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Summary  

The control of common scab of potatoes (CS) includes resistant varieties (cultivars), 

precise fertilization, increase of soil moisture, and chemical treatments. Yet, these 

management practices do not have common or reproducible results at differing sites. A 

monitoring study was done in 32 sites to evaluate the relation between CS and 

biological/chemical soil parameters. Correlations were observed between scab severity 

and content of nutrients such as Fe, N, and Ca in soil and periderm, and between 

disease severity and abundance of actinobacteria and total bacteria, together with the 

pathogenicity determinant, txtB gene (biosynthetic gene of thaxtomin) in both soil and 

periderm of potatoes. The findings led to novel conclusions, which can help to 

understand relationships applicable in scab control. 

Peat and DTPA chelated iron were supplemented to pots filled with soil 

conducive for CS in order to determine the effects of soil organic matter, iron and pH 

on CS development. The results were compared with data obtained for a suppressive 

soil from a nearby field with naturally low CS severity. Both peat and iron supplements 

decreased CS and the combination of the two supplements reduced CS the most 

effectively. Moreover, the bacterial community changed towards its composition in the 

suppressive soil after the combined peat and iron treatment. 

To assess cultivar resistance × soil suppressiveness interactions, one resistant 

and one susceptible cultivar were grown in conducive and suppressive fields. The 

results showed that communities of bacteria, archaea and micro-eukaryotes differed 

between resistant and susceptible cultivar and between suppressive and conducive soil. 

In bacteria, cultivar effects were the most important and highest diversity was found in 

tuberosphere of the resistant cultivar. In archaea and micro-eukaryotes, differences 

were between suppressive and conducive soils. 

Interactions between 21 actinobacterial strains isolated from potato rhizosphere 

and the pathogen (Streptomyces scabiei) were studied in vitro. The results showed that 

several strains could suppress S. scabiei in vermiculite media and may be further tested 

as soil inoculants for biological suppression in fields. 

In conclusion, the studies demonstrated how potato plants and soil microbial 

communities interact in CS control and it was showed that the plant – soil interfaces 

(tuberosphere, rhizosphere) are the most important compartments for further CS 

studies. The plant-microbe interaction is influenced by the properties of both soil and 
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cultivar. Therefore, nutrient supplementation, and choice of resistant cultivar or 

suppressive soil can be used as an accessible way to suppress the CS. 
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Souhrn 

Regulace obecné strupovitosti brambor (CS) zahrnuje rezistentní odrůdy (kultivary), 

hnojení, zvyšování vlhkosti půdy a chemická ošetření. Přesto tyto postupy nedosahují 

na různých lokalitách obdobných nebo reprodukovatelných výsledků. Na 32 lokalitách 

byla provedena monitorovací studie za účelem vyhodnocení vztahu mezi CS a 

biologickými / chemickými parametry půdy. Byly pozorovány korelace mezi 

závažností onemocnění a obsahem živin Fe, N a Ca v půdě a peridermu, a mezi 

závažností onemocnění a množstvím aktinobakterií a celkových bakterií, spolu s 

determinantem patogenity, genem txtB (biosyntetický gen thaxtominu), rovněž v půdě 

i v peridermu brambor. Tato zjištění vedla k novým závěrům, které mohou pomoci 

porozumět vztahům využitelným při kontrole strupovitosti.  

Přídavky rašeliny a železa chelatovaného DTPA do půdy s vysokým výskytem 

CS (konduktivní) byly použity v nádobovém pokusu pro zjištění účinků půdní 

organické hmoty, železa a pH na rozvoj CS. Výsledky byly porovnány s údaji 

získanými pro půdu z blízkého pole s přirozeně nízkým výskytem CS (supresivní). 

Přídavky rašeliny i železa snižovaly CS, a kombinace těchto dvou ošetření snižovala 

závažnost onemocnění nejúčinněji. Kromě toho jejich kombinace způsobovala změnu 

složení bakteriálního společenstva směrem k jeho složení v půdě s přirozeně nízkým 

výskytem onemocnění. 

Pro hodnocení interakcí mezi rezistencí kultivaru a supresivitou půdy byly 

pěstovány jeden rezistentní a jeden citlivý kultivar na polích s konduktivní a 

supresivní půdou. Výsledky ukázaly, že společenství bakterií, archaea a mikroeukaryot 

se lišila mezi rezistentním a citlivým kultivarem i mezi konduktivní a supresivní 

půdou. U bakterií byly nejvýznamnější účinky kultivaru a nejvyšší diverzita byla 

zjištěna v tuberosféře rezistentního kultivaru, zatímco u archaea a mikroeukaryot byly 

nalezeny rozdíly mezi konduktivní a supresivní půdou. 

Interakce mezi 21 aktinobakteriálními kmeny izolovanými z rhizosféry 

brambor a patogenem (Streptomyces scabiei) byly studovány in vitro. Výsledky 

ukázaly, že několik kmenů bylo schopno potlačit S. scabiei ve vermikulitových 

médiích a mohou být dále testovány jako půdní inokulanty pro biologickou ochranu na 

polích. 

Závěrem tyto studie prokázaly, jak rostliny brambor a půdní mikrobiální 

společenstva interagují při regulaci CS, a ukázalo se, že rozhraní rostlina - půda 



12 

 

(tuberosféra, rhizosféra) jsou nejdůležitějšími kompartmenty pro další výzkum CS. 

Interakce rostlin a mikroorganismů je ovlivněna vlastnostmi půdy i kultivaru. Z tohoto 

důvodu lze jako proveditelný způsob potlačení onemocnění obecnou strupovitostí 

použít dodání živin a výběr rezistentního kultivaru nebo supresivní půdy.  
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1. Aims of the thesis 

The aim of the Ph.D. Thesis was to explore the mutual interaction between soil 

chemical conditions and microbial community in the development or suppression of 

CS, and to evaluate the interaction of the soil environmental factors with potato variety 

in shaping the community inhabiting potato rhizosphere.  

Consequently, specific aims included (i) broad scale screening of soil chemical 

properties and potato-associated bacterial communities covering maximum variability 

of soil types and environmental conditions, (ii) evaluation of impact of added peat 

with and without available iron on the disease development as well as on soil pH and 

communities of total bacteria and actinobacteria community in potato tuberosphere 

and periderm, (iii)  disentangling the relative effects of soil suppressiveness and 

resistance of potato cultivar on the structure of microbial communities (bacteria, 

archaea, and micro-eukarytes) in the soil in contact with potato tubers, and (iv) 

developing a system suitable for in vitro assessment of antagonistic properties of 

isolated bacterial strains towards the potato common scab pathogens for selection of 

potential antagonists for subsequent testing in vivo with potato plants to develop 

inocula for efficient biological control of potato common scab. 
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2. Introduction 

2.1. Preface to potato common scab 

Potatoes belong among the fourth most common crops in the world together with 

wheat, rice and corn. Also, potatoes have the highest rank of consumption among 

vegetables in the US (Brown et al., 2010). It's a low-caloric, nutritious and healthy 

food, which provides most of the main nutrients to a diet (Potatoes production 

guideline, 2013). Common scab of potato (CS) is one of the four most serious potato 

diseases. It causes reduction of marketable yield and has an impact over the quality of 

potato based products (Callum Wilson, 1996). Since CS disease has a worldwide 

importance and potatoes are an essential crop, this disease has an economic impact, 

particularly on the exportability and marketability ratio of the crop. In order to be 

certified as "U.S.NO.1", potatoes must be scab-free and defined as "practically no 

skinning" which means that not more than 5% of tuber surface can be affected (Eckwall 

and Carl, 2000). 

Potato scab is caused by three groups of microbes. Potato tubers can be 

infected by cercozoan Spongospora subterranea, which causes the powdery scab. 

Symptoms of powdery scab include small lesions in the early stages of the disease, 

progressing to raised pustules containing a powdery mass. These can eventually 

rupture within the tuber periderm (skin) (Hernandez et al., 2015). Serious erumpent or 

pitted corky symptoms characterize CS, while superficial reticulations are called russet 

or netted scab. The netted scab is caused by Streptomyces aureofaciens, occurs on 

stolons of potato and is reported in different areas in the world (Kreuze et al., 1999). 

Russet scab and netted scab have, however, been shown to differ in several 

characteristics such as varieties susceptibility, root attack, and optimum soil 

temperature and are, therefore, considered to be different diseases and can probably be 

caused by several Streptomyces spp. (Scholte et al., 1985).  

 In contrast, the CS drastically affects tuber quality because of superficial and 

pitted lesions that form around the site of infection on potato periderm. CS disease, 

which is caused by several Streptomyces species, is common in potato growing areas 

all around the world. Symptoms of CS disease emerge as superficial, raised or deep 

pitted, brown to dark-brown corky lesions on potato tubers. Lesions can turn up as 

single and isolated, round and coalesced (5-8 mm in diameter) or erumpent and 

https://en.wikipedia.org/wiki/Cercozoa
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expand over the entire tuber surface. In some cases, lesions are also found on the roots 

and stolons. The CS can also be found in virgin fields. It is only during tuber initiation 

and enlargement that the potato plant is susceptible to CS infection because with the 

expansion of the newly developed tubers, the CS lesions develop and spread, but there 

is no additional disease development during harvesting and storage. Also, no above-

ground symptoms are found (Potatoes production guideline, 2013). The same 

indications are also described on beet, carrot, parsnip, radish, rutabaga and turnip, 

where the symptoms appear as randomly distributed shallow, raised or deep-pitted 

corky lesions. Their size and color are quite variable, but lesions typically are brown 

with a diameter of a few millimeters (Lerat et al., 2009; Bouchek et al., 1998). 

 

2.2. Management strategies in use and the necessity of new studies  

The irrigation (avoiding low soil moisture at tuber initiation) and decreased soil pH 

were shown traditionally to be useful for control of CS and were examined in various 

fields, however they were difficult and costly and, moreover, can also lead to 

conditions favorable for other diseases (van der Wolf et al., 2007, Dees et al., 2012). 

Selection of disease-resistant potato varieties was also essayed, however, currently 

there is no available commercial potato variety completely resistant to CS (Larkin et 

al., 2017, Potatoes production guideline, 2013). Application of soil- and seed-applied 

pesticides were also examined; however, those methods took a lot of time and 

provided variable results (Braun et al., 2017; Dees et al., 2012; Bailey and Lazarovits, 

2003). The fields were manipulated by introducing organic amendments and crop 

residue management, which showed desired results to some extent, but yet those 

approaches need more detailed development. The crop rotation with different plants 

such as red clover, mustard, rapeseed, sudangrass and rye followed by potato was 

assessed in previous studies (Honeycutt et al., 2017, Potatoes production guideline, 

2013). Crop rotation provides multiple benefits to crop production, and can reduce 

soil-borne diseases that can demolish potato crops grown in consecutive years through 

a variety of mechanisms, including changes in soil microbial communities and it may 

be implemented as full-season harvestable crops, cover crops, or as green manures. 

Yet, different types of rotation crops have very different effects and their complex 

outcomes are not known (Larkin et al., 2012). Finally, the effects of micronutrient 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Lerat%20S%5bAuthor%5d&cauthor=true&cauthor_uid=19694949
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amendments to control of CS and the resulting impact of different potato varieties on 

bacterial community in favor of scab suppressiveness were shown but only in 

relatively small case studies (Klikocka, 2009; Mishra and Srivastava, 2004 and 

Kristufek et al., 2015). 

Out of those practices, the cropping system strategy had considerable and 

lasting impacts on soil microbial community and soil borne diseases (Honeycutt et al., 

2017). However, all the mentioned practices such as selection of resistant varieties, 

reducing seed-borne inoculum, modifying the soil pH, crop rotation, changing the 

temperature and time of harvest, adding chemical and biological amendments have 

provided results with high variability between years and places (Dees et al., 2012). 

Consequently, CS is still an unresolved problem in the world and needs more vast and 

comprehensive studies to find the suitable management. 

 

2.3. Description and taxonomy of causal agents of CS 

Over 900 species of Streptomyces have been described but only around a dozen of 

them are recognized as plant pathogens (Bignell et al., 2010). The first known 

reference to CS of potatoes comes from 1825, but it was not initially thought to have a 

biological cause (Millard, 1923). Isolates of an organism that causes CS of potato were 

first isolated in 1890 and the primary strain was described as Oospora scabies. The 

original culture was not maintained (Lambert et al., 2007, 1989). In 1914 the species 

Actinomyces scabies, was renamed, noting that Oospora was an incorrect 

classification since the disease was not caused by a fungus (Loria et al., 1997, 

Gussow, 1914). Streptomyces genus was first proposed in 1943 (Loria et al., 2003). 

Most species of Streptomyces are saprotrophic feeding off dead matter with relatively 

few being pathogenic. In 1948, the name Streptomyces scabies was used to describe 

the species and this name was revived in 1989 by Lambert and Loria, who bought 

together 12 different strains that formed one homogeneous group (Lambert et al., 

1989). In 1997, the name was changed to Streptomyces scabiei following a 

grammatical convention as set out in Rule 12c of the International Code of 

Nomenclature of Bacteria (Truper et al., 1997). In 1979, Elesawy and Szabo proposed 

it be assigned to the Diastatochromogenes cluster along with S. neyagawaensis, S. 

bottropensis, S. diastatochromogenes, S. eurythermus and S. griseosporeus, which 

https://en.wikipedia.org/wiki/Streptomyces_scabies#cite_note-2
https://en.wikipedia.org/wiki/Streptomyces_scabies#cite_note-lambert07-3
https://en.wikipedia.org/w/index.php?title=Oospora&action=edit&redlink=1
https://en.wikipedia.org/wiki/Streptomyces_scabies#cite_note-lambert97-5
https://en.wikipedia.org/wiki/Streptomyces_scabies#cite_note-6
https://en.wikipedia.org/wiki/Streptomyces_scabies#cite_note-loria03-7
https://en.wikipedia.org/wiki/Saprotrophic
https://en.wikipedia.org/wiki/Streptomyces_scabies#cite_note-lambert89-4
https://en.wikipedia.org/wiki/Streptomyces_scabies#cite_note-lambert89-4
https://en.wikipedia.org/wiki/Streptomyces_scabies#cite_note-8
https://en.wikipedia.org/wiki/Streptomyces_neyagawaensis
https://en.wikipedia.org/wiki/Streptomyces_bottropensis
https://en.wikipedia.org/wiki/Streptomyces_bottropensis
https://en.wikipedia.org/wiki/Streptomyces_diastatochromogenes
https://en.wikipedia.org/wiki/Streptomyces_eurythermus
https://en.wikipedia.org/wiki/Streptomyces_griseosporeus
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was later confirmed by other authors based on morphological and genetic analyses 

(Bukhalid et al., 2002). 

The most widespread species other than S. scabiei are S. turgidiscabies and S. 

acidiscabies, which can be distinguished based on their morphology, the way they 

utilize carbon sources and their 16S rRNA sequences (Lerat et al. 2009). The most 

symptoms of CS: the superficial, raised or pitted lesions that form on tuber surfaces, 

are caused by the best characterized pathogenic streptomycetes, Streptomyces scabiei, 

Streptomyces turgidiscabies, and Streptomyces acidiscabies (Bignell et al., 2010, 

Kreuze et al., 1999). Streptomyces acidiscabies tend to produce superficial lesions, 

whereas S. scabiei often produce raised and/or erumpent lesions. The phenotypic 

responses may be pathogen-specific (Hiltunen et al., 2005, Tashiro et al., 2012). In 

2003, three other species of Streptomyces that cause CS symptoms were isolated and 

named S. luridiscabiei, S. puniciscabiei and S. niveiscabiei (Park et al., 2003, Park et 

al., 2003) S. ipomoea causes a similar disease on sweet potato tubers (Clark, 1987) 

Leiminger et al., for the first time presented the pathogenic strains of S. 

europaeiscabies and S. stelliscabies (Leiminger et al., 2013). Finally, the relatedness 

between strains of Streptomyces pathogenic to potato was most recently described 

using a microarray including probes specific to genes of S. scabiei and S. 

turgidiscabies, pathogenic strains, classified as Streptomyces species based on 

morphological criteria, were subjected to comparative genomic hybridization (CGH) 

(Dees et al., 2012) Bouchek-Mechiche, et al., has explained DNA relatedness between 

strains of Streptomyces pathogenic to potato using DNA-DNA hybridization, 16S 

rRNA sequence and biochemical test (Bouchek et al., 2000). 

There are various unique aspects of Streptomyces as a pathogen: Only the 

developing periderm of underground stems, stolons and tubers is susceptible to CS 

(Dees et al., 2012). The genes coding for biosynthesis of pathogenicity determinants 

causing CS are carried on a pathogenicity island (PAI). Lateral transfer of 

pathogenicity genes among different scab-causing streptomycetes lead to emergence 

of novel pathogenic species in various agricultural systems (Hogenhout and Loria, 

2008, Loria et al., 2003). It is suggested that for a successful root infection, the ability 

to penetrate plant tissue is important as there are a few natural openings in roots. 

Thaxtomin, a phytotoxin which is produced by plant pathogenic Streptreptomyces 

causing CS seems to aid in the penetration of developing plant tissues by preventing 

https://en.wikipedia.org/wiki/Streptomyces_scabies#cite_note-Bukhalid02-10
https://en.wikipedia.org/wiki/Streptomyces_turgidiscabies
https://en.wikipedia.org/wiki/Streptomyces_acidiscabies
https://en.wikipedia.org/wiki/Streptomyces_acidiscabies
https://en.wikipedia.org/wiki/16S_RNA
https://en.wikipedia.org/wiki/Streptomyces_scabies#cite_note-lerat09b-1
https://en.wikipedia.org/wiki/Streptomyces_luridiscabiei
https://en.wikipedia.org/wiki/Streptomyces_puniciscabiei
https://en.wikipedia.org/wiki/Streptomyces_niveiscabiei
https://en.wikipedia.org/wiki/Streptomyces_scabies#cite_note-12
https://en.wikipedia.org/wiki/Streptomyces_scabies#cite_note-12
https://en.wikipedia.org/w/index.php?title=Streptomyces_ipomoea&action=edit&redlink=1
https://en.wikipedia.org/wiki/Sweet_potato
https://en.wikipedia.org/wiki/Streptomyces_scabies#cite_note-13
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the development of primary cell wall (Loria et al., 2003). Cellobiose and cellotriose of 

plant cells, incite thaxtomin production of pathogen. Pathogens causing scab 

upregulate the production of thaxtomin in response to cellobiose and cellotriose 

unleashed from thaxtomin-sensitive growing plant tissue (Johnson et al., 2007). 

 

2.4. Thaxtomin and other pathogenicity determinants  

Pathogenic Streptomyces spp. produce “thaxtomin A” - a cyclic dipeptide with a 

nitrated tryptophan moiety composed of 4-nitroindol-3-ylcontaining 2,5-

dioxopiperazines, which is the most known pathogenicity determinant that suppresses 

cellulose synthesis in spreading plant tissues. However, the mechanism and complete 

pathway of its biosynthesis has not yet been defined. Thaxtomin A is produced by the 

action of two non-ribosomal peptide synthetase modules (txtA and txtB) and a 

supplement of modifying enzymes (Johnson et al., 2007, 2009). Increased resistance 

of potatoes to CS is related to the reduced sensitivity to thaxtomin (Nathalie et al., 

2013). Hiltunen et al. proposed an elimination of CS sensitive progeny from a potato 

breeding population using thaxtomin A as a selective agent in the field (Hiltunen et al., 

2011). 

The production of thaxtomin increases in response to cellobiose, a plant cell 

wall component, and occurs at the host-pathogen interface indicating induction by host 

signals. Besides cellobiose, thaxtomin production is stimulated by oat bran broth 

proposing that specific carbohydrates may affect thaxtomin biosynthesis. Oat bran 

includes high grades of xylans and glucans as well as xylans and these carbohydrates 

stimulated thaxtomin A production. Consequently it was concluded that complex 

carbohydrates function as environmental signals to plant pathogenic Streptomyces, 

which allows thaxtomin production and enables bacteria to colonize its host (Wach et 

al., 2007).  

The two other important pathogenic determinants are nec1 encoding a protein 

inducing necrosis in plant tissue, and tomA encoding a virulence factor, which is 

homologous to tomatinase, found in plant pathogenic fungi, proposed to have a role in 

the interaction of plant-microbe (Bukhalid et al. 1998; Seipke and Loria 2008, Ryan et 

al., 2008, Joshi et al., 2007). There is a direct relation between nec1 gene copy number 

https://apsjournals.apsnet.org/doi/full/10.1094/javascript:popRefFull('b7')
https://apsjournals.apsnet.org/doi/full/10.1094/javascript:popRefFull('b46')
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in Streptomyces scabiei detected by q-PCR and occurrence of CS disease (Koyama et 

al., 2006). 

The txtA, txtB, tomA, and nec1, genes in 325–660 kb of large mobile region 

PAI (pathogenic island) were detected in streptomycete isolates, capable of inducing 

necrosis on tuber disks and stunting of radish seedling. Among them, 50% of isolates 

included all the four pathogenicity genes, 33% had an atypical combination of PAI 

marker genes and 17% did not include any of the genes and there were no hits for any 

of the virulence factors among the genomes. The missing of the thaxtomin 

biosynthetic genes (txtA, txtB) was confirmed by whole-genome sequencing of two 

representative strains of this group. These results suggest a participation of other 

virulence factors in pathogenicity mechanism of some strains causing CS (Lapaz et al., 

2017). 

To detect the other virulence factors, Joshi (2007) evaluated differential 

expression of ipt located in fas locus, that is an isopentenyl transferase and the key 

enzyme for cytokinin (phytohormones that promote cell division) biosynthesis in 

phytopathogenic bacteria, which identified by sequence homology and by biochemical 

approach. Inactivation of the fas locus, which is directly involved in cytokinin 

production, leads to a complete loss of phytopathogenicity (Crespi et al., 1992). 

Interestingly, cellobiose upregulates the ipt gene. Besides the thaxtomin, there are 

other secondary metabolites (organic compounds produced by bacteria, aid a host in 

important functions such as protection, competition, and species interactions), which 

are generated by various phytopathogenic bacteria such coronafacoyl as a phytotoxin 

(an important family of plant toxins) that are also produced by potato scab pathogen 

Streptomyces scabiei (Bown et al., 2016).  

 Concanamycin is a microbial secondary metabolite, which acts as inhibitor of 

ATPases in prokaryotic and eukaryotic cells (Drose and Altendorf, 1997), and has 

weak necrosis-inducing activity (Natsume et al., 2017). Another phytotoxin which was 

defined as a 16-membered macrolide, FD-891 produced by Streptomyces species, can 

also induce apoptosis in human cells (Natsume et al., 2005). In addition, Streptomyces 

scabiei produces a molecule, which is prevised to resemble the Pseudomonas syringae 

coronatine (a multifunctional phytotoxin) and such contributes to the development of 

seedling disease symptom. Other identified Streptomyces phytotoxic secondary 

metabolites include borrelidin, (an 18-membered polyketide macrolide shows 

https://www.jstage.jst.go.jp/search/global/_search/-char/en?item=8&word=Osamu+Koyama
https://en.wikipedia.org/wiki/Organic_compound
https://en.wikipedia.org/wiki/Competition
https://en.wikipedia.org/wiki/Polyketide
https://en.wikipedia.org/wiki/Macrolide
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antibacterial activity by acting as an inhibitor of threonyl-tRNA synthetase), which 

caused deep-pitted lesions (Natsume et al., 2017). The genome sequence of S. 

scabiei 87-22 was recently completed, and comparative genomic analyses with other 

sequenced microbial pathogens have demonstrated the appearance of additional genes 

that may take part in plant pathogenicity. Such analyses led to the identification of 

4259 protein-coding genes that are absent from the nonpathogenic species and are 

either shared among two or more pathogenic species or are unique to a specific 

pathogen. Several genes were identified that are predicted to encode secreted proteins, 

transcriptional regulators, membrane transporters, and enzymes for secondary 

metabolite biosynthesis, which could potentially contribute to pathogenicity in these 

organisms (Bignell et al., 2010).  

 

2.5. Horizontal transfer of mobile genetic elements 

The pathogenic elements of CS can be mobilized and transferred to nonpathogenic 

relatives, during conjugation (transfer of genetic material between bacterial cell), 

which leads to appearance of new pathogenic streptomycetes (Loria et al., 2006, Kers 

et al., 2005). Streptomyces sp. strain 96-12 harbors the PAI that is almost identical to 

the PAI in S. scabiei 87-22, despite noticeable variations in their genome sequences. 

That proposed a direct or indirect in vivo transfer of the PAI among S. scabiei and 

nonpathogenic Streptomyces species. S. scabiei, the earliest qualified Streptomyces 

pathogen, could be the source of a PAI responsible for the appearance of novel 

pathogenic species in various areas (Zhang et al., 2016). In the pathogenicity island, 

many mobile genetic elements were revealed by a partial DNA sequence of this PAI 

(Zhang et al., 2016). In S. turgidiscabies, two regions were reported on PAI: 

‘colonization region’ (CR) and ‘toxicogenic region’ (TR) which may undergo 

independent evolution (Aittamaa et al., 2010). In Streptomyces scabiei the thaxtomin 

biosynthetic cluster is placed within a mobile and TR divided into two sub regions 

TR1 and TR2. The compound pathogenicity island (PAI) formed by TR1 and TR2 is 

dynamic and unstable in newly described pathogenic species (Zhang and Loria, 2010). 

 

https://en.wikipedia.org/wiki/TARS_(gene)
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2.5.1. The first region on PAI 

The first region is called the ‘toxicogenic region’ with GC content of 68%. All genes 

defined to be associated with thaxtomin biosynthesis are found in this region. The 

region which can be transfered, contains coding genes: txtAB, txtC, nos and txtR (an 

AraC/XylS family member of transcriptional regulators) and they code for a 

nonribosomal peptide synthase (cyclization of the dipeptide), a cytochrome P450 

monooxygenase (hydroxylation of the cyclic dipeptide), a nitric oxide synthase 

(nitration of the tryptophan moiety is essential for the toxicity of thaxtomins) and a 

cellobiose-binding regulatory protein, respectively (Joshi and Loria, 2007). Virulence 

was almost removed in the txtR deletion mutant of S. scabiei (Joshi et al., 2007).  

The S. scabiei 87.22 genome was analyzed in order to survey the potential 

mobility of the TR. Attachment sites (att), short homologous sequences that delineate 

integrative and conjugative elements (ICEs), were defined at both extremities of the 

toxigenic region. An internal att site was also discovered, proposing that the toxigenic 

region has a mixture structure consisting of two regions TR1 and TR2. Thaxtomin 

biosynthetic genes, important for pathogenicity, were established in TR1, while 

candidate genes potentially acting in recombination, replication and conjugal transfer 

were discovered in TR2. Excision of the TR1 or TR2 subregions or of the whole TR 

region was perceived, however, the excision frequency of TR was low. Though, the 

excision frequency was significantly enhanced in the presence of either mitomycin C 

or Streptomyces coelicolor cells. A composite TR structure was not perceived in all 

S. scabiei and S. acidiscabies strains tested. From ten strains analyzed seven missed 

TR2 and no TR excision event could be recognized in these strains, thus proposing the 

implication of TR2 in the mobilization of S. scabiei was not conclusive (Chapleau et 

al., 2016). 

 

2.5.2. The second region on PAI 

The second section of the PAI, which is called the ‘colonization region’ contains genes 

coding for necrotization factor (nec1) and tomatinase A (tomA), which are not 

essential to pathogenicity but play an important role in virulence. Nec1 and TomA 

participate in infection through the appeasement of plant defenses (Lerat et al., 2009). 

The nec1 and a neighboring transposase pseudogene, ORF tnp, are absent from 

nonpathogens but conserved among pathogenic streptomycetes. An atypical high GC 
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content and an IS element (insertion sequence: a short DNA sequence that acts as a 

simple transposable element) adjacent to the 3’ end of nec1 in Streptomyces scabiei 

propose that it was acquired through horizontal transfer events (Healy et al., 1999). 

There are four open reading frames demonstrating similarities with transposes 

observed in close vicinity of the nec1 gene. As extracellular esterase activity was 

measured in S. scabiei and some esterases are thought to play a role in penetration in 

periderm by degradation of potato suberin (an inert impermeable waxy substance 

present in the cell walls of corky tissues) (Lerat et al., 2009). 

Since previous studies have demonstrated high sequence conservation of the 

PAI-associated nec1 gene and Streptomyces PAI is expected to be horizontally 

transferred as a unit, it could be predicted that all identified PAI genes are harbored by 

txtAB+ isolates and species. Yet, many txtAB+ isolates missing the nec1 gene have 

been proposed to be pathogenic. With an estimated size of more than 500 kbp, 

Streptomyces PAI is exceptionally large for a PAI, and the nec1 and txtAB genes are 

placed at opposite ends of this long region. A saponinase like gene (tomA), also 

characteristic of the PAI, evidently lies outside of nec1, in even more distant region 

from txtAB. These two genes were traced in tomatinase genes from the putative 

pathogenicity island were missed by some pathogenic isolates; several missed the nec1 

gene, and one was lacking the most reliable pathogenicity determinant txtA gene, 

which encodes thaxtomin biosynthesis. Variations in disease symptoms and intensity 

composed with lack of known pathogenicity determinants (txtA) or factors (nec1) 

propose that there may be pathogenicity factors in addition to thaxtomin (Wanner, 

2004; Wanner, 2009). Streptomyces scabiei 87-22 possess a functional tomatinase 

with high homology to the gene encoding tomatine-detoxifying enzyme tomatinase 

recognized in fungal tomato pathogens. Yet, tomatinase is not essential in 

pathogenicity on tomato plants but conservation of tomA on pathogenicity island in S. 

acidiscabies and S. turgidiscabies proposes a role in the plant-microbe interaction 

(Ryan et al., 2008). Partial tomA gene sequence did not vary among tomA+ 

Streptomyces spp. isolates and strains in contrast to txtA and txtC gene sequences 

suggesting that this gene is highly conserved among Streptomyces spp/ inducing CS 

(St-Onge et al., 2011).  

There is a wide genetic variation of PAIs between strains of S. turgidiscabies 

and the reigion of the pathogenicity island, which indicated that PAI is made up of a 
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mosaic of regions which may undergo independent evolution (Aittamaa et al., 2010). 

Disease occurrence and variety differ among places and years; that is due in part to 

diversity in the environment (weather) and genetic shifts in potato varieties (Wanner et 

al., 2006). In the US some pathogenic isolates missed one or more genes characteristic 

of the PAI, however all had genes for biosynthesis of the pathogenicity determinant 

thaxtomin. 

 

2.6. Research methodology to study CS 

2.6.1. Phenotypical methods 

There are many phenotypical and molecular methods to identify potato common scab 

agents in soil and infected tubers. Streptomycetes are found in soil everywhere in large 

amounts (106 to 107 colony forming units -CFU- per gram of soil). They are easily 

identified in culture isolation due to specified morphology.  

The organism inducing CS was characterized by creamy colonies on yeast malt 

extract (YMA) and also by aerial mycelium, which turned brown in time. The 

organism is Gram positive, non-motile, utilizes L-arabinose, D-fructose, D-glucose 

and rhamnose. It reduces xylose and starch by producing melanin on peptone yeast 

extract agar-iron (PYI). And the type strain of S. scabiei could be characterized by 

morphology of spores born in spiral chains (sporophores), production of melanin 

pigment on tyrosin-containing medium (peptone iron agar), and utilization of all the 

diagnostic sugars recommended by the International Streptomyces Project (ISP) for 

identification of Streptomyces spp. S. scabiei does not grow at pH below 4.5 

(Bencheikh and Setti, 2007).  

Isolates of streptomycetes from scabby potato plants differ in morphology and 

pigmentation. Scab lesions vary in appearance and severity. So it is difficult to use 

phenotypic traits in order to differentiate pathogenic streptomycetes from 

nonpathogenic ones exactly. In return, none of the nonpathogenic isolates could be 

confused with S. scabiei regarding to their 16S rDNA sequences. This indicates that 

most of the saprophytic streptomycetes preventing CS lesions belong to species other 

than S. scabiei (Doumbou et al., 2001). 

Using the methods described before (Wenzl and Demel, 1967; Rasocha et al., 

2006) Occurrence of tuber diseases was studied immediately after the washing and 
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during potato storage. From diseases, presence of CS was evaluated on a 9-point scale, 

where 1 is the health tuber and 9 is very strong infection (1: no scab, 3: skin scabbed to 

10% of tuber surface, slight scabbed, 5: skin scabbed on 11–20% of tuber surface, 

intermediate scabbed, 7: skin scabbed on 21–50% of tuber surface, strong scabbed and 

9: skin scabbed on more than 50% of tuber surface, very strong scabbed).  

Andrade et al., 2019 proposed a Standard area diagrams (SADs) were 

developed to aid the experimental visual assessment of common scab severity in 

potato tubers, increasing the accuracy, precision and reliability of disease severity 

estimates more than other methods evaluated. To create SADs, images were obtained 

of tubers inoculated used to define the intervals between CS classes. The evaluators 

recognized and delimited disease symptoms and located severity values between the 

SAD intervals. The CS severity of total images in the SADs varied from 0% to 96% 

and exhibited patterns typical of the disease, from small initial lesions to coalesced 

lesions covering the entire tuber surface (Andrade et al., 2019) 

 The analysis of cellular fatty acid profiles was used in order to distinguish 

among introduced pathogen- suppressive strains and indigenous strains of 

Streptomyces spp. (Bowers et al., 1996). The studies showed significant differenses in 

the level of some fatty acids in the pathogenes compared to suppressive strains. 

Pathogenic strains had significantly smaller quantities of the fatty acids: 15:0 anteiso, 

17 anteiso and 17:1 anteiso C and significantly greater quantities of the fatty acids 

14:0 iso, 16:0 iso and 16:1 iso H compared to the suppressive strains (Ndowora et al., 

1995, Paradis et al., 1994).  

 

2.6.2. Molecular methods 

Identification of species is not possible based on morphology of pathogenic 

Streptomyces (mycelium colour, sporulation and pigmentation) (Flores-González et 

al., 2008), therefore several molecular methods were used to survey of Streptomyces 

strains isolated from scab lesions and infected soils.  

The usefulness of a whole-genome oligonucleotide microarray was 

demonstrated (citation of the Norwegian paper). Whole-genome microarray analysis, 

based on 12 766 probes designed for 8848 predicted open reading frames (ORFs) of S. 

scabiei, showed that the 14 strains were different from S. scabiei. They were 

subsequently identified to be S. europaeiscabies based on the internal transcribed 
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spacer (ITS) sequences of the rRNA genes. That was the first report of the occurrence 

of S. turgidiscabies and S. europaeiscabies in Norway. The putative 762 genes 

exhibiting the highest sequence differences between strains of S. europaeiscabies and 

S. scabiei according to microarray analysis were concentrated in relatively few gene 

ontology (GO) categories, including ‘symbiosis and mutualism through parasitism’, 

‘cell death’ and ‘responses to biotic stimulus’, whereas genes related to primary 

metabolism appeared to be more conserved. Microarray data and 16S rRNA gene 

phylogeny showed, consistently, that there were two genetically distinguishable 

groups of S. europaeiscabies on the basis of differences in 131 genes. The results 

provide novel information about the genetic variability of S. europaeiscabies and the 

gene-specific variability between the genomes of S. europaeiscabies and S. scabiei 

(Dees et al., 2012). 

The limited number of 16S rRNA gene sequences in databases or insufficient 

16S rRNA gene polymorphism caused the incomplete coverage of actinomycetes by a 

genus specific probe (Kyselkova et al., 2008). 

In another study a microarray tool was extended with probes focusing on CS 

pathogens. A 16S rRNA gene-based taxonomic microarray, representing 19 bacterial 

phyla at different taxonomic levels was used to assess soil samples from potato 

fields.Twelve probes targeting the genus Streptomyces, as well as S. scabies and 

relatives were added to the probe set (1033 probes). The samples from suppressive and 

conducive soils were significantly distinguished by the signals of 22 probes. The 22 

probes targeting various bacterial taxa discriminated between suppressive and 

conducive soils, and 65 probes did between resistant and susceptible cultivars. Signals 

of probes targeting the CS pathogen were detected in the tuberosphere of the 

susceptible cultivar grown in conducive soil only. The results showed that microbiome 

features differed when comparing suppressive vs conducive soil as well as resistant vs 

susceptible cultivar (Kopecky et al., 2019: in review) 

A DNA microarray (also commonly known as DNA chip or biochip) is a 

collection of microscopic DNA spots attached to a solid surface. Each DNA spot 

contains a specific DNA sequence, known as a probe. Probes are a short section of a 

gene or other DNA element used to hybridize a DNA or RNA target. Probe-target 

hybridization is usually detected and quantified by detection of fluorophore-, silver-, 

or chemiluminescence-labeled targets to determine relative abundance of nucleic acid 

https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/Biochip
https://en.wikipedia.org/wiki/Gene
https://en.wikipedia.org/wiki/Fluorophore
https://en.wikipedia.org/wiki/Chemiluminescence
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sequences in the target (Taub, 1983). Many bacterial pathogens blackleg and soft rot 

(Pectobacterium atrosepticum, Pectobacterium carotovorum, and Dickeya spp.), ring 

rot (Clavibacter michiganensis subsp. sepedonicus), scab (Streptomyces scabiei and 

Streptomyces turgidiscabies) and brown rot (Ralstonia solanacearum), which could 

infect potato directly from tuber instances were readily detected by specific 

microarrays. However, the rate of microarray's analytical sensitivity under the tested 

situation was not enough to determine bacteria directly from tubers. As a result, in 

addition to the cost and organizational complications, for establishing the platform for 

routine detection of potato bacterial pathogens from tuber samples was not 

recommended (Degefu et al., 2016). Another method was provided, which uses the 

"Biotype-100" identification system for description of Streptomyces strains based on 

the assimilation of carbon sources (Bouchek-Mechiche et al., 1998). The PCR 

(Polymerase chain reaction, a method used to make many copies of a specific DNA 

segment) is used to show relation between Streptomyces spp. (Keinath et al., 1989; 

Lazarovits et al., 2007). A PCR-based diagnostic method was developed to amplify a 

fragment of the txtAB (txtA and txtB) genes, which are the most reliable pathogenicity 

determinants in the primary pathogenic Streptomyces species, together with carbon 

source utilization and repetitive BOX profiles in order to directly detect tuber lesions 

of pathogenic Streptomyces causing CS (Flores-González et al., 2008). The pathogens 

were identified by PCR using 16S rRNA-specific primers and PCR-RFLP of the 16S–

23S internal transcribed spacer (ITS) region with Hpy99I at the genetic level. 

Pathogenic strains of S. europaeiscabies, S. stelliscabies, S. acidiscabies, S. 

turgidiscabies and S. bottropensis reported and Streptomyces europaeiscabies was the 

predominant species found (Leiminger et al., 2013). 

Composed real-time PCR (TaqMan) approach has been applied for the 

simultaneous determination and discrimination of potato powdery and CS diseases and 

pathogens. Based on the DNA sequence of the ribosomal RNA ITS2 region, real-time 

PCR primers and a probe for Spongospora subterranea were designed. Primers and a 

probe for pathogenic Streptomyces were designed on the basis of the DNA sequence of 

the txtAB genes. This multiplex real-time PCR is a rapid, cost efficient, specific and 

sensitive tool for the simultaneous determination and discrimination of the two 

pathogens on infected potato tubers when optical symptoms are indeterminate or not 

present (Xinshun et al., 2010). Also a SYBR Green quantitative real-time polymerase 

chain reaction (PCR) assessment was developed using primers designed to anneal to 

https://en.wikipedia.org/wiki/DNA
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the txtAB operon of Streptomyces in order to quantify pathogenic bacteria populations 

in potatoes and soil. The real-time PCR assessment was particular for pathogenic 

Streptomyces strains. Cycle threshold (Ct) values were linearly associated with the 

target DNA concentration (correlation coefficient R2 = 0.99) and were not influenced 

by the appearance of plant DNA extracts, demonstrating the efficiency of the 

assessment for quantitative analyses of the pathogenic bacteria in plant tissues. Using 

primers designed from the txtAB operon, this real-time PCR assessment enables rapid, 

precise, and cost effective quantification of pathogenic Streptomyces strains in potato 

tubers and in soil. 1 g of scab lesion tissue and also 1g of peel tissue was used for 

DNA extraction in regard to symptomatic tubers (Qu et al., 2008). 

A new assay based on HybProbes chemistry for rapid and accurate 

determination of the CS pathogens was reported to create and validate a HybProbes-

based real-time PCR assay aiming the trpB gene) a housekeeping gene involved in 

tryptophan biosynthesis) for specific determination of Streptomyces scabiei and 

Streptomyces europaeiscabies. Since the HybProbes chemistry needs two probes for 

positive determination, the assay is taken to be more specific than conventional PCR 

or TaqMan real-time PCR. The resulted assay is a useful tool with high potential in 

early diagnosis and identification of CS pathogens of potatoes in infected plants or for 

surveillance of potatoes grown in soil environment (Xu et al., 2016). 

A multiplex PCR with a specific primer set for detecting 16S rDNA and 16S-

23S ITS regions (internal transcribed spacer) comprising of universally conserved 

regions, is a rapid and easy tool to detect of multiple species of potato scab pathogens 

in a vast range of environmental samples including the soil and plant tissues (Tagawa 

et al., 2008). 

The rpoB gene based method can be applied in order to complement other 

genetic methods such as 16S rRNA gene analysis or DNA–DNA hybridization to 

phylogenetically differentiate Streptomyces spp related potato scab (Mum et al., 2007). 

Same as above, most likely it can discriminate streptomyces taxonomically but not 

functionally.  

In conclusion, new diagnostic tools are offering the means for exact 

recognition and identification of pathogenic Streptomyces spp. These will now enable 

researchers to dissect the microbial interactions happening in soils with a view to 

https://www.tandfonline.com/author/TAGAWA,+Masahiro
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better understand the mechanisms of individual management measures and their 

efficient integration to agriculture practice. 

 

 2.7. Strategies for control of common scab 

2.7.1. Chemical methods and environmental factors 

2.7.1.1. Chemical treatments 

Agrochemicals used in agricultural lands in order to protect plants from various 

diseases, may possess health and environmental side effects. Therefore, they represent 

a controversial environmental health risk factor (Stamati, 2016).  

Chemical based treatments include: 2.4-dichlorophenoxyacetic acid (2,4-D), 

mercuric chloride, formaldehyde, copper sulphate, Burgundy mixture and boric acid. 

Application of 2.4-dichlorophenoxyacetic acid (2,4-D) has been demonstrated to be an 

efficient control method for CS, not directly by effect on pathogen, but via 

amelioration of thaxtomin A toxicity (Thompson et al., 2013; Thompson et al., 2013; 

Tegg et al., 2008).  

Disinfection of seed tubers is done before planting by solutions of mercuric 

chloride, formaldehyde, copper sulphate, Burgundy mixture and proprietary organic 

mercury compositions. The most acceptable method was dipping of the tubers in 

solutions of proprietary organic mercurials (Cairns et al., 1936).  

Boric acid solution and sulphur solution as seed treatments have been indicated 

to give considerable control of disease occurrence on potato CS. Boric acid treatment 

recorded the lowest disease occurrence and disease index, with greatest healthy and 

total tuber yield (Asif Ur et al., 2003; Gharate et al., 2016).  

It seems that using 2,4-D, auxin, boric acid and organic mercurials are good 

choices of chemical treatments however the most chemicals lose effectiveness as the 

plant develops (Abram, 2009). 

 

2.7.1.2. Effects of temperature and culture conditions 

Culture conditions (pH, Ca2+, posphate, and temperature) on thaxtomin production and 

aerial mycelium formation were examined for two strains of S. scabies and S. 

acidiscabies. Thaxtomin production was reduced at pH 7.6 and enhanced at 15°C in S. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Nicolopoulou-Stamati%20P%5bAuthor%5d&cauthor=true&cauthor_uid=27486573
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scabiei and increased at 30mM phosphate in S. acidiscabies. The higher the pH, Ca2+ 

concentration and temperature was, aerial mycelium formation in S. scabiei was 

greater, whereas that in S. acidiscabies was unaffected (Natsume et al., 2001). 

Enhancing soil temperature increased toxicity, but toxicity was unaffected by soil 

texture or organic carbon content (Bailey and Lazarovits, 2003). 

 

2.7.1.3. Soil pH  

Potatoes are more resistant to low pH than most other crops. Occurrence of CS tends 

to be less of an issue where soil pH is lower than 5.4. The disease is often controlled 

by maintaining soil pH in the range of 5.0 to 5.4 for varieties that are susceptible to 

CS. Although, pathogenic streptomycetes such as S. acidiscabies are adapted to low 

soil pH so they are resistant to its decrease. Moreover, enhancing soil pH in not 

recommended because it will rapidly limit iron availability, which may increase 

disease susceptibility (Hoskins, 2012; Stead and Wale, 2004). 

Thaxtomin production decreased at pH 7.6 and increased at 15°C in S. scabiei 

and increased at 30mM phosphate in S. acidiscabies. With higher pH, Ca2+ 

concentration and temperature aerial mycelium formation in S. scabiei was greater, 

while it was unaffected in S. acidiscabies (Natsume et al., 2001). Also, the effect on 

CS development appeared to be seasonal. However, the pH alone may not be a driver 

for the development of CS symptoms (Wiechel and Crump, 2010). It is worth 

mentioning that using peat leads to reducing soil pH and consequently leads to 

enhancing the availability and absorbance of iron. 

In conclusion, probably CS decrease occurres at low concentration of 

exchangeable cations in soil. CS was not detected on potatoes grown in soil with 

composed exchangeable Ca, Mg and K at 12 cmolc/kg or less. A strong relation was 

found between soil pH and these exchangeable cations, particularly calcium (Lacey 

and Wilson, 2001). 

 

2.7.1.4. Solarisation, irrigation and climate 

Rainfall would seem to be the most important climatic factor, which changes the air 

content of the soil and therefore, controls the development of the CS pathogenic 

organisms, which are strongly aerobic. The effect is most marked in clay soils, where 

CSis almost totally inhibited by a wet season (Millard, 1923). S. scabiei causes more 
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disease with enhanced aerobic situation and temperature in soil, thus, keeping high soil 

moisture during the early stages of tuber formation by irrigation can be applied as a 

method for controlling CS caused by S. scabiei (Lapwood et al., 1973; Adams & 

Lapwood, 1978, Davies et al., 1976; Hiltunen et al., 2005). High soil moisture rates 

may protect the pathogen from colonizing because of increase inaccessibility of 

antagonist species or competition from other microorganisms. Therefore, irrigation at 

the beginning of tuber formation is often an efficient control measure (Eckwall and 

Carl, 2000; Wilson et al., 2001). Also irrigation scheduling during the early stages of 

tuber initiation can also deter infection (Potatoes production guideline, 2013; Hiltunen 

et al., 2005). 

 

2.7.2. Biological methods and the role of nutrients 

2.7.2.1. Site selection and reducing seed-borne inoculum  

To provide potato crop with the greatest opportunity to grow to its full potential free of 

disease, utilizing certified seed is an essential principle. Pathogens may be moved on 

seed-tubers that provide inoculum for disease in the subsequent crops, and are 

evaluated in potato seed-tuber certification schemes all over the world. Seed lots are 

typically certified by visual subjective assessments of disease but lately, it's done by 

developed quantitative polymerase chain reaction (qPCR) tools. A comparison of both 

visual and qPCR assessments of potato seed lots was done, visual assessment, in most 

conditions provides an exact measure of tuber seed health for certification; although 

qPCR had the ability to identify ranges of pathogen DNA existing on symptomless 

tubers. In addition, it was indicated that planting tubers with high pathogen inoculum 

loads derived to increased progeny disease in compare with planting 'certified' tubers 

(Tegg and Wilson, 2016). 

Streptomyces scabiei lives in soil or on the surface of tubers; it is a saprophyte 

which may over-winter and can serve as next year's inoculum source. Inoculum could 

also be spread by water and wind-blown spores. S. scabiei may survive indefinitely 

once present in the soil (Driscoll, 2007). Therefore, in site selection for potato 

growing, fields with a history of scab and also soils with light texture favor scab 

infection and should be avoided (Kirkwyland and Thomas, 2013). Soil treatment of 

infected fields can lead to insufficient management because the effectiveness of any 

treatment is distinguished by soil type (texture and structure) and pH. One possibility 

https://www.scopus.com/authid/detail.uri?authorId=8574045200&eid=2-s2.0-84978767396
https://www.scopus.com/authid/detail.uri?authorId=7404895999&eid=2-s2.0-84978767396
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for control is addition of elemental sulphur or an acid based fertilizer e.g. ammonium 

sulphate. Application of lime to raise soil pH can enhance disease occurrence, while 

the addition of gypsum has no influence on soil pH and is a favorable practice. Water 

irrigation may be efficient however, the evaporation rate must be monitored closely 

because too high water levels may also increase disease severity (citation). Crop 

rotation of 3 to 6 year cycles with non-host crops is suggested. This practice would 

lead to reduction of soil inoculums but will not eradicate the pathogen. Wheat, rye, 

oats, soya bean, sorghum and lucerne are appropriate rotation crops. Finally, green 

manuring with brassica crops (e.g. mustard, cabbage), rye, clover, bean or grasses can 

decrease CS occurrence. 

A perfect association (r =1.00) was observed between the population densities 

of pathogenic Streptomyces in the root zone and daughter tuber disease occurrence 

demonstrating that evaluation of such populations in the field can serve as an excellent 

predictor of scab disease (Wang and Lazarovits, 2005). The necessity of both seed and 

soil-borne inoculum control in the epidemiology of CS disease was clearly indicated. 

Applications of chemical seed dressing treatments to visibly clean seed failed to 

considerably diminish disease rates below that observed on untreated seed. 

Preliminary investigations of some chemical soil treatments gave dissatisfying levels 

of control (Wilson et al., 1999). The use of peat and iron treatment concurrently can 

increase the yield and the proportion of large tubers (Sarikhani et al., 2017). 

 

2.7.2.2. Using resistant varieties of potatoes  

Development of potato varieties with a high level of scab resistance has been a goal 

for most potato-breeding programs (Loria et al., 2006; Haynes et al., 2009). Unreliable 

CS control has been produced by cultural practices such as fumigation, altering soil 

pH and controlling soil moisture during tuber development. The best CS control 

method is the application of disease-resistant varieties. However, breeding programs 

have made little process in developing resistant varieties due to high location to 

location and year to year diversities that decrease selection effectiveness (Navarro et 

al., 2013; Bouchek et al., 2000). 

 Recently, the potato cultivar (variety) ‘Mountain Gem Russet’ was tested in 

several regions in the USA on different soil types and indicated a complete resistance 

to the CS pathogen (Stark et al., 2016). However, screening methods to evaluate 
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susceptibility of scab in breeding programs take a lot of time and can provide variable 

results because there is a great range of differences in resistance among potato 

varieties and there are other requirements to the quality of potato varieties as well. 

Many public research programs are done to breeding for scab-resistant varieties and 

methods for evaluating management. This new breeding strategy based on clone 

crosses with cultivated potato, allow the introgression of resistance genes into 

advanced breeding and would allow breeders to incorporate recessive traits into 

varieties, for instance a diploid F2 population derived from a cross between the 

cultivated potato (Solanum tuberosum) clone US-W4 and the resistant wild relative 

(Solanum chacoense) clone 524–8 that showed previously to have the genomic regions 

associated with resistance to CS, exhibited high levels of resistance to the scab (Braun 

et al., 2017). Scab resistance was reported to be located on two independent loci, one 

dominant and one recessive (Alam, 1972). Murphy et al. were successful in 

transferring scab resistance from the diploid parent to the tetraploid offspring using 

4x-2x crosses (diploid and tetraploid, stand for two and four sets of chromosomes in a 

cell, and hence the number of possible alleles for autosomal genes) (Murphy et al., 

1995); However, Haynes (1990) showed that it is not possible to predict how 

successful this population might be in transmitting resistance to CS to the tetraploid 

level (Haynes, 1990). The same author also showed in 2009, that resistance to CS is 

not a simply inherited trait because of reasons such asinherent genetic differences in 

the population and differences in breeding strategies. That research showed the levels 

of resistance to CS cannot be improved by breeding in the diploid population and 

suggested it may be feasible to transfer the high levels of resistance of that population 

to the tetraploid one via 4x-2x crosses (Haynes, 2009). The most of new varieties are 

as resistant to CS as the moderately resistant standard ‘Russet Burbank’. Some clones, 

however, behave better in some locations than in others. The breeding clones with 

stable resistance across a wide range of conditions is suggested (Haynes, 2010). In 

Wisconsin, a complete breeding program and evaluation of breeding behavior of 

resistance to CS has been performed. Recently, no commercially significant varieties 

are immune to infection by S. scabiei. Current reports of clones with resistance to scab 

include Russet Nugget, Genesee, AC Chaleur, Krantz, AC Novachip, Ontario, 

Andover and Pike (Jansky, 2000). The average of the infection of CS in variety 

‘Teele’ was low, which significantly differs from the standard varieties ‘Maret’ and 

‘Anti’ (Tahtjarv, 2016). 

https://en.wikipedia.org/wiki/Chromosome
https://en.wikipedia.org/wiki/Cell_(biology)
https://en.wikipedia.org/wiki/Allele
https://en.wikipedia.org/wiki/Autosome
https://en.wikipedia.org/wiki/Genes
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In botanical potato species, resistance to CS exists in S. chacoense, S. 

commersonii, and S. yungasense (Hawkes, 1990); as well as some cultivated relatives, 

such as Group Phureja (Maine et al., 1993). Wild potato species Solanum chacoense, 

Solanum commersonii, Solanum yungasense, Solanum bukasovii, Solanum canasense 

and Solanum multidissectum belong to a suite of genetic resources possessing 

resistance to common scab (Bradshaw and Mackay, 1994; Hosaka et al., 2000). 

A study on 44 potato varieties of the Czech Republic and European showed 

that the less severity and incidence of CS was belong to the varieties: Mozart, 

Samantana, Satina, Laura, Ornella, Flavia, Velox, Adella, Belana, Vineta, Granola and 

Asterix. The factor variety and year had a statistically significant effect on infection 

and the effect of environmental conditions was responsible for the variability of 

severity and incidence in individual years (Sedlakova et al., 2013). 

 

2.7.2.3. Other biological approaches to potato protection 

Suberin.  

Previously, disease resistant potato clones were acquired by cell selections against the 

pathogen's toxin. These clones had broad-spectrum resistance to various pathogens 

invading tubers. The mechanism of increased disease resistance was unknown. The 

soma clones resistance to disease reacted to both pathogen and toxin by generating 

more cork layers in the tuber periderm, and acquiring higher suberin polyphenols in 

these tissues. The resistance phenotype is due to infusion of enhanced periderm cell 

layers and suberization (make the suberin) of the tuber periderm, which restricts 

infection. The soma clones offer a valuable resource for future examination of 

suberization responses and its genetic control (Thangave et al., 2016). 

 

Suppressive microbial communities.  

Some varieties that stimulate disease inhibition can increase populations of specific 

bacteria with antagonistic activity in their rhizosphere toward their pathogens. 

Methods which transform resident microbial communities in a way, which impacts 

natural soil suppressiveness have potential as components of environmentally 

sustainable systems for management of soil borne plant pathogens (Mazzola, 2002). 
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Actinobacterial population densities on tuber surfaces reflect variations 

between the susceptible and resistant potato varieties (Rozenzweig et al. and Meng et 

al., 2012). Larger numbers of actinobacteria were isolated more frequently from the 

periderm of the scab-susceptible varieties than from the moderately resistant varieties 

in England. In a greenhouse study, the treatment with the lowest scab occurrence also 

had the lowest density of actinobacteria in the soil adhering to tubers. The density of 

total actinobacteria may be a demonstration of a favorable environment for pathogenic 

actinobacteria development. The positive correlation of disease with soil populations 

early in the growing season could be useful in a predictive model for scab occurrence 

or severity (Keinath and Loria, 1989). 

The combination of bacterial communities in the rhizosphere of potato plants 

was indicated to be dynamic and affected by the plant growth development level, the 

year and the site. The taxonomic combination of potato rhizobacteria and the way their 

abundance was influenced by the plant genotype or the site are still largely unknown. 

The OTUs affiliated to Streptomycetaceae, Micromonosporaceae, Pseudomonadaceae 

or Enterobacteriaceae found in potato rhizosphere have imputations not only for 

biocontrol but also for phytopathology (Weinert et al., 2011). 

 

Crop rotation.  

Following barley, canola, and sweet corn rotation, soil population of culturable 

bacteria and overall microbial activity tended to be at highest level, and it was lowest 

with continuous potato. Potato rotations tended to have lower substrate richness and 

variation. A higher proportion of bacteria was related to fungi for potato rotation than 

for other rotations (Larkin, 2003). It is not recommended to rotate with CS hosts such 

as spinach, turnip, parsnip, radish, beet, and carrot; rotate with alfalfa, rye, soybeans 

and corn. 

Favorable conditions such as warm, dry weather and sustained cropping with 

potato or other susceptible crops (e.g. beet, sugar beet, carrot, turnip, and groundnut) 

induce disease development. Cultivation of spinach and the incorporation of red clover 

as cover crop can also lead to a growth in disease occurrence. The best biofumigation 

method was incorporating of mustard residues. Glucosinolates (GLN) are found in the 

leaves, stems and roots of Brassica crops, and are unleashed when plant parts are 

chopped up and worked into the ground. The GLN gasses are introduced into the soil 
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during the biofumigation process and inhibit the CS soil pathogens. It also enhances 

the levels of good soil organisms (Gouws, 2013). 

 

Understanding of detailed genetics, physiology and interactions between pathogens 

and plants. 

New molecular genetics tools indicate greater understanding of the genetics of 

CS resistance and the regulation of thaxtomin production and contributory 

pathogenicity factors for better control over the disease. (Wanner and Leslie, 2014; 

Kotiaho et al., 2008). Streptomyces isolates vary significantly in aggressiveness, and 

there are specific plant genotype-pathogen isolate interplays. Significant variations 

among experiments, between isolates and among varieties were found (Wanner and 

Haynes, 2009). However, based on thaxtomin, the mechanism of pathogenicity is 

likely conserved in all pathogenic species. High variability in disease symptoms 

among tubers from a single plant, ranging from no CS to severe pits, makes it difficult 

to phenotype the susceptibility of CS (Driscoll et al., 2009). Resistant varieties which 

can be enhanced through breeding, should be effective in many different environments 

(Eckwall and Carl, 2000). 

Resistant potato varieties may have smaller lenticels and also they may have a 

higher rate of suberization than susceptible types. A critical period for pathogen 

infection is early tuberization hence, studies of host gene expression responses during 

this developmental stage can be essential to determine putative resistance genes. In an 

examination of infection with a highly susceptible and a relatively resistant potato 

variety transcription profiles were acquired by RNA sequencing at two developmental 

stages: the early hook stage and the early tuber formation stage. A considerable down-

regulation of genes included in ribosome biogenesis was evidenced for the infected 

resistant variety at the early hook stage, which demonstrated an allocation of resources 

that favors the expression of defense-related genes (Dees et al., 2016). 

 

Biological treatments. 

Bacterial biocontrols. Suppressive soils are described by a very low rate of disease 

development even though a virulent pathogen and susceptible host are available. 

Suppressive soils are differentiated in “long-standing suppression” and “induced 

suppression”. Long-standing suppression is a biological situation naturally correlated 
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with the soil, with unknown origin, and it seems to remain in the absence of plants. 

Induced suppression is initiated and sustained by crop monoculture or by addition of 

inoculum of target pathogen. In many examples, the microbial community structure of 

soil is bearing the suppressiveness of plant pathogens. Suppressiveness is very likely 

to be associated with microbial community structure based on antagonistic functions 

(Garbeva et al., 2004). The organisms that are operative in pathogen suppression do so 

via different mechanisms containing competition for nutrients, antibiosis and infusion 

of host resistance. Some varieties that stimulate disease suppression can increase 

populations of specific bacteria with antagonistic activity in their rhizosphere toward 

their pathogens (Mazzola, 2002; Kopecky et al., 2018). 

Biocontrol isolates of bacteria can suppress the disease by their antagonistic 

activity and production of enzymes, antibiotics, siderophores, and induce plant growth 

hormones. Bacterial species from the genera Bacillus and Pseudomonas were great 

compositions of those rhizoflora communities antagonistic to S. scabiei. The 

development of rhizobacterial communities that created secondary metabolites with 

antibiosis ability, against S.scabiei stimulated by soil acidification with +SO4 

treatments (Sturz et al., 2004). 

The proportion of isolates with antagonistic activity was highest against 

Streptomyces sp. Almost all γ-Proteobacteria and also Xanthomonas, indicated 

biocontrol activities against Streptomyces scabiei. The existence of the phytopathogen 

may have infused the colonization of suitable antagonists (Sessitsch et al., 2004). 

Moreover, nonpathogenic antibiotic-producing Streptomyces, such as Strains 346 and 

K61, prohibited the pathogenic strains (Eckwall et al., 2001; Hiltunen et al., 2009) S. 

diastatochromogenes PonSSII (nonpathogenic) or S. scabiei PonR (weak pathogen) 

and S. albogriseolus as suppressive strains can decrease the intensity of scab (Weller, 

2002; Rosenzweig et al., 2012; Kyselkova and Moenne-Loccoz, 2012). Although, 

even nonpathogenic strains of Streptomyces turgidiscabies indicate antagonism against 

S. scabiei (Hiltunen et al., 2009). Other molecules (including aromatic amino acids 

and some secondary metabolites) demonstrate inhibitory effects on the toxin 

production (Lerat et al., 2009). 

Pseudomonas sp. LBUM223 is able to produce phenazine-1-carboxylic acid 

affecting the growth of Streptomyces scabiei, the expression of thaxtomin biosynthesis 



38 

 

genes and the biological control potential against CS of potato (St-Onge et al., 2011; 

Arseneault et al., 2013; Arseneault et al., 2016). 

Bacillus amyloliquefaciens BAC03, Bacillus subtilis GB03 and Rhizoctonia 

solani hypovirulent isolate Rhs1A1, can be a suitible biological management agent for 

potato CS (Gomez et al. 2013; Larkin and Tavantzis, 2013; Meng and Hao, 2017). The 

biocontrol microbes such as Bacillus amyloliquefaciens, Bacillus subtilis, Bacillus sp. 

Sunhua enhance the release of nutrients from fertilizers, aid to generate rooting and 

supply the plant defense against infection. The plant roots are colonized by the live 

bacteria added to the fertilizer, which feed the bacteria with carbon-rich root exudates: 

in contrast, the microbes enhances nutrient uptake, making fertilizers more efficient, 

and produce metabolites that stimulate healthy growth and repress disease as a side 

effect. The microbes get stronger and more active as the plant grows. There have also 

been noticeable reductions in CS after this experiment (Han et al., 2005; Larkin and 

Tavantzis, 2013; Abram Mike, 2009).  

 

The Phages. The composition and diversity of bacterial population is affected by 

actinophages, thereby, it can be applied as biological control. Two specific phages 

against S. scabiei were isolated from various potato fields in several locations in Giza, 

Egypt. Results offer a useful data for designing a control strategy against potato scab 

disease (AlKhazindar et al., 2016). McKenna et al., applied a polyvalent Streptomyces 

phage to get rid of infesting Streptomyces scabiei-infected seed potatoes in vivo. That 

was the first in vivo study that has applied Streptomyces phage to considerably 

disinfect seed potatoes of Streptomyces scabiei and thus decrease contamination of soil 

from seed-tuber-borne inoculum and decrease infection of daughter tubers (McKenna 

et al., 2011).  

 

The role of plant defense. Plant has several defense mechanisms to come over the 

disease because during evolution, plants necesitated to acquired mechanisms to define 

their aggressors and defend themselves. There are two pathways phenylpropanoid and 

oxylipin metabolisms, which both are included in plant resistance at different levels: 

by synthesizing an array of antibiotic compounds, by supplying building units of 

physical barriers against pathogen invasion, and by generating signals implicated in 

the mounting of plant resistance (Camera et al., 2004). Moreover, there are two 13-
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AOSs (allene oxide synthase) in potato, and one 9-AOS (AOS3) which is highly 

specific for 9-hydroperoxides and leads in vitro to a- and g-ketol formation, AOS3 is 

expressed in sprouting eyes, stolons, tubers and roots ending to a-ketol formation in 

vivo, in below ground organs (Wasternack, 2007). 

Plant hormones play essential roles in controlling developmental processes and 

signaling networks included in plant responses to vital and abiotic stresses. Important 

progress has been made in identifying the key element and comprehending the role of 

salicylic acid (SA), jasmonates (JA) and ethylene (ET) in plant responses to vital 

stresses. New studies demonstrate that other hormones such as abscisic acid (ABA), 

auxin, gibberellic acid (GA), cytokinin (CK), brassinosteroids (BR) and peptide 

hormones are also implicated in plant defense signaling pathways. Defense in response 

to microbial attack is controlled through a complicated network of signaling pathways 

that include three signaling molecules: salicylic acid (SA), jasmonic acid (JA) and 

ethylene. The SA and JA signaling pathways are reciprocally antagonistic. This 

regulative cross talk may have erupted to let plants to fine-tune the infusion of their 

defenses in response to various plant pathogens (Kunkel and Brooks, 2002; Howe, 

2004). The CS resistance is associated with state of two MYB and three bHLH genes 

(as the large transcription factor families), demonstrating that they might be included 

in the adjustment of the defense response of potato against the CS pathogen (Tai et al., 

2013). Proteins are infused in Streptomyces scabiei by potato suberin, a lipidic plant 

polymer also appeared to affect plant protection through modifications of secondary 

metabolism (Lauzier et al., 2008). 

Bacterial communities and nutrients can help the plant to decrease the 

pathogen efficiency. Ferritin, a universal intracellular protein that stores iron and 

releases it in a controlled fashion may be a protective molecule for plant cells, can 

restrain the generation of reactive oxygen species by scavenging the intracellular iron. 

Ferritin gene (StF1) has enhanced tolerance to viral and fungal infections. These 

records recommend the idea that ferritin can be part of host defense responses 

triggered during infection (Expert et al., 2012).  
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2.7.3. Macro and micro nutrients 

2.7.3.1. The role of solubility of nutrients on plant uptake 

Nutrient uptake in soil is determined by cation exchange, in the way root hairs pump 

hydrogen ions (H+) out of the plant and into the soil by the proton pumps. These 

hydrogen ions displace cations attached to negatively charged soil particles so that the 

cations are available for uptake by the root. The soluble forms of cations are free to the 

plant and easily available, however, the most cations in soil are tied up on the 

exchange complexes and not readily available (Cole et al., 2016). The roots can only 

take up nutrients that are dissolved in a water solution, they cannot take up the solid 

nutrient form (Solomon et al., 2013; Wolf, 1943).  

Soil minerals like any other chemical compound exhibit some solubility in 

water. They are mostly sparingly to very slightly soluble compounds. Solubility of 

solids vary considerably, for example, sodium salts are generally soluble, while salts 

of Fe and Al are much less soluble (Strawn, 2015). Increased pH can decrease the 

solubility of cations. An increase in soil pH, decreased amounts of water‐soluble Ca, 

Mg, Na, K, NH4‐N, and P, while NO3‐, N and Cl increased. A change in soil pH by 

acid rain, fertilizer, and lime inputs affects cation and anion solubility (Sharpley, 

2008), Moreover, soil organic matter and subsequently also peat as a source of organic 

matter decrease soil pH and influence nutrient solubility (Reykjavík, 2005). Among 

the micronutrients, Fe, Mn, Cu, Zn, and Ni are taken up by plants in their cationic 

forms, and B, Mo, and Cl are taken up by plants in their anionic forms. Plant 

availability of both Fe and Mn is greatly reduced in calcareous soils (pH > 7) due to 

the extremely low solubility of Fe and Mn oxides and of Mn carbonates (Singh, 2015), 

also the studies showed that bacteria can increase the solubility of soil minerals 

(Gramss et al., 2005).  

Bacteria can increase the solubility of soil minerals (Gramss, 2005). The plant 

roots are colonized by the live bacteria added to the fertilizer, which feed the bacteria 

with carbon-rich root exudates: in contrast, the microbes enhances nutrient uptake, 

making fertilizers more efficient, and produce metabolites that stimulate healthy 

growth and suppress disease as a side effect (Abram Mike, 2009; Souza et al., 2015). 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Gramss%20G%5bAuthor%5d&cauthor=true&cauthor_uid=15678562
https://www.ncbi.nlm.nih.gov/pubmed/?term=Gramss%20G%5bAuthor%5d&cauthor=true&cauthor_uid=15678562
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2.7.3.2. Nutrients in rhizosphere and bulk soils  

The population density of microorganisms on the root surface and in the rhizosphere is 

multiple times greater than that in bulk soil (Huber et al., 2011). The relative enhance 

in the number of microorganisms is described as the R/S ratio, in which R is the 

numbers per gram of soil in the rhizosphere and S in the bulk soil. The ratios differ 

greatly, between 5 and 50, for example, depending on microbial species, plant age, 

plant species and nutritional status of plant (Marschner, 2011). 

 Under field situations, fertilizers influence the performance of plants directly 

via their impacts on plant nutrition and indirectly by converting the vital and abiotic 

environment, which impacts pathogen and survival and function of pest (Huber et al., 

2011). Plants in return induce biochemical responses, such as release of reducing and 

chelating compounds and acidification of rhizosphere, which can increase the 

availability of Fe, Mn, and other micronutrients (Singh and Schulze, 2015). Similarly, 

the root associated bacteria can increase the solubility of soil minerals (Gramss et al., 

2005). Therefore, soil microbes play an essential role in nutrient turnover and thus, 

nutrition of plants by decomposing and mineralizing organic material and releasing as 

well as changing inorganic nutrients by solubilization, chelation and 

oxidation/reduction is modified by microbial activities. Nutrient cycling at a particular 

site is, however, also influenced by grazing of predators, which unleash nutrients from 

plants and microbial biomass and increases turnover at all trophic levels (Sagova-

Mareckova et al. 2019, in rev.). Rhizosphere microorganisms may also impact plant 

nutrient uptake indirectly by increasing root growth (Marschner, 2011).  

 

2.7.3.3. The role of Iron in plant growth 

Potato plants were grown in refined sand at variable iron ranging from 0.001 to 2.0 

mM in order to investigate the effect of iron on biomass, economic yield . Exposure of 

potato plants to Fe stress (i.e. a Fe concentration different from 0.1 mM) indicated a 

retarded growth, reduced chlorophyll concentration and Hill reaction activity, induced 

changes in enzyme activities and condensation of Fe and Mn. The visible symptoms of 

iron deficiency emerged on day 15 at 0.001 mM Fe as chlorosis of young leaves. The 

increase of iron (at >0.1 mM Fe) appeared later, after 25 days and the chlorosis was 

perceived on older leaves. Both deficiency (0.001 mM) and increase (>0.1 mM) of 

iron decreased the tuber yield, deteriorating its quality by reducing the condensation of 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Gramss%20G%5bAuthor%5d&cauthor=true&cauthor_uid=15678562
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sugars, starch and protein nitrogen and enhancing the aqcuisition of non-protein 

nitrogen and phenols in tubers (Chatterjee et al., 2006). 

 

2.7.3.4. Organic matter and Suppressive bacteria 

The major activities of soil microbes in soil involve the decomposition of organic 

materials, nitrogen fixation, mineralization of nutrients, suppression of crop pests, 

protection of roots and also preventing parasitism and harm to plants. The occurrence 

and severity of root diseases is an indirect assay of soil health for specific 

commodity/soil use (Abawi and Widmer, 2000). Experiments with unrehearsed non 

inhibitory mutants of Streptomyces biocontrol strains and unrehearsed pathogen 

mutants resistant to at least one antimicrobial produced by the biocontrol strains 

showed that both antibiosis and competition contributed to detention of pathogenic 

strains. Streptomycetes soil subcommunity can be changed considering the type of 

organic soil amendment, proposing that the biocontrol potential of preventive 

indigenous strains could be increased via appropriate selection of farming practices 

(Kyselkova and Moenne-Loccoz, 2012). Modification in the farming practices such as 

adding organic matter or micronutrient can change the combination of Streptomyces 

soil sub community and increase biocontrol potential of preventive indigenous strains. 

 

 2.7.3.5. Organic matter ammendments and disease  

The indicated facts concerning the incidence of CS on light soils, its comparative lack 

on peat soils, the cure of the disease by green-manuring may be explained by the 

preferential food hypothesis. According to this theory, the scab organisms, which are 

mainly saprophytic living on vegetable remain in the soil stay until their natural food 

supply is exhausted and develop their parasitic tendency only under the stress of 

hunger. Thus, if the soil contains sufficient amount of organic matter, which can aslo 

add other nutrients to soil and/or increase their availability due to low pH may lead to 

keeping the pathogen on the surface of tubers only as saprophytic bacteria without 

going to the virulence stage (Millard, 1923).  

Organic matter ammendments may help in development of disease suppressive 

soils but the benefits will be acquired only over long time because enhancing soil 

health and modifying its structure is a complex process. Cereal crops and green 

manures decreased CS occurrence. The impacts of summer green manures on those 
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crop parameters were greater than those of cereal crops and fall green manures (Adrien 

et al., 2013). Meat and bone meal, soy meal, and poultry manure at rates of 37 T ha−1 

incorporated to a 15 cm depth, considerably decreased the occurrence of verticillium 

wilt, CS, and plant parasitic nematode populations. Animal manures have been 

involved in enhancing the occurrence of CS disease of potato and most directions 

suggest avoiding the application of fresh manure on soils destined for potato 

production. Yet, in experiments with liquid swine manure amendments in one potato 

field, found decreased occurrence of wilt and CS, and a lowering in the amount of 

plant parasitic nematodes for 3 years after a single manure application. Although, 

when soil pH was increased from 5 to 6.5, all activity against the pathogen was 

eliminated. Therefore, soil pH is essential to the activity of the amendment (Bailey and 

Lazarovits, 2003).  

Drastic disease occurrence has been reported on fields that were fertilized with 

animal manure (Poatoes production guideline, 2013). In other studies the plots with 

compost amendment had substantially greater CS than non-treated control plots with 

the more severe erumpent form of the disease compare to russet form (Larkin and 

Tavantzis, 2013). Although, Treating CS have been done using fertilizer treatments. It 

has proposed that the usage of fertilizer amendments can alter rhizobacterial 

communities that are associated with a varying degree of antibiosis against S. scabiei 

(Driscoll, 2007; Sturz et al., 2004). Finally, peat is a natural product generated from 

the progressive acquisition of plant and moss residues decomposed in waterlogged 

situations. Although, peat generally loses its suppressiveness during decomposition, 

different effects of peat and manure amendment on scab were reported with peat 

making significant changes to the soil microbial community (Bonanomi et al., 2010).  

 

2.7.3.6. The effects of different nutrients on the scab severity  

Researches showed different effects of organic matter and nutrients on the scab 

severity (Lazarovits et al., 2007; Lambert et al., 2005; Davis et al., 1976). However, 

the effects of nutrient additions differ by locations and situations (Bailey et al., 2003; 

Lazarovits et al., 1999; Lazarovits et al., 2010; Soltani et al., 2002). The reduction of 

scab after application of ammendments is soil-specific and varies from year to year 

(Abbasi et al., 2006). The data indicate that the correlation between scab severity and 

https://www.tandfonline.com/author/Abbasi%2C+P+A
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soil chemical components is very complex (Lazarovits et al., 2007; Conn and 

Lazarovits, 2013). 

Potassium: The impact of potassium on scab severity varied in different 

studies. The potassium measured in tuber periderm, was not related to scab occurrence 

or severity (Kristofek et al., 2000) yet, in another study the scab was less in soils with 

relatively high composed exchangeable K, although combined exchangeable cations, 

such as K, varied between locations (Lacey and Wilson, 2001). Disease intensity 

correlated with soil factors such as available K content for one studied area but not for 

another one (Lazarovits et al., 2007). An application of potassium to soil was not 

considered to have any influence on CS (Stead and Wale, 2004). 

Copper: The studies showed that the copper measured at harvest in periderm, 

may not be related to scab occurrence or severity (Kristufek et al., 2000). In another 

study the use of Cu in soil reduced the tuber infection level and intensity by 

Streptomyces scabiei (Klikocka, 2009). 

Zinc: The concentration of Zn, measured in periderm, was not related to the 

scab severity (Kristufek et al., 2000) and Zn was not considered to have any influence 

on CS (Stead and Wale, 2004); however the use of micronutrients Zn in soil reduced 

tuber infection level and intensity by Streptomyces scabiei (Klikocka, 2009). 

Magnesium: In several studies assessing magnesium in soil, the tuber scab 

decreased and occurrence of Streptomyces scabiei and scab disease was not detected 

on potatoes grown with composed exchangeable Mg (Lacey and Wilson, 2001; 

Klikocka, 2009). It was demonstrated that suppressive soils had higher content of Mg 

compare to conducive soils (Sagova-Mareckova et al., 2015). The same author showed 

in 2017 that the number of txtB gene copies in potato periderm was positively 

correlated to a higher content of Mg in periderm (Sagova-Mareckova et al., 2017). 

Moreover, the resistant variety had a higher Mg content in periderm compared to 

sensitive varieties (Kopecky et al., 2018). In the recent study, we showed that there 

were the positive correlation between CS severity and amount of Mg in soil and 

periderm. Although, a negative correlation between thaxtomin copy numbers in soil 

and Mg in periderm was seen but there was a positive correlation between thaxtomin 

copy numbers and Mg in periderm. 

Iron: Different effects of iron content in soil and periderm on scab severity 

were observed. It was suggested that plant pathogens including S. scabiei may use 

https://www.tandfonline.com/author/Conn%2C+K+L
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chelating compounds for iron uptake, and those can act as essential virulence 

determinants (Seipke et al., 2011). Potato varieties Binella and Agria (as sensitive 

varieties to scab) were the most Fe dependent varieties in comparison with other 

varieties (Adamski et al., 2011; Ozturk et al., 2011). Availability of iron may be 

important in order to produce biocontrol metabolites by suppressive bacterial 

community (Kyselkova and Moenne, 2012). In suppressive soils, potatoes had lower 

CS severity in soils with more available iron (Sagova-Mareckova et al., 2015), while 

in another study, number of txtB gene copies in periderm was positively correlated to a 

higher content of Fe (Sagova-Mareckova et al., 2017). In the last study, we showed 

that enrichment of field with available iron and/or peat ammendments can suppress the 

scab efficiently (Sarikhani, et al., 2017).  

In our study, it seems that the aggressiveness of pathogen for competition on 

iron source with the plant could be stopped by soil enrichment by sufficient available 

iron. The iron supplement supported plant defense while both iron and peat additions 

changed the bacterial community in favor of CS suppression (Sarikhani et al., 2017).  

Phosporus: High soil phosphorus content was seen in the CS suppressive 

fields (Sagova-Mareckova et al., 2015). Also, number of txtB gene copies in periderm 

was positively correlated to a higher content of P in periderm (Sagova-Mareckova et 

al., 2017). Evaluating the mineral components of potato periderm, the CS intensity 

was negatively correlated to phosphorus content (Kristufek et al., 2015). However in 

other study, the application of P was not considered to have any influence on CS 

(Stead and Wale, 2004). In our recent study, the negative correlation between CS 

severity and P content in soil was observed; moreover between there was a positive 

correlateoin between soil txtB and soil P as well as between txtB and P in periderm. 

Calcium: High calcium levels, in the absence of changes in pH, may induce 

CS intensity. CS was positively correlated with calcium content of tubers and negative 

correlated with composed exchangeable Ca of soil (Lacey and Wilson, 2001; Horsfall 

et al., 1954, Davies et al., 1976). The Ca was less in soils with low CS severity and the 

suppressive fields had lower Ca in periderm. (Sagova-Mareckova et al., 2015). Yet, a 

different study showed that the application of Ca, was not considered to have any 

influence on CS (Stead and Wale, 2004). In higher Ca2+ concentration, the aerial 

mycelium formation in S. scabiei was greater (Natsume et al., 2001). In Arabidopsis 
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thaliana, the Ca2+ influx impelled by thaxtomin A is essential for cell death (Errakhi et 

al., 2008).  

Nitrogen: Nitrogen had contrasting effects on potato scab. In some studies, 

nitrogen levels did not seem to directly impact CS but many nitrogenous fertilizers 

have an indirect effect becuase they acidify soil (Stead and Wale, 2004). Also, the use 

of organic amendments, manures and composts which are rich in nitrogen, may 

decrease soil-borne diseases by unleashing allelochemicals engendered during product 

storage or by subsequent microbial decomposition (Bailey and Lazarovits, 2003).Other 

studies showed that adding N rich soy meal, meat and bone meal to soil leads to 

increase of ammonia, nitrite, nitrate, pH, and bacterial quantity, and can suppress CS 

(Lazarovits et al., 1999). However, oligotrophic conditions of low soil C and N remain 

potentially associated with suppressivity to CS and the less content of N was seen in 

other soils with low CS severity. Possibly, the pathogens favor soil conditions of high 

C and N (Sagova-Mareckova et al., 2015). The observed differences in N impact on 

CS may be partially attributed to different contents between bulk soils and rhizosphere 

and different utilization by potato varieties.  

Sulphur: The application of sulphur or gypsum (calcium sulphate) reduced the 

tuber infection level and intensity of Streptomyces scabiei (Klikocka, 2009; Davies et 

al., 1974). Elemental sulfur and ammonium sulfate significantly decreased CS 

(Klikocka and Glowacka, 2013). The use of S, reduced the tuber infection level and 

occurrence of Streptomyces scabiei (Klikocka, 2009). Sulphate fertilizers can enhance 

biodiversity and antibiosis ability of root zone bacteria against Streptomyces scabiei.  

Previously, soil S was also found to be related to CS severity, the elemental 

sulfur and ammonium sulfate significantly decreased CS (Klikocka and Glowacka, 

2013). In other experiments (Pavlista, 2005), scab reduction also occurred with 

elemental sulfur or ammonium sulfate but the results were inconsistent. Similarly, 

sulfur treatments interacted with irrigation and calcium content in the periderm in CS 

suppression (Davis et al. 1976; Lazarovits et al., 2008); but in another study the 

positive effect of elemental sulfur and kieserite fertilization on resistance against S. 

scabiei was attributed to reduce soil pH. It was demonstrated that soil S is connected 

to disease but not to pathogen abundance, and sulfur-containing defense compounds 

including elemental sulfur, H2S, glutathione (an importnt antioxidant in plant) 

phytochelatins (a detoxificator of heavy metals), can play a good role in suppression 
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(Klikocka et al., 2005). It is important to note that various secondary metabolites and 

sulfur-rich proteins are crucial for the survival of plants under biotic and abiotic stress 

(Rausch and Wachter, 2005). Also results of our study indicated that the CS severity 

was negatively correlated with soil S content and a negative correlation was seen 

between soil txtB and S content in soil (Sagova-Mareckova et al., 2017).  

Aluminium: The effects of Al on CS showed to be varied in different fields. It 

has been demonstrated in Japan that even when the pH decreased in the examined 

soils, higher concentrations of water-soluble aluminum were found in fields that had 

less scab disease than fields which were highly conductive. They suggest including 

aluminum could be applied to manage the disease. Although, this study showed that, 

the value of required aluminum in the field in order to control disease was too great to 

be economically feasible (Eckwall and Carl, 2000). In another study it was 

demonstrated that conditions present during the infection period cannot be reflected by 

concentrations of Al, measured at harvest in tuber periderm, and consequently may not 

be related to CS occurrence or severity (Kristufek et al., 2000). Accordingly, disease 

intensity was anticipated by soil factors such as organic matter and Al for one studied 

field but not for another one (Lazarovits et al., 2007). 

Carbon: Compost amendments from different sources enhanced total and 

marketable tuber yield, but CS was substantially higher in plots with compost 

amendment than in no treated plots of control, and was most drastic in plots treated 

with the peat compost (Larkin and Tavantzis, 2013). 

In another study farmers used compost of cattle or pig slurry implementation to 

soils with suboptimal C levels for at least 4 years, to enhance C content in the top, 

without infusing greater N and P leaching. There was no impact on disease intensity 

caused by Streptomyces after a potato cropping (Hose et al., 2016). In some studies the 

low soil C, N, and C/N was associated with suppressivity to CS at sites, it seemed that 

lower content of organic matter and oligotrophic conditions, are favorable to disease 

suppression because C, N, Ca and Fe were less in soils with low CS severity, in other 

hand, the correlation of number of soil txtB gene copies to soil C, may be showed that 

the pathogens favor soil conditions of high C and N (Sagova-Mareckova et al., 2015). 

Manganese: The effect of manganese on CS was not consistent but some 

studies have demonstrated a decrease (Stead and Wale, 2004). In another study, the 

use of Mn, reduced the tuber infection level and intensity of Streptomyces scabiei 
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(Klikocka, 2009). The occurrence of CS infection of potato tubers by Streptomyces 

scabiei is repressed either by decreasing the soil pH or by using Mn. The repressive 

effect on Mn is possibly because of enhanced resistance of the tuber tissue to the 

pathogen and prohibition of the vegetative growth of S. scabiei before the beginning of 

infection (Huber et al., 2011). 

  

2.8. Future research requirements 

Many management practices such as keeping pH levels below 5.2, crop rotation, 

resistant varieties, seed selection, irrigation, organic matter management, production of 

potato scab-suppressiveness soils, were suggested and used to manage the CS. All 

have advantages and disadvantages and no complete way to control potato CS is 

available at present. Some strategies must be changed field by field and year by year. 

A new suitable suggestion comes from our results showing the effect of peat and 

available iron on decrease of CS. In the vast monitoring study, we also found a new 

relationship between the disease and several factors and nutrients. The content of 

nutrients such Fe, Mg, N, C, Ca, P, in soil and periderm can play a predictive role for 

potato scab severity and the txtB copy numbers in soil (vs in periderm) could be a 

good predictive factor for disease suppression. Also studies showed that the population 

of several groups of bacteria are important to scab suppression. Results also 

highlighted the usefulness of both cultivar resistance and soil suppressiveness traits in 

understanding and managing disease control of crops. 

Finally, in the last study we found an important role of resistant potato varieties 

on changing of soil biosphere in favor of pathogen suppressiveness, and that finding 

can be also used for selection of proper varieties for a particular field. We suggest, that 

the effect of more micronutrients on CS severity may be studied together with 

responses of microbial community to treatments of soil. The new approaches can help 

us to find the comprehensive and effective methods to cover more fields and lasting 

longer time.  

 

2.8.1. Biological and chemical factors associated with natural soil suppressivity 

Bacterial communities in soil are influenced by various environmental factors, which affect 

their structure and diversity. Microbial diversity of soil and the implication for the soil’s 



49 

 

disease suppressiveness is affected by plant species, soil type, and soil management regime. 

In some conditions the soil, and in others the plant type represent the key factor 

distinguishing soil microbial diversity. Some soils are inhospitable to plant pathogens, by 

restraining either the survival or the growth of pathogens. Such soils are known as pathogen 

or disease suppressive and are observed all over the world (Garbeva et al., 2004, Kopecky et 

al., 2011). 

 Potato has the highest rank of consumption among vegetables in the US (Brown et 

al., 2010), however, it can be affected by several diseases. Common scab of potatoes is an 

important soil-borne disease with worldwide occurrence and it has been rated among the top 

five diseases of potatoes by seed producers in the USA (Dees and Wanner, 2012). Common 

scab of potatoes is a disease, which is difficult to manage due to complex interactions of the 

pathogenic bacteria with soil, microbial community and potato plants. (Garbeva et al., 2004, 

Neeno-Eckwall et al., 2001). It is described by deep or shallow-pitted lesions on potato 

tubers (Bouchek-Mechiche et al., 1998). The infection is caused by actinobacteria from the 

genus Streptomyces that possess a large pathogenicity island in their genomes. The most 

important pathogenicity determinant is a phytotoxin thaxtomin, coded by txtAB genes. 

These genes are used for determination and quantification of pathogens responsible for the 

disease (Kers et al., 2005, Hiltunen et al., 2006, Lazarovits et al., 2007). The distribution, 

severity and incidence of common scab have been widely studied in relationship to physico-

chemical and microbial soil characteristics but the disease is still difficult to control. The 

previous studies demonstrated that the common scab causing organisms are saprophytic 

living on vegetable remains in soil. They stay until their natural food supply is depleted and 

only under the stress of hunger switch to their parasitic life style.  

Availability of various nutrients may be related to disease suppressivity (Sarikhani et 

al., 2017, Kyselkova and Moenne-Loccoz, 2012). However, the effects are difficult to 

demonstrate because conditions present during the infection period may not be reflected by 

concentrations of mineral elements (Ca, P, K, Mg, AI, Fe, Mn, Cu and Zn) measured at 

harvest in tuber skin, and consequently may not be related to CS occurrence or severity 

(Kristufek et al., 2000). In a large monitoring in Canada, CS disease intensity was 

anticipated by soil factors such as organic matter, pH, Al, %Ca, %Mg, and %K for PEI but 

not for Ontario soils. The data indicate that the correlation between scab severity and soil 

chemical components is complex and potentially soil specific (Lazarovits et al., 2007). 

Nitrogen levels do not seem to directly impact common scab but many nitrogenous 

fertilizers have an indirect effect and acidify soil (Stead and Wale, 2004). Generally, high 
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levels of nitrogen and carbon may be favorable for the pathogen, which is adapted to high 

nutrient demand and suppress the oligotrophic antagonistic community (NeenoEckwall et al. 

2001, Sagova-Mareckova et al. 2015). 

Calcium and other cations were also examined for CS control. Strong relation was 

found between soil pH and exchangeable cations, particularly calcium, and a correlation of 

calcium with CS development was suggested but without the mechanism specification. CS 

was not detected on potatoes grown in soil with composed exchangeable Ca, Mg and K at 

12 cmolc/kg or less. A strong relation was found between soil pH and these exchangeable 

cations, particularly calcium (Lacey and Wilson, 2001). Similarly, CS intensity was 

positively associated to calcium and negatively to phosphorus in skin in another study 

(Kristufek et al., 2015). The Ca2+ influx impelled by thaxtomin A is essential in order to 

achieve the cell death (Errakhi et al., 2008).  

The availability of nutrients to plants will be maximized by maintaining a soil pH 

between 6.3 and 6.8. Low soil pH decreases the availability of phosphorus and enhances the 

availability of toxic elements like aluminum. To control common scab, soil pH should be 

maintained within a relatively narrow range (5.0 to 5.2) (Kirkwyland and Thomas, 2013).  

Sulphur, magnesium and micronutrients boron, zinc, manganese and copper reduced 

the tuber infection level and intensity of Streptomyces scabiei (Klikocka, 2009). P content 

was previously often associated with low disease severity (Davis et al., 1976, Kristufek et 

al., 2001). 

Probability of CS occurrence is decreased at low pH (Lacey and Wilson, 2001, 

White et al., 2011). The studies demonstrated the effect of low soil pH in decreasing CS 

disease caused by S. scabiei. Generally, it was regarded as being CS suppressive with soil 

pH below 5.2 (Waksman, 1921; Powelson et al., 1993) and that may be related to 

availability of P, Zn, Fe, Mn, Cu and B, which is very low in alkaline soils (White et al., 

2011). Thaxtomin production is reduced at pH 7.6 and enhanced at 15°C in S. scabiei and at 

30mM phosphate in S. acidiscabies (Natsume et al., 2001). Disease occurrence and variety 

differ in places and years; this is partially due to diversity in the environment, genetic 

variability in potato varieties but also due to specific local microbial communities (Wanner 

et al. 2006). Finally, organic matter can enhance disease-suppressive activities of soil 

microbial communities (Bailey, 2003, Noble and Coventry, 2005).  

Several studies demonstrated that the disease can be regulated by the use of resistant 

varieties, some concluded that they are the best available control (Kotiaho et al., 2007, 

Navarro et al., 2013). However currently there are no available commercial potato varieties 
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showed to be completely resistant to CS (Dees and Wanner, 2012, (Eckwall and Carl, 2000). 

Some varieties that stimulate disease suppression can increase populations of specific 

bacteria with antagonistic activity in their rhizosphere toward their pathogens (Mazzola, 

2002).  

Actinomycete population densities on the tuber surfaces were clearly reflecting 

differences between the susceptible and resistant potato varieties (Keinath and Loria, 1989). 

The correlation of disease with soil populations early in the growing season could be useful 

in a predictive model for scab occurrence (Keinath and Loria, 1989). Nonpathogenic 

Actinobacteria (e.g., S. diastatochromogenes and S. albogriseolus) generate compositions 

prohibitory against S. scabiei and contribute to disease suppression (Rosenzweig et al., 

2012). Streptomycetes play various roles in plant-associated microbial communities. Some 

act as biocontrol agents, prohibiting plant interplays with pathogenic organisms. Owing to 

the antagonistic characteristics of streptomycetes, they apply a selective pressure on soil 

microbes, which may not always be for the benefit of plant. Others encourage the formation 

of symbioses among plant roots and microbes, and this is in part because of their direct 

positive impact on the symbiotic partner, expressed as, e.g., promotion of hyphal elongation 

of symbiotic fungi. Lately, streptomycetes have been defined as modulators of plant 

defense. They facilitate root colonization with pathogenic fungi by suppressing plant 

responses to pathogens (Schrey and Tarkka, 2008). Modification in the farming practices 

such as adding organic matter or micronutrient can change the combination of the 

Streptomyces soil sub community and increase biocontrol potential of preventive indigenous 

strains (Kyselkova and Moenne, 2012). The correlation between greater amounts of 

nonpathogenic Streptomyces and less intense common scab proposes that the interplays 

among plant genotype and Streptomyces microbial community is essential in defining the 

intensity of common scab on potato, and emphasizes the role of complex interplays among 

plants and microbial populations on and near plant roots in plant disease outcomes (Neeno-

Eckwall et al., 2001). 

Regarding to the total bacterial community, suppressiveness is very likely to be 

associated with microbial community structure based on antagonistic functions (Sessitsch et 

al., 2004). Different microbial taxa were found to participate in suppression of diseases 

either directly or indirectly by enhancing plant nutrition by acquiring limiting nutrients or 

producing beneficial enzymes (Kyselkova and Moenne-Loccoz, 2012, Tokala et al., 2002) 

consequently supporting the plant self-protection capabilities. The suppressive character of 

soils was often associated with multiple species (Rosenzweig et al., 2012, Meng et al., 
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2012, Kyselkova et al., 2014). The population of several groups of bacteria was showed to 

be important to scab suppression, e.g. Acidobacteria, Verrucomicrobia, Bacteroidetes and 

Gemmatimonadetes (Sarikhani et al 2017). In many examples, the microbial community 

structure of soil has the ability of suppressiveness of plant pathogens. However, we are far 

away from comprehending the exact mechanisms in the complex microbial communities of 

soil that often underlie the increased disease suppression (Garbeva and Veen 2004).  

Thaxtomin, which is the most known pathogenicity determinant of common 

scab, is a phytotoxic secondary metabolite that suppresses cellulose synthesis in potato 

(Johnson et al., 2007 and 2009). Statistically txtB copy numbers in soil could be a 

good predictive factor for disease suppression (Sagova-Mareckova et al. 2015). The 

goal of this study was to explore the mutual interaction between soil chemical 

conditions and microbial community in the development or suppression of CS, and to 

evaluate the interaction of the soil environmental factors with potato variety in shaping 

the community inhabiting potato rhizosphere.  

 

2.8.2. Increasing the availability of iron 

Common scab of potatoes (CS) is a disease that drastically affects tuber quality due to 

superficial and pitted lesions that form around the site of infection on the potato 

periderm. The microorganisms responsible for the infection are plant-pathogenic 

Streptomyces spp., which possess a large pathogenicity island. The most known 

pathogenicity determinant is thaxtomin, a phytotoxic secondary metabolite that 

inhibits cellulose synthesis in expanding plant tissues (Johnson et al., 2007). The 

compound is required for plant infection and a positive correlation between thaxtomin 

production and pathogenicity was found (King et al., 1991). Traditional control 

strategies for CS include the development of resistant cultivars, specific fertilization, 

increasing soil moisture, chemical treatments and decreasing soil pH. However, 

control is strongly dependent on local conditions and therefore the results are not 

clearly predictable (Dees and Wanner 2012; Sagova-Mareckova et al., 2015). Many 

agricultural soils lack a sufficient amount of one or more nutrients so that plant growth 

is suboptimal (Glick 2012). Despite the fact that iron is the fourth most abundant 

element on earth, in aerobic soils, iron is not readily assimilated by either bacteria or 

plants. That is because ferric ion, which is the predominant form in nature, is only 

sparingly soluble so the amount of iron available for assimilation by living organisms 
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can be extremely low (Glick 2012). The scarcity of bioavailable iron in soil habitats 

foments a furious competition (Compant et al., 2010) and plant iron nutrition can 

affect the structure of bacterial communities in the rhizosphere (Glick 2012).  

 Application of organic amendments, such as animal and green manure, 

organic wastes, composts and peats, has been proposed as a strategy for the 

management of diseases caused by soil borne pathogens (Bonanomi et al., 2010). Peat 

is a natural product derived from the progressive accumulation of plant and moss 

residues decomposed under waterlogged conditions. During decomposition, peat 

generally loses its ability to suppress various diseases. This result has been attributed 

to the progressive reduction of cellulose, carbohydrates and easily degradable organic 

compounds (Hoitink and Boehm 1999). These chemical changes may drive a 

progressive shift in the microbial community composition from bacteria, which have 

antagonistic ability, to those which are less able to antagonize soil-borne pathogens 

(Bonanomi et al., 2010). Also, the composition of the Streptomyces soil sub-

community can be modified according to the type of organic soil amendment (Mishra 

and Srivastava 2004). Above that, soil organic matter is an important factor affecting 

iron solubility (Carlgren and Mattsson 2001), so its supplementation may change the 

relationships of iron competition among bacteria. Finally, the CS causing 

streptomycetes are naturally saprophytic in soil, but, as pathogens, they may take 

advantage in nutrient utilization from plant tissue (Dees and Wanner 2012). Therefore, 

the addition of particular organic compounds may change the relationship among the 

pathogenic and nonpathogenic bacterial communities and consequently influence the 

disease development. Previously, the use of micronutrients to control CS has been 

investigated, but most of the effects that were observed could be accounted by changes 

in soil pH. Reduction of soil pH below 5.2 or an increase above 8.5 appeared to inhibit 

CS although not kill the pathogen S. scabiei (Neeno-Eckwall 2000; Waterer 2002). 

Different soil pH also changes the bacterial community composition, which may 

support either the pathogen or the antagonists. Specifically, changes in the 

actinobacterial community were correlated not only with soil pH but also with soil 

nutrients such as carbon and nitrogen showing that pathogen development may be 

supported in eutrophic conditions (Sagova-Mareckova et al., 2015). In the present 

study, peat and iron in biologically available form were supplemented to soil known 

for having a high severity of CS; these treatments were compared to naturally 
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suppressive soil with low CS severity occurring in a nearby field. The study aimed to 

identify an approach which would decrease the disease severity. In addition, we 

analyzed the bacterial communities to determine which might be responsible for the 

observed effects. Bacteria, Actinobacteria and potential thaxtomin producers were 

quantified by quantitative PCR and community structures were analyzed by Illumina 

sequencing of the 16S rRNA genes. The study showed that indeed the most successful 

treatment induced changes in the bacterial community, whose structure became similar 

to that of the suppressive soil.  

2.8.3. Microbial communities associated with disease-suppressive or conducive soil 

and a cultivar resistant or susceptible to common scab 

Suppressive soils are described as soils in which disease severity remains low, in spite 

of the presence of a pathogen, a susceptible host, and climatic conditions favorable for 

disease development (Baker and Cook, 1974, Janvier et al., 2007) Relatively few soils 

with suppressive character have been described in the world to date (Kyselková et al., 

2012); although it is of prime interest to understand and conserve their functioning 

because they may help us to learn how to establish suppressive character of soils at 

other sites (Kinkel et al., 2011). Common scab (CS) of potatoes is a soil-borne disease 

caused by Streptomyces spp. that produce thaxtomin phytotoxins, and for which 

suppressive soils were reported mostly in the USA (Lorang et al., 1995, Meng et al., 

2012). In these systems, disease control is largely attributed to biological interactions 

(mostly competition and antagonism) between plant-beneficial microbiota and 

pathogens mediated via antibiotic production or enzymatic activities (Kinkel et al., 

2011, Rosenzweig et al., 2012). In particular, nonpathogenic Streptomyces spp. were 

correlated with CS suppressiveness (Meng et al., 2012, Rosenzweig et al., 2012) and it 

was also hypothesized that other actinobacteria may be involved in this disease 

suppression (Kinkel et al., 2011). 

High levels of resistance to common scab are not found in most commercially 

significant cultivars of potato (Braun et al., 2017). The resistance to CS is manifested 

by different quantities of pathogenic streptomycetes in their tubers but not in roots or 

rhizosphere (Kobayashi et al., 2015). Yet, potato cultivars differing in resistance to 

common scab also have different ecophysiologies as they differ in chemical 

composition of the potato periderm and preferences in nutrient utilization (Kristufek et 

al., 2015). Since various bacterial communities are associated with either resistant or 
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susceptible cultivars (Kobayashi et al., 2015), interactions between potato plants with 

different genotypes and associated microbial communities may further influence the 

disease development under specific soil conditions.  

In our previous investigations, CS suppressiveness was studied in two areas 

(Vyklantice and Zdirec) from the Czech Republic, in field trials (Sagova-Mareckova et 

al., 2015, Sagova-Mareckova et al., 2017) and pot experiments (Sarikhani et al., 

2017).We found that the suppressive character of the fields differed between the two 

locations, because it was attributed to soil chemical characteristics in the Zdirec area, 

versus microbial community interactions in the Vyklantice area (Sagova-Mareckova et 

al., 2015); Therefore, this work we aimed at disentangling the relative effects of soil 

suppressiveness and potato resistance on the structure of microbial communities in the 

soil in contact with potato tubers (i.e. tuberosphere, also termed geocauloshere), using 

suppressive and conducive soils from the Vyklantice area since biotic interactions 

were determined as responsible for soil supressiveness there. Often, the focus in 

suppressive soil assessment has been put on bacteria (Rosenzweig et al., 2012, Shi et 

al., 2019). 

Yet, fungi can be also important for crop protection (Kyselkova et al., 2012) 

and the role of micro-eukaryotes and their participation in top-down control has been 

typically neglected (Gao et al., 2019); although many of them can be relevant to soil 

suppressiveness because microfauna and mesofauna members may consume 

pathogens, increase nutrient turnover or maintain specific diversity by feeding on the 

dominant bacterial taxa (Zahn et al, 2016, Mendes et al., 2013). 

 Archaea also are part of the rhizosphere microbiome, and whether they can 

participate in biocontrol interactions remains unknown (Taffner et al., 2018, Mendes 

et al., 2011), hence the importance of including them in microbial assessments. 

Finally, CS-susceptible and resistant potato cultivars have not been compared yet in 

terms of their respective interactions with the soil microbial community in CS 

suppressive soils. Our objective was to test whether both suppressive soil and resistant 

cultivar represent significant ecological factors shaping microbial communities of the 

potato tuberosphere. To this end, we used a field experiment that included a 

combination of (i) disease suppressive vs conducive soils, and (ii) resistant vs 

susceptible cultivars. The study compared spatial compartments of tuberosphere, 

potato periderm and bulk soil because it was determined that only in tuberosphere 
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differences between factors influencing CS severity occur (Shi et al., 2019, Kristufek 

et al., 2000). 

Bacterial, archaeal and micro-eukaryote communities in soil and potato 

tuberosphere were assessed by Illumina sequencing. Above that 16S rRNA taxonomic 

microarray was used for its semi-quantitative approach in bacterial community 

assessment (Edgar, 2013, Paliy and Agans, 2012) and also because our taxonomic 

microarray focuses on bacterial taxa possessing plant growth-promoting and 

antagonistic traits in soil environments (Kyselková et al., 2009, Kyselková et al., 

2014). 

For this study, our microarray was extended with probes focusing on CS 

pathogens. The results were considered in relation to CS severity observed on tuber 

surface, quantity of thaxtomin biosynthetic genes txtB, quantities of total bacteria and 

more specifically of actinobacteria, but also against chemical characteristics of soil 

and potato periderm. That was done in order to identify interactions between potato 

plants, microbial community and soil characteristics in common scab manifestation.  

 

2.8.4. Interaction between bacteria in potato tuberosphere 

Actinobacteria are one of the dominating groups in soil, metabolically highly active, 

efficient in degrading complex biopolymers. They interact with soil chemical 

environment and with other groups of bacteria using secondary metabolites in signal 

transmission and/or defense processes. Actinobacteria have the greatest known 

morphological differentiation based on filamentous elements or hyphae (Kalakoutski 

and Agre, 1975). Actinobacteria are known as a good sources of natural products. 

Approximately two thirds of natural antibiotics originate from actinobacteria (Okami 

and Hotta, 1988). The genus Streptomyces has expanded ability to produce different 

groups of secondary metabolites exhibiting different biological activities (Nakashima 

et al., 1999). 

Nonpathogenic Actinobacteria (e.g., S. diastatochromogenes and S. 

albogriseolus) produce compounds inhibitory against S. scabiei and contribute to 

disease suppression (Bowers et al., 1996 and Lorang et al., 1995). Nonpathogenic 

Streptomyces spp. are believed to play a major role in disease suppressiveness and 

they also produce a range of antibiotics that may contribute to disease suppression. 

Moreover, the frequency of antagonistic bacteria such as pseudomonads and 
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streptomycetes were significantly higher in suppression soil (Meng et al., 2012, Loria 

et al., 2006). In several cases, suppressive soils have higher populations of 

nonpathogenic Streptomyces spp., that are associated with less severe common scab, 

showing an interaction between plant and Streptomyces microbial communities that 

affects disease severity of common scab (Rosenzweig et al., 2012).  

Assuming the antibiotic production is important in biological control, the use 

of strain combinations in practical biological control will reduce the chances of 

selecting pathogenic strains resistant to antibiotics produced by suppressive strains 

(Liu et al., 1996). Previously, biocontrol nonpathogenic suppressive strains of 

streptomycetes that exhibit antibiotic activity against pathogenic S. scabiei, were 

isolated from the lenticels of tubers in field-pot trials. These isolates were added to 

conducive soil and significantly decreased common scab (CS) occurrence (Wanner et 

al., 1999, Liu et al., 1995, 1996). In a study in 2001, NeenoEckwall, showed that when 

the pathogens were inoculated into soil alone, a positive correlation was seen between 

population density and disease severity, but when the pathogens were inoculated with 

suppressive strains, higher total streptomycete population densities were correlated 

with lower amounts of disease (NeenoEckwall et al., 2001). 

 Both antibiosis and competition contributed to detention of pathogenic strains, 

however the combination of the Streptomyces soil subcommunity can be changed 

considering the type of organic soil amendment, proposing that the biocontrol 

potential of preventive indigenous strains could be increased via appropriate selection 

of farming practices (Kyselkova et al. 2012). 

Determination of both the growth rate of strains and the antibiotic activity of 

strains in order to inoculate them in soil against S. scabiei is important. The organisms 

that are operative in pathogen suppression do so via different mechanisms including 

competition for nutrients, antibiosis and induction of host resistance. Some varieties 

that stimulate disease suppression can increase populations of specific bacteria with 

antagonistic activity in their rhizosphere towards their pathogens. Methods that change 

resident microbial communities in a manner which induce natural soil suppressiveness 

have potential as parts of environmentally sustainable systems for controlling 

soilborne plant pathogens (Mazzola, 2002). The growth rate is an important issue with 

two aspects: the first is competition between pathogen and suppressive bacteria to 

obtain the nutrient and keep the abundance in habitat, and the second is the application 

of biocontrol species that has an effect on overall plant growth in favour of enhancing 
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the plant defense (Arseneaul et al., 2013). In a study, biocontrol bacteria showed to be 

easy to grow, they can also easily colonize the rhizosphere surrounding the roots of 

numerous plant species, adapt to a wide variety of environmental conditions and 

produce numerous bioactive metabolites (Chin-A-Woeng et al., 2003; Weller, 2007). 

In this study, the 16S rRNA was used to measure quantity of actinobacteria and 

txtB gene to measure quanitity of S. scabiei, because it is a specific determinant of 

pathogenicity in S. scabiei. In the mutants altered in the production of thaxtomin the 

pathogenicity was decreased or mutants were nonpathogenic (Goyer et al. 1998). 

There are more copies of 16S rRNA gene in each genome but only 1 copy of txtB 

gene. An operon encodes for txtA and txtB, a monooxygenase, a nitric oxide synthase 

and a regulator (Tapia, 2010). The copies of 16S rRNA gene in actinobacteria were 

determined: 3.1±1.7, in genome size: 5.03±2.53 (Mb) (Vetrovsky and Baldrian, 2013). 

Wencong showed that in the fields with low and high severity, the proportion of 

16S/txtB gene copies respectively was around 10^6 and 10^5.  

Vermiculite is a mineral composed mainly of clay and mica. It is very light, 

airy and has good water retention. The strains were grown on oatmeal–vermiculite to 

prepare inoculum for the pathogenicity and suppression assays. The suppressive 

strains were grown on a vermiculite-oatmeal broth base and mixed with scab-

conducive soil. Effects of vermiculite dilution and/or oatmeal broth nutrients on scab 

reduction were significant. Using a vermiculite system improved nutrient uptake 

efficiency and the acquisition of both nitrogen (N) and phosphorus (P) from the 

environment in crop breeding (Neeno – Eckwall et al., 2001, Liu et al., 2017). 

In this study, actinobacterial strains isolated from CS suppressive soils and 

selected for antibiotic activity against S. scabiei were tested for suitability in the 

pathogen suppression. Their grow rate and ability to produce secondary metabolites 

with antibiotic activities were evaluated in two different liquid and solid media and 

also in an enriched soil free vermiculite. The growth and activity zone of suppressive 

bacteria and Streptomyces scabiei against Kocuria rhizophila was done in parallel. 

Kocuria rhizophila was used as a sensitive Gram positive actinobacteria in sensitivity 

test (Savini et al., 2010). 
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3. Materials and methods 

3.1. Experimental sites 

In the Czech Republic, 32 sites located in different climatic areas were selected for 

monitoring of common scab (CS) disease severity. Seventeen potato varieties differing 

in susceptibility to CS were grown in soils contrasted by pH, organic matter content 

and physicochemical characteristics. Three plants were sampled at each site, where no 

experiment was carried out. At all sites, quantities of total bacteria, actinobacteria and 

the gene txtB were analyzed by real-time PCR. Soil and potato skin were characterized 

by contents of carbon, nitrogen, phosphorus, sulphur, calcium, magnesium and iron. 

Other parameters as pH and the soil texture based on particle size were measured.  

Vyklantice is a site where fields suppressive (49.5630N, 15.0575E; L for low 

disease severity) and conducive (49.5614N, 15.0546E; H for high disease severity) to 

potato CS occur at about 100 m distance. The two fields differ in common scab 

severity by observations over 30 years, while their geological context, soil type, 

climate and management are similar. The fields were regularly planted under a four-

year crop rotation system including rapeseed, clover, potatoes, and grains (wheat or 

oats) in the past two decades (Sagova-Mareckova, et al., 2015). 

 

3.2. Pot experiment  

Iron supplementation was selected based on significant differences in available iron 

content determined previously in the studied suppressive and conducive soils. The 

suppressive soil had a three times higher iron content determined in ammonium 

acetate extract than the conducive soil, while iron content determined in EDTA extract 

and total iron content were similar in the two soils (unpublished data). The pot 

experiment was conducted in 2012. A potato cultivar Agria, susceptible to potato 

common scab, was planted in 12 L pots with control conducive soil VH, suppressive 

soil VL, and the VH soil supplemented with 2.5 L peat / 10 L soil (VHP treatment), 

815 mg DTPA chelated iron / 10 L soil (VHFe treatment), and a combination of both 

(VHPFe treatment). The treatments were performed in five replicates (Table 1). The 

pots were kept submerged in the field soil without irrigation and received regular 

pesticide treatment throughout the growing season.  
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Table 1. Design of the pot experiment 

Sample Description 

VH-1 to 

5 

high scab severity - conducive soil 

VHP-1 

to 5 

high scab severity – peat treatment 

VHFe-1 

to 4 

high scab severity - DTPA chelated iron 

VHPFe-

1 to 5 

high scab severity - a combination of both 

treatments VL-1 to 

5 

low scab severity- suppressive soil 

 

3.3. Field experiment 

Potatoes were planted in the beginning of May and sampled on July 16. Samples of 

bulk soil, tuberosphere soil and potatoes were collected. A CS susceptible cultivar 

Agria (Agrico Bohemia, Tabor, Czech Republic) and a resistant cultivar Kariera 

(Sativa Kerkov, Pribyslav, Czech Republic) were used. Potatoes were all certified seed 

tubers (common scab below 5% of surface). Four plots of each cultivar were planted at 

each field and the plots were arranged in a Latin square design. Each plot was planted 

with 3 rows of 12 potato plants (36 plants) separated by 50 cm of bare soil. Fields 

were fertilized with 100 kg N/ha (ammonium sulfate, 21% N), 35 kg P/ha 

(monocalcium phosphate, 35% P2O5), and 60 kg K/ha (potassium salt, 50% K2O). 

Potatoes were treated with pesticides, once with Nurelle D (EC) (chlorpyrifos, 

cypermethrin) 62 days after planting at 0.6 l/ha to prevent Colorado potato beetle 

(Leptinotarsa decemlineata), and twice with Acrobat MZ (dimethomorph, mancozeb), 

48 and 62 days after planting at 2 kg/ha against the potato blight. Fungicides were not 

used. 

 

3.4. Sampling  

For the field sampling, three potato plants and three samples of bulk soils (without 

influence of the plant) were randomly sampled from each site. Tuberosphere 

(rhizosphere) soil samples were collected no further than 3 mm from a potato tuber. A 

tuber was located by careful uncovering the top soil surrounding the plant, slightly 

pressed to the remaining soil and taken out. The socket remaining in soil after potato 
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extraction was carefully scratched by a sharp spoon to collect a thin layer of soil. Soil 

was also collected from the tuber itself if any soil remained attached on the tuber in a 

thin layer. Bulk soil was collected at a distance of 30 cm from the closest plant within 

each plot using a small sterile spade. Potatoes from the sampled plant were collected 

and washed in distilled water. All potatoes were carefully peeled with a potato peeler 

taking approximately 1 mm thick skin samples, the peels were homogenized and 

mixed and subsamples were taken for further analyses. Common scab severity was 

evaluated on 20 potatoes per plot using a 9 degree scale 1: no scab; 2: 0.1–0.8 %; 3: 

0.9–2.8 %; 4: 2.9–7.9 %; 5: 8.0–18.0 %; 6: 18.1–34.0 %; 7: 34.1–55.0 %; 8: 55.1–77.0 

%; 9: 77.1–100 % (Wenzl and Demel, 1967). Potatoes used for evaluation were those 

of the collected plant and several more plants from each plot to achieve at least 20 

measurements per plot. 

The samples from the pot experiment were collected 89 days after planting. All 

tubers from each pot were collected and treated in the same way as described for the 

field sampling. 

For the field experiment, one potato plant growing in the center of each plot 

was sampled, stored in a cooler and processed upon the arrival to the laboratory in the 

same way as described for the field sampling. Potatoes used for the CS severity 

evaluation were those of the collected plant and several more plants from each plot to 

achieve at least 20 measurements per plot. 

 

3.5. Soil and potato skin analyses 

To determine total soil C, N and S content, 2-gram aliquots of homogenized soil 

samples from both bulk and tuberosphere (rhizosphere) were dried, milled, and 

analyzed using Vario MAX CNS analyzer (Elementar Analysensysteme, Hanau, 

Germany). To determine all other soil elements soil subsamples were leached with 

boiling nitro-hydrochloric acid (aqua regia) and assessed by optical emission 

spectroscopy with inductively coupled plasma (ICP-OES) in Aquatest company 

(Prague, Czech Republic). To determine the concentrations of available iron at 

planting and harvest, soil subsamples were extracted with 1 M ammonium acetate (20 

g in 100 mL) and assessed by optical emission spectroscopy with inductively coupled 

plasma (ICP-OES) by Aquatest (Prague, Czech Republic).  
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The analyses of potato skin were performed by the service laboratory of the 

Institute of Botany (Trebon, Czech Republic). For total nitrogen analysis, 1–3 mg 

dried skin was mineralized by modified Kjeldahl method in H2SO4 with catalyzer at 

360° C. For total phosphorus analysis, 20 mg dried skin was sequentially decomposed 

by HNO3 and HClO4 (Kopacek and Hejzlar, 1995) In the mineralized samples, both N 

and P were determined by flow injection analysis with spectrophotometric detection 

using FIA Lachat QC 8500 analyzer (Lachat Instruments, Hach Company, Loveland, 

CO). Cation contents in skin were determined by atomic absorption spectrometry 

using AAS spectrometer ContrAA 700 (Analytik Jena, Jena, Germany) after 

mineralization with nitro-hydrochloric acid. A composite sample of the bulk soil was 

assayed for P, K, Mg, and Ca by extraction in Mehlich III solution, for N by 

mineralization in sulphuric acid, the numbers represent the total contents determined 

after mineralization (for C,N,S by burning, for other elements by decomposition in 

aqua regia). The sieve test was performed to measure soil fractions according to 

particle size of dry weight. A coarse grained soil includes sand (0.06-2 mm) and gravel 

(2-20 mm) and a fine-grained soil includes clay (< 0.002 mm) and silt (0.002-

0.06mm). Soil pH was measured in a water extract after overnight incubation of 5 g 

soil in 20 mL deionized water.  

 

3.6. Cultivation of actinobacterial strains 

3.6.1. Submerged culture experiment 

Twenty one strains of actinobacteria isolated from suppressive soils (Vyklantice and 

Zdirec) and with antibiotic activity against S. scabiei and type strain of S. scabiei DSM 

41658 were cultured on plates and slant tubes of medium supplement BG (GYM: 

Glucose Yeast Malt extract), which is used as a basic medium for actinobacteria. Fresh 

colonies with no sporulation after 2 or 3 days of cultivation were used.  

The amount of colonies that were carried on the plate or in the flasks (YME, A 

and G media) was adjust in nutrient medium A, to turbidity of 1 McFarland,an 

approach to determine microorganism concentration by standard solution of barium 

chloride and sulfuric acid with a density corresponding to approximately 3 x 10^ 8 

bacteria/ml of suspension (McFarland, 1907). 

 



63 

 

3.6.2. Cultivation media: 

A: 10 g starch, 4 g yeast extract, 2 g pepton, pH: 6.5 (close to the soil pH); total 

volume by distilled water to 1 litre. 

Gauze (G): 0.5 g NaCl, 20 g starch, 1 g KNO3, 0.5 g K2HPO4, 0.5 g MgSO4, 10 mg 

FeSO4, Total volume: 1 litre, pH=6. 

YME: 4 g yeast extract, 10 g malt extract, 4 g glucose, total volume: 1 litre, pH=7.2. 

B1 agar: 10 g Beef extract, 10 g pepton, 5 g NaCl, 20 g agar, total volume: 1 litre, 

pH=7.2. 

GYM (BG) agar: 4.0 g glucose, 4.0 g yeast extract, 10.0 g malt extract, 2.0 g CaCO3, 

12.0 g agar, total volume: 1 litre, pH=7.2. 

 The strains 1 to 21 and S. scabiei DSM 41658 were grown in 5 flask of 

submerged culture in A medium for 24, 48, 72, 120 and 240 h.  

The 100 ml Erlenmeyer flasks were incubated in the shaker incubator with 180 

rpm speed and 28°C. 2 ml of the nutrient medium A inoculated with S. scabiei was 

added to 10 ml of medium YME prepared in sterile 100 ml Erlenmeyer flasks. 

Harvesting the cultures was done on the 1st, 2nd, 3rd, 5th and 10th day after 24, 48, 

72, 120 and 240 hours, by filtration through filter papers (dried in the 105°C oven for 

2 h), the papers were weighted before and after filtration, dried in the oven at 105°C to 

constant weight and weighted to determine the dry weight of cultured bacteria. Dry 

weight of filter papers was measured after 2 h keeping in the 105°C oven. The spent 

media were collected to 15 ml falcon tubes and transferred to -20°C to freeze before 

the sensitivity testing. The submerged culture experiment, was also performed with 

Gauze medium in the same way for all strains and S. scabiei. 

 

3.6.3. Sensitivity test: 

The filtered submerged media (A and G) of day 5 (120 h) were selected for the 

sensitivity test (time point: 120 h, based on maximum growth rate). It was performed 

on B1 agar on the 9 cm plates. Paper disks with diameter of 5 mm were prepared and 

sterilized. 25 μl of filtered spent media (kept in -20°C) was transfered on the disk and 

allowed to dry in a sterile plate at room temperature. An overnight culture of Kocuria 

rizophila was diluted in 3 ml of sterile water to earn a turbidity of 1 McFarland. One 

ml of this suspension was spread on B1 agar by gentle shaking and the extra liquid 

was removed by a sterile pipette. Finally, the dried disks were placed on the plate (5 
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for each plate) and were incubated in 30°C for 24 h, afterwards, the sizes of inhibition 

zones around the disks were measured.  

 

3.6.4. Vermiculite medium experiment:  

The vermiculite medium is an enriched and soil free culture to evaluate the interaction 

and competition between suppressive actinobacterial species and S. scabiei as 

pathogen, without impacts of soil factors. Combination of suppressive actinobacteria 

and S. scabiei in vermiculite medium can give a good profile of growth and 

antagonistic activity between them.  

The experiment was started for S.scabiei to test if the quantitative PCR result 

for copy numbers of the txtB and 16S rRNA genes will correspond. The time point 

was selected based on the maximum growth rate related to dry weight from the 

submerged culture experiment. The highest average growth rate was obtained in the 

nutrient medium after 5 days or 120 h of incubation. The cultivation was done at first 

in 50 ml YME in 250 ml flasks, shaking for 2 days at 28°C and 180 rpm then, they 

were centrifuged in 50 ml sterile falcon tubes at 2000g, 4°C for 15 min. The 

supernatant was discarded and the culture was suspended in 10 ml sterile distilled 

water in the same falcon tubes. Inoculation was done from 1ml of suspended pellet 

with addition of 8ml Ac (2 times concentrated A) to Erlenmeyer flasks with sterile 

vermiculite, and incubated at 28°C, in a stable incubator, mixed once a day by hand. 

For combined flasks, 0.5 ml of actinobacteria enriched in YME and 0.5 ml of enriched 

S.scabiei in the same media was inoculated (with 8 ml of 2 times concentrated of A or 

Ac). 

 

3.6.5. Vermiculite media 

50 ml vermiculite and 8ml distilled water were sterilized for 90 min, left 1 day at room 

temperature, and the sterilization was repeated again for 90 min. 

Harvesting of vermiculite medium was done after 1, 2, 3, 5, 7, 10, 14, 16 and 

20 days. The vermiculite medium was crashed in a washed and dried mortar, 

homogenized 0.3 g was transferred to 2ml tubes for DNA extraction, the remaining 

part was kept in the dark vials in 80% methanol, 19%water and 1% absolute acetic 

acid for HPLC and antibiogram.  
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3.7. DNA extraction 

Subsamples of 0.5 g tuberosphere and bulk soil or 0.3 g vermiculite culture were used 

for DNA extraction by method SK described by Sagova-Mareckova et al. (2008). 

Briefly, the method is based on bead-beating and phenol/chloroform extraction 

followed by purification with CaCl2 and GeneClean Turbo kit (MP Biomedicals, Santa 

Ana, CA). For DNA extraction from potato periderm, 3 g of periderm samples were 

fine cut in sterile Petri dish, homogenized, and a 0.3 g subsample was processed in the 

same way as soil samples to obtain total periderm DNA. DNA quantity and quality 

were evaluated using agarose gel and UV-absorption spectrometry with 

Nanophotometer (Implen, Munich, Germany).  

 

3.8. Quantitative real-time PCR 

Quantifications were performed with primers eub338f (5’-

ACTCCTACGGGAGGCAGCAG-3’) (Lane, 1991) and eub518r (5’-

ATTACCGCGGCTGCTGG-3’) (Muyzer et al., 1993) amplifying a 197 bp fragment 

of the 16S rRNA gene from Bacteria, act235f (5’-CGCGGCCTATCAGCTTGTTG-

3’) (Stach et al., 2003) and eu518r yielding a 280 bp product for Actinobacteria, and 

StrepF (5’-GCAGGACGCTCACCAGGTAGT- 3’) and StrepR (5’-

ACTTCGACACCGTTGTCCTCAA-3’) yielding a 72 bp amplicon of the thaxtomin 

biosynthetic gene txtB (Qu et al., 2008), respectively. The analyses were done on a 

StepOne Plus Real- Time PCR System (Applied Biosystems, Foster City, CA) using 

96-well plates with GoTaq qPCR Master Mix (Promega, Madison, WI) containing 

SYBR Green as a double-stranded DNA binding dye. The reaction mixture contained 

in a total volume of 15 ml: 1× GoTaq qPCRMasterMix, 0.2 mM primers, and 0.2–2 ng 

diluted DNA sample. For all of the mentioned targets the PCR cycling protocol 

consisted of initial denaturation at 95°C for 10 min, followed by 45 cycles of 95°C for 

15 s, 60°C for 30 s and 72°C for 30 s. Melting curves were recorded to ensure qPCR 

specificity. Baseline and threshold calculations were performed with the StepOne v. 

2.2.2 software. The inhibition was tested by serial DNA dilution from each site. All 

qPCR measurements were done in duplicate. The qPCR standards were prepared by 

cloning the fragments of the target genes in pGEM-T Easy vector system (Promega). 

After PCR verification and isolation of the cloned constructs by Pure Yield Plasmid 
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Miniprep System (Promega), a linear standard was prepared by cleaving with SalI 

enzyme (New England Biolabs, UK) in a 200 ml reaction mixture containing 1× 

reaction buffer, 2 mg circular plasmid, and 20 U restriction endonuclease for 2h in 

37°C. The linearized plasmid DNA was purified by phenol-chloroform extraction. The 

aliquots of linearized and purified standard diluted to 20 ng/ml were stored in-70°C. 

 

3.9. Illumina MiSeq sequencing and analysis.  

From the DNA samples, fragments of the 16S rRNA gene including the variable 

region V4 were PCR amplified using universal primers with 5’linkers 

CS1_515F/CS2_806R (Caporaso et al., 2011) for bacteria, and 

CS1_ARC344F/CS2_Arch806R (Takahashi et al., 2014), for archaea (Table 2). PCRs 

were performed in 25 µl reaction volumes using the Ex Taq HS DNA Polymerase 

(Takara, Kusatsu, Japan), and the PCR conditions were as follows: 5 min initial 

denaturation at 95 °C, followed by 28 cycles of: 30 s denaturation at 95 °C, 45 s 

annealing at 55 °C for Bacteria or 50 °C for Archaea, and 30 s extension at 72 °C. 

Fragments of the eukaryotic18S rRNA gene including the variable region V9 were 

amplified using primers CS1_Euk1391F/CS2_EukBr (Amaral-Zettler et al., 2009) 

(Table 2). PCR conditions were according to the standard protocol of the Earth 

microbiome project (http://www.earthmicrobiome.org): 3 min initial denaturation at 

94 °C, followed by 28 cycles of: 45 s denaturation at 94 °C, 60 s annealing at 57 °C, 

and 90 s extension at 72 °C. Construction of amplicon libraries including the second 

PCR and sequencing using MiSeq sequencer (Illumina, San Diego, CA) were done at 

the DNA Services Facility, Research Resources Center, University of Illinois 

(Chicago, IL). Resulting paired sequence reads were merged, filtered, aligned using 

reference alignment from the Silva database54, and chimera checked using integrated 

Vsearch tool61 according to the MiSeq standard operation procedure (Miseq SOP, 

February 2018) (Kozich et al., 2013), in Mothur v. 1.39.5 software (Schloss et al., 

2009). A taxonomical assignment of sequence libraries was performed in Mothur 

using the Silva Small Subunit rRNA Database, release 128 (Yilmaz et al., 2014), 

adapted for use in Mothur (https://mothur.org/w/images/b/b4/Silva.nr_v128.tgz) as the 

reference database. Sequences of plastids, mitochondria, and those not classified in the 

domain Bacteria were discarded. The sequence library was clustered into OTUs using 
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the Uparse pipeline in Usearch v10.0.240 softwar (Edgar, 2013) and the OTU table 

was further processed using tools implemented in the Mothur software. Distance 

matrices describing the differences in community composition between individual 

samples were calculated using the Yue-Clayton theta calculator (Yue and Clayton, 

2005) Analysis of molecular variance (AMOVA) (Martin, 2002) was based on a 

matrix of Yue-Clayton theta distances. Metastats analysis (White et al., 2009) was 

used to detect differentially represented OTUs.  

 

Table 2. Primers used in qPCR and amplicon preparation for microarray and Illumina 

sequencing analyses 

Primer Sequence (5’-3’)a Sense Target 

T7-pA TAATACGACTCACTATAG-

AGAGTTTGATCCTGGCTCAG 

forward 
16S rRNA gene, 

bacteria 
pH AAGGAGGTGATCCAGCCGCA reverse 

CS1_515F ACACTGACGACATGGTTCTACA-

GTGCCAGCMGCCGCGGTAA 

forward 

16S rRNA gene, 

bacteria CS2_806R TACGGTAGCAGAGACTTGGTCT-

GGACTACHVGGGTWTCTAAT 

reverse 

CS1_ARC344F ACACTGACGACATGGTTCTACA-AC-

GGGGYGCAGCAGGCGCGA 

forward 

16S rRNA gene, 

archaea CS2_Arch806R TACGGTAGCAGAGACTTGGTCT-GG-

ACTACVSGGGTATCTAAT 

reverse 

CS1_Euk1391F ACACTGACGACATGGTTCTACA -CG -

GTACACACCGCCCGTC 

forward 

18S rRNA gene, 

eukaryotes CS2_EukBr TACGGTAGCAGAGACTTGGTCT-CA-

TGATCCTTCTGCAGGTTCACCTAC 

Reverse 

a The sequences aligning to the target are underlined for the primers with 5’ overhang 

parts. 

 

3.10. 16S rRNA gene-based taxonomic microarray.  

A taxonomic microarray based on DNA probes targeting 16S rRNA genes 

representing 19 bacterial phyla at different taxonomic levels (Kyselkova et al., 2009) 
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was used to assess soil samples from potato fields. This microarray was validated 

previously (Kyselkova et al., 2009, Bouffaud et al., 2012). Twelve probes targeting 

the genus Streptomyces, as well as S. scabies and relatives (Table 1) were added to the 

previous probe set (1033 probes) in this study. The probe KO 08 (Franke-Whittle et 

al., 2005), for genus Streptomyces was obtained via the probeBase server (Greuter et 

al., 2016) (http://probebase.csb.univie.ac.at). The other 11 probes (20-mers) were 

designed in this study using ARB sofware (Ludwig et al., 2004) (http://www.arb-

home.de) and the parameters of the Probe Design function chosen by Sanguin et 

al.(Ludwig et al., 2004, Sanguin et al., 2006). Probe specificity was tested with the 

Probe Match function in ARB against the reference Silva-104 and with the TestProbe 

online tool against Silva 126 database (Quast et al., 2013) (http://www.arb-silva.de), at 

the weighted mismatch value of 1.5 (Kyselkova et al., 2009). Hybridization properties 

of probes (e.g. melting temperature, potential formation of secondary structures and 

3’dimers) were further tested in silico, according to Sanguin et al. (Sanguin et al., 

2006, Sanguin et al., 2006). 

Universal bacterial primers T7-pA/pH (Table 2) were used to amplify 16S 

rRNA genes from total DNA extracts (Bruce et al., 1992). Primer T7-pA includes at 

the 5’ end the sequence of T7 promoter, which enabled T7 RNA polymerase-mediated 

in vitro transcription using purified PCR products as templates. PCR reactions were 

carried out using Taq Expand High Fidelity (Roche Applied Science, Meylan, France) 

and cycling conditions described in Kyselkova et al. (2009). Purified PCR products 

(50 ng/µl) were fluorescently labelled (Cy3) by in vitro transcription, according to 

Stralis-Pavese et al. (2004). 

Purified RNA was fragmented by incubation with ZnSO4, as described (Stralis-

Pavese et al., 2004) and 400 ng subjected to hybridization on the microarray. Each 

probe was present in four copies per slide, and two slides were hybridized per sample. 

Hybridization was carried out according to Sanguin et al. (Sanguin et al., 2006). Slides 

were scanned at 532 nm, images were analyzed with GenePix Pro 7 (Molecular 

Devices, Sunnyvale, CA), and spot quality was checked visually, as described 

previously (Sanguin et al., 2006). Data filtration was conducted using R 3.3.0 (Core 

Team, 2018) (http://www.r-project.org). Hybridization of a given spot was considered 

positive when 80% of the spot pixels had intensity higher than the median local 

background pixel intensity plus twice the standard deviation of the local background. 

Intensity signals (median of signal minus background) were replaced by their square 

http://www.arb-home.de/
http://www.arb-home.de/
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root value and intensity of each spot was then expressed as a fraction of the total 

intensity signal of the basic pattern it belongs to (Sanguin et al., 2006); Finally, a 

given feature probe was considered as truly hybridized when (i) hybridization signals 

were superior to the mean signal of the negative controls and (ii) at least 3 of 4 

replicate spots displayed positive hybridization (Kyselkova et al., 2009). 

 

3.11. Statistical analysis 

The differences between samples (suppressive and conducive fields, soils and 

cultivars, for soil chemical parameters and log copy numbers of bacterial and 

actinobacterial 16S rRNA genes, and txtB genes in soil and periderm samples) were 

tested by ANOVA and Welch’s two sample t-test (allowing differences between 

variability of variables), which aims at detection of differences in mean values or by 

ANOVA and Fisher LSD tests. All variables were log-transformed to make their 

distribution more similar to a normal distribution. P-values for the pairwise 

comparison were adjusted for multiple comparison problems with the help of the Max-

abs-t-distribution method (Hothorn et al. 2011). AMOVA was used to test differences 

between distance matrices (Yue-Clayton theta) between Illumina samples. The 

distance matrices were plotted by non-metric multidimensional scaling (Venables and 

Ripley, 2002) using Mass package, and vectors of environmental variables were fitted 

to the ordination using Vegan package in the R software environment (R Core Team, 

2018). 

Two tests based on distance matrices were used. While PERMANOVA 

(McArdle and Anderson, 2001) tests how much the within group distances are on 

average shorter than the between group distances (aiming at detection of different 

mean profiles), dispersion test (denoted later as ‘disp’) introduced by Gijbels and 

Omelka (2013) tests how much the average within group distances differs among the 

groups (aiming at detecting of different dispersions of the samples). The correlation 

coefficients at different fields were compared through the permutation test introduced 

in Omelka and Pauly (2012). All statistical calculations were done in the R computing 

environment (R Core Team, 2018). 
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3. Results 

3.1. Determination of biological and chemical factors associated with natural soil 

suppressivity to potato common scab at contrasting sites. 

The sites differed in nutrient contents and biological properties in soil and skin.(Table 3A, 

Fig. 1-6). There was a significant (p value ≤ 0.001) difference between location and 

chemical variables: total contents of N [%], C [%], S [ppm], P [mg/kg], Mg [mg/kg], Ca 

[mg/kg], and Fe [mg/kg] in soil, and N [%], P [mg/kg], Mg [mg/kg], Ca [mg/kg], and Fe 

[mg/kg] in skin, showed that the nutrient properties of the fields are locally specific (Table 

3B).  

Similarly, severity of CS varied strongly between sites. The highest severity, around 

6 on the 9 point scale was observed at the high-severity field in Zdirec (Zdirec cesta, Zc). A 

significant difference was determined between the values of CS severity in summer and 

autumn (ANOVA, p< 0.001) (Fig. 24, 25, Table 3B).  

The maximum of severity in summer was seen in variety Valfi and Rumba. The 

minimum was seen in variety Carrera, Marabella and Kariera. The maximum of severity in 

autumn was seen in variety Valfi, Agria and David. The minimum was seen in variety 

Volex (Fig. 26, 27).  

A positive correlation was determined between CS severity and N in soil and skin, 

Fe in soil and skin, and Mg in soil and skin, while for txtB gene in soil it was a negative 

correlation with N in soil and skin, Fe in soil and skin, Mg in soil, S in soil, P in soil, Mg in 

skin, positive with Ca in soil and skin.  

The txtB gene in skin was positively correlated with C in soil, N in soil but not skin, 

Fe in soil and skin and a negatively correlated with Ca in soil. The correlations were also 

specific for summer and autumn sampling. Important differences in nutrient contents 

occurred also between the bulk and rhizosphere. There was a significant difference between 

bulk and rhizosphere in the nutrients: N, S and Fe in soil (Methodology: Welch version of 

the two-sample t-test and Two-sample problem with random effects.  

Vyklantice uvoz (Vu) was one of the field with maximum severity in summer, the 

severity of scab was also was high in autumn (Fig. 24, 25). Vyklantice uvoz (Vu) is close to 

another field (Vyklantice kostel (Vk) which was one of the field with minimum severity in 

summer and also a low severity in autumn. Vyklantice uvoz (Vu) and Vyklantice kostel 

(Vk) had a high content of S, Mg and Fe in soil and the copy numbers of bacteria and 

actinobacteria in soil and txtB in skin in both fields was high. In V. uvoz the content of Fe, 
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Mg and copy numbers of total bacteria in rhizosphere was higher than bulk (r>b) while in V. 

kostel, the content of Fe, Mg and copy numbers of total bacteia was higher in bulk soil 

(b>r). In both fields, copy numbers of txtB and 16S rRNA gene from actinobacteria were 

higher in bulk soil; V. uvoz (Vu) also had more copy numbers of txtB gene and 16 S rRNA 

from actinobacteria in skin and a high content of N in skin, C in soil (r=b), and Ca in skin.  

Compared to Zdirec les (Zl), Zdirec cesta (Zc) had higher copy numbers of txtB 

gene, total bacteria and actinobacteria in bulk and rhizosphere (r>b) and higher content of 

N, C, S, Mg, Ca and Fe in rhizosphere and bulk (rhizosphere more than bulk, except Ca) and 

also higher content of N and Ca in skin. Both fields had the maximum of proportion of txtB 

in skin/txtB in soil, maximum of actinobacterial 16S rRNA gene in skin and minimum of 

txtB in bulk between 32 fields. The txtB in rhizosphere of Zdirec les was minimum between 

all fields (Fig. 6-9). 

Hostice (Hs) was another field with higher severity in summer. It was one of the 

fields with minimum of actinobacteria and total bacterial copy numbers in rhizosphere and 

bulk and txtB gene in skin. In opposite of poor biological factors, Hostice (Hs) had a higher 

content of P and Mg in bulk and rhizosphere, the contents in bulk were higher than in 

rhizosphere (b>r). 

Slavkov-Vinohrady (Sl) is the last field with maximum severity in summer, 

described to make better comparison and understanding of the fields with high severity. 

Slavkov-Vinohrady (Sl) had a high content of N (r=b), Ca (r>b), C (the same in rhizosphere 

and bulk), pH (the same in rhizosphere and bulk), and the high content of P in skin. The 

copy numbers of txtB gene in skin were low compared to other fields. 

The minimum severity in summer was seen in Polepy uvoz (Pu), Ruzyne (Ru), 

Stankov (St), Sutom (Su), Vysoke u Pribrame (VP) and Vyklantice kostel (Vk) and in 

autumn was seen in Ruzyne (Ru), Stankov (St), Malonty (Ma) and Horazdovice (Hr). 

Vyklantice kostel (Vk) with low severity had high content of S, Mg and Fe in soil, 

the copy numbers of 16S rRNA from bacteria and actinobacteria in soil and txtB gene in 

skin. In V. kostel (Vk), the content of Fe and Mg and copy numbers of total bacteria were 

higher in bulk soil. 

Polepy uvoz (Pu) had the minimum of severity in summer with the low content of N, 

P, Fe and Mg (bulk more than rhizosphere except P) (Fig. 10, 11, 16, 17, 22, 23, 24). Polepy 

uvoz (Pu) had the minimum of txtB gene in skin and the maximum of txtB gene in soil (bulk 

more than rhizosphere), and also the maximum of sand was seen in Polepy uvoz (Pu) (Table 

3A). 
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Ruzyne (Ru) had a low severity in summer and autumn. Ruzyne (Ru) had a high pH 

and high content of C, N, Ca and S (rhizosphere more than bulk, except Ca), and low 

content of Mg (r>b), N in skin, txtB in skin and H+.  

Stankov (St) had a low severity in summer and autumn with low content of 

actinobacteria and total bacteria (bulk more than rhizosphere) and txtB in skin. 

Sutom (Su) had a low severity in summer, with high content of N, C, S, pH 

(rhizosphere more than bulk), P, Ca, Fe (bulk more than rhizosphere) and N in skin and low 

numbers of bacteria and actinobacteria in soil (rhizosphere more than bulk) and low 

numbers of txtB gene in skin. The maximum of clay was seen in Sutom (Su) (Table 3A). 

Vysoke u Pribrame (VP) had a low severity in summer and low content of Mg and 

Ca (b>r). Horazdovice (Hr) had a low severity in autumn and low content of Ca (r>b), P in 

skin, txtB gene in skin and high content of Mg (r>b). Malonty (Ma) had a high severity in 

summer and a low severity in autumn, a high range of N, C, Fe, Ca, S and P in rhizosphere 

and bulk (in rhizosphere more than bulk, except S), and also a low content of Ca in skin and 

soil. 
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Table 3A. The average of chemical parameters and biological variables, measured in 

the soil samples (included rhizosphere and bulk) and skin of potatoes in 32 sites. 
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Table 3B. Statistical significance between variables.  

 Nutrients and bacterias vs. 

Severity 

 Nutrients vs. txtB soil   Nutrients vs. txtB skin  Rhizospeheres vs. bulk 

value p-value value p-value value p-value value p-value 

txt.skin 

actino.skin 

bacteria.soil 

actino.soil 

Fe.skin  

N.skin 

Fe.skin 

Mg.skin 

Fe.skin 

N.skin  

N.skin  

Fe.skin  

Mg.skin  

N.soil  

Fe.soil  

Fe.soil  

N.soil  

txt.soil 

<0.001 

 

Fe.soil  

  

  

Fe.soil  

Mg.soil  

Mg.soil  

St.soil  

bacteria.soi 

St.soil  

bacteria.soi 

Ca.skin  

P.soil  

Ca.skin  

P.soil  

actino.soil  

actino.soil  

 

<0.001 actino.skin  

actino.skin  

actino.soil  

actino.soil  

bacteria.soil  

bacteria.soil  

<0.001 

 

N.soil  

Ct.soil  

 

<0.001 

Ca.soil  

 

Ct.soil  

 

Mg.soil 

 

 0.005 

0.009 

0.12 

 

Mg.skin  

pH  

Mg.skin  

N.soil  

N.skin  

P.skin  

N.skin  

N.soil  

0.011 

0.001 

0.014 

0.013 

0.081 

0.087 

0.097 

0.33 

Fe.skin  

Fe.skin  

N.soil  

Mg.skin  

Mg.skin  

Ca.skin  

Ca.skin  

N.soil  

Ct.soil  

<0.005 

 

St.soil 

Ca.soil 

actino.soil  

txt.soil  

<0.05 
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P.skin  

 

 P.soil  

Ct.soil P.soil  

Ca.soil Ca.skin  

Mg.soil  

Ca.skin  

pH  

P.skin  

St.soil  

P.skin  

St.soil  

  

  

 >0.1 

 

Fe.skin  

txt.skin  

Ca.soil  

P.skin 

actino.skin  

txt.skin  

actino.skin  

Ca.soil  

Fe.skin  

Ct.soil  

Ct.soil  

 

 

>0.1 N.skin  

P.skin  

Fe.soil  

Fe.soil  

N.skin  

Ct.soil  

txt.soil  

pH  

Ca.soil  

Mg.soil  

txt.soil  

P.soil  

P.soil  

Ca.soil  

Mg.soil  

St.soil  

St.soil  

 

>0.05 P.soil  

Mg.soil  

Fe.soil  

pH  

bacteria.soil 

>0.05 
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Fig. 1. Comparison of copy numbers of total bacterial 16S rRNA, actinobacterial 16S 

rRNA and txtB gene in soil samples. To make the data possible to show the copy 

numbers of 16S rRNA, divided to 1000. (means ± standard deviations, n=24 for CB, 

n=12 for Pc and Pu and Ce, n=28 for Vk, Vu, n=16 for Zc and Zl, n=15 for Zi, n=6 for 

Ra, Ru, Sl, St, SP, Su, HB, Tr, Vo, VL, VP, Zd, Pd, Hr, Hs, Ku, KU, Li, Lu, Ma, Mi, 

Mo, Ne.  
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Fig. 2. The copy numbers of total bacterial 16S rRNA gene in bulk samples (means ± 

standard deviations, n=3 for Ra, Ru, Sl, St, SP, Su, HB, Tr, Vo, VL, VP, Zd, Pd, Hr, 

Hs, Ku, KU, Li, Lu, Ma, Mi, Mo, Ne, n=6 for Ce, Pc, Zi and Pu, n=12 for CB, n=8 for 

Vk, Vu and n=4 for Zc, Zl). 

 

 

 

Fig. 3. The copy numbers of total bacterial 16S rRNA gene, in rhizosphere samples 

(means ± standard deviations, n=3 for Ra, Ru, Sl, St, SP, Su, HB, Tr, Vo, VL, VP, Zd, 

Pd, Hr, Hs, Ku, KU, Li, Lu, Ma, Mi, Mo, Ne, n=6 for Ce, Pc and Pu, n=12 for CB, Zc 

and Zl, n=20 for Vk, Vu n=9 for and Zi). 
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Fig. 4. The copy numbers of total actinobacterial 16S rRNA gene, in bulk samples. 

(means ± standard deviations, n=3 for Ra, Ru, Sl, St, SP, Su, HB, Tr, Vo, VL, VP, Zd, 

Pd, Hr, Hs, Ku, KU, Li, Lu, Ma, Mi, Mo, Ne, n=6 for Ce, Pc, Zi and Pu, n=12 for CB, 

n=8 for Vk, Vu and n=4 for Zc, Zl). 

 

Fig. 5. The copy numers of total actinobacterial 16S rRNA gene in rhizosphere 

samples (means ± standard deviations, n=3 for Ra, Ru, Sl, St, SP, Su, HB, Tr, Vo, VL, 

VP, Zd, Pd, Hr, Hs, Ku, KU, Li, Lu, Ma, Mi, Mo, Ne, n=6 for Ce, Pc and Pu, n=12 for 

CB, Zc and Zl, n=20 for Vk, Vu n=9 for and Zi). 
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Fig. 6. The comparison of copy numbers of txtB in bulk and rhizosphere. For bulk 

samples n=3 for Ra, Ru, Sl, St, SP, Su, HB, Tr, Vo, VL, VP, Zd, Pd, Hr, Hs, Ku, KU, 

Li, Lu, Ma, Mi, Mo, Ne, n=6 for Ce, Pc, Zi and Pu, n=12 for CB, n=8 for Vk, Vu and 

n=4 for Zc, Zl) and for Rhizosphere samples n=3 for Ra, Ru, Sl, St, SP, Su, HB, Tr, Vo, 

VL, VP, Zd, Pd, Hr, Hs, Ku, KU, Li, Lu, Ma, Mi, Mo, Ne, n=6 for Ce, Pc and Pu, 

n=12 for CB, Zc and Zl, n=20 for Vk, Vu n=9 for and Zi). 

 

Fig. 7. The comparison of copies of two genes in the skin samples: 16S rRNA gene 

from actinobacteria and txtB. (means ± standard deviations, n=3 for Ra, Ru, Sl, St, SP, 

Su, HB, Tr, Vo, VL, VP, Zd, Pd, Hr, Hs, Ku, KU, Li, Lu, Ma, Mi, Mo, Ne, n=6 for 

Ce, Pc and Pu, n=12 for CB, Zc and Zl, n=20 for Vk and Vu and n=9 for Zi).  
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Fig. 8. Comparison of copy numbers txtB gene, in skin and soil. (means ± standard 

deviations, for skin: n=3 for Ra, Ru, Sl, St, SP, Su, HB, Tr, Vo, VL, VP, Zd, Pd, Hr, 

Hs, Ku, KU, Li, Lu, Ma, Mi, Mo, Ne, n=6 for Ce, Pc and Pu, n=12 for CB, Zc and Zl, 

n=20 for Vk and Vu and n=9 for Zi for soil n=24 for CB, n=12 for Pc and Pu and Ce, 

n=28 for Vk, Vu, n=16 for Zc and Zl, n=15 for Zi, n=6 for Ra, Ru, Sl, St, SP, Su, HB, 

Tr, Vo, VL, VP, Zd, Pd, Hr, Hs, Ku, KU, Li, Lu, Ma, Mi, Mo, Ne. 

 

 

Fig. 9. The copy numbers of txtB in soil (means ± standard deviations, n=24 for CB, 

n=12 for Pc and Pu and Ce, n=28 for Vk, Vu, n=16 for Zc and Zl, n=15 for Zi, n=6 for 

Ra, Ru, Sl, St, SP, Su, HB, Tr, Vo, VL, VP, Zd, Pd, Hr, Hs, Ku, KU, Li, Lu, Ma, Mi, 

Mo, Ne.  
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Fig. 10. The average of N [%], in bulk samples (means ± standard deviations, n=3 for 

Ra, Ru, Sl, St, SP, Su, HB, Tr, Vo, VL, VP, Zd, Pd, Hr, Hs, Ku, KU, Li, Lu, Ma, Mi, 

Mo, Ne, n=6 for Ce, Pc, Zi and Pu, n=12 for CB, n=8 for Vk, Vu and n=4 for Zc, Zl). 

 

 

Fig. 11. The average of N [%], in the rhizosphere (means ± standard deviations, n=3 

for Ra, Ru, Sl, St, SP, Su, HB, Tr, Vo, VL, VP, Zd, Pd, Hr, Hs, Ku, KU, Li, Lu, Ma, 

Mi, Mo, Ne, n=6 for Ce, Pc and Pu, n=12 for CB, Zc and Zl, n=20 for Vk, Vu n=9 for 

and Zi). 
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Fig. 12. The average of N(tot) in the skin samples (means ± standard deviations, n=3 

for Ra, Ru, Sl, St, SP, Su, HB, Tr, Vo, VL, VP, Zd, Pd, Hr, Hs, Ku, KU, Li, Lu, Ma, 

Mi, Mo, Ne, n=6 for Ce, Pc and Pu, n=12 for CB, Zc and Zl, n=20 for Vk and Vu and 

n=9 for Zi).  

 

 

Fig. 13. The average of Ct (%) in the bulk samples (means ± standard deviations, n=3 

for Ra, Ru, Sl, St, SP, Su, HB, Tr, Vo, VL, VP, Zd, Pd, Hr, Hs, Ku, KU, Li, Lu, Ma, 

Mi, Mo, Ne, n=6 for Ce, Pc, Zi and Pu, n=12 for CB, n=8 for Vk, Vu and n=4 for Zc, 

Zl). 
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Fig. 14. The average of Ct (%) in rhizosphere (means ± standard deviations, n=3 for 

Ra, Ru, Sl, St, SP, Su, HB, Tr, Vo, VL, VP, Zd, Pd, Hr, Hs, Ku, KU, Li, Lu, Ma, Mi, 

Mo, Ne, n=6 for Ce, Pc and Pu, n=12 for CB, Zc and Zl, n=20 for Vk, Vu n=9 for and 

Zi). 

 

 

Fig. 15. The average of Mg in skin samples (means ± standard deviations, n=3 for Ra, 

Ru, Sl, St, SP, Su, HB, Tr, Vo, VL, VP, Zd, Pd, Hr, Hs, Ku, KU, Li, Lu, Ma, Mi, Mo, 

Ne, n=6 for Ce, Pc and Pu, n=12 for CB, Zc and Zl, n=20 for Vk and Vu and n=9 for 

Zi).  
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Fig. 16. The average of Mg in bulk samples (means ± standard deviations, n=3 for Ra, 

Ru, Sl, St, SP, Su, HB, Tr, Vo, VL, VP, Zd, Pd, Hr, Hs, Ku, KU, Li, Lu, Ma, Mi, Mo, 

Ne, n=6 for Ce, Pc, Zi and Pu, n=12 for CB, n=8 for Vk, Vu and n=4 for Zc, Zl). 

 

 

Fig. 17. The average of Mg in rhizosphere (means ± standard deviations, n=3 for Ra, 

Ru, Sl, St, SP, Su, HB, Tr, Vo, VL, VP, Zd, Pd, Hr, Hs, Ku, KU, Li, Lu, Ma, Mi, Mo, 

Ne, n=6 for Ce, Pc and Pu, n=12 for CB, Zc and Zl, n=20 for Vk, Vu n=9 for and Zi). 
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Fig. 18. The average of Ca in skin samples (means ± standard deviations, n=3 for Ra, 

Ru, Sl, St, SP, Su, HB, Tr, Vo, VL, VP, Zd, Pd, Hr, Hs, Ku, KU, Li, Lu, Ma, Mi, Mo, 

Ne, n=6 for Ce, Pc and Pu, n=12 for CB, Zc and Zl, n=20 for Vk and Vu and n=9 for 

Zi).  

 

 

Fig. 19. The average of Ca in bulk samples (means ± standard deviations, n=3 for Ra, 

Ru, Sl, St, SP, Su, HB, Tr, Vo, VL, VP, Zd, Pd, Hr, Hs, Ku, KU, Li, Lu, Ma, Mi, Mo, 

Ne, n=6 for Ce, Pc, Zi and Pu, n=12 for CB, n=8 for Vk, Vu and n=4 for Zc, Zl). 
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Fig. 20. The average of Ca in rhizosphere (means ± standard deviations, n=3 for Ra, 

Ru, Sl, St, SP, Su, HB, Tr, Vo, VL, VP, Zd, Pd, Hr, Hs, Ku, KU, Li, Lu, Ma, Mi, Mo, 

Ne, n=6 for Ce, Pc and Pu, n=12 for CB, Zc and Zl, n=20 for Vk, Vu n=9 for and Zi). 

 

 

Fig. 21. The average of Fe in the skin samples (means ± standard deviations, n=3 for 

Ra, Ru, Sl, St, SP, Su, HB, Tr, Vo, VL, VP, Zd, Pd, Hr, Hs, Ku, KU, Li, Lu, Ma, Mi, 

Mo, Ne, n=6 for Ce, Pc and Pu, n=12 for CB, Zc and Zl, n=20 for Vk and Vu and n=9 

for Zi).  
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Fig. 22. The average of Fe in the bulk samples (means ± standard deviations, n=3 for 

Ra, Ru, Sl, St, SP, Su, HB, Tr, Vo, VL, VP, Zd, Pd, Hr, Hs, Ku, KU, Li, Lu, Ma, Mi, 

Mo, Ne, n=6 for Ce, Pc, Zi and Pu, n=12 for CB, n=8 for Vk, Vu and n=4 for Zc, Zl). 

 

 

Fig. 23. The average of Fe in rhizosphere (means ± standard deviations, n=3 for Ra, 

Ru, Sl, St, SP, Su, HB, Tr, Vo, VL, VP, Zd, Pd, Hr, Hs, Ku, KU, Li, Lu, Ma, Mi, Mo, 

Ne, n=6 for Ce, Pc and Pu, n=12 for CB, Zc and Zl, n=20 for Vk, Vu n=9 for and Zi). 
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Fig. 24. Severity of common scab in summer (means ± standard deviations, n=3 for 

Ra, Ru, Sl, St, SP, Su, HB, Tr, Vo, VL, VP, Zd, Pd, Hr, Hs, Ku, KU, Li, Lu, Ma, Mi, 

Mo, Ne, n=6 for Ce, Pc and Pu, n=12 for CB, Zc and Zl, n=20 for Vk, Vu, n=9 for and 

Zi). 

 

 

Fig. 25. Severity of common scan in autumn (means ± standard deviations, n=3 for Ra, 

Ru, Sl, St, SP, Su, HB, Tr, Vo, VL, VP, Zd, Pd, Hr, Hs, Ku, KU, Li, Lu, Ma, Mi, Mo, 

Ne, n=6 for Ce, Pc and Pu, n=12 for CB, Zc and Zl, n=20 for Vk, Vu, n=9 for and Zi). 
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Fig. 26. Severity of common scab in different varieties (cultivars) in summer (means ± 

standard deviations, n=30 for Agria, n=21 for Adela, n=16 for Valfi and David, n=15 

for Adela eko., n=12 for impala, n=9 for Belana, n=8 for Kariera, n=6 for Rozara, 

Carrera and Dali, n=3 for Rumba, Bionta eko., Velox, Laura, Marabelle and Karin 

eko. And n=0 for Coletta). 

 

 

Fig. 27. Severity of common scab in different varieties (cultivars) in autumn (means ± 

standard deviations, n=33 for Agria, n=15 for Adela, n=19 for Valfi, n=16 for David, 

n=9 for Adela eko. and Belana, n=8 for Kariera, n=6 for Dali, n=3 for Rumba, Bionta 

eko., Velox, Coletta, Laura, Impala and Rozára and n=0 for Carrera, Marabelle and 

Karin eko). 
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Fig. 28. Correlation between sites and nutrients (Mg [mg/kg] of rhizosphere samples). P 

value ≤ 0.05 showed by yellow, P value ≤ 0.01 showed by orange and P value ≤ 0.001 

showed by red. 

 



91 

 

 

Fig. 29. An instance of the statistical correlation between the sites and biological variables 

(copy numbers of 16S rRNA gene from actinobacteria of rhizosphere samples). P value ≤ 

0.05 showed by yellow, P value ≤ 0.01 showed by orange and P value ≤ 0.001 showed by 

red. 
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Fig. 30. The thetaYC-based distances calculated for PCA analysis, showing ordination 

based on bacterial community composition in the rhizosphere soil with vectors of 

chemical and biological variables.  
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Fig. 31. The thetaYC-based distances calculated for PCA analysis, showing ordination 

based on bacterial community composition in the bulk soil with vectors of chemical and 

biological variables. 
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Fig. 32. The distances between chemical properties of the soil samples with the vectors 

showing properties of the bacterial communities – proportions of individual phyla and 

diversity (rf).  
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3.2. The effect of peat and iron supplements on the severity of potato common scab 

and bacterial community in tuberosphere soil 

The highest CS severity was observed in the control of the conducive soil VH, while 

the lowest was in the suppressive soil (VL) and treatments VHP (peat added) and 

VHPFe (peat and iron added). Significant differences in scab severity were found 

between the control VH and treatments VHP, VHPFe (p< 0.001), and VHFe (p < 0.05) 

including the suppressive soil VL (p< 0.001) (Fig. 33A). Soil pH was the highest in 

VH and the lowest in VL and VHPFe. The treatments differed significantly by pH (p < 

0.001, ANOVA, Supplementary Table S1) and the differences were significant 

between the control VH and both treatment VHPFe and suppressive soil VL (p < 

0.001) (Fig. 33B). The initial amount of iron added was the same for the two Fe 

treatments. At the end of the experiment, the treatments were significantly different in 

the content of extractable iron (p < 0.001, ANOVA, Supplementary Table S1). The 

lowest content of extractable iron was in VHP. The content of extractable iron in both 

iron supplemented treatments VHFe and VHPFe significantly differed from the 

control VH (p < 0.01 and p < 0.001 resp.) (Fig. 33C). The treatments did not affect soil 

bacteria, Actinobacteria and txtB gene quantities (Supplementary Table S1). However, 

the numbers in periderm Actinobacteria 16S rRNA and txtB gene copies were 

significantly different between the treatments (p=0.006 and p < 0.001 resp., ANOVA, 

Supplementary Table S2). In particular, Actinobacteria numbers were significantly 

lower in the treatment VHP than in the control VH (p < 0.05) and txtB gene copies 

were significantly lower in VHP and VL than in the control VH (both p < 0.05) 

(Supplementary Table S1).  

A total of 1 321 716 sequences were mapped to 10 515 OTUs defined at a 97% 

similarity level. Conducive soil VH had a higher number of OTUs than the 

suppressive soil VL and the treatments VHFe and VHPFe, while the highest number 

of OTUs was found in treatment VHP. In the whole bacterial community, the relative 

abundance of Proteobacteria and Bacteroidetes increased, while Actinobacteria and 

Firmicutes decreased in the VHP and VHPFe treatments. Gemmatimonadetes 

increased in the VHFe and VHPFe treatments. Chloroflexi was high in the suppressive 

soil VL but decreased in VHPFe (Supplementary Fig. S1, Supplementary Fig. S2). In 

a plot of bacterial communities done by non-metric multidimensional scaling, 
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replicates of individual treatments were significantly closer to each other than to those 

from the other treatments (PERMANOVA, p<0.001). Bacterial communities of both 

the VHP and VHFe treatments were significantly closer to the community of 

conducive soil VH than to the other communities (p<0.012), while the communities of 

the treatment VHPFe and the suppressive soil VL were significantly closer to each 

other than to the other treatments (PERMANOVA, VHPFe : VL, p<0.03, VL < 

VHPFe, p<0.005, Fig. 34). Clustering of the bacterial communities (represented by 

sequence libraries) of the treatments to metacommunities based on Dirichlet 

multinomial mixtures showed the best fit for a model of two metacommunities 

(community types). The first one included the conducive control soil VH and the 

treatments VHP and VHFe, while the second included the treatment VHPFe and the 

suppressive soil VL (Supplementary Table S3). There were 155 dominating OTUs, 

which represented 50% of the community. Out of those, 5 OTUs (14, 34, 53, 18, 100) 

changed only in the treatment VHFe and 10 OTUs (19, 37, 44, 55, 75, 79, 81, 95, 144, 

218) changed in both iron treatments; 21 OTUs (2, 4, 3, 6, 10, 15, 16, 29, 47, 58, 66, 

68, 102, 274, 291, 1048, 1247, 1848, 2597, 9319, 9821) changed in both peat 

treatments, and 34 changed in the treatment VHPFe towards the percentage 

characteristic for the suppressive soil VL. In particular for the VHPFe treatment, the 

increasing OTUs belonging to Alphaproteobacteria were OTUs 1, 16, 17, 355; 

Betaproteobacteria OTUs 27, 102; Gammaproteobacteria OTUs 30, 47; 

Actinobacteria OTUs 126, 813; Verrucomicrobia OTUs 88, 70; Acidobacteria OTUs 

40, 67 and Bacteroidetes OTU 29. The decreasing OTUs belonged to Acidobacteria 

OTUs 5, 72, 106; Actinobacteria OTUs 2, 6, 8, 21, 32, 31, 77, 1247; 

Alphaproteobacteria 7, 314; Betaproteobacteria 35, 37, 44, 57, 144 and Chloroflexi 

OTU 61 (Supplementary Table S4).  

The conducive and suppressive soils VH and VL differed by 1453 OTUs 

(Metastats, p<0.05); out of those the proportional abundance of 1133 changed in the 

treatment VHPFe in the direction towards VL, i.e. 349 OTUs increased and 784 OTUs 

decreased. OTUs of Acidobacteria and Actinobacteria decreased, while the OTUs of 

Alphaproteobacteria mostly increased after the iron and peat treatment, becoming 

similar in percentage to VL. OTUs of Firmicutes and Chloroflexi mostly did not 

respond to the treatment (Fig. 35). In the phylum Proteobacteria, the relative 

abundance of Methylophilaceae (R=0.54; n=14) was positively correlated with CS 
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severity, while Xanthobacteraceae, Bradyrhizobiaceae, Sphingomonadaceae, 

Burkholderiaceae decreased with increasing CS severity. The relative abundance of 

Acetobacteraceae was high in VL. (Supplementary Fig. S3). In the phylum 

Actinobacteria, the relative abundances of families Solirubrobacteraceae (R=0.86; 

n=14), Micrococcaceae (R=0.76; n=14) and Nocardioidaceae (R=0.59; n=14) were 

positively correlated with CS severity, while Acidimicrobiaceae decreased with 

increasing CS severity. Thermomonosporaceae and Micromonosporaceae were high 

in the suppressive soil VL, and Gaiellales and Conexibacteraceae decreased in the 

peat treatment (Supplementary Fig. S4).  
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Fig. 33. Severity of the potato common scab (A), tuberosphere soil pH (B), and the 

contents of available iron extracted with ammonium acetate (C) at the end of 

cultivation. The potato cultivar Agria was grown in common-scab conducive soil - 

VH, the same soil amended with peat - VHP, DTPA-chelated iron - VHFe, or both 

iron and peat - VHPFe, and common-scab suppressive soil - VL. The bars represent 

averages of five replicates with standard deviations. Significant differences (ANOVA) 

in comparison to the conducive soil VH are marked with asterisks (P < 0. 05 - *, P < 

0.01 - **, P < 0.001 - ***). 

  

  

Fig. 34. An ordination showing distances between the bacterial communities 

represented by amplicon sequence libraries in the treatments. Non-metric 

multidimensional scaling was based on a matrix of Yue-Clayton theta distances. The 

sequenced communities were from potato tuberosphere in common-scab conducive 

soil VH (closed circles), the same soil amended with peat VHP (squares), DTPA-

chelated iron VHFe (triangles), both iron and peat VHPFe (pentagons), and common-

scab suppressive soil VL (open circles). 
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Fig. 35. Phylogenetic tree (constructed by maximum likelihood of representative 

sequences of each OTU) of OTUs which significantly differ between the conducive 

and suppressive soil in relative abundance. Red circle - conducive soil VH, blue - 

suppressive soil VL, purple - iron and peat treatment VHPFe. The inner most circle 

shows how the proportion of individual OTUs changed from VH to VL in the 

treatment VHPFe. Dark blue - strong decrease, light blue - weak decrease, dark red - 

strong increase, light red - weak decrease, white - no change.  
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3.3. Bacterial, archaeal and micro-eukaryotic communities characterize a disease-

suppressive or conducive soil and a cultivar resistant or susceptible to common scab. 

3.3.1. Common scab severity and quantities of thaxtomin biosynthetic genes.  

In conducive soil H, severity of CS (resulting from natural field infestation) was 

significantly higher in susceptible cultivar Agria than resistant cultivar Kariera (Fig. 

36; ANOVA, p<0.001). In suppressive soil L, CS severity did not differ between the 

cultivars, and was as low as for the resistant cultivar in conducive soil. The number of 

txtB gene copies was similar in both soils (Tables S1A and S3A), while in periderm it 

was significantly higher (p=0.006) in conducive than suppressive soil (Tables S1B and 

S3B). The two cultivars grown in the same soil had comparable quantities of txtB gene 

copies in their periderm. In summary, CS control required resistant cultivar 

(independently of the soil) or suppressive soil (for susceptible cultivar). 

 

3.3.2. Chemical composition of tuberosphere soil and periderm.  

In tuberosphere, contents of N, C, P, Ca, and soil pH were significantly higher in 

conducive than suppressive soil (ANOVA; all p<0.001), while S content was 

significantly higher in suppressive soil (ANOVA; p<0.001). Ca content was 

significantly higher in bulk soil than in tuberosphere of both soils (ANOVA; p<0.001; 

Tables S2A and S3A). In periderm, N content was significantly higher in both 

cultivars from suppressive soil (ANOVA; p<0.001), Ca content was significantly 

higher in susceptible cultivar Agria in both soils (ANOVA; p=0.011), and Mg content 

was significantly higher in resistant cultivar Kariera in both soils (ANOVA; p<0.001). 

Fe content was significantly higher in tuberospheres of both cultivars in conducive soil 

(Supplementary Table S2A,) but it was highest in periderm of the resistant cultivar in 

suppressive soil (Supplementary Tables S2B). Fe content was affected by both field 

and field x cultivar interaction in both soil and periderm (ANOVA; p=0.035; 

ANOVA; p=0.006 resp. Supplementary Tables S3 A and B) In summary, (i) lower 

content of N, C, P, and Ca and higher content of S were found in the suppressive soil 

(ii) higher content of Mg, P or Fe were found in the resistant cultivar. In addition, S 

and Fe contents were significantly higher in tuberosphere for the combination of 

suppressive soil × resistant cultivar, showing an interaction effect.  
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3.3.3. Quantities of total bacteria and actinobacteria.  

In tuberosphere, the quantities of bacteria (ANOVA; p<0.001) and more specifically 

of actinobacteria (p=0.006) were higher in conducive than in suppressive soil. In 

suppressive soil, the quantity of both bacteria (p=0.011) and actinobacteria (p=0.019) 

was significantly lower in plant tuberosphere compared to bulk soil (Tables S1A and 

S3A). In periderm, the quantity of actinobacteria (ANOVA; p=0.021) was 

significantly higher in conducive than in suppressive soil, and was also significantly 

higher in susceptible cultivar Agria than in Kariera in conducive soil (Tables S1B and 

S3B). In summary, quantities of total bacteria and actinobacteria depended on soil 

(suppressive vs conducive) × cultivar (resistant vs susceptible) × compartment 

(periderm vs tuberosphere vs bulk soil) combination, with a trend for lower number (s) 

in suppressive soil and resistant cultivar. 

 

3.3.4. Bacterial community composition in bulk soil and tuberosphere by microarray 

analysis.  

The 16S rRNA taxonomic microarray previously validated for bacterial community 

analysis of rhizosphere soil samples23,25 was expanded for coverage of the genus 

Streptomyces, including pathogen species S. scabies and relatives (Table 4). 

Non-metric multidimensional scaling (NMDS) plot of sample distances calculated 

from microarray data demonstrated that bacterial communities in conducive and 

suppressive soils were distinct, and in tuberosphere they were also influenced by 

cultivar (Fig. 37A). According to PERMANOVA, cultivar explained 42% variability 

and field site 13% variability. In particular, bacterial community in tuberosphere of the 

susceptible cultivar was separated from those of the resistant cultivar and bulk soil. 

Bacterial communities were significantly closer to each other within conducive or 

suppressive soil when compared to all samples (PERMANOVA; p=0.003), and 

samples of bacterial communities were significantly closer within each cultivar 

(PERMANOVA; p<0.001) but not within each bulk soil. In tuberosphere, bacterial 

communities of resistant cultivar Kariera differed between the soils (PERMANOVA; 

p<0.001), while bacterial communities of susceptible cultivar Agria did not differ 

significantly between the two soils but differed from those of resistant cultivar Kariera 

in each soil (PERMANOVA; p=0.029). The permutation test identified significant 
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relations of bacterial communities with txtB gene copies and Mg soil content, which 

were significantly higher in suppressive soil, and soil pH, C, N and diversity of 

bacteria, which were significantly higher in conducive soil. Diversity of micro-

eukaryotes pointed to the susceptible cultivar Agria in both soils (Fig. 37A, Table S4).  

In summary, analysis of bacterial community by taxonomic microarray 

revealed differences between both suppressive vs conducive soil and resistant vs 

susceptible cultivar. This was indicated by two biotic and four abiotic factors, which 

separated the two soils, and one biotic factor, which separated the susceptible cultivar.  

 

3.3.4.1. Discriminant 16S microarray probes according to soil and potato cultivar.  

The Metastats analysis revealed the probes distinguishing the individual treatments in 

pairwise comparisons (Fig. 38A). The most pronounced differences were found 

between tuberospheres of the two cultivars, which were separated by signal intensities 

of 34 and 38 probes in suppressive and conducive soil, respectively. Only two probes 

discriminated between the two soils when assessing bulk soil samples, while 13 probes 

separated tuberospheres of the resistant cultivar Kariera, and 26 probes those of the 

susceptible cultivar Agria (Fig. 38A). 

Considering the entire dataset including both tuberospheres of the cultivars and 

bulk soil, the samples from suppressive and conducive soils were significantly 

distinguished by the signals of 22 probes (Metastats p<0.05). Among 13 of them with 

higher hybridization signals in suppressive soil, the most significantly contributing 

probes were Aceto3A, Acdp821, Aci1 (targeting the family Acetobacteraceae), 

PalgiG3 (Paenibacillaceae), Pseu33 (Pseudomonadaceae), Strepto5 

(Streptomycetaceae), and Brady4 (Bradyrhizobiaceae). Nine of the probes were 

significantly higher in conducive soil, and probes Janaga 2 and 3 (Oxalobacteraceae) 

contributed most significantly to the separation of the two soils (Table S5A). 

Tuberosphere samples of the cultivars were distinguished by 65 probes, 13 

with higher signal in the resistant cultivar Kariera and 52 in the susceptible cultivar 

Agria. The probes most significantly contributing to separation of the cultivars were 

Strepto1, 2, and 3 (targeting the family Streptomycetaceae), Rzbc1247 (Rhizobiales), 

BET940 (Betaproteobacteria), and Azo5 (Rhodospirillaceae) with a higher signal in 

Kariera, and a diverse set of probes targeting Proteobacteria (15 probes), Firmicutes 



103 

 

(2), Planctomycetes (2), Actinobacteria (2), Bacteroidetes (1) and Acidobacteria (1) 

with higher signal in Agria (Table S5B). 

In summary, 22 probes targeting various bacterial taxa discriminated between 

suppressive and conducive soils, and 65 probes did between resistant and susceptible 

cultivars. Signals of probes targeting the CS pathogen were detected in the 

tuberosphere of the susceptible cultivar grown in conducive soil only. 

 

3.3.5. Bacterial community composition in bulk soil and tuberosphere by Illumina 

sequencing.  

A total of 1,213,004 16S rRNA gene sequences were obtained, out of which 944,597 

(i.e. 78%) were mapped to 4001 OTUs. On a NMDS plot, bacterial communities of 

resistant cultivar Kariera, susceptible cultivar Agria, and bulk soil were separated from 

one another within each field (Fig. 37B). The bacterial communities differed according 

to treatments (AMOVA, p<0.001), with a significant difference between cultivars 

(AMOVA, p<0.001) but not between suppressive and conducive soil (except when 

only bulk soils were compared). The permutation test identified significant influence 

of bacterial diversity, which pointed to the resistant cultivar Kariera (Fig. 37B, Table 

S4).  

Both fields and cultivars were compared using significantly different OTUs 

(Metastats p<0.05). The number of discriminating OTUs (Fig. 38B) was only 85 

between both fields for resistant cultivar Kariera, 382 between bulk soil and resistant 

cultivar Kariera in conducive soil, and 316 between bulk soil and susceptible cultivar 

Agria in suppressive soil, whereas the other pairwise differences between treatments 

implicated 954-1676 discriminating OTUs. 

The relative proportion of bacterial phyla did not differ between bulk soils, 

except that Actinobacteria were higher and Acidobacteria lower in suppressive than in 

conducive soil (Fig. 39A). Based on comparison with bulk soil, the tuberosphere 

communities implicated (i) an increase in relative proportion of Chloroflexi and 

decrease in that of Verrucomicrobia, Gemmatimonadetes, Planctomycetes and 

Proteobacteria in both cultivars (in the two fields; Fig. 39A), (ii) an increase in 

relative proportion of Bacteroidetes (particularly the family Sphingobacteraceae) in 

resistant cultivar Kariera (in the two fields; Fig. S1C in the supplemental material), 
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and (iii) an increase in relative proportion of Firmicutes (especially the family 

Paenibacillaceae) and Actinobacteria (especially the orders Gaiellales, 

Micrococcales, Frankiales and Streptomycetales) in susceptible cultivar Agria (in the 

two fields; Fig. S1A, B). This increase in Streptomycetales was contributed by OTU 

176, to which also the CS pathogen belongs. However, other members of this OTU 

contributed more significantly because this OTU was defined by centroid sequence, 

which was at 2.1-2.7% distance from the pathogen (Table S6B).  

Rarefaction curves for bacterial communities showed that diversity did not 

differ between suppressive and conducive soils but differed between cultivar 

tuberospheres and bulk soil (two-way ANOVA, p<0.001). The diversity was lowest in 

susceptible cultivar Agria, followed by bulk soil and resistant cultivar Kariera in both 

soils (Fig. S2A; Table S7).  

In summary, bacteria community by Illumina sequencing revealed differences 

between resistant and susceptible cultivars, the latter displaying lower bacterial 

diversity. Differences were also found between suppressive and conducive soils, but 

only for bulk soil samples. 

 

3.3.5.1. Discriminant bacterial OTUs according to soil and potato cultivar.  

When considering bulk as well as tuberosphere soil samples, based on the 

discriminating OTUs (Metastats, p<0.05; Fig. 39A) suppressive soil was enriched in 

Plantomycetes (OTUs 385, 2780) and Bacteroidetes (OTUs 1402, 1154, 1408) and 

conducive soil in Actinobacteria (OTUs 355, 1230, 886) and Chloroflexi (OTU 1478). 

Different OTUs separating the two soils were found within Proteobacteria (with 

OTUs 92, 253, 68, 592, 835 enriched in suppressive soil vs OTUs 369, 899, 2391, 

1832, 2001 in conducive soil) and Firmicutes (OTU 3391 enriched in suppressive soil 

vs OTUs 2120, 2105, 1772 in conducive soil) (Table S6A).  

The tuberosphere of Agria was enriched in taxa from actinobacterial orders 

Frankiales (Frankiaceae, Acidothermaceae, Geodermatophilaceae; OTUs 63, 20, 54, 

117) and Micrococcales (Intrasporangiaceae; OTUs 13, 10) (Table S6B, Fig. S1A) 

and phylum Gemmatimonadetes (Gemmatimonadaceae; OTU 36), while tuberosphere 

of Kariera displayed significant enrichment in taxa from phylum Acidobacteria (OTUs 

51, 275, 143, 138, 76; Table S6B, Fig. 39A). Tuberosphere communities of both 
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cultivars were also separated by different OTUs belonging to the same taxonomic 

groups. These discriminating taxa included (i) Betaproteobacteria, Burkholderiales 

(OTU 38 in Agria vs OTU 199 in Kariera), (ii) Alphaproteobacteria, 

Sphingomonadales (OTU 1 in Agria vs OTUs 48, 696, 282 in Kariera), (iii) 

Actinobacteria, Propionibacteriales (OTU 138 in Agria vs OTU 6 in Kariera), 

Gaiellales (OTUs 21, 140, 41, 114, 104, 19, 8, 309, 213, 110, 23, 946 in Agria vs 

OTUs 16, 12, 30, 46, 107, 105, 24 in Kariera) and Solirubrobacterales (OTU 31 in 

Agria vs OTU 69 in Kariera), and (iv) Chloroflexi (OTUs 18, 26, 77, 137 in Agria vs 

OTUs 4, 55, 164, 29, 123, 284, 74 in Kariera) (Table S6B).  

In summary, suppressive soil was enriched in Plantomycetes and Bacteroidetes 

and conducive soil in Actinobacteria and Chloroflexi, and soils also differed in their 

Proteobacteria and Firmicutes profiles. Resistant and susceptible cultivars differed 

based on 1 Gemmatimonadetes, 5 Acidobacteria, 6 Proteobacteria, 29 Actinobacteria 

and 11 Chloroflexi discriminant OTUs.  

 

3.3.6. Archaeal community composition in bulk soil and tuberosphere by Illumina 

sequencing, and discriminant OTUs.  

A total of 987,680 archaeal 16S rRNA gene sequences were obtained, out of which 

545,211 (i.e. 55.2%) were mapped to 112 OTUs. On a NMDS plot, archaeal 

communities were primarily separated according to conducive vs suppressive soil, 

though samples were more variable in conducive than suppressive soil (Fig. 37C). The 

archaeal communities differed overall from each other (AMOVA, p=0.017) but while 

the bulk soils were significantly different (AMOVA, p=0.006), the cultivars were not. 

The permutation test identified significant relations of the archaeal community 

composition with soil bacteria and actinobacteria quantities, diversity of micro-

eukaryotes and archaea, soil pH and soil contents of C, N, P, Ca and Fe in conducive 

soil, while content of S was important in suppressive soil (Fig. 37C, Table S4).  

The same pattern was obtained when considering discriminant archaeal OTUs 

(Metastats p<0.05), as the two soils differed for 30 OTUs in bulk soil, 20 OTUs in 

cultivar Kariera and 27 OTUs in cultivar Agria, while within a same soil only a few 

OTUs separated one cultivar from the other, and from bulk soil (Fig. 38C). 

The relative proportion of archaeal phyla did not differ between bulk soils and 
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resistant cultivar Kariera. Yet, it differed between soils for susceptible cultivar Agria, 

which had about 60% of Thaumarchaeota and 40% of Euryarchaeota in conducive 

soil, versus 48% of Thaumarchaeota and 52% of Euryarchaeota in suppressive soil 

(Fig. 39B). Within these archaeal phyla, the same pattern was found for respectively 

the Methanosarcinales and Nitrososphaerales orders, and there was also an increase of 

Nitrosotaleales and Methanomicrobiales in suppressive soil (Fig. S3). Rarefaction 

curves showed that higher archaeal diversity occurred in conducive soil than in 

suppressive soil (two-way ANOVA; p<0.001) and in the treatments the lowest 

diversity was in both cultivars in suppressive soil (two-way ANOVA; p<0.05) (Fig. 

S2B, Table S7). When considering discriminant OTUs, differences were found mostly 

between the two soils, especially for Thaumarchaeota and Euryarchaeota OTUs. 

Suppressive soil was particularly enriched in 7 OTUs and conducive soil in 20 OTUs 

(Table S8).  

In summary, Illumina sequencing of archaeal 16S rRNA genes showed major 

differences between conducive and suppressive soil, regardless of whether bulk soil, 

susceptible cultivar Agria or resistant cultivar Kariera were considered. The difference 

between cultivars was also significant but to a lesser extent. Four biotic and six abiotic 

factors increased with respect to archaea community in conducive soil, one increased 

in suppressive soil.  

 

3.3.7. Micro-eukaryotic community composition in bulk soil and tuberosphere by 

Illumina sequencing.  

A total of 1,244,356 18S rRNA gene sequences were obtained, out of which 896,483 

(i.e. 72%) were mapped to 3,754 OTUs. On a NMDS plot, samples from suppressive 

soil were relatively close to each other, whereas samples from conducive soil were 

more dispersed (Fig. 37D). In suppressive soil, there was relatively good separation of 

bulk soil, susceptible cultivar Agria and resistant cultivar Kariera, whereas treatments 

did not differ in conducive soil. The micro-eukaryotic communities differed overall 

(AMOVA, p=0.006) and suppressive soil samples tended to differ from conducive soil 

samples, but this was significant only for bulk soils (AMOVA, p <0.001). The 

permutation test identified significant relation between the micro-eukaryotic 

community and quantities of soil total bacteria and actinobacteria, diversity of archaea, 



107 

 

soil pH and contents of C, N, P, Ca and Fe in conducive soil, and S content in 

suppressive soil. Above that, the diversity of micro-eukaryotes was higher in 

conducive bulk soil (Fig. 37D, Table S4). 

Significantly different OTUs (Metastats p<0.05) showed major differences 

between suppressive and conducive soils, with 258 discriminant OTUs for bulk soils, 

327 for resistant cultivar Kariera, and 522 for susceptible cultivar Agria. Micro-

eukaryotic communities differed least between bulk soil and cultivar Kariera in 

conducive soil (Fig. 38D). 

There was a higher proportion of Ascomycota (Fig. 39C), in classes 

Pezizomycetes, Leotiomycetes, Eurotiomycetes, and particularly in Eurotiomycetes’ 

Chaetothyriales order (Fig. S4A) and Basidiomycota in suppressive bulk soil and a 

higher proportion of Chlorophyta, Ciliophora in classes Spirotrichea, Litostomatea and 

superclade CONThreeP (Fig. S4B), Myxogastria and Apicomplexa in conducive bulk 

soil. Compared with bulk soil, Chlorophyta and Cercozoa were in lower proportion 

with resistant cultivar (in conducive soils) and in similar proportion in both cultivars in 

suppressive soil. Basidiomycota were in higher proportion with both cultivars (in 

conducive soil), and the macro-eukaryotic phylum Arthropoda with cultivars Kariera 

(in conducive soil) and Agria (in suppressive soil) (Fig. 39C).  

Rarefaction curves showed a slightly higher eukaryotic diversity in conducive 

soil than in suppressive soil overall, and diversity was generally lower in resistant 

cultivar than in susceptible cultivar, yet none of the differences was statistically 

significant (Fig. S2C; Table S7).  

In summary, Illumina sequencing of eukaryotic 18S rRNA genes showed 

differences between conducive and suppressive soil but to some extent also between 

the cultivars, particularly for ciliates and fungi in conducive soil.  

 

3.3.7.1. Discriminant eukaryotic OTUs according to soil and potato cultivar.  

According to the differences observed at the level of eukaryotic phyla, OTUs from 

Ascomycota, Basidiomycota and Cercozoa were enriched in suppressive soil, while 

OTUs from Chlorophyta and Ciliophora were enriched in conducive soil. Specific 

OTUs of Ascomycota, Basidiomycota and Cercozoa were also prevalent in susceptible 
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cultivar Agria in suppressive soil, while particularly OTUs of Chlorophyta and 

Ochrophyta were prevalent in cultivar Agria in conducive soil. Eukaryotic 

communities of resistant cultivar Kariera were separated in the two soils by OTUs of 

various phyla (Table S9). 

 

 

Fig. 36. Severity of common scab of susceptible cultivar Agria and resistant cultivar 

Kariera in suppressive (L, low severity) and conducive (H, high severity) soils (means 

± standard deviations, n = 4). Statistical significance between treatments (ANOVA) 

are shown with letters a and b.  
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Fig. 37. Differences in soil communities of bacteria (A - assayed by 16S microarray 

hybridization, and B - by 16S rRNA gene Illumina MiSeq amplicon sequencing), 

archaea (C - 16S Illumina), and eukaryotes (D - 18S Illumina), and the relationships to 

other biological and chemical characteristics of tuberosphere soil. Samples of 

tuberosphere (circles - susceptible potato cultivar Agria; squares - resistant cultivar 

Kariera), and bulk soil (pentagons) were from the fields suppressive (open symbols) 

and conducive (grey symbols) to the potato common scab. 

Non-metric multidimensional scaling of distance matrices was based on Bray-Curtis 

calculator with fitted vectors of environmental variables. The vector length shows the 

relative strengths of contributions/responses. Vectors are pointing to the same 

direction for positively correlated variables, and to the opposite direction for 

negatively correlated ones; perpendicular vectors indicate no mutual relationship. 
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Fig. 38. Pairwise comparisons of soil communities of bacteria (A - assayed by 16S 

microarray hybridization, and B - by 16S rRNA gene Illumina MiSeq amplicon 

sequencing), archaea (C - 16S Illumina), and eukaryotes (D - 18S Illumina) in 

tuberosphere of susceptible cultivar Agria (circles) and resistant cultivar Kariera 

(squares), and bulk soil (pentagons) from suppressive (L, open symbols) and 

conducive fields (H, grey symbols). Numbers indicate the probes (A) and OTUs (B, C, 

D) significantly contributing to the difference between samples in pairwise 

comparisons (Metastats, p < 0.05). 



111 

 

 

Fig. 39. Proportions of phyla (means ± standard deviations, n = 4) in the sequence 

libraries of ribosomal small subunit genes from bacteria (A), archaea (B), and 

eukaryotes (C). (Taxa for organisms generally larger than the sample size 

(Arthropoda, Annelida) were included to display the whole community although based 

only on shaded cells and products. Samples of tuberosphere of susceptible potato 

cultivar Agria (HA, LA) and resistant cultivar Kariera (HK, LK), and bulk soil (HB, 

LB) were from the fields suppressive (L) and conducive (H) to the potato common 

scab. Illumina MiSeq sequencing of amplicons were prepared with domain-specific 

primers.  
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Table 4. Coverage of the probes added to the 16S rRNA microarray. 

Probe Probe sequence (5'-3') 

Coverage of Streptomyces 

Ref. 
genus 

[%] 
species 

KO 08 ACGGCTTCGCAGCTCATTGTA 28.0 - 

 Franke-

Whittle et al. 

20050 

Strepto1 CACGTGTGCAGCCCAAGACA 98.1 - this work 

Strepto2 ACGTGTGCAGCCCAAGACAT 98.1 - this work 

Strepto3 TTAGACCCCGTTTCCAGGGC 95.2 - this work 

Strepto5 GTATTAGACCCCGTTTCCAG 95.2 - this work 

Scab1 CCACACTCATCGGATGCCCG 1.7 

S. scabiei, stelliscabiei, 

europaeiscabiei, 

bottropensis, variabilis, 

deccanensis 

this work 

Scab5 TCCACACTCATCGGATGCCC 1.7 " this work 

Scab6 TCATCGGATGCCCGAGAGTG 2.6 

as "Scab1" + S. variabilis, 

ipomoeae, neyagawaensis, 

torulosus 

this work 

Scab7 ATGCCCGAGAGTGTCGTATC 1.5 

S. scabiei, stelliscabiei, 

variabilis, ossamyceticus, 

ipomoeae, neyagawaensis, 

torulosus 

this work 

Scab8 GATGCCCGAGAGTGTCGTAT 2.2 as "Scab6" this work 

Scab9 GCTTTCCACACTCATCGGAT 1.7 as "Scab1" this work 

Scab11 GAGCTTTCCACACTCATCGG 1.7 as "Scab1" this work 
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3.4. Interaction between isolated actinobacteria from suppressive soil and 

Streptomyces scabiei in vitro.  

3.4.1. Liquid culture experiments 

The 21 strains of actinobacteria were cultured in liquid A and G media in different 

time points of 24, 48, 72, 120 and 240 h. The highest average biomass was obtained at 

120h of growth. Consequently, this point of maximum biomass was also selected for 

the sensitivity test (Fig. 40). 

The maximum biomass on A medium was obtain for strains 09VU19, 

09VK39, 09VK12, 09VK62, 09VK70 and the maximum biomass on G medium was 

obtained for strains 09VK12 and 09VU16 (Fig. 41). The cultivation of Streptomyces 

scabiei was done in parallel with the selected actinobacteria strains. Its maximum 

biomass was reached between 48 and 120 h of growth and differences between 

cultivation media were not significant. The maximum of dry weight of S. scabiei was 

similar to the highest biomass of the actinobacteria strains. The biomass accumulated 

differently on the two media (Fig. 44). 

Both spent media were used for filter paper disk sensitivity test. The resulting 

antibiotic activity against the Gram positive Kocuria rhizophila was for most strains 

higher on A medium but for a few on G medium. The largest inhibition zone was 

observed for strain 09VK70 on A medium. Large zones were observed also for strains 

09ZI22 and 09ZI7 (Fig. 42). The average antibiotic activity was not dependent on the 

strain biomass (or growth) because some strains had relatively large zones and small 

biomass and vice versa (Fig. 43). S. scabiei is also antibiotically active against K. 

rhizophila and the average inhibition zone size was 10 mm on both media.  

 

3.4.2. Vermiculite experiment. 

The copy numbers of 16S rRNA gene and txtB gene of S. scabiei were determined at 

different time points (Fig. 45). The maximum copy numbers of both 16S rRNA and 

txtB gene for S. scabiei were observed at day 3. Quantification of 16S rRNA and txtB 

genes was done for both DNA extracted directly from colony that inoculate and shook 

for 24 h in YME and DNA extracted from vermiculite culture. The result showed that 

the proportion of 16S rRNA of actinobacteria to txtB copies average in vermiculite 

(n=3 replicates) was 5.89E+03 and in pure colony (n=3 replicates) 2.64E+6, therefore 
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in S.scabiei the ratio of 16S rRNA gene from actinobacteria/txtB gene of pure colony 

was higher than those in vermiculite. 

Based on the results for S. scabiei, the biomass and antibiotic activity in 

vermiculite were determined for all strains after 3 and 14 days of cultivation. The copy 

numbers of 16S rRNA gene of the 21 actinobacteria strains were determined after 3 

and 14 days of cultivation.  

The antibiotic activity against K. rhizophila determined for the 21 strains was always 

higher after 14 days than after # days of cultivation. The largest zones from the 

cultivation on vermiculate were observed for strains 09ZI22, 09VK26, 09VK70, 

09VK39 (Fig. 46).  

The combined cultivation of actinobacteria strains and S. scabiei showed that 

the strains were able to grow together in vermiculite (Fig. 49, 52). The copy numbers 

of 16S rRNA gene from actinobacteria of combined actinonacteria isolates and 

S.scabiei in vermiculite differed between days 3 and 14. In some situations the 

numbers were lower, in some higher with respect to the length of co-culture period. 

More specifically, for 10 strains the copy number was higher on day 14 showing the 

overgrowth of the antagonistic strain (Fig. 47).  

The copy numbers of txtB gene from the combined culture were different 

between days 3 and 14 for most strains in vermiculite. More specifically, it was higher 

for 8 strains on day 14 than day 3 showing the overgrowth of the pathogenic strain 

(Fig. 48).  

The proportion of copy numbers of the txtB and 16S rRNA genes varied 

between the strains after co-culture with S.scabiei at both day 3 and 14 (Fig. 49 and 

52).  

16S rRNA gene copy numbers are divided by 100 to be comparable in the Fig. 

49 and 52. Although the proportion is similar between the two days of culture, in some 

strains the dominance of antagonistic strain was more pronounced on day 14.  

Total numbers of actinobacteria at day 3 were almost the same in both 

individual and combined samples. For combined samples, actinobacteria and txtB 

decreased after 14 days compared with individual ones. Generally, the pathogen which 

possess the txtB gene, was suppressed in the combined cultures (Fig. 49, 50). The 

proportion was highest for the strain 09ZI13 after 3 days of cultivation and for the 

strains 09ZI22 and 09VK44 after 14 days of cultivations. In contrast, the proportion 
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was lowest for the strain 09VU19 for both periods. The co-culture with this strain was 

the only, in which the pathogen largely overgrew the antagonistic strain (Fig. 49, 50).  

The inhibition zones against Kocuria rizophila, measured for average of both 

submerged culture (21 isolates and S. scabiei) and vermiculite culture (21 individual, 

21 combined and 9 individual cultures of S.scabiei). For vermiculite culture of 

S.scabiei, the largest inhibition zone was seen on day 3 and the largest inhibition zone 

in 21 isolates whether in submerged, individual and combined culture belonged to 

09ZL22, 09Vk26 and 09Vk70. The inhibition zone of the co-culture of actinobacteria 

and S. scabiei against K. rhizophila was generally higher than when the strains were 

cultured individually or in the submerged culture. The inhibition zones were larger 

after 14 days of cultivation. The largest inhibition zones were observed in 09ZI22, 

09VK26, 09VK44, 09VK70 and 09VU19 (Fig. 54). Several species with higher 

antibiotic activity suppressed S. scabiei more effectively. The high ratio of 16S 

rRNA/txtB gene copy numbers on day 14 was in strains 09ZI22, 09VK11 and 

09VK44, which also had large inhibition zone in the same harvest time. In contrast, 

16S rRNA/txtB gene copy numbers ratio for strains 09VU19, 09VK70 and 09VK26 

were not at the maximum range, however, the inhibition zone was high (Fig. 51, 53). 

Finally, the comparison of copy numbers of 16S rRNA gene from 

actinobacteria, copy numbers of txtB gene and inhibition zone on day 14 showed that 

the largest inhibition zone was observed in 09ZI22, 09ZI7, 09VK11, 09VK26, 

09VK44, 09VK70 and 09VU19, the copy numbers of 16S rRNA gene decreased from 

day 3 to day 14 in: 09VK26, 09VK70, 09ZI7 and increased in 09ZI22, 09VK11, 

09VK44 and 09VU19. The copy numbers of txtB increased in 09VK11 (slightly) and 

09VU19, and decreased in 09ZI22, 09ZI7, 09VK26, 09VK44 and 09VK70. 
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Fig. 40. The average dry weights of 21 actinobacterial strains (g/ml), harvested from 

A and G medium at different time points (means ± standard deviations, n=21). 

 

 

 

Fig. 41. The comparison of average growth (g/ml) in G and A medium at 5 time points 

(means ± standard deviations, n=5). 
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Fig. 42. The Sizes of average inhibition zones (mm)on agar plates inoculated with 

Kocuria rhizophila around discs with 25 µl of spent cultivation media A and G of the 

tested actinobacteria strains (means ± standard deviations, n=2). 

 

 

 

Fig. 43. The average of inhibition zone against Kocuria (mm) in submerged culture 

and average dry weight of actinobacteria (g/ml) in A and G medium (means ± standard 

deviations, n=2). 
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Fig. 44. The dry weight of S. scabiei (g/ml) at different time points of A and G media 

(means ± standard deviations, n=2). 

 

 

Fig. 45. The copy numbers of 16S rRNA gene from actinobacteria and txtB gene of S. 

scabiei /g vermiculite (means ± standard deviations, n=6, 2 technical and 3 

experimental replicates). 
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Fig. 46. The inhibition zone of 21 isolates of individual actinobacteria against 

Kocuria, at days 3 and 14 of cultivation /g vermiculite (means ± standard deviations, 

n=2). 

 

 

 

  

Fig. 47. The copy numbers of 16S rRNA gene from actinobacteria of combined 21 

actinonacteria isolates and S. scabiei /g vermiculite at to different points at days 3 and 

14 of incubation (means ± standard deviations, n=2). 
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Fig. 48. The copy numbers of txtB gene of combined 21 actinonacteria isolates and 

S.scabiei /g vermiculite at to different points at days 3 and 14 of incubation (means ± 

standard deviations, n=2). 

 

 

Fig. 49. The copy numbers of txtB and 16S rRNA gene from actinobacteria (divided to 

100 to make it comparable in the chart) of combined 21 actinonacteria isolates and S. 

scabiei /g vermiculite at days 3 and 14 of incubation (means ± standard deviations, 

n=2). 
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Fig. 50. The ratio of 16S rRNA gene from actinobacteria to txtB copies at day 3 of 

harvest  

 

 

Fig. 51. The ratio of 16S rRNA gene from actinobacteria to txtB copies at day 14 of 

harvest.  
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Fig. 52. The copy numbers of txtB and 16S rRNA gene from actinobacteria (divided 

to 100 to make it comparable in the chart) of combined 21 actinonacteria isolates and 

S. scabiei /g ver miculite at day 14 of incubation (means ± standard deviations, n=2). 

 

 

Fig. 53. The average of inhibition zone (mm) of combined cultures of actinobacteria 

and S. scabiei against Kocuria at days 3 and 14 of culture (means ± standard 

deviations, n=2). 
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4. Discussion 

4.1. Biological and chemical factors associated with natural soil suppressivity to potato 

common scab. 

In a total, 32 fields with different CS severity were selected for the study. The 

biological parameters focused on total bacteria and actinobacteria in soil and potato 

skin. The chemical parameters focused on determining the concentration of 

macroelements C, N, S, P, Mg, Ca and Fe in relationship to the biological parameters.  

The previous studies demonstrated that various factors affect CS severity but 

the site can be determinative and change the predicted roles of other factors (Schlatter 

et al., 2013; Sagova-Mareckova et al., 2015). In this study, the comparisons between 

the sites showed a low level of correlation (Fig. 28, 29). The differences between 

biological parameters in the different sites were significant, which means the sites 

were clearly distinguished.  

Some studies showed that the fields with low distance from each other showed 

similar relationships of nutrients and CS severity (Lazarovits et al., 2007). However, 

other studies demonstrated that neighbor fields may show drastically different 

associations between soil properties and CS severity (Rosenzweig et al., 2012; 

Sagova-Mareckova et al., 2015; Lazarovits et al., 2007). In this study, a significant 

correlation occurred between the site and CS severity.  

Several field sites had special properties compared to the others. The maximum 

severity occurred in two neighboring fields: Zl and Zc. Both of them had a high 

content of C in the rhizosphere and a rich content of nutrients in skin (N, Mg, Fe, P). 

In these two fields the skin rich in nutrients provided a niche of high nutrients for 

pathogens (Fig. 12, 14, 15, 21) 

In previous studies, the role of nutrient-rich soil to enhance or suppress the 

pathogen was showed. A positive correlation was reported between CS and Ca, PO4, 

Mn and Fe contents of tuber peelings (Davis et al, 1976). Also, Mg, K, Mn and Cu 

positively correlated with common scab severity (Sheikh, 2010), however, other 

studies showed a different outcome of high P and Mg in different fields (Sagova-

Mareckova et al., 2015). In this study, nutrient-rich soil enhanced the pathogen was 

seen in Hostice, where high CS severity can be possibly attributed to high content of P 

and Mg in the rhizosphere (in opposite of low values of biological factors: minimum 

of actinobacterial and bacterial 16S rRNA gene in soil and txtB gene in skin). In 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Sagova-Mareckova%20M%5bAuthor%5d&cauthor=true&cauthor_uid=25612311
https://www.ncbi.nlm.nih.gov/pubmed/?term=Sagova-Mareckova%20M%5bAuthor%5d&cauthor=true&cauthor_uid=25612311
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Slavkov-Vinohrady (Sl), the effect of high nutrients (N, Ca, C in rhizosphere and P in 

skin) on CS severity was more noticeable because the copy number of pathogenic 

agent (txtB gene) in skin was low compared to the other fields. The role of rhizosphere 

environment can be explained also for other two nearby fields, Vu (with high severity) 

and Vk (with low severity), where both had a high content of S, Mg and Fe in soil. 

The content of Fe and Mg in the rhizosphere was higher than in bulk, while in Vk it 

was higher in bulk. Also, Vu had more content of N and Ca in skin. So, there was a 

different selection for nutrients by plants, microbes but most likely their interaction.  

The low CS severity in this study was not related to soil pH. It is noticeable in 

the fields with minimum CS (Ruzyne, Stankov, Sutom, Horazdovice, Polepy uvoz) 

with an exception of Vk (low pH and low severity). Statistically, severity showed to be 

related to Fe, Mg, N (positively) and Ca in skin and soil (negatively). Polepy uvoz 

(low content of N, P, Fe, Mg soil) and Vysoke u Pribrame (low content of Mg) were a 

good instance. There was also an exception field with a high severity in summer and a 

low severity in autumn, with a high range of N, C, Fe, Ca, S and P in rhizosphere and 

a low content of Ca in skin and soil (Malonty). Similar results with locally specific 

correlation between CS severity and soil chemical factors (pH, Al, Ca, Mg, and K) and 

organic matter were observed by Lazarovits et al. (2007). 

Researches showed different effects of organic matter and nutrients on the scab 

severity (Lazarovits et al., 2007; Lambert et al., 2005; Davis et al., 1976). However, 

the effects of nutrient additions differed by locations and situations (Bailey et al., 

2003; Lazarovits et al., 1999; Lazarovits et al., 2010; Soltani et al., 2010), so again the 

conclusions were that even after application of amendments the reduction of CS is 

soil-specific and varies from year to year (Abbasi et al., 2010). The reason for that is 

mostly that the relationships between scab severity and soil chemical components is 

very complex (Lazarovits et al., 2007; Conn and Lazarovits, 2013). 

A positive correlation was observed between CS and the Ca, PO4, Mn and Fe 

content of potato skin, a positive correlation of number of txtB gene copies in potato 

skin and the content of Mg, P and Fe in skin (Sagova-Mareckova et al., 2017; Lacey 

and Wilson, 2001; Horsfall et al., 1954; Davies et al., 1976 and Davis et al, 1976), and 

a positive correlation between scab severity and Ca, Fe, Mg, K, Mn, C, N and Cu of 

soil (Sagova-Mareckova et al., 2015; Sheikh, 2010). Other researches showed a 

negative correlation between CS and Mg, N, P, Zn, K, Fe, Ca and S in soil (Horsfall et 

al., 1954; Davies et al., 1976; Sheikh, 2010; Lacey and Wilson, 2001; Sagova-

https://www.tandfonline.com/author/Abbasi%2C+P+A
https://www.tandfonline.com/author/Conn%2C+K+L
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Mareckova et al., 2015; Kyselkova and Moenne, 2012; Sarikhani, et al., 2017; 

Kristufek et al., 2015). The resistant variety had a higher Mg content in skin compared 

to sensitive varieties (Kopecky et al., 2018; Bailey and Lazarovits, 2003; Lazarovits et 

al., 1999; Klikocka, 2009 and Davies et al., 1974). 

In this study, the results support the complex character of CS severity 

determinants because of contrasting examples and leads to a conclusion that CS 

relationships are completely site-specific. Moreover, the nutrient-rich environment of 

rhizosphere may play two contradictory roles. On the one hand, it can make a rich 

environment for pathogen causing a high severity, and on the other hand, it can 

support and enhance the antagonistic population that may lead to decrease of CS 

severity.  

The differences between rhizosphere and bulk soils were shown. There was a 

significant difference between bulk and rhizosphere in several nutrients (totally N, C, 

S of rhizosphere was more than bulk and Ca of bulk was more than rhizosphere). 

However, the interpretation of interaction between chemical and biological 

characteristics might be complicated but in our study, the content of nutrients such as 

Fe, Mg, N and C in soil and skin had predictive value. The negative correlation 

between CS severity and Ca in soil and skin can be a good indicator for management 

of CS.  

Previous studies showed the importance of resistant potato varieties to decrease 

the disease severity and even more to change the microbial interactions in the 

rhizosphere in favor of scab suppression (Weinert et al., 2010; Dees and Wanner 2012; 

Eckwall and Carl, 2000 and Kopecky et al., 2019). In this study, a significant 

correlation between the variety and CS severity demonstrated the effectiveness of 

potato variety selection in CS severity control. 

Several field sites had special properties compared to others that may help to 

get a better understanding of CS profile. The maximum severity occurred in two 

neighboring fields: Zl and Zc. Both of them had the maximum of txtB gene copies in 

skin/soil, maximum of actinobacteria numbers (in skin) and minimum of txtB in bulk 

among the 32 fields. The txtB in the rhizosphere in Zl was the minimum among all 

fields. So, it seems that accumulation of pathogens and respective genes in the skin is 

the main reason of CS severity. In addition, in these two fields the skin rich in 

nutrients provided a niche of high nutrients for pathogens (Fig. 12, 15, 18, 21).  
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The role of rhizosphere environment can be explained also for other two closed 

fields, Vu (with high severity) and Vk (with low severity), where both had a high copy 

numbers of bacteria and actinobacteria in soil and txtB in skin. In both fields, txtB gene 

and actinobacteria was higher in bulk soil. In Vu, the copy numbers of total bacteria in 

the rhizosphere was higher than in bulk, while in Vk it was higher in bulk. Also, Vu 

had more copy numbers of txtB gene and actinobacteria in skin.  

The low CS severity in this study can be attributed to low copy numbers of txtB 

and actinobacteria in skin. Researches showed that the plant roots are colonized by 

living bacteria added to the starter fertilizer, which feed the bacteria with carbon-rich 

root exudates: in turn, the microbes enhance nutrient uptake, making fertilizers more 

efficient, and produce metabolites that stimulate healthy growth and suppress disease 

as a side effect (Abram, 2009). In this study, the differences between rhizosphere and 

bulk soils were showed. There was a significant difference between bulk and 

rhizosphere in biological variables (actinobacteria in rhizosphere and txtB in bulk soil 

showed to have larger quantities). 

The Zl and Zc had higher severity and maximum copy numbers of 16S rRNA 

gene from actinobacteria, total bacteria and txtB gene in skin among the 32 fields. The 

previous studies proved the relation between bacterial population and CS disease 

(Rosenzweig et al., 2012; Han et al., 2005; St-Onge et al., 2010). Interestingly, Zl had 

the maximum of severity in summer and minimum of txtB gene copy number in soil. 

That is explained by the accumulation of pathogen in the potato skin (Sagova-

Mareckova et al. 2015).  

In spite of correlation between CS severity and several chemical and biological 

characteristics, the relationships did not follow a unique rule. That may be because it 

was a vast monitoring with varied factors and those might have been affected by 

interactions with other factors not comprised in this research. This study proved the 

previous founds that management of nutrients can change the CS severity, e.g. by 

making the change in availability of essential nutrients for plant and antagonistic 

bacteria. Nutrients can also affect txtB gene production or density of pathogen on the 

plant skin or change the bacterial population in favor of increasing the biocontrol 

species of bacteria with antagonistic activity against pathogen. Nutrients can also 

enhance the plant defence or even enrich a pathogen as a saprophyte bacteria that is 

not dependent on plant skin to live (Lazarovits et al., 2007; Millard, 1923; Han et al., 

2005; Larkin and Tavantzis, 2013; Abram, 2009).  
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However, the interpretation of interaction between chemical and biological 

characteristics might be complicated but txtB copy numbers in soil and skin could be a 

good predictive factor for CS disease occurrence and at some sites the high amount of 

txtB in soil will define a low accumulation of txtB and pathogen on skin. 

 In this study, CS severity had a positive correlation with 16S rRNA gene from 

actinobacteria and 16S rRNA gene from total bacteria copy numbers in soil and 16S 

rRNA gene from actinobacteria and txtB copy numbers in skin, however, it cannot be 

generalized to all fields. There are also different results about the role of actinobacteria 

and bacterial community in CS disease progress. In a greenhouse study, the treatment 

with the lowest CS occurrence also had the lowest density of actinomycetes in the 

rhizosphere (Keinath and Loria, 1989). Nonpathogenic actinobacteria produce 

metabolites against S. scabiei and contribute to the disease suppression (Rosenzweig et 

al., 2012). Regarding to the total bacterial community, suppressiveness is very likely 

to be associated with microbial community structure based on antagonistic functions 

(Sessitsch et al., 2004).  

The RDA plot showed that txtB abundance in soil has a different direction 

compared to other variables, particularly txtB in skin (as Zl and Zc), coordinated to the 

low scab severity points such as CB, Mo, KU, VP, Vc and Vl. It demonstrated that the 

copy numbers of txtB in the soil and skin are two factors that predict the scab 

suppressiveness or conductivity, respectively. In the same plot, a different situation 

can be seen (points towards 4-5 and 6-7 o'clock), those points are relatively far apart of 

other fields (Vk and Vu). Interestingly however, the severity of Vk and Vu are in the 

opposite way but the properties of fields seems to be in the same position 

(actinobacterial 16S rRNA in soil). It was demonstrated that at Vyklantice site 

suppressivity (Vk) was associated with low txtB gene copies in the tuberosphere 

(rhizosphere) and discussed with respect to the interaction between potato plant and 

soil microbial community. As previous studies showed, compared to the high scab 

severity group of soil, the low severity group exhibited a lower txtAB gene copy 

number, lower bacterial 16S copy number and higher diversity (Wencong et al., 2019). 

A study of the two nearby fields demonstrated that the suppressivity was associated 

with low txtB gene copies in bulk soil, while at other site it was associated with low 

txtB gene copies in the tuberosphere (Sagova-Mareckova et al., 2015).  

In the plot of bulk samples (Fig. 31), again the abundance of txtB in soil has a 

different direction compared to other variables, and the same coordination and 
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overlapping to the low severity points: Pu, Ne, Zr, Hb and Pc, confirm that txtB gene 

in soil can show the disease profile component points of bulk samples in the plot 

showed to be scattered, moreover according to statistical analysis, the average of N, C, 

S, Fe and actinobacterial copy numbers in the rhizosphere was significantly more than 

bulk soils, it seems that the profile of bulk soils cannot be sufficiently determinative to 

predict the disease. 

Acidobacteria and Verrucomicrobia were on the direction from Mi and Hr with 

a low CS severity towards Vk (Fig. 32), identified previously as CS suppressive soil 

(Sarikhani et al., 2017; Rosenzweig et al., 2012; Kopecky et al. 2019; Wencong et al., 

2019). Proteobacteria and Firmicutes showed a trend to Pu, CB and Zd with low CS 

severity and Zl with high CS severity. A recent study showed that the taxa enriched in 

high scab severity levels were mainly found in Proteobacteria and Bacteroidetes, and 

the taxa enriched in low scab severity levels mainly belonged to Acidobacteria, 

Actinobacteria and Firmicutes (Wencong et al., 2019). Bacteroidetes had a direction 

to Pu, Pc and Pd with a low severity in summer. Gemmatimonadetes pointed to the 

direction of Li with low severity, Planctomycetes and Chloroflexi and Actinobacteria 

pointed to the direction towards Vu a conductive soil (Kopecky et al., 2019). 

Patescibacteria was showed to be correlated with KU (low severity) and N (in soil). 

There was not any report of Patescibacteria and Planctomycetes in relation to 

common scab in the previous studies. It seems that the CS conductivity in Zc is not 

related to a special group of bacteria, however, it was showed that it correlated with 

actinobacteria (in soil). The results are comparable with the results of previous studies, 

which demonstrated that soil treatments can change the bacterial community in favor 

of scab suppression. The treatment can increase the population of Acidobacteria, 

Verrucomicrobia, Gemmatimonadetes, Proteobacteria, and several genera of 

Actinobacteria and Bacteroidetes in the direction towards the suppression (Sarikhani 

et al., 2017). In the same study Chlorofelexi had naturally a higher number of OTUs in 

CS suppressive soil. Moreover, Firmicutes and several genus of Actinobacteria 

decreased in the treated suppressive soils. Common phyla based on relative sequence 

abundance were Acidobacteria, Proteobacteria and Firmicutes. Sequences of 

Lysobacter were found in significantly higher numbers in the disease-suppressive soil 

(Rosenzweig et al., 2012). Meng et al. (2012) showed four groups of potential 

antagonists (general bacteria, streptomycetes, fluorescent pseudomonads and bacilli) 

pairing in culture with S. scabiei. 

https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-019-0629-2#auth-1
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In conclusion, the most important factors predicting the CS severity were 

nutrients Fe, Mg, N, C, Ca and P in soil. Also, txtB copy numbers in soil could be a 

good predictive factor for disease suppression. The disease severity was positively 

correlated with numbers of 16S rRNA gene from actinobacteria and 16S rRNA gene 

from total bacteria in soil and also 16S rRNA gene from actinobacteria and txtB copy 

numbers in skin, however, this cannot be generalized to all fields. The population of 

several groups of bacteria was showed to be important to scab suppression 

(Acidobacteria, Verrucomicrobia, Bacteroidetes and Gemmatimonadetes). 

 

4.2. The effect of iron availability on potato common scab and tuberosphere bacterial 

community 

The soil conducive for common scab (CS) used in this study was previously 

characterized by high carbon, nitrogen, and soil pH. Also, the soil had the same 

quantity of txtB gene copies (representing the pathogen) and low available iron in 

comparison to the nearby occurring soil suppressive for CS (Sagova-Mareckova et al., 

2015). Supplementation of the soil by iron and peat significantly decreased the CS 

severity to the level of the suppressive soil but the addition of iron alone was less 

effective than the addition of peat and the combination of both.  

The disease was suppressed in the treatments but the quantity of Actinobacteria 

and txtB genes was not affected in either soil or periderm. So, it seemed that in our 

study the iron supplement supported plant defense but did not change pathogen 

colonization. Indeed, plant iron can influence host-pathogen relationships by affecting 

the pathogen’s growth or virulence as well as the host’s defense (Expert et al., 2012). 

For example, iron starved maize plants were more susceptible to pathogen infection, 

while adequate Fe nutrition conferred a more resistant state (Aznar et al., 2015). 

Similarly, in A. thaliana, Fe starved plants were unable to produce reactive oxygen 

species (ROS) in response to pathogen infection (Phuong Kieu et al., 2012). Possibly, 

iron was important for plant defense in our experiment also because Agria (the potato 

cultivar used in this study) requires more iron than other cultivars (Ozturk et al., 

2011). Therefore, Fe deficiency may favor disease susceptibility of this cultivar in 

particular.  
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In the peat treatment, both Actinobacteria and potential thaxtomin producers 

decreased significantly compared to the conducive soil control. It seemed that peat had 

a direct effect on the pathogen or improved its suppression by antagonists. In other 

studies, peat and other organic materials were used to reduce soil pH (Carlgren and 

Mattsson, 2001) but in our study the pH in the peat treatment remained the same 

possibly because of soil buffering capacity. Therefore, the decrease of CS severity was 

not due to a decrease in soil pH but possibly due to changes in organic matter quality 

supporting antagonistic microorganisms. A similar observation was demonstrated 

previously because peat and other organic matter supplements increased the biocontrol 

potential of suppressive strains (Bonanomi et al., 2010; Kyselkova et al., 2012). In 

particular, application of organic matter amendments altered rhizobacterial 

communities, which correlated with a varying degree of antibiosis against S. scabiei 

(Driscoll 2007; Junaid et al., 2013).  

In the treatment combining iron and peat, CS severity was significantly 

suppressed, while extractable iron increased and soil pH decreased. Similarly to the 

peat treatment, the numbers of txtB gene copies decreased in the periderm so it seemed 

that the pathogen was suppressed at the very surface of the tubers. At first, the 

decrease of soil pH seemed to be the most important factor because it was significantly 

reduced to the level of the suppressive soil only in this treatment. The effect of soil pH 

on CS was well documented previously although CS severity decreased due to both 

low and high pH in several studies (Lacey and Wilson 2001; Waterer 2002). Soil pH is 

connected also to the availability of iron and other nutrients because they are more 

soluble in acidic soils (Schulte, 2004). However, in this treatment, the most interesting 

was the change in the bacterial community, which became similar to that of the 

suppressive soil. It seems that although iron and peat alone supported some plant-

growth promoting bacteria, the combination of both supplements was successful in 

simulating the most favorable community composition either due to decreasing soil pH 

or due to the addition of iron and organic matter supplements together. Finally, 

according to the preferential food hypothesis, the pathogenic Streptomyces has a 

saprophytic nature in soil, until their natural food is available and their parasitic stage 

will start only under hunger stress (Millard 1923). Therefore, supplements of peat as 

an organic matter and iron as an important micronutrient may lead to keeping the 

pathogen on the surface of tubers only as saprophytic bacteria without proceeding to 

the virulence stage.  
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Generally, both biotic and abiotic elements of the soil environment contribute 

to suppressiveness, however, in most defined systems biological elements were 

identified as primary factors in disease suppression (Mendes et al., 2011; Kyselkova et 

al., 2012). In our study, the iron treatment alone decreased CS severity but not soil pH 

and only a few OTUs, mostly from the orders of Bacillales and Gaiellales changed in 

the direction towards the suppressive soil. The peat treatment alone decreased CS 

severity but again not soil pH but the number of OTUs changed was higher possibly 

because many saprotrophic bacterial taxa respond to addition of organic matter 

(Bonanomi et al., 2010). The OTUs responding to peat addition were mostly from the 

orders of Rhizobiales, Burkholderiales, Xanthomonadales and Bacillales some of 

which were influenced also by soil supplement with small organic molecules (Eilers et 

al., 2010). The suppression of CS by peat may be also due to some organic 

compounds, namely lignin which can induce production of secondary metabolites 

(Schlatter et al., 2009). It seemed that the combination of iron and peat supplement 

had a more pronounced effect on CS severity possibly due to decrease in soil pH as it 

is well established that soil pH has a strong effect on bacterial community structure 

(Fierer et al., 2009).  

In our study, the number of bacterial OTUs was lower in all treatments but peat 

compared to the conducive soil. This result was obtained for OTUs defined at both the 

0.03 and 0.10 levels (data not showed) which is in contrast to the observation of 

Rosenzweig et al. (2012) who found a higher number of OTUs in suppressive than 

conducive soil. Therefore, diversity alone was not responsible for disease suppression, 

but rather the dominance of particular taxonomic groups, which possibly have some 

promoting traits was important.  

With respect to that, Proteobacteria and Bacteroidetes increased at the 

proportional expense of Actinobacteria in the suppressive soil and also in the most 

successful treatment with peat and iron supplement. Mendes et al. (2011) identified 

Betaproteobacteria and Gammaproteobacteria (Pseudomonadaceae, 

Burkholderiaceae, Xanthomonadales) as the most dynamic taxa dominating 

suppressive soils and similarly in our study, OTUs from proteobacterial orders of 

Burkholderiales, Xanthomonadales but also Sphingomonadales, and actinobacterial 

order of Gaiellales belonged to the most responsive taxonomic groups. For example, 

Sphingomonas sp. with 100% identity of OTU1 was regularly isolated and cloned 

from agricultural soil (GenBank acc. no. LN876437), Burkholderia sp. with 100% 
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identity of OTU 27 was isolated from rotten wood (GenBank Acc. No. KX822674) or 

uncultured Gammaproteobacterium represented by OTU 47 from soil of Solanum 

muricatum (GenBank acc. no. KT785778). Some taxa coming from those groups or 

their relatives were previously associated with disease suppression. For example, 

bacteria affiliated to Sphingomonadaceae (Alphaproteobacteria) were prevalent in the 

tobacco rhizosphere in black root rot suppressive soil compare to conducive soil 

(Kyselkova et al., 2009). Pseudomonas sp. LBUM223 (Gammaproteobacteria) 

exhibited antagonistic properties against Streptomyces scabiei (Larkin and Stellos, 

2013; Marschner, 1995), and also other Gammaproteobacteria had a biocontrol role 

against S. scabiei (Sessitsch et al., 2004). Finally, Xanthomonadaceae 

(Gammaproteobacteria), which was enriched in our study, was found to be important 

in Japan, where they were enriched in cultivars resistant to CS (Kobayashi et al., 

2015). This was also found in soil suppressive to CS in Michigan, in which Lysobacter 

(Xanthomonadaceae, Gammaproteobacteria) was also significantly elevated 

(Rosenzweig et al., 2012). In contrast, Acetobacteraceae were elevated in disease 

suppressive soil in the study of Rosenzweig et al. (2012) but diminished in our study.  

Although the relative abundance of total Actinobacteria decreased in the 

suppressive soil, and some OTUs of Actinobacteria were found more abundant in 

conducive, others were more abundant in suppressive soils similarly as in other studies 

(Mendes et al., 2011; Kyselkova et al., 2009). Here, OTUs of the families 

Micromonosporaceae and Thermomonosporaceae and were elevated in the 

suppressive soil and in the peat and iron treatment. Thermomonosporaceae is found in 

the rhizosphere microbial community of certain plants and some colonize root tissues 

as plant growth promoting endophytes supporting N-fixation and plant growth 

(Szoboszlay et al., 2016). In other patho-systems, Thermomonospora sp. and Bacillus 

subtilis intensely reduced bacterial wilt (Reddy 2014). In contrast, Nocardioidaceae 

were elevated in disease suppressive soil in the study of Rosenzweig et al. (2012) but 

diminished in our study.  

In this study, the effect of peat addition was more important than that of iron 

for suppression of common scab but the most effective was the combination of both 

treatments. Although some abiotic factors i.e. soil pH were changed by the treatments 

it seemed that the manipulation was most important in stimulating the beneficial 

bacterial community. Possibly some of the OTUs enriched in suppressive soil as well 

as in both the peat and iron and peat treatments might produce antibiotic compounds 
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or were successfully competing with the pathogen. Alternately, the bacterial 

community might promote plant defense, which seemed to be the case with 

supplementation of iron. It seemed that, although the relationships are very complex, 

members of some taxa, namely Solirubrobacteraceae, Xanthomonadaceae or 

Sphingomonadaceae, were associated with disease suppression not only in our work 

but also in other studies. 

 

4.3. Bacterial, archaeal and micro-eukaryotic communities in potato tuberosphere 

Disease suppressiveness of Vyklantice soil L was shown in previous studies (Sagova-

Mareckova et al. 2015; 2017). In the current field experiment, previous work on 

common scab severity was extended by including two potato cultivars susceptible or 

resistant to CS. According to expectation, the CS severity of the susceptible cultivar 

grown in the suppressive soil was as low as for (i) the resistant cultivar in the same 

soil, and (ii) the resistant cultivar in the conducive soil. These results proved that the 

experimental set up was relevant and evidenced a similar potential of both types of CS 

control mechanisms. Suppressive soil was differentiated from conducive soil by (i) 

lower diversity and quantity of bacteria, and specifically of actinobacteria, (ii) lower 

N, C, P, Ca, Fe contents and pH, and higher S content. Above that, in suppressive soil, 

higher Mg, P, Fe contents were found in the periderm of the resistant cultivar.  

The quantity of pathogenic streptomycetes (based on numbers of txtB genes) 

did not change with soil suppressiveness status or cultivar in tuberosphere and bulk 

soil, but in suppressive soil the number of pathogens decreased in potato periderm, 

possibly due to both microbial interactions and soil chemical conditions depending on 

location (Kobayashi et al., 2015; Sagova-Mareckova et al., 2015). 

Yet, the increased numbers of actinobacteria in periderm of susceptible cultivar 

did not correspond to pathogenic streptomycetes, so perhaps an antagonistic 

community of actinobacteria developed there as a response to pathogen infection, 

similarly as in Rosenzweig et al. (2012) or Tomihama et al. (2016). 

Bacterial community structure has been identified as a major factor in CS 

control (Rosenzweig et al., 2012; Shi et al., 2019). In this work, microarray analysis 

evidenced mainly effects of suppressive vs conducive soil, with higher signals in 

suppressive soil for Streptomyces (Actinobacteria), Bradyrhizobium, Burkholderia 
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(Proteobacteria), known to include plant-beneficial species and strains (Kyselková et 

al., 2012; Brader et al., 2014), and Nitrospira (Nitrospirae), known for participation in 

nitrite oxidation (Uroz et al., 2016). 

In conducive soil, higher signals were detected for Acidobacteria, 

Pseudomonas, Agrobacterium and Janithobacterium (Proteobacteria), some of them 

also known for plant protection and antibiotic activities against fungi (Ditt et al., 2002; 

Loudon et al., 2014). 

To some extent, Illumina sequencing discriminated between the two soils 

similarly to what microarray did, with a prevalence of Bradyrhizobiaceae (and other 

Proteobacteria), Bacteroidetes and Firmicutes in suppressive soil, and lower levels for 

different families of Proteobacteria, Actinobacteria and Firmicutes in conducive soil. 

However, Illumina sequencing showed that major effects were due to resistant vs 

susceptible cultivars. Chloroflexi and Gaiellales (Actinobacteria) were enriched in 

resistant cultivar Kariera, and Burkholderia, Sphinomonas (Proteobacteria) and 

Actinobacteria in susceptible cultivar Agria. Highest bacterial diversity was primarily 

associated with the resistant cultivar Kariera, which is reminiscent of the general 

importance of diversity in disease control (Shi et al., 2019). 

Overall, (Various taxa were associated with low CS (i.e., suppressive soil or 

resistant cultivar), which is consistent with previous studies which, however, provided 

results only for suppressive soils or only for resistant cultivars (Shi et al., 2019; 

Tomihama et al., 2016; Cha et al., 2016). 

Here, differences were obtained by the two methodologies, as microarray 

pointed to general differences in soil community profiles, whereas Illumina 

sequencing enabled more detailed identification of bacterial OTUs, which highlighted 

lower taxonomic level differences between cultivars (Edgar, 2013; Kyselkova et al., 

2014; Sanguin et al., 2006; Donn et al., 2014). 

Mainly soil effects were evidenced with the archaeal community. 

Methanosarcinales (Euryarchaeota), implicated in methylotrophic methanogenesis, 

were prevalent in both cultivars in suppressive soil and resistant cultivar Kariera in 

conducive soil, while Nitrososphaerales, (Thaumarchaeota), implicated in ammonia 

oxidation, were prevalent in both bulk soils and susceptible cultivar Agria in 

conducive soil. This might indicate changes in oxygen availability, which have been 

associated with Nitrososphaerales to Methanosarcinales ratio in situations of water 

level manipulation. Due to specific functions of the two archaeal groups, this may 
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have further consequences for C and N cycling (Breidenbach et al., 2016). 

The Micro-eukaryotic community (especially fungi, parasitic Apicomplexa, 

Cercozoa, with weaker contributions from various bacterivores and autotrophs) 

differed between soils, as found with archaea and bacteria (especially with the 

microarray approach). Chlorophyta together with Myxogastria, Apicomplexa and 

Ciliophora were enriched in conducive soil, which consequently displayed increased 

micro-eukaryotic diversity. Enrichment of Chlorophyta suggests higher water content 

of that soil, which is compatible with a lower slope position (Seppey et al., 2017). 

Cercozoa and Acanthamoeba graze on bacteria36. Also, most Ciliophora are 

bacterivorous, but some species consume the content of fungal hyphae (Jousset, 2017). 

Certain Myxogastria species are fungivores, so they probably feed of the relatively 

abundant fungi in conducive soil and they might also affect bacterial-fungal dynamics 

(Fiore-Donno et al., 2016). 

Since feeding preferences may be reflected in both diversity and quantity of 

prey, (Gao et al., 2019; Mendes et al., 2013) and in our study, differences were found 

in both, this raises the possibility of complex food-web interactions, potentially 

specific to soil and cultivar conditions, and suggests that top-down control of 

rhizosphere microbiome might be important to consider (Jousset, 2017; Bonanomi et 

al., 2016). Trophic interactions between the domains can modify nutrient cycling and 

plant nutrition (Gao et al., 2019; Abdallah et al., 2019; Jousset, 2017) which can be 

relevant for soil suppressiveness (Sarikhani et al., 2017; Kristufek et al., 2000) with 

potential feedback effects of microbial communities themselves. In our study, content 

of P and Fe increased particularly by resistant cultivar accumulation so possibly, 

distinct microbial interactions occur also in various cultivars. As suppressive soil had 

lower N contents, this agrees also with the dominance of ammonia oxidizing archaea 

and suggests that N was recycled more intensively in suppressive than conducive soil 

(Gao et al., 2019) Contents in Mg, S and P may influence the composition and 

functioning of microbial communities in potato rhizosphere (Barnett et al., 2015; 

Inceoglu et al., 2012) and here we found differences in those nutrients between 

suppressive and conducive soils. A negative relationship between Mg periderm 

concentration and disease severity was found previously by Lazarovits et al. (2007) 

and similarly Lacey and Wilson (2001) found that CS disease severity was related to 

contents in exchangeable Ca, Mg, and K cations. Mg may by associated to 

phosphorus, which also agrees with increased P periderm concentration in healthy 
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potatoes (Kristufek et al., 2015). 

In conclusion, microbiome features differed when comparing suppressive vs 

conducive soil as well as resistant vs susceptible cultivar (Sagova-Mareckova, et al., 

2015; Shi et al., 2019); but the relative importance of soil suppressiveness and cultivar 

resistance depended on the microbial community considered. Results suggest that the 

possible role of archaea and protists in suppressivity mechanisms deserves further 

attention. They also suggest that potential interactions between the three microbial 

domains would need to be considered for a comprehensive understanding of 

tuberosphere functioning and microbial CS control taking place in suppressive soils.  

 

4.4. Strains antagonistic to the CS pathogen 

Using Gauze medium helped to isolate the members of phylum Actinobacteria as 

source of bioactive compounds, notably antibiotics (Rangseekaew et al., 2019; 

Nimaichand et al., 2015). In antimicrobial screening test, several culture media were 

evaluated, and GAUZE’s medium was the best one for the majority of actinobacteria 

isolates. The extracts from GAUZE’s medium showed no obvious antimicrobial 

difference from other media, but all the tested strains could be cultured on the 

GAUZE’s medium (Wei et al., 2018).The actinomycete isolate showed moderate 

growth on nutrient agar, relatively good growth on modified Gauze’s (Ma et al., 2017) 

In a previous study, International Streptomyces project media (ISP-1, Tryptone 

glucose yeast extract) and ISP-2 (Yeast extract-malt extract-dextrose) supported high 

antimicrobial potential after 5–6 days of growth (Kavitha and Savithri, 2017). A 

medium is constructed of yeast extract and pepton, The A medium can be used 

selectively for evaluation of production of secondary metabolites. The impact of yeast 

extract and pepton on induction of secondary metabolite production has been 

demonstrated before. (Sorenson, 2013; Filterborg, 1990; Naik et al., 2015 and Oskay 

et al., 2004). 

The growth rate based on dry weight in our study was comparable with growth 

curve of bacteria based on colony forming units (typically for G medium, Fig. 40). The 

stationary culture conditions provide five phases of bacterial growth: (1) lag phase – 

bacteria adapt themselves metabolically to the new conditions of growth (before time 

pint 24 h), (2) log or exponential phase – bacteria undergo rapid reproduction (time 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Rangseekaew%20P%5bAuthor%5d&cauthor=true&cauthor_uid=30967844
http://www.frontiersin.org/people/u/421711
http://www.frontiersin.org/people/u/69068
https://www.sciencedirect.com/science/article/pii/S0570178316300197#b0065
https://www.sciencedirect.com/science/article/pii/S0570178316300197#b0065
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pint 24-72 h), (3) declining phase because of depletion of nutrients and accumulation 

of waste products, the bacterial reproduction slows down (time point 72 h), (4) 

stationary phase – the number of alive bacteria is constant and death rate equals the 

growth rate (time pint 72-120 h), (5) death phase – when the death rate is greater than 

the growth rate and all nutrients are exhausted (time pint 120-240 h) (Paulton, 1991). 

For A medium, the stationary phase seems to be later, in 120-240 time point. Totally 

the dry weight and growth rate of actinobacteria in G medium was larger and faster 

(Fig. 40, 41).  

Measurements of actinobacteria growth in stationary liquid cultures and 

observation of colony growth of actinobacteria were done in previous studies. Strains 

of Streptomyces lividans were grown on MS agar medium at 30°C to prepare spore 

solutions, seed cultures were inoculated with 106 spores ml-1 in TSBS liquid media in a 

rotating incubator. 10 ml of culture broth was used for dry weight measurements 

which were performed with the freeze-dried mycelium. Seed cultures were grown for 

24, 48 and 72 h, and filtered through 100, 40, 5 and 0.22 micrometer filters. The 

cultures were then grown for another 8 h, after which they were again filtered through 

a 100 micrometer filter. 1 ml of the diluted filtrate of liquid-grown cultures was evenly 

distributed on the surface of MS agar plates by gently swirling the plates, after which 

these were allowed to dry in the fume hood for 30 min. Colony forming units were 

counted after 48 h of growth at 30°C (Zacchetti et al., 2018). Growth rates of 

streptomycetes were also measured by comparison of turbidimetric and gravimetric 

techniques. A linear relationship between turbidity and dry weight was obtained for all 

of the strains (Flowers and Williams, 1976). 

Previous studies also evaluated the growth rate of S. scabiei. The S. scabiei 

RB2 was grown for 72 h in oatmeal broth. Growth was measured as OD650. No 

yellow-pigmented thaxtomin compounds were detected in culture filtrates of 

exponentially growing cells. However, when the culture reached late exponential to 

early stationary phases of growth (24 to 33 h), five yellow compounds were visible on 

the TLC plate, this results are comparable with our results in submerged culture (Fig. 

44) and maximum production at day 3 of harvest in vermiculite experiment (Fig. 45) 

(Babcock et al., 1993). 

Previous studies showed that thaxthomin production does not require induction 

by living host tissue or enzymatic modification by the host and it can happen in vitro 

(Loria, 1995). The study was performed with the expectation that the maximum 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Zacchetti%20B%5bAuthor%5d&cauthor=true&cauthor_uid=29867851
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expression of txtB gene and consequently the thaxtomine molecule will coincide with 

the production of other secondary metabolites in the co-cultivation of S. scabiei and 

antagonistic actinobacteria strains. It was suggested to culture Actinobacteria in vitro 

at least for 3 days to observe any secondary metabolite production (Brook, 2012). 

Other studies suggested that actinobacteria enter the stationary phase after 14 days, 

and that the microbes produce the antibacterial compounds (secondary metabolite) in 

that stage to prevent the competition of nutrition and space (Rante et al, 2017). 

Consequently, we carried the experiment at both days, which may be most important 

for the interaction between the pathogens and antagonists.  

Since it was observed that secondary metabolites are synthesized only in 

'stationary phase' or in cultures that have low growth rates (Demain, 1982; Demain et 

al., 1979), we may assume that different strains reached that growth phase at different 

time points because the maximum antibacterial activity determined as the size of 

inhibition zone against Kocuria was seen on day 3 and 14 depending on the strain. 

However, different situation may occur in vermiculite because neither day 3 nor day 

14 can be distinguished as stationary phase because the conformity of antibiotic 

activity with growth in vermiculite cannot be clearly determined due to its very 

complex structure; nevertheless between isolates with higher antagonistic activity ( 

09ZI22, 09VK11, 09VK26, 09VK44, 09VK70, 09VK62, 09VU19, 10ZC7), 75 % had 

more activity in day 14 of individual culture than day 3 and 63 % had more 

antagonistic activity in day 14 of combined cultures than day 3, it can be understood 

that stationary phase of vermiculite may be in 14 days of culture. The antagonistic 

activity of actinobacteria was seen even in absence of pathogens but was increased in 

the presence of pathogen. Above that, the size of inhibition zones in cultures grown in 

vermiculite were larger than those in submerged cultivation. That demonstrated that 

vermiculite supplemented with a liquid medium can play a beneficial role in induction 

of secondary metabolite production. 

The cultivations of antagonistic strains on vermiculite were done earlier. It was 

demonstrated that vermiculite enriched with medium can support growth of both the S. 

scabiei pathogen and antagonistic actinobacteria strains; however the disease 

suppression occur more than when the pathogen strain is alone (Neeno-Eckwall et al., 

2001). In our study, the ratio of actinobacterial 16S to txtB gene was higher in day14 

than day 3 of harvest in 62% of total samples and 88% of isolates with higher 
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antagonistic activity (09ZI22, 09VK11, 09VK26, 09VK44, 09VK70, 09VK62, 

09VU19, 10ZC7) (Fig. 50, 51). 

The competition between coexisting streptomycetes is strongly dependent on 

neighboring bacteria. Streptomyces strongly regulate their secretions based on the 

presence of other strains, in two pathways: one way is to sense specific compounds 

released by others; in this way, a bacterium can sense a variety of competitors and 

respond deferentially to them (Abrudan et al., 2015; Jauri et al., 2014). Another 

strategy is for a bacterium to use its own physiological state (such harm caused by 

other cells or stress condition) to sense competition directly and thereby respond 

physiologically to other strains. Streptomyces species have several established 

examples, with antibiotic production, up-regulated by starvation, envelope damage 

and, potentially, DNA damage (Hesketh et al., 2007; Cornforth, 2013). In this study, 

generally, the co-culture of actinobacteria with pathogen increased the ratio of copy 

numbers of 16S rRNA from actinobacteria to txtB gene, and antagonistic activity after 

14 days. It showed that the pathogen which possess the txtB gene, was suppressed in 

combined cultures. 

The 80.95 % of disk inhibition zones in vermiculite and submerged were 

determined with an enhanced inhibition zone immediately behind the sensitivity 

inhibition zone. It demonstrated that actinobacteria species can produce two groups of 

secondary metabolites: the first ones were antibiotics against Kocuria that can make an 

inhibition zone around the disk, and the second ones were the favorable secondary 

metabolites that can enhance and induce Kocuria to accumulate immediately after 

inhibition zone. It may compare with flattening of zone of inhibition which is caused 

by antagonism between two antibiotics (Laishram et al., 2017) or may be similar to D-

effect, can be seen in disk diffusion method between different antibiotics placed in 

close proximity which inhibits the sensitivity zone of another antibiotic in its 

proximity (Bhardwaj et al. 2016), however the disks in our study did not cover a 

unique compound and may had several antagonistic or synergistic metabolites. The 

most numbers of enhanced inhibition zone around the disks were seen in vermiculite 

combine culture showed the induction of secondary metabolites by pathogen and the 

effectiveness of vermiculite medium. 

Finally, it must be considered that in the soil conditions the antagonistic 

activities against S. scabiei will be further modified. The most important factor seems 
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to be the local microbial community, which will further modify both the antagonistic 

functioning and growth rate of the supplemented strain (Garbeva et al., 2004). 

In conclusion, the actinobacterial strains isolated from suppressive soils 

showed different growth and antagonistic activity in the experiments. The 71.4% of 

actinobacteria strains suppressed the growth of S. scabiei (decreased copy numbers of 

txtB gene). The copy numbers of txtB, decreased most in 09ZI22, 09ZI7, 09VK26, 

09VK44 and 09VK70. The largest inhibition zone was seen after 14 days of 

cultivation in 09ZI22, 09ZI7, 09VK11, 09VK26, 09VK44, 09VK70 and 09VU19. The 

growth rate (based on dry weight of culture) and antibiotic production (based on 

inhibition zone) of actinobacterial isolates, in G media were higher than A media. The 

growth curve of actinobacteria in several time points, based on dry weight was 

matched to the growth curve based on plating and counting of colony forming units. 

The vermiculite medium is suitable to evaluate the interaction and competition 

between antagonistic actinobacterial strains and S. scabiei as pathogen. 

 

4.5. Conclusions 

The control of common scab (CS) of potatoes includes resistant cultivars, specific 

fertilization, increase of soil moisture, and chemical treatments. Yet, these 

management practices do not have common or reproducible results at differing sites 

(Potatoes production guideline, 2013; Dees and Wanner, 2012; Kirkwyland et al., 

2013; Dees et al., 2012). The relation between biological parameters such presence of 

antagonistic bacteria, total bacterial community, copy numbers of txtB gene (Larkin, 

2008; Meng et al., 2012), and chemical parameters such various micronutrients in soil 

and periderm, evaluated in the previous studies (Lazarovits et al., 2001; 2003; 2007; 

Stead and Wale, 2004; Bailey et al., 2003; Kristofek et al., 2000). The results showed 

that the parameters may affect scab severity but it also showed that the results may 

change by locations and years (Rosenzweig et al., 2012; Sagova-Mareckova et al., 

2015; Lazarovits et al., 2007). An extensive monitoring study was done at 32 field 

sites to evaluate the relation between potato common scab and biological/chemical 

parameters. The content of nutrients such as Fe, Mg, N, C, Ca and P in soil and 

periderm had a predictive value for potato scab disease. In this study disease severity 

had a positive correlation with the copy numbers of 16S rRNA gene from 
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actinobacteria and total bacteria in soil and 16S rRNA gene from actinobacteria and 

txtB gene copy numbers in potato skin. The population of several groups of bacteria 

was showed to be important to scab suppression (Acidobacteria, Verrucomicrobia, 

Bacteroidetes and Gemmatimonadetes). Modifying pH and using Iron and natural 

amendment separately showed to be effective to scab control (Kyselkova and Moenne-

Loccoz, 2012; Glick, 2012; Expert et al., 2012; Carlgren and Mattsson, 2001). 

Consequently, in the second study we aimed to determine the effects of soil organic 

matter, available iron and pH on CS development. Peat and DTPA chelated iron were 

supplemented to pots filled with soil conducive for CS. All results were compared 

with the same data obtained for a suppressive soil, which has naturally low severity of 

CS and occurs nearby. Both peat and iron supplements controlled potato scab and the 

combination of the two supplements reduced CS most effectively. The bacterial 

community composition was modified by all treatments but the change was most 

profound after the combined peat and iron treatment, when the community changed 

towards the composition in the suppressive soil. It seemed that iron supplement 

supported plant defense while both iron and peat additions changed the bacterial 

community in favor of CS suppression. In this study, the effect of peat addition was 

more important than that of iron for suppression of common scab but the most 

effective was the combination of both treatments. Although some abiotic factors i.e. 

soil pH were changed by the treatments it seemed that the most important effect of the 

manipulation was in stimulating the beneficial bacterial community. Possibly some of 

the OTUs (Proteobacteria, Bacteroidetes and Gemmatimonadetes) enriched in 

suppressive soil as well as in both the peat and iron and peat treatments might produce 

antibiotic compounds or otherwise successfully compete with the pathogen. 

Alternatively, the bacterial community might promote plant defense, which seemed to 

be the case with supplementation of iron. It seemed that, although the relationships are 

very complex, members of some taxa, were associated with disease suppression not 

only in our work but also in other studies (Sessitsch et al., 2004; Mendes et al., 2011; 

Larkin and Stellos, 2013; Marschner, 1995; Kobayashi et al., 2015). Connections 

between the structure of bacterial communities in suppressive soils and potato 

resistance to common scab (CS) are not yet well understood (Merete et al., 2012; 

Agrios, 2005; Hosaka et al., 2000; Powelson et al., 1993); In the third study, one 

resistant and one susceptible cultivar were grown in a conducive and suppressive field 

to assess cultivar resistance × soil suppressiveness interactions. The resistant cultivar 
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had a higher Mg content in periderm than the susceptible cultivar, while suppressive 

soil had lower pH (5.3 vs 5.9), N, C, P, and Ca contents but higher Fe and S contents 

compared with the conducive soil. Bacteria and actinobacteria 16S rRNA gene copy 

numbers were higher in the conducive soil. Copy numbers of txtB gene were similar in 

both soils but were higher in periderm samples of the susceptible cultivar from the 

conducive soil. Taxonomic microarray analysis and Illumina sequencing of 16S rRNA 

genes amplicon showed that bacterial community differed between resistant and 

susceptible cultivar and between suppressive and conducive soil. We demonstrated the 

cultivar-specific community selection related to the susceptibility or resistance to CS 

and above that we compared this trait in suppressive and conducive soils. We showed 

that CS can be controlled either with resistant cultivar or with suppressive soil, with no 

additive effect between them. Out of the two factors, potato cultivar had a higher 

effect on tuberosphere bacterial community composition than soil in our experiment. 

The results highlighted the usefulness of both cultivar resistance and soil 

suppressiveness traits in understanding and managing crop disease control. The 

previous studies showed that members of some species of Actinobacteria were 

associated with disease suppression by production of secondary metabolites 

(Kyselkova and Moenne-Loccoz, 2012). In the final experiment the growth rate and 

antibiotic production of actinobacteria isolated from CS suppressive soils was studied. 

The actinobacterial strains were cultured in liquid media to evaluate the growth rate 

and to extract the secondary metabolites. The isolates also were cultivated in a soil free 

media (vermiculite), individually and combined with the pathogen (S. scabiei) to study 

the interaction between them. The results showed different growth and antagonistic 

activity against Kocuria (a control as a gram positive and sensitive bacteria) in the 

experiment, however several species that produced antagonistic metabolites in 

vermiculite and submerged cultures and had also higher antibacterial activity, could 

suppress the S. scabiei and causal pathogenic gene (txtB) in vermiculite media, more 

effectively. The 71.4% of actinobacteria isolates with higher antagonistic activity 

suppressed the S. scabiei, i.e. decreased copy numbers of txtB gene, in vitro.  
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4.6. The main outcomes 

 The content of nutrients such Fe, Mg, N, C, Ca, P, in soil and/or periderm, and the 

copy numbers of actionobacteria, total bacteria in soil and the txtB copy numbers 

in periderm were in correlation with potato common scab and determinative to 

severity of the disease.  

 Although some abiotic factors i.e. soil pH were changed by the treatments, the 

manipulation was most important in stimulating the beneficial bacterial 

community. Iron supplement supported plant defense while both iron and peat 

additions changed the bacterial community in favor of CS suppression. The 

proportions of several groups of bacteria (such Proteobacteria, Bacteroidetes, 

Acidobacteria, Verrucomicrobia, Firmicues and Gemmatimonadetes) are 

important to scab suppression and had more presence in enriched fields 

(traditionally enriched by micronutrients) and treated fields (manually treated by 

peat and iron).  

 The CS can be controlled either with resistant cultivar or with suppressive soil, 

with no additive effect between them. Out of the two factors, potato cultivar had a 

higher effect on tuberosphere bacterial community composition. Some differences 

seen between susceptible and resistant cultivars: The resistant cultivar had a 

higher Mg content in periderm compare to susceptible cultivar. Moreover 

bacterial community differed between resistant vs susceptible cultivar and 

between suppressive vs conducive soil. Results highlighted the usefulness of both 

cultivar resistance and soil suppressiveness traits in understanding and managing 

disease control of crops. The results showed that archaea and micro-eukaryotes 

differed between resistant and susceptible cultivar and between suppressive and 

conducive soil. 

 The vermiculite medium is an enriched and soil free culture can be selected to 

evaluate the interaction and competition between suppressive actinobacterial 

isolates and S. scabiei as pathogen, without impacts of soil factors. Combination 

of actinobacteria isolated from suppressive soil and S. scabiei in vermiculite 

showed a good antagonistic activity between them. Several species of 

actinobacteria isolated from suppressive soils, with higher antibacterial activity 

against Kocuria could suppress the S. scabiei in combined culture effectively. 
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Supplementary material 



Supplementary material to the chapter

3.2. The effect of peat and iron supplements on the severity of potato common scab 
and bacterial community in tuberosphere soil



Supplementary Table S1.  Quantities of total  Bacteria, Actinobacteria and txtB gene [copies g-1] in tuberosphere soil 
and potato periderm. Average of five replicates with standard deviations.

Treatment

Bacteria Actinobacteria txtB Actinobacteria txtB
mean sd mean sd mean sd mean sd mean sd

VH 4.66E+09 4.02E+09 6.41E+08 4.64E+08 5.53E+05 2.00E+04 5.26E+08 2.97E+08 7.31E+06 6.02E+06

VHP 4.77E+09 1.68E+09 8.45E+08 3.65E+08 5.75E+05 9.88E+04 1.05E+08* 8.16E+07 1.02E+06* 8.76E+05

VHFe 2.11E+09 9.00E+08 4.95E+08 2.51E+08 7.64E+05 1.94E+05 3.25E+08 2.05E+08 1.09E+06 5.72E+05

VHPFe 2.25E+09 2.29E+08 4.55E+08 2.37E+08 6.43E+05 6.82E+04 7.32E+08 4.15E+08 1.28E+07 7.67E+06

VHFe5 2.02E+09 4.95E+08 3.26E+08 1.14E+08 7.35E+05 1.20E+05 8.94E+08 5.74E+08 2.70E+07 2.91E+07

VHPFe5 2.61E+09 1.15E+09 3.88E+08 2.48E+08 6.04E+05 1.25E+05 1.05E+09 6.99E+08 4.05E+07 3.73E+07

VL 2.37E+09 7.75E+08 4.89E+08 3.11E+08 7.09E+05 1.09E+05 2.95E+08 2.07E+08 8.97E+05* 4.51E+05

Soil Periderm

















OTU13 99 94 194 282 90 Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae

OTU103 44 45 40 43 31 Sphingobacteriia Sphingobacteriales Chitinophagaceae

OTU7654 66 61 76 67 54 Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae

OTU2640 48 55 31 28 34 Acidobacteria Gp6 Gp6

OTU41 30 110 48 31 13 Bacteroidetes inc. sedis Ohtaekwangia

OTU12 229 97 249 80 211 Bacilli Bacillales Bacillaceae 1

OTU54 38 53 65 72 14 Alphaproteobacteria Caulobacterales Caulobacteraceae

OTU85 53 56 27 26 25 Alphaproteobacteria Rhizobiales Hyphomicrobiaceae

OTU154 109 83 103 79 80 Actinobacteria Corynebacteriales Mycobacteriaceae

OTU400 56 36 58 23 27 Thermoleophilia Solirubrobacterales Conexibacteraceae

OTU3166 50 66 29 41 20 Acidobacteria Gp6 Gp6

OTU84 49 90 47 16 19 Gammaproteobacteria Xanthomonadales Sinobacteraceae

OTU115 34 58 63 50 4 Acidobacteria Gp3 Gp3

OTU87 34 62 144 58 3 Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae

OTU80 41 126 35 15 9 Opitutae Opitutales Opitutaceae

OTU186 47 62 54 25 14 Alphaproteobacteria Rhodospirillales Rhodospirillaceae

OTU40 43 69 52 45 9 Betaproteobacteria Rhodocyclales Rhodocyclaceae

OTU197 77 57 55 67 43 Betaproteobacteria Burkholderiales Oxalobacteraceae

OTU62 46 82 20 41 12 Alphaproteobacteria Rhizobiales Phyllobacteriaceae

OTU4563 77 46 71 36 42 Acidobacteria Gp16 Gp16

OTU68 62 28 66 41 24 Alphaproteobacteria Sphingomonadales Sphingomonadaceae

OTU162 43 42 68 46 5 Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae

OTU1848 164 65 179 56 124 Bacilli Bacillales Planococcaceae

OTU213 77 60 45 50 35 Betaproteobacteria Rhodocyclales Rhodocyclaceae

OTU121 52 62 78 53 7 Acidobacteria Gp6 Gp6

OTU8040 100 96 74 100 54 Betaproteobacteria Burkholderiales Oxalobacteraceae

OTU288 64 47 66 35 18 Actinobacteria Streptomycetales Streptomycetaceae

OTU401 51 52 50 47 4 Acidobacteria_Gp4 Gp4

OTU291 99 35 32 37 51 Actinobacteria Micrococcales Microbacteriaceae

OTU173 50 54 71 15 2 Chloroflexia Chloroflexales Oscillochloridaceae

OTU183 80 117 40 19 32 Nitrospira Nitrospirales Nitrospiraceae

OTU140 75 54 39 41 26 Alphaproteobacteria Sphingomonadales Sphingomonadaceae

OTU60 51 70 75 90 2 Acidobacteria Gp4 Gp4

OTU138 54 30 75 23 4 Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae

OTU33 56 60 71 29 5 Alphaproteobacteria Rhizobiales Methylobacteriaceae

OTU1048 98 33 74 30 46 Thermoleophilia Solirubrobacterales Solirubrobacteraceae

OTU76 60 75 65 100 7 Actinobacteria Propionibacteriales Nocardioidaceae

OTU89 68 62 65 44 14 Spartobacteria Spartobacteria gen. inc. sedis

OTU203 78 32 45 15 24 Deltaproteobacteria Myxococcales Cystobacteraceae

OTU90 64 51 45 38 10 Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae

OTU20 63 58 102 49 3 Acidobacteria Gp16 Gp16

OTU274 70 40 49 25 9 Thermoleophilia Solirubrobacterales Conexibacteraceae

OTU81 136 118 80 85 74 Betaproteobacteria Burkholderiales Burkholderiales inc. sedis

OTU95 75 55 31 37 14 Alphaproteobacteria Rhizobiales Hyphomicrobiaceae

OTU57 67 74 111 24 5 Alphaproteobacteria Rhodospirillales Rhodospirillaceae

OTU96 68 66 77 36 2 Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae

OTU65 67 48 117 36 0 Bacilli Bacillales Bacillaceae 1

OTU218 72 55 30 26 5 Acidobacteria Gp4 Gp4

OTU55 90 141 69 54 23 Acidobacteria Gp4 Gp4

OTU106 90 66 95 33 22 Acidobacteria Gp16 Gp16

OTU9319 154 81 203 55 85 Bacilli Bacillales Bacillaceae 1

OTU56 72 45 52 32 3 Rubrobacteria Gaiellales Gaiellaceae

OTU9821 82 36 63 46 10 Alphaproteobacteria Sphingomonadales Sphingomonadaceae

OTU278 73 56 73 51 0 Alphaproteobacteria Sphingomonadales Sphingomonadaceae

OTU19 157 123 112 111 84 Betaproteobacteria Burkholderiales Oxalobacteraceae

OTU149 75 39 84 16 1 WPS-2 gen. inc. sedis

OTU77 76 106 50 17 0 Actinobacteria Streptomycetales Streptomycetaceae

OTU3793 183 111 136 72 101 Actinobacteria Micrococcales Intrasporangiaceae

OTU51 112 91 75 43 24 Rubrobacteria Gaiellales Gaiellaceae

OTU61 91 84 56 16 2 Anaerolineae Anaerolineales Anaerolineaceae

OTU75 117 100 46 75 28 Acidobacteria Gp6 Gp6

OTU144 98 60 49 19 9 Betaproteobacteria Burkholderiales Burkholderiaceae

OTU48 107 101 89 72 13 Alphaproteobacteria Sphingomonadales Sphingomonadaceae

OTU1579 114 59 87 55 20 Acidobacteria Gp16 Gp16

OTU35 137 123 98 39 38 Betaproteobacteria Methylophilales Methylophilaceae

OTU63 194 172 109 118 93 Betaproteobacteria Burkholderiales Comamonadaceae

OTU10 172 98 190 73 64 Actinobacteria Geodermatophilales Geodermatophilaceae

OTU44 109 69 41 8 0 Betaproteobacteria Burkholderiales Burkholderiaceae

OTU64 148 128 143 92 34 Actinobacteria Propionibacteriales Nocardioidaceae

OTU72 125 90 110 42 8 Acidobacteria Gp16 Gp16

OTU58 176 87 139 76 56 Thermoleophilia Solirubrobacterales Solirubrobacteraceae



OTU37 125 65 52 12 5 Betaproteobacteria Rhodocyclales Rhodocyclaceae

OTU32 124 83 121 46 0 Rubrobacteria Gaiellales Gaiellaceae

OTU83 142 104 127 82 15 Alphaproteobacteria Sphingomonadales Sphingomonadaceae

OTU1247 127 49 73 16 0 Rubrobacteria Gaiellales Gaiellaceae

OTU39 147 95 127 159 18 Alphaproteobacteria Sphingomonadales Sphingomonadaceae

OTU21 152 94 159 44 2 Rubrobacteria Gaiellales Gaiellaceae

OTU8 235 154 236 109 18 Rubrobacteria Gaiellales Gaiellaceae

OTU3 500 183 469 183 250 Bacilli Bacillales Bacillaceae 1

OTU314 273 193 206 110 5 Alphaproteobacteria Sphingomonadales Sphingomonadaceae

OTU31 306 129 208 80 2 Thermoleophilia Solirubrobacterales Solirubrobacteraceae

OTU7 359 307 271 234 4 Alphaproteobacteria Sphingomonadales Sphingomonadaceae

OTU6 465 218 301 114 7 Rubrobacteria Gaiellales Gaiellaceae

OTU5 860 602 822 382 154 Acidobacteria Gp16 Gp16

OTU2 1287 551 765 419 562 Actinobacteria Micrococcales Micrococcaceae



Supplementary material to the chapter

3.3. Bacterial, archaeal and micro-eukaryotic communities characterize a disease-
suppressive or conducive soil and a cultivar resistant or susceptible to common scab.



Supplementary Table S1. Quantitative real-time PCR analyses. Data were assessed by ANOVA and Fisher’s LSD tests, and letters indicate significantly 
different samples (p < 0.05). L stands for suppressive and H for conducive Vyklantice soils.

A. Quantitative analyses of bacteria in bulk soil and tuberosphere samples. Data are shown as means with standard deviations (n = 4).

Sample
Cultivar / 
bulk soil

Bacterial
16S rRNA gene

Actinobacterial
16S rRNA gene

txtB gene 

 copies/g SD copies/g SD copies/g SD

LB bulk soil 9.69 × 109 a,b 3.43 × 109 4.20 × 109 a,b 1.02 × 109 8.64 × 105 1.12 × 105

LK Kariera 1.38 × 109 c 4.23 × 108 1.15 × 109 c 4.65 × 108 6.85 × 105 5.80 × 104

LA Agria 1.43 × 109 b,c 2.37 × 109 2.27 × 109 b 1.00 × 109 6.76 × 105 1.30 × 104

HB bulk soil 1.37 × 1010 a 5.53 × 109 6.69 × 109 a 2.50 × 109 6.34 × 105 2.09 × 105

HK Kariera 1.14 × 1010 a,b 7.07 × 109 4.84 × 109 a,b 3.03 × 109 7.17 × 105 1.33 × 105

HA Agria 1.24 × 1010 a 6.19 × 109 4.85 × 109 a,b 2.01 × 109 5.97 × 105 1.23 × 105

B. Quantitative analyses of bacteria in periderm samples. Data are shown as means with standard deviations
(n = 4).

Sample Cultivar

Actinobacterial
16S rRNA gene

txtB gene 

 copies/g SD copies/g SD

LK Kariera 3.31 × 108 b 8.29 × 107 7.74 × 105 b 4.84 × 105

LA Agria 8.66 × 107 b 5.44 × 107 1.21 × 106 b 2.43 × 105

HK Kariera 2.62 × 108 a,b 1.53 × 108 4.61 × 106 a,b 1.40 × 106

HA Agria 1.61 × 109 a 1.68 × 109 6.01 × 107 a 6.72 × 107



Supplementary Table S2. Chemical analyses. Data were assessed by ANOVA and Fisher’s LSD tests, and letters indicate significantly different samples (p < 
0.05). L stands for suppressive and H for conducive Vyklantice soils.

A. Chemical analyses of bulk soil and tuberosphere samples. Data are shown as means ± standard deviations (n = 4).

Sample
Cultivar / 
bulk soil

N
[g/kg] 

C
[g/kg] 

S
[g/kg]

P
[g/kg] 

Mg
[g/kg] 

Ca
[g/kg] 

Fe
[g/kg] 

pH

LB bulk soil 1.67 ± 0.16 b 14.9 ± 2.0 b 0.642 ± 0.095 b,c 1.03 ± 0.08 b,c 11.2 ± 0.7 3.40 ± 0.78 b 39.5 ± 2.8 b,c 5.36 ± 0.16 b

LK Kariera 1.67 ± 0.10 b 15.7 ± 0.9 b 0.855 ± 0.044 a 1.04 ± 0.06 b,c 12.0 ± 0.3 1.98 ± 0.10 c 38.6 ± 1.1 c 5.37 ± 0.15 b

LA Agria 1.64 ± 0.12 b 15.4 ± 1.3 b 0.745 ± 0.091 b 1.00 ± 0.14 c 11.5 ± 0.5 1.81 ± 0.08 c 37.0 ± 2.0 c 5.36 ± 0.06 b

HB bulk soil 2.24 ± 0.08 a 21.2 ± 1.1 a 0.661 ± 0.043 b,c 1.14 ± 0.06 a,b 11.3 ± 0.5 4.77 ± 0.32 a 39.7 ± 1.6 b,c 5.86 ± 0.16 a

HK Kariera 2.29 ± 0.13 a 21.2 ± 1.3 a 0.623 ± 0.005 c 1.10 ± 0.04 a,b,c 10.7 ± 0.4 2.85 ± 0.36 b 42.6 ± 1.8 a,b 5.98 ± 0.08 a

HA Agria 2.24 ± 0.08 a 20.9 ± 0.9 a 0.617 ± 0.014 c 1.21 ± 0.04 a 11.3 ± 0.5 2.94 ± 0.26 b 45.0 ± 1.9 a 5.99 ± 0.12 a

B. Chemical analyses of periderm samples. Data are shown as means ± standard deviations (n = 4).

Sample Cultivar
N

[g/kg] 
P

[mg/kg] 
Ca

[g/kg] 
Mg

[g/kg] 
Fe

[g/kg] 

LK Kariera 19.3 ± 1.8 a,b 2.85 ± 0.47 0.91 ± 0.20 b 0.793 ± 0.019 a 0.174 ± 0.049 a

LA Agria 21.3 ± 2.0 a 3.00 ± 0.52 1.21 ± 0.08 a 0.652 ± 0.057 b 0.076 ± 0.005 b

HK Kariera 14.7 ± 0.9 c 3.52 ± 0.47 1.04 ± 0.03 a,b 0.778 ± 0.063 a 0.091 ± 0.009 b

HA Agria 16.0 ± 2.5 b,c 2.97 ± 0.31 1.24 ± 0.14 a 0.668 ± 0.046 b 0.076 ± 0.027 b



Supplementary Table S3. ANOVA of field (suppressive and conducive) and cultivar (resistant and susceptible) effects on data of soil and periderm chemical 
and microbial analyses. Levels of significance are indicated by asterisks, p < 0.05 *, p < 0.01 **, and p < 0.001 ***.

A. Soil analyses
Df N C S P Mg Ca Fe pH Bacteria Actinobacteria txtB gene

Field 1 0.021 *** 1.992 *** 77703 *** 101530 ** 1475104 7537604 *** 98010417 *** 2.024 *** 6.78  *** 3.88 ** 0.144

Cultivar 2 2.65E-05 0.003 15910 2117 58958 7647463 *** 4321667 0.012 2.78 * 1.74 * 0.037

Field × cultivar 2 1.68E-05 0.004 31708 ** 10067 1903958 128904 30831667 ** 0.011 1.20 0.38 0.076

B. Periderm analyses
Df N P Ca Mg Fe Actinobacteria txtB gene

Field 1 96.91 *** 412015 0.03 0.000184 0.0069 * 31.4 * 42.52 **

Cultivar 1 10.96 158614 0.23 * 0.05946 *** 0.0134 ** 10.46 15.47

Field × cultivar 1 0.48 484017 0.01 0.000878 0.0063  * 0.08 0



Environmental variable Microarray analysis Illumina amplicon sequencing
bacteria bacteria archaea micro-eukaryotes

r p r p r p r p
N 0.4501 0.006 ** 0.1099 0.334 0.8073 0.001 *** 0.5999 0.001 ***
C 0.3950 0.013 * 0.1274 0.284 0.7728 0.001 *** 0.5373 0.001 ***
S 0.1533 0.202 0.0777 0.456 0.2259 0.096 . 0.2484 0.040 *
P 0.1001 0.343 0.0118 0.885 0.2818 0.059 . 0.1102 0.294
Mg 0.2858 0.034 * 0.0109 0.902 0.1314 0.289 0.1495 0.205
Ca 0.1794 0.139 0.2099 0.102 0.2636 0.071 . 0.2792 0.029 *
Fe 0.1432 0.208 0.0774 0.466 0.4105 0.010 ** 0.3240 0.023 *

0.2173 0.090 . 0.7478 0.001 *** 0.0019 0.973 0.0331 0.703
diversity of micro-eukaryotes 0.4593 0.002 ** 0.1174 0.295 0.5137 0.002 ** 0.7220 0.001 ***

0.2961 0.037 * 0.0121 0.887 0.5925 0.002 ** 0.5459 0.001 ***
pH 0.5751 0.002 ** 0.2048 0.120 0.8889 0.001 *** 0.6228 0.001 ***

0.0887 0.377 0.1490 0.236 0.5786 0.001 *** 0.6104 0.001 ***
actinobacteria 0.1399 0.208 0.1718 0.180 0.5610 0.002 ** 0.5933 0.001 ***
txtB gene copies 0.2887 0.037 * 0.1960 0.128 0.1927 0.150 0.0979 0.307

Supplementary Table S4. Correlation between environmental variables and differences in community composition of bacteria, archaea, and micro-
eukaryotes assessed by non-metric multidimensional scaling based on Bray-Curtis distance matrices. Levels of significance are indicated by dots, p < 0.1, 
and asterisks, p < 0.05 *, p < 0.01 **, and p < 0.001 ***.

total content in 
tuberosphere soil

diversity of bacteria 
area under the 
rarefaction curve 

diversity of archaea

total bacteria 16S rRNA gene 
copies



A. Probes significantly separating the soils L and H (Metastats, p < 0.05)
Probe Target group LB LK LA HB HK HA p-value
Aceto3A Some Acetobacteraceae 0.010 0.020 0.017 0.007 0.000 0.006 < 0.001
Acdp821 Acidiphilium 0.012 0.022 0.022 0.011 0.000 0.011 < 0.001

PalgiG3 Paenibacillus alginoliticus et rel. cluster 0.013 0.017 0.027 0.003 0.000 0.016 < 0.001

Pseu33 0.016 0.033 0.021 0.022 0.000 0.011 0.001

Aci1 Acidiphillium 0.021 0.018 0.022 0.011 0.000 0.012 0.001
Strepto5 Streptomyces 0.009 0.020 0.012 0.012 0.000 0.014 0.003
Brady4 Bradyrhizobiaceae 0.030 0.034 0.038 0.034 0.000 0.030 0.005
StspSUB1 Streptosporangiales 0.003 0.011 0.015 0.002 0.000 0.013 0.007
Nit1B Most Nitrosospira 0.000 0.016 0.022 0.008 0.000 0.013 0.013
Frank11 Frankia 0.000 0.005 0.007 0.000 0.000 0.003 0.037
Aceto3B Acetobacteraceae 0.000 0.004 0.014 0.000 0.000 0.007 0.041
Burkho4B Some Burkholderia 0.000 0.000 0.014 0.000 0.000 0.003 0.044
Glob2 Rhodopila globiformis 0.000 0.005 0.006 0.000 0.000 0.002 0.049

Probe Target group LB LK LA HB HK HA p-value

Janaga2 Janthinobacterium agaricidamnosum 0.000 0.000 0.012 0.024 0.045 0.016 0.005

Janaga3 Janthinobacterium agaricidamnosum 0.008 0.005 0.023 0.052 0.061 0.025 0.008

Acido-c 0.000 0.000 0.000 0.010 0.000 0.010 0.017

Barto2 Bartonella 0.000 0.000 0.000 0.003 0.006 0.009 0.020

RhizoLCSA2 0.000 0.000 0.000 0.007 0.000 0.009 0.022

B6-603 0.000 0.000 0.000 0.000 0.000 0.008 0.026

MyxCor1 Myxococcus/Corallococcus 0.000 0.000 0.000 0.000 0.000 0.011 0.027
PseuD Pseudomonas 0.000 0.000 0.000 0.015 0.000 0.014 0.034

AcidUnc 0.015 0.000 0.015 0.026 0.008 0.022 0.045

B. Probes significantly separating the two varieties A and K (Metastats, p < 0.05)
Probe Target group LB LK LA HB HK HA p-value
Strepto3 Streptomyces 0.022 0.037 0.020 0.021 0.039 0.014 < 0.001
Strepto1 Streptomyces 0.072 0.068 0.045 0.067 0.069 0.029 < 0.001
Strepto2 Streptomyces 0.059 0.052 0.034 0.046 0.055 0.020 < 0.001

Rzbc1247 0.037 0.044 0.033 0.059 0.061 0.027 0.001

BET940 0.060 0.051 0.046 0.054 0.043 0.037 0.001

Azo5 0.009 0.017 0.017 0.021 0.023 0.016 0.003

Actino1 Streptosporangiales 0.017 0.025 0.012 0.013 0.016 0.007 0.003
Plancto4-mB Most Planctomycetes 0.054 0.038 0.031 0.039 0.034 0.028 0.005

Rhizo157 0.068 0.064 0.033 0.058 0.024 0.025 0.011

Mycoba2 Mycobacterium 0.025 0.030 0.023 0.022 0.021 0.016 0.014
Mycoba1 Mycobacterium 0.025 0.028 0.021 0.021 0.024 0.018 0.019

CYA664 0.009 0.015 0.013 0.011 0.016 0.012 0.030

Kisp9 Kitasatospora griseola 0.012 0.025 0.023 0.028 0.022 0.020 0.032

Supplementary Table S5. Average signal intensities of probes (n = 4)

Pseudomonas citronellolis and 
Pseudomonas nitroreducens

Uncultured Acidobacteria 
(Acidobacteria_4 cluster)

Maize rhizosphere clones affiliated to 
Acidobacteria (Acidobacteria_7 cluster)

Agrobacterium (G1, G3, G4, G7), A. 
rubi, A. larrymoorei, some Rhizobium 
and some Brevundimonas

Uncultured Acidobacteria 
(Acidobacteria_6 cluster)

Rhizobiaceae, Brucellaceae, 
Bartonella, Phyllobacteriaceae, 
Blastochloris, Azospirillum irakense 
and A. amazonense
Betaproteobacteria (except 
Comamonadaceae, 
Nitrosomonadaceae and 
Methylophilaceae)
Azospirillum, some Roseomonas,  
Rhodospirillum, Rhodocista, 
Skermanella

Rhizobiaceae (except Agrobacterium), 
Bradyrhizobiaceae, Brucellaceae and 
Brevundimonas

Most Cyanobacteria and some 
Chloroplasts



Probe Target group LB LK LA HB HK HA p-value
Gludi Gluconacetobacter diazotrophicus 0.000 0.000 0.021 0.000 0.000 0.015 < 0.001
TDRNO1030 Thermodesulforhabdus norvegica 0.000 0.000 0.012 0.003 0.000 0.013 < 0.001
Lacto39 Lactobacillus 0.000 0.000 0.006 0.000 0.000 0.007 < 0.001
Xan Xanthobacter 0.000 0.000 0.018 0.000 0.000 0.021 < 0.001
Hyme3 Hymenobacter 0.000 0.000 0.008 0.000 0.000 0.011 < 0.001
Polycell Polyangium cellulosum 0.000 0.000 0.009 0.000 0.000 0.011 < 0.001

Rhodobact1B 0.000 0.000 0.023 0.009 0.000 0.020 < 0.001

XAN818 Xanthomonas 0.000 0.000 0.020 0.000 0.000 0.009 < 0.001
Pho1 Photorhabdus 0.008 0.000 0.015 0.000 0.000 0.005 < 0.001
Acidocella1 Acidocella/Acidiphilium 0.006 0.004 0.020 0.011 0.000 0.022 0.001
Plancto12 Gemmata cluster 0.013 0.004 0.021 0.012 0.000 0.018 0.001
Stsp16 Streptosporangium 0.000 0.000 0.007 0.000 0.000 0.012 0.001

Ehrli1 0.000 0.000 0.006 0.000 0.000 0.012 0.001

Campy Campylobacter 0.005 0.004 0.019 0.011 0.000 0.019 0.001
Bacpsf1 Bacillus pseudofirmus 0.000 0.000 0.006 0.000 0.000 0.010 0.001

Bkhcari1 0.000 0.000 0.012 0.003 0.000 0.010 0.001

Dietz7 Dietzia 0.000 0.000 0.006 0.002 0.000 0.008 0.001
Nit1C Some Nitrosospira 0.007 0.005 0.027 0.013 0.000 0.019 0.002
Polyang10 Polyangium 0.000 0.000 0.005 0.000 0.000 0.008 0.002
anaermycln Acidobacteria (Subgroup 11) 0.000 0.000 0.007 0.004 0.000 0.010 0.002
pirelcln Planctomycetaceae (Pir1 lineage) 0.000 0.000 0.014 0.009 0.000 0.014 0.003
Hypho5 Some Hyphomicrobium 0.000 0.004 0.011 0.000 0.000 0.009 0.005
Sphingo5B Most Sphingomonadaceae 0.000 0.006 0.013 0.000 0.000 0.013 0.005
Delac3 Delftia acidovorans 0.000 0.000 0.004 0.000 0.000 0.009 0.006

Nso1225b Betaproteobacteria ammonia oxidizers 0.000 0.000 0.006 0.000 0.000 0.008 0.006

Sacchps10 Saccharopolyspora 0.000 0.000 0.003 0.000 0.000 0.013 0.006
Cow1 Cowdria 0.000 0.000 0.004 0.000 0.000 0.014 0.007
Pagg6 Pantoea agglomerans 0.000 0.000 0.002 0.000 0.000 0.010 0.007
StreptomycesD7 Streptomyces 0.000 0.000 0.005 0.000 0.000 0.009 0.007

OP11-3 Uncultured eubacteria (OP11 division) 0.000 0.000 0.006 0.000 0.000 0.007 0.008

Bkand Burkholderia andropogonis 0.000 0.000 0.006 0.000 0.000 0.012 0.008
Comtes2 Comamonas (mainly C. testosteroni) 0.000 0.000 0.005 0.000 0.000 0.010 0.008
Nancs7 Nannocystis 0.000 0.000 0.004 0.000 0.000 0.009 0.009

Rhi Rhizobiaceae (except Agrobacterium) 0.000 0.000 0.002 0.000 0.000 0.014 0.011

Rhizo1B Some Rhizobium 0.000 0.003 0.009 0.002 0.000 0.012 0.013
Spiro5 Spirosoma 0.000 0.000 0.002 0.000 0.000 0.005 0.024
Phyllobact Mesorhizobium / Rhizobium 0.000 0.000 0.002 0.000 0.000 0.004 0.024

B6-603 0.000 0.000 0.000 0.000 0.000 0.008 0.025

Frtul7 Francisella tularensis 0.000 0.000 0.003 0.000 0.000 0.005 0.025
CystbSUB1 Cystobacterineae 0.000 0.000 0.003 0.004 0.000 0.008 0.026
MyxCor1 Myxococcus/Corallococcus 0.000 0.000 0.000 0.000 0.000 0.011 0.026
Plancto10 Some Pirrellula 0.000 0.000 0.002 0.000 0.000 0.008 0.028
Pagg5 Pantoea agglomerans 0.000 0.000 0.002 0.000 0.000 0.007 0.029
PseuD Pseudomonas 0.000 0.000 0.000 0.015 0.000 0.014 0.033
Burkho4B Some Burkholderia 0.000 0.000 0.014 0.000 0.000 0.003 0.034

PLA46 0.000 0.000 0.005 0.000 0.000 0.005 0.037

Nitmob Nitrosococcus mobilis 0.000 0.000 0.004 0.000 0.000 0.005 0.038
Gloe2 Chlorogloeopsis 0.000 0.000 0.003 0.000 0.000 0.006 0.038
Aqutert Aquicola tertiaricarbonis 0.000 0.000 0.003 0.004 0.000 0.008 0.039
Paen6 Paenibacillus 0.000 0.000 0.007 0.000 0.000 0.004 0.041
Diali14 Dialister 0.000 0.004 0.005 0.000 0.000 0.016 0.042
Baccir1 Bacillus circulans 0.000 0.000 0.008 0.000 0.000 0.008 0.043

Rhodobacteraceae (excepted 
Paracoccus, Amaricoccus, 
Rhodobacter and Rhodovulum)

Ehrlichiaceae (except Ehrlichia risticii 
and Cowdria)

Some Burkholderia (B. caribensis and 
B. hospita)

Agrobacterium (G1, G3, G4, G7), A. 
rubi, A. larrymoorei, some Rhizobium 
and some Brevundimonas

Planctomycetes, Lentipshaerae and 
OP3 candidate phylum



 in the individual samples.

A. The most abundant OTUs significantly separating the soils L and H (Metastats, p < 0.05)
Group LB LK LA HB HK HA p-value Phylum Class Order Family Genus
Otu92 126 52 88 60 28 45 0,045 Proteobacteria Betaproteobacteria SC-I-84
Otu253 115 61 104 68 27 55 0,015 Proteobacteria Betaproteobacteria SC-I-84
Otu68 62 68 66 36 31 56 0,020 Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae Devosia
Otu592 18 5 18 5 0 6 0,038 Proteobacteria Alphaproteobacteria Rhizobiales Bradyrhizobiaceae Rhodopseudomonas
Otu835 17 33 25 12 18 15 0,023 Proteobacteria Deltaproteobacteria Oligoflexales 0319-6G20
Otu385 16 1 10 8 1 2 0,040 Planctomycetes Phycisphaerae Tepidisphaerales Tepidisphaeraceae
Otu3120 13 7 12 10 3 3 0,043 Proteobacteria Alphaproteobacteria Rhizobiales Xanthobacteraceae Labrys
Otu516 31 15 16 30 8 11 0,022 Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Dokdonella
Otu1402 1 4 7 0 2 0 0,029 Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Chryseobacterium
Otu1154 0 5 9 2 2 0 0,012 Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Chryseobacterium
Otu2920 7 2 2 2 0 0 < 0.001 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium
Otu1408 6 7 6 7 4 1 0,047 Bacteroidetes Sphingobacteriia Sphingobacteriales Chitinophagaceae Flavisolibacter
Otu1343 4 1 4 2 1 0 0,031 FBP
Otu2780 4 0 2 1 0 0 0,028 Planctomycetes Phycisphaerae Phycisphaerales Phycisphaeraceae
Otu3391 4 0 1 1 0 0 0,033 Firmicutes Clostridia Halanaerobiales ODP1230B8.23

Group LB LK LA HB HK HA p-value Phylum Class Order Family Genus
Otu355 16 17 22 21 33 32 0,040 Actinobacteria MB-A2-108
Otu369 32 18 28 22 39 37 0,008 Proteobacteria Betaproteobacteria Nitrosomonadales Nitrosomonadaceae
Otu1230 6 9 7 8 12 18 0,040 Actinobacteria Thermoleophilia Gaiellales
Otu1478 5 6 5 9 11 9 0,045 Chloroflexi TK10
Otu886 5 6 3 7 11 7 0,033 Actinobacteria Thermoleophilia Solirubrobacterales
Otu2120 7 8 10 4 14 17 0,018 Firmicutes Bacilli Bacillales Planococcaceae Sporosarcina
Otu899 7 3 4 20 1 1 0,019 Proteobacteria Betaproteobacteria SC-I-84
Otu2391 2 1 1 5 6 1 0,015 Proteobacteria Deltaproteobacteria Myxococcales Sandaracinaceae
Otu2105 4 4 4 2 6 11 0,017 Firmicutes Bacilli Bacillales Thermoactinomycetaceae Shimazuella
Otu1621 2 3 2 3 6 5 0,012 unclas. Bacteria
Otu1832 6 1 1 6 4 3 < 0.001 Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae Dongia
Otu2001 0 0 0 1 3 1 0,031 Proteobacteria Deltaproteobacteria Bdellovibrionales Bdellovibrionaceae Bdellovibrio
Otu1772 1 2 2 2 3 5 0,020 Firmicutes Bacilli Bacillales Paenibacillaceae Paenibacillus
Otu820 19 7 8 12 13 13 0,002 Proteobacteria Deltaproteobacteria Myxococcales Haliangiaceae Haliangium
Otu3265 1 2 0 2 3 2 0,045 Cyanobacteria ML635J-21

Supplementary Table S6. Average frequencies (n = 4) of selected OTUs significantly contributing to separation of bacterial communities



B. The most abundant OTUs significantly separating the varieties Kariera (K) and Agria (A) (Metastats, p < 0.05)
Group LB LK LA HB HK HA p-value Phylum Class Order Family Genus
Otu4 347 956 374 576 1177 386 < 0.001 Chloroflexi KD4-96
Otu16 13 435 7 198 615 24 < 0.001 Actinobacteria Thermoleophilia Gaiellales Gaiellaceae Gaiella
Otu55 406 766 464 504 1011 450 0,019 Chloroflexi KD4-96
Otu48 24 283 9 155 278 15 < 0.001 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas
Otu12 96 360 101 233 439 165 0,001 Actinobacteria Thermoleophilia Gaiellales Gaiellaceae Gaiella
Otu51 77 303 49 269 273 42 < 0.001 Acidobacteria Subgroup_6
Otu164 59 249 55 121 328 61 < 0.001 Chloroflexi KD4-96
Otu30 6 215 2 127 243 15 < 0.001 Actinobacteria Thermoleophilia Gaiellales Gaiellaceae Gaiella
Otu69 22 195 21 98 238 37 < 0.001 Actinobacteria Thermoleophilia Solirubrobacterales 288-2
Otu46 2 162 3 105 183 5 < 0.001 Actinobacteria Thermoleophilia Gaiellales
Otu11 281 252 93 450 221 49 0,039 Proteobacteria Alphaproteobacteria Rhizobiales Xanthobacteraceae
Otu29 17 164 8 75 169 10 < 0.001 Chloroflexi Gitt-GS-136
Otu275 149 252 113 290 242 99 0,002 Acidobacteria Subgroup_6
Otu107 1 106 0 53 166 1 < 0.001 Actinobacteria Thermoleophilia Gaiellales Gaiellaceae Gaiella
Otu38 153 213 62 295 152 34 0,005 Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Piscinibacter
Otu33 41 165 12 129 131 18 < 0.001 Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Arenimonas
Otu105 2 125 2 58 140 5 < 0.001 Actinobacteria Thermoleophilia Gaiellales
Otu696 6 164 8 94 110 10 < 0.001 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas
Otu143 42 145 20 162 145 19 < 0.001 Acidobacteria Subgroup_6
Otu141 0 110 0 42 142 1 < 0.001 Actinobacteria MB-A2-108
Otu123 17 123 11 75 150 17 < 0.001 Chloroflexi Chloroflexia Chloroflexales Roseiflexaceae Roseiflexus
Otu24 70 167 77 118 234 81 < 0.001 Actinobacteria Thermoleophilia Gaiellales Gaiellaceae Gaiella
Otu64 239 193 67 413 141 31 0,026 Verrucomicrobia Spartobacteria Chthoniobacterales DA101_soil_group
Otu61 11 101 8 68 142 10 < 0.001 Proteobacteria Betaproteobacteria Nitrosomonadales Nitrosomonadaceae
Otu283 60 141 53 102 196 60 0,002 Chloroflexi KD4-96
Otu74 2 105 6 42 132 8 < 0.001 Chloroflexi Thermomicrobia JG30-KF-CM45
Otu282 10 122 9 66 117 10 < 0.001 Proteobacteria Alphaproteobacteria Sphingomonadales WW2-159
Otu73 63 151 36 202 119 32 0,005 Acidobacteria Subgroup_6
Otu138 21 131 29 62 127 37 < 0.001 Actinobacteria Actinobacteria Propionibacteriales Nocardioidaceae Nocardioides
Otu76 80 140 29 206 96 19 0,006 Acidobacteria Blastocatellia Blastocatellales Blastocatellaceae_Subgr.4 RB41



Group LB LK LA HB HK HA p-value Phylum Class Order Family Genus
Otu1 1213 687 1980 746 522 1971 < 0.001 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas
Otu21 633 145 841 236 169 836 < 0.001 Actinobacteria Thermoleophilia Gaiellales
Otu6 288 67 558 86 73 652 < 0.001 Actinobacteria Actinobacteria Propionibacteriales Nocardioidaceae Nocardioides
Otu140 178 13 306 24 23 341 < 0.001 Actinobacteria Thermoleophilia Gaiellales
Otu18 397 50 323 127 46 370 < 0.001 Chloroflexi JG37-AG-4
Otu63 176 56 311 56 62 370 < 0.001 Actinobacteria Actinobacteria Frankiales Frankiaceae Jatrophihabitans
Otu41 160 33 263 44 39 342 < 0.001 Actinobacteria Thermoleophilia Gaiellales
Otu114 221 38 315 85 46 298 < 0.001 Actinobacteria Thermoleophilia Gaiellales
Otu104 212 35 303 60 30 263 < 0.001 Actinobacteria Thermoleophilia Gaiellales
Otu19 183 8 257 25 12 247 < 0.001 Actinobacteria Thermoleophilia Gaiellales
Otu20 147 35 241 69 47 314 < 0.001 Actinobacteria Actinobacteria Frankiales Acidothermaceae Acidothermus
Otu31 160 16 246 37 26 263 < 0.001 Actinobacteria Thermoleophilia Solirubrobacterales TM146
Otu54 175 45 248 67 55 267 < 0.001 Actinobacteria Actinobacteria Frankiales uncultured
Otu84 73 3 191 5 1 228 0,001 Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Rhodanobacter
Otu26 138 8 215 15 11 198 < 0.001 Chloroflexi Ktedonobacteria Ktedonobacterales Ktedonobacteraceae
Otu8 221 195 387 162 253 439 0,016 Actinobacteria Thermoleophilia Gaiellales
Otu309 109 6 194 14 5 186 < 0.001 Actinobacteria Thermoleophilia Gaiellales
Otu13 139 93 248 106 97 275 < 0.001 Actinobacteria Actinobacteria Micrococcales Intrasporangiaceae Oryzihumus
Otu10 181 136 308 127 106 255 < 0.001 Actinobacteria Actinobacteria Micrococcales Intrasporangiaceae Terrabacter
Otu137 82 13 166 12 12 180 < 0.001 Chloroflexi Ktedonobacteria C0119
Otu50 89 14 160 22 20 187 < 0.001 Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillales Inc. Sedis Cand. Alysiosphaera
Otu176 63 34 187 44 38 175 < 0.001 Actinobacteria Actinobacteria Streptomycetales Streptomycetaceae Streptomyces
Otu199 93 9 160 14 5 140 < 0.001 Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae (Para)Burkholderia
Otu36 350 15 197 112 4 100 < 0.001 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae
Otu52 213 22 186 73 22 128 < 0.001 Actinobacteria Thermoleophilia Gaiellales Gaiellales_unclassified
Otu49 110 17 163 31 21 144 < 0.001 Actinobacteria Thermoleophilia Gaiellales
Otu77 59 18 135 23 18 160 < 0.001 Chloroflexi Ktedonobacteria C0119
Otu23 204 143 271 196 188 302 0,014 Actinobacteria Thermoleophilia Gaiellales Gaiellaceae Gaiella
Otu946 136 52 192 76 69 171 < 0.001 Actinobacteria Thermoleophilia Gaiellales
Otu117 44 8 108 17 11 139 < 0.001 Actinobacteria Actinobacteria Frankiales Geodermatophilaceae Modestobacter



Supplementary Table S7. Effects of site, treatment, and their interaction on diversity
of microbial communities. Two-way analysis of variance, n=4. Levels of significance 
are indicated by dots, p < 0.1, or asterisks, p < 0.05 *, p < 0.01 **, and p < 0.001 ***.

Microeukaryotes

Archaea

Sum Sq Pr(>F)F valueDf
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site:treatment 
Residuals
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0.0001 ***
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761301
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5.1e-06 ***47.6212 12660.84
0.0409 *
0.2130
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2 
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445.64
194.94 
838.13

Bacteria



Bacteria Bulk L soil H soil
Agria Kariera soil

OTUs (min in two samples) 2942 3335 3416 3682 3778
Number of correlations 181026 332847 588300 415347 508320
Avg number of neighbors 61.5 99.8 172.2 112.8 134.5
Positive correlations 110401 174899 352691 254492 285632
Negative correlations 70625 157948 235609 160855 222688

Archaea Bulk L soil H soil
Agria Kariera soil

OTUs (min in two samples) 87 80 88 95 69
Number of correlations 579 672 370 200 133
Avg number of neighbors 6.7 8.4 4.2 2.1 1.9
Positive correlations 426 453 256 142 116
Negative correlations 153 219 114 58 17

Microeukaryotes Bulk L soil H soil
Agria Kariera soil

OTUs (min in two samples) 2339 1801 2148 2495 2229
Number of correlations 142260 67000 72585 20828 16411
Avg number of neighbors 60.8 37.2 33.8 8.3 7.4
Positive correlations 107366 55606 62538 19561 15286
Negative correlations 34894 11394 10047 1267 1125

Supplementary Table S8. Correlations between proportions of individual OTUs in the 
communities of Bacteria, Archaea, and microeukaryotes (Spearman, |ρ| ≥ 0.8).

Rhizosphere

Rhizosphere

Rhizosphere



 in the individual samples.

A. The most abundant OTUs significatly separating the soils L and H (Metastats, p < 0.05)
Group LB LK LA HB HK HA p-value Phylum Class Order Family Genus
Otu1 6626 11846 11496 5229 6200 5634 0.024 Euryarchaeota Methanomicrobia Methanosarcinales Methanosarcinaceae Methanosarcina
Otu3 6028 3736 4132 1784 2311 701 0.009 Thaumarchaeota Nitrososphaeria Nitrososphaerales Nitrososphaeraceae
Otu5 869 1033 986 428 292 498 0.001 Euryarchaeota Methanomicrobia Methanomicrobiales Methanomicrobiaceae Methanoculleus
Otu6 1153 596 707 359 462 238 0.028 Thaumarchaeota Nitrososphaeria Nitrososphaerales Nitrososphaeraceae
Otu10 584 311 223 1 12 1 0.001 Thaumarchaeota Nitrososphaeria Nitrosotaleales Nitrosotaleaceae Cand. Nitrosotalea
Otu17 429 426 503 90 105 36 0.001 Thaumarchaeota Nitrososphaeria Nitrososphaerales Nitrososphaeraceae
Otu93 97 102 130 53 38 41 0.001 Euryarchaeota Methanomicrobia Methanosarcinales Methanosarcinaceae Methanosarcina
Otu29 11 7 30 1 2 0 0.003 Thaumarchaeota Group_c
Otu42 8 3 13 0 0 0 0.001 Euryarchaeota Thermoplasmata Methanomassiliicoccales uncultured
Otu69 1 3 2 0 1 0 0.032 Thaumarchaeota Nitrososphaeria Nitrososphaerales Nitrososphaeraceae Cand. Nitrocosmicus

Group LB LK LA HB HK HA p-value Phylum Class Order Family Genus
Otu38 1 0 6 31 9 32 0.006 Thaumarchaeota Nitrososphaeria Nitrososphaerales Nitrososphaeraceae
Otu91 6 1 1 23 15 36 0.001 Thaumarchaeota Nitrososphaeria Nitrososphaerales Nitrososphaeraceae
Otu36 0 0 0 17 13 41 0.001 Thaumarchaeota Nitrososphaeria Nitrososphaerales Nitrososphaeraceae
Otu55 17 5 4 46 38 36 0.015 Thaumarchaeota Nitrososphaeria Nitrososphaerales Nitrososphaeraceae
Otu96 0 0 0 20 46 23 0.002 Euryarchaeota Thermoplasmata uncultured
Otu22 7 0 0 40 47 20 0.002 Nanoarchaeaeota Woesearchaeia
Otu76 0 0 0 18 64 14 0.001 Euryarchaeota Thermoplasmata unclass.
Otu25 0 0 0 27 38 36 0.001 Euryarchaeota Thermoplasmata uncultured
Otu23 0 0 0 23 40 47 0.001 Thaumarchaeota Nitrososphaeria Nitrososphaerales Nitrososphaeraceae Cand. Nitrososphaera
Otu87 0 0 0 19 79 19 0.001 Euryarchaeota Thermoplasmata uncultured
Otu20 2 0 0 33 53 40 0.001 Euryarchaeota Thermoplasmata uncultured
Otu31 0 0 0 35 71 18 0.002 Euryarchaeota Thermoplasmata uncultured
Otu86 68 18 11 83 62 135 0.016 Thaumarchaeota Nitrososphaeria Nitrososphaerales Nitrososphaeraceae
Otu65 0 0 0 42 100 47 0.001 Euryarchaeota Thermoplasmata uncultured
Otu40 2 0 1 59 124 52 0.001 Euryarchaeota Thermoplasmata unclass.
Otu39 1 0 0 54 115 75 0.001 Euryarchaeota Thermoplasmata uncultured
Otu14 0 0 0 48 143 53 0.001 Euryarchaeota Thermoplasmata uncultured
Otu78 12 0 12 91 134 85 0.001 Euryarchaeota Thermoplasmata uncultured
Otu19 0 0 1 63 168 59 0.001 Euryarchaeota Thermoplasmata uncultured
Otu61 4 0 2 115 87 187 0.002 Thaumarchaeota Nitrososphaeria Nitrososphaerales Nitrososphaeraceae
Otu15 71 10 50 164 246 126 0.013 Euryarchaeota Thermoplasmata uncultured
Otu18 5 1 3 112 102 216 0.001 Thaumarchaeota Nitrososphaeria Nitrososphaerales Nitrososphaeraceae
Otu13 4 0 0 249 164 317 0.001 Thaumarchaeota Nitrososphaeria Nitrososphaerales Nitrososphaeraceae Cand. Nitrososphaera
Otu70 18 6 2 303 217 480 0.002 Thaumarchaeota Nitrososphaeria Nitrososphaerales Nitrososphaeraceae
Otu12 30 1 9 498 1166 493 0.001 Euryarchaeota Thermoplasmata uncultured

Supplementary Table S9. Average frequencies (n = 4) of selected OTUs significantly contributing to separation of archaeal communities



Otu64 372 117 250 1149 1289 829 0.006 Euryarchaeota Methanomicrobia Methanosarcinales Methanosarcinaceae Methanosarcina
Otu4 765 296 285 1378 1495 1803 0.002 Thaumarchaeota Nitrososphaeria Nitrososphaerales Nitrososphaeraceae
Otu9 5 0 4 1655 779 1598 0.001 Thaumarchaeota Nitrososphaeria Nitrososphaerales Nitrososphaeraceae
Otu8 201 47 30 1250 1965 1146 0.001 Euryarchaeota Thermoplasmata unclass.
Otu7 106 22 37 1722 1957 2537 0.001 Thaumarchaeota Nitrososphaeria Nitrososphaerales Nitrososphaeraceae

B. The most abundant OTUs significatly separating the varieties Kariera (K) and Agria (A) (Metastats, p < 0.05)
Overall comparison
Group LB LK LA HB HK HA p-value Phylum Class Order Family Genus
Otu112 0 0 0 4 1 0 0.045 Nanoarchaeaeota Woesearchaeia unclass.
Otu75 0 0 0 0 1 0 0.045 Euryarchaeota Methanobacteria Methanobacteriales Methanobacteriaceae Methanobrevibacter
Otu92 0 0 0 0 0 2 0.034 Euryarchaeota Thermoplasmata uncultured
Otu73 55 13 49 34 9 23 0.009 Euryarchaeota Methanomicrobia Methanomicrobiales Methanomicrobiaceae Methanoculleus

Comparison of the varieties in conducive soil H
Group LB LK LA HB HK HA p-value Phylum Class Order Family Genus
Otu64 372 117 250 879 1696 829 0.019 Euryarchaeota Methanomicrobia Methanosarcinales Methanosarcinaceae Methanosarcina
Otu17 429 426 503 170 4 36 0.012 Thaumarchaeota Nitrososphaeria Nitrososphaerales Nitrososphaeraceae unclass.
Otu43 74 40 25 159 7 40 0.039 Thaumarchaeota Nitrososphaeria Nitrososphaerales Nitrososphaeraceae unclass.

Comparison of the varieties in suppressive soil L
Group LB LK LA HB HK HA p-value Phylum Class Order Family Genus
Otu29 11 7 30 2 0 0 0.05 Thaumarchaeota Group_c
Otu73 55 13 49 34 9 23 0.018 Euryarchaeota Methanomicrobia Methanomicrobiales Methanomicrobiaceae Methanoculleus



 in the individual samples.

A. The most abundant OTUs significatly separating the soils L and H (Metastats, p < 0.05)
Group LB LK LA HB HK HA p-value Phylum Class Order Family Genus
Otu1 1044 2101 1952 400 500 603 0.001 Ascomycota Eurotiomycetes Chaetothyriales unclass.
Otu10 581 855 688 358 255 564 0.02 Ascomycota Leotiomycetes Incertae_Sedis Pseudeurotiaceae Pseudogymnoascus
Otu25 452 488 586 227 134 267 0.001 Schizoplasmodiida Schizoplasmodiida_cl Schizoplasmodiida_or Schizoplasmodiida_fa Ceratiomyxella
Otu34 306 144 177 57 15 40 0.001 Basidiomycota Tremellomycetes Tremellales Trimorphomycetaceae Saitozyma
Otu36 119 234 232 32 9 37 0.001 Cercozoa unclass.
Otu47 54 405 65 2 15 5 0.001 Basidiomycota Tremellomycetes Tremellales Rhynchogastremataceae Papiliotrema
Otu45 60 210 223 0 0 2 0.001 unclass.
Otu80 91 151 198 9 6 6 0.001 Ascomycota Eurotiomycetes Chaetothyriales Trichomeriaceae Knufia
Otu74 84 257 113 7 16 12 0.001 Ascomycota Pezizomycetes Pezizales Pyronemataceae Melastiza
Otu182 119 220 230 56 30 95 0.001 unclass.
Otu51 251 73 61 1 0 0 0.002 Nematoda Chromadorea unclass.
Otu59 221 92 66 3 5 12 0.001 Mucoromycota Incertae_Sedis Mucorales Mucoraceae Mucor
Otu1080 95 169 118 8 12 12 0.001 Ascomycota Leotiomycetes unclass.
Otu69 1 152 169 0 2 1 0.007 Arthropoda Arachnida Acari_or Acari_fa Acari_ge
Otu68 31 121 168 1 6 1 0.001 Ascomycota Pezizomycetes Pezizales Pyronemataceae unclass.
Otu42 128 160 128 46 28 44 0.001 Ochrophyta unclass.
Otu41 77 230 150 57 63 48 0.008 unclass.
Otu117 167 45 45 8 8 2 0.001 Klebsormidiophyceae Klebsormidiophyceae_cl Klebsormidiales Klebsormidiales_fa Klebsormidium
Otu97 136 172 164 56 80 99 0.006 Discosea Longamoebia Centramoebida Centramoebida_fa Acanthamoeba
Otu76 28 102 121 5 7 5 0.001 Basidiomycota Agaricomycetes Agaricales uncultured uncultured_ge
Otu102 97 130 5 0 0 0 0.001 Basidiomycota Agaricomycetes Trechisporales Hydnodontaceae Trechispora
Otu29 147 247 213 131 65 183 0.044 Ochrophyta Xanthophyceae Tribonematales Tribonematales_fa Xanthonema
Otu108 136 102 52 10 42 20 0.009 unclass.
Otu1590 67 81 84 4 8 6 0.001 Ascomycota Leotiomycetes Helotiales uncultured
Otu2050 39 107 44 5 2 1 0.001 Mucoromycota Glomeromycetes Paraglomerales Paraglomeraceae Paraglomus
Otu49 73 129 117 82 21 44 0.004 Cercozoa Glissomonadida Glissomonadida_or Glissomonadida_fa Glissomonadida_ge
Otu115 44 41 86 0 0 0 0.001 Cercozoa Phytomyxea Phytomyxea_or Phytomyxea_fa Plasmodiophora
Otu103 36 90 71 4 6 20 0.002 Schizoplasmodiida Schizoplasmodiida_cl Schizoplasmodiida_or Schizoplasmodiida_fa Ceratiomyxella
Otu148 46 60 54 6 3 7 0.001 unclass.
Otu96 106 56 91 37 28 47 0.01 Cercozoa unclass.

Supplementary Table S10. Average frequencies (n = 4) of selected OTUs significantly contributing to separation of eukaryotic communities



Group LB LK LA HB HK HA p-value Phylum Class Order Family Genus
Otu105 28 5 9 47 41 57 0.002 unclass.
Otu1934 5 0 1 16 82 17 0.004 Ciliophora Intramacronucleata Litostomatea Haptoria Arcuospathidium
Otu223 1 1 5 4 56 57 0.005 unclass.
Otu159 27 5 3 36 34 81 0.005 unclass.
Otu146 0 0 0 59 43 18 0.001 unclass.
Otu160 14 4 5 20 108 18 0.046 Ochrophyta Diatomea unclass.
Otu155 12 5 16 42 76 43 0.001 Peronosporomycetes Peronosporomycetes_cl Peronosporomycetes_or Peronosporomycetes_fa Aplanopsis
Otu124 15 17 19 16 69 96 0.006 Ochrophyta Chrysophyceae Chromulinales Chromulinales_fa Spumella
Otu1245 15 7 12 79 21 67 0.007 Cercozoa Thecofilosea Cryomonadida Rhizaspididae Rhogostoma
Otu268 0 0 0 31 55 49 0.001 unclass.
Otu120 1 6 3 66 27 58 0.003 Mucoromycota Incertae_Sedis Mucorales Rhizopodaceae Rhizopus
Otu192 3 0 3 27 58 65 0.001 Cercozoa Cercomonadidae Cercomonadidae_or Cercomonadidae_fa Cercomonas
Otu119 22 10 19 102 35 70 0.002 unclass.
Otu86 31 14 24 102 43 82 0.001 Ciliophora Intramacronucleata Conthreep unclass.
Otu81 20 11 11 91 35 80 0.001 Chlorophyta_ph Chlorophyceae Chlamydomonadales Chlamydomonadales_fa Fasciculochloris
Otu87 65 18 38 161 51 77 0.016 Ochrophyta Eustigmatophyceae Eustigmatales Eustigmatales_fa Eustigmatos
Otu75 25 8 17 126 28 69 0.003 unclass.
Otu77 27 14 10 117 81 53 0.004 Ciliophora Intramacronucleata Litostomatea Haptoria unclass.
Otu46 43 24 52 121 72 149 0.015 Myxogastria Myxogastria_cl Myxogastria_or Myxogastria_fa Lepidoderma
Otu116 0 0 0 0 231 0 0.001 Basidiomycota Agaricomycetes Agaricales Marasmiaceae Marasmius
Otu84 47 24 21 189 142 65 0.002 Ciliophora Intramacronucleata Conthreep unclass.
Otu31 102 40 40 275 57 158 0.011 Chlorophyta_ph Chlorophyceae Chlamydomonadales Chlamydomonadales_fa Tetracystis
Otu40 66 8 31 122 87 240 0.001 Cercozoa Phytomyxea Phytomyxea_or Phytomyxea_fa Plasmodiophora
Otu57 3 0 2 100 90 174 0.001 unclass.
Otu89 28 28 57 319 78 125 0.003 Ciliophora Intramacronucleata Conthreep unclass.
Otu11 305 130 185 418 322 445 0.02 Mucoromycota Incertae_Sedis Mortierellales Mortierellaceae Mortierella
Otu27 18 21 20 302 116 441 0.001 Ascomycota Eurotiomycetes Eurotiales uncultured uncultured_ge
Otu17 15 0 0 10 446 797 0.039 Basidiomycota Agaricomycetes Corticiales Corticiaceae Sistotrema
Otu23 312 113 237 863 378 741 0.002 Cercozoa Thecofilosea Cryomonadida Rhizaspididae Rhogostoma
Otu5 0 0 0 1447 1186 42 0.001 Apicomplexa Conoidasida Gregarinasina Neogregarinorida Neogregarinorida_ge



B. The most abundant OTUs significatly separating the varieties Kariera (K) and Agria (A) (Metastats, p < 0.05)
Group LB LK LA HB HK HA p-value Phylum Class Order Family Genus
Otu63 1 341 0 1 2 0 0.03 Arthropoda Arachnida Acari_or Acari_fa Acari_ge
Otu94 0 0 0 0 311 0 0.001 Basidiomycota Agaricomycetes Agaricales unclass.
Otu116 0 0 0 0 231 0 0.001 Basidiomycota Agaricomycetes Agaricales Marasmiaceae Marasmius
Otu104 290 54 26 8 203 14 0.023 Basidiomycota Malasseziomycetes Malasseziales Malasseziaceae Malassezia
Otu178 50 60 15 7 72 23 0.004 Ascomycota Sordariomycetes Hypocreales unclass.
Otu288 0 0 0 10 76 0 0.001 Blastocladiomycota Blastocladiomycetes Blastocladiales Blastocladiaceae Allomyces
Otu196 46 61 13 3 50 25 0.005 Ascomycota Sordariomycetes Sordariales Chaetomiaceae Chaetomium
Otu286 4 6 1 5 51 2 0.031 Ascomycota Pezizomycetes Pezizales Ascodesmidaceae uncultured
Otu400 0 47 0 0 0 0 0.001 Mucoromycota Glomeromycetes Diversisporales unclass.
Otu578 0 0 0 0 36 0 0.001 Basidiomycota Agaricomycetes Agaricales Agaricales_fa Agaricales_ge
Otu397 0 26 0 2 8 1 0.015 unclass.
Otu466 6 19 0 1 4 1 0.018 unclass.
Otu599 0 22 0 0 0 0 0.001 unclass.
Otu738 0 0 0 0 15 0 0.001 unclass.
Otu366 8 14 5 4 10 4 0.046 Chlorophyta_ph Trebouxiophyceae Incertae_Sedis Incertae_Sedis_fa Coccomyxa
Otu764 2 13 0 0 0 0 0.001 unclass.
Otu3556 0 12 0 0 0 0 0.001 Arthropoda unclass.
Otu953 0 0 0 0 11 0 0.001 unclass.
Otu779 1 8 1 0 4 0 0.006 Chytridiomycota Incertae_Sedis unclass.
Otu1075 2 4 0 0 7 0 0.001 Peronosporomycetes Peronosporomycetes_cl Peronosporomycetes_or Peronosporomycetes_fa uncultured
Otu710 0 0 0 0 10 0 0.001 Ciliophora Intramacronucleata Spirotrichea Hypotrichia unclass.
Otu2032 0 0 0 35 9 0 0.001 Ciliophora Intramacronucleata Spirotrichea Hypotrichia unclass.
Otu905 0 8 0 0 0 0 0.001 Arthropoda unclass.
Otu729 2 9 2 0 1 0 0.048 unclass.
Otu1051 0 8 0 0 0 0 0.001 Euglenozoa Kinetoplastea Metakinetoplastina Trypanosomatida unclass.
Otu1780 2 6 2 1 7 4 0.046 Ascomycota Sordariomycetes Hypocreales Bionectriaceae Clonostachys
Otu1158 0 2 0 0 5 0 0.001 unclass.
Otu1303 2 4 0 0 2 0 0.001 Ascomycota Sordariomycetes Hypocreales Cordycipitaceae unclass.
Otu1044 0 6 0 0 0 0 0.001 unclass.
Otu2975 0 0 0 0 5 0 0.001 unclass.



Group LB LK LA HB HK HA p-value Phylum Class Order Family Genus
Otu167 19 15 25 19 3 15 0.045 Chlorophyta_ph Trebouxiophyceae unclass.
Otu277 19 4 25 1 5 5 0.036 Ascomycota Leotiomycetes Helotiales Sclerotiniaceae Sclerotinia
Otu241 19 11 21 7 0 11 0.022 unclass.
Otu202 12 14 15 13 2 23 0.028 Chlorophyta_ph Chlorophyceae Chlorophyceae_or Chlorophyceae_fa Chlorophyceae_ge
Otu355 17 7 9 26 2 22 0.027 Cercozoa Glissomonadida Glissomonadida_or Glissomonadida_fa Glissomonadida_ge
Otu181 19 14 15 37 2 24 0.05 Cercozoa Cercomonadidae Cercomonadidae_or Cercomonadidae_fa Cercomonas
Otu249 19 7 21 6 3 11 0.019 unclass.
Otu306 6 0 14 4 4 14 0.003 Cercozoa unclass.
Otu404 11 7 12 13 1 22 0.001 unclass.
Otu429 0 0 0 0 0 27 0.001 Nematoda Enoplea Dorylaimia_or Dorylaimida_fa Dorylaimida_ge
Otu323 9 2 10 14 8 28 0.05 Schizoplasmodiida Schizoplasmodiida_cl Schizoplasmodiida_or Schizoplasmodiida_fa Ceratiomyxella
Otu3439 5 0 28 0 0 0 0.001 Ascomycota Leotiomycetes unclass.
Otu248 20 0 7 7 4 25 0.023 Ciliophora Intramacronucleata Spirotrichea Hypotrichia uncultured
Otu163 12 9 28 34 15 26 0.041 Cercozoa unclass.
Otu216 30 11 22 33 6 26 0.009 Chlorophyta_ph Trebouxiophyceae Incertae_Sedis
Otu166 22 4 14 32 5 26 0.031 Cercozoa Cercomonadidae Cercomonadidae_or Cercomonadidae_fa Cercomonas
Otu2943 28 8 20 17 4 22 0.036 Chlorophyta_ph Chlorophyceae Chlorophyceae_or Chlorophyceae_fa Chlorophyceae_ge
Otu588 8 0 10 1 0 22 0.003 Zoopagomycota Basidiobolomycetes Basidiobolales Basidiobolaceae Basidiobolus
Otu141 20 21 40 4 17 34 0.014 Cercozoa Glissomonadida Glissomonadida_or Glissomonadida_fa Glissomonadida_ge
Otu118 88 35 40 108 17 49 0.048 Chlorophyta_ph Chlorophyceae Chlorophyceae_or Chlorophyceae_fa Chlorophyceae_ge
Otu191 2 16 38 6 3 24 0.007 unclass.
Otu90 63 26 47 61 32 61 0.04 unclass.
Otu168 59 23 40 39 8 42 0.043 Cercozoa unclass.
Otu158 74 9 19 31 19 60 0.035 Cercozoa Cercomonadidae Cercomonadidae_or Cercomonadidae_fa Cercomonas
Otu61 76 71 93 87 42 90 0.026 Ascomycota Dothideomycetes Capnodiales Extremaceae Extremus
Otu78 38 34 56 38 39 105 0.005 Cercozoa Cercomonadidae Cercomonadidae_or Cercomonadidae_fa Paracercomonas
Otu133 0 0 126 0 0 0 0.001 Arthropoda Ellipura Collembola Collembola_fa Collembola_ge
Otu13 730 401 459 565 364 468 0.029 Basidiomycota Tremellomycetes unclass.
Otu255 26 32 171 19 15 50 0.007 Cercozoa Glissomonadida Glissomonadida_or Glissomonadida_fa Glissomonadida_ge
Otu21 243 136 226 168 123 215 0.001 Ascomycota Leotiomycetes Helotiales Incertae_Sedis Tetracladium



Supplementary Table S11. Comparison of studies related to the topic.

Publication Rozenzweig et al. 2012 Kobayashi et al. 2015 Sagova-Mareckova et al. 
2015 Tomihava et al. 2017 Shi et al. 2019 Kopecky et al. 2019

System description: 
treatments, 
sampling

2 fields: induced 
suppressive and 
conducive soil, 1 
cultivar, 1 compartment

1 field: infested 
artificially infested, 8 
cultivars, 3 compartments

4 fields: 2 naturally 
suppressive and 2 
conducive soils, 3 
cultivars

1 field: 1 cultivar and 3 
treatments, 3 
compartments

1 field: soil patchiness 
and potato cultivar 
genotypes (no treatments)

2 fields: naturally 
suppressive and 
conducive soil

Actinobacteria  / 
Streptomycetaceae

Similar proportion in 
CS/SS soils

Actinobacteria  quantity 
same or high in SS

High actinobacteria in 
low scab, antagonistic 
isolates

No differences in 
Streptomyces

Actinobacteria  quantity 
low in SS, Streptomyces 
proportion high in SS

Pathogen / txt  genes cultivation/leisons, 
higher percentage in 
conducive soil

severity/qPCR txtAB, 
differences between 
cultivars in tubers, not 
rhizosphere

severity/qPCR txtB, 
differences between 
tuberosheres (both sites), 
bulk and periderm (one 
site)

severity/qPCR txtAB, 
differences between 
treatments in tubers

severity/qPCR txtAB, low 
s in low scab in 
geocaulosphere

severity / qPCR txtB, 
differences between 
cultivars in tuberosphere

Suppressive soil / 
low scab

Bacteria diversity high 
Acidobacteria, 
Nocardioidaceae, 
Pseudomonadaceae, 
Lysobacter, Rhizobium

NA Bacteria quantity similar Actinobacteria, 
Streptomyces

Bacteria diversity high, 
quantity low, network 
interactions high

Bacteria quantity low. 
Acetobacteraceae, 
Paenibacillaceae, 
Pseudomonadaceae, 
Bradyrhizobiaceae 

Conducive soil / high 
scab

Bacteria diversity low 
Deinococcus-Thermus, 
Firmicutes, 
Acetobacteraceae, 
Bacillaceae, Trupera

NA NA

Cultivars Snowden - moderately 
resistant

resistant: Yukirasha, 
02005-10, moderately 
resistant: Snow March, 
Star Ruby, Snowden, 
susceptible: Irish 
Cobbler, Toyoshiro, 
Piruka 

susceptible: Agria, 
David, Valfi

Nishiyutaka Favorita - susceptible Kariera - resistant; Agria - 
susceptible



Bacteria: cultivar - 
resistant / low scab

NA Gammaproteobacteria 
Aquicella siphonis 

NA NA Acidobacteria, 
Actinobacteria, 
Firmicutes, 
Geodermatophilaceae, 
Nocarioides, 
Curtobacterium

Bacterial diversity high, 
network interactions 
high. 
Streptomycetaceae, 
Rhizobiales, 
Sphingobacteraceae

Bacteria: cultivar - 
susceptible / high 
scab

NA Rhodococcus, 
Streptomyces

NA NA Proteobacteria, 
Bacteroidetes, 
Stenotrophomonas, 
Variovorax, 
Sphingobium, 
Agrobacterium

low bacterial but high 
archaeal and 
microeukaryot diversity. 
Gaiellales, 
Micrococcales, 
Frankiales and 
Streptomycetales

Soil compartment 
effect

NA rhizosphere tuberosphere, periderm rhizoshere, tuber geocaulosphere tuberosphere, bulk

Nutrients - low scab NA NA high Mg OM low N-NH4, TC, OM soil S, periderm Mg, Fe

Nutrients - high scab NA NA high pH, C, N, Ca, Fe 
(total)

soil N, C, P, Ca

Functions antibiosis of isolates 
(Meng et al. 2012)

antibiosis of isolates high nitrogen metabolism, 
drug metabolism in high 
scab, high carbohydrate 
metabolism, energy 
metabolism, antibiotic 
pathways, more complex 
networks in low scab



bacterial communities.
Supplementary Figure S1. Taxonomic composition of tuberosphere and bulk soil 

A. Relative proportions of orders within the phylum Actinobacteria [%].
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B. Relative proportions of families within the phylum Firmicutes [%].
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C. Relative proportions of families within the phylum Bacteroidetes [%].
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Supplementary Figure S2. Rarefaction analysis of sequence libraries of bacteria (A), archaea (B), 
and eukaryotes (C) from bulk (brown) and tuberosphere soil of varieties Kariera (green) and Agria 
(red) from suppressive field L (left) and conducive field H (right).
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Supplementary Figure S3. Taxonomic composition of tuberosphere and bulk soil 
archaeal communities.
 
 
Proportions of orders within the domain Archaea.
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Supplementary Figure S4. Taxonomic composition of tuberosphere and bulk soil
communities of micro-eukaryotes.
 
 
A. Taxonomic composition of the community of Ascomycota.
 
Proportions of classes within the phylum Ascomycota.

 

Proportions of orders within the phylum Ascomycota.
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B. Proportions of taxonomic groups (classes and above) within the community of Ciliophora


