °C. Afterwards, we purified HK2 using HisTrap 

HP (GE Healthcare, Chicago, IL). 

 

Protein concentration assay (Šimčíková et al., 2017; Šimčíková & Heneberg, 2019; Těšínský 

et al., 2019) 

We determined the protein concentration using a Bradford assay (Serva, Heidelberg, 

Germany) with bovine serum albumin used as a standard. 

 

GCK kinetic measurements (Šimčíková et al., 2017; Šimčíková & Heneberg, 2019; Těšínský 

et al., 2019) 

We measured the GCK activity spectrophotometrically using a coupled reaction with 

glucose-6-phosphate dehydrogenase (Sigma-Aldrich, St. Louis, MO) and determined the 

increasing concentration of NADPH at 340 nm as described previously (Liang et al., 1995; 

Davis et al., 1999). One unit (U) of GCK was defined as the amount of enzyme that 

phosphorylated 1 µmol of glucose per min at 30°C under assay conditions. In the case of 

glucose as the variable substrate (0–200 mM), we measured these assays using two 

concentrations of ATP – 0.5 mM and 5 mM; the GCK activity exhibited a sigmoidal 

dependency, which satisfied the Hill equation. However, the GCK activity with variable ATP 

concentrations (0–5 mM) followed hyperbolic Michaelis-Menten kinetics. We performed GCK 

assays with variable ATP concentrations at two glucose concentrations: at the corresponding 

S0.5 and 50 mM. We performed the competitive inhibition with N-acetylglucosamine (GlcNAc) 

at 5 mM glucose and 5 mM ATP under identical assay conditions. 



 

 

In the study by Šimčíková et al. (2017), we determined the temperature stability at 30°C 

in the time course of 100 min at 50 mM glucose and 5 mM ATP. Protein concentrations varied 

over separate preparations (30–300 µg/mL) without having an effect on the protein stability. 

We extended these measurements in the follow-up study by Těšínský et al. (2019), in which we 

measured thermostability of the wild type GST-GCK and its somatic cancer-associated 

variations at 30°C, 37°C, 42°C and 45°C in the course of a 100 min incubation at the indicated 

temperature. We diluted all proteins to 100 μg·ml−1. We measured the GCK activity in the 

presence of 50 mM glucose and 5 mM ATP. 

We calculated, based on the determined kinetic variables (S0.5, nH, kcat and ATP KM), 

the relative activity index (RAI) and the glucose threshold for glucose-stimulated insulin release 

(GSIR-T). The RAI values serve as a direct comparison of the GCK mutants with the wild-type 

enzyme. The equation has been previously published (Matschinsky, 2009). We employed a 

minimal mathematical model, which reflects the kinetic characteristics of the wild-type GCK 

and its mutant forms, as well as the stability coefficient and adaptation through the expression 

coefficient to predict the β-cell threshold for GSIR. The previously published consensual 

assumptions were fulfilled (Davis et al., 1999; Matschinsky et al., 2000). 

 

pH optimum of GCK and influence of ATP on buffering capacity (Šimčíková & Heneberg, 

2019) 

To test the buffering capacity of commonly used enzyme assay buffers according to 

changing ATP concentrations, we prepared the reaction mixtures as follows: 1 mL of the 

respective buffer; 0.4 mL of the GST-GCK elution buffer, with or without the tested enzyme; 

0.1 M ATP in various volumes; and dH2O added to adjust the total volume to 2 mL. The 

composition of the elution buffer was as follows: 2.6 mM NADP, 0.1 mL 1 M glucose, 0.2 mL 

50 mM Tris, 200 mM KCl, and 5 mM DTT; pH adjusted to 8.0. We kept all solutions at 23°C, 



 

 

except for ATP and NADP, which were kept on ice. In some cases, we observed the shift in pH 

towards more acidic values after the addition of NADP. The amount of NADP was constant in 

all mixtures; therefore, any other observed changes in pH were caused only by changing ATP 

concentration. The ATP solution was added to the buffers in a form of a 100 mM aqueous 

solution that was prepared directly from the ATP disodium salt hydrate powder, without any 

adjustment of its pH and without the addition of any salts. ATP was always added shortly before 

the experiments to avoid any potential issues with its stability. 

We conducted measurements at 1 mM ATP, 50 mM glucose, 100 mM Tris, for pH range 

of 7.5–8.8 or 100 mM glycine for pH range of 8.6–10.3. We measured HK2 and GST-GCK 

activity using a coupled reaction with glucose-6-phosphate dehydrogenase as described 

previously (Liang et al., 1995; Davis et al., 1999). In the case of HK2, we measured enzymatic 

activity in the range of 0–2 mM glucose, unlike GST-GCK, which we measured in the range of 

0–150 mM glucose. We prepared all the buffers and measured the enzyme kinetics at 23°C, 

thereby excluding effects of temperature on pH of the solutions used. 

 

Prediction methods used for GCK variations (Šimčíková et al., 2017; Těšínský et al., 2019) 

For the prediction analyses, we used a protein identifier (GCK NCBI code: 

NP_000153.1; GCK Swiss-Prot code: P35557), or directly an amino acid sequence in FASTA 

format. We retrieved data related to the nonsynonymous single nucleotide variations 

(nonsynonymous substitutions, abbreviated as nsSNVs) in the expressed region of the GCK 

gene from the Ensembl (http://www.ensembl.org/), dbSNP (https://www.ncbi.nlm.nih.gov/ 

projects/SNP/index.html), UniProtKB (http://www.uniprot.org) and HGMD (Stenson et al., 

2014) databases and from a systematic review of the literature published in 2009-2017 and 

listed in the Web of Science database (http://apps.webofknowledge.com). We obtained the 



 

 

structure of the closed form of GCK (Protein Data Bank (PDB) ID: 1V4S; Kamata et al., 2004) 

from PDB (http://www.rcsb.org/pdb/home/home.do). 

We employed methods that use evolution-based sequence information (SIFT, PhD-

SNP) and methods that take into account the chemical and physical characteristics of amino 

acids (Align-GVGD) or protein structural attributes combined with multiple sequence 

alignment-derived information (PolyPhen-2, SNAP2, SNPs&GO) to predict the phenotypic 

effect of nonsynonymous substitutions. A single amino acid substitution can result in a notable 

change in the protein stability, which is represented by a change in its Gibbs free energy (∆∆G) 

upon folding. Therefore, we employed two predictors that focus on the stability properties of 

the nonsynonymous substitutions, I-Mutant 3.0 and PoPMuSiC 2.1. We also used EVmutation 

to evaluate the efficiency of the epistatic approach for protein function and the stability 

prediction. 

The Sorting Intolerant From Tolerant (SIFT) method (Kumar et al., 2009) is based on 

the hypothesis that protein evolution is correlated with protein function. Functionally relevant 

amino acids should be conserved in the protein family, whereas less important positions should 

be diverse. The SIFT Human Protein predicts whether nonsynonymous substitutions affect the 

protein function for all Ensembl transcripts with an assigned ENSP number (GCK ENSP: 

ENSP00000384247). Based on their scores, the substitutions are considered to be damaging 

(≤0.05) or tolerated (>0.05), ideally with median sequence information (also referred as the 

median conservation value) between 2.75 and 3.25. The median sequence information provides 

an assessment of the confidence, and SIFT computes the conservation value at each position in 

the alignment. The conservation value ranges from 0, which means that all 20 amino acids are 

at that position, to 4.32, which means that the position is completely conserved. A sufficient 

diversity within the aligned sequences is maintained by median sequence information of ~3.0. 



 

 

The PolyPhen-2 (Polymorphism Phenotyping v2) method (Adzhubei et al., 2010) 

estimates the probability of the nonsynonymous substitution to adversely affect protein function 

based on sequence, phylogenetic and structural features. The nonsynonymous substitution is 

predicted as probably damaging (0.85–1.00), possibly damaging (0.15–0.84) or benign (<0.15). 

We identified the nonsynonymous substitution effect according to the HumDiv score. The 

model was trained on a dataset that involved known effects of damaging alleles that cause 

human Mendelian diseases that are annotated in the UniProtKB database. 

SNAP2 (Screening for non-acceptable polymorphisms) (Hecht et al., 2015) is a neural 

network-based classifier that predicts the impact of nonsynonymous substitutions based on 

evolutionary information, structural features and solvent accessibility. The score ranges from -

100 (strong neutral prediction) to +100 (strong effect prediction). 

PhD-SNP (Predictor of human Deleterious Single Nucleotide Polymorphisms) 

(Capriotti et al., 2006) is a support vector machine (SVM)-based classifier that distinguishes 

disease-related nonsynonymous substitutions from neutral ones by reflecting the nature of the 

substitution and properties of the neighboring sequence environment. The method was 

optimized using a dataset of neutral and deleterious variations taken from the 

UniProtKB/Swiss-Prot. 

The SNPs&GO method (Calabrese et al., 2009) is based on a principle very similar to 

PhD-SNP. In contrast to PhD-SNP, the SNPs&GO also takes into account protein function 

information that is defined by Gene Ontology (GO) (Ashburner et al., 2000; The Gene Ontology 

Consortium, 2015) terms. GO terms are directly retrieved only if a Swiss-Prot code is used. If 

GO terms are not included and only protein sequence input is available, the accuracy of the 

method is thought to be lower and comparable with PhD-SNP (Calabrese et al., 2009). 

Align-GVGD (Tavtigian et al., 2005; Mathe et al., 2006) classifies the amino acid 

substitutions and their functional effect according to the “C-score” that ranges from 0 (neutral) 



 

 

to C65 (deleterious). The C-score is based on the cross-species protein multiple sequence 

alignment with a comparison of the physical and chemical characteristics of amino acids. The 

Align-GVGD combines the GV (Grantham variation) and GD (Grantham deviation) score. We 

expressed the evolutionary conservation of the amino acid sequence of the pancreatic isoform 

of GCK in the form of a GV score, which was based on the alignment of the human GCK 

protein sequence with the GCK sequences of 12 other vertebrate species. Because the GCK 

sequence is highly conserved, the alignment included not only mammals (three species) but 

also birds, amphibians, reptiles and fish. To calculate the GV score, we used the multiple 

sequence alignment, which was formed using ClustalW in MEGA6, and built on the following 

sequences: Homo sapiens NP_000153.1; Mus musculus NP_034422.2; Rattus norvegicus 

XP_006251241; Bos taurus NP_001095772.1; Danio rerio NP_001038850; Cyprinus carpio 

ACD37722; Meleagris gallopavo XP_010725006; Aquila chrysaetos XP_011573674; 

Ficedula albicollis XP_005057963; Xenopus laevis NP_001079298; Nanorana parkeri 

XP_018422966; Anolis carolinensis XP_003224263; Lepisosteus oculatus XP_006625388. 

Positions with zero GV score have the same amino acids across all species and are thus 

invariant, whereas the GV increases when the alignment demonstrates evidence for variation in 

the particular residue. The GCK gene does not have any insertions or deletions of amino acids 

in the studied species, except for the N- and C-terminal parts of the molecule; thus, nearly all 

the variability was assigned to nonsynonymous substitutions. 

I-Mutant 3.0 (Capriotti et al., 2008) was designed to estimate the protein stability 

change caused by nonsynonymous substitutions. The tool was trained on a dataset built on the 

information from ProTherm (Kumar et al., 2006), which is a comprehensive thermodynamic 

database of experimental data for wild-type and mutant proteins. Based on the protein structure 

or the sequence, the difference (∆∆G value) between the unfolding Gibbs free energies of the 

mutated and wild-type protein is calculated. In the present study, we based the ∆∆G values on 



 

 

the protein structure of GCK (PDB ID: 1V4S; Kamata et al., 2004). Nonsynonymous 

substitution with ∆∆G>0.5 kcal mol-1 are considered to be largely stabilizing, and those with 

∆∆G<-0.5 kcal mol-1 are predicted as largely destabilizing. Other nonsynonymous substitution 

with ∆∆G in the range from -0.5 to 0.5 kcal mol-1 have a weak effect (Capriotti et al., 2008). 

Another web server that allows predicting the thermodynamic stability changes upon 

the nonsynonymous substitution is PoPMuSiC-2.1 (Dehouck et al., 2011). This method reflects 

the solvent accessibility of the mutated residue. The predictions are derived from the structure 

of the target protein (GCK PDB ID: 1V4S). The ∆∆G values lower than 0 kcal mol-1 are 

assigned to stabilizing nonsynonymous substitutions, and those that are higher than 0 kcal mol-

1 are assigned to destabilizing nonsynonymous substitutions. 

The prediction method EVmutation (Hopf et al., 2017) exploits the epistatic approach. 

Thus, it takes into account explicitly modelling of interactions between all the pairs of residues 

in the proteins and bases in RNAs to predict nonsynonymous substitution effects. Within 

validation, EVmutation predictions were compared with outcomes from 34 high-throughput 

mutagenesis experiments. The EVmutation scores (∆E) below 0 are assigned to deleterious 

nonsynonymous substitutions, values above 0 correspond to beneficial nonsynonymous 

substitutions, and values equal to 0 correspond to neutral nonsynonymous substitutions. 

The developers of all prediction methods suggested interpreting the resulting predictions 

using arbitrary scores as threshold values. We presented the calculations using these arbitrarily 

suggested interpretations and thresholds in Table 2. However, arbitrary thresholds were 

associated with extreme uncertainty and overestimated the effects of neutral nonsynonymous 

substitutions. Nevertheless, we found that three prediction methods, PolyPhen-2, SNAP2 and 

EVmutation, allowed differentiating at least in part between the neutral and MODY-associated 

nonsynonymous substitutions when considering their numerical outcomes. Thus, for these three 

methods, we computed (PolyPhen-2 and SNAP2) or retrieved (EVmutation) predictions for all 



 

 

possible amino acid exchanges within the GCK molecule, irrespectively on whether they are 

already known from humans or not. For SNAP2, we retrieved 8,837 predictions with mean 

value 4.54±0.63 (min -99, max 96, median 13, 25th
 percentile -52, 75th

 percentile 58). For 

PoPMuSiC 2.1, we retrieved 8,856 predictions with mean value 1.10±0.01 (min -1.88, max 

5.77, median 0.85, 25th
 percentile 0.32, 75th

 percentile 1.70). For EVmutation, we retrieved 

8,191 predictions with mean value -5.35±0.03 (min -10.15, max 4.10, median -5.36, 25th
 

percentile -7.06, 75th
 percentile -3.79). We applied two types of adjusted thresholds in order to 

be able to predict nonsynonymous substitutions, which are likely to serve as causative MODY 

nonsynonymous substitutions, and which are likely to be benign or activating. We calculated 

the thresholds by computing the medians and SDs of scores for nonsynonymous substitutions, 

which do not cause any monogenically inherited disease. We calculated the threshold for 

predicting the MODY-associated nonsynonymous substitutions as median of scores for 

nonsynonymous substitutions, which do not cause any monogenically inherited disease, with 

the addition of 2 SDs. We calculated the threshold for predicting the benign (or activating) 

nonsynonymous substitutions as the median value of scores for nonsynonymous substitutions, 

which do not cause any monogenically inherited disease. We used these evidence-based 

thresholds for a further validation of these methods. 

 

Databases of missense variations in genes encoding proteins associated with Mendelian 

diseases (Šimčíková & Heneberg, subm.) 

We assembled two curated databases of missense variations in genes encoding proteins 

associated with Mendelian diseases to establish and validate the model. When establishing the 

model, we recognized three categories of variations: 1) “DAVs” represented variations with 

available evidence of an association with Mendelian diseases. 2) “Partial phenotype-associated” 

variations were reported to be associated with partial (incompletely manifesting) phenotypes of 



 

 

the same Mendelian diseases. And 3) “No phenotype-associated” variations (NPAVs) were 

variations with conclusive evidence of the absence of any clinical phenotype associated with 

their carriers. 

In addition to the clinically observed variations, we calculated and analyzed the 

predictions for theoretical variations, i.e., variations that have not been clinically observed. We 

sorted the variations according to a) their localization within/outside protein domains, b) the 

presence and class of enzymatic activity of the protein, c) the number of nucleotide changes 

needed to obtain the variation of interest, and d) the American College of Medical Genetics and 

Genomics (ACMG) classification criteria (Nykamp et al., 2017). 

We selected genes encoding proteins associated with Mendelian diseases according to 

the availability of a protein structure, inheritance of diseases, and sufficient numbers of 

clinically observed missense variations (at least nine missense DAVs and at least six missense 

NPAVs in a region for which the protein structure was available). We retrieved data from the 

Online Mendelian Inheritance in Man (OMIM; https://omim.org/), UniProtKB/Swiss-Prot 

(http://www.uniprot.org/), Protein Data Bank (PDB; https://www.rcsb.org/) and Human Gene 

Mutation Database (HGMD; http://www.hgmd.cf.ac.uk). We obtained the evidence for the 

presence of NPAVs from the ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) and Ensembl 

(http://www.ensembl.org/) databases. We completed information with frequencies of variations 

and protein domains obtained from the Exome Aggregation Consortium browser (ExAC; 

http://exac.broadinstitute.org/) and the Pfam (http://pfam.xfam.org/) database, respectively.  

We verified all ambiguous data in the primary literature sources. If we observed 

conflicting evidence or if conclusive evidence was not available, we removed the variations 

from the analyses. The factors that led to the removal of variations from the analyzed datasets 

are listed below. 1) The evidence for only non-Mendelian diseases (e.g., Parkinson disease) was 

manifested in the carriers of the variation. 2) The variations were listed as benign or likely 



 

 

benign in ClinVar, with high frequencies (f > 8) in ExAC, and thus were classified as 1B or 

higher according to the ACMG criteria for high-quality and abundant data (Richards et al., 

2015). 3) The variations were listed as “DM?” in the HGMD database. These variations denote 

“a probable/possible pathological mutation, reported to be pathogenic in the corresponding 

report, but for which (1) the author has indicated that there may be some degree of uncertainty; 

(2) the HGMD curators believe greater interpretational caution is warranted; or (3) subsequent 

evidence has appeared in the literature which has called the putatively deleterious nature of the 

variant into question” (Stenson et al., 2014). 4) Variations for which a disagreement occurred 

between HGMD (classified as “DM”) and ClinVar (classified as “benign” or “likely benign”). 

We used the key provided in Table 1 to assign of the clinically observed variations. We 

selected all clinically observed variations, which we used to set the thresholds, using the key 

described above. Additionally, we included the GCK variations resulting from the systematic 

literature review (Šimčíková et al., 2017). We classified nine variations as NPAVs based on the 

recent literature (Liu et al., 2009; Steele et al., 2011; Chellapa et al., 2012; Houlleberghs et al., 

2016; Maxwell et al., 2016; Walsh et al., 2016). We included the hemoglobin variations, which 

were classified as likely non-phenotypic in the HGMD database, in the NPAVs. 

 

Table 1. The key used to assign of the clinically observed variations. Abbreviations used: 

DIS – disease-associated; PART – partial phenotype-associated; NO PHEN – no phenotype-

associated; EXCL – excluded ambiguous data. 

1a) In HGMD, the variation is absent. 2 

1b) In HGMD, the variation is present, but causes “no phenotype” according to dbSNP. NO PHEN 

1c)  In HGMD, the variation is present and is defined as a “disease causing mutation”. 4 

1d) In HGMD, the variation is present but has with definitions other than those listed in 1b) 

and 1c) 

2 

  



 

 

2a) In ClinVar, the variation is present and defined as “benign”, “likely benign” or “variants 

of uncertain significance” (VUSs). 

NO PHEN 

2b) In ClinVar, the variation is absent or present, with definitions other than those listed  

               in 2a). 

3 

  

3a) In Ensembl, the variation is present but has no associated phenotype. NO PHEN 

3b) In Ensembl, the variation is present and associated with a phenotype. 5 

  

4a) In ClinVar, the variation is present and defined as “benign” or “likely benign”. EXCL 

4b) In ClinVar, the variation is present but not defined as “benign” or “likely benign”. 5 

  

5a) In HGMD, all variations classified as “disease-causing mutations” within the respective 

gene are associated with a single disease or syndrome with a Mendelian inheritance 

pattern. 

DIS 

5b) In HGMD, the variations classified as “disease-causing mutations” within the respective 

gene are associated with two diseases with a Mendelian inheritance pattern, one caused 

by the activating and the other by inactivating variations (e.g., erythrocytosis vs anemia). 

DIS 

5c)  In HGMD, the variations classified as “disease-causing mutations” within the respective 

gene are associated with two diseases with a Mendelian inheritance pattern, both of 

which are caused by variations exerting similar effects with a different intensity (e.g., 

Menkes syndrome vs occipital horn syndrome or Duchenne vs Becker muscular 

dystrophy); variations cause a complete phenotype. 

DIS 

5d)  In HGMD, the variations classified as “disease-causing mutations” within the respective 

gene are associated with two diseases with a Mendelian inheritance pattern, both of 

which are caused by variations exerting similar effects with a different intensity (e.g., 

Menkes syndrome vs occipital horn syndrome or Duchenne vs Becker muscular 

dystrophy); variations cause the less pathological phenotype. 

PART 

 

 

The variations classified in ClinVar as VUS (n = 404) were subjected to the analysis 

using EVmutation, and SNAP2 scores shifted slightly but significantly towards their 

pathogenicity compared to the variations classified as benign or likely benign (n = 1589): 

EVmutation mean ± SD -4.21 ± 2.54 vs -3.84 ± 2.38, t-test p = 0.003; SNAP2 mean ± SD -0.9 

± 57.34 vs -12.57 ± 55.85, t-test p < 0.001. Based on these calculations, we excluded the 



 

 

hemoglobin variations that were classified as likely non-phenotypic in HGMD (n = 100). These 

variations received EVmutation scores, but not SNAP2 scores, similar to VUS (EVmutation 

mean ± SD -4.26 ± 2.25, t-test vs VUS p > 0.05; SNAP2 mean ± SD 15.58 ± 42.69, t-test vs 

VUS p = 0.003). 

All variations included in the dataset we used to establish the model were classified 

according to the ACMG criteria (Nykamp et al., 2017), differentiating between those classified 

as benign (1B, 3B and 5B) and pathogenic (0.5P and 1P).  

We retrieved clinical information on 7178 missense variations located within the coding 

sequences of 44 genes that, if mutated, cause Mendelian diseases. We included the following 

genes in the dataset we used to validate the model: AR, ATP7A, BMPR2, BTK, CD40LG, 

CDKL5, CPOX, CYBB, DCX, DMD, EDA, ELANE, F9, FHL1, FLNA, G6PD, GCK, GCH1, 

GLA, HBB, HDAC8, HMBS, HNF4A, HPRT1, HSPB1, IDS, IL2RG, ITGA2B, KIT, MECP2, 

MSH2, OTC, PDHA1, PROC, PTEN, PTPN11, RET, SERPING1, SH2D1A, STK11, TGFBR2, 

TP63, TTR and UROD. We limited all the analyzed missense variations to those parts of the 

genes for which structural information was available. We designated 4546 variations as 

“DAVs”, because the evidence for their associations with Mendelian diseases was available. 

We designated another 291 variations as “partial phenotype-associated”, because the evidence 

for their association with partial (incompletely manifesting) phenotypes of the same Mendelian 

diseases was available. We designated 2093 missense variations as “NPAVs”, because 

conclusive evidence of the absence of any clinical phenotype associated with their carriers was 

available. We removed 248 (3.5%) missense variations from the analyses due to inconsistent, 

insufficient or anomalous data on the phenotypes reportedly associated with these variations. 

Data reliability in databases appears to be a challenge to the construction of the dataset. 

Standardized forms of annotations do not currently exist. Additionally, submission processes 

differ among the databases, ranging from individual to bulk submissions, and are rarely checked 



 

 

for consistency with previously published peer-reviewed studies (Maxwell et al., 2016). 

Therefore, the construction of the comprehensive dataset also prevented or considerably 

decreased the risk of biases that might arise from errors of omission and commission in 

databases. 

 

Selection of genes to validate the model (Šimčíková & Heneberg, subm.) 

We established the validation dataset consisting of 1723 variations in 63 additional 

genes associated with autosomal dominant or autosomal recessive diseases to validate the newly 

reported approach on an independent set of proteins that are associated with Mendelian 

diseases. These 63 genes were not included in the dataset that was used to establish the model. 

We populated the dataset based on the classifications of variations retrieved from ClinVar. We 

also verified the allele counts in the ExAC browser, but this information was only available for 

a limited number of variations in this dataset. Thus, this information was not used in the 

analyses. The genes included in the dataset that was used to validate the model were: AARS, 

ABCC6, ALDH18A1, ARSB, AVP, CASR, CFTR, CLCN1, CLCN7, COL7A1, DNM2, DSP, 

DYNC1H1, ELOVL4, FBN1, FGF23, FGFR3, GALNS, GBA, GJB2, GJA3, GLB1, GNE, 

GUCY2D, GUSB, HEXA, HGSNAT, IMPDH1, KCNA1, LMNA, LMNB1, LRP5, MARS, MPZ, 

MYH14, MYH3, MYH7, MYH9, MYO6, NAGLU, NOTCH3, NR3C2, OPA1, PGFRB, PKD1, 

PKD2, POLG2, PRKCG, PRPF8, RAF1, RYR1, SGSH, SLC4A1, SMPD1, SOS1, SOS2, SPAST, 

STAT1, STAT3, TECTA, TERT, VCP and YARS. The dataset was composed of the following 

numbers of variations: 33 benign, 53 benign / likely benign variations, 58 likely benign 

variations, 475 likely pathogenic variations, 104 likely pathogenic / pathogenic variations and 

1000 pathogenic variations. 

  



 

 

Prediction methods – extended analysis (Šimčíková & Heneberg, subm.) 

We used the pre-computed predictions from EVmutation that were listed according to 

the UniProtKB/Swiss-Prot accession numbers. We computed the predicted effects of amino 

acid changes identified using SNAP2 according to the NCBI code belonging to relevant protein 

isoforms. We selected the protein structures with a resolution lower than 2.7 Å (except GCH1 

and PROC) and used their PDB codes in the prediction computations employing PoPMuSiC 

2.1. In addition to the clinically confirmed variations, we calculated and analyzed the 

predictions for theoretical variations, i.e., variations that were not clinically observed. We 

performed these calculations for the protein regions identical to those, we used to analyze the 

clinically observed variations. We sorted the variations according to a) their localization 

within/outside of protein domains, b) the presence and class of enzymatic activity of the protein, 

and c) the number of nucleotide changes needed to obtain the variation of interest. When sorting 

the variations according to the latter criterion, we split theoretical variations into impossible 

(157,639 variations) and possible variations (63,698 variations) according to the method 

reported by Bromberg et al. (2013). They defined “impossible” amino acid variations as those 

that require a change of two or three nucleotides in the codon, whereas “possible” variations 

were defined as amino acids variations that require a change in only a single nucleotide. 

 

GV approach – extended analysis (Šimčíková & Heneberg, subm.) 

We assembled the MSAs by implementing the paradigm associated with variants of 

uncertain significance (VUS), which claims that the variations are considered VUSs if an amino 

acid residue that is conserved in the corresponding protein in other mammals is altered 

(Richards et al., 2015). Thus, for each analyzed protein, we prepared the MSA that contained 

amino acid sequences of ten mammalian orthologs of the respective gene. Typically, we 

included a dominant human isoform of the respective protein and complemented it with the 



 

 

corresponding isoform reported from two species of primates (Primates) and one sequence each 

from carnivores (Carnivora), bats (Chiroptera), rodents (Rodentia), even-toed ungulates or 

cetaceans (Cetartiodactyla) and insectivorous mammals (Eulipotyphla, which is still listed as 

Insectivora in the NCBI Nucleotide database). The remaining two orthologs were both 

represented by marsupials (Metatheria) or by one marsupial and one monotreme 

(Monotremata), avoiding monotreme sequences when high-quality reads were not available in 

the NCBI GenBank database.  

Additionally, we tested two representative genes, AR and PTEN, to determine whether 

the addition of more evolutionarily distant sequences and the resulting increase in variability 

led to an improved correspondence of GV scores with disease associations of analyzed 

variations. We used the maximum likelihood method to estimate evolutionary divergence in 

amino acid sequences predicted to be encoded by AR and PTEN among selected taxonomic 

groups. For AR, we tested 29 amino acid sequences of AR orthologs, including the orthologs 

from ten mammalian species, as specified above. The more evolutionarily distant orthologs 

included sequences from Testudines (three species), Amphibia (three species), Crocodylia (two 

species), Squamata (four species), Aves (three species), Euteleostomi (three species) and 

Chondrichthyes (one species). The NCBI Blast search did not retrieve orthologs that would be 

homologous with AR from more evolutionarily distant species. The PTEN protein is more 

evolutionarily conserved, which allowed us to include more distant taxa. The resulting dataset 

comprised 31 orthologs, ten of which were from the mammalian species listed above, and others 

consisted of orthologs from the following taxa: Aves (three species), Squamata (three species), 

Archelosauria (three species), Teleostei (three species), Chondrichthyes, Coelacanthiformes, 

Amphibia, Brachipoda, Gastropoda, Mollusca, Echinozoa, Arachnida and Insecta (one species 

each. We aligned the amino acid sequences using ClustalW (gap opening penalty of 5 and gap 

extension penalty of 0.1 for pairwise alignments, gap extension penalty of 0.2 for multiple 



 

 

alignments, and gap separation distance of 4). We manually corrected the alignments for any 

inconsistencies and replaced shorter sequences with more appropriate sequences. We used only 

sequences of identical lengths for further analyses. We used the resulting MSAs to calculate the 

GV scores. For the AR and PTEN alignments, we performed maximum likelihood fits of the 

48 amino acid substitution models, excluding positions containing gaps. For each model, we 

calculated the Bayesian information criterion, corrected Akaike information criterion and 

maximum likelihood values. For AR, we analyzed 29 sequences with 380 positions in the final 

dataset. For PTEN, we analyzed 31 sequences with 342 positions in the final dataset. We used 

best-fit models for the subsequent phylogenetic analyses and evolutionary divergence 

calculations. When building the trees, we constructed the initial tree using a neighbor-joining 

algorithm. We built the trees based on both AR and PTEN sequences using the Jones-Taylor-

Thornton model. We modeled the non-uniformity of evolutionary rates among sites using a 

discrete Gamma distribution (+G) with five rate categories. We applied a bootstrapping 

procedure with 1,000 replicates. We used the maximum likelihood method to estimate 

evolutionary divergence in the amino acid sequences of AR and PTEN orthologs among 

selected taxonomic groups. We calculated the number of base differences per site by averaging 

all sequence pairs between groups (distance) ± SE and employed a bootstrapping procedure 

with 1,000 replicates. The models used to estimate inter- and intrasite evolutionary divergence 

were identical to the models used to construct the respective trees. 

 

Prediction method REVEL (Šimčíková & Heneberg, subm.) 

We calculated the sensitivity and specificity of the predictions retrieved from REVEL 

to test whether the issue of low specificity is associated with the outcomes of individual 

computational algorithms or whether it also affects the data obtained using state-of-the-art 

consensus classifiers (Ioannidis et al., 2016). We used REVEL to test a subset of 21 genes from 



 

 

the dataset that was used to establish the model: GCK, AR, PTEN, CYBB, HNF4A, HBB, 

MECP2, HDAC8, RET, PTPN11, HPRT1, CD40LG, CDKL5, CPOX, DCX, DMD, EDA, 

UROD, TTR, FLNA and HSPB1. We provided REVEL scores for 2721 variations, of which 

1570 were DAVs, 241 manifested partial phenotypes, and 910 were NPAVs. For the 

aforementioned genes, we tested the identical set of variations as used to establish the model, 

except for PTEN p.P103Q, PTEN p.A137F, and four GCK variations, representing amino acid 

substitutions caused by substitutions of two or three nucleotides. We obtained the REVEL 

scores from the pre-computed database of REVEL scores that are available for all missense 

variations retrieved from dbNSFP v2.7, as provided by the authors of REVEL (Ioannidis et al., 

2016). 

 

Statistical methods – GCK and prediction methods (Šimčíková et al., 2017) 

We analyzed the data by one-way ANOVA with Tukey`s post-tests and computed the 

S0.5, Hill coefficient nH, kcat and ATP KM via non-linear regression analyses. We obtained IC50 

using four parameters logistic curve fitting. Multiparametric analyses included the detrended 

correspondence analyses. We calculated Pearson product moment correlation coefficients and 

Spearman rank order correlation coefficients in order to correlate the numerical outputs of 

EVmutation, PoPMuSiC 2.1 and SNAP2 prediction methods applied to total hypothetic GCK 

nonsynonymous substitutions for which the outcomes of all the three prediction methods were 

available (nPoPMuSiC 2.1 / EVmutation = 8,493 nonsynonymous substitutions, nSNAP2 / PoPMuSiC 2.1 and 

SNAP2 / EVmutation = 8,189 nonsynonymous substitutions). We also calculated the two correlation 

coefficients in order to compare GV with the frequency of families (n = 465 residues, of that 

279 residues were disease-associated (1596 disease-associated families) and 164 residues were 

not evolutionarily conserved). Data were shown as means ± SE, unless stated otherwise. We 

performed the calculations and plotted the figures in PAST 2.14 and SigmaPlot 12.0. 



 

 

 

Statistical methods – GCK (Těšínský et al., 2019; Šimčíková & Heneberg, 2019) 

The results were shown as the mean ± SEM. Following a Shapiro-Wilk normality test 

and Levene's equal variance test, data were either analyzed using one-way ANOVA or Kruskal-

Wallis ANOVA on ranks. For the post-tests, we used Dunnett's multiple comparison tests. We 

calculated the Pearson product moment correlation coefficient and the Spearman rank order 

correlation coefficient in order to correlate the IC50 of GlcNAc and the Hill coefficient. 

 

Statistical analyses – extended prediction analysis (Šimčíková & Heneberg, subm.) 

We calculated the evidence-based thresholds as medians ± 2× SD, which should 

encompass approximately 95% of the pool of variations used to calculate the threshold. We 

calculated two types of these thresholds. The sensitivity threshold (true positive rate) was 

calculated based on the 95% chance of confirming the association of a tested theoretical 

variation with the respective disease based on the distribution of prediction scores for known 

DAVs. The specificity threshold (true negative rate) was calculated based on the 95% chance 

of confirming the absence of an association of a tested theoretical variation with the respective 

disease based on the distribution of prediction scores for known NPAVs.  

We calculated the weighted means of the scores resulting from the tested prediction 

methods by assigning each predictor a weight ranging from -100 to +100, where 0 was a 

threshold and 100 was the maximum value observed within the respective dataset (EVmutation 

range -12.933 – 3.8104, SNAP2 range -98 – 99, and PoPMuSiC 2.1 range -1.90 – 5.64), and by 

averaging the values obtained from each of the prediction methods.  

We tested the differences between predictions between DAVs and NPAVs, and for 

domain-associated and other amino acids using a one-tailed t-test. Differences in the numbers 

of DAVs and NPAVs in individual domains were determined using one-tailed t-tests with 



 

 

Bonferroni’s correction. We tested the differences between variations associated with particular 

classes of enzymes and proteins without enzymatic functions, and between categories of 

possible and impossible theoretical variations using the Kruskal-Wallis one-way ANOVA on 

ranks with Dunn’s post-tests (the Kolmogorov-Smirnov normality test yielded p > 0.05 for each 

comparison). We analyzed the difference in the frequency of DAVs and NPAVs among 

possible and impossible theoretical variations using the χ2 test, with the number of possible 

variations normalized to the number of impossible variations. We assessed the differences 

between DAVs (including multiple phenotypes alone), partial phenotype-associated and 

NPAVs using the Kolmogorov-Smirnov normality test followed by one-way ANOVA with 

Tukey’s post-tests or Kruskal-Wallis one-way ANOVA on ranks with Dunn’s post-tests when 

the normality tests failed. We did not evaluate phenotypes with less than five associated 

variations. The data are shown as means ± SD, unless indicated otherwise. We performed all 

calculations using SigmaPlot 12.0, and conducted phylogenetic analyses using MEGA 5.2. 

  



 

 

Preparation of hexokinase knockout cell lines using CRISPR/Cas9 

For CRISPR/Cas9, we used the plasmid pSpCas9(BB)-2A-GFP (Ran et al., 2013a). 

This plasmid encodes sgRNA, Cas9 and GFP. We designed sgRNAs targeting into HK1 and 

HK2 genes using the CHOPCHOP tool (Labun et al., 2016, 2019) (Table 2). 

 

Table 2. Newly designed sgRNAs that target into HK1 and HK2 genes. 

Name of sgRNA Targeted gene (exon) 5’→3’ sequence encoding sgRNA 

sgRNA14 HK1 (exon 1) CTGCGCGGCGATCATGCTGG 

sgRNA16 HK1 (exon 3) GAGAACATCGTGCACGGCAG 

sgRNA22 HK1 (exon 3) TTGCACCCGCAGAATTCGAA 

sgRNA3 HK2 (exon 7) GATGCGCCACATCGACATGG 

sgRNA17 HK2 (exon 2) ACCGCTTAGAGATCTCCAAG 

sgRNA30 HK2 (exon 5) CGTTGTGGCTCTGATCCGGA 

 

We annealed and cloned the sequences encoding sgRNAs and their complementary 

oligonucleotides on the Golden-Gate sgRNA cloning protocol (https://media.addgene.org/ 

cms/filer_public/3e/e1/3ee1ce9c-99f9-4074-9a28-109d34971471/zhang-lab-sam-cloning-

protocol.pdf). 

 We have grown the adherent ovarian cancer cell line TOV-112D in a mixture of MCDB 

105 medium and Medium 199 (1:1, v/v) containing a final concentration of 15% fetal bovine 

serum (FBS). We have grown the adherent human embryonic kidney cell line HEK293T in 

DMEM medium containing 10% FBS. A day before transfection, we seeded the cells into the 

6-well plate (3 x 105 cells/well). We transfected the cells using either Lipofectamine 2000 

(ThermoFisher Scientific, Waltham, MA) or poly(ethylenimine) (PEI, MW 25000; 



 

 

Polysciences, Hirschberg an der Bergstraße, Germany) solution according to the 

manufacturers’ instructions. A day after transfection, we performed a single-cell sorting 

according to GFP expression using FACS BD Aria. We kept the sorted cells in culture until we 

had enough cells of each clone for cryopreservation, DNA isolation and preparation of lysates 

for Western blotting. 

 

Restriction analysis of CRISPR/Cas9 clones 

We designed the primers for PCR using the CHOPCHOP v3 tool (Labun et al., 2016, 

2019). The PCR product contained the respective targeted site for Cas9 and restriction site for 

the respective restriction endonuclease that detected changes in the targeted site because of 

distinct cleavage of the wild-type and inaccurately repaired site (Table 3). 

 

Table 3. PCR primers and restriction enzymes used for restriction analyses. 

Name of 

sgRNA 

Targeted 

gene (exon) 

5’→3’ Forward primer 5’→3’ Reverse primer Restriction 

enzyme 

sgRNA14 HK1 (exon 1) GGAGGAGGAGGAGGAGGAG GGCTCACCTTTTTGACCTGG NA 

sgRNA16 HK1 (exon 3) TATGTGGCTTCCCCTTAACATT TCTATGAGGGACTCTTTCCA

GC 

AleI 

sgRNA22 HK1 (exon 3) TATGTGGCTTCCCCTTAACATT TCTATGAGGGACTCTTTCCA

GC 

EcoRI 

sgRNA3 HK2 (exon 7) GTATAAGAGGGAAGAGGGGT

GG 

CATGTCAATCTCCTGGTCAA

AC 

HpyAV 

sgRNA17 HK2 (exon 2) TCTTCCTCCTTTTTCAGGTTGA GAGCAAAGCCAACTAAATCA

CC 

BstYI 

sgRNA30 HK2 (exon 5) TTCCAGAGTTTCCTGGTCTCAT TTAAGCTCCACGTAAGCAAA

CA 

BspEI 

NA = not applicable. 

 

We isolated the DNA using QuickExtract DNA Extraction Solution (Lucigen, Middleton, WI). 

We performed PCR reactions using Herculase II Fusion DNA polymerase (Agilent, Santa 

Clara, CA). We used the restriction enzymes according to the New England Biolabs 

instructions. 



 

 

Western blotting and immunodetection 

The TOV-112D and HEK293T cells were trypsinized or not, respectively, centrifuged, 

lysed in 1× SDS-PAGE loading buffer and incubated at 99°C for 15 min. We used the lysates 

for SDS-PAGE (Green & Sambrook, 2012). We transferred the SDS-PAGE gels on a 

nitrocellulose membrane in Towbin buffer (25 mM Tris, 192 mM glycine, pH 8.3, 20% 

methanol) at 100 V and 4°C for an hour. 

Afterwards, we blocked the nitrocellulose membrane in 5% milk, PBS, 0.05% Tween 

20 for an hour. Then, we incubated the membrane in a primary antibody diluted in 5% milk or 

5% BSA, PBS, 0.05% Tween 20 overnight at 4°C. Subsequently, we washed the membrane 3-

times with PBS, 0.05% Tween 20 and incubated with a secondary antibody conjugated with 

horseradish peroxidase (HRP) for 45 min at room temperature. After six washing steps with 

PBS, 0.05% Tween 20, we incubated the membrane with a chemiluminescent substrate for HRP 

and performed protein detection by ChemiDoc Imaging System (Bio-Rad, Hercules, CA). 

To test the CRISPR/Cas9 clones for HK1 and HK2 expression by Western blotting, we 

used the following primary antibodies: rabbit anti-HK1 mAb (C35C4; Cell Signaling, Danvers, 

MA), rabbit anti-HK2 mAb (C64G5; Cell Signaling, Danvers, MA), mouse anti-β-actin (sc-

47778; Santa Cruz Biotechnology, Dallas, TX) and mouse anti-GAPDH (sc-47724; Santa Cruz 

Biotechnology, Dallas, TX) as loading controls. Goat anti-rabbit and anti-mouse HRP-IgG Abs 

were used as secondary antibodies (A6154 and A8924; Sigma-Aldrich, St. Louis, MO). 

To map the changes in expression of metabolic enzymes and associated signaling 

pathways, , we used the TOV-112D CRISPR/Cas9 HK1 KO clone coded as E9-14-3, and the 

TOV-112D CRISPR/Cas9 HK1+ clone coded as D11-14-5. The clone E9-14-3 was a result of 

repair induced by the action of sgRNA14-guided Cas9. The clone D11-14-5 was a control clone, 

in which the action of sgRNA14-guided Cas9 did not disrupt the targeted site, thus this clone 

was still expressing HK1. We seeded 3 x 105 cells of each clone into 2 mL of medium per one 



 

 

well of a 6-well plate. We used DMEM containing 1 g/L or 4.5 g/L glucose (D5523 and D7777; 

Sigma-Aldrich, St. Louis, MO), and the constant concentration of glutamine (4 mM). We 

cultivated the cells at 37°C, 5% CO2 for three days. Then, we trypsinized the cells, lysed them 

and used the lysates for Western blotting as described above. 

For the investigation of glycolytic enzymes, we used the following primary antibodies: 

rabbit anti-HK1 mAb (C35C4; Cell Signaling, Danvers, MA), rabbit anti-HK2 mAb (C64G5; 

Cell Signaling, Danvers, MA), rabbit anti-PFKP mAb (D4B2; Cell Signaling, Danvers, MA), 

rabbit anti-PGAM-1 mAb (NBP1-49532; Novusbio, Centennial, CO), rabbit PKM2 mAb 

(D78A4; Cell Signaling, Danvers, MA) and rabbit anti-LDHA mAb (C4B5; Cell Signaling, 

Danvers, MA). For detection of proteins involved in the electron transport chain, we used the 

following primary antibodies: rabbit anti-MTCO2 (IV) mAb (ab79393; Abcam, Cambridge, 

MA) and mouse Total OXPHOS human WB Ab cocktail (ab110411; Abcam, Cambridge, MA). 

Rabbit anti-vinculin mAb (E1E9V; Cell Signaling, Danvers, MA) and mouse anti-β-actin (sc-

47778; Santa Cruz Biotechnology, Dallas, TX) were used as loading controls. Goat anti-rabbit 

and anti-mouse HRP-IgG Abs were used as secondary antibodies (A6154 and A8924; Sigma-

Aldrich, St. Louis, MO). 

For the investigation of selected carcinogenesis-associated signaling pathways we used 

the following primary antibodies: rabbit anti-phospho-Rictor (Thr1135) mAb (D30A3; Cell 

Signaling, Danvers, MA), rabbit anti-Rictor mAb (53A2; Cell Signaling, Danvers, MA), rabbit 

anti-phospho-Akt (Ser473) mAb (736E11; Cell Signaling, Danvers, MA), mouse anti-Akt mAb 

(40D4; Cell Signaling, Danvers, MA), rabbit anti-phospho-AMPK α1 (Thr183) + anti-phospho-

AMPK α2 (Thr172) mAb (ab133448; Abcam, Cambridge, MA), rabbit anti-AMPK α1 mAb 

(ab32047; Abcam, Cambridge, MA), rabbit phospho-Raptor (Ser792) mAb (2083; Cell 

Signaling, Danvers, MA), rabbit anti-Raptor mAb (24C12; Cell Signaling, Danvers, MA), 

rabbit anti-phospho-p70 S6 kinase (Thr421/Ser424) mAb (9204; Cell Signaling, Danvers, MA), 



 

 

rabbit anti-p70 S6 kinase mAb (49D7; Cell Signaling, Danvers, MA), rabbit anti-phospho-S6 

ribosomal protein (Ser235/Ser236) mAb (2211; Cell Signaling, Danvers, MA), rabbit anti-S6 

ribosomal protein mAb (2217; Cell Signaling, Danvers, MA), rabbit anti-phospho-4E-BP1 

(Ser65) mAb (9451; Cell Signaling, Danvers, MA), rabbit anti-phospho-4E-BP1 (Thr70) mAb 

(9455; Cell Signaling, Danvers, MA), rabbit anti-phospho-4E-BP1 mAb (Thr37/Thr46) (2855; 

Cell Signaling, Danvers, MA), rabbit anti-non-phospho-4E-BP1 (Thr46) mAb (89D12; Cell 

Signaling, Danvers, MA), rabbit anti-4E-BP1 mAb (53H11; Cell Signaling, Danvers, MA) and 

rabbit anti-c-Myc mAb (D84C12; Cell Signaling, Danvers, MA). Rabbit anti-vinculin mAb 

(E1E9V; Cell Signaling, Danvers, MA) and mouse anti-β-actin (sc-47778; Santa Cruz 

Biotechnology, Dallas, TX) were used as loading controls. Goat anti-rabbit and anti-mouse 

HRP-IgG Abs were used as secondary antibodies (A6154 and A8924; Sigma-Aldrich, St. Louis, 

MO). We calculated intensity of bands using ImageLab (Bio-Rad, Hercules, CA). 

  



 

 

RESULTS 

Daniela Šimčíková, Lucie Kocková, Kateřina Vackářová, Miroslav Těšínský, Petr Heneberg 

Evidence-based tailoring of bioinformatics approaches to optimize methods that predict 

the effects of nonsynonymous amino acid substitutions in glucokinase 

Scientific Reports (2017) 7: 9499 

 

Abstract: 

Computational methods that allow predicting the effects of nonsynonymous substitutions are 

an integral part of exome studies. Here, we validated and improved their specificity by 

performing a comprehensive bioinformatics analysis combined with experimental and clinical 

data on a model of glucokinase (GCK): 8835 putative variations, including 515 disease-

associated variations from 1596 families with diagnoses of monogenic diabetes (GCK-MODY) 

or persistent hyperinsulinemic hypoglycemia of infancy (PHHI), and 126 variations with 

available or newly reported (19 variations) data on enzyme kinetics. We also proved that high 

frequency of disease-associated variations found in patients is closely related to their 

evolutionary conservation. The default set prediction methods predicted correctly the effects of 

only a part of the GCK-MODY-associated variations and completely failed to predict the 

normoglycemic or PHHI-associated variations. Therefore, we calculated evidence-based 

thresholds that improved significantly the specificity of predictions (≤75%). The combined 

prediction analysis even allowed to distinguish activating from inactivating variations and 

identified a group of putatively highly pathogenic variations (EVmutation score <-7.5 and 

SNAP2 score >70), which were surprisingly underrepresented among MODY patients and thus 

under negative selection during molecular evolution. We suggested and validated the first 

robust evidence-based thresholds, which allow improved, highly specific predictions of 

disease-associated GCK variations.  



 

 

 



 

 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 

 



 

 

 



 

 

 



 

 

 



 

 

 

  



 

 

Daniela Šimčíková, Petr Heneberg 

Identification of alkaline pH optimum of human glucokinase because of ATP-mediated 

bias correction in outcomes of enzyme assays 

Scientific Reports (2019) 9: 11422 

 

Abstract: 

Adenosine triphosphate (ATP) is a crucial substrate and energy source commonly used in 

enzyme reactions. However, we demonstrated that the addition of this acidic compound to 

enzyme assay buffers can serve as a source of unnoticed pH changes. Even relatively low 

concentrations of ATP (up to 5 mM) shifted pH of reaction mixtures to acidic values. For 

example, Tris buffer lost buffering capacity at pH 7.46 by adding ATP at a concentration higher 

than 2 mM. In addition to the buffering capacity, the pH shifts differed with respect to the buffer 

concentration. High ATP concentrations are commonly used in hexokinase assays. We 

demonstrated how the presence of ATP affects pH of widely used enzyme assay buffers and 

inversely affected KM of human hexokinase 2 and S0.5 of human glucokinase. The pH optimum 

of human glucokinase was never reported before. We found that previously reported optimum 

of mammalian glucokinase was incorrect, affected by the ATP-induced pH shifts. The pH 

optimum of human glucokinase is at pH 8.5–8.7. Suggested is the full disclosure of reaction 

conditions, including the measurement of pH of the whole reaction mixtures instead of 

measuring pH prior to the addition of all the components. 

  



 

 



 

 



 

 



 

 



 

 



 

 

 

  



 

 

Miroslav Těšínský, Daniela Šimčíková, Petr Heneberg 

First evidence of changes in enzyme kinetics and stability of glucokinase affected by 

somatic cancer-associated variations 

Biochimica et Biophysica Acta – Proteins and Proteomics (2019) 1867: 213-218 

 

Abstract: 

Recent investigation of somatic variations of allosterically regulated proteins in cancer genomes 

suggested that variations in glucokinase (GCK) might play a role in tumorigenesis. We 

hypothesized that somatic cancer-associated GCK variations include in part those with 

activating and/or stabilizing effects. We analyzed the enzyme kinetics and thermostability of 

recombinant proteins possessing the likely activating variations and the variations present in 

the connecting loop I and provided the first experimental evidence of the effects of somatic 

cancer-associated GCK variations. Activating and/or stabilizing variations were common 

among the analyzed cancer-associated variations, which was in strong contrast to their low 

frequency among germinal variations. The activating and stabilizing variations displayed focal 

distribution with respect to the tertiary structure, and were present in the surroundings of the 

heterotropic allosteric activator site, including but not limited to the connecting loop I and in 

the active site region subject to extensive rearrangements upon glucose binding. Activating 

somatic cancer-associated variations induced a reduction of GCK's cooperativity and an 

increase in the affinity to glucose (a decline in the S0.5 values). The hotspot-associated 

variations, which decreased cooperativity, also increased the half-maximal inhibitory 

concentrations of the competitive GCK inhibitor, N-acetylglucosamine. Concluded, we have 

provided the first convincing biochemical evidence establishing GCK as a previously 

unrecognized enzyme that contributes to the reprogramming of energy metabolism in cancer 

cells. Activating GCK variations substantially increase affinity of GCK to glucose, disrupt the 



 

 

otherwise characteristic sigmoidal response to glucose and/or prolong the enzyme half-life. 

This, combined, facilitates glucose phosphorylation, thus supporting glycolysis and associated 

pathways. 

  



 

 



 

 



 

 



 

 



 

 



 

 

 

  



 

 

Daniela Šimčíková, Petr Heneberg 

Refinement of evolutionary medicine predictions based on clinical evidence  

for the manifestations of Mendelian diseases 

Under revision in Scientific Reports (2019) 

 

Abstract: 

Prediction methods have become an integral part of biomedical and biotechnological research. 

However, their clinical interpretations are largely based on biochemical or molecular data, but 

not clinical data. Here, we focus on improving the reliability and clinical applicability of 

prediction algorithms. We assembled and curated two large non-overlapping large databases of 

clinical phenotypes. These phenotypes were caused by missense variations in 44 and 63 genes 

associated with Mendelian diseases. We used these databases to establish and validate the 

model, allowing us to improve the predictions obtained from EVmutation, SNAP2 and 

PoPMuSiC 2.1. The predictions of clinical effects suffered from a lack of specificity, which 

appears to be the common constraint of all recently used prediction methods, although their 

predictions are associated with nearly absolute sensitivity. We introduced evidence-based 

tailoring of the default settings of the prediction methods; this tailoring substantially improved 

the prediction outcomes. Additionally, the comparisons of the clinically observed and 

theoretical variations led to the identification of large previously unreported pools of variations 

that were under negative selection during molecular evolution. The evolutionary variation 

analysis approach described here is the first to enable the highly specific identification of likely 

disease-causing missense variations that have not yet been associated with any clinical 

phenotype. 
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ABSTRACT 

Prediction methods have become an integral part of biomedical and biotechnological research. However, their 

clinical interpretations are largely based on biochemical or molecular data, but not clinical data. Here, we focus 

on improving the reliability and clinical applicability of prediction algorithms. We assembled and curated two 

large non-overlapping large databases of clinical phenotypes. These phenotypes were caused by missense 

variations in 44 and 63 genes associated with Mendelian diseases. We used these databases to establish and 

validate the model, allowing us to improve the predictions obtained from EVmutation, SNAP2 and PoPMuSiC 

2.1. The predictions of clinical effects suffered from a lack of specificity, which appears to be the common 

constraint of all recently used prediction methods, although their predictions are associated with nearly 

absolute sensitivity. We introduced evidence-based tailoring of the default settings of the prediction methods; 

this tailoring substantially improved the prediction outcomes. Additionally, the comparisons of the clinically 

observed and theoretical variations led to the identification of large previously unreported pools of variations 

that were under negative selection during molecular evolution. The evolutionary variation analysis approach 

described here is the first to enable the highly specific identification of likely disease-causing missense 

variations that have not yet been associated with any clinical phenotype. 

Keywords: computational prediction approaches; missense mutations; monogenic diseases; negative selection; 

threshold 



 

 

INTRODUCTION 

Computational prediction approaches are an integral part of biomedical and biotechnological research. The 

prediction algorithms have great potential in precision medicine, particularly with their recent applications in 

filtering the exome sequencing outcomes for facilitating diagnoses of rare, hardly classifiable, or puzzling 

disorders suspected of having a genetic origin.1-2 The vast majority of coding variations are rare and limited 

functional data are available.3-4 This limited availability of evidence-based information is the main argument for 

the use of prediction algorithms. The prediction algorithms clearly do not outperform evidence-based data in 

determining the effects of individual variations. However, they allow researchers and clinical geneticists to 

extrapolate of current knowledge to genes or variations with as yet unknown or uncertain phenotypes. Among 

the most important modes of use of the prediction algorithms is the assessment of the likely pathogenicity of 

variations that are discovered de novo during exome sequencing studies and in other next-generation 

sequencing data. Improvements in methods for predicting the pathogenicity of rare coding variations are 

needed.5 Although rare coding variations are often neglected, approximately 100 – 400 of these variations are 

present in the genome of each human3-4 and many have been shown to cause inherited diseases.6-7 As we have 

shown in the pilot study that focused on the glucokinase (GCK), the potential to substantially improve 

outcomes of already available computational prediction approaches exists when matching them with evidence-

based functional data related to clinically reported and/or experimentally analyzed variations in the respective 

gene.8 

Most prediction methods assume the de novo protein structure and function based on the knowledge of 

structural features of wild-type proteins and amino acid sequences and their evolutionary conservation.9-11 

Similar approaches have been used to decipher the effects of variations in non-coding sequences.12 Some 

approaches, such as PoPMuSiC 2.113, also consider protein thermostability in their estimations.14-16 The 

prediction methods may be supervised and thus trained and tested on a properly assembled dataset with 

reliable annotations.15,17 Alternatively, they may be designed as autonomous unsupervised methods, which 

have better generalization properties and are able to recognize potentially novel types of omics elements,12,14,17 

but are not resistant to errors incorporated during their development. Most of the prediction methods are 

based on the evolution-based concept.12 However, the evolutionary sequence information poorly covers the 



 

 

additive roles of environmental factors, and the building and interpretation of multiple sequence alignments 

(MSAs) is still unable to be fully automated.18-19 Many prediction approaches integrate multiple biophysical 

characteristics; a classical example of these approaches is SNAP220. Another strategy that increases the 

specificity and selectivity is the use of consensus classifiers, such as REVEL5, which integrate outcomes of 

multiple prediction algorithms to eliminate randomly occurring false-positive responses of the individual 

algorithms. Recently, the traditional approaches were outperformed by an unsupervised prediction method 

termed EVmutation,14 which considers epistasis and thus reflects dependencies between positions.21-22 When 

the epistasis is reflected in the inference and subsequent use of MSAs, certain variations are labeled as non-

acceptable, although they are frequently observed in other positions within the sequence,14,23 highlighting the 

need to incorporate the epistatic approach in individual computational algorithms and consensus classifiers. 

In the present study, we hypothesized that the reliability of prediction methods would be improved by 

switching from ad hoc to evidence-based thresholds and provide a proof of concept by modelling and 

validating this approach for genes associated with Mendelian diseases. We focus on the differences between 

clinically observed missense variations that are or are not associated with Mendelian diseases and show that 

the use of evidence-based tailored thresholds substantially improves the prediction of causative disease-

associated missense variations (DAVs) among newly identified variations in the course of genomic and 

proteomic screens. 

MATERIALS AND METHODS 

We assembled two curated databases of missense variations in genes encoding proteins associated with 

Mendelian diseases to establish and validate the model (Fig. 1a). When establishing the model, we recognized 

three categories of variations: 1) “DAVs” represented variations with available evidence of an association with 

Mendelian diseases. 2) “Partial phenotype-associated” variations were reported to be associated with partial 

(incompletely manifesting) phenotypes of the same Mendelian diseases. And 3) “No phenotype-associated” 

variations (NPAVs) were variations with conclusive evidence of the absence of any clinical phenotype 

associated with their carriers. We predicted the effects of variations using EVmutation14 based on a specific 



 

 

epistatic model, SNAP220, which is based on multiple biophysical characteristics, and PoPMuSiC 2.113 that 

predicts protein thermostability.  

In addition to the clinically observed variations, we calculated and analyzed the predictions for theoretical 

variations, i.e., variations that have not been clinically observed. We sorted the variations according to a) their 

localization within/outside protein domains, b) the presence and class of enzymatic activity of the protein, c) 

the number of nucleotide changes needed to obtain the variation of interest, and d) the American College of 

Medical Genetics and Genomics (ACMG) classification criteria.24  

Selection of genes to establish the model 

We selected genes encoding proteins associated with Mendelian diseases according to the availability of a 

protein structure, inheritance of diseases, and sufficient numbers of clinically observed missense variations (at 

least nine missense DAVs and at least six missense NPAVs in a region for which the protein structure was 

available). We retrieved data from the Online Mendelian Inheritance in Man (OMIM; https://omim.org/), 

UniProtKB/Swiss-Prot (http://www.uniprot.org/), Protein Data Bank (PDB; https://www.rcsb.org/) and Human 

Gene Mutation Database (HGMD; http://www.hgmd.cf.ac.uk). We obtained the evidence for the presence of 

NPAVs from the ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) and Ensembl (http://www.ensembl.org/) 

databases. We completed information with frequencies of variations and protein domains obtained from the 

Exome Aggregation Consortium browser (ExAC; http://exac.broadinstitute.org/) and the Pfam 

(http://pfam.xfam.org/) database, respectively.  

We verified all ambiguous data in the primary literature sources. If we observed conflicting evidence or if 

conclusive evidence was not available, we removed the variations from the analyses. The factors that led to the 

removal of variations from the analyzed datasets are listed below. 1) The evidence for only non-Mendelian 

diseases (e.g., Parkinson disease) was manifested in the carriers of the variation. 2) The variations were listed as 

benign or likely benign in ClinVar, with high frequencies (f > 8) in ExAC, and thus were classified as 1B or higher 

according to the ACMG criteria for high-quality and abundant data.26 3) The variations were listed as “DM?” in 

the HGMD database. These variations denote “a probable/possible pathological mutation, reported to be 

pathogenic in the corresponding report, but for which (1) the author has indicated that there may be some 



 

 

degree of uncertainty; (2) the HGMD curators believe greater interpretational caution is warranted; or (3) 

subsequent evidence has appeared in the literature which has called the putatively deleterious nature of the 

variant into question”.27 4) Variations for which a disagreement occurred between HGMD (classified as “DM”) 

and ClinVar (classified as “benign” or “likely benign”). 

We used the key provided in Table 1 to assign of the clinically observed variations. We selected all clinically 

observed variations, which we used to set the thresholds, using the key described above. Additionally, we 

included the GCK variations resulting from the systematic literature review provided in 2017 by Šimčíková et al.8 

We classified nine variations as NPAVs based on the recent literature.28-33 We included the hemoglobin variations, 

which were classified as likely non-phenotypic in the HGMD database, in the NPAVs. 

The variations classified in ClinVar as VUS (n = 404) were subjected to the analysis using EVmutation, and SNAP2 

scores shifted slightly but significantly towards their pathogenicity compared to the variations classified as benign 

or likely benign (n = 1589): EVmutation mean ± SD -4.21 ± 2.54 vs -3.84 ± 2.38, t-test p = 0.003; SNAP2 mean ± 

SD -0.9 ± 57.34 vs -12.57 ± 55.85, t-test p < 0.001. Based on these calculations, we excluded the hemoglobin 

variations that were classified as likely non-phenotypic in HGMD (n = 100). These variations received EVmutation 

scores, but not SNAP2 scores, similar to VUS (EVmutation mean ± SD -4.26 ± 2.25, t-test vs VUS p > 0.05; SNAP2 

mean ± SD 15.58 ± 42.69, t-test vs VUS p = 0.003). 

All variations included in the dataset we used to establish the model were classified according to the ACMG 

criteria,24 differentiating between those classified as benign (1B, 3B and 5B) and pathogenic (0.5P and 1P). The 

frequencies of the variations according to the ACMG classification are provided in Table S10. 

We retrieved clinical information on 7178 missense variations (Fig. 1a) located within the coding sequences of 

44 genes that, if mutated, cause Mendelian diseases. The following genes were included in the dataset we used 

to validate the model: AR, ATP7A, BMPR2, BTK, CD40LG, CDKL5, CPOX, CYBB, DCX, DMD, EDA, ELANE, F9, FHL1, 

FLNA, G6PD, GCK, GCH1, GLA, HBB, HDAC8, HMBS, HNF4A, HPRT1, HSPB1, IDS, IL2RG, ITGA2B, KIT, MECP2, MSH2, 

OTC, PDHA1, PROC, PTEN, PTPN11, RET, SERPING1, SH2D1A, STK11, TGFBR2, TP63, TTR and UROD. All the 

analyzed missense variations were limited to those parts of the genes for which structural information was 

available. We designated 4546 variations as “DAVs”, because the evidence for their associations with Mendelian 



 

 

diseases was available. We designated another 291 variations as “partial phenotype-associated”, because the 

evidence for their association with partial (incompletely manifesting) phenotypes of the same Mendelian 

diseases was available. We designated 2093 missense variations as “NPAVs”, because conclusive evidence of the 

absence of any clinical phenotype associated with their carriers was available. We removed 248 (3.5%) missense 

variations from the analyses due to inconsistent, insufficient or anomalous data on the phenotypes reportedly 

associated with these variations. Data reliability in databases appears to be a challenge to the construction of 

the dataset. Standardized forms of annotations do not currently exist. Additionally, submission processes differ 

among the databases, ranging from individual to bulk submissions, and are rarely checked for consistency with 

previously published peer-reviewed studies.32 Therefore, the construction of the comprehensive dataset also 

prevented or considerably decreased the risk of biases that might arise from errors of omission and commission 

in databases.  

Selection of genes to validate the model 

We established the validation dataset consisting of 1723 variations in 63 additional genes associated with 

autosomal dominant or autosomal recessive diseases to validate the newly reported approach on an 

independent set of proteins that are associated with Mendelian diseases (Table S8). These 63 genes were not 

included in the dataset that was used to establish the model. We populated the dataset based on the 

classifications of variations retrieved from ClinVar. We also verified the allele counts in the ExAC browser, but 

this information was only available for a limited number of variations in this dataset. Thus, this information was 

not used in the analyses. The genes included in the dataset that was used to validate the model were: AARS, 

ABCC6, ALDH18A1, ARSB, AVP, CASR, CFTR, CLCN1, CLCN7, COL7A1, DNM2, DSP, DYNC1H1, ELOVL4, FBN1, FGF23, 

FGFR3, GALNS, GBA, GJB2, GJA3, GLB1, GNE, GUCY2D, GUSB, HEXA, HGSNAT, IMPDH1, KCNA1, LMNA, LMNB1, 

LRP5, MARS, MPZ, MYH14, MYH3, MYH7, MYH9, MYO6, NAGLU, NOTCH3, NR3C2, OPA1, PGFRB, PKD1, PKD2, 

POLG2, PRKCG, PRPF8, RAF1, RYR1, SGSH, SLC4A1, SMPD1, SOS1, SOS2, SPAST, STAT1, STAT3, TECTA, TERT, VCP 

and YARS. The dataset was composed of the following numbers of variations: 33 benign, 53 benign / likely benign 

variations, 58 likely benign variations, 475 likely pathogenic variations, 104 likely pathogenic / pathogenic 

variations and 1000 pathogenic variations (Table S8). 



 

 

Prediction analyses 

For all selected proteins, we employed three methods with distinct approaches and bases. First, we used the 

unsupervised epistatic model EVmutation14 with the arbitrary threshold set to zero. Second, we used the 

supervised method SNAP220, which is based on multiple biophysical characteristics and trained on annotated 

databases of clinically observed and/or experimentally tested variations from annotated databases (OMIM, PMD 

and Swiss-Prot). Third, we used PoPMuSiC 2.113, which predicts protein thermostability. The arbitrary threshold 

of the EVmutation method was set to zero based on the claim by Hopf et al.14 that “values of ∆E above 0 

correspond to more probable mutant sequences (putatively beneficial), values below 0 to less probable mutant 

sequences (putatively deleterious) and values equal to 0 to equally probable sequences (putatively neutral).” 

Thus, the arbitrary threshold allowed us to differentiate between the “putatively deleterious” and “putatively 

beneficial” mutations. Based on these criteria, the variation effect scores were also set to zero for all examined 

wil-type protein sequences in the protein matrices that were precomputed by Hopf et al.14 (available at 

https://marks.hms.harvard.edu/evmutation/, accessed March 8, 2018). Due to the nature of the EVmutation 

method, almost no “putatively neutral” variations with a zero EVmutation score were observed, except for the 

wild-type alleles. Hopf et al. applied these settings to changes occurring at the protein level, but predictions of 

the changes at the level of the whole organism are more challenging. 

We used the pre-computed predictions from EVmutation that were listed according to the UniProtKB/Swiss-Prot 

accession numbers. We computed the predicted effects of amino acid changes identified using SNAP2 according 

to the NCBI code belonging to relevant protein isoforms. We selected the protein structures with a resolution 

lower than 2.7 Å (except GCH1 and PROC) and used their PDB codes in the prediction computations employing 

PoPMuSiC 2.1. In addition to the clinically confirmed variations, we calculated and analyzed the predictions for 

theoretical variations, i.e., variations that were not clinically observed. We performed these calculations for the 

protein regions identical to those, we used to analyze the clinically observed variations. We sorted the variations 

according to a) their localization within/outside of protein domains, b) the presence and class of enzymatic 

activity of the protein, and c) the number of nucleotide changes needed to obtain the variation of interest. When 

sorting the variations according to the latter criterion, we split theoretical variations into impossible (157,639 

variations) and possible variations (63,698 variations) according to the method reported by Bromberg et al.15 



 

 

They defined “impossible” amino acid variations as those that require a change of two or three nucleotides in 

the codon, whereas “possible” variations were defined as amino acids variations that require a change in only a 

single nucleotide. 

GV approach 

Many variations that were previously associated with Mendelian diseases have been re-assessed and re-

classified as VUSs.33-35 In the present study, we limited the MSAs based on the paradigm of the VUS26 

classification, which differentiates VUSs from likely benign variations by analyzing their conservation in other 

mammalian species. According to multiple indices, the predictions of the effects of the analyzed variations may 

be improved by implementing MSA analyses. The MSA analyses assume that variations identified in related 

species are likely neutral (non-pathogenic), whereas variations identified in conserved parts of the amino acid 

sequence are likely pathogenic. A consensus regarding the inclusion criteria for the analyzed sequences has not 

been reached. Some authors compare the sequences of all proteins in the respective protein family, while others 

limit the analyzed sequences to those that are similar to human sequences.34-35 

We used the GV approach to analyze the MSAs of amino acid sequences of the examined human proteins and 

their mammalian orthologs.25 The GV approach quantifies the variability in each tested amino acid based on the 

MSA provided. This approach allowed us to classify the variations into those with GV scores of zero (conserved 

among mammals) and those with higher GV scores (with at least two sequence variations present in the analyzed 

MSAs). We assembled the MSAs by implementing the paradigm associated with variants of uncertain significance 

(VUS), which claims that the variations are considered VUSs if an amino acid residue that is conserved in the 

corresponding protein in other mammals is altered.26 Thus, for each analyzed protein, we prepared the MSA that 

contained amino acid sequences of ten mammalian orthologs of the respective gene. Typically, we included a 

dominant human isoform of the respective protein and complemented it with the corresponding isoform 

reported from two species of primates (Primates) and one sequence each from carnivores (Carnivora), bats 

(Chiroptera), rodents (Rodentia), even-toed ungulates or cetaceans (Cetartiodactyla) and insectivorous 

mammals (Eulipotyphla, which is still listed as Insectivora in the NCBI Nucleotide database). The remaining two 

orthologs were both represented by marsupials (Metatheria) or by one marsupial and one monotreme 



 

 

(Monotremata), avoiding monotreme sequences when high-quality reads were not available in the NCBI 

GenBank database. We retrieved all sequences from the NCBI GenBank database between May 30 and June 4, 

2017.  

Additionally, we tested two representative genes, AR and PTEN, to determine whether the addition of more 

evolutionarily distant sequences and the resulting increase in variability led to an improved correspondence of 

GV scores with disease associations of analyzed variations. We used the maximum likelihood method to estimate 

evolutionary divergence in amino acid sequences predicted to be encoded by AR and PTEN among selected 

taxonomic groups. For AR, we tested 29 amino acid sequences of AR orthologs, including the orthologs from ten 

mammalian species, as specified above. The more evolutionarily distant orthologs included sequences from 

Testudines (three species), Amphibia (three species), Crocodylia (two species), Squamata (four species), Aves 

(three species), Euteleostomi (three species) and Chondrichthyes (one species). The NCBI Blast search did not 

retrieve orthologs that would be homologous with AR from more evolutionarily distant species. The PTEN protein 

is more evolutionarily conserved, which allowed us to include more distant taxa. The resulting dataset comprised 

31 orthologs, ten of which were from the mammalian species listed above, and others consisted of orthologs 

from the following taxa: Aves (three species), Squamata (three species), Archelosauria (three species), Teleostei 

(three species), Chondrichthyes, Coelacanthiformes, Amphibia, Brachipoda, Gastropoda, Mollusca, Echinozoa, 

Arachnida and Insecta (one species each). We retrieved these sequences from the NCBI GenBank database 

between October 8 and October 14, 2017. We aligned the amino acid sequences using ClustalW (gap opening 

penalty of 5 and gap extension penalty of 0.1 for pairwise alignments, gap extension penalty of 0.2 for multiple 

alignments, and gap separation distance of 4). We manually corrected the alignments for any inconsistencies and 

replaced shorter sequences with more appropriate sequences. We used only sequences of identical lengths for 

further analyses. We used the resulting MSAs to calculate the GV scores. For the AR and PTEN alignments, we 

performed maximum likelihood fits of the 48 amino acid substitution models, excluding positions containing 

gaps. For each model, we calculated the Bayesian information criterion, corrected Akaike information criterion 

and maximum likelihood values. For AR, we analyzed 29 sequences with 380 positions in the final dataset. For 

PTEN, we analyzed 31 sequences with 342 positions in the final dataset. We used best-fit models for the 

subsequent phylogenetic analyses and evolutionary divergence calculations. When building the trees, we 



 

 

constructed the initial tree using a neighbor-joining algorithm. We built the trees based on both AR and PTEN 

sequences using the Jones-Taylor-Thornton model. We modeled the non-uniformity of evolutionary rates among 

sites using a discrete Gamma distribution (+G) with five rate categories. We applied a bootstrapping procedure 

with 1,000 replicates. We used the maximum likelihood method to estimate evolutionary divergence in the 

amino acid sequences of AR and PTEN orthologs among selected taxonomic groups. We calculated the number 

of base differences per site by averaging all sequence pairs between groups (distance) ± SE and employed a 

bootstrapping procedure with 1,000 replicates. The models used to estimate inter- and intrasite evolutionary 

divergence were identical to the models used to construct the respective trees.  

REVEL  

We calculated the sensitivity and specificity of the predictions retrieved from REVEL to test whether the issue of 

low specificity is associated with the outcomes of individual computational algorithms or whether it also affects 

the data obtained using state-of-the-art consensus classifiers.5 We used REVEL to test a subset of 21 genes from 

the dataset that was used to establish the model: GCK, AR, PTEN, CYBB, HNF4A, HBB, MECP2, HDAC8, RET, 

PTPN11, HPRT1, CD40LG, CDKL5, CPOX, DCX, DMD, EDA, UROD, TTR, FLNA and HSPB1. We provided REVEL scores 

for 2721 variations, of which 1570 were DAVs, 241 manifested partial phenotypes, and 910 were NPAVs. For the 

aforementioned genes, we tested the identical set of variations as used to establish the model, except for PTEN 

p.P103Q, PTEN p.A137F, and four GCK variations, representing amino acid substitutions caused by substitutions 

of two or three nucleotides. We obtained the REVEL scores from the pre-computed database of REVEL scores 

that are available for all missense variations retrieved from dbNSFP v2.7, as provided by the authors of REVEL.5 

Statistical analyses 

We calculated the evidence-based thresholds as medians ± 2× SD, which should encompass approximately 95% 

of the pool of variations used to calculate the threshold. We calculated two types of these thresholds. The 

sensitivity threshold (true positive rate) was calculated based on the 95% chance of confirming the association 

of a tested theoretical variation with the respective disease based on the distribution of prediction scores for 

known DAVs. The specificity threshold (true negative rate) was calculated based on the 95% chance of confirming 



 

 

the absence of an association of a tested theoretical variation with the respective disease based on the 

distribution of prediction scores for known NPAVs.  

We calculated the weighted means of the scores resulting from the tested prediction methods by assigning each 

predictor a weight ranging from -100 to +100, where 0 was a threshold and 100 was the maximum value observed 

within the respective dataset (EVmutation range -12.933 – 3.8104, SNAP2 range -98 – 99, and PoPMuSiC 2.1 

range -1.90 – 5.64), and by averaging the values obtained from each of the prediction methods.  

We tested the differences between predictions between DAVs and NPAVs, and for domain-associated and other 

amino acids using a one-tailed t-test. Differences in the numbers of DAVs and NPAVs in individual domains were 

determined using one-tailed t-tests with Bonferroni’s correction. We tested the differences between variations 

associated with particular classes of enzymes and proteins without enzymatic functions, and between categories 

of possible and impossible theoretical variations using the Kruskal-Wallis one-way ANOVA on ranks with Dunn’s 

post-tests (the Kolmogorov-Smirnov normality test yielded p > 0.05 for each comparison). We analyzed the 

difference in the frequency of DAVs and NPAVs among possible and impossible theoretical variations using the 

χ2 test, with the number of possible variations normalized to the number of impossible variations. We assessed 

the differences between DAVs (including multiple phenotypes alone), partial phenotype-associated and NPAVs 

using the Kolmogorov-Smirnov normality test followed by one-way ANOVA with Tukey’s post-tests or Kruskal-

Wallis one-way ANOVA on ranks with Dunn’s post-tests when the normality tests failed. We did not evaluate 

phenotypes with less than five associated variations. The data are shown as means ± SD, unless indicated 

otherwise. We performed all calculations using SigmaPlot 12.0, and conducted phylogenetic analyses using 

MEGA 5.2. 

 

RESULTS AND DISCUSSION 

Outputs of the calculation of thresholds 

We hypothesized that the thresholds of predictions obtained using SNAP2 and PoPMuSiC 2.1 are subject to 

evidence-based adjustment, similar to the EVmutation threshold. The 95% sensitivity of SNAP2 was ensured by 



 

 

establishing a general evidence-based threshold at a level of median - 2SD, i.e., 61 - 2× 46.51 = -32.02. However, 

the use of this threshold increases the percentage of false-positive phenotype predictions from 46% to 79%, 

which is not acceptable. Similarly, a sensitivity of 95% for PoPMuSiC 2.1 predictions was ensured by establishing 

a general evidence-based threshold at a level of median - 2SD, i.e., 1.17 - 2× 1.08 = -1.00. However, the use of 

this threshold increases the percentage of false-positive phenotype predictions from 88% to 99.9%, which is not 

acceptable. When we combined the three prediction methods, they displayed high sensitivity but low specificity 

when using both the arbitrary and general evidence-based thresholds. 

The absence of any agreement in the predictions of NPAVs and the existence of 58% (arbitrary thresholds) or 

45% (general evidence-based thresholds) variations, which were predicted differently using the three methods, 

was alarming and required a more thorough adjustment of the thresholds to produce reliable prediction 

outcomes. Thus, we tested the application of weighted means. The application of weighted means did not exert 

any substantial effect on the sensitivity (92% with arbitrary thresholds or 94% with general evidence-based 

thresholds) but it decreased the specificity to 39% (arbitrary thresholds) and 31% (general evidence-based 

thresholds). 

This issue would potentially be overcome by applying gene-specific evidence-based thresholds, i.e., the 

thresholds that were calculated individually for each analyzed gene. However, this approach did not overcome 

the specificity issue, as the problem associated with the incorrect detection of NPAVs remained. PoPMuSiC 2.1 

was more problematic in this regard, as its predictions were so variable and skewed that the threshold set as a 

mean - 2SD of DAVs often exceeded the range of predictions of NPAVs. Using this approach, PoPMuSiC 2.1 

incorrectly detected 515 (24.6%) of NPAVs as associated with an effect, although the other two predictors 

generated correct predictions for this pool of variations. Thus, the agreement of the three methods on the non-

pathogenicity of NPAVs was reached for only five of the 2093 (0.0%) NPAVs. 

Next, we tested whether the implementation of two gene-specific evidence-based thresholds per predictor for 

each gene would be the solution. One threshold was set to 95% sensitivity (i.e., the threshold used above) and 

the other threshold was set to 95% specificity. When we implemented the new combination of thresholds, the 

three prediction methods only agreed on the predictions for the effects of 303 variations. Among these 



 

 

variations, 301 variations (99.3%) were DAVs and two variations (0.7%) were NPAVs. Similar to the previous 

approach, the problematic outcome was primarily caused by the inclusion of hypervariable predictions 

generated by PoPMuSiC 2.1. When we excluded PoPMuSiC 2.1 from the analyses, the gene-specific 95% 

specificity threshold was passed by 763 variations (11.5%), of which 752 variations (98.6%) were DAVs and 11 

variations (1.4%) were NPAVs. The gene-specific 95% sensitivity threshold was passed by 622 variations (9.4%), 

of which 102 variations (16.4%) were DAVs and 520 variations (83.6%) were NPAVs. Thus, these findings provide 

proof of concept that the evidence-based adjustment of thresholds for EVmutation and SNAP2 enables the highly 

specific selection of both DAVs and NPAVs. To our knowledge, this approach is the first to allow the highly specific 

selection of variations that are not associated with any clinical phenotype. Within the tested dataset, the 

predictable variations accounted for 21% of the tested variations. The other variations were divided into the 

following three categories: a) the predictions of EVmutation and SNAP2 were contradictory (0.2%), b) one of the 

two predictors did not exceed either of the two thresholds (30.4%), and c) both predictors did not exceed their 

thresholds (48.7%). The use of weighted means combined with the two gene-specific evidence-based thresholds 

per predictor did not improve the outcomes and resulted in 33.5% sensitivity and 93.7% specificity.  

When we analyzed the EVmutation outputs alone using the identical two gene-specific evidence-based 

thresholds per predictor for each gene, the gene-specific 95% specificity threshold was passed by 1236 (18.6%) 

variations, of which 1188 (96.1%) were DAVs and 48 (3.9%) were NPAVs. The gene-specific 95% sensitivity 

threshold was passed by 807 (12.2%) variations, of which 164 (20.3%) were DAVs and 643 (79.7 %) were NPAVs. 

Thus, the use of EVmutation alone was associated with a slightly greater number of both false negative and false 

positive predictions, but provided a prediction for a larger percentage of the analyzed variations. Within the 

tested dataset, the predictable variations accounted for 31% of the total number of tested variations. 

When we analyzed the SNAP2 outputs alone using the identical two gene-specific evidence-based thresholds per 

predictor for each gene, the gene-specific 95% specificity threshold was passed by 1390 (20.9%) of variations, of 

which 1343 (96.6%) were DAVs and 47 (3.4%) were NPAVs. The gene-specific 95 % sensitivity threshold was 

passed by 1365 (20.6%) variations, of which 403 (29.5%) were DAVs and 962 (70.5%) were NPAVs. Thus, the use 

of SNAP2 alone was associated with a slightly greater number of both false negative and false positive predictions 

but provided a prediction for a larger percentage of the analyzed variations compared to its combination with 



 

 

EVmutation or to EVmutation alone. Within the tested dataset, the predictable variations accounted for 41 % of 

the tested variations. 

EVmutation under default settings 

The arbitrary threshold used for the EVmutation analysis enables the correct prediction of a phenotype for 

99.5% of DAVs and 99.7% of partial phenotype-associated variations; this sensitivity is consistent with 

previously reported data.14 However, 94.8% of NPAVs were in the same category and were predicted to exert 

an effect. Thus, the arbitrary zero threshold was associated with only a 5.2% specificity for clinically manifested 

phenotypes (Fig. 1b). 

A high number of false positives was observed for all 44 analyzed genes (Fig. 1c). The EVmutation analysis 

provided the correct predictions of DAVs for all tested genes (median sensitivity of 100%, minimum sensitivity 

of 92.3% (RET)), but only correctly predicted a negligible fraction of NPAVs (median specificity of 4.4%, 

minimum specificity of 0% (12 genes), maximum specificity of 20% (CD40LG)).  

Tailored EVmutation thresholds 

The arbitrary threshold does not provide a reliable prediction of the disease association of variations in tested 

genes. Therefore, we focused on whether the thresholds can be tailored either in a general or gene-specific 

manner. The median ± SD of predictions obtained using EVmutation for DAVs reached -6.58 ± 2.23, whereas 

the values for NPAVs only reached -3.86 ± 2.41. Thus, these two groups of variations were not separated to an 

extent that was sufficient for distinguishing between them based on, for example, their confidence intervals. 

Nevertheless, when focusing on the gene-specific level, the median values of predictions of the DAVs for any 

gene were lower than the median values of the predictions of NPAVs within the same genes. The scores and 

resolution varied across the analyzed genes (Fig. S1a). A sensitivity of 95% was assumed by setting the 

threshold to the median + 2SD of the DAVs, i.e., -6.57 + 2× 2.22 = -2.13. Thus, the EVmutation score of -2.13 

was considered a general evidence-based threshold. Its use increases the specificity to 21.5%, which is, 

however, still far from any reliable use of this approach. 

Constraints in VUS criteria 



 

 

The VUS classification differentiates VUSs from likely benign variations based on evidence of their conservation 

in other mammalian species. We identified the conserved variations with the zero GV scores, i.e., variations that 

were conserved across the whole class of mammals, including marsupials and/or monotremes. The conserved 

variations represented 69.7% of NPAVs and 86.2% of DAVs. The conserved variations were associated with 

slightly lower EVmutation scores for both DAVs and NPAVs (Fig. 1d) compared to variations that affected 

evolutionarily variable sites. Nevertheless, the EVmutation scores of the four groups of variations overlapped 

and required further stratification. Thus, we examined the relative proportion of variations with a GV score > 0 

individually in each of the 44 analyzed genes (Fig. S2a). All variations in some genes displayed a zero GV score 

(AR and PTEN), whereas variations in other genes were poorly conserved (ELANE, PROC and CD40LG). Based on 

this finding, the arbitrary criteria for the inclusion of protein sequences in the MSAs derived from the VUS criteria 

were not functional since they did not reflect differences in the conservation of individual genes. Absolute values 

of the GV scores (degree of conservation of the respective amino acid) were not associated with any differences 

in clinical phenotypes (Fig. S2a) or EVmutation scores (Fig. S2b) for variations of these amino acids. However, the 

binary response (zero GV score vs any higher GV score) predicted the stratification of variations into DAVs and 

NPAVs. 

We postulated that the MSAs, which were based on VUS inclusion criteria, were insufficient for the analyses of 

highly conserved genes, such as AR or PTEN, because these genes displayed low amino acid sequence 

divergence among their mammalian orthologs. The solutions consisted of the addition of more evolutionarily 

distant taxa into the alignments (Figs. 2a and S3). This addition increases the divergence between the analyzed 

groups of organisms (Tables S1-S2), which is sufficient to generate a pool of informative amino acids that are 

susceptible to variations during the course of evolution. Although the VUS-based GV score (i.e., the score that 

was based solely on sequences of mammalian orthologs) did not discriminate between the DAVs and NPAVs, 

the GV score based on extended MSAs led to a clear differentiation between DAVs and NPAVs. The DAVs were 

associated with 60 – 80% of amino acids with a zero GV score. In contrast, the NPAVs reached zero scores in 20 

– 30% of cases (Fig. 2b-c). Thus, the MSAs used to calculate the GV scores of highly conserved proteins were 

improved by including sequences from evolutionarily distant organisms until an experimentally or arbitrarily 

set value of sequence divergence between analyzed groups (≥0.1 substitutions per amino acid) was achieved. 



 

 

Even using these improved settings, a large group of variations were considered DAVs, despite displaying high 

GV scores (Fig. 2b-c). 

Combination of EVmutation with methods based on different approaches 

We next focused on improving EVmutation-based predictions by combining them with other state-of-the-art 

prediction methods that provide numerical outcomes and thresholds, which can easily undergo evidence-based 

adjustment. Similar to EVmutation, the arbitrary settings of SNAP220 and PoPMuSiC 2.113 do not correspond to 

the division of clinically observed variations into DAVs and NPAVs (Fig. S4a-b). For SNAP2, 84% of predictions of 

DAVs and 54% of predictions of NPAVs were correct. Thus, the percentage of true disease predictions was 

slightly lower than with EVmutation, but the percentage of true no phenotype predictions was higher by an 

order of magnitude than with EVmutation. For PoPMuSiC 2.1, we obtained correct predictions for 94% of DAVs 

and only 12% of NPAVs. Thus, the number of true disease predictions was slightly lower than with EVmutation, 

and the percentage of true no phenotype predictions was similar to EVmutation. In contrast to EVmutation, the 

latter two prediction methods were associated with a high variability of predictions between the analyzed 

proteins (Fig. S4c-d). 

We hypothesized that the thresholds of predictions obtained using SNAP2 and PoPMuSiC 2.1 could benefit 

from being subjected to evidence-based adjustment, similar to the adjustment of the EVmutation threshold. 

We tested several approaches for calculating the thresholds (see the chapter Outputs of the calculation of 

thresholds for a detailed description of the applied approaches), but most of these approaches only provided 

minor or no improvements. Additionally, the PoPMuSiC 2.1 scores were associated with such high overlap of 

the distribution of DAVs and NPAVs that the outcomes of this method were uninformative. Therefore, we 

excluded PoPMuSiC 2.1 from further analyses. The approach that led to a substantial improvement in the 

credibility of predictions was the implementation of two gene-specific evidence-based thresholds per predictor 

for each gene. One gene-specific threshold was set to 95% sensitivity (i.e., the threshold used above) and the 

other threshold was set to 95% specificity. For the combination of EVmutation and SNAP2, the predictable 

variations represented 21% of the total number of tested variations. The predictions were associated with a 

98.6% specificity and 83.6% sensitivity. Thus, this result serves as proof of concept that the evidence-based 



 

 

adjustment of thresholds for EVmutation and SNAP2 enables the highly specific selection of both DAVs and 

NPAVs. To our knowledge, this approach is the first to enable the highly specific selection of variations that are 

not associated with any clinical phenotype. 

When the two predictors were used alone, the percentage of predictable variations increased (to 31% using 

EVmutation and 41% using SNAP2), but the specificity and sensitivity decreased. For EVmutation, the specificity 

was 96.1% and sensitivity was 79.7%. For SNAP2, the specificity was 96.6% and sensitivity was 70.5%. Thus, the 

use of EVmutation or SNAP2 alone was associated with a slightly higher number of both false negative and 

false positive predictions but provided a prediction for a larger percentage of the analyzed variations when 

compared to their combination. 

Factors contributing to the variability within the analyzed dataset 

The predictions of the effects of DAVs and NPAVs differed for variations located within or outside of the 

protein domains (t-test p < 0.001 each, for EVmutation and SNAP2, respectively). The predictions of the effects 

of DAVs differed for variations located within and outside of the protein domains (t-test p < 0.001 each, for 

EVmutation and SNAP2, respectively). In contrast, the NPAVs did not display any significant difference between 

their pools located within and outside of the protein domains (t-test p > 0.05 each, for EVmutation and SNAP2, 

respectively) (Fig. 2d). Thus, the predictions of the variations present within protein domains displayed a higher 

amplitude (EVmutation -2.722 vs -1.973, and SNAP2 71 vs 47). When focusing on particular domain types, the 

differences between DAVs and NPAVs were significant for all major domain types (t-test with the Bonferroni’s 

correction p < 0.001), except the globin domain (t-test with the Bonferroni’s correction p > 0.05 for both 

predictors) and ligand-binding domain of nuclear hormone receptor (SNAP2 t-test with the Bonferroni’s 

correction p > 0.05) (Fig. 2e and Table S3). In the combination approach, the variations that were located within 

catalytically active protein domains (e.g., tyrosine kinases or serine-threonine kinases) were easier to predict 

than variations that were located outside of any domains. The prediction of variations located within certain 

protein domains lacking intrinsic enzymatic activity was highly problematic, but certain enzymatically inactive 

domains (e.g., the SH2 domain) were still associated with an acceptable resolution of the predictions. The 

rigidity of the SH2 domain structure (needed for pTyr binding)36 was likely responsible for this difference in 



 

 

prediction outcomes compared with the globin domains. The globin domains maintain their function, 

regardless of their low sequence identity, as long as the hydrophobic core and hydrophilic surface are 

maintained.37 The predictions of variations in the amino acid sequences of enzymes also showed a better 

resolution than those of variations located in proteins without enzymatic functions (Fig. 2f). Only differences 

between the DAVs (but not NPAVs) of proteins without enzymatic function and any of the four enzyme classes 

tested were significant (Kruskal-Wallis one-way ANOVA on ranks with Dunn’s post-tests p < 0.05 each; Table 

S4). Future algorithms should match the predictions with protein attributes, such as the presence of specific 

protein domains.38 The binary presence/absence information for the location in protein domains is used to 

identify driver and passenger somatic mutations involved in oncogenesis39 and has been reflected in several 

prediction systems.40 Methods designed to account for the specific characteristics of particular domain types 

should be considered an integral part of prediction algorithms (Fig. 2e). 

According to previous studies, that amino acid variations that are caused by single nucleotide polymorphisms 

(“possible” variations) are slightly less deleterious than variations that occur when two or three nucleotides 

within the affected triplet are substituted (“impossible” variations).15 Although the likelihood of impossible 

variations occurring was low, we identified 97 (1.5%) of these variations within the analyzed dataset. Among 

impossible variations, we did not observe a significant improvement in the resolution of DAVs and NPAVs 

(Kruskal-Wallis one-way ANOVA on ranks, with Dunn’s post-tests, p > 0.05 each). The DAVs were equally 

frequent among impossible (71%) and possible (68%) variations (χ2 test p > 0.05 when the data were 

normalized to the total number of impossible variations) (Fig. 2g). 

Because the effects of DAVs were not predicted by arbitrary thresholds, but by gene-specific thresholds (Figs. 1 

and 3), we hypothesized that the prediction methods would differentiate between multiple diseases caused by 

variations in a single protein. Dunn’s and Tukey’s post-tests indicated the possibility of such differential 

diagnoses in several proteins (see Table S5 for an overview of outputs of statistical tests). We plotted the 

EVmutation and SNAP2 prediction scores for DAVs in nine proteins, for which the variations associated with the 

multiple phenotypes statistically differ (Fig. 3a-3i), and for two proteins (GCK and HNF4A) in which variations 

cause opposite phenotypes, i.e., diabetes and hyperglycemia (Fig. 3j-3k) or erythrocytosis and anemia (Fig. 3l). 

Despite the statistically significant differences, the variability in predictions of the genes prevented the 



 

 

assignment of the variations to particular diseases, except for extreme values. Examples are listed below: a) 

The EVmutation score of DMD >-7 predicts muscular dystrophy of the Becker type (Fig. 3a). b) Noonan 

syndrome with multiple lentigines is associated with variations with an EVmutation score for PTPN11 <-4 and a 

SNAP2 score for PTPN11 >30 (Fig. 3e). c) The EV mutation score for UROD >-4 or the SNAP2 score for UROD <0 

predict the manifestation of porphyria cutanea tarda instead of hepatoerythropoietic porphyria (Fig. 3i). 

Identification of variations under negative selection 

We then used the newly obtained evidence-based knowledge to predict theoretically possible variations that 

have never been encountered in the clinic. This approach might highlight critical constrained variations that 

have not yet been linked to human disease phenotypes. Some of these variations likely exhibit such extreme 

constraints because they lead to extreme developmental disorders, are embryonically lethal or cause a long-

term selection pressure by decreasing the fitness of their carriers. Although the theoretical ratio of impossible 

to possible variations was 2.47:1, the clinically observed ratio was 0.0143:1. The impossible and possible 

variations differed significantly in the scores obtained from both predictors (t-test p < 0.001 each), with 

EVmutation scores reaching -6.00 ± 2.42 and -4.83 ± 2.49, and SNAP2 scores reaching 40 ± 51 and 18 ± 56 for 

impossible and possible variations, respectively. The gene-specific comparisons of the distribution of scores of 

impossible and possible variations and their comparison with the distribution of clinically documented DAVs 

and NPAVs are provided in Fig. S5. 

The previous single-gene-oriented case study identified the potential existence of a pool of underrepresented 

variations in both healthy and disease-affected variation carriers.8 Since the present study provides the first 

large-scale adjustment of prediction scores based on clinical data, we focused on the detection of variations 

undergoing negative selection during molecular evolution. When performing this analysis (and in contrast to 

the aforementioned case study)8, we excluded any variations considered impossible by Bromberg et al.15 and 

analyzed the similarities of distributions of DAVs and possible theoretical variations. For simplicity, we 

compared the positions of the 10th percentiles for EVmutation scores and 90th percentiles for SNAP2 scores, 

which represent the predictions of amino acid changes with the most deleterious effects on proteins. Since 

possible theoretical variations include both putative DAVs and NPAVs, we expected that the analyzed values 



 

 

calculated based on possible theoretical variations should be closer towards the scores of NPAVs. The 

differences in the 10th percentiles of EVmutation scores ranged from -1.093 to 3.360 (mean 0.921) and the 

differences in the 90th percentiles of SNAP2 scores ranged from -25.0 to 2.6 (mean -11.5).  

In three genes (PTPN11, HBB and G6PD), the positions of 10th percentiles of the EVmutation scores were lower 

for DAVs than possible theoretical variations in the same genes. Similarly, in three genes (again G6PD, but also 

HNF4A and EDA) the positions of 90th percentiles of the SNAP2 scores were higher for DAVs than possible 

theoretical variations in the same genes. Thus, the variations that were predicted to be the most deleterious by 

EVmutation and/or SNAP2 were substantially depleted among DAVs compared to the spectra of possible 

theoretical variations in the same genes. These variations were therefore underrepresented among disease-

affected variation carriers (Fig. 4a-f) and were under negative selection during molecular evolution. The 

heatmap of analyzed proteins, which were sorted according to the likelihood that their variations included 

variations under negative selection during molecular evolution, is shown in Fig. 4g. The phenotypes that are 

commonly associated with variations in these five genes are listed in Table 2. Confirmation of the negative 

selection against the underrepresented variations should consist of a series of studies that would compare the 

in vitro or in vivo effects of theoretical variations, which were hypothesized to be under negative selection, 

with clinically observed variations, which were within the range that did not seem to be subject to negative 

selection. During the peer-review of this manuscript, Havrilla et al.41 published a detailed map of constrained 

coding regions (CCR) in human genes and revealed that the most constrained regions are located in known 

disease loci. The genes encoding proteins associated with Mendelian diseases that we identified by applying 

the 10th/90th percentiles of DAVs partially overlapped with genes that ranked highly in the study by Havrilla et 

al.41 Namely, the CCR percentiles were 95.2% – 97.8% for PTPN11 and 97.8% for HNF4A. However, other genes, 

namely HBB, G6PD and EDA were not among top hits in the previous CCR study.  

Validation and conclusions 

We validated the threshold values for EVmutation scores that were suggested in the proposed model. We 

established an independent dataset of variations in genes associated with Mendelian diseases (Tables S8-S9). 

The tested variations were classified according to ClinVar. The mean EVmutation scores for pathogenic and 



 

 

benign variations were consistently below their previously suggested zero threshold (Table S10). The shift of 

the general EVmutation threshold to -2.13 led to a similar and significant improvement in the specificity of 

predictions of benign and likely benign variations, while the sensitivity remained higher than 96% for the 

pathogenic variations (Fig. 5a). 

We calculated the sensitivity and specificity of the predictions retrieved from REVEL to determine whether the 

issue of low specificity was specifically associated with the outcomes of individual computational algorithms, 

such as EVmutation, or whether it also affected the data obtained from state-of-the-art consensus classifiers.5 

REVEL predictions exhibited similar issues to the individual predictors. The scores for DAVs and NPAVs were 

gene-specific (Fig. 5b). The specificity was both low and gene-specific (Fig. 5c). Thus, although despite the 

consensus classifiers have the potential to eliminate the errors generated by individual predictors, they were 

prone to the systemic issue of low specificity. 

All studies of human variations have a limitation in terms of how the variations are classified. For example, the 

incomplete penetrance may cause errors in the classification of rare variations.42 We re-analyzed the 

EVmutation and SNAP2 scores based on the ACMG criteria for the classification of variations to corroborate the 

key outcomes of the present study (Fig. 5d).24 Variations classified as pathogenic according to the ACMG 

criteria were identified in both the DAV and NPAV datasets. EVmutation and SNAP2 identified only the first of 

these two groups as pathogenic. This difference in predictions was absent for common and rare variations 

among the NPAVs, which may reflect possible bias in the training or testing datasets for both of these 

methods.14,20 

The outcomes of prediction methods are often uncritically used, particularly by non-specialists in the field, who 

benefit from their use for the purpose of narrowing the number of hits identified during omics screens 

performed for scientific or clinical purposes. The uncritical use of the prediction methods is facilitated by 

including them in the tools commonly used for these purposes, such as the inclusion of SIFT and PolyPhen 

algorithms in the Ensembl genome browser (http://www.ensembl.org/; Release 90 cited). Based on 

accumulating evidence, the prediction methods are often over-interpreted, mainly because they exhibit high 

false positive rates,8,43 and sufficiently complex datasets used for the design, testing and training of the 



 

 

methods are lacking.44 Any distinct effects observed at the molecular level depend on the context and can be 

compensated by intrinsic regulatory pathways of the organism, which particularly applies to the effects of 

variations in nonessential peripheral enzymes and signaling proteins.14,45-46  

New prediction methods are rapidly released, and EVmutation is one of the most recent contributions to the 

field.14 EVmutation is important because it includes epistasis when modeling the effect of the respective 

variation. We provided the first match for the EVmutation (and SNAP2 and PoPMuSiC 2.1) prediction outcomes 

with clinical phenotypes of a large pool of pathogenic and benign variations in genes associated with 

Mendelian diseases. EVmutation, similar to the other tested prediction methods, had high sensitivity but also 

extremely low specificity. We suggested the use of evidence-based thresholds, which were obtained by 

calculating and testing several variants of the thresholds until we reached 98.6% sensitivity and 83.6% 

specificity, leaving the certain pool of variations unresolved (if needed, the size of this pool can be decreased at 

the cost of decreasing the sensitivity and/or specificity). The predictions provided better resolution for 

variations located in enzymes and predominantly those within enzymatic domains. For some proteins, the use 

of numerical outputs of predictions combined with evidence-based thresholds distinguished between multiple 

diseases caused by variations in the same protein. We identified large previously unreported pools of variations 

that underwent negative selection during molecular evolution and were absent in patients. These variations 

were particularly prominent in G6PD, PTPN11, HNF4A and HBB. Further research should focus on the use of 

evidence-based thresholds for categories of variations defined using the Human Phenotype Ontology (such as 

the Phenomizer or Phevor)47-48 and phenome-wide association studies (PheWAS).49-50 

Based on the large-scale analysis provided in the present study, we suggest the use of evidence-based 

thresholds to improve the outcomes of any prediction methods that produce numerical scores. Improved 

settings of the individual methods will facilitate the outcomes of consensus classifiers represented by REVEL5, 

PredictSNP51, PredictSNP252, CADD53 or DANN54. The evolutionary variation analysis approach described here is 

the first to enable the highly specific identification of likely disease-causing missense variations that have not 

yet been associated with any clinical phenotype. 
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Figure legends 

Fig. 1. The efficiency of the EVmutation prediction method in predicting the effects of missense variations 

with known clinical phenotype on proteins known to cause for Mendelian diseases. (a) Flowchart showing 

the sources and approaches used for data retrieval, the construction of datasets and subsequent analyses. The 

selection of analyzed genes associated with Mendelian diseases was based on combined information retrieved 

from the Human Gene Mutation Database (HGMD), UniProtKB/Swiss-Prot, Protein Data Bank (PDB) and Online 

Mendelian Inheritance in Man (OMIM). Information about disease associations and no-phenotype associations 

of clinically observed variations was retrieved from the ClinVar database and the Ensembl browser. Additional 

information about proteins (domains) and variations (frequency) was obtained from the Pfam database and the 

Exome Aggregation Consortium (ExAC) browser, respectively. A vertical line indicates the arbitrary threshold 

for variations with an effect. (b) The distribution of numerical EVmutation scores calculated for missense 

variations with known clinical phenotypes. (c) The relative percentage of correct predictions of disease and no 

clinical phenotypes using EVmutation scores calculated for the 44 analyzed proteins. (d) The distribution of 

numerical EVmutation scores calculated for disease-associated and no phenotype-associated missense 

variations with known clinical phenotypes in 44 proteins that cause Mendelian diseases sorted according to the 

evolutionary conservation of affected amino acids in mammals. Conserved amino acids (GV = 0) were 

conserved in all ten examined mammalian orthologs. Variable amino acids (GV > 0) were not conserved in at 

least one of the ten examined mammalian orthologs of the respective protein. 

Fig. 2. The predictions differ for evolutionarily conserved proteins, such as AR or PTEN, for variations within 

and outside of protein domains and for enzymes and proteins without enzymatic functions. (a) Evolutionary 

divergence of the amino acid sequences of AR and PTEN reported as the number of amino acid substitutions 

per site by averaging all sequence pairs between primates and other groups. (b-c) GV scores for amino acids 

within the AR (b) and PTEN (c) sequences. The data are shown separately for GV scores calculated based on 

mammalian protein orthologs (the two lines at the zero GV score) and extended MSAs that included more 

evolutionarily distant taxa. The data are shown for disease-associated and no phenotype-associated variations. 

Relative ranks among tested variations are shown to reflect the different numbers of variations included in 

each analyzed group. (d) EVmutation and SNAP2 scores applied to disease-associated and no phenotype-



 

 

associated variations that are present or absent from protein domains. Data are presented as medians ± SD. (e) 

Differences in median EVmutation and SNAP2 scores between disease-associated and no phenotype-associated 

variations located within the indicated protein domains. Abbreviations for the domains: AGAL, alpha-

galactosidase A; ATCase/OTCase, aspartate/ornithine carbamoyltransferase, carbamoyl-P binding and Asp/Orn 

binding domains; CPOX, coproporphyrinogen III oxidase; DHE1, dehydrogenase E1 component; FRNADBD, ferric 

reductase, NAD binding domain; GTPCH, GTP cyclohydrolase I; G6PDH, glucose-6-phosphate dehydrogenase, 

NAD binding and C-terminal domains; HXK, hexokinase_1 and hexokinase_2; LBDNHR, ligand-binding domain of 

nuclear hormone receptor; PK, protein kinase; PTK, protein tyrosine kinase; PTP SH2, Src Homology 2 domain. 

(f) Median EVmutation and SNAP2 scores calculated for disease-associated and no phenotype-associated 

variations in the four indicated enzyme classes and in proteins without enzymatic functions. (g) EVmutation 

and SNAP2 scores calculated for disease-associated and no phenotype-associated variations considered 

possible or impossible variations according to Bromberg et al.15 Data are shown as medians ± SD. 

Fig. 3. The efficiency of the prediction methods in discriminating among multiple diseases caused by 

missense variations in the indicated proteins. EVmutation and SNAP2 scores are shown for proteins with 

significantly different disease-specific scores (a-i) or that result in the opposite phenotypes (j-l). (a) DMD, (b) 

ELANE, (c) FLNA, (d) HPRT1, (e) PTPN11, (f) RET, (g) TGFRB2, (h) TP63, (i) UROD, (j) GCK, (k) HNF4A, and (l) HBB. 

Fig. 4. The detection of variations under negative selection during molecular evolution: an example of the 

application of evidence-based knowledge. (a-f) The distribution of observed disease-associated variations 

compared to the distribution of possible10 theoretical variations. The data are shown for the proteins for which 

negative values were obtained from the calculation of the differences in the 10th percentiles of EVmutation 

scores – (a) PTPN11, (b) HBB and (c) G6PD – and for genes for which positive values were obtained from the 

calculation of the differences in 90th percentiles of SNAP2 scores – (d) G6PD, (e) HNF4A and (f) EDA. (g) The 

heatmap of proteins causing Mendelian diseases sorted according to the likelihood that their variations 

included variations that were under negative selection during molecular evolution. Ranges of differences in 

median values: -1.093 – 3.36 (EVmutation) and -25 – 2.6 (SNAP2). 



 

 

Fig. 5. Validation of the model, identification of the specificity of the consensus classifier REVEL, and the 

application of the American College of Medical Genetics and Genomics (ACMG) criteria for the classification 

of variations. (a) Validation of the threshold values for EVmutation that were suggested in the proposed 

model. Validation was performed using a set of 1723 variations in 63 genes (Tables S8-S10), which were 

classified according to ClinVar. The data are presented as relative percentages of correct predictions using the 

arbitrary EVmutation threshold (0.00), the evidence-based threshold that allows 95% sensitivity (-2.13) and the 

threshold that allows 95% specificity (-8.81). (b-c) REVEL, a consensus classifier, is associated with the issue of 

low specificity, similar to the individual computational algorithms. REVEL scores were retrieved for a set of 

2721 variations in 21 genes. Mean REVEL scores for the individual genes discriminated well between the 

disease-associated and no phenotype-associated variations (b). However, because a large overlap in the 

predictions was observed, the specificity was low for most of the analyzed genes (c). Data are presented (b) as 

the means ± SE or (c) as relative percentages of correct predictions of the association of the variations with 

diseases (upper row) or no phenotypes (lower row). (d) Application of the ACMG criteria for the classification of 

variations, which classify the variations as benign (1B and higher) and pathogenic (0.5 P and higher) according 

to the population frequencies of the variations (Table S11). The EVmutation and SNAP2 scores were analyzed 

separately for the disease- and no phenotype-associated variations. Data are shown as means ± SE. 



 

 

List of Tables 

 

Table 1. The key used to assign of the clinically observed variations. Abbreviations used: DIS – disease-

associated; PART – partial phenotype-associated; NO PHEN – no phenotype-associated; EXCL – excluded 

ambiguous data. 

 

1a) In HGMD, the variation is absent. 2 

1b) In HGMD, the variation is present, but causes “no phenotype” according to dbSNP. NO PHEN 

1c)  In HGMD, the variation is present and is defined as a “disease causing mutation”. 4 

1d) In HGMD, the variation is present but has with definitions other than those listed in 1b) 
and 1c) 

2 

  

2a) In ClinVar, the variation is present and defined as “benign”, “likely benign” or “variants 
of uncertain significance” (VUSs). 

NO PHEN 

2b) In ClinVar, the variation is absent or present, with definitions other than those listed in 
2a). 

3 

  

3a) In Ensembl, the variation is present but has no associated phenotype. NO PHEN 

3b) In Ensembl, the variation is present and associated with a phenotype. 5 

  

4a) In ClinVar, the variation is present and defined as “benign” or “likely benign”. EXCL 

4b) In ClinVar, the variation is present but not defined as “benign” or “likely benign”. 5 

  

5a) In HGMD, all variations classified as “disease-causing mutations” within the respective 
gene are associated with a single disease or syndrome with a Mendelian inheritance 
pattern. 

DIS 

5b) In HGMD, the variations classified as “disease-causing mutations” within the respective 
gene are associated with two diseases with a Mendelian inheritance pattern, one 
caused by the activating and the other by inactivating variations (e.g., erythrocytosis vs 
anemia). 

DIS 



 

 

5c)  In HGMD, the variations classified as “disease-causing mutations” within the respective 
gene are associated with two diseases with a Mendelian inheritance pattern, both of 
which are caused by variations exerting similar effects with a different intensity (e.g., 
Menkes syndrome vs occipital horn syndrome or Duchenne vs Becker muscular 
dystrophy); variations cause a complete phenotype. 

DIS 

5d)  In HGMD, the variations classified as “disease-causing mutations” within the respective 
gene are associated with two diseases with a Mendelian inheritance pattern, both of 
which are caused by variations exerting similar effects with a different intensity (e.g., 
Menkes syndrome vs occipital horn syndrome or Duchenne vs Becker muscular 
dystrophy); variations cause the less pathological phenotype. 

PART 

 



 

 

Table 2. Major phenotypes associated with genes that were underrepresented among disease-affected 

carriers. See Table S7 for a complete list of phenotypes associated with analyzed variations and source 

references. 

Gene Phenotype References 

PTPN11 Multiple lentigines / LEOPARD syndrome 55-61 

 Noonan syndrome 62-64 

HBB Thalassaemia beta 65-67 

 Hemolytic anemia 68-70 

 Erythrocytosis 71-73 

G6PD Glucose-6-phosphate dehydrogenase deficiency 74-76 

HNF4A Hypoglycemia, hyperinsulinemic 77-79 

 Diabetes, HNF4A-MODY 79-81 

EDA Oligodontia 82-84 

 Ectodermal dysplasia, hypohidrotic 85-87 

 Ectodermal dysplasia 88-90 
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Restriction analysis of CRISPR/Cas9 clones 

Using the PCR combined with restriction analysis, we revealed that the chosen 

CRISPR/Cas9 approach allowed the generation of several putative HK1 KO clones of the 

HEK293T and TOV-112D cells (Fig. 2). We further verified the CRISPR/Cas9-induced 

changes using bidirectional Sanger sequencing, which confirmed that the targeted sites were 

cleaved by Cas9 and inaccurately repaired, thereby confirming HK knockouts (Fig. 3). We used 

the HK1 KO clones verified by the restriction analysis and Sanger sequencing for further 

experiments. 
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Fig. 2. PCR of CRISPR/Cas9 HK1 KO HEK293T clones performed with primers for the 

sgRNA22 target site (A) and restriction cleavage of these PCR products by EcoRI (B). The 

HEK293T clones highlighted in green were transfected with the empty plasmid pSpCas9(BB)-

2A-GFP (without a sgRNA; serving as controls for CRISPR/Cas9 KO experiment). The 

HEK293T clones highlighted in blue displayed differences after restriction cleavage, thus they 

were sequenced and subjected to Western blotting with the anti-HK1 antibody. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Representative electropherograms of Sanger sequencing. The DNA sequence affected 

by sgRNA16-guided Cas9 resulting in a large deletion (upper sequence) and the wild-type DNA 

sequence (lower sequence). The blue arrows show the beginning of deletion. 
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Western blot analysis 

We confirmed the CRISPR/Cas9-induced HK1 or HK2 deletions in newly generated 

cell clones by Western blotting using HK1- and HK2-specific antibodies, respectively (Fig. 4). 

The results of the Western blotting analysis corresponded to those that were obtained by using 

the restriction cleavage. 

 

 

 

 

Fig. 4. Western blot analysis of TOV-112D CRISPR/Cas9 HK KO clones were tested for HK1 

(1 - 9) or HK2 (10 - 14) expression. The confirmed HK1 KO clones are under red numbers (1, 

3, 4) and the confirmed HK2 KO clones are under blue numbers (10 – 13). 

 

Metabolic enzymes mapping 

In the HK1 KO clone E9-14-3, we observed twofold elevated expression of LDHA and 

MTCO2 (complex IV of ETC), which has been confirmed by both rabbit antibody and mouse 

antibody in the WB antibody cocktail for ETC (Fig. 5). Changes of expression levels of other 

glycolytic enzymes (HK2, PFKP, PGAM-1 and PKM2) as well as other complexes of ETC (I, 

II, III and V) were negligible (Fig. 5). We used two commonly recommended loading controls, 

vinculin and β-actin. However, vinculin appeared to be downregulated (from two- to fourfold 

lower expression) in the HK1 KO clone, thus we rather calculated intensity of the bands 

according to the bands of β-actin. 

HK1 

GAPDH 

1     2     3     4    5     6     7     8     9              10    11    12     13    14 

HK2 

β-actin 



 

 

 

Fig. 5. Western blotting of proteins involved in glycolysis and electron transport chain in the 

CRISPR/Cas9 clones D11-14-5 (control clone - 1, 2) and E9-14-3 (HK1 KO clone - 3, 4). The 

cells were cultivated in DMEM with 1 g/L glucose (2, 4) and 4.5 g/L glucose (1, 3). 

 

Signaling pathways mapping 

In the HK1 KO clone E9-14-3, we observed approximately fivefold increased 

phosphorylation of Rictor at Thr1135 by p70 S6K, which negatively regulates mTORC2 as a 

part of negative feedback mechanism controlling PKB/Akt activity (Julien et al., 2010; Treins 

et al., 2010). This finding has been supported by ninefold increased phosphorylation of 

PKB/Akt at Ser473 (Fig. 6), which is known to be caused by mTORC2 (Sarbassov et al., 2005). 

Concurrently, we did not observed changes in AMPK activation in HK1 KO cells, although 

Raptor was phosphorylated by AMPK, thereby inhibiting mTORC1 (Fig. 6). 

On the other hand, mTORC1 appeared to be still active, since p70 S6K is remarkably 

phosphorylated at Thr389 (approximately fivefold) which is considered a hallmark of mTORC1 

activation (Burnett et al., 1998). This finding is confirmed by the above-mentioned 

phosphorylation of Rictor in mTORC2. Moreover, the increased phosphorylation of 4E-BP1 at 



 

 

Thr37, Thr70 and slightly at Ser65 suggested activation of mTORC1. These observations 

together with threefold elevated phosphorylation of S6RP likely leads to increased translation 

in the cells (Fig. 6). Concurrently, we observed remarkably increased expression of the 

oncogene c-Myc in HK1 KO cells, thereby promoting cell growth and proliferation in 

accordance with activated PKB/Akt and mTORC1 (Fig. 7). 

 

 

Fig. 6. Western blotting of proteins upstream from and included in mTORC1 (on the left), and 

proteins downstream from mTORC1 (on the right) chain in the CRISPR/Cas9 clones D11-14-

5 (control clone - 1, 2) and E9-14-3 (HK1 KO clone - 3, 4). The cells were cultivated in DMEM 

with 1 g/L glucose (2, 4) and 4.5 g/L glucose (1, 3). 

 



 

 

 

Fig. 7. Western blotting of c-Myc chain in the CRISPR/Cas9 clones D11-14-5 (control clone - 

1, 2) and E9-14-3 (HK1 KO clone - 3, 4). The cells were cultivated in DMEM with 1 g/L 

glucose (2, 4) and 4.5 g/L glucose (1, 3). 

  



 

 

DISCUSSION 

Precise and personalized medicine enables tailoring of treatment for individual patients 

with taking into account their genetic backgrounds. Availability of comprehensive genome 

databases and lowering costs of genetic examinations lead us to the question how to interpret 

this data in the context of the whole organism. How could we tackle with functional analyses 

for all these genomic data? For this purpose, researchers have been developing prediction 

algorithms, in which they have used experimental data paired with clinical, biophysical and/or 

evolutionary information in order to extrapolate patterns from their outcomes and apply them 

on newly found variations. In our work, we tried to imply outcomes of prediction algorithms in 

some Mendelian diseases. 

First, we have focused on monogenic diabetes caused by inactivating variations within 

the GCK molecule, also known as GCK-MODY. Particularly, we have chosen variations, which 

were previously found in Czech patients suffering from hyperglycemia and subsequently being 

diagnosed as MODY patients. For this purpose, we implemented an enzyme assay and 

purification procedure for the recombinant GCK expressed from E. coli, which is used and 

accepted among research groups that study the effects of GCK-MODY variations (Davis et al., 

1999). In the accordance with the previously published data (Gloyn et al., 2005; Sagen et al., 

2006), some of these variations, namely R250C and C434Y, displayed normal kinetics, 

although their association with MODY have been reported from several independent Czech 

families with confirmed family history. The amino acid exchange at Cys434 affects one of the 

experimentally confirmed nitrosylation sites within the GCK molecule (Rizzo & Piston, 2003). 

Although the function of nitrosylation at Cys434 is unknown (as opposed to the nitrosylation 

of Cys371), the variation C434Y found in four independent Czech families with MODY 

phenotype appears to cause MODY (Pruhova et al., 2010). Furthermore, R250C is associated 

with a more severe phenotype that manifests during childhood and was confirmed in MODY 



 

 

patients of Serbian and Czech origin (Pinterova et al., 2007; Milenkovic et al., 2008). On the 

other hand, R250C has been predicted as deleterious by prediction algorithms, which we 

employed for extended analysis of their use in personalized medicine. 

The prediction algorithms are to be an indispensable part of research with potential in 

diagnostics, especially in time of generating large datasets quite easily due to next-generation 

sequencing and other omics studies, for which complete functional analyses are mostly 

unfeasible and ineffective. Even widely used databases use outcomes of some prediction 

algorithms, such as the SIFT and PolyPhen algorithms providing predictions listed in the 

Ensembl genome browser (www.ensembl.org). These two algorithms have been frequently used 

in studies for investigation of particular proteins, including GCK. Some of these studies 

presented experimental data in agreement with the two algorithms (Steele et al., 2011), although 

another study has brought evidence of their high false positive rates (29% for SIFT and 43% 

for PolyPhen) and low rates of correct predictions (53% for SIFT and 63% for PolyPhen) 

(Romeo et al., 2009). Therefore, their outcomes may be rather interpreted taking into account 

experimental data, whereas the conclusions that would be based solely on predictions could be 

misleading. We have extended our study with epistatic approach incorporated in the 

EVmutation method (Hopf et al., 2017). The authors of EVmutation claimed that this method 

outperforms the commonly used SIFT and PolyPhen. Nevertheless, we found out that 

EVmutation is also associated with poor sensitivity for activating and neutral variations in 

GCK, and its sensitivity for inactivating variations did not excel over SIFT and PolyPhen 

significantly. 

We have realized that the use of evidence-based thresholds may overcome low 

specificity in order to distinguish up to 75% of GCK-MODY-associated variations from GCK 

variations associated with hypoglycemia and normoglycemia. However, these activating and 

neutral GCK variations could not be identified selectively by any of the prediction methods, 



 

 

since their outcomes for these variation groups have largely been overlapped. Not surprisingly, 

studies on variations in MODY-associated genes have revealed similar problems, such as very 

low specificity of SIFT and PolyPhen. The most authoritative study investigated activating and 

deactivating variations in GCK, ABCC8 and KCNJ11 (Flanagan et al., 2010). They found that 

sensitivity of SIFT and PolyPhen reached 69% and 68%, respectively, whereas specificity was 

only 13% and 16%, respectively (Flanagan et al., 2010). Other two studies have shown false 

predictions of SIFT and PolyPhen on GKRP variations (Johansen et al., 2010; Rees et al., 

2012). 

The results obtained using a single protein (GCK) stimulated us to check, whether the 

same issues are associated with other proteins that are associated with Mendelian diseases. For 

the follow-up study, we have assembled and curated two non-overlapping large databases of 

clinical phenotypes caused by missense variations in 44 and 63 genes associated with 

Mendelian diseases. We used these databases to establish and validate the model allowing to 

improve the predictions of clinical phenotypes caused by missense variations by the prediction 

algorithms with numerical (therefore scalable) outcomes. It was important to exclude the 

algorithms that generate binary responses (such as SIFT or PolyPhen), since we would not be 

able to tailor their predictions, unless being able to change their code. In contrast, the algorithms 

with numerical outcomes allow simple changes of the threshold according to the available 

evidence for the pathogenicity of variations. To verify the reliability of this analysis, we tested 

outcomes by one of the state-of-the-art consensus classifiers, REVEL, which turned to be 

subject to similar issues as the individual computational approaches. In summary, we proposed 

the evidence-based approach that allows modifying the settings of prediction methods in a way 

that they generate predictions of clinical phenotypes with both high sensitivity and specificity. 

This adjustment cannot be done with the predictors that are integrated into the Ensembl genome 

browser (SIFT and PolyPhen). However, SIFT and PolyPhen do not outperform the analysed 



 

 

computational approaches even under ad hoc settings, and, of course, they are not superior to 

them under the modified settings (Simcikova et al., 2017).  

The newly proposed prediction approach (Simcikova & Heneberg, subm.) is being far 

from optimal, but, so far, it is the first approach that allows providing specific predictions 

without loss of sensitivity. We confirmed that even a simple shift of the threshold in the 

approaches, such as EVmutation and SNAP2, is associated with improved predictions. These 

adjustable thresholds should be applied when using these methods and should be incorporated 

in consensus classifiers, since it may increase their reliability. Further, we point to the fact that 

the thresholds differ for different classes of proteins, which was not reflected so far in any 

generalized suggestions for the use of predictors. However, we could not have predicted all the 

variations correctly, since many variations belong to the “grey zone”, which is hardly 

predictable.  

To move the topic forward towards tumorigenesis and cancer metabolism, our further 

efforts focused on a group of somatic cancer-associated variations in GCK. We have retrieved 

these variations from the COSMIC database. We found that a subset of somatic cancer-

associated variations were activating and/or increasing protein stability, similarly as in the case 

of variations causing PHHI. Regarding tertiary structure of GCK, these activating variations 

are concentrated in or near the heterotropic allosteric activator site (Gloyn et al., 2003). This 

site is distinct from the substrate-binding cleft for glucose and ATP considered to be potential 

drug targeting site for the treatment of type 2 diabetes (Gloyn et al., 2003). In contrast, neutral 

or inhibitory variations are distributed randomly across the GCK molecule. Instead of 

cooperative binding of glucose according to the Hill kinetics, all activating variations displayed 

rather Michaelis-Menten kinetics and/or decreased perception to the competitive inhibitor N-

acetylglucosamine (GlcNAc). 



 

 

The clustering of activating somatic cancer-associated variations in GCK resembled a 

focal distribution of known activating cancer-associated variations in proto-oncogenes, such as 

TP53 (Kato et al., 2003) or BRAF (Cantwell-Dorris et al., 2011). These activating variations 

were present in the region, which consists of amino acids 151 – 180 and is essential for 

regulation of GCK cooperativity (Gloyn et al., 2003). It has been shown that variations in this 

region may suppress completely GCK cooperativity, thus promoting rapid GCK activation 

(Whittington et al., 2015). Other of activating variations were located in the heterotropic 

allosteric activator site and its surroundings as mentioned-above. Furthermore, the activating 

variations also decreased GCK cooperativity towards the Michaelis-Menten kinetics. 

Although some of somatic GCK variations associated with cancer displayed increasing 

activity and stability, which could be advantageous for tumor growth, we did not observe any 

supportive evidence for this hypothesis and began to pay our attention on other hexokinases 

involved in tumorigenesis. First, we retrieved and analysed transcriptomics data from 

Expression Atlas (https://www.ebi.ac.uk/gxa/home). We compared amounts of HK1 and HK2 

transcripts in cancer cell lines and found out that some cancer cell lines prefer HK1, instead of 

HK2, although HK2 has been generally considered a preferential isoform in tumors (Nakashima 

et al., 1986).  

To analyse the roles of HK1 and HK2, we selected ovarian cancer cell lines, in which 

the ratio of HK1/HK2 transcripts was strongly skewed towards HK1, unlike normal ovarian 

tissue with HK2 mRNA expression is higher than that of HK1 (Fig. 8). Subsequently, we 

prepared HK1 and HK2 knockout ovarian cancer cells by CRISPR/Cas9 and investigated 

changes in metabolic and signaling pathways.  

https://www.ebi.ac.uk/gxa/home
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Fig. 8. Ratio of mRNA levels of HK2/HK1 expressed by TPM (transcripts per million) in 

normal ovary tissue and cancer cell lines derived from ovary tissue. Data was retrieved from 

Expression Atlas. Data on HK1 and HK2 indicated high transcription levels compared with 

HK3 and GCK. 

 

Concerning glycolytic enzymes, we observed significantly increased expression of 

LDHA. In contrast, expression of HK2, PFKP, PGAM-1 and PKM2 remained unaffected. 

Previously, the LDHA upregulation was reported to be associated with c-Myc transactivation 

(Shim et al., 1997; Dang et al., 2008). c-Myc may promote the Warburg effect by upregulation 

of LDHA, which leads to the lactate overproduction and increased clonogenicity, e.g., in the 

model of Burkitt’s lymphoma cells (Shim et al., 1997). Therefore, we checked c-Myc in the 



 

 

examined clones and, indeed, we confirmed the elevated c-Myc expression in the HK1 KO 

cells.  

Besides LDHA, c-Myc has been shown to upregulate HK2, PFKP and PKM2 (Kim et 

al., 2007; Yap et al., 2011; Gupta et al., 2018). However, at the model of ovarian cancer cell 

lines, we did not observe any changes in the expression of PFKP and PKM2, and we even did 

not observe any changes in the expression levels of HK2. These findings were unexpected given 

that HK2 serves as an isoenzyme of HK1, which shares the identical enzymatic function. The 

finding that HK2 expression is not increased in response to loss of HK1 in the examined ovarian 

cancer cell lines suggests that the glucose phosphorylation does not have the gate-keeping 

function in the maintenance of growth rate in the nutrient-rich medium. In agreement with the 

above, we observed similar growth rates of HK1 knockout and control cells. The decline of 

glucose concentration in the medium from 4.5 g/L to 1 g/L glucose did not alter these 

conclusions.  

Importantly, only a subset of c-Myc-target genes is induced in any experimental system 

or condition. The responses of target genes following c-Myc activation are likely to depend on 

a variety of other factors and change with cell type and environment (Fernandez et al., 2003). 

Available evidence suggests that there may exist a feedback loop between HK1 and c-Myc, as 

c-Myc binds on the promoter region of HK1 gene in vitro (Ciribilli et al., 2016). However, the 

regulation of HK1 expression is not straightforward, since only oscillating levels of HK1 

corresponding to glucose consumption can be observed in the cells with inactivated c-Myc, 

whereas the presence of active c-Myc does not alter the HK1 expression in these cells (Altman 

et al., 2015).  

In addition to changes in c-Myc, we observed the elevated levels of proteins involved 

in ETC, particularly cytochrome c oxidase (complex IV), in the HK1 knockout cells. This 

finding may be also explained by upregulation of c-Myc, since c-Myc promotes mitochondrial 



 

 

biogenesis and upregulates the gene CYCS encoding cytochrome c, which transfers electrons to 

the complex IV (Li et al., 2005). In our further study, we aim to investigate other metabolic 

enzymes and pathways that are likely regulated by c-Myc, such as enolase 1 (ENO1) in 

glycolysis (Osthus et al., 2000), glutaminolysis (Gao et al., 2009) or lipid synthesis (Morrish 

et al., 2010). Furthermore, according to the first data, which we obtained from a pilot untargeted 

metabolomics experiment with HK1 knockout and control cells (data are not shown), we did 

not observe changes in lactate concentration. Therefore, we aim to perform more 

comprehensive metabolomics analysis that will focus on metabolites resulting from pathways 

affected by c-Myc. 

We assumed that the HK1 deletion must have led to the disruption of nutrient balance, 

therefore, we investigated effects of HK1 deletion on the mechanistic target of rapamycin 

(mTOR) signaling pathway. mTOR coordinates cell growth and metabolism with 

environmental inputs, including nutrients and growth factors (Saxton & Sabatini, 2017). 

mTOR, a serine/threonine protein kinase, is a catalytic subunit of two distinct protein 

complexes, known as mTOR Complex 1 (mTORC1) and 2 (mTORC2). mTORC1 consists of 

three core components: mTOR, Raptor (regulatory protein associated with mTOR), and mLST8 

(mammalian lethal with Sec13 protein 8, also known as GβL) (Kim et al., 2002; Kim et al., 

2003). mTORC2, like mTORC1, contains mTOR and mLST8; however, instead of Raptor, 

mTORC2 contains Rictor (rapamycin insensitive companion of mTOR) (Jacinto et al., 2004). 

We have observed activation of mTORC2 in the HK1 KO cells, since PKB/Akt was 

phosphorylated significantly at the mTORC2 phosphorylation site Ser473 (Sarbassov et al., 

2005). The phosphorylation sites at Ser473 by mTORC2 and Thr308 by PDK1 are required for 

maximal activation of PKB/Akt (Alessi et al., 1996).  

The observed changes in the phosphorylation of mTORC complexes can be related to 

above-reported changes in c-Myc activity. In glioblastoma cells, it has been shown that 



 

 

mTORC2 promotes inactivating phosphorylation of histone deacetylases, which results in 

acetylation of the transcription factors FoxO1 and FoxO3 and the subsequent release of c-Myc 

from a suppressive miR-34c-dependent network (Masui et al., 2013). Apart from the PKB/Akt-

independent mechanism of c-Myc regulation, mTORC2 promotes the release of c-Myc through 

phosphorylation of PKB/Akt (Peck et al., 2013). The existence of the HK1 – c-Myc – 

mTORC1/2 axis requires further verification by alterations of expression or activity of its key 

members beyond HK1. 

The signaling pathway upstream from mTORC1 involves AMPK, which has been 

considered a tumor suppressor due to inhibition of mTORC1. However, recent evidence 

suggests that AMPK may directly activate mTORC2, thereby promoting tumorigenesis 

(Kazyken et al., 2019). We did not observe any HK1-induced changes of either AMPK 

phosphorylation or its upstream tumor suppressor LKB1 expression (data are not shown). 

Despite that, we observed phosphorylation of Raptor at Ser792 by AMPK, which should 

contribute to the inhibition of mTORC1, in the HK1 KO cells. However, we found that 

mTORC1 is still active in HK1 KO cells. mTORC1 downstream effectors, such as 4E-BP1 

(Thr37, Ser65 and Thr70) or p70S6K (Thr389), were more strongly phosphorylated in HK1 

KO cells, thereby promoting translation and anabolism (Saxton & Sabatini, 2017). Consistently, 

we observed elevated phosphorylation of Rictor at Thr1135, which is mediated by active 

p70S6K (Julien et al., 2010; Treins et al., 2010). Moreover, the significantly elevated 

phosphorylation of S6RP indicates higher translation activity in the HK1 KO cells (Ruvinsky et 

al, 2005).  

All these findings, except of phosphorylation of Raptor, suggest pro-survival and pro-

growth effects in the HK1 KO cells. Notwithstanding, we aim to explore these dependencies in 

our further work on hexokinases. Apart from the changes in metabolism, the HK1 deletion was 

associated with downregulation of vinculin, which we initially aimed to use only as a loading 



 

 

control. We hypothesize that loss of this adhesion-related protein promotes the epithelial-

mesenchymal transition (EMT), a critical process in tumor invasion and metastasis (Li et al., 

2014). Further, we aim to focus on other markers of EMT in order to verify these newly 

emerging roles of HK1 beyond glycolysis.  

  



 

 

CONCLUSION  

 

In the part that focused on GCK, we experimentally confirmed the causativity of GCK 

variations found in Czech patients with GCK-MODY by performing functional analysis of their 

GCK variations. Our results were consistent with the outcomes of the prediction algorithms, 

particularly SNAP2 and EV mutation. To improve specificity of prediction algorithms 

concerning other GCK variations, we suggested a model for tailoring numerical outcomes of 

the prediction algorithms. We further used and verified our model on comprehensive dataset of 

variations causing Mendelian diseases, thereby increasing specificity of prediction algorithms. 

Despite that, we found that large number of variations are still unpredictable even with our 

tailored approach. Further, we refined pH optimum of human GCK and HK2 and pointed out 

the undesired influence of ATP concentrations on buffering capacity of commonly used buffers. 

In the part concerning tumorigenesis, we realized that a subset of somatic cancer-

associated variations in GCK appeared to be advantageous for tumors, since these variations 

were activating and thermostable. On the other hand, we did not find more supportive evidence 

for a role of GCK in cancer. In contrast, we obtained results on the HK1 KO ovarian cancer 

cells that appeared to trigger pro-survival and pro-growth effects after loss of HK1. We 

observed increased expression of the oncogene c-Myc and LDHA as well as activation of 

mTOR complexes. Nevertheless, we must perform supportive experiments, which will enable 

us to make definitive conclusions. 

  



 

 

LIST OF ABBREVIATIONS 

 

ACMG American College of Medical Genetics and Genomics 

ADP  adenosine diphosphate 

AMP  adenosine monophosphate 

AMPK  AMP-activated protein kinase 

AR   androgen receptor 

ATP  adenosine triphosphate 

bp  base pair 

Cas  CRISPR-associated 

CFTR  cystic fibrosis transmembrane conductor receptor 

CRISPR clustered regularly interspaced short palindromic repeats 

CRISPRi CRISPR interference 

crRNA  CRISPR RNA 

CTM4G Charcot-Marie-Tooth disease type 4G 

DAV  disease-associated variation 

DMEM Dulbecco’s Modified Eagle Medium 

DSB  double-strand break 

DTT  dithiothreitol 

EMT  epithelial-mesenchymal transition 

ENO1  enolase 1 

ETC  electron transport chain 

ExAC  Exome Aggregation Consortium 

FAH  fumarylacetate hydrolase 

GCK  glucokinase 



 

 

GD  Grantham deviation 

GKRP  glucokinase regulatory protein 

GlcNAc N-acetylglucosamine 

GO  Gene Ontology 

GSIR-T threshold for glucose-stimulated insulin release 

GST  glutathione-S-transferase 

GV  Grantham variation 

HDR  homology-directed repair 

HGMD Human Gene Mutation Database 

HIF  hypoxia-inducible factor 

HK  hexokinase 

HRP  horseradish peroxidase 

IDH1  isocitrate dehydrogenase 1 

IPTG  isopropyl β-D-1-thiogalactopyranoside 

KO  knockout 

LDHA  lactate dehydrogenase A 

LKB1  liver kinase B1 

miR  microRNA 

MODY maturity-onset diabetes of the young 

MTCO2 mitochondrially encoded cytochrome c oxidase 2 

mTOR  mechanistic target of rapamycin 

mTORC mTOR complex 

NADP  nicotinamide adenine dinucleotide phosphate 

NCBI  National Center for Biotechnology Information 

NHEJ  non-homologous end-joining 



 

 

NPAV  no phenotype-associated variation 

NSHA  non-spherocytic haemolytic anemia 

OXPHOS oxidative phosphorylation 

PAM  protospacer adjacent motif 

PBS  phosphate-buffered saline 

PCR  polymerase chain reaction 

PDAC  pancreatic ductal adenocarcinoma 

PDB  Protein Data Bank 

PDK1  phosphoinositide-dependent kinase-1 

PEA15  phosphoprotein enriched in astrocytes 

PFK  phosphofructokinase 

PFKP  PFK, platelet 

PGAM-1 phosphoglycerate mutase 1 

PHHI  hyperinsulinemic hypoglycaemia of infancy 

PI3K  phosphoinositide 3-kinase 

PKB  protein kinase B 

PKM2  pyruvate kinase M2 

PMSF  phenylmethylsulfonyl fluoride 

PNDM  permanent neonatal diabetes mellitus 

Pre-crRNA precursor crRNA 

RAI  relative activity index 

ROS  reactive oxygen species 

RP  retinitis pigmentosa 

S6RP  S6 ribosomal protein 

SD  standard deviation 



 

 

SE  standard error 

SEM  standard error of the mean 

sgRNA single guide RNA 

SNV  nonsynonymous substitution 

STAT3 signal transducer and activator of transcription 3 

TALEN transcription activator-like effector nuclease 

TCA  tricarboxylic acid 

TERC  telomerase RNA component 

TERT  telomerase reverse transcriptase 

TIGAR Tp53-induced glycolysis and apoptosis regulator 

tracrRNA transactivating crRNA 

U  unit of enzyme’s catalytic activity 

VDAC  voltage-dependent anion channel 

VUS  variant of uncertain significance 

WB  Western blotting 

ZNF  zinc-finger nuclease 
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