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Study programme: Computer Science

Study branch: Software and Data Engineering

Prague 2020





I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In ........ date ............ signature of the author

i



ii



I would like to thank my supervisor and consultants doc. RNDr. Petr Hnětynka,
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Abstract: The goal of this thesis is to propose a layer on top of edge-cloud, in order
to provide soft real-time guarantees on the execution time of applications. This is
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1. Introduction
Cloud computing is the technique of using a network of remote servers to provide
on-demand delivery of computing power, database, storage, applications, etc.
This computing technique is becoming an increasingly important part of today’s
technological ecosystem, with many major companies providing such systems
(Google, Microsoft, Amazon, IBM). The advantages of using cloud systems when
compared to in-house solutions include convenience, scalability and low cost. Some
well-known examples of usage of cloud computing include applications such as
Netflix, Facebook, Dropbox, platforms such as Google App Engine, Windows
Azure, and infrastructures such as Amazon Web Services’ EC2.

A large variety of different applications can be developed using cloud computing,
however, there are also categories of applications, which are hard to develop using
traditional cloud systems. One of them is the category of latency-sensitive
applications, which is of interest to us. These applications might include software
for self-driving cars, Internet of Things, or augmented reality applications. In
traditional cloud computing systems, the servers hosting the user activity are
physically located in large data centers serving entire regions (for example, a data
center serving western Europe), which is one of the main problems for latency-
sensitive applications. The distance between the client and the data center is not
trivial, thus neither the latency is trivial, and clients from different parts of the
region might experience different latency. Also, the traditional cloud systems may
not guarantee the performance of a hosted application. As a result, applications
can be slowed down by other applications running on the same server, which again
increases latency and produces jitter as the slowdown is not constant.

Edge-cloud computing[1] is a new computing paradigm, which fights the
latency issues by decentralizing the data centers into micro data centers that are
geographically closer to the client. By itself, this is not enough to satisfy the
requirements of latency-sensitive applications, and at least soft execution time
guarantees have to be provided, which is the focus of our work.

This calls for an additional layer on top of the edge-cloud, which manages
deployment and redeployment of services in edge-cloud based on the specification
of timing requirements of individual processes running in the cloud. The goal of
this thesis is to propose such a layer, which, given the knowledge of performance
and resource consumption of the processes, predicts the execution time of a set of
processes running on a server and finds optimal deployment (with regards to the
applications’ real-time requirements on execution time).

The thesis is structured as follows. Chapter 2 focuses on the concept of edge-
cloud computing and the problem we want to solve in greater detail. Chapter
3 provides an analysis of our situation and the proposed layer. In Chapter 4
we present our approach to predicting the execution time and in Chapter 5 the
implementation details. Finally Chapter 6 provides evaluation of our approach
and Chapter 7 concludes the thesis.
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2. Cloud and edge-cloud
computing explained
In this chapter, we explore and compare cloud and edge-cloud computing. Then
we examine the relation of both paradigms to latency-sensitive applications and
explain in detail what problem our thesis focuses on.

2.1 Cloud computing

Cloud computing started gaining prominence since its inception around 2005[2].
It has been identified as the next computing paradigm in the evolution from
mainframes to PCs, networked computing, the internet and grid computing, with
effects as profound as the move from mainframes to PCs[3].

The US National Institute of Standards and Technology (NIST) defines cloud
computing as[4]: Cloud computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications and services) that can be rapidly
provisioned and released with minimal management effort or service provider
interaction.

Cloud computing systems are usually implemented as centralized data centers,
in which the cloud provider manages servers, which host the customers’ activity.
To support all of the required features, a range of other existing technologies
are combined, such as parallel computing, distributed computing, virtualization,
containerization, orchestration and many more. As a result, we can think about
the cloud system as a collection of hardware and software running in a data center
that enables cloud computing[5].

A customer connects to the cloud system, usually through the Internet, and
is provided with various cloud services. One of the implications of the NIST
definition is, that the cloud computing paradigm transforms computing power
into a service with certain key properties, for which a customer pays according
to use. This is in contrast with computing power being hardware, for which the
customer pays an upfront cost. Computing power as a service is not a new idea
(e.g., renting a server), thus the properties which these services are required to
satisfy, in order to be classified as cloud services, is what makes cloud computing
novel and appealing[6]:

• On-demand self-service: A customer can acquire server time, storage, or
other computing capabilities automatically without the need of other human
intervention.

• Broad network access: The customer accesses the cloud services over the
network through standard mechanisms using a client platform (mobile,
laptop, etc.).

• Resource pooling: The provider pools the computing resources to serve
multiple customers. Different physical and virtual resources are dynamically
assigned and reassigned according to customer demand.
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• Location independence: The customer has no knowledge of the exact location
of the provided resources (the infrastructure is transparent to him). However,
the customer might be able to specify the broad location in which he wishes
to acquire the service (e.g., western Europe).

• Rapid elasticity: The acquired services can be automatically provisioned or
released in order to scale according to demand.

• Measured service: Resource usage (such as storage, bandwidth use, etc.) is
monitored, controlled and reported in order to better inform the customer
and the provider and to enable the optimization of resource use.

The services provided to the customer are typically divided by the level of
responsibility, which the provider adopts, into three categories[7]:

• Software-as-a-Service (SaaS): Customers of this cloud service only make use
of an application hosted by the cloud provider, which can be accessed using
clients such as a web browser or dedicated application. The customer does
not manage the application or the infrastructure (such as servers, operating
systems, storage, etc.). Thus the service, for which the customer pays, is the
ability to use a given software application. Examples of this model include
DropBox, Slack, Microsoft Office 365 and Google Apps for Work.

• Platform-as-a-Service (PaaS): Customers of this cloud service can release
their applications, developed using programming languages, libraries and
tools supported by the cloud provider in a hosting environment. Users can
again access these applications through various clients. Similarly to SaaS,
the customer does not have control over the underlying infrastructure, but
the customer has control over his deployed applications. Thus the service,
for which the customer pays, is the ability to develop and deploy applications
using a platform managed by the cloud provider. Examples of this model
include Microsoft Azure and Google App Engine.

• Infrastructure-as-a-Service (IaaS): The cloud provider manages the process-
ing, storage, networking, power, security, virtualization and other aspects of
the infrastructure, which the customer uses to run arbitrary software. The
customer has limited or no ability to manage underlying physical infrastruc-
ture. Thus the service, for which the customer pays, is the ability to use
remote hardware managed by the cloud provider. Examples of this model
include Amazon Web Services’ EC2 and S3.

Cloud computing systems are also divided into different categories depending
on who owns and who uses them[4]:

• Private cloud: The cloud system is created for and used by a single organi-
zation. This organization, some third party, or a combination of them own
the system.

• Community cloud: The cloud system is created for and used by a spe-
cific community (e.g., academic community). An organization from this
community, some third party, or a combination own the system.

• Public cloud: The cloud system is created for general use by the public. It is
owned by a business, academic, or government organization or a combination
of those.

6



• Hybrid cloud: This cloud system is a composition of more than one distinct
cloud system (public, community or private), which are bound together by
a technology that enables the portability of data and applications.

Advantages and disadvantages

Key advantages of cloud computing consist of scalability, the gradual payment
model, cost-efficiency and ease of use.

Key disadvantages of cloud computing consist of issues with downtime, security,
privacy, limited control over infrastructure, flexibility and vendor lock-in. Vendor
lock-in is the problem of transferring activity from one cloud provider to another.
It can be divided into risks of transfer of data, applications, infrastructure and
human resource knowledge risk. In regards to latency-sensitive applications, the
main problem of cloud computing is the significant distance latency between the
user and the data center and the lack of guarantees on the performance of an
application.

It is clear that without sufficient planning and carefully executed development,
the use of a cloud computing system can become problematic. However, as we
can see by the wide adoption of this computing paradigm, the positives outweigh
the negatives significantly.

2.2 Edge-cloud computing

One can think of edge-cloud computing as an extension of the idea of cloud
computing explored in the previous section. Multiple definitions of edge-cloud
computing exist, such as:

• Edge-cloud computing is where compute resources, ranging from credit-card-
size computers to micro data centers, are placed closer to information-
generation sources, to reduce network latency and bandwidth usage generally
associated with cloud computing.[8]

• Edge-cloud computing consists of any computing and network resources along
the path between data sources and cloud data centers.[9]

In general, the main idea behind edge-cloud computing is to decentralize the
computing power from a few large data centers into many smaller computational
units (micro data centers (MDCs), cloudlets, devices, etc.) closer to the users (the
data generators). This is done in order to reduce the latency between the user
and the data center and to distribute the network usage into multiple locations.

When compared, edge-cloud computing could be, in the broad sense, almost
identical to cloud computing, with the only difference being that the data centers
are decentralized. Technically, the two systems would differ significantly, however,
the main concepts of cloud computing still apply, such as the properties of cloud
services, the concepts of SaaS, PaaS and IaaS and the differentiation of cloud
systems into the public cloud, private cloud, etc.

There are also other architectures of edge-cloud computing systems possible,
such as edge-cloud being a layer, in which only partial computation occurs
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Figure 2.1: Cloud computing compared to three-layer edge-cloud computing[9].

between the user and the centralized data center, such as in Figure 2.1. Thus
cloud computing and edge-cloud computing do not have to be exclusive but
can complement each other. However, in this thesis, we only consider the edge-
cloud systems with two layers – the MDCs and the users. For our purposes, the
three-layer design does not make much difference.

Importance of edge-cloud computing for the future

One of the main reasons behind the advent of edge-cloud computing is the change
of users from being only data consumers into being both data consumers and data
producers[9]. The amount of data created by people and machines on the edge of
the network is steadily increasing, and with that comes increased demand in data
processing and other related computationally demanding tasks.

There is a strong incentive to use cloud computing to process the data in
order to save the battery life of the devices generating this data and increase the
processing speed. However, to process all this data in centralized data centers
would create a heavy load on the network infrastructure. Also, latency-sensitive
applications would experience problems due to the vast distances between the user
and the data center. As a result, edge-cloud is needed to satisfy this increased
demand in computing.

Examples of promising edge-cloud use cases include IoT data processing, imple-
mentation of smart home/city, augmented reality and self-driving cars/drones[9]
as visualized in Figure 2.2.
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Figure 2.2: Ilustration of a farming drone equipped with sensors and simple
computer using an edge-cloud self-driving software.

Advantages and disadvantages

Key advantages of edge-cloud computing consist of decentralization, low latency
(due to the smaller distance between the user and the MDC) performance im-
provement and battery saving due to computation off-loading. Also, the same
advantages of cloud computing apply to edge-cloud computing. Several demon-
strations of advantages of computation offloading to the edge-cloud exist, such
as:

• Reducing 20 times the running time and energy consumption of tested
applications[10].

• Reduction of the response time of a face recognition application from 900 to
169 ms by moving the computation from cloud to the edge-cloud[11].

• Reduction of response time by 80-200ms and reduction of energy consumption
by 30%-40% of wearable cognitive assistance[12].

Key disadvantages of edge-cloud computing consist of problems with privacy,
security, availability, cost and consistency. In regards to latency-sensitive applica-
tions, the main problem of edge-cloud computing is the lack of guarantees on the
performance of an application. Also, edge-cloud computing suffers from the same
disadvantages as cloud computing.

2.3 Guaranteeing the performance of latency-
sensitive applications

In the 5G Automotive Vision white paper[13], the 5G-PPP (initiative between
the European Commission and European ICT industry) introduces a multitude of
technologies focused on integrating the automotive and the telecom industry. These
technologies include mostly latency-sensitive applications such as cooperative
collision avoidance of cars, augmented reality windows, utilization of sensors
distributed across the city for self-driving, traffic synchronization and many more.
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Importantly, the relocation of complex tasks from computing units in vehicles
and IoT to a remote server is argued to be possible and recommended in 5G
infrastructures. In order to use this remote computing, it is necessary to provide
low latency and high reliability.

To implement this remote computing, cloud computing is insufficient due to
having extensive and variable distance latency (time needed to transfer a request
from the user to the data center).

As a result of using decentralized data centers located closer to the user,
the edge-cloud significantly reduces the distance latency. However, the base
architecture of an edge-cloud system does not provide a guarantee on round trip
time (RTT). RTT is the time needed to get a response for a request issued by a
user. RTT consists of two times the distance latency (to and from the server) and
the time needed to calculate the response.

The issue is that developers are expected to have soft real-time requirements
on the RTT for their latency-sensitive applications. For example, developers can
demand, that the RTT for their self-driving or augmented reality application to
be less than 70ms, otherwise the applications would be unusable (e.g., self-driving
car would not react fast enough).

Imagine an edge-cloud provider having an MDC composed of several servers,
which covers a single city with distance latency guaranteed to be less than 20 ms,
and the service provided is in the form of hosting latency-sensitive applications.
If the provider allocated applications on servers using a trivial strategy (e.g.,
randomly), it is very likely, that the applications would slow each other down to
the point of exceeding the required RTT, making the applications unusable.

The focus of our thesis is to solve this problem and provide a soft guarantee on
the RTT for applications running in the edge-cloud. Soft guarantee on the RTT
means that a request issued to the edge-cloud system will return in a specified
amount of time with a specified probability (e.g., a request to apply a filter on an
image will return in 30ms with 90% probability).

It is important to note that we do not focus on providing full real-time
guarantees (every request finishes in a specified amount of time). The reason
being, that such guarantees are the domain of real-time programming, which comes
at a very high price of forcing developers to a low-level programming language,
limited choice of libraries and the use of a relatively exotic programming model of
periodic non-blocking real-time tasks.
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3. Situation analysis
In this chapter, we first propose an edge-cloud layer to provide soft guarantees
on the RTT. Then we examine the way we expect the processes to run in the
edge-cloud nodes. In the end, we focus on the form and measurement of the
provided data, which influences the solution to the problem.

3.1 Proposed layer
As highlighted in Chapter 1 and further explained in Section 2.3, the focus of our
thesis is to provide soft-guarantee on the RTT for applications in the edge-cloud
system.

Two factors are contributing to RTT in an edge-cloud system – the distance
between the user and the MDC and the amount of slowdown caused by interference
between processes. In order to minimize the latency caused by distance, edge-cloud
MDCs are moved closer to the user. As a result, only the minimization of process
interference needs to be solved.

It is expected that the developers use standard high-level programming lan-
guages (such as Java or Python) and that the cloud provider uses standard cloud
technologies (such as Docker and Kubernetes). Therefore the minimization of in-
terference between processes is achieved by deployment of suitable combinations of
processes on individual servers, not by the use of low-level real-time programming
languages or real-time programming models.

As a result, the cloud provider faces a dilemma: how to deploy processes to
the servers available in a given MDC in such a way that would achieve:

• Minimal interference between the collocated processes
• Satisfaction of the soft real-time requirements
• Minimal number of servers used (maximize the resource utilization of servers)

To solve this problem, we propose a new layer for the edge-cloud composed of
a predictor of the execution time of processes and a solver, as visualized in Figure
3.1. The edge-cloud architecture would then consist of:

• Central datacenter – decides which processes should run in which MDC
• Predictor and solver – accept deployment request of a set of processes to

an MDC and finds suitable combinations of processes to collocate on the
individual servers

• MDCs – run combinations of processes on its servers

3.1.1 Finding optimal deployment using predictor

The problem of deployment and redeployment can be solved relatively easily
using a predictor of execution time. The solver iterates through a set of process
combinations and requests a prediction for each combination. The predictor issues
a prediction stating the predicted performance and whether the combination
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Figure 3.1: Ilustration of the edge-cloud architecture with the proposed layer.

satisfies the soft real-time requirements or not. The solver can then select a
deployment with the fewest used servers or with combinations of processes with
the best performance.

A trivial solver would iterate through all combinations of processes and use the
predictor to decide if a given combination satisfies the soft real-time requirements.
A non-trivial solver design could be, for example, in the form of formulating and
solving the optimal deployment as a constraint satisfaction problem.

However, a more complex solver can only decrease the number of combinations
to be predicted (thus lower the time needed to find the deployment). To provide
the soft real-time guarantees, the quality of the predictor is the decisive factor.
Thus our thesis focuses primarily on the predictor and not on the solver.

To estimate if a set of collocated processes satisfy the soft real-time requirements
on the RTT, we need to predict the percentile of the execution time of each of
the processes. The reason being, that if a process is required to have, for example,
execution time shorter than 30 ms in 90% of calculations, we can express the same
requirement as having the 90th percentile of execution time shorter than 30 ms.

As a result, the construction of a sufficiently accurate predictor of the percentile
of the execution time is needed to satisfy the goals of this thesis. Section 3.3
describes the data provided to the predictor, the design of the predictor is described
in Chapter 4, and the implementation details are explained in Chapter 5.

3.2 Process and node behavior
The expected behavior of processes can be summarised as follows:

• The processes run in isolated containers
• The containers can be moved between nodes in the same MDC
• The processes receive requests from client applications on the user’s devices

or from other processes
• The processes can communicate with other processes running in the same

MDC (processes can depend on other processes)
• The processes can not communicate with processes running in other MDCs

Even though the processes are isolated in containers, we expect them to share
the CPU. Thus instead of each process acquiring one CPU core for itself, the
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computational load is distributed among all cores equally. The same principle
also applies to memory, disk and other shared resources. Even if the node had
multiple disks or memory cards, we still regard them as one resource. This is
important as we do not have to deal with the issue of assigning applications on
different CPU cores, disks or memory cards.

Rate of requests

The expected rate of requests is 100% – when a process finishes the current
calculation, it starts a new calculation immediately. The reason is, that when
using the edge-cloud system, a new clone of a process would be spawned only
after the previous one can not handle the request rate anymore. Thus at any time,
there would be maximally one clone of a process without a 100% request rate. It
is preferable to still treat it as a 100% request rate process during the prediction
as the request rate can climb unexpectedly.

Process dependency

The processes running in a given MDC can depend on other processes running in
the same MDC, for example, a face recognition application (depender) can use a
database (dependee). In this situation, we expect the dependee process to run
with an acceptable slowdown. If this condition cannot be guaranteed, then both
the depender and the dependee can not be assigned as the performance of the
depender can be unpredictably affected.

We regard the communication latency between processes in the same MDC
to be trivial. On the other hand, we expect that processes do not communicate
across MDCs, as the communication latency would be automatically too high
(if the communication latency would also be trivial, these two MDCs could be
merged into one).

Distance latency

The communication latency caused by the distance between the user and the
MDC does not necessarily have to be trivial. The information about the expected
latency (probably the highest possible in regards to the served area by given MDC)
can be provided and accounted for in order to provide the soft guarantee on RTT.

3.3 Provided knowledge

Data provided to implement the predictor is in the form of a data matrix describing
the behavior of a process when running alone or alongside a combination of other
processes. In this matrix, columns describe various properties (such as execution
time, number of instructions executed, number of written blocks on disk, etc.)
and rows represent runs of the application (a run represents one calculation of a
request). This data matrix allows us to examine the behavior over multiple runs,
which can be used to infer statistical information and also reveals low probability
behavior, such as the writing of disk buffers. An example is provided in Table 3.1.
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run elapsed instructions cache-misses read sectors written sectors io time
1 5506 42787936272 58142200 0 8976 170
2 5467 42788015318 58033451 0 7432 158
3 5496 42787914647 58113190 0 6608 94
4 5545 42787790092 58147487 0 4688 66
5 5470 42787883516 58149216 0 5680 114
6 5515 42787801186 58045890 0 6592 125

Table 3.1: An example of possible data matrix of a process.

Figure 3.2: Ilustration of cumulative influence on a property.

3.3.1 Data matrix naming convention

Let us consider we had processes A, B and C at our disposal. The data matrix
of a process allocated alone is called single data matrix and is denoted only by
the ID of the process (e.g., data matrix A). The data matrix of a combination of
processes is called combination data matrix and is denoted by the IDs of processes
separated by a dash.

For example, B-A-C means a measurement of a situation, in which three
processes were collocated on a given node. In the combination, we distinguish the
primary process and secondary processes. The primary process is the first ID in
the combination (B), the secondary processes are the rest (A and C). The primary
process is the process, for which we measure the data matrix and secondary
processes are influencing the primary process. Thus the result of measuring the B-
A-C combination is a data matrix with the information about process B (execution
time, written sectors, etc.), which is influenced by the secondary processes A and
C. For example, the execution time could be a second longer when compared to
the measurement of single B.

It is important to note that some of the properties (e.g., number of written
bytes on disk) can be cumulatively influenced by the secondary processes. Imagine
that process A writes 1000 bytes per 3.5 seconds on disk. Thus even thought
process B does not write anything on disk, the B-A-C data matrix will have the
property influenced. This is unfortunately how the data is provided to us, as
apparently, this behavior is unavoidable for some properties. This concept is
illustrated in Figure 3.2.
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3.3.2 Lack of node or process-specific information

At first glance, it seems like we do not get any information about the nodes on
which the processes run, however, that is not entirely true. The data matrix of a
given process is measured on a particular type of node (hardware and software
configuration) and is only used for prediction on the same type of node. This way,
the properties of the node are reflected on the data matrices about the process
(e.g., in the length of execution time).

We are also not provided with any specific data about the process, such as if
the process uses a particular library, uses sequence write on disk, etc. The reason
is that such information provided by the developer is unreliable.

The lack of more specific information about the node or the processes is on
purpose. The predictor needs to function on multiple types of nodes and it is
undesirable to structure the predictor around the knowledge of, for example,
particular pieces of hardware.

It is important to note that the data matrix of a process can vary from node
to node. The reason is, that some hardware and OS configurations do not allow
the measurement of certain properties (e.g., the information about CPU cache),
or provide the measurement of additional properties.

The lack of specific information about the nodes and processes and the varying
data matrix of a process on different nodes can enhance the difficulty of designing
the predictor greatly. However, when the predictor is constructed with these
limitations, it becomes much more flexible and also future-proof. If, for example,
new measurable properties became available on a new server architecture running
a new type of application, the predictor should be automatically able to take
advantage of such a data matrix and provide prediction, even if this situation is
entirely unaccounted for.

3.3.3 How is the data matrix measured

Measured processes are run in containers with a 100% request rate (their calculation
is repeated after each completion), which simulates how would these processes
run in the edge-cloud node. For each run of the primary process, properties are
measured into a row containing various information about the use of CPU, memory,
disk, etc. One difference is that after a certain number of runs, the computer is
restarted in order to minimize the effects of different computer initializations (e.g.,
loading of libraries).

The measurements of a data matrix last for several hours (in our case between
one and two hours). The length of measurement must be sufficiently long in order
to acquire a statistically significant number of runs. We expect that dependencies
are run alone on separate computers in the same MDC during the measurement
in order to guarantee acceptable slowdown.

Number of measurements

Due to the number of possible combinations of processes and length of the
measurement, it is expected that only a small percentage of all combinations
will be measured for a given edge-cloud system. The number of data matrices
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in a given arity of processes (combination of five processe has an arity of five) is
calculated as:

DMa =
(︄

(n + a − 2)!
a − 1

)︄
× n (3.1)

Where DMa is the number of data matrices in a given arity a and n is the
number of available processes. The number is calculated as the combination with
repetition of secondary processes, times the number of possible primary processes.
This is due to the fact, that for each combination of secondary processes we can
choose one primary process.

Imagine we had 17 different processes and we could collocate up to 5 processes.
The number of quintuples alone already amounts to (

(︂
20
4

)︂
× 17) = 82365. If a

single measurement lasts around 1 hour (which is our case), we would need at
least 82 365 hours (3 431 days) of machine time to measure them all.

This puts another limitation on the design of the predictor, as we can expect
only a small percentage of all combinations to be measured.

3.4 Overview of the whole process

The process of providing a soft real-time guarantee (as illustrated in Figure 3.3)
starts with a developer submitting their process to the cloud provider for evaluation.
The cloud provider then measures necessary data matrices and provides them
to the predictor. After that, the developer can request the deployment of their
process to the edge-cloud. The cloud provider then uses the deployment solver to
find a suitable deployment of all processes on the MDC. The deployment solver
repeatedly uses the predictor to estimate the percentile of the execution time
of collocated processes in order to find a deployment, which satisfies the soft
real-time requirements of developers. Finally, the cloud provider deploys the
processes according to the suitable deployment plan.

It is important to note that the predictor is expected to be periodically updated
with new data matrices in order to improve the precision of predictions. The
cloud provider should also monitor the real performance of deployed processes in
order to confirm the predicted execution times or request a redeployment.
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Figure 3.3: Overview of providing soft real-time guaranties on process execution
time.
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4. Predicting a percentile of
process execution time
In this chapter, we first provide an overview of the predictor’s architecture. Then
we focus on related theory needed to understand the design of the predictor,
such as similarity, cluster analysis, weights and regression analysis. After that,
we describe the individual prediction methods. The implementation details are
explained in Chapter 5.

4.1 Predictor architecture overview

As described in Section 3.1, we need a predictor, which predicts a given percentile
of the elapsed execution time of a process when this process is collocated alongside
other processes.

As mentioned in Section 3.3, the predictor needs to be general enough to work
on multiple hardware and software configurations of nodes. The predictor can only
utilize data matrices, which describe the behavior of a process or a combination
of processes on a given type of a node. Consequently, the predictor does not use
any specific information about the nodes (such as the type of CPU used) or the
processes (such as which library does the process use). The form of data matrices
is heavily influenced by the configuration of a node – two data matrices of the
same process measured on two different nodes can have very different measured
properties due to different hardware.

A trivial prediction solution is to run the combination of processes on a test-
node and measure the slowdown for each process, thus creating a database of
combinations with known slowdowns. Then, before assigning the combination
to an edge-cloud node, a simple database lookup would suffice to decide, if the
slowdown is acceptable or not. As explained in Section 3.3.3, the measurement of a
large number of combinations is challenging, which makes this solution acceptable
only with a small number of different processes and different node types.

In Section 3.3, we also mentioned the advantage of having a general predictor.
The main advantage is that this predictor should be able to work on new and
unexpected hardware configurations of nodes, predicting unexpected processes
with new and unexpected properties in the data matrix. This sounds very similar
to the use cases for the latest deep learning models. The reason why we did not
use deep learning for our predictor lies in the amount of information available
to us. It is usually necessary to utilize data points in the numbers of millions,
however, as we will see in Chapter 6, the number of combinations we were able to
obtain is in the thousands from less than twenty processes. Thus we consider the
risk of unsuccessful deep learning due to limited data to be too high.

As a result, we decided to use a more traditional approach to design the
predictor. The core of our approach consists of cluster analysis, weights training,
regression analysis, and boundary detection. The prediction process is visualized
in Figure 4.1.
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Figure 4.1: Schema of the prediction process.
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Data acquisition

In the first phase, it is necessary to obtain data matrices, which will be provided
to the predictor. We utilized an existing measurement software that ran on a
small server farm. This step is executed a long time before any actual prediction
is calculated due to the time required for measurement.

Predictor: Data preprocessing

After we finish the data acquisition, we need to preprocess the data matrices
into a more suitable form. The result of preprocessing is scaled and normalized
statistical information about the measured properties of processes, such as mean,
median, deviation, etc. Further explanation is provided in Section 5.1. This step
is done in advance in order to reduce the prediction calculation time.

Predictor: Data analysis

The preprocessed data matrices are analysed in order to uncover:

• Similarity between processes (Section 4.2)
• Relationships among the processes using cluster analysis (Section 4.3)
• Usefulnes of various measured properties using weights (Section 4.4)
• Trends in slowdown of processes using regression analysis (Section 4.5)
• Limits on node resource usage using a boundary system (Section 4.7).

The approaches to data analysis are evaluated in Chapter 6. This step is also
done in advance to reduce the prediction calculation time.

Predictor: Prediction

Finally, we calculate a multitude of predictions for a given combination of pro-
cesses by using the results of all previous phases. This step is designed to be
computationally simple in order to achieve fast calculation times and is described
in Section 4.6. The individual prediction methods are evaluated in Chapter 6.
The user of the predictor is provided with a prediction from the most accurate
method that was able to predict a given combination with the provided data.

4.2 Similarity between processes
It is important to define the concept of similarity between processes first, as this
concept is used multiple times in our solution. The whole meaning of similarity
depends heavily on the description of processes and the way this information is
interpreted. For example, we could say that two processes are similar if they have
similar lengths of execution time. This is, of course, not suitable for our purposes.

We are interested in the similarity of behavior and resource usage of the
processes. Imagine we had two processes, which write some data on the disk and
a third process, which only calculates some mathematical functions. In our sense
of similarity, the two processes using disk are more similar to each other than to
the third process.
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In our case, the description of processes is in the form of single data matrices.
Combination data matrices are not used as we only want to know the information
about processes running alone without the interference of other processes.

It is possible to devise many ways of interpreting the information in single
data matrices in order to identify the similarity of behavior of processes. We chose
a few approaches, which we describe in Section 5.2 and compare in Chapter 6.
For now, the key thing to understand is that similarity between processes means
similarity in their behavior and resource usage.

4.3 Cluster analysis

Cluster analysis is one of the key concepts of our solution. The general idea of
clustering is to find relationships between objects by placing similar objects in
groups. The objects in said groups should be more similar to each other than to
objects in other groups. In our case, the objects are individual processes, which
can run in the edge-cloud system.

To provide a motivational example, imagine we had a group of processes and
data matrices of all pairs of processes (all double data matrices). If we ran a
cluster analysis, the resulting clusters could, for example, correlate with the process
resource usage, dividing them into CPU-heavy, memory-heavy and disk-heavy
clusters. We hypothesize that similarly behaving processes should influence other
processes in a similar manner. Thus the influence between members of two clusters
should be similar (e.g., disk-heavy processes slow other disk-heavy processes down
by a certain percentage of execution time but are neutral to CPU-heavy ones).
Now imagine that we were provided with a new process with only a single data
matrix measured. Just by placing this process into its respective cluster, we can
predict the interaction between this process and others. As a result, the knowledge
of groups of similar processes offers additional information, which can be used to
uncover new relationships between processes and predict their interaction.

It is important to note that the clusters could also group processes by other
means than just resource usage. Imagine we were provided with six CPU-heavy
facial recognition processes and the clustering algorithm divided them into two
clusters – three versions of one process and three versions of some other process.
Thus even though the resource usage is very similar, the versions of the processes
are much more similar to each other, which divides the set of processes into two
clusters.

As a result of cluster analysis, each process is assigned a cluster (denoted by a
number), into which it belongs. The utilization of information obtained by cluster
analysis is explored in greater detail in Section 4.6.2 and 4.6.3.

Cluster analysis is not a single algorithm but a problem to be solved, for which
there are many methods available. The choice of a particular method influences
the result of cluster analysis heavily. The explanation of the methods we used is
provided in Section 5.3.
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Figure 4.2: Illustration of the improvement of similarity calculation and cluster
analysis caused by the introduction of weights.

4.4 Weights

The concept of weights relates directly to the concepts of similarity between pro-
cesses and cluster analysis. The data matrix, which is provided as the description
of the processes, only provides information about properties of the process (e.g.,
the number of instructions executed etc.). However, it would be useful to have
information indicating which of these properties are actually useful in order to
determine the similarity of behavior and to analyze clusters.

To illustrate this issue on an example, suppose that an error occurred during
the measurement of data matrices, causing some properties to have random values.
We measured CPU-heavy processes C1, C2 and disk-heavy processes D1, D2.
Without the ability to determine which properties are useful and which are useless,
these erroneous properties would negatively impact the calculation of similarity
between processes and consequently negatively impact the cluster analysis.

As a result, weights indicating the usefulness of various properties for similarity
calculation are introduced. Weights are in the form of a vector, where each value
corresponds to one property in the data matrix. The values in this vector range
between 0 and 1 and indicate the importance of a given property for the similarity
calculation, as illustrated in Figure 4.2.

We hypothesize that with these weights, we can improve the similarity calcu-
lation, reduce noise in the data matrices, and consequently improve the cluster
analysis. They also solve one of the challenges we are faced with, namely the issue
of having different data matrices on different types of nodes. As we can not be
sure that the measured properties of processes are correct or useful, we need a
system of determining the importance of these properties.

It is important to highlight that weights can differ on different nodes (due
to possibly different data matrices between the nodes) in their length and value.
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Thus weights are node-specific and their value depends on available processes.
Similarly to cluster analysis, there is no single algorithm used to find such

weights, but many approaches can be valid. The implementation of the approach
we chose is described in Section 5.4.

4.5 Regression analysis

Regression analysis is another key concept of our solution and is used to find
trends in the slowdown of processes using only the information about the length
of execution time in single and combination data matrices.

To provide a motivational example, imagine we only had a single process A in
the edge-cloud system. We then measured A running alone (90th percentile of
the execution time equal to 10 sec), A-A (15 sec) and A-A-A-A (25 sec). Using
this information, we can express a prediction of the percentile of the execution
time of processes A as:

Apercentile = t0 + t1secondary (4.1)

This form of prediction is a case of linear regression prediction, where the
percentile of the execution time of process A (Apercentile) is the dependent variable
and the number of secondary processes A (secondary) is the independet variable.
In the model (equation), the dependent variable is a linear combination of the
coefficients t0 and t1. The most logical estimation of coefficient t0 is the percentile
of execution time of the process A running alone (10 sec) and 5 sec for t1. Using
this formula, the prediction of percentile of execution time for process A in the
combination A-A-A is 20 sec.

This concept can be extended for multiple processes into multiple linear
regression with multiple independent variables. For example if we had processes
A and B, the regression models would be:

Apercentile = x0 + x1A + x2B (4.2)

Bpercentile = y0 + y1A + y2B (4.3)

Where A and B are the numbers of secondary processes A and B respectively
and x0, x1, x2, y0, y1 and y2 are the coefficients, which need to be calculated.

4.5.1 Polynomial regression analysis

Polynomial regression analysis is a special case of multiple linear regression, where
the model is created as the nth degree polynomial of the independent variables.
We can consider the previous examples to be a first-degree polynomial regression.
Thus the second-degree polynomial model of the example with single process A is:

Apercentile = t0 + t1secondary + t2secondary2 (4.4)

As a result, instead of approximating the percentile of execution time of a
process using a line, we can now use a curve as illustrated in Figure 4.3. Similarly,
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Figure 4.3: Ilustration of of first and second degree polynomial regression models.

the second-degree polynomial model of the example with processes A and B for
Apercentile is:

Apercentile = x0 + x1A + x2B + x3A
2 + x4B

2 + x5(A × B) (4.5)

For Bpercentile, the model is similar, just with different coefficients. In our
solution, we use the polynomial regression to predict the percentile of the execution
time of processes. The challenge is how to estimate the values of the coefficients
(x0, x1, etc.) using the information about the execution time in combination
data matrices, which is explained in Section 5.6. The degree of the polynomial is
decided experimentally in Section 6.5.

4.6 Prediction methods

We chose to implement a multitude of prediction methods. We hypothesize that
individual methods can perform better or worse in certain conditions and thus
it is suitable to implement and compare more of them in order to find the one
which suits us best. We also hypothesize that various prediction methods can
complement each other – for example, when the best performing method does not
have suitable data for given prediction, the second-best performing method can
step in and provide a prediction.

4.6.1 Closest friend prediction
Hypothesis

Closest friend prediction is the simplest method, which only utilizes the information
about the similarity of processes. Imagine we want to predict the 90th percentile
of the A-B-C combination. We lack the data matrix for this combination, however,
we already measured A-B1-C or A-B-C1, where B1 and C1 are previous versions
of their respective processes. Intuitively, the data matrices of old versions could
serve as suitable predictions for the A-B-C combination, as their behavior should
be quite similar.
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Figure 4.4: Illustration of the closest friend prediction method.

If we extend this idea, we hypothesize that any combination can be predicted
by a data matrix of some other combination, if the secondary processes in this
alternative combination are the most similar to the original ones. This concept is
illustrated in Figure 4.4.

Procedure

During the prediction phase:

1. Prepare alternative combinations by exchanging processes in the provided
combination with their most similar counterpart. For example, alternative
combinations for A-B-C (if B is most similar to X and C is most similar to
Y) are A-B-C, A-C-X, A-B-Y and A-X-Y.

2. Sort the alternative combinations by their distance from the original combi-
nation. The distance of an alternative combination is measured as a sum of
distances between the original and alternative processes in the combination.

3. Iterate through the sorted alternative combinations and perform a database
lookup for the data matrix. If found, return the requested percentile of
elapsed execution time.

4.6.2 Primary-cluster prediction
Hypothesis

Imagine that due to the lack of data matrices, the closest friend prediction could not
be calculated. We thus need to access more information, from which to calculate
the prediction, by going upwards in abstraction – instead of examining how a
combination of processes influence a process, we examine how a combination of
clusters on average influences a process. As a result, the primary-cluster prediction
method should be less accurate than the closest-friend prediction, however, due
to the larger amount of available data, it can complete a prediction more often.

We hypothesize that the influence of processes from secondary clusters on the
primary process can be analyzed as the average percentual change of percentile of
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Figure 4.5: Illustration of the primary-cluster prediction method.

the execution time of the primary process. We call it the primary-cluster slowdown
and denote it similarly to the data matrix naming convention, except secondary
processes are replaced by cluster numbers.

To give a simple example (illustrated in Figure 4.5), consider that processes A
belongs to cluster 0, processes B1, B2, B3, and X belong to cluster 1 and processes
C1, C2, C3 and Y belong to cluster 2. We have data matrices A-B1-C1, A-B2-C2
and we want to predict A-B3-C3. B3 is most similar to X and C3 to Y, which
blocks the closest friend prediction. When using the primary-cluster prediction,
we calculate that percentile of A is 10% slower in A-B1-C1 and percentile of A is
20% slower in A-B2-C2. Then the A-1-2 primary-cluster slowdown is 15%. The
prediction of A-B3-C3 is then calculated as the percentile of the execution time of
single A extended by primary-cluster slowdown (15%).

Procedure

1. During the analysis phase:

(a) Analyse clusters of processes and assign each process a cluster into
which it belongs.

(b) Calculate primary-cluster slowdown for all available combinations of
primary processes and clusters.

2. During the prediction phase:

(a) Identify into which clusters do the secondary processes in the requested
combination belong. In other words, transform the combination from
A-B-C into A-0-1, for example.

(b) Perform a database lookup into the previously calculated primary-
cluster slowdowns. If the requested slowdown was calculated, return
the percentile of execution time of the primary process running alone
extended by the primary-cluster slowdown.
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Figure 4.6: Illustration of the cluster-cluster prediction method.

4.6.3 Cluster-cluster prediction
Hypothesis

The cluster-cluster prediction method is a direct extension of the thought process
behind the primary-cluster prediction. If we lack the data even for primary-cluster
prediction, we can again go a step upwards in the abstraction and focus on the
interaction between the cluster, into which the primary process belongs, and the
clusters, into which the secondary processes belong. The cluster-cluster prediction
method should be less accurate than the primary-cluster prediction, however, due
to the larger amount of available data, it can complete a prediction more often.

We hypothesize that this interaction between primary and secondary clusters
can be analyzed as an average percentual change of percentile of the execution
time of processes from the primary cluster when collocated with processes from
the secondary clusters. We call it cluster-cluster slowdown and denote it similarly
to the primary-cluster notation, except the primary process is also replaced by
cluster number. The prediction is then calculated by adding the cluster-cluster
slowdown to the original percentile of the execution time of the primary process
in the predicted combination.

To give a simple example (illustrated in Figure 4.6), consider that processes
A1, A2 and A3 belong to cluster 0, processes B1 and B2 belong to cluster 1
and processes C1 and C2 belong to cluster 2. We have data matrices A1-B1-C1,
A2-B2-C2 and we want to predict A3-B1-C2. When using the cluster-cluster
prediction, we calculate that the percentile of A1 is 10% slower in A1-B1-C1 and
the percentile of A2 is 20% slower in A2-B2-C2. Then the 0-1-2 cluster-cluster
slowdown is 15%. The prediction of A3-B1-C2 is then calculated as the percentile
of the execution time of single A3 extended by cluster-cluster slowdown (15%).

Procedure

1. During the analysis phase:
(a) Analyse clusters of processes and assign each process a cluster into

which it belongs.
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(b) Calculate cluster-cluster slowdown for all available combinations of
primary and secondary clusters.

2. During the prediction phase:
(a) Identify into which clusters do the processes in the requested combina-

tion belong. In other words, transform the combination from A-B-C
into 2-0-1, for example.

(b) Perform a database lookup into the previously calculated cluster-cluster
slowdowns. If the requested slowdown was calculated, return the
percentile of execution time of the primary process running alone
extended by the cluster-cluster slowdown.

4.6.4 Polynomial regression prediction

To calculate the polynomial regression prediction, we build a regression model for
each one of the processes during the analysis phase. Each model is a polynomial
of a certain degree, which consists of independent variables and coefficients.
The coefficients are calculated during the analysis, therefore, to calculate the
prediction of the percentile of the execution time of a process, we only need to fill
the independent variables.

During the prediction phase, the values of independent variables are calculated
from the numbers of distinct secondary processes in the predicted combination of
processes, as explained in Section 4.5.

Procedure

1. During the analysis phase:
(a) For each process:

i. Gather all data matrices with the specified primary process
ii. Calculate the regression model

2. During the prediction phase:
(a) Calculate the values of the independet variables from the predicted

combination
(b) To form the prediction, apply the model using the independent variables

4.7 Operational boundary

When deploying processes on the nodes, we want to collocate as many processes
as possible, as long as the RTT satisfies soft real-time requirements. This is done
in order to reduce the number of nodes needed. However, if a combination of
processes exceeds the computational capacity of a computer, their behavior can
become highly unpredictable. There are many ways in which a set of processes
can exceed the capacity of a computer: they can overload the CPU, require too
much memory, use too much network bandwidth, etc.

To give an example, imagine we collocated five processes, which write 50 MB
per second on disk, while the capacity of the computer is to write 200 MB per
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second on the disk. We would exceed the capacity by 50 MB per second, which
would result in a slowdown in the execution time of the processes.

As a result, a problem arises – how can we be confident that the predictor is
reliable when predicting a combination. It is reasonable to assume that a predictor
probably can not predict a combination that exceeds the computational capacity
of a computer by 500% and that such a combination probably exceeds the RTT
requirements anyway. There are, of course, exceptions, such as that we measured
in advance exactly this extreme combination, and now the predictor can predict
it with 100% accuracy – this situation, however, should be very rare.

As a result, we need to decide if a given combination of processes can be
reliably predicted. There are two solutions to this problem:

1. Dynamic solution: Design a special estimator, which would for any combi-
nation of processes evaluate the capability of the predictor to predict this
combination and estimate confidence in this prediction.

2. Static solution: Detect that a combination exceeds an operational boundary
(e.g., 200% of computer resources) and mark the prediction as potentially
unreliable.

We chose to implement the static solution and leave the dynamic solution
as future work. By setting the operational boundary, the user is given greater
control over the predictor and can avoid many problematic situations. The design
of the boundary detection system is explained in Section 5.7. In Chapter 6, we
examine the accuracy of the predictor, both with and without the use of boundary
detection, in order to evaluate its effects.
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5. Implementation
In this chapter, we focus in greater detail on the implementation of certain aspects
of the solution, as described in Chapter 4. During the implementation, we focused
on finding more than one way to solve a problem (e.g., more than one normalization
function, similarity function, clustering algorithm, etc.). The reason being, that
we do not know in advance which combination of methods is most suitable for
us, and as a result, we want to test out multiple combinations experimentally in
Chapter 6.

5.1 Data preprocessing

The purpose of the preprocessing is to extract useful statistical information from
the provided data matrices for similarity search between applications and to
determine the percentile of the slowdown of a primary process in a combination of
processes. The results of preprocessing are stored in order to reduce the calculation
time of prediction.

It is important to note that preprocessing differs for single data matrices
and combination data matrices. This is due to the fact that some properties
can be cumulatively influenced by secondary processes and thus do not offer
useful information. Unfortunately, the only reliably usable information in the
combination data matrix is the length of run time. Thus only single data matrices
are scaled and normalized.

5.1.1 Scaling

Initially, each row in the data matrix provides exact values of various properties
of a process (e.g., number of instructions in a calculation). It is necessary to
scale some of these values by their respective run time in a given row in order to
distinguish resource consumption of long-running processes from short-running
processes. As a result, a portion of the properties in a row will be expressed per
millisecond (e.g., instructions per millisecond), which is used later for similarity
search between processes. The user can configure which properties should be
scaled.

To give an example, without scaling a process M1, which calculates matrix
addition, and a second process M2, which calculates the same matrix addition two
times, would seem like processes with very different behavior without property
scaling (M2 would have the values of scaling properties double). However, with
scaling, we can see that those two processes behave essentially the same, just the
second process runs longer.

As explained in Section 3.2, each process calculation on the node will be
immediately repeated after completion. If we imagine two scenarios, M1-M1 and
M1-M2, the influence of the secondary process on the primary process should be
essentially the same in both cases (just two parallel matrix additions collocated).
Scaling is thus necessary in order to calculate the similarity of behavior between
processes.
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5.1.2 Statistics

With the properties scaled, we can extract statistical information from the data
matrix. For the single data matrices, the statistics are calculated for each property
and consist of:

• Mean
• Median
• Standard deviation
• Percentile
• Max
• Min

The result is again a matrix as each statistic is calculated for every property.
For the combination data matrices we only analyze the execution time property

and calculate the relative slowdown – the difference between the percentile of the
execution time of primary process running alone and in combination, measured as
the percentage of the primary percentile execution time:

percentile(combination time) − percentile(primary time)
percentile(primary time) (5.1)

5.1.3 Normalization

The final step in the preprocessing phase is to normalize the data, which transforms
the values of a property from its original range into values between 0 and 1. This
is needed as the values of different properties can be in very different ranges (some
properties are in single digits, other in millions). Without normalization, this
would distort the similarity search between processes greatly, as the properties
with large ranges would have a bigger impact. Different normalization methods can
have different influence on the overall prediction method. We chose to implement
the two most popular methods and compare them in Chapter 6.

Thus the result of data preprocessing is a set of preprocessed data matrices (one
for each process), which consists of normalized statistical information (illustrated
in Table 5.1).

instructions cache-misses read sectory written sectors io time
mean 0.8 0.47 0 1 1
median 0.75 0.48 0 1 1
deviation 0.02 0.01 0 0 0.02
... ... ... ... ... ...

Table 5.1: An example of a preprocessed single data matrix.

Min-max normalization

For every calculated statistic and every property we find the max and min value
among all processes. The normalized value of the property in a particular statistic
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of a given process X is then calculated as:

normalized values,p(X) = original values,p(X) − mins,p

maxs,p − mins,p

(5.2)

Where s represents a statistic and p represents a measured property.

Z-score normalization

For every calculated statistic and every property we find mean µ and standard
deviation δ among all processes. The normalized value of the property in a
particular statistic of a given process X is then calculated as:

normalized values,p(X) = original values,p(X) − µs,p

δs,p

(5.3)

Where s represents a statistic and p represents a measured property.

5.2 Calculating similarity between processes
As explained in Section 4.2, the meaning of similarity between two processes
depends on the description of said processes and on the interpretation of the
provided description. In our case, we form the description of processes from
preprocessed single data matrices. Combination data matrices are not used as we
only want to know the information about processes running alone without the
interference of other processes.

We implemented two distance measures, which is just an inverse of similarity
(clustering algorithms rely on distance instead of similarity), and both of these
measures use only a subset of the vectors available in preprocessed single data
matrices to describe a process. This is done in order to reduce the calculation
time.

Application of weights

During similarity calculation, we can also utilize weights, which indicate the
importance of various properties. The application of weights is straightforward
– we execute elementwise multiplication between each vector used to describe a
process and the weights. Because the values in weights range between 0 and 1, this
will cause some properties to contribute less or more towards the final similarity
value.

5.2.1 Average pair correlation distance

To calculate the average pair correlation distance, we describe the process using a
set of vectors – the max, min and percentile vector from the preprocessed single
data matrix. The correlation distance is then calculated between every pair of
vectors from the two sets and the results are averaged.

corr dist(u, v) = (u − ū) · (v − v̄)
||u − ū||2 × ||v − v̄||2

(5.4)
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Where ||u||2 is the euclidean norm of the vector, ū is the mean of elements
of the vector and u · v is the dot product of the vectors. The final average pair
correlation distance is then calculated as:

APCorrelation(U, V ) =

∑︁
u∈U

∑︁
v∈V

corr dist(u, v)

|U | × |V |
(5.5)

Where U and V are the two sets of vectors describing the two processes,
between which we calculate the average pair correlation distance.

5.2.2 Frobenius distance

To calculate the Frobenius distance, we describe the process by a matrix consisting
of the mean, median and standard deviation vectors taken from the preprocessed
single data matrix. The Frobenius norm is then calculated from the difference of
the matrices of the two processes, for which we calculate the Frobenius distance.

Frob dist(X, Y ) = ||X − Y ||F =
⌜⃓⃓⎷ m∑︂

i=1

n∑︂
j=1

(Xi,j − Yi,j)2 (5.6)

Where X and Y are the matrices representing the processes.

5.3 Calculating clusters

In Section 4.3, we introduced the idea of cluster analysis, and in Sections 4.6.2
and 4.6.3 we explained how the information of clusters of processes can be used
to predict the execution time of processes. In this section, we describe the chosen
clustering algorithms

Requirements

We are interested in hard clustering, which means that the relationship between
the object and the cluster is binary (the object either belongs or does not belong
into the cluster). This is in contrast with fuzzy clustering, where objects belong
to all clusters to a certain degree, which is not suitable for us.

Additionally, we require strict partitioning clustering, which means that each
object belongs to exactly one cluster. Thus we do not allow outliers or overlapping
of clusters. The reason is that overlapping and outliers would bring too much
complexity to the prediction method. However, the exploration of these concepts
could be suitable for future work.

The last requirement is the automatic detection of the number of clusters in
the dataset. Consequently, we exclude algorithms such as k-means, where the user
has to specify the number of clusters to detect. The reason being that the number
of clusters is very hard to estimate in advance in our situation, and various sets
of processes can produce vastly different numbers of clusters.
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Figure 5.1: Comparison clustering algorithms provided by scikit using a toy
dataset[14].

Selected algorithms

To be confident in the correctness of used clustering algorithms, we chose to use
the implementation provided by Python scikit library[14].

The overview of all clustering algorithms provided by scikit using a toy dataset
can be seen in Figure 5.1. In this overview, we can see that different clustering
methods have very different outcomes. It is thus very important to choose a
suitable algorithm for our purposes.

Imagine that the distances between data points in the toy dataset in Figure
5.1 are distances in the behavior of processes. We hypothesize that the clustering
provided by Affinity propagation and mean-shift is most suitable if we want to
cluster processes by the similarity of their behavior. The rest of the algorithms
provided by scikit do not automatically detect the number of clusters, and the
way they form clusters does not fit our needs.

For example, in the first row, we do not want to detect the outer and inner
circle, but we want to split both circles into partitions. The same applies to the
second row, where we do not want to detect two separate moons. Similarly, in
the last row, we would like to split the square into four parts (in this case, the
mean-shift does not cluster ideally).

To calculate the clusters, we provide the clustering algorithms with a distance
matrix calculated using preprocessed data matrices and our similarity measures. A
distance matrix is a matrix containing the information about the distance between
each pair of processes.
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5.3.1 Affinity propagation

Affinity propagation[15] is based on finding exemplars around which clusters are
then formed. This is done through a technique called message passing, during
which information is exchanged between data points until convergence. This
information represents the ability of a data point to be the exemplar of other
data points. The exemplars are iteratively chosen until they remain unchanged
for some number of iterations, or a maximum number of iterations was reached.

The time complexity is O(N2T ), where N is the number of processes and T is
the number of iterations until convergence. The memory complexity is O(N2).

5.3.2 Mean-shift

Mean-shift[16] is a centroid based algorithm, which updates candidates to be the
mean of the points in a region. We can understand this algorithm by thinking of
our data points to be represented as a probability density function, where higher
density regions will correspond to the regions with more points. In clustering,
we need to find clusters of points, i.e., the regions with higher density in our
probability density function. This is done by iteratively shifting the centroids
towards higher density regions. The time complexity is also O(N2T ).

5.4 Weights training

As introduced in Section 4.4, we need weights in order to determine the importance
of properties measured in data matrices, in regards to the similarity of process
behavior and cluster analysis.

To illustrate the idea behind the solution of training the weights, imagine we
had processes C1, C2 and C3 as CPU-heavy processes and D1, D2 and D3 as disk
heavy processes. We ran a cluster analysis and the result was three clusters [C1,
D1], [C2, D2] and [C3, D3]. The reason being that in the data matrices one of
the measured properties has random values. Thus the calculation of similarity of
processes is negatively impacted, and consequently, also the clustering is negatively
impacted.

We want to tell our training model, that the correct clustering is [C1, C2,
C3] and [D1, D2, D3]. With this information, the training model can adjust the
weights and try again, while hopefully lowering the importance of the erroneous
property. In the end, we should end up with weights, which adjust the importance
of properties in such a way, that the resulting clustering is correct.

In this scenario, the processes C[1,3] and D[1,3] are the training dataset. The
correct clustering is the ground truth, which is assigned by a human. Thus we
compare the results of cluster analysis on the training dataset against ground
truth labeling. This way, we can determine if the weights improve the calculation
of similarity of process behavior. Using the labeling in the ground truth dataset,
we essentially determine, what does a similarity of process behavior mean to us,
and the weights then shift the calculation of similarity in order to satisfy it. This
method of weights training can be viewed as a case of supervised learning.
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It is important to note that this approach is heavily dependent on the quality
of the training data. If we provided ground truth, which was wrongly labeled, the
weights would train to distort the similarity search. The ground truth, which we
used in our solution, is described in Section 6.3.

Thus the process of training the weights is:

1. Create a training dataset from the ground truth.
2. For some number of iterations:

(a) Use the latest weights and execute cluster analysis on the dataset.
(b) Compare the result of cluster analysis to the ground truth labeling and

assign it a score.
(c) Based on the score, generate new weights with the goal of maximizing

the score.

The score measures how well did the cluster analysis perform with the weights.
The implementation of scoring is explained in Section 5.5. Thus the problem
of weights training is transformed into an optimization problem with the goal
of maximizing score through weights. Such an optimization problem has many
common solutions, the algorithm which we implemented is described in Section
5.4.1.

5.4.1 Simulated annealing

Simmulated annealing is a method used to find global optimum of a function. In
our situation, the function f : Rn− > R is the cluster analysis combined with
scoring method, which takes the weights of length n as argument and produces
single number (the score). In order to explain how simulated annealing works, let
us compare it to hill climbing. Let us define:

• f : Rn− > R function for which we want to find global maxima
• x, y ∈ Rn vectors
• G : Rn− > Rn weights generation function

The algorithm for hill climbing (when searching for maxima) goes as follows:

1. x = empty weights
2. For some number of iterations:

(a) y = G(x)
(b) If f(y) > f(x) then x = y

Note that the weights generation function produces new weights based on the
previously best-performing ones. The disadvantage of hill climbing is that there is
a chance of weights getting stuck in local maxima. In simulated annealing, we
sometimes allow the acceptance of weights with a worse score, instead of always
accepting weights with a better score. The hypothesis is that this will allow us to
jump out of local maxima and find the global one, or at least get closer to it.

For this purpose, we define acceptance criterion, which determines if weights,
which result in a worse score, will be used as the basis for next weights generation.
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The acceptance criterion changes during the algorithms run, which is called
cooling schedule. A cooling schedule is specified by the initial temperature,
decrementfunction for lowering the value of temperature, and the final value
of temperature at which the annealing stops[17]. With high temperature, the
acceptance criterion accepts worse weights relatively frequently, but as time goes
on and the temperature cools down, the acceptance criterion behaves more and
more like hill climbing.

The idea is that we jump out of local maxima at the begining and towards
the end we climb the global maxima (or value close to the global maxima). Let
us define:

• f : Rn− > R function for which we want to find global maxima
• x, y ∈ Rn vectors
• G : Rn− > Rn weights generation function
• P : (R, R, R)− >< 0, 1 > acceptance criterion
• T temperature
• C decrement function

The algorithm for simulated annealing goes as follows:

1. x = empty weights
2. While T>1:

(a) y = G(x)
(b) x = y with the probability of P (f(x), f(y), T ))
(c) T = C(T )

When implementing this algorithm, we need to solve mainly three different
issues, which are specific to the kind of function for which we want to find global
optima: how to implement weights generation function, acceptance criterion, and
decrement function.

The weights generation function tak is defined as:

• G(weights) = weights + rand(−1, 1) ∗ [. . . , 0, dist, 0, . . . ]

Where rand(...) is a function which randomly chooses one of the provided
numbers, dist = 1/3 and the position of dist in the vector [. . . , 0, dist, 0, . . . ] is
also random. The values of a particular weight can not get below 0 or exceed 1.
Thus weights range between zero, low, medium and high importance.

The acceptance criterion is implemented as :

P (f(x), f(y), T ) =

⎧⎪⎪⎨⎪⎪⎩
1 if f(x) =< f(y)

exp

(︄
f(y)−f(x)

T

)︄
if f(x) > f(y)

(5.7)

The decrement function is implemented as C = T ∗ cooling, where cooling
is a constant (usually 0.99) and starting temperature T is set to 100000. The
temperature at which simulated annealing stops is T = 1.

Inspiration for these functions was drawn from[17].
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5.5 Scoring clusters

As explained in Section 5.4, we need to assign a score to a clustering when
compared to a ground truth dataset. The choice of a scoring function influences
the training of weights greatly. It is thus important to try multiple functions and
choose the best one experimentally.

To give an example, imagine we had a scoring function, that would return a
score of 1, if the number of clusters matched between the calculated and ground
truth clustering, and otherwise gave a score of 0. The trained weights would then
try to push the clustering algorithm into detecting a certain amount of clusters
while disregarding any requirements for the similarity of behavior of the processes.
Thus the final clustering when using weights trained with such scoring would have
the correct number of clusters, however, the contents of the clusters could be
completely wrong.

As a result, we need to use such scoring functions, that can project the
similarity of behavior into the score. As already mentioned, the ground truth
dataset is labeled by the behavior of the processes. Thus the scoring function has
to take this labeling into account in an intelligent manner.

However, such a scoring function can not be as trivial as counting the number
of errors in labeling. The evaluation metric should not take the absolute values of
the cluster labels into account but rather if this clustering defines separations of
the data similar to the ground truth[14].

Selected scoring functions

To be confident in the correctness of used scoring functions, we again chose to use
the implementation provided by Python scikit library[14].

We selected two scoring functions, namely Fowlkes-Mallows score and V-
measure. Both functions range between 0 and 1, where 1 is perfect clustering and
0 completely wrong clustering.

5.5.1 Fowlkes-Mallows score

The Fowlkes-Mallows score is calculated as the geometric mean of the pairwise
precision and recall[18].

FM = TP√︂
(TP + FP ) × (TP + FN)

(5.8)

Where TP is the number of pairs of processes, which belong to the same
cluster in both detected and ground truth clusters (true positives). FP is the
number of pairs of processes, which belong to the same cluster in the ground
truth, but not into the same detected cluster (false positives). FN is the number
of pairs of processes, which belong to the same detected cluster, but not into the
same cluster in the ground truth (false negatives).
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5.5.2 V-measure
V-measure is calculated as the harmonic mean of homogeneity and completeness
of the clustering[19]

v = 2 × h × c

h + c
(5.9)

Homogeneity and completeness scores are given by:

h = 1 − H(C|K)
H(C) (5.10) c = 1 − H(K|C)

H(K) (5.11)

Where C are the detected clusters, K the ground truth clusters, H(C|K) is
the conditional entropy of the ground truth and detected clusters, and H(C) is
the entropy of the detected clusters.

H(C|K) = −
|C|∑︂
c=1

|K|∑︂
k=1

nc,k

n
× log

(︃
nc,k

nk

)︃
(5.12)

H(C) = −
|C|∑︂
c=1

nc

n
× log

(︃
nc

n

)︃
(5.13)

Where n is the number of processes, nc and nk the number of processes in
cluster c and ground truth cluster k, and nc,k number of processes from k assigned
to c. H(K|C) and H(C) is defined symmetricaly.

5.6 Calculating polynomial regression models

As explained in section 4.5, we need to calculate the regression model for each
process. More specifically, we need to calculate the coefficients of the polynomial
of independent variables. The model for a process X is expressed in Equation
5.14.

Xpercentile = x0 + x1Y + x2Z + x3Y
2 + x4Z

2 + x5(Y × Z) . . . (5.14)

Where Y and Z are the number of some secondary processes Y and Z and
Xpercentile is the percentile of execution time of process X. Our goal is to calculate
the coefficients x0, x1, etc. The number of the coefficients depends on the number
of distinct processes, which can be collocated with process X, and the degree
of the polynomial. To calculate the coefficients, we need to first gather all data
matrices with the primary process X. The value of the percentile of execution
time in each data matrix can be expressed as an equation:

Xpercentile1 = x0 + x1Y1 + x2Z1 + x3Y
2

1 + x4Z
2
1 + x5(Y1 × Z1) . . . (5.15)

Where the values of Xpercentile1, Y1 and Z1 are known and the coefficients
are unknown. Similarly, we would have equations for Xpercentile2, Xpercentile3,
etc. depending on the number of measured combination data matrices. We can
transform this set of equations into two vectors and a matrix.
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x =

⎡⎢⎢⎢⎢⎣
x0
x1
...

xn

⎤⎥⎥⎥⎥⎦ (5.16) A =

⎡⎢⎢⎢⎣
Y1 Z1 Y 2

1 . . .
Y2 Z2 Y 2

2 . . .
. . . . . . . .

Ym Zm Y 2
m . . .

⎤⎥⎥⎥⎦ (5.17)

b =
[︂
Xpercentile1 Xpercentile2 . . . Xpercentile(m)

]︂
(5.18)

Where the matrix A has dimensions m × n. The vector b holds the values from
the right side of the equations – percentiles of execution time of the process X
when collocated with various combinations of processes. The matrix A holds the
values from the right side of the equations (the polynomial values of the numbers
of secondary processes) and the vector x holds values of the coefficients. Our goal
is to find:

argminx||Ax − b||2 (5.19)

Where ||2 is the euclidean norm. In other words, we want to find vector x,
which after multiplying the matrix A, will produce a vector of execution times,
which has the smallest distance from the original vector of execution times b.

To calculate the coefficients, we chose the method of non-negative least squares
(NNLS). Standard least squares minimizes the sum of squares of the residuals
(the difference between measured and calculated percentile of execution time) for
each equation. The problem is that standard least squares can yield negative
coefficients, and consequently, such coefficients could predict a negative slowdown
in percentile of execution time. Because negative slowdown does not make sense
in our case, we opted for NNLS, which is a constrained version of least squares,
where negative coefficients are forbidden.

For the calculation of NNLS, we used the solution provided by sklearn[20].
After having the coefficients (the regression model) calculated for a given process,
the prediction of a given combination of processes is formed simply by assigning
the numbers of the secondary processes into the model.

The polynomial regression prediction can, in theory, predict any combination
of processes. However, we consider the prediction to be unsucessful if the result
is extremely high – in our case, higher than twenty times the percentile of the
execution time of the process running alone.

5.7 Ensuring operational boundary

As explained in Section 4.7, in our solution, we want to detect the situation in
which a combination of processes exceeds a user-specified computational capacity
of a computer (e.g., 200% of the capacity).

In order to do so, we first define what is the maximal value of a property:
Maximal value of a measured property on a given computer is a value, which is
impossible to exceed cumulatively on the computer with any number of running
processes. To use the example of a number of written bytes per second on disk, the
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maximal value of this property could be 100 MB per second due to the hardware
performance.

It is important to note that processes could have upper limits on the usage
of various resources – for example, a process could be forbidden to allocate more
than 2 GB of memory by the OS. The maximal value of a property is not the
highest value, which a process can reach, but the highest value, which a computer
can reach.

These maximal values then represent the 100% capacity of the computer in
regards to the measured properties. We determine if a combination of processes
exceeds a specified percentage of the capacity of the computer as follows:

1. For each property:
(a) Sum the average value of that property from all processes in the

combination
(b) If the sum is lower than the specified percentage of maximal value of

the property, this property does not exceed the boundary
2. The combination of processes does not exceed the boundary if each property

lies below the boundary

As a result, in order to establish the operational boundaries, we need to
approximate the maximal values of properties in the data matrix. It is important
to note that these maximal values vary between types of nodes due to the difference
in measured properties, as explained in Section 3.3.

5.7.1 Approximating maximal values of properties

There are multiple possible approaches to approximate the maximal values, and
they can be split into two categories – approaches, which use the information
about the hardware and software (configuration) of the computer, and those,
which do not use this information. In our solution, we use the second category.

Let us first explain why we did not choose to primarily use the information
about configuration of the computer. Imagine we knew details about the CPU,
such as clock rate, architecture, etc. We could, in theory, estimate the maximal
number of instructions, which a multi-threaded process can use in a unit of time.
However, such an estimate would be unrealistic, as the performance of a computer
depends on the combination of all hardware and software components. To estimate
all properties, which indicate a resource usage, would require a very complex
model and understanding of the computer. This would soon become unrealistic
with large numbers of properties and unexpected components on new node types.

The approach we chose uses only information about the processes, which means
data matrices with various measured properties. We hypothesize that we can
approximate the maximal values of these properties through measurement of the
performance of extreme processes (benchmarks) on the computer. As a backup
option, the user can also supply the predictor directly with the information about
maximal values of various properties to deal with limitations on resource usage by
the OS and other problems with measurement. The primary way of approximating
the maximal value of these properties should, however, be automatic.
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The predictor comes with a set of benchmarks. When a user wants to predict
on a new type of node, the predictor requests the measurements of provided
benchmarks on this node. These benchmarks aim to use all of the capacity of
various resources on the computer. As a result, we are provided with data matrices,
which have various properties measured, hopefully, close to their maximal values.

Additionally, if a process supplied by the user exceeds the benchmarks in some
property, the maximal value of this property will be estimated by this process
instead of the benchmarks. Thus even if the benchmarks are not designed ideally,
we can expect that the processes running in the edge-cloud system will eventually
supply us with information about the maximal values of various properties. The
probability that one process from the large numbers of processes running in
the edge-cloud system will come close to the maximal value is expected to be
reasonably high. On top of that, if the supplied benchmarks do not focus on
some kind of property (e.g., usage of graphic cards), the user processes will, which
makes this approach future-proof.

The description of the benchmarks which we used during the evaluation is
provided in Section 6.3.

Excluding properties

Some properties can be excluding in the sense, that they exploit the same resource.
For example, if we had separate properties for reads and writes on the disk, these
two properties would exclude each other – two processes, one reading and the
other writing 60 MB per second to/from disk would exceed the capacity of 100
MB per second disk.

To reflect this behaviour, it is needed to introduce new property into the data
matrix aggregating excluding properties into one, which is the responsibility of
the provider of the data.

User provided approximation

The usage of some properties can be restricted by the OS, such as the maximal
number of allocated bytes by a process. As a result, the approximation of this
property using benchmarks would become impossible. For example, a process
could maximally allocate 4 GB of data, but the capacity of the computer is 32
GB.

As a result, it is permitted that the user can provide their approximation of
maximal values of properties. The user can also specify which properties should
be used to detect the boundary. For example, if one of the measured properties
was non-limiting, the limit of such property can be set to infinite.
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6. Evaluation
In this chapter, we first describe what the goal of the evaluation is. After that, we
introduce the dataset used for evaluation, and at last, we describe and evaluate
the experiments.

6.1 Goal of the evaluation

In Section 5, we introduced multiple normalization, similarity, clustering, scoring
and optimization algorithms. The reason for such a range of algorithms is that
each one can influence the cluster analysis of processes and calculation of weights,
which consequently influences the prediction methods. Different combinations of
algorithms thus need to be evaluated experimentally, as it is very hard to estimate,
which combination of algorithms will result in the best prediction performance.

The first goal of the evaluation is to find out which combination of algorithms
has the best performance on a supplied dataset of real applications. We also
examine the best performing combination in depth both inside and outside of the
operational boundary.

The second goal of the evaluation is to demonstrate that our system for weights
training is able to improve the prediction performance if the supplied dataset gets
corrupted by erroneous process properties.

It is important to note that each experiment and graph generation is automated
and is intended to be a part of the predictor. The reason being that it is
important to supply the user of the predictor with information about the prediction
performance.

6.2 Measured dataset

First, we need to describe the dataset used for experiments and the configuration
of the servers, which were used for measurements.

In total we have 17 processes at our disposal and measured:

• 17 single data matrices (100% of all singles)
• 289 double data matrices (100% of all doubles)
• 1500 triple data matrices (57.6% of all triples)
• 1500 quadruple data matrices (9.1% of all quadruples)
• 3000 quintuple data matrices (3.6% of all quintuples)

The equation for the total number of data matrices in a given arity is described
in Section 3.3.3. The measured combinations are chosen randomly from all
possible combinations in a given arity. Because the measurement of one data
matrix lasts for one hour, this data set required 6306 hours (263 days) of machine
time. Seven identical servers were used for the measurement of data matrices,
thus the measurement took around 38 days.
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Process description and measured properties

The measured processes are summarised in Table 6.1. As can be seen from the
table, some of the processes are taken from existing projects (scalabench and
stress-ng) and some are originally created (processes with high disk usage and
various in-memory algorithms). The measured properties are summarised in Table
6.2.

ID Source Description CPU RAM Disk
A scalabench Renders set of images using ray tracing ++++ ++
F scalabench In-memory transactions of banking application ++ ++++
H scalabench Optimization of ABC, SWC and SWF files ++ +++
K scalabench Stanford topic modeling +++ ++
O scalabench Emulates AVR microcontrolers programs ++ ++
SMATRIX stress-ng Transposition on a 4096x4096 matrix + ++
AVL original Inserts and deletes nodes on an AVL tree + ++
CYPHERD original Cyphers a random string and writes result + ++ ++
EGG original Egg dropping problem solver + +
FACE original Human faces detection on images from disk + ++ +
FLOYD original Floyd-Warshall’s shortest path search + +
JSOND original Randomly generates and writes json files ++ ++++ +
PDFD original Randomly generates and writes pdf files + ++++ +++
RB original Inserts and deletes nodes on a RB tree + ++
ROD original Rod cutting problem solver ++ +
SORTD original Random number sequence sorted and written + + +++
ZB original Extraction of many small files from Zip archive + ++++ ++++

Table 6.1: List of selected processes.

Process ID Description
elapsed Elapsed time in miliseconds
ref-cycles Total number of reference cycles
instructions Total number of instructions
cache-references Total number of cache references
cache-misses Total number of cache misses
branch-instructions Branch instructions
branch-misses Branch target address cache misses
PAPI L1 DCM L1 data cache misses
rw completed Total number of reads and writes completed
rw merged How many times are reads and writes merged for efficiency
rw sectors Total number of sectors read and written
io in progress Number of I/O in progress
io time Milliseconds spent doing I/Os
weighted io time Measure of I/O completion time

Table 6.2: List of measured properties.
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Node description

The servers used for measurement consisted of 64-bit quad-core Intel Xeon E3-
1230v6 @ 3.50GHz CPU, the disk was Seagate Constellation.2 ST9500620NS
500GB 7200 RPM 64MB Cache, SATA 6.0Gb/s 2.5 and we had 32GB of RAM
available.

The computer ran Fedora Linux 28, Docker and OpenJDK with hyper-
threading, turbo-boost and other power management features were disabled.

6.3 Universal Load Simulator

In order to generate ground truth processes for weights training and benchmark
processes for boundary detection, we created the Universal Load Simulator (ULS).
The main idea behind ULS is the ability to quickly generate single-threaded
processes with various resource usage and behavior.

ULS achieves this by executing a sequence of Blocks, namely CpuBlock,
MemBlock, DiskBlock or IdleBlock. Each of these Blocks is focused on the usage
of a different computer resource. CpuBlock calculates various mathematical
functions. MemoryBlock allocates and reallocates matrices, switches numbers
in the matrix and uses recursion to change data on the stack. DiskBlock writes
random data to a file on disk. IdleBlock executes sleep for a specified number of
milliseconds. ULS is configured by a config file, where the total number of blocks,
the ratio between various blocks, the way they are mixed, and the properties of
Blocks are specified.

Imagine that we want to simulate a process, which half of the time focuses on
CPU and half of the time focuses on disk, while running 6 seconds. We simply
create a config file, where we specify that we want 1000 randomly mixed Blocks,
half of them CpuBlock, half DiskBlock. The number of calculations in CpuBlock
and the number of written bytes in DiskBlock can also be specified in order to
achieve the desired execution time on a given computer.

We can see that the creation of a process with desired properties is greatly
simplified. ULS is also ideal for the creation of ground truth, as we know exactly
the properties of generated processes. The main challenge of ULS is the design
of Blocks, as each block has to use only a single computer resource in a realistic
manner.

6.3.1 Ground truth and bechmarks

The creation of suitable ground truth is very important for the training of weights.
We designed the ground truth to cover the most important aspects of resource
usage (CPU, disk, memory and their combination) with various intensities. For
example, a process with 60% intensity does nothing for 40% of the execution time
(executes IdleBlocks) and 60% of the time uses computer resources.

Using the ULS, we created seven categories of processes, each category ranging
from 40% to 100% intensity with 5% steps:

• C45, C50 ... C100 – CPU load processes
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• M45, M50 ... M100 – Memory load processes
• D45, D50 ... D100 – Disk load processes
• CD45, CD50 ... CD100 – Equally mixed CPU and disk load processes
• CM45, CM50 ... CM100 – Equally mixed CPU and memory load processes
• DM45, DM50 ... DM100 – Equally mixed disk and memory load processes
• CDM45, CDM50 ... CDM100 – Equally mixed CPU, disk and memory load

processes

In each category, processes with intensity from 45% to 70% are labeled as a
part of low-intensity cluster and processes from 75% to 100% as a part of the
high-intensity cluster. Thus the ground truth data consists of 84 processes and is
labeled into 14 clusters.

We hypothesize that if we are able to find weights, which improve the cluster
analysis of the ground truth, the same weights will also improve the cluster analysis
of real processes. The improvement of cluster analysis should then manifest as an
improvement in prediction accuracy.

6.4 Benchmarks and boundary detection
The benchmarks used in boundary detection consists of all the ground truth
processes and all of the real processes. Because the supplied processes are single-
threaded, we approximated the final maximal values of CPU related properties
as the measured maximal values multiplied by four, due to our computer having
four cores.

For the evaluation, we decided to set the operational boundary as 140% of the
used computer resources. The reason being that with our benchmarks, we probably
did not reach exactly 100% of the computer capacity and the real maximal values
are probably a few percentage points higher. In addition, the boundary set to
100% of computer resources excludes over 90% of measured combinations, which
leaves us with not enough combinations for the experiments. Boundary set to
140% excludes around 80% of measured combinations, which is more reasonable.

6.5 Evaluation of the prediction methods
In this section, we compare the ability of different combinations of algorithms
to perform cluster analysis and their effects on prediction accuracy. For every
combination of the clustering algorithm, distance measure and normalization,
we calculate prediction score. Based on this score, we then examine one of the
combinations in more depth. In this set of experiments, we disregard the influence
of weights, which are examined in Section 6.6.4.

6.5.1 Prediction score

The prediction score is a simplified measure of the accuracy of our prediction
methods.

1. For a specified number of iterations:
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(a) Take randomly 50% of all data matrices and use them to predict the
90th percentile of the execution time of the remaining 50%. Only closest
friend, primary-cluster and cluster-cluster predictions are calculated,
as the regression-based predictions are not affected by the method
combinations.

(b) Calculate prediction improvement, which is the difference between the
prediction error and baseline error. The baseline is the 90th percentile
of the execution time of the primary process running alone.

2. Calculate the average improvement of prediction over baseline.

prediction score =

∑︁
i∈I

∑︁
p∈P

improvement(i, p)

I × |P |
(6.1)

Where I are iterations, P is the set of prediction methods (closest friend,
primary-cluster and cluster-cluster). The prediction improvement is calculated as:

improvement(i, p) =

∑︁
c∈Ci,p

|1 − baseline(c)
real(c) | − |1 − p(c)

real(c) |

|Ci,p|
(6.2)

Where Ci,p is the set of combinations able to be calculated in given iteration
by a given prediction method p and real is the real percentile of the execution
time of the primary processes in given combination.

Table 6.3 shows the prediction score for each combination of algorithms. We
can notice that the top 6 combinations perform comparatively well. ZValue
normalization performs worse than MinMax, especially when combined with
APCorrelation distance, which results in a large drop of performance. We will
examine mean-shift, APCorrelation and MinMax combination in-depth, as it
results in the best performance.

Prediction Score Clustering Distance Normalization
14,58 MeanShift APCorrelation MinMax
13,97 Affinity Frobenius ZValue
13,57 Affinity Frobenius MinMax
12,99 Affinity APCorrelation MinMax
12,7 MeanShift Frobenius MinMax
12,69 MeanShift Frobenius ZValue
2,71 Affinity APCorrelation ZValue
0,16 MeanShift APCorrelation ZValue
Average = 10,42

Table 6.3: Prediction scores of combinations of algorithms using uncorrupted
processes.

Cluster visualization

Figure 6.1 shows the clustering of processes calculated using mean-shift clustering,
APCorrelation distance and MinMax normalization. In the figure, each dot
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Figure 6.1: The clustering of uncorrupted processes using mean-shift clustering,
APCorrelation distance and MinMax normalization.

represents a process and is labeled by its name using an arrow. The color of the
dot represents the cluster in which the process belongs.

The visualization is created using multidimensional scaling (MDS implemented
by sklearn[21]) of the process distance matrix (a matrix of distances between each
pair of processes). MDS translates the information about the distance between
pairs of processes into Cartesian coordinates in arbitrary dimensions (in our case,
two dimensions).

6.5.2 Integrity test

The core of the in-depth analysis of prediction methods using mean-shift clustering,
APCorrelation distance and MinMax normalization consists of integrity test:

1. Calculate clusters and process similarity
2. For integrity from 95% to 5% with 5% steps:

(a) For a specified number of iterations:
i. Take a percentage of data matrices equal to integrity, which will

serve as the information used to form predictions. Single data
matrices are always taken, the rest of the data matrices are chosen
randomly.

ii. Take the rest of the data matrices and use them as a target of the
predictions.

iii. For each target data matrix, form a prediction of the 90th percentile
and compare it to the real value.

iv. Calculate the average error, percentage of unsuccessful predictions
and the average improvement over baseline.
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Figure 6.2: Integrity test average prediction error inside the boundary.

In our tests, we used ten iterations. The reason behind this integrity test is
that it is important to evaluate the prediction methods with various amounts of
information available to form predictions.

We have divided the visualization of results to outside and inside of the
boundary. As already mentioned in Section 6.4, the boundary is set to 140% of
the computer capacity.

To form the polynomial regression prediction, we use third-degree polynomial.
The reason being, that first and second degrees resulted in very low accuracy, and
the fourth degree is too computationally demanding.

6.5.3 Average Error

First let us examine the average error of each prediction method, which is calculated
for each integrity level and each prediction method p as:

average error =

∑︁
i∈I

∑︁
c∈Ci

|1 − p(c)
real(c) |∑︁

i∈I
(|Ci|)

(6.3)

Where I are iterations and Ci is the set of combinations successfully predicted
in a given iteration. The results are visualized in Figures 6.2 and 6.3. The baseline
is again the 90th percentile of the primary process in a predicted combination
when running alone.

Inside the boundary:
We can see that the closest-friend prediction has the best average error of

around 8%. The polynomial regression is initially the second-best performing
method, however, in the lower integrity levels, it is surpassed by primary-cluster
prediction. We can also notice that the cluster-cluster prediction is the worst
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Figure 6.3: Integrity test average prediction error outside the boundary.

performing with almost the same average error as the baseline of around 17%.
The combined prediction method forms prediction by first trying the closest-friend
method, if unsuccessful due to insufficient data turns to primary-cluster, and, if
still unsuccessful, uses the polynomial regression method. Unfortunately, at the
5% integrity level, the combined prediction method exceeds the baseline together
with the polynomial regression prediction.

Outside the boundary:
We can notice that the closest-friend and the primary-cluster prediction have

almost the same average error of around 8%. The regression method is again
better than the cluster-cluster method. However, now the cluster-cluster method
is significantly better than the baseline. The combined prediction first tries the
closest-friend method, then primary-cluster followed by polynomial regression
method and as a last resort uses the cluster-cluster prediction. We can again see
a significant increase in the average error in the low integrity levels.

Both inside and outside:
It is important to note that in both cases, the closest-friend, primary-cluster and

cluster-cluster predictions maintain very stable levels of average error throughout
all integrity levels. Unfortunately, the polynomial regression prediction suffers
from increased average error in the lower integrity levels, which also causes the
combined prediction to increase in average error. Interestingly the closest-friend
and cluster-cluster predictions maintain almost the same average error both
inside and outside the boundary. The primary-cluster even performs with lower
average error outside the boundary. We can also see that the boundary detection
successfully eliminates combinations with a higher slowdown, as the baseline error
is almost double outside the boundary when compared to inside the boundary.
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Figure 6.4: Percentage of predictions not calculated due to insufficient information
inside the boundary.

6.5.4 Unable to calculate

Let us now focus on the percentages of successful predictions, which are visualized
in Figures 6.4 and 6.5. A prediction can be unsuccessful due to an insufficient
amount of information provided to form the prediction. Each prediction method
calculated using a different set of data matrices, and as a result, some prediction
methods can perform the prediction more often than others.

Inside the boundary:
Initially, all of the prediction methods except for the cluster-cluster method

start around the 20% of unsuccessful prediction with regression prediction having
the most unsuccessful predictions. The closest-friend prediction performs much
better inside the boundary than outside.

Outside the boundary:
We can see that the closest-friend prediction has the highest amount of

unsuccessful predictions by far. The reason being, that outside the boundary lie
combinations with a higher number of processes (higher arity), which is harder
to predict for closest-friend prediction. The polynomial prediction becomes the
second-best performing in lower integrity levels.

Both inside and outside:
As explained in Section 4.6, we expect the closest-friend, primary-cluster and

cluster-cluster to have an increasingly higher percentage of successful predictions,
which is confirmed in both cases. Unfortunately, closest-friend, which is the
method with best average error, also has by far the highest amount of unsuccessful
prediction. Interestingly, the polynomial prediction performs better outside the
boundary, with only around 15% of predictions unsuccessful due to predicting
extreme values. The polynomial prediction also has the most stable percentage
of unsuccessful prediction across all integrity levels. Finally, we can see that the
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Figure 6.5: Percentage of predictions not calculated due to insufficient information
outside the boundary.

combined prediction method can predict almost all combinations.

6.5.5 Average improvement over baseline

Because each prediction method is able to calculate a different set of combinations
of processes, it is necessary to provide a more detailed comparison to the baseline.
For example, the closest-friend prediction having a low average error is meaningless,
if the baseline has an even lower average error for the same combinations, which
the closest-friend prediction is capable of predicting. This could happen if the
closest-friend prediction method could calculate only low arity combinations
without much change in execution time.

As a result, we need to compare the average error of each prediction method
to the average baseline error on the same process combinations, which is the same
as the prediction score in Section 6.5.1. Figures 6.6 and 6.7 show an individual
prediction score for each prediction method.

Inside the boundary:
We can see that even though the closet-friend prediction had the lowest

average error, it does not have the highest average improvement over baseline,
which belongs to the polynomial regression. We can also notice that the cluster-
cluster method, which had almost the same average error as the baseline, even
has negative average improvement. Importantly in the 5% integrity level, the
polynomial and the combined prediction method decreases below the baseline.

Outside the boundary:
Outside the boundary, all of the prediction methods have a positive improve-

ment over the baseline in all integrity levels. We can again see the decrease
in performance of the polynomial and combined prediction method at the 5%
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Figure 6.6: Integrity test average improvement over baseline inside the boundary.

Figure 6.7: Integrity test average improvement over baseline outside the boundary.
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integrity level, however, the methods still stay well above the baseline. The
primary-cluster prediction performs better than the closest friend outside the
boundary, which is the opposite inside the boundary.

Both inside and outside: We can see that in both cases, the polynomial
regression prediction has the best performance, and the cluster-cluster prediction
has the worst performance. In both cases, the combined prediction method also
follows the polynomial regression. This is due to polynomial prediction having
many more successful predictions in the lover integrity levels.

6.5.6 Confusion matrix

As explained in section 3.1, we propose a layer where a solver uses the predictor
to assigns combinations of processes on edge-cloud servers. This is done in order
to satisfy the soft real-time requirements of developers. Let us consider the
following requirement: In 90% of calculations, a process is required to complete
with maximally 10% slowdown when compared to the execution time of the process
running alone.

It is important to examine, how succesful the predictor is in detecting, which
combination of processes satisfy such a requirement and which does not. Figures
6.8 and 6.9 visualize the average confusion matrix (10 iterations of itegrity test)
of the combined prediction method. The chart shows the average percentage of
combinations, for which applies:

• TP – true positive – prediction:satisfied, reality:satisfied
• TN – true negative – prediction:not satisfied, reality:not satisfied
• FP – false positive – prediction:satisfied, reality:not satisfied
• FN – false negative – prediction:not satisfied, reality:satisfied

Inside the boundary:
We can see that the majority (around 85%) belong to true positive and true

negative cases, with a true positive majority (around 55%).
Outside the boundary:
We can notice that around 90% are either true positive or true negative. The

majority belongs to true negative (around 70%), which is in contrast to the cases
inside the boundary.

Both inside and outside:
In our situation, the most problematic category is false positive, in which

case we would assign a combination on a server, which would not satisfy the
requirements set by the developers. We can see that this category is the least
represented one, both inside and outside the boundary, with only around 5% of
predicted combinations.

6.5.7 Results analyzed

The primary-cluster prediction is the most accurate, however, it comes with a high
percentage of unsuccessful predictions. In our opinion, the combined prediction
method is the most suitable one, as it still maintains high accuracy and is able
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Figure 6.8: Visualization of confusion matrix for each integrity level inside the
boundary for the combined prediction method.

Figure 6.9: Visualization of confusion matrix for each integrity level outside the
boundary for the combined prediction method.
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to often successfully complete a prediction. The calculation of one combined
prediction takes about 0.01 seconds on average.

We can see that the performance of prediction methods gets significantly worse
at the 5% integrity level. As a result, the predictor should be supplied with at
least 10% of the combinations measured in order to perform well.

The boundary detection system proved to be useful by selecting combinations
with lower slowdown inside the boundary. This results in the majority of prediction
cases being true positive inside the boundary (around 55%). Outside the boundary,
only about 20% of the predictions are true positive.

With all of the tests analyzed, we think that the closest-friend, primary-
cluster, polynomial regression, cluster-cluster prediction methods and the boundary
detection system to be a success.

6.6 Evaluation of weights

In this section, we compare the ability of different combinations of algorithms to
train weights, perform cluster analysis and their effects on prediction accuracy.
The comparison consists of several steps:

1. For a specified number of iterations:
(a) Randomly introduce noise into the data matrices
(b) Cross-validate weights trained by each combination of algorithms using

ground truth data
(c) For each combination use all ground truth data to calculate weights

and calculate prediction score for the 50% integrity level, with and
without the weights

2. Average the results and calculate the Pearson Correlation Coefficient between
improvement in cross-validation and improvement in prediction score

We hypothesize that if we find weights, which improve the cluster analysis
of ground truth data, the same weights also improve cluster analysis of real
processes. The improvement of cluster analysis should result in the improvement
of prediction accuracy. If this is the case, we should find a high correlation between
the improvement in cross-validation and improvement in prediction score.

6.6.1 Introducing noise

Because we do not know, which measured properties are useful and which are
useless, we introduce noise into the data. This way, we can be sure which properties
should have low importance in the weights and evaluate how useful are weights in
finding these erroneous properties.

To introduce noise into the data matrix, we added 9 non-scaling properties to
each process. These properties can have one of the following values:

• [1, 1, 1, 0, 0, 0, 0, 0, 0]
• [0, 0, 0, 1, 1, 1, 0, 0, 0]
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Figure 6.10: Illustration of 4-fold cross-validation dataset selection.

• [0, 0, 0, 0, 0, 0, 1, 1, 1]

Thus random processes will either share a complete similarity in three properties
or complete dissimilarity in 6 properties. The higher number of properties is
needed in order to sufficiently confuse the similarity calculation and force otherwise
distant processes into the same clusters. As a result, we can evaluate how the
prediction methods work with confused similarity and cluster analysis and how
much do the weights improve the prediction.

6.6.2 Weights cross-validation

After calculating the weights on a dataset, it is not guaranteed that they will
also improve other datasets. For example, even if the weights improved cluster
analysis of the training dataset substantially, they could actually be detrimental
on other datasets due to factors such as overfitting or selection bias. Overfitting
is a case of over-specialized weights and selection bias represents wrongly selected
training data set.

As a result, we need to confirm that the weights trained on the training dataset
improve the cluster analysis on other datasets as well. We do this using a technique
called cross-validation. The process of cross-validation is following:

1. For a specified number of splits:
(a) Split the ground truth into training and testing dataset
(b) Train the weights on the training dataset
(c) Run cluster analysis on the testing dataset with and without the trained

weights.
(d) Calculate the clustering score with and without the weights.

2. Calculate the average improvement of clustering score caused by weights

We use a specialized version of cross-validation called k-fold, in which the
ground truth dataset is randomly split into k equal-sized partitions. One partition
is then used as a testing dataset and the rest as the training dataset. Each
partition is used exactly once as a testing dataset.

For example, 4-fold cross-validation creates four partitions, thus 25% of the
ground truth is used as a testing dataset and the remaining 75% as the training
dataset. As a result, four iterations are performed as illustrated in Figure 6.10.
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The main advantage of k-fold cross-validation is that we can generate multiple
train/test scenarios using the same ground truth dataset, and analyze the average
performance while maintaining the same ratio of train and test data. The averaging
of the test scores is done in order to reduce the effects of overfitting and selection
bias.

6.6.3 Pearson Correlation Coefficient

It is necessary to confirm the hypothesis that weights trained on the ground
truth processes also improve cluster analysis of real processes. If the hypothesis
was correct, the improvement in the clustering of the ground truth data should
be correlated to the improvement of prediction accuracy. To confirm this, we
calculate the Pearson correlation coefficient between the improvement of the score
during the cross-validation of weights and the improvement of prediction score,
when using weights produces by the same combination of algorithms.

The Pearson correlation coefficient ranges between -1 and 1, where 1 means
that a linear equation perfectly describes the relationship, where the prediction
score increases as the improvement in cross-validation increases. The value of -1
would mean the opposite, where the prediction score decreases linearly as the
cross-validation score increases. Finally, no linear correlation would result in 0
value.

For a set of tuples {(x1, y1), ..., (xn, yn)}, where x is the improvement in cross-
validation, y the improvement in prediction score and x̄ is the sample mean (mean
of all x values), the coefficient is calculated as:

P =
∑︁n

i=1(xi − x̄)(yi − ȳ)√︂∑︁n
i=1(xi − x̄)2

√︂∑︁n
i=1(yi − ȳ)2

(6.4)

If the correlation is significant, we can conclude that a combination of al-
gorithms, which produces weights with the ability to improve the clustering of
ground truth data, also produces weights, which improve the clustering of real
data in such a way, that it benefits our prediction methods.

6.6.4 Comparison of method combinations using cor-
rupted data

We set the number of iterations in the test introduced in at the start of Section 6.6
to five, and we used 3-fold cross-validation. The averaged results are split by the
scoring method and by the used optimization method, as can be seen in Tables
6.4, 6.5. To compare the weights found using simulated annealing to a baseline,
we also measured the same tests using random weights, as shown in Table 6.6.

Contents of the tables are sorted by the weights effect column, which indicates
the gain/loss of prediction score caused by weights. The CV-improvement column
indicates the improvement in the cross-validation score caused by weights. PS
stands for the final prediction score. Yellow row indicates the combination of
algorithms with the highest prediction score.
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Fowlkes Annealing
PS weighted Weights effect CV-improvement Clustering Distance Normalization
9,36 8,34 0,34 Affinity APCorrelation MinMax
7,95 6,17 0,36 Affinity APCorrelation ZValue
10,31 3,32 0,31 Affinity Frobenius MinMax
10,93 2,46 0,23 Affinity Frobenius ZValue
12,38 1,80 0,04 MeanShift Frobenius MinMax
12,14 1,52 0,12 MeanShift Frobenius ZValue
11,88 0,17 0,01 MeanShift APCorrelation MinMax
7,63 -2,16 0,14 MeanShift APCorrelation ZValue
Average = 10,32 Average = 2,70 Average = 0,20

Table 6.4: Comparison of algorithms using corrupted data, Fowlkes-Mallows
scoring and Simulated Annealing optimization.

VMeasure Annealing
PS weighted Weights effect CV-improvement Clustering Distance Normalization
9,70 8,45 0,33 Affinity APCorrelation MinMax
5,99 4,09 0,32 Affinity APCorrelation ZValue
9,72 2,57 0,28 Affinity Frobenius MinMax
12,57 2,17 0,03 MeanShift Frobenius MinMax
9,80 1,33 0,15 Affinity Frobenius ZValue
9,95 -0,52 0,04 MeanShift Frobenius ZValue
9,92 -1,78 0,00 MeanShift APCorrelation MinMax
7,76 -2,00 0,03 MeanShift APCorrelation ZValue
Average = 9,43 Average = 1,79 Average = 0,15

Table 6.5: Comparison of algorithms using corrupted data, VMeasure scoring and
Simulated Annealing optimization.

Random
PS weighted Weights effect Fowlkess CVI VMeasure CVI Clustering Distance Normalization
3,77 2,79 0,01 0,02 Affinity APCorrelation MinMax
9,78 0,10 -0,01 -0,01 MeanShift APCorrelation ZValue
2,16 0,10 0,04 0,02 Affinity APCorrelation ZValue
8,78 0,09 0,07 0,04 Affinity Frobenius ZValue
10,39 -0,06 -0,03 -0,01 MeanShift Frobenius MinMax
10,77 -1,12 -0,04 -0,02 MeanShift APCorrelation MinMax
9,42 -1,20 -0,06 -0,02 MeanShift Frobenius ZValue
2,04 -5,13 0,01 0,00 Affinity Frobenius MinMax
Average = 7,14 Average = -0,55 Average = 0.00 Average = 0.00

Table 6.6: Comparison of algorithms when using random weights, corrupted data
and both Fowlkes-Mallows and VMeasure scoring. CVI stands for cross-validation
improvement.
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Analysis of simulated annealing

Let us first analyze the results of simulated annealing in Tables 6.4 and 6.5. In
almost all cases, the weights were able to improve the prediction accuracy.

Effects of clustering algorithm:
Weights calculated using affinity propagation clustering have a stronger effect

than mean-shift clustering. Even though weights found using mean-shift have
a weaker effect, the final prediction score is higher when using this clustering
method.

Effects of distance measure:
The effects of distance measures are mixed. In general, the APCorrelation

seems to be more volatile as it yields both the highest and the lowest weights
effect. On average, weights calculated using Frobenius distance have a better final
prediction score.

Effects of normalization algorithm:
A combination using Zvalue almost always produces weaker weights and worse

prediction score than when using MinMax normalization.
Effects of clustering score:
The Fowlkes-Mallows based combinations of algorithms perform better on

average than those using VMeasure. On the other hand, VMeasure was able to
achieve both the highest weights effect and the highest final prediction score.

Best performing combinations:
The combination of affinity propagation clustering, APCorrelation distance

and MinMax normalization has the strongest weights effect when using both the
Fowlkes-Mallows and VMeasure scoring. The combination of mean-shift clustering,
Frobenius distance and MinMax normalization results in the best prediction score
when using both the Fowlkes-Mallows and VMeasure scoring.

Analysis of random weights

Now let us focus on Table 6.6 containing results of randomly generated weights.
We can see that both the prediction score and weights effect is much worse,
and on average, the weights have a negative effect. We can also notice that the
cross-validation improvement is almost zero in all cases.

Same as with the weights calculated using simulated annealing, the combination
with the highest weights effect is affinity propagation clustering, APCorrelation
distance and MinMax normalization. Also, the combination of mean-shift clus-
tering, Frobenius distance and MinMax normalization almost results in the best
prediction score.

Pearson correlation coefficient

Table 6.7 contains the Pearson correlation coefficients between the improvement
of the clustering score in cross-validation and the weights effect (improvement of
prediction score due to the weights). The coefficient is calculated separately for
weights trained using simulated annealing, randomly found weights, and finally,
for both approaches combined.
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Figure 6.11: Clustering of ground truth without weights.

We can see that there is a strong correlation between the improvement of
the clustering score of the training dataset and the improvement of prediction
accuracy when using the simulated annealing. We think that the reason why the
correlation is lower for the random weights is due to almost zero cross-validation
improvement.

Fowlkes VMeasure
Annealing 0,77 0,84
Random 0,12 0,34
Combined 0,75 0,81

Table 6.7: Pearson correlation coefficient calculated between the improvement of
clustering score in cross-validation and improvement of prediction score.

6.6.5 Best training combination examined

Let us now focus on the combination of Fowlkes-Mallows scoring, affinity propa-
gation clustering, APCorrelation distance function and MinMax normalization,
which provides weights with the largest improvement in prediction score.

Figures 6.11 and 6.12 show the clustering of ground truth processes before and
after the use of weights. For visual clarity, these figures do not show processes
with odd intensity (e.g., C45). We also subtracted one zero from the process
names (e.g., C50 becomes C5 and C100 becomes C10), however, this does not
affect the number of clusters shown, nor does it affect the overall information
provided in the figures.

We can see that the clustering was essentially random without the weights.
With weights, we can see 7 clusters, which correspond to the main differences
in resource usage. As a result, through the process of training, we were able to
improve the ability to detect meaningful clusters considerably.
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Figure 6.12: Clustering of ground truth with weights.

Figures 6.13 and 6.14 show the clustering of real processes before and after
the use of weights. Again we can see that without weights, the clustering is
almost random. However, with the use of weights, we can see that processes using
disk separated nicely from the rest and even separated by the level of disk usage
into high, mid and low disk-intensive processes. Overall the clustering strongly
resembles the clustering of uncorrupted processes shown in Figure 6.1.

At last, Figures 6.15 and 6.16 show the progress of the clustering score during
the training and the final trained weights. We can see that the initial clustering
score was very low and increased more than three-fold during the process of
training. The final weights have almost perfectly erased the influence of erroneous
noise properties while maintaining the importance of the original ones.

6.6.6 Results analyzed

The weights trained using simulated annealing are able to detect erroneous proper-
ties and improve the accuracy of the prediction methods. We have demonstrated
that this is not caused by luck, as random weights negatively impacted the
prediction methods.

We have also demonstrated that the improvement of the clustering of ground
truth data correlates strongly with the improvement in prediction accuracy. When
examining the clustering of ground truth and real processes before and after the
use of weights, we can see that the clustering is truly improved, which is the cause
of improvement of the prediction methods accuracy.

With the experiments analyzed, we think that the weights training system is
a success.
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Figure 6.13: Clustering of real processes without weights.

Figure 6.14: Clustering of real processes with weights.

Figure 6.15: Clustering score progress during training.
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Figure 6.16: Trained weights used in Figures 6.12 and 6.14.

6.7 Related work

To position our work in the context of other research in the area, we review
some of the works (ordered chronologically) that we consider most relevant to our
approach.

Q-Clouds[22] is a QoS-aware control framework, which adjusts resource allo-
cation to mitigate the effects of interference on shared resources. Q-Cloud first
profiles the virtual machines (VM) submitted by clients on a staging server to
assess the amount of resources needed to attain the desired QoS without interfer-
ence and then manages the resources allocated to the deployed VMs in a closed
control loop.

Contrary to Q-Clouds our approach focuses on container technologies instead
of VMs. Also, instead of allocating resources to deployed processes, we instead
re-deploy process to satisfy the requirements set by the developers. Similarly to
Q-Clouds we also utilize a data acquisition phase to measure the resource usage.

Paragon[23] is an online interference-aware scheduler, which uses collaborative
filtering to classify incoming applications based on limited profiling and similarity
to previously scheduled applications. It does not differentiate between batch
and latency-sensitive applications and schedules applications so as to minimize
interference and maximize utilization. Applications are classified for interference
tolerance using microbenchmarks stressing a specific shared resource with tunable
intensity, which are run concurrently with an application to find out the interference
level at which the application’s performance falls below 95% of its performance in
isolation.

Similarly to Paragon, our approach considers the similarity of applications.
Contrary to our approach, Paragon uses proxy microbenchmark workloads to
estimate the performance of processes, while we rely on the measurement of
interference of real processes.

CloudScope[24] is a representative of model-based approaches to QoS-aware
cloud resource management and uses a discrete-time Markov Chain model to
predict performance interference of colocated VMs. CloudScope runs within each
host and collects application and VM-related metrics at runtime. The metrics
serve to maintain an application-specific model capturing the proportion of the
time an application uses a particular resource. The model is then used to predict
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slowdown due to collocation and ultimately to control the placement of guest VM
instances as well as adjusting the resources available to a hypervisor.

Contrary to our approach, CloudScope focuses on VMs instead of containers.
However, similarly to our approach, CloudScope focuses on interference caused
by collocation and solves it using deployment control. CloudScope also uses
predictions based on the knowledge of resource usage of the VMs. Contrary to
our approach, CloudScope does not utilize the similarity of the VMs and relies
instead on the Markov Chain model to form the predictions.

CtrlCloud[25] is a performance-aware cloud resource manager and controller,
which optimizes the allocation of CPU resources to VMs to meet QoS targets. It
maintains an online model of the relationship between allocated resource shares
and the application performance and uses a control loop to adapt the resource
allocation so as to progress towards a probabilistic performance target expressed as
a percentile of requests that must observe a response time within certain bounds.

Again CtrCloud focuses on VMs instead of containers. Similarly to our
approach, CtrCloud aims to guarantee the performance of an application expressed
as a percentile of execution time, however, CtrCloud uses CPU resource allocation
instead of re-deployment to satisfy the requirements.

Pythia[26] is a collocation manager, which uses a linear regression model
to predict combined contention on shared resources (the conflict over access to
the resource) when colocating multiple batch workloads with a latency-sensitive
workload. Pythia performs contention characterization for each batch workload
running together with a particular latency-sensitive workload and removes batch
workloads that are too contentious to allow safe collocation. It then selects a
small subset of batch workloads to colocate with a latency-sensitive workload and
measures their combined contention to build a linear regression prediction model
for contention due to multiple batch workloads.

Similarly to Pythia, our approach profiles processes in a measurement setup
and we also utilize regression models. However, contrary to Pythia, we also
calculate the similarity of processes in order to form predictions.

In general, the approaches presented above, including our own, aim to provide
performance and an interference-aware system, which manages resource allocation
in a cloud environment to achieve efficient utilization of available resources while
allowing applications to meet their QoS target. Our selection illustrates the variety
of approaches proposed over the years, each designed for a different context.

Another related area is represented by works targeting service-level agreements
(SLAs) in (edge-)cloud environment. SLA is a commitment to provide a service
with certain aspects, such as with certain throughput, jitter, mean time between
failures, etc. In general, the main difference between our approach and classic SLAs
for clouds is that our approach is focused on providing soft-realtime guarantees
on execution times, while the SLAs can focus on many different aspects of the
service.

In the following, we review some of the approaches that differ from classic
SLAs and bear more similarity to our approach.

The work of Remesh et al.[27] deals with SLA-aware scheduling and load-
balancing. While the general idea is similar to ours, their primary goal is to
load-balance services (i.e., re-deploy them to another computer in the cloud) in
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order to keep computers in the cloud evenly loaded and reduce the chance of SLA
breaches. The approach does not measure service response time and instead relies
on low-level information, which has to be provided by the application developer,
such as the required amount of memory, CPU speed in terms of instructions-per-
second, etc.

This is in direct contrast with our approach, where we discourage the use
of low-level information provided by the developers and instead measure the
execution (response) times of combinations of processes. The boundary system
implemented in our approach can be viewed as a way to provide a certain amount
of memory and CPU instructions-per-second, however, our system does not require
the input of a developer.

Cerebro[28] is similar to our approach in that it first statically analyzes services
to find out important calls, measures the performance of these calls at runtime, and
predicts bounds on response time using time-series analysis. The main difference
is that Cerebro focuses only on a specific set of calls while our approach measures
the performance of a whole process. Our approach does not rely on a knowledge
of the importance of different calls, however, we can estimate the importance of
measured process properties using weights. In addition, our approach focuses
on slowdown caused by the collocation of process, however, Cerebro focuses on
predicting the performance of an application, which composes of multiple calls to
different services.

Panda et al.[29] present an SLA-based scheduling algorithm for a cloud. Sim-
ilarly to our approach, the authors consider clouds composed of multiple data
centers and schedule service for deployment to data centers so as to honor the
SLAs. Contrary to our approach, the authors expect SLAs to be provided with the
services and consider only execution time, cost, and the penalty for SLA violation.
The scheduling algorithm then attempts to minimize service execution time and
cost.

We can notice that many of the approaches presented above focus on VMs,
however, we focus on container technologies. The developers are required to
provide the processes and to specify their soft real-time requirements explicitly.
Consequently, we only admit applications for deployment if the predictor considers
the requirements to be satisfiable. Other than that, we treat the processes as a
black box.

In our approach, we form predictions of the percentile of the execution time by
combining cluster analysis and polynomial regression analysis, and we can enforce
operational boundaries on our prediction algorithm. On top of that, the weights
system provides the capability to automatically detect errors in the provided data.
We think that the novelty in our approach is this combination of many strategies,
which together create a robust prediction system.
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7. Conclusion
To summarize, we have proposed a new layer, in order to provide soft real-time
guarantees on the execution times of processes running in an edge-cloud system.
This layer is composed of a solver, which searches for suitable combinations of
processes to deploy using a predictor of a percentile of execution time. We have
focused on the design of the predictor, which is the most important component
when guaranteeing the soft real-time requirements.

We have introduced several prediction methods based on the similarity between
processes, cluster analysis and regression analysis. With all of the prediction
methods combined, we have achieved high levels of accuracy.

The predictor can also detect if a combination of processes exceeds a certain
percentage of the capacity of the computer using boundary detection. The
boundary detection system proved to be useful in restricting the predictor and
avoiding unreliable predictions.

In case the predictor is provided with erroneous data, we have also created
a system of weights, which can detect the errors and correct them. The weights
system works successfully and can almost completely erase the influence of an
error.

With these features combined, we are confident that the predictor is capable
enough, when combined with a simple deployment solver, to provide a soft real-
time guarantee on the execution time of a process collocated with other processes.
As a result, we think that the goals of this thesis have been completed.

7.1 Future work

We see great potential in the prediction methods based on cluster analysis. We
think that exploring fuzzy and overlapping clustering could provide interesting
results. Similarly, an exploration of alternative regression analysis methods could
be worthwhile.

Boundary detection could be extended by a dynamic solution, where confidence
in the prediction is estimated for each prediction is very interesting. Another
opportunity is to extend the ground truth data set for weights training. New
blocks for the universal load simulator can be designed, and new process categories
can be added.

Perhaps the most interesting extension would be to measure a greater amount
of real processes and more combinations of those processes to analyze.

69



70



Bibliography
[1] Schahram Dustdar Weisong Shi. The promise of edge computing. IEEE

Computer Journal, Vol. 49(No. 5):78–81, 2016.

[2] M. Armbrust et al. A view of cloud computing. Commun. ACM, Vol. 53(No.
4):50–58, 2010.

[3] ZHANG J. VOAS, J. Cloud computing: New wine or just a new bottle? IT
Professional, Vol. 11(No. 2):15–17, 2009.

[4] Timothy Grance Peter Mell. The nist definition of cloud computing. NIST
Special Publication 800-145, 2011.

[5] R. Griffith A. Joseph R. Katz A. Konwinski G. Lee D. Patterson A. Rabkin
I. Stoica M. Zaharia M. Armbrust, A. Fox. Above the clouds: A berkeley
view of cloud computing. 2009.

[6] Ali Khajeh-Hosseini Ilango Sriram. Research agenda in cloud technologies -
submitted to the 1st acm symposium on cloud computing. 2010.

[7] Santosh Kumar and R.H. Goudar. Cloud computing–research issues, chal-
lenges, architecture, platforms and applications: A survey. International
Journal of Future Computer and Communication, Vol. 1(No. 4), 2012.

[8] Microsoft. Edge computing. https://www.microsoft.com/en-us/
research/project/edge-computing. Accessed: 24.10.2019.

[9] Quan Zhang Youhuizi Li Lanyu Xu Weisong Shi, Jie Cao. Edge computing:
Vision and challenges. IEEE Internet of Things Journal, Vol. 3(No. 5):637–
646, 2016.

[10] P. Maniatis M. Naik A. Patti B.-G. Chun, S. Ihm. Clonecloud: Elastic
execution between mobile device and cloud. Proc. 6th Conf. Comput. Syst.,
Salzburg, Austria, pages 301–314, 2011.

[11] Z. Qin Q. Li S. Yi, Z. Hao. Fog computing: Platform and applications. Proc.
3rd IEEE Workshop Hot Topics Web Syst. Technol. (HotWeb), Washington,
DC, USA, pages 73–78, 2015.

[12] K. Ha et al. Towards wearable cognitive assistance. Proc. 12th Annu. Int.
Conf. Mobile Syst. Appl. Services, Bretton Woods, NH, USA, pages 68–81,
2014.

[13] 5G-PPP. 5g automotive vision. https://5g-ppp.eu/wp-content/uploads/
2014/02/5G-PPP-White-Paper-on-Automotive-Vertical-Sectors.pdf,
20.10.2015.

[14] scikit. scikit-learn. https://scikit-learn.org/stable/index.html. Ac-
cessed: 24.10.2019.

[15] Delbert Dueck Brendan J. Frey. Clustering by passing messages between
data points. Science, Vol. 315:972–976, 16.2.2007.

71

https://www.microsoft.com/en-us/research/project/edge-computing
https://www.microsoft.com/en-us/research/project/edge-computing
https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-Paper-on-Automotive-Vertical-Sectors.pdf
https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-Paper-on-Automotive-Vertical-Sectors.pdf
https://scikit-learn.org/stable/index.html


[16] Peter Meer Dorin Comaniciu. Mean shift: A robust approach toward feature
space analysis. In In PAMI, pages 603–619, 7.8.2002.

[17] Jan K. Lenstra Emile Aarts. Local Search in Combinatorial Optimization.
John Wiley & Sons, 1997.

[18] E. B. Fowlkes and C. L. Mallows. A method for comparing two hierarchical
clusterings. Journal of the American Statistical Association, 78(383):553–569,
1983.

[19] Andrew Rosenberg and Julia Hirschberg. V-measure: A conditional entropy-
based external cluster evaluation measure. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-CoNLL), pages 410–420,
Prague, Czech Republic, June 2007. Association for Computational Linguis-
tics.

[20] scipy. scipy.optimize.nnls. https://docs.scipy.org/doc/scipy-0.14.0/
reference/generated/scipy.optimize.nnls.html. Accessed: 24.10.2019.

[21] sklearn. scipy.manifold.mds. https://scikit-learn.org/stable/
modules/generated/sklearn.manifold.MDS.html. Accessed: 24.10.2019.

[22] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. Q-clouds: Managing
Performance Interference Effects for QoS-aware Clouds. In Proceedings of
EuroSys 2010, Paris, France, pages 237–250. ACM, 2010.

[23] Christina Delimitrou and Christos Kozyrakis. Paragon: QoS-aware Scheduling
for Heterogeneous Datacenters. In Proceedings of ASPLOS 2013, Houston,
USA, pages 77–88. ACM, 2013.

[24] X. Chen, L. Rupprecht, R. Osman, P. Pietzuch, F. Franciosi, and W. Knot-
tenbelt. CloudScope: Diagnosing and Managing Performance Interference
in Multi-tenant Clouds. In Proceedings of MASCOTS 2015, Atlanta, USA,
pages 164–173, 2015.

[25] O. Adam, Y. C. Lee, and A. Y. Zomaya. CtrlCloud: Performance-Aware
Adaptive Control for Shared Resources in Clouds. In Proceedings of CCGrid
2017, Madrid, Spain, pages 110–119, 2017.

[26] Ran Xu, Subrata Mitra, Jason Rahman, Peter Bai, Bowen Zhou, Greg
Bronevetsky, and Saurabh Bagchi. Pythia: Improving Datacenter Utilization
via Precise Contention Prediction for Multiple Co-located Workloads. In
Proceedings of Middleware 2018, Rennes, France, pages 146–160. ACM, 2018.

[27] Kaippilly Raman Remesh Babu and Samuel Philip. Service-level agreement-
aware scheduling and load balancing of tasks in cloud. Software: Practice
and Experience, 49(6):995–1012, 2019.

[28] Hiranya Jayathilaka, Chandra Krintz, and Rich Wolski. Response time service
level agreements for cloud-hosted web applications. In Proceedings of the
Sixth ACM Symposium on Cloud Computing - SoCC ’15. ACM Press, 2015.

72

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.optimize.nnls.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.optimize.nnls.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html


[29] Sanjaya K. Panda and Prasanta K. Jana. SLA-based task scheduling algo-
rithms for heterogeneous multi-cloud environment. The Journal of Supercom-
puting, 73(6):2730–2762, 2017.

73



74



List of Figures

2.1 Cloud computing compared to three-layer edge-cloud computing[9]. 8
2.2 Ilustration of a farming drone equipped with sensors and simple

computer using an edge-cloud self-driving software. . . . . . . . . 9

3.1 Ilustration of the edge-cloud architecture with the proposed layer. 12
3.2 Ilustration of cumulative influence on a property. . . . . . . . . . 14
3.3 Overview of providing soft real-time guaranties on process execution

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Schema of the prediction process. . . . . . . . . . . . . . . . . . . 20
4.2 Illustration of the improvement of similarity calculation and cluster

analysis caused by the introduction of weights. . . . . . . . . . . . 23
4.3 Ilustration of of first and second degree polynomial regression models. 25
4.4 Illustration of the closest friend prediction method. . . . . . . . . 26
4.5 Illustration of the primary-cluster prediction method. . . . . . . . 27
4.6 Illustration of the cluster-cluster prediction method. . . . . . . . . 28

5.1 Comparison clustering algorithms provided by scikit using a toy
dataset[14]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1 The clustering of uncorrupted processes using mean-shift clustering,
APCorrelation distance and MinMax normalization. . . . . . . . . 50

6.2 Integrity test average prediction error inside the boundary. . . . . 51
6.3 Integrity test average prediction error outside the boundary. . . . 52
6.4 Percentage of predictions not calculated due to insufficient infor-

mation inside the boundary. . . . . . . . . . . . . . . . . . . . . . 53
6.5 Percentage of predictions not calculated due to insufficient infor-

mation outside the boundary. . . . . . . . . . . . . . . . . . . . . 54
6.6 Integrity test average improvement over baseline inside the boundary. 55
6.7 Integrity test average improvement over baseline outside the boundary. 55
6.8 Visualization of confusion matrix for each integrity level inside the

boundary for the combined prediction method. . . . . . . . . . . . 57
6.9 Visualization of confusion matrix for each integrity level outside

the boundary for the combined prediction method. . . . . . . . . 57
6.10 Illustration of 4-fold cross-validation dataset selection. . . . . . . . 59
6.11 Clustering of ground truth without weights. . . . . . . . . . . . . 63
6.12 Clustering of ground truth with weights. . . . . . . . . . . . . . . 64
6.13 Clustering of real processes without weights. . . . . . . . . . . . . 65
6.14 Clustering of real processes with weights. . . . . . . . . . . . . . . 65
6.15 Clustering score progress during training. . . . . . . . . . . . . . . 65
6.16 Trained weights used in Figures 6.12 and 6.14. . . . . . . . . . . . 66

75



76



List of Tables

3.1 An example of possible data matrix of a process. . . . . . . . . . . 14

5.1 An example of a preprocessed single data matrix. . . . . . . . . . 32

6.1 List of selected processes. . . . . . . . . . . . . . . . . . . . . . . . 46
6.2 List of measured properties. . . . . . . . . . . . . . . . . . . . . . 46
6.3 Prediction scores of combinations of algorithms using uncorrupted

processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.4 Comparison of algorithms using corrupted data, Fowlkes-Mallows

scoring and Simulated Annealing optimization. . . . . . . . . . . . 61
6.5 Comparison of algorithms using corrupted data, VMeasure scoring

and Simulated Annealing optimization. . . . . . . . . . . . . . . . 61
6.6 Comparison of algorithms when using random weights, corrupted

data and both Fowlkes-Mallows and VMeasure scoring. CVI stands
for cross-validation improvement. . . . . . . . . . . . . . . . . . . 61

6.7 Pearson correlation coefficient calculated between the improvement
of clustering score in cross-validation and improvement of prediction
score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

77



78


	Introduction
	Cloud and edge-cloud computing explained
	Cloud computing
	Edge-cloud computing
	Guaranteeing the performance of latency-sensitive applications

	Situation analysis
	Proposed layer
	Finding optimal deployment using predictor

	Process and node behavior
	Provided knowledge
	Data matrix naming convention
	Lack of node or process-specific information
	How is the data matrix measured

	Overview of the whole process

	Predicting a percentile of process execution time
	Predictor architecture overview
	Similarity between processes
	Cluster analysis
	Weights
	Regression analysis
	Polynomial regression analysis

	Prediction methods
	Closest friend prediction
	Primary-cluster prediction
	Cluster-cluster prediction
	Polynomial regression prediction

	Operational boundary

	Implementation
	Data preprocessing
	Scaling
	Statistics
	Normalization

	Calculating similarity between processes
	Average pair correlation distance
	Frobenius distance

	Calculating clusters
	Affinity propagation
	Mean-shift

	Weights training
	Simulated annealing

	Scoring clusters
	Fowlkes-Mallows score
	V-measure

	Calculating polynomial regression models
	Ensuring operational boundary
	Approximating maximal values of properties


	Evaluation
	Goal of the evaluation
	Measured dataset
	Universal Load Simulator
	Ground truth and bechmarks

	Benchmarks and boundary detection
	Evaluation of the prediction methods
	Prediction score
	Integrity test
	Average Error
	Unable to calculate
	Average improvement over baseline
	Confusion matrix
	Results analyzed

	Evaluation of weights
	Introducing noise
	Weights cross-validation
	Pearson Correlation Coefficient
	Comparison of method combinations using corrupted data
	Best training combination examined
	Results analyzed

	Related work

	Conclusion
	Future work

	Bibliography
	List of Figures
	List of Tables

