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Abstract: The joint model of longitudinal data and time-to-event data creates
a framework to analyze longitudinal and survival outcomes simultaneously. A
commonly used approach is an interconnection of the linear mixed effects model
and the Cox model through a latent variable. Two special examples of this
model are presented, namely, a joint model with shared random effects and a
joint latent class model. In the thesis we focus on the joint latent class model.
This model assumes an existence of latent classes in the population that we
are not able to observe. Consequently, it is assumed that the longitudinal part
and the survival part of the model are independent within one class. The main
intention of this work is to transfer the model to the Bayesian framework and
to discuss an estimation procedure of parameters using a Bayesian statistic. It
consists of a definition of the model in the Bayesian framework, a discussion of
prior distributions and the derivation of the full conditional distributions for all
parameters of the model. The model‘s ability to estimate the composition of
the population with respect to latent classes and estimate the parameters of the
model is evaluated in a simulation study.
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Abstrakt: Metody zabyvajici se sdruzenymi modely pro longitudinalni a cen-
zorovana data umoznuji analyzovat tyto dva typy dat soubézné v ramci jednoho
modelu. V této oblasti se ¢asto vyuziva propojeni linearnitho modelu se smiSenymi
efekty a Coxova modelu skrze latentni proménnou. V praci jsou prezentovany
dva specialni pripady, sdruzeny model se sdilenymi nahodnymi efekty a sdruzeny
model s latentnimi tifidami. Hlavni pozornost je vénovana sdruzenému modelu s
latentnimi tfidami. Tento model predpokladé existenci skrytych skupin v popu-
laci, které jsou do modelu zaneseny pomoci diskrétni latentni proménné. Nasledné
predpokladame, ze ¢ast modelu analyzujici longitudinalni data je nezavisla na
analyze cenzorovanych dat v ramci jedné tiidy. Cilem této prace je predstavit
model v kontextu Bayesovské statistiky a zamérit se na odhadovani parametri
modelu pomoci Bayesovskych metod. Diskutujeme volby apriornich rozdéleni a
poskytujeme odvozeni plné podminénych rozdéleni pro vsechny parametry mod-
elu. Schopnost odhadnuti rozlozeni skrytych tiid v rdamci populace a odhad
parametrii modelu je otestovana v simula¢ni studii.

Klicova slova:  Bayesovska statistika, sdruzeny model, Coxtiv model, linearni
model se smisenymi efekty, model s latetnimi tiidami
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Notation

a, A vector

A matrix

|A| determinant of matrix A

AT transpose of a matrix A

a’ transpose of a vector a

AT inverse of a matrix A

tr(A) trace of a matrix A

diag(ay,...,a,) diagonal matrix with elements ay, ..., a, on the diagonal
0, (n x n)-identity matrix

1(A=a) indicator function, is equal to 1 if A = a, zero otherwise
p(y) density of y

p(y|x) density of y given x



Introduction

The longitudinal data and the survival data are two types of data that are com-
monly treated in statistical analysis. We typically meet them in medical studies
or in relation to biological disciplines. Over the years, several methods have been
developed to work with this type of data. To build a model and estimate pa-
rameters in an efficient way, and a statistical theory has been created behind
these methods. The standard tool to analyze longitudinal data is a linear mixed
effect model, a generalized linear mixed model or a generalized estimation equa-
tions method. In survival analysis we often meet the Cox model, or the additive
hazard regression model etc.

Recently, new types of models were introduced, such as the joint models for
longitudinal data and time-to-event data (Faucett and Thomas [1996], Wulfsohn
and Tsiatis| [1997]). By joint modelling we understand an interconnection of the
separate models for both types of data into one complex model. It is another
approach how to evaluate a relationship between time-dependent covariates and
risk of an event. It also allows us to build one model for the population with
latent classes and differentiate between the effects of covariates to the risk of the
event and the longitudinal marker for these classes that are not observed.

In this thesis we focus on the models where the relationship between the
longitudinal marker Y and the event time 7' is captured by a latent variable U
Special examples of this model are called joint models with shared random effects
(SREM), where the latent variable corresponds to random effects, and joint latent
class models (JLCM), where the latent variable captures information about class
membership of the individual subjects.

These models are introduced in the thesis and then we discuss JLCM in more
detail. Commonly, the frequentist approach is used and the parameters of the
model are estimated by the maximum likelihood method. However, in this thesis
we target to the estimation of the parameters using the Bayesian method includ-
ing a derivation of full conditional distributions for parameters of the model.

The thesis is structured as follows: In Chapter 1 we go over the basic concept
of the theory that is needed to build a theory for joint models. The analysis of
the longitudinal data using a linear mixed effect model and the analysis of time-
to-event data using the Cox model is shortly introduced. Also, we provide the
reader with a brief overview of Bayesian statistics introducing basic terms and a
few notes about estimation methods in Bayesian statistics.

Next, in Chapter 2, we move on to the definition of joint models for longi-
tudinal and time-to-event data where we acquaint the reader with the two most
common approaches, namely, joint models with shared random effects and joint
latent class model. In Chapter 3, the second mentioned model is introduced in
more detail and we describe methods on how to estimate the parameters in such
a model. This thesis focuses on the Bayesian approach. Thus, the model is prop-
erly specified in a Bayesian way of thinking and the choices of prior distributions
are discussed.



As the main intention of this thesis is to explore the Bayesian estimation
method for joint models detailed derivations of full conditional distributions are
presented in Chapter 4. Finally, a short simulation study is presented and we
evaluate the performance of Bayesian estimation methods for latent class joint
models in Chapter 5.



1. Preliminaries

The method of joint models allows us to build a model using two different types of
data, for example the longitudinal data and time-to-event data, combining meth-
ods that are typically used separately. To introduce this modeling framework, we
first briefly describe the two building blocks of the joint models. These models
are based on a link of regression models with mixed effects and survival models.

Moreover, the basics of Bayesian statistics are introduced at the end of this
chapter as this is a main method considered in this thesis while we estimate the
parameters of interest.

1.1 Analysis of longitudinal data

A situation where the classical linear regression approach is not satisfactory is
generated when the collected data is correlated. We concentrate on one type of
correlated data, longitudinal data, to be able to model the evolution of factors
influencing the survival outcome over time. This data is a result of repeatedly
measured characteristics of one subject over time (e.g. subject is a patient in a
clinical study). Due to the correlation structure the independence of observations
cannot be assumed and the simple regression approach is not appropriate for this
type of data. In the following section, a linear mixed-effects model is presented,
which is the most common type of model for such a situation.

1.1.1 The linear model with mixed effects

Linear models with mixed effects are based on the linear regression method.
Nevertheless, the collected data is no longer assumed to be independent. To
solve this complication, we need to add random effects to a set of fixed effects
that somehow capture dependency in our observations. These random effects
are unobserved. A widely used assumption is that the random effects follow a
multivariate normal distribution with a zero mean and a covariance matrix D that
describes the correlation structure within observations measured on one subject.

We define the model properly. We assume that a response follows a continuous
distribution. Let us have K independent subject, ¢ = 1,..., K and denote Y; =
(Yi1,...,Yin,)" as a response vector for i-th subject and &; = (g1,...,€:,,)" is a
vector of errors for i-th subject. The assumption of independence of the subjects
holds throughout the thesis. Let X; be an n; X p design matrix for fixed effects,
B = (Bo,---,Bp-1)" is a p-vector of fixed effects, let Z; be an n; x ¢ design matrix
for random effects.

Definition. The responses Y, ..., Yx satisfy a (single-level) linear mixed effects
model (LME model) if

where b; (the random effects) are independent identically distributed vectors,

bi ~ Nq(O, [D),



g; are independent vectors,

g; ~ an(o, O'QI]W),

T

and (g1,...,ex)" are independent of (by, ..., bg)7.

Consequently, it comes from the definition and equation (1.1)) that the linear
mixed effect model (Laird and Ware |[1982]) can be written as

Y ~ N, (X8, ). (1.2)

where n = 3K n;, Y is a response vector for all subjects, X is an n x p regression
matrix, and X is a block-diagonal matrix with blocks Y1, ..., X, such that ; =
ZiIDZzT +020,,,. The implication in the opposite direction from to does
not hold.

While the fixed effects describe an average population effect on the other side
the random effects express the subject specific effect within the population, in
other words they describe an individual trajectory for each specific subject over
time. Therefore, compared to the linear regression model, we need to estimate
not only fixed effects B but also components of the covariance matrix D, o2, and
the latent variable b. In some cases, however that is not necessary. Note that for
the latent variable b we talk about a prediction rather then about an estimation.
The estimate of 8 can be obtained using a maximum likelihood method or by
derivation of estimates from the so-called Henderson‘s mixed model equations
(Henderson| [1984]). Assuming that all the inverses exist and X is known, i.e. o>
and all components of covariance matrix D are known, there exists a closed-form
solution for ,é ,

B=XER)(XTEY),

and under same assumptions, the best linear unbiased prediction (BLUE) of b
takes form,

b=D,2"S7Y(Y — XB),

where D, is a block-diagonal matrix with K blocks D. We ofteh also need to
estimate the components of the covariance matrix D and o2 are needed to be
estimated as they are not known. Then the estimates are plugged into the esti-
mator for B and b. The estimates of the variance parameters could be derived by
the restricted maximum likelihood method (REML) (Patterson and Thompson
[1971]) or by the maximum likelihood method. In this thesis, the advantages or
disadvantages of these approaches will not be discussed, as we are going to focus
on Bayesian methods and there is a lot of literature discussing these methods in
more detail (e.g. |Jennrich and Schluchter| [1986], |[Lindstrom and Bates [198§],
and Harville| [1974]).

The simple single-level linear mixed effects model is able to be extend to a
multi-level linear model with mixed effects. The more complex models allow cross
effects and nested random effects. Although the use of extension to the multi-level
models is not very common in joint modeling.



1.2 Analysis of time-to-event data

In this section we provide a summary of the basic concepts of analysis of time-
to-event data and proportional risk models that play an important role in joint
models for longitudinal and survival data. Moreover, we explain the difference
in endogenous and exogenous time-varying covariates and provide the motivation
for the development of joint models from this point of view.

1.2.1 Time-to-event data

Let T* > 0 be the true failure time and it is the variable of interest. In case
that we are able to observe the event for each subject, we get a random sample
of TY,...,T,. In fact it is quite rare and we are not always able to observe the
exact time 7™ directly. There are several reasons why this problem arises, such
as the length of the experiment, financial costs, or simply a specific type of illness
(e.g. reoccurrence of cancer) that may not occur until the end of the patient‘s
life, thus the event is never observed and death is a so-called censoring time.

Then C > 0 expresses the length of the observation of the subject and it is
called censoring time. Depending on the mutual positioning on the time axis of
censoring time and the true time to event, the censoring is classified as right, left or
interval censoring. The second categorization of censoring is in regard to whether
the probability of censoring depends on the failure process. In other words,
we distinguish between informative censoring that corresponds to the missing
not at random (MNAR) missing data mechanism in longitudinal studies and
noniformative censoring, i.e. a dropout of the subject from the study is not
related to the expected failure time. This type of censoring is similar to that of
the missing completely at random (MCAR) data mechanism.

When it comes to the distribution of random variables C1, ..., C,, it is gener-
ally allowed that every variable C; may follow a different distribution. It is called
the random censorship model. Two special cases of this model are mentioned
below.

Type I censoring The time 7 > 0 of censoring is chosen in advance, i.e. all
censoring variables are equal to the same constant, C; = 7 for all 7 almost
surely. 7 indicates the duration of the observation.

Type II censoring The number of failures is chosen in advance. When this
number is reached all remaining observations are censored, i.e., C; = 17,
for all < and 77 is the k-th order statistic of the random sample 77, ..., T*.

However, in many real life applications, e.g. clinical studies, both of these types
of censoring are unrealistic.

Suppose we have a sample (T}, C4), ..., (T, Ck), i.e. there is a pair of vari-
ables, but only one of the variables is observed for each subject. The two situations
arise: 17" < C; then the event was observed, on the other hand if 7} > Cj, the
only thing which is known is that the event did not occur during the period of
observing and just the censoring time is known.

Instead of (T, C;) another type of notation is often used. Let 6 = 1(T < C)
be the event indicator and 7' = min(C,T*) = T* A C' denotes the time of either



an occurrence of the event or censoring. Thus, our sample contains pairs of
observations (71,61), ..., (Tk, k).

Now we define several functions that are commonly employed in the analysis
of time-to-event data. First, we introduce the survival function as a probability
of surviving time ¢.

Definition. The function S(t) = 1 — F(t) = P[T* > t] is called the survival
function of a random variable T* with a distribution function F'(¢).

The survival function is a right-continuous non-increasing function as ¢ in-
creases and S(0) = 1. It uniquely determines the distribution of the data. Un-
fortunately, in general, we are not able to easily estimate the survival function
from data even though we assume that 7™ and C' are stochastically independent.
Under this condition, the following inequality holds,

Sr(t) =P[T >t]=P[T" >t,C >t] =St)P[C >t] < S5(t),

where Sr(t) is the survival function of 7. The distribution of C' is rarely known
thus there is no possibility to derive S(t).

Next, we define another function that is also a unique characterization of the
distribution.

Definition. Let 7% be a continuous non-negative random variable. Then the
hazard function \(t) of T* is defined as

1
A(t) = lim 2Pl < T <t 4+ hT* > 1)

Let T* be discrete with values 0 < ¢; < t5 < .... Then the hazard function A(t)
of T% is defined at to,t9,... by

In other words, the hazard function A(¢) expresses the probability of occur-
rence of an event in the time interval [t,¢ + h) assuming that no event for the
monitored subject occurred before time t. The useful property of the hazard
function is that it can be estimated from censored data under certain conditions.
It is much simpler than in the case of the survival function and we do not need
to know the distribution of C. The hazard function is therefore a convenient tool
to analyze time-to-event data. We then define the cumulative hazard function.

Definition. The function A(¢) defined as

At) = /Ot)\(s)ds,

for continuous 7%, and

for discrete T, is called the cumulative hazard function.



It describes the accumulated risk up until time ¢ and it can also be interpreted
as the expected number of events to be observed by time t.

Earlier we assumed a stochastic independence of the censoring time C' and the
survival time 7™, however it is not necessary to insist on such a strong condition.
Instead, we impose the independent censoring condition.

Definition. The censoring variable C' satisfies the independent censoring con-
dition for the failure time 7™ with cumulative hazard A if and only if

tdP[T* > s,C > T*]

At) = - o P[T*>s,C > s

Vs such that P[T* > s,C > s] > 0. (1.3)

Remark. By expression in the numerator of ([1.5) we understand

z=t+s
P(t<T*§t+s,T*§C’):—/ dP(T* > 2,C > T*).

z=t
Remark. Let T* has a continuous distribution then (1.5)) is equivalent to equality,

—2P[T* > 5,C > t]]s—

Alt) = P[T*>t,C > {]

1
= lim —P[th* <t+h|T* zt,CZt] vt > 0. (1.4)
h\O h

We assume that the independent censoring condition holds for further deriva-
tions.

1.2.2 The Cox model

We assume T > 0 follows a continuous distribution. We observe K inde-
pendent triplets (7}, 5i,)~(i), where T; = min(C;,T}), 6; = 1(7} < C;) and
X, = (5( iy e e ,5( &)1 is a vector of covariates obtained for each subject. The
covariates could be fixed (time-independent) or they may be functions of time.
We are interested in whether the covariates are significantly influencing the dis-
tribution of 7. We are searching for the model that allows us to estimate the
effect of the covariates on the risk of having an event.

Including covariates in the model allows us to use a weaker condition of inde-
pendent censoring. Instead of we define an independent censoring condition
given the covariates X, where X(t) is a vector of values of the covariates at time ¢.

Definition. The censoring variable C' satisfies the independent censoring con-
dition for the failure time 7™ with cumulative hazard A given the covariates X if
and only if

~ 1 -
= lim — <T* > =
A(t|1X) ]111{% hP[t <T*<t+h|T">1t,X(t)]
1 ~
fim Pl ST <t4+h|T" 210> X ()] VE=0. (1)
The sufficient condition for this equality is conditional independence of T
and C' given the covariates. Thus, the distribution of censoring times may vary

among different population groups as long as a covariate distinguishing between

9



these groups included in the model (e.g. the students of primary school, secondary
school and high school can have different censoring distributions when the variable
defining the types of education is involved in the model).

We used to define the regression models for the expectation of the response
(in our case this stands for the expected failure time). However due to the nature
of our data it is more meaningful to build a model for the conditional hazard
function. The Cox proportional hazards model (Cox! [1972]) is a type of regression
model that is suitable for our purposes and it is a common tool that is also used
in joint modelling.

Definition. The pairs (T}, X,(t)),i = 1,..., K satisfy the Cox proportional

hazards model if the following two conditions hold:

(i) they are independent across different subjects,

(ii) the conditional hazard function given the covariate process has the form

A(HR) = No(t)explad X(H)} (L6)

where Ag(t) is some unknown unspecified hazard function and ay € R is an
unknown vector of regression coefficients.

Then the regression parameters are estimated by the partial likelihood method
(Cox| [1972]). This method does not require a specification of A\g(+), i.e. a Cox
model is a semi-parametric model where Ao(-) is a non-parametric part. The
interpretation of the parameters is as follows. The covariates X act multiplica-
tively on the conditional hazard function. Suppose that X and X" are the values
of covariates for two subjects that do not depend on time. The hazard ratio or
relative risk can be expressed with the help of as,

MIX) o g sy XK
) el (& = %) X E expn),

where e; is a vector with 1 on j-th place and 0 otherwise. It follows that the
relative risk for the event is equal to an exponentiated regression parameter if
there is an increase in one covariate by one unit, while other covariates remain
fixed. The relative risk is same at each time point and this characteristic is called
the proportional hazard assumption.

We are not restricted just to variables whose values are constant during the
follow-up period, e.g. gender, type of education, etc. The time varying variables
can also be taken into account when we are estimating the risk of an event. The
extension of the proportional Cox model allows us to use this type of covariates.
However, then the assumption of proportional hazard does not hold any more.
The exponentiated regression coefficient then expresses the relative risk at a given
time point ¢ when there is a unit increase in corresponding covariate and other
covariates remain unchanged. Note that these variables are assumed to be more
like piecewise-constant covariates due to the fact that the measurements are pro-
vided just for particular time points ¢;;. The second option is that they may
be created as an interaction of time-independent covariate with some function of
time g(t).

10



Without any restrictions we can include the so-called exogenous (external)
time varying variables in the model. Suppose that X;(t) = {X;(s),0 < s < t}
denote the history of covariates X; for subject i up to time t. The exogenous
covariates are those which satisfy,

PIX,(t)|Xi(s), T, > s] = P[A,(1)| Xi(s). Ty = 5], O<s<t  (L7)

In other words, the equality formalizes the idea that their future path is not
influenced by the occurrence of the event, for instance, weather conditions, hu-
midity etc. On the other hand, endogenous time varying variables are those which
are observed repeatedly on the subject and may somehow be associated with the
occurrence of failure at the time s, i.e. they are not predictable. Concerning some
medical studies, this type of data is often encountered. Moreover, it is reasonable
to assume that these observations are contaminated with measurement errors and
the whole path is not observed. The extended Cox model requires for variables
to be a predictable process with a full path to be specified and measured without
error. This is not satisfied here. Thus, modeling these markers using a suitable
model before including them into the Cox proportional model appears to be a
way to solve this issue and it gave an incentive to the formulation of joint models
for longitudinal data and time-to-event data (Rizopoulos| [2012], Chapter 4).

1.3 Bayesian statistics

The last part of this introductory chapter focuses on Bayesian statistics. We
do not want to introduce a whole field that is wide and extensive. The main
purpose of this section is to introduce a notation, terms that are going to be used
in later chapters and a short comment about the Gibbs and Metropolis-Hastings
algorithm.

1.3.1 Basic concepts

Let Y represent data that comes from probability distribution that depends on
the unknown parameter @ € O, where © € RP is an appropriate parametric space.
From a frequentist point of view, the data Y is generated from distribution with
a density p(y|@) with respect to o-finite measure A, and the likelihood function
of the parameter 0 is defined as L(0) = p(Y|@). The main idea of Bayesian
statistical methods is based on the fact that there is some prior knowledge of the
distribution of the true value of the parameter . This distribution is a so-called
prior distribution with a corresponding prior density p(6) with respect to o-finite
measure v.

The idea of how to involve all available information about 6, i.e. observed
data y and a prior distribution of @, to the statistical inference of 0 is provided
by the Bayes‘ theorem.

Theorem 1 (Bayes' theorem). A conditional distribution of Y'|0 is determined
by a density p(y|0@) and a prior density of a random parameter 0 is p(@). Then
the density of the distribution 0|Y is of a form

20K if ply) = Jo p(y|0)p(6)dv(6) # 0,
0, otherwise.

p(6lY) = {

11



Proof. See (Andél [2007], Chapter 3.5, Theorem 3.21). O

The density p(0|Y") is called a posterior density and it determines a posterior
distribution of @ under the knowledge of data Y. By applying the Bayes‘ theorem
it is possible to obtain the posterior density of 8 that is later used to calculate
an estimate of 8. This can be understood as that the estimate of @ is a kind
of update of the prior value of the parameter after taking into account collected
data. We denote by 8; € R?, ¢ < p, a subvector of 6. Similarly, by 6_;, we
understand a subvector of € such that j-th component is missing, i.e. 0_; =
OF.....67 .67, ... 607

An important term that is related to posterior distribution is full conditional
distribution of 6;. The density of full conditional distribution of 6; is denoted
as p(0;]y, 0_;) and it is proportional to the likelihood function multiplied by the
prior density of the parameter, i.e.,

p(05]y,0_;) < p(y|0)p(0).

In general, it is easier to calculate the full conditional distribution of 8;|y, 6_;
compared to marginal distribution of 6;|y due to the fact that the derivation of
the marginal distribution requires us to compute an integral over all components
of 8_;. That is not always possible to solve the integral analytically or it can be
numerically intensive when the closed form solution does not exist. The density
of the marginal distribution of 8;|y takes a form,

pOsly) o [ p(y10).p(O)du(o-,).
—J

This was a short overview of the important terms and a summary of the basic
concept of Bayesian statistics. For more information on Bayesian statistics, we
recommend the following literature, e.g. (Robert [2007]). In the very last section
of this introductory chapter we briefly recall two commonly used algorithms for
parameter estimation.

The last note is related to the notation. As we are going to discuss just the
distributions with a density with respect to a o-finite measure in this thesis, we
simplify the notation to d@ instead of dv(8), i.e. the distribution of 8|y is denoted

as p(dfly).

1.3.2 Estimation methods

In contrast to the classic statistics where p(Y'|d@) is employed to estimate an
unknown parameter, we would like to engage a prior knowledge about @ to the
estimation process. It follows that the posterior distribution should be involved
in the estimation process.

Naturally, a posterior expected value appears to be a suitable form of estima-
tor of @, i.e. a conditional expected value with respect to a posterior distribution
oY,

A

0=E@0]Y) = /eep(e|Y)d0. (1.8)

12



To derive such an estimator, we need to know the posterior distribution, or we
have to compute the integral at least numerically. We are also often inter-
ested in credible intervals or regions as equal-tailed (ET) intervals or the highest
posterior density (HPD) regions, quantiles etc. for individual components of 6.
However, except for the trivial cases, it requires us to derive individual marginal
posterior distributions and then the computation of the integral with respect to
the remaining components of 8. That can be tough in a complex model and thus,
there is a need for different estimation methods to get an estimate of 6.

On that account, we are shortly going to mention the Markov chains Monte
Carlo (MCMC) methods that are used to compute the estimates of parameters of
interest in a more efficient way. In general these methods are based on simulations
and the goal is to generate a Markov chain with certain properties. In general
we are searching for a Markov chain with a limit distribution p(d@). A thorough
introduction to the theory behind is well described in contemporary literature
(Brooks et al.|[2011], Chapter 1). Here, we will not define any terms related to
the theory of Markov chains. As a reminder, we only present two algorithms
that are commonly applied tools in Bayesian statistics and that can be used to
compute the estimates of the model discussed in this thesis and to which we refer
in the theoretical part of the thesis.

The length of the generated Markov chain is B 4 M, where B settles for a so-
called burn-in period so the first B states are not used to compute the estimate.
The remaining M states are used for posterior inference.

Let start with a Gibbs algorithm (Geman and Geman| [1984]). There is a
set of assumptions that must be satisfied. A parametric space © has to be of
a form © = H?;l 0,;,0 = (0],...,0])T. A target (stationary) distribution is
p(d@) with a density p(@) with respect to a product measure \; ® --- @ Ay,
where ); is a o-finite measure such that \;(©;) > 0,Vj € {1,...,k}, next we
need that © = {0 : p(@) > 0}. The last important assumption is that we are
able to (easily) generate from full conditional distributions p(d@;|0_;), where
0_;=(0],...,0]_,,6] ,,...,00)". The algorithm itself is composed out of three
steps.

Gibbs algorithm
1. Select an initial state 8© = (87 . O,EO)T)T, and set m = 0,
2. (i) generate 6™ from the conditional distribution

p(d01|02m)7 s 701(gm)7y)7

(m+1
2

(ii) generate 0 ) from the conditional distribution

p(d6,|6"Y 9™ 6™ ),

(m+1
3

(iii) generate 6 ) from the conditional distribution

p(d65]6" ) 05" 6 e ),
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(k) generate 8" from the conditional distribution

p(d6|6™ e ).

3. Then add one to m and goto step 2.

The output of the algorithm is a Markov chain 8™, m € {1,..., B+ M}, where
the first B components are not used for the calculation of the estimate of 8 or ¢(8),
where £(-) is some measurable function. Ergodicity is assured if the assumptions
mentioned above are met.

Second, we briefly describe the Metropolis-Hastings algorithm (Metropolis et al.
[1953], Hastings [1970]). The assumptions for the application of the algorithm
are the following: a target (stationary) distribution is p(d@) with a density p(0)
with respect to o-finite measure A such that A(©) > 0, where © = {60 : p(8) > 0}
is a parametric space.

Metropolis-Hastings algorithm
1. Select an initial state (), and set m = 0,

2. generate a proposal of v from a distribution ¢(8™, dv) with a density
q(0™ 1p) (with respect to o-finite measure )),

3. compute the proposal acceptance probability
. ,0(m) m m
a(e(m)’ ¢) — mln{p(pe((wm))q)(qd()g(m)ﬂ)ﬁ)a 1} for p(e( ))Q(O( )7 w) > 07

1, otherwise,

4. generate U ~ U(0,1), where U stands for a uniform distribution and

gnin _ [ . U <a(0™,4)
0™, if U > (0™ ),

5. then add one to m and goto step 2.

The output of the algorithm is again a Markov chain 8™ m € {1,...,B +
M}, where the last M components are used to calculate the estimate of 6.

There is no need to know the normalizing constant of the target density p(0),
so this algorithm is suitable for Bayesian statistics as we often work with the
form of density without a normalizing constant. The proposal density ¢(0, ) is
allowed to be arbitrary, however, the choice of ¢(8,1) can have a huge impact
on the proposal acceptance probability. In addition, to ensure the ergodicity, the
proposal density has to satisfy certain conditions. An example of such density is
a symmetric random walk. For more details we refer to (Brooks et al.| [2011]).
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2. Joint models for longitudinal
and time-to-event data

The basic idea of joint modelling is to enable analysis of time-to-event data with
repeated measurements as a predictor taken into account. It leads to reduction
of biases, more precise predictions (Njeru Njagi et al.|[2013]), and it improves
efficiency of statistical inferences. First, we define the joint distribution of an
event time 7" and a longitudinal marker Y.

Let Y be a response vector for all subjects and T is a time-to-event, also for
all subjects. We assume that Y and time-to-event T jointly follow a continuous
distribution with a density fy r(y,t).

In this chapter we focus on one of the possible approaches to specify this
density. This approach considers a latent variable U that is assumed to capture
dependency between T and Y. The latent variable U follows a distribution
Fy(u) and we assume that the conditional independence of Y and T given a
latent variable holds (Diggle et al.| [2008]). Then the joint distribution of (Y, T)
can be written in a form,

frr(yt) = /fY\U(y|U)fT|U(t\U)dFU(U)- (2.1)

Especially, the shared dependency could be explained by the shared random
effects. A widely used combination is a normal linear model with random effects
and a Cox proportional hazard model. Another approach is a joint latent class
model, where it is assumed that the longitudinal marker Y and time-to-event T’
are conditionally independent given some discrete latent variable (Diggle et al.
[2008]). Those two methods are shortly introduced in the following sections.

Remark. For simplicity we later use f(y) as a notation for the density of Y
instead of fy(y).

2.1 Joint models with shared random effects

A widespread type of models for joint modelling where the shared latent structure
is specified by random effects is called a shared random effects model (SREM).
The longitudinal trajectory is a function of those random effects and relevant
predictors. Subsequently, this function is included in a survival model as a pre-
dictor. Consequently, it follows from that the distribution of the longitudinal
marker and time-to-event is assumed to be conditionally independent given the
random effects.

A common choice to describe the subject-specific trajectory of longitudinal
response for K independent subjects is a linear mixed-effects model (LMEM).
The random effects take a role of the latent variable U in . To be consistent
with the notation of the theory of linear mixed-effects models, the letter b is used
for random effects (latent variable) instead of U.
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Suppose that f(b;) is a density of b;. From the definition of the LME model,
the independence of subjects is assumed, thus (2.1)) can be written in this special
case as a product of densities corresponding to individual subjects, i.e.

fly,t) = 1:[ flyiti) = 1:[ / f (il b;) f(ti]b;) f(b;)db;. (2.2)

2.1.1 A definition of the model

Assume that the longitudinal response Y follows a normal distribution. We
rewrite a definition of the linear mixed-effects model from the matrix nota-
tion by the single values at time ¢ due to later application in a survival model.
The observations are split into the true unobserved value m;(-) of longitudinal
marker and the error term &,(+),

Y;(t) = mi(t) + &i(t), 53
where the error terms ;(t) ~ N(0, 0?), the random effects b; ~ N,(0, D).

Although we only observe data at a few time points we need to estimate the
true unobserved value m;(-) and reconstruct the complete longitudinal history
of the marker for each subject so that the longitudinal outcome can be involved
in the survival model (Rizopoulos| [2012], Chapter 4). To quantify the strength
of the relationship between the risk for the event, the longitudinal marker and
other factors it is reasonable to postulate a Cox proportional hazards model of
the following form,

N(tC, v, a) = No(t; exp{X;(t) Ty + am;(t)}, (2.4)

where Ao(t;¢) is an unspecified baseline risk function, X,(t) is an r-vector of
values of covariates at time t. Commonly, some components of X;(t) coincide
with the components of X;(¢). Next, v = (70,...,%--1)" is a vector of unknown
parameters and « is an unknown parameter capturing the association between the
risk of an event and the true value of the marker m;(t) at time t. The hypothesis
Hy : o = 0 indicates that we are testing whether there is a significant effect of
the current value of the longitudinal outcome on the risk of the event.

Remark. The risk of an event does not have to be associated only with the cur-
rent value of the marker. Obviously, there are several possibilities of how to
specify an association structure due to the nature of the longitudinal marker, e.g.
lagged value of marker, cumulative value of marker, or an interaction with other
covariates. The generalized version of is,

Ai(tlC, v, @) = No(t; Qexp{Xi(t) Ty + h(mi(t — ¢), e, Si(1))},  (2.5)

where h(-) is a function of the true level of the longitudinal marker m;(-), of a set
of covariates S;(+), and the vector of unknown parameters «. More information
about the several forms of parametrizations of the longitudinal outcome is covered

by (Rizopoulos| [2012]).
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A standard method used to estimate the parameters is a combination of
the maximal likelihood estimation and EM algorithm. The second option is
a Bayesian approach that may be advantageous at some point. It often leads
to easier computational implementation and it allows us to address complex
models that involve multivariate longitudinal outcomes or survival observations
(Lawrence Gould et al. [2015]). However, the majority of literature focuses on
univariate joint modelling, thus just one time dependent covariate is included
in the survival model. The extension of univariate joint modelling to the inves-
tigation of multivariate longitudinal outcomes results in high dimensionality of
random effects and a large number of parameters. For instance, this is often the
case in medical studies where multiple biomarkers are repeatedly recorded on a
patient and we want to include them all in a single joint model (Hickey et al.
[2016]). That is computationally more intensive even if the Bayesian approach is
used. An alternative to SREM is a joint latent class model where the main inter-
est is in prediction and we are not focused on the interpretation of the parameters
(Proust-Lima et al.| [2014]).

2.2 Joint latent class models

An alternative approach to the shared random-effect model is the joint latent
class model (JLCM). The basic principle is based on the fact that the dependency
between the event time and longitudinal predictor can be described by a latent
class structure which is not observable.

Suppose that the population is not homogeneous and assume that there is a
finite number of heterogeneous groups in the population. The common character-
istics within the group are the same risk of the event and the same trajectory of
the time dependent variable, i.e. the class structure captures the entire relation-
ship between the longitudinal marker and the time-to-event. Thus the subject
specific trajectory of the longitudinal marker and the risk of an event can be
assumed to be conditionally independent (Proust-Lima et al|[2014]). Let V; is a
categorical latent variable with G possible values, then (2.1) can be rewritten as,

e
fyi, t:) =Y f(wi|Vi=9)f(t:|Vi = g)P(Vi = g). (2.6)

g=1

2.2.1 A definition of the model

Suppose ¢ = 1,..., K is a number of independent subjects, ¢ = 1,...,G is a
number of classes, m;, is a probability that a subject ¢ belongs to the latent class
g. The probabilities of class membership can be defined in several ways and it is
also allowed that they depend on subject specific covariates. One of the commonly
used options is to define probabilities through subject-specific covariates is,

=T
” exp{Z; &}
mig = PV = |Zi] = — >, (2.7)
Sl exp{Z; &}
where Z; is an m-vector of time-independent covariates for a subject i, £ =
(Cogs -1 &m-14)",9=1,...,G are the unknown parameters. To have all param-

eters identifiable, it is assumed &5 = 0.
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First, we need to build models for the longitudinal marker and the risk of the
event, respectively. The natural choice of the model for the marker again is a
linear mixed effects model. For this model, given V;, it holds that Y;, b;

Vi=g =

Yils, v,=g X bilv,=g, Where Y|y, v,—, takes a well-known form,
Yilo, vi=g = XiBy + Zib; + &, (2.8)
where Y; = (Y, ... ,Ymi)T is a response vector for i-the subject, X; is an n; X p

design matrix. The covariates included in X; can differ compared to covariates
employed in due to the fact that the time-dependent covariates are al-
lowed. A p-vector B, = (Bog,---Bp-14)" is the vector of unknown regression
parameters for g-th class. Let Z; be an n; x ¢ design matrix for random effects
b;. The marginal distribution of random effects is a mixture of normal distri-
butions where the weights correspond to the probabilities m;, given by (2.7)), i.e.
b; ~ Zngl TigNg(ptg, Dy) or equivalently given the class b;|v,—y ~ Ny(pg, Dy). An
n;-vector of random errors e follows N, (0, ¥;). There is no restriction on covari-
ance matrices 3; and D,, however the common choice is a diagonal matrix oI
for ¥ and Dy = w?D with wg = 1.

Second, we have to specify a model for time-to-event. The natural choice of
modelling a risk of occurrence of an event is again the Cox proportional hazard
model, i.e.

ng

AtV = g3 o atg) = Mg (t: Co)exp{Xi(t) ey}, (2.9)
where Ay, is a baseline hazard for g-th class, X (t) is a vector of covariates at time
tand oy = (g, - . -, ) is an r-vector of unknown parameters. Commonly, the

partial likelihood function is used to estimate the parameters in the Cox model.
The advantage of the partial likelihood function is that the specification of the
baseline hazard is not required. Unfortunately, this approach cannot be applied
to the JLCM, so the baseline hazard has to be parametrized, e.g. it follows a
Weibull distribution or it is piecewise constant (Proust-Lima et al.| [2014]).

The assumption of conditional independence allows us to model trajectories in
a survival model in a way that they may vary a lot compared to the joint models
with shared random effects. The shared random effects are quite restrictive be-
cause they act in both a survival and a longitudinal model. Due to this common
structure, great flexibility is not allowed (Rizopoulos| [2012], Chapter 4). On the
other hand, the interpretation of coefficients in JLCM is not that straightforward,
so this modeling is recommended to use when someone is interested in prediction
more than in explanation of the relationship between a longitudinal marker and
the occurrence of en event (Proust-Lima et al.| [2014]).

The main advantage when multivariate outcomes are included in the model
is that the JLCM keeps the dimension of the random effects low compared to the
SREM. Therefore it is less computationally demanding. The standard way to
estimate the parameters is to use a maximum likelihood estimation. The likeli-
hood function is under this model much simpler than under the joint model with
shared random effects. The optimal number of the latent groups in a population
is often determined by the information criteria based on the penalized likelihood
with the Bayesian Information Criterion (BIC) being the most common choice.

Note that we mention just a simple case with one longitudinal marker, but the
general version with multivariate longitudinal markers is also possible. (Proust-
Lima et al. [2013])
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In the following chapters we expand on this model, mainly the estimation
methods. The main focus is on the Bayesian approach however the frequentist
approach is also briefly mentioned.
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3. Estimation of parameters in
JLCM

When it comes to the JLCM there are two well-known main approaches of how
to estimate the unknown parameters in the model. The frequentist approach is
comprised of a widely used maximum likelihood method (MLE). Nowadays, this
method is definitely employed more frequently when there is a need to fit the
models. That correspond to more developed literature and software implemen-
tation for this approach (Proust-Lima et al|[2015], Proust-Lima et al. [2014]).
Therefore, MLE is just shortly mentioned and no details are discussed. The ma-
jority of this chapter is devoted to the Bayesian approach. The definition of the
model in Bayesian context, the choice of prior distributions, the discussion of pos-
terior distributions and a selection of the number of classes that are presented. A
separate chapter is devoted to the derivation of the full conditional distributions
of the individual parameters of interest.

3.1 The maximum likelihood method

The maximum likelihood method is a widely used method that is used in real-life
applications when we are interested in estimating the parameters in a model.
This method requires a specification of the distribution for the data and is based
on the maximization of the likelihood function, i.e. a joint distribution of the
sample as a function of the parameters with the random variables fixed at the
observed values.

Likelihood function L(6) under the JLCM takes a form,

K
Lobs(e) = H f(ywtza 5i7 0)

3
—

[
=
M

f(yi ts,0:|Vi = g,0)P[Vi = ¢|0,]}

3
Il
a

[
=
T

S
Il
—
Q
Il
i

(3.1)
FWilVi = 9,0)Ni(t:|Vi = g, 0,)"

S(V: = 9.0,)PLV: = 916},

where the second equality holds due to the assumed conditional independence of
longitudinal model and survival model given the class-membership. The vector of
parameters @ = (0),60;,60])" can be split into the subvectors of parameters that
corresponds to separate parts of the model, i.e. 6, includes all parameters from
the longitudinal model, 8, covers the set of parameters of the survival model and
0, corresponds to the parameters that occur in class probabilities.

Based on and the definition of the model in section 2.2 the contribution
of the longitudinal model to the likelihood function for the i-th subject in the g-th
group is

20



FilVi= 9,00 = [ F@il%iBy + Zibyi, Vi = 9)f(bing: Dy )b,
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Next, the contribution of the survival model to the likelihood function for the
i-th subject in the g-th group is

Ni(ti| Vi = g,0,) " S(t:|Vi = g,05) =

- {)\Og(ti7 Vg, ng)eXp(Xi(t)Tag) }6

Now suppose that Ao, (t) follows a Weibull distribution. Moreover, we propose an
additional assumption that Xz(t) = X;, i.e. covariates are time independent, they
are constant over time. This assumption simplifies a function and an integral can
be easily calculated,

(x) = {Vgngt;jgleXp(Xi(t)Tag)}Jiexp(—ygng/0

- 6 o T
= {Vgngt;jg_lexp(X;rag)} exp(—ngti"gexi @),

where the equality (x) holds under the assumption that Ao, (¢) follows a Weibull
distribution. The last equality (x%) holds if X;(t) = X;, i.e. covariates are time
independent, they are constant over time.

It is obvious from the form of likelihood that this would not be easy or that
for some parameters it is even impossible to calculate estimates as a maximum of
log-likelihood analytically. There is a number of algorithms that can be used to
maximize the log-likelihood numerically e.g. algorithms in the Newton-Raphson
family or in the EM family. Based on satisfactory results from previous analyzes,
an extended iterative Marquardt algorithm is used because of its speed and the
rate of convergence. In the context of JLCM, this algorithm has already been
implemented in R in the lcmm package and is used by Jointlcmm and jlcmm
(Proust-Lima et al. [2015]). Since we are forced to use numerical procedures,
it is strongly recommended to carry out the estimation process several times to
achieve a global maximum instead of a local maximum or to establish initial values
that will help us reach a global maximum. (Proust-Lima et al|[2015]). Before
starting the procedure, the user must decide on the number of classes in the
population. This is often determined using the Bayesian Information Criterion
(BIC), nevertheless it is not the only option (Han et al. [2007]). The MLE is
not going to be discussed here in more detail because it was already covered in
recent years by the available literature (e.g. |Proust-Lima et al.|[2015], Rizopoulos
[2012], Chapter 4).

eXp(_Ai(ti|ng Tlg, Qg Xz(t)) = (*)

t;

1 X.(s)T
sYe 1€X1(s) agds)

3.2 The Bayesian approach

We proceed from the model defined in the previous section by (Proust-Lima
et al.| [2014]), however we will look at the model from the perspective of Bayesian
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statistics. To our best knowledge, the focus on the application of the Bayesian
statistics for this type of model is not that common and not many details about
this approach are available. In contemporary literature a model combining JLCM
and SREM together is proposed and estimated using Bayesian statistics (An-
drinopoulou et al.| [2018]). Their model can be easily transformed into the context
of JLCM, by setting one parameter equal to zero. However the theoretical deriva-
tions are missing, the authors only introduce the form of the likelihood function
and they briefly discuss prior distributions. They also do not specify a formula
of the class probabilities, i.e. instead of they simply consider 7 that does not
depend on any additional parameters. There is no proper discussion about how
to estimate the parameters of the model, derivation of full conditional distribu-
tions that are needed when using the Gibbs algorithm, etc. Next chapter follows
up on the obtained results and complete these missing derivations. The main
motivation to derive full conditional distributions results from the use of these
distributions in algorithms used to estimate model parameters. For the Gibbs
algorithm, the Metropolis-Hastings algorithm or the Metropolis within Gibbs al-
gorithm it is sufficient to generate data from these distributions to achieve a
result.

Now we will properly define the model we are working with on the following
pages in a Bayesian framework. The basic notation of parameters and random
variables remain the same as in Chapter The model is a bit extended, we
deduce a full conditional distributions for both options of the above class prob-
abilities, distinguishing the subject-specific probability (each subject has its own
probabilities to be a member of the class) and a general one (probabilities are
the same for all subjects involved in the study). We work in a setting where a
baseline hazard Ay(t) follows the Weibull distribution, however other possibilities
exists e.g. piecewise constant, usage of B-splines.

Remember, there are GG different groups in the population, a membership in
the group is not known in advance and the information about the group member-
ship is included in the model by the latent variable V. The joint density of the
model is of almost the same form as (3.1)), however the sum over G is missing,

K
p(ya t7 67 V7 b7 0) = H p(yla ti7 51'7 V;'? blye)p(e)

I
= 1

Zat’wdubl‘/;: 70P‘/;: 0 0
p(y Vi = g,0)P[Vi = ¢|6]p(6) (32)

S
Il
—

p(yiﬂ/% =g, b;, 9)p<bi|9))\i<ti"fi =49, 9)6i
S(ti|Vi = g,0,)P[V; = g|6,]p(0).

The individual parts of (3.2]) are specified in the next chapter after we specify
the model in more detail. This is done on the following lines. The Bayesian model
specification is,

Observed data

[
=

3
Il
—

e Longitudinal model: A longitudinal marker Y;|y,—gp, ~ Ny, (X8, +
Z;b;,%;,), where 3, is an i-th block of block-diagonal matrix 3,
such that %;, = Z,0,Z] + 0?21,,,, where g =1,...,Gand i =1,..., K,
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e Survival model: A time-to-event T; = min (7}, C;) follows a continuous
distribution, ¢; = 1(7} < () is the event indicator. They follow a Cox
model with a baseline hazard X, (t) following the Weibull distribution
with a scale parameter 7, and a shape parameter v,.

Latent data

e Random effects: b;|v,—, ~ N,(p4,D,) independent for g =1,...,G,

e Class membership: V; independent with a discrete distribution A(r;),
where ; = (m;1,. .., me)" and m;, = P[V; = g] is the class-membership
probability such that 25:1 mig = 1. As a special example, m;, are al-
lowed to depend on the subject specific covariates Z; through a multi-
nomial logistic regression as it is defined in , ie.

xp{Zi &) ©  expé)

= , 3.3
56 ez e)  Sheo@ Y

P[V; = g|€] =

where the second equality (x) holds when it is assumed that the prob-
ability does not depend on subject specific covariates Z; or it can be
interpreted as a model just with an intercept, where Z; = (0,...,0,1,0,
...,0)T, with 1 on the g-th position. If it does not depend on the indi-
vidual subject, then we write 7;; = m,. A prior distribution for parame-
ters of the model has to be specified depending on the parametrization,
two options arise in our case, we need to choose a prior distribution
for € or a prior distribution for m; = (m;, ..., mg) ' itself is specified.

Parameters 0 = (0,,0,,0,)" are so-called “genuine” parameters, where

e 0, = (&,..., L), where &, = (Sogy- -, Em-14)",9 = 1,...,G, is a
set of parameters corresponding to the model of group probabilities,

e 0, = (0.,8],....0 1, ..,pu&, vec(Dy),...vec(D,))" is a set of pa-
rameters of the longitudinal model,
e 0,=(v1,...,Vc, M, NG, Q1 ,...,aL)T" is a set of parameters of the

survival model, where v, and 7, are parameters of the baseline hazard
and o, are parameters that capture the relationship between covariates
and a risk of event.

Next step is to specify prior distributions of these parameters.

3.2.1 Prior distributions

A necessary part of the definition of the Bayesian model is the specification of
prior distributions for model parameters. We deal with a vector of parameters
0 from . We assume a prior independence of the components of 8, i.e,
p(0) = p(6,)p(6;)p(6,). The parameters that depend on class membership are
denoted by index g. In the following text the prior distributions for parameters
of a longitudinal part of the model, the survival part of the model and class
probability model are discussed separately.
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The longitudinal model The prior distributions for the longitudinal model
are specified i.e., a prior distribution of the parameter vector 8, in which the fol-
lowing prior independence is assumed. For class g we obtain, p(8;,) = p(c?)p(8,)

p(g)p(Dy).

The variance o2

is independent of class specification by definition of the model.
Commonly, it is used an inverse variance T = o~ 2 in Bayesian statistics then the
natural choice of the prior distribution is

p(r) ~ T(ar,br), (3.4)

where both parameters a, and b, are positive. As long as not that much informa-
tion is available we would rather decide to use less informative prior distributions.
This corresponds with the choice of a, € (0, 1] and b, close to zero. Neverthe-
less the choice of b, can have a huge impact on the shape of the distribution so
it is not rare that this parameter is allowed to be random following a gamma
distribution with fixed parameters. Another suitable choice of prior distribution
is p(1) %, 7 > 0 that is not informative. In latter derivation in the following
chapter we assume that holds and the parameters a., b, are fixed.

As prior distribution for 8 we use a standard option applied in linear models,
ie.

p(By) ~ Ny(pp,,Xs,), where ¥g = diag(azgl, o ,aégp), (3.5)

assuming that ¥ is a symmetric positive definite matrix. Ordinarily, the diago-
nal components are chosen large to ensure less impact of the prior distribution to
posterior inference, an option for pg, is 0 except the absolute term of the model
(Bog)- Moreover, p(,) o< 1 represents a non-informative prior distribution. In
case of random hyperparameters, gamma distribution is used for diagonal compo-
nents of a covariance matrix and a multivariate normal distribution for the mean
vector.

The same discussion as above can be provided for the prior distribution of the
vector of expected values p, of random effects,

p(peg) ~ Ny(pog, Xog),  where Yo, = diag(aggl, . ,Uggq), (3.6)

assuming that ¥, is a symmetric positive definite matrix.

The last random parameter in the longitudinal model is a covariance matrix
Dy. A prior distribution is defined for inverse of D,. This inverse exists as long
as Dy > 0, it holds because D, is a covariance matrix and is defined in this way.
A suitable prior distribution of [Dg_1 is a g-dimensional Wishart distribution,

p(D,") ~ W,(dp,, Bp,), (3.7)

9

where dp, are degrees of freedom and a choice dp, € (¢ — 1, ¢] leads to a weakly
informative prior. The matrix Bp, is usually chosen as a diagonal matrix with
the diagonal elements being again random or large. The large values lead to a
weakly informative prior distribution.

The survival model Prior distributions for the parameters of a survival model
are presented hereafter. Again a prior independence of components of a parameter
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vector @ is assumed, i.e. for class g we obtain p(6,,) = p(a,)p(n,)p(v,). We start
with the parameters related to baseline hazard. By the definition of the model,
vy and 1, must be positive, thus a natural choice of prior distribution for both
parameters is gamma distribution, i.e.

p(ﬁg) ~ F(ang: b"]g)’ p(”g) ~ F(aug, bug)> (3-8>

where a,,, by, a,,, and b,, are positive. We dealt with this case when we talked
about the prior distribution of 7. The same recommendations can be followed
when selecting parameter values or non-informative prior distributions, i.e.
p(vy) i,yg > 0 and p(n,) %,ng > 0.

The size of the effects of covariates in a g-th class is captured through an r-
dimensional parameter a,. A standard option of prior distribution is multivariate
normal distribution with independence within components of the parameter, i.e.

p(og) ~ Ny (o, , Ba,), where X, = diag(aigl, 02, (3.9)

» Yaogr

assuming that X, is a symmetric positive definite matrix. Diagonal components
Yo, are selected as large if less effect on the posterior distribution is required.
Similarly to the effects in the longitudinal model we define p(e,) o 1 as a non-
informative prior.

The class probability model Prior distribution of a parameter vector 6,
in the class probability model depends on the definition of class probabilities.
First, if 8, = = does not depend on any other parameters than a widely used
prior distribution is Dirichlet distribution because it is the conjugate prior of
multinomial distribution,

p(m) ~ Dir(a), where a = (a,...,aq)". (3.10)

Without prior knowledge about the distribution of classes in the population, it
is recommended to use a = a; = - -+ = ag. An often choice of a fixed parameter
a are e.g. a = 1, p(m) yields to a Uniform prior (Laplace‘s prior), for a = 1/2 we
get a so-called Jefrrey‘s prior (Alvares et al.|[2018]). Another suggestion proposed
in (Nasserinejad et al. [2017]) is to assume a < d/2, where d is the number of
class-specific parameters.

Second, the class probability can depend on covariates and is defined as

=T
7.
PV = gloy) = P E]
Sl expiZ; &}
where 0, = € = (€1,...,&c)". The parameter £ takes the same role as parameters

a, or By, thus a natural choice of the prior distribution is again a multivariate
normal distribution. The dimension depends on the fact whether probabilities
are subject-specific or not,

p(€) ~ Naim(pe, B¢),  where 3¢ = diag(og,, ..., 0z,,), (3.11)

where dim = G when we assume that the class probability does not depend on
covariates, and dim = mG with m being a rank of design matrix Z. The prior
distribution is weakly informative if agg are large. An option p(§) o 1 yields to
a non-informative prior distribution.

25



Ha,| |25 br (| Hay| |Sag| |9 | |Ony ay, | | b,
N [(3.9)
N [(3.5) r'f(3.4) r [38) 1] (3.8)
AWEO 0RO
| LME 7|nodel l | Cox model

@ Independent given Vi = g (TD (‘SD

Figure 3.1: Assuming a prior independence, the specification of prior distributions
of the parameters of the model given a class g is encoded in a directed acyclic
graph (DAG). The numbers in brackets corresponds to the equations.

Remark. A not negligible number of hyperparameters appear in the defined sce-
nario: ar,br, pg,, 2, Pogs 2og, Bo,, Apys Ay bnys Quys buys Hays Yiays Gy e and Ye.
For future derivation, all are considered as fixed and pre-specified parameters.

Moreover, the choices of prior distributions for particular parameters are clearly
depicted on Figure [3.1] with a help of DAG.

3.2.2 Posterior distributions

Using a Bayesian theorem, the joint posterior density of the latent variables and
parameters of interest is of the form of:

p(b,V,0|y,t,0) xp(y,t,4,b,V, 0)
ﬁ_/
prior
The prior distributions were specified in the previous section and prior indepen-

dence is assumed. Under a hierarchical model, the joint density of data and
parameters, i.e. a right side of (3.12]), is defined as

K

=1

K (3.13)
= [ p(wilVi = 9,b:, 00)p(t:, 6:[Vi = g, 6:)p(b:6))

P[Vi = g16,]p(0.)p(6:)p(6)).

The goal is to estimate the unknown parameters @. The Bayesian estimator
of the parameters is naturally a marginal posterior expected value E(8;|Y, T, 6),
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where 6; is a subvector of 8. To achieve this, of course, we have to calculate a
marginal posterior distribution of 8;. That requires calculation of the multidi-
mensional integral p(0;|y,t,d) = Jo_, p(Oly,t,0)dO_;, where 0_; is a vector
without j-th component and ©_; represents a support of _;. Unfortunately that
may not lead to a close form solution and the computation of the integral can be
challenging. For instance, the general form of cumulative hazard in the likelihood
function of our model is likely to prevent analytical derivation of the marginal
posterior distribution for some parameters without the proposed additional as-
sumptions. Even if it is possible to derive a marginal posterior distribution we
cannot be sure that with a general specification of prior distributions it would
not lead to some well-known distribution that would make the calculation of the
posterior expectation easier.

Nevertheless, as it was already mentioned it is sufficient to compute full con-
ditional distributions for the individual parameters of interest and then use a
theory of MCMC and employ some algorithm such as the Gibbs algorithm or
the Metropolis - Hastings algorithm to get results. The general form of the full
conditional distribution is,

p(0;ly,t,8,b,V.0_;) x p(y,t,8|b,V,0)p(b|V,0)p(V]0)p(6)
x p(y|b, V,6,)p(b|V,0,)p(6,) (3.14)
p(t, 0|V ,05)p(0:)p(V06,)p(6,),

and we are going to present the full conditional distributions of all components
of 8 and latent variables V' and b in Chapter 4.

3.2.3 A selection of number of classes

The number of classes is another topic that needs to be discussed and there is not
only one option of how to decide about the number of classes. While in the fre-
quentist approach the use of Bayesian information criterion (BIC) is common and
straightforward. It cannot be said that this criterion is also employed in Bayesian
approach. Several different criteria are introduced and consequently compared
to get the number of classes in Bayesian finite mixture models (Nasserinejad
et al.| [2017]). To our best knowledge there is no literature available where the
comparison of criteria would be extended to Bayesian joint latent class models.
Nevertheless the recommendation coming from the study are applied to the JLCM
(Andrinopoulou et al.|[2018]). The suggestion is to use Rosseau and Mengersen's
criterion (Rousseau and Mengersen| [2011]), this criterion is closely connected to
the choice of the parameters in the Dirichlet prior distribution. Of the other cri-
teria, let us mention the deviance information criterion (DIC) or the application
of reversible jump MCMC algorithm (Nasserinejad et al. [2017]). However, we
will not focus on solving this problem or finding the optimum criterion as this
topic requires careful attention and explanations which is beyond the scope of
this thesis.
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4. Derivation of full conditional
distributions

As mentioned in the previous chapter, the main motivation for deriving full condi-
tional distributions is that it allows us to estimate the model parameters by using
the Bayesian approach. To the best of our knowledge, it seems there is no specific
software package for this type of model available except the general software for
Bayesian modelling (e.g. JAGS). It means that the user is forced to derive it on
his own if he wants to use the Bayesian method to estimate the parameters of the
model. This chapter should provide the reader with the theoretical background
that is needed for the implementation.

The chapter is divided into three sections corresponding to the parts of the
model related to the different data type, i.e. the contribution of the longitudinal
model, time-to-event model and class probability model,

p(b,V,0|y,t,0) x p(ylb,V,0,)p(t,o|b,V,0,)p(b,V,0). (4.1)

We start with the derivation of the full conditional distributions of the the param-
eters related to the model of the longitudinal outcome. We assume that the model
introduced in Chapter [3| holds including the specification of prior distributions.

4.1 The longitudinal model

The contribution of the longitudinal model to posterior distribution of 8; and the
latent variable b takes a form,

p(eb b|y7 tv 5) X p(y|Va ba Ol)p(va b7 01)

G
< [I II p(wilVi = g.b:,60,)p(b:|Vi = g,6,)p(6))

g=11iw;=¢g
s 1 \7 1 . T . . (4.2)
‘MEQQWQ eXp{_M@i— iBg — Z:bi) (yi — KBy — )}

because of the independence of the longitudinal model and the survival model
given the group g. Only the priors of parameters 7, B,, p, and [D;1 appear
in due to the fact that other components of @ are not involved in the
longitudinal part of the model. In the following lines we derive a full conditional
distribution of B¢, 7, by, p, and IDg_1 given the class g, respectively.

Let us start with a vector of regression coefficients B, describing the effect of
particular covariates. The random vector B, follows conditioning on the class

g a prior distribution N, (,u,gg, Egg). Denote 6, as a set of parameters that are
taking part in the longitudinal model for class g. We proceed from (4.2)) and
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because of the prior independence and independence of B, and random effects b;
for i =1,..., K, then we can write p(B,|y.t,9d,...) as

p(Byly.t.8,...) H p(yi Vi = g, bi,0,9)p(B,)

x H (27m > p{ - 2}‘2(% —XiBy — Z;b;) " (y; — XiBy — Zibi)}
g, | lex { ~15,) 5, (8, — 3, |
X exp { [ (X:By) TS Ny — Z:by) + Z (XiBy) TS (X:By)

()
81518, — 2By S5ha, |

)

We omit the terms that do not depend on 8, and factor out 8, in (x),

(%) = C—f[ﬁT(zﬁ + 3 AR B,

;=g
= A@g
— 2B, ( Z K5 y: — Zibi) + g, )},
1V;=g
= Bg,

where Ag, is a symmetric and positive-definite (PD) matrix when we assume
that Mg, is a symmetric and positive-definite matrix and it holds because it is a
covariance matrix. The second term X] ¥ ~1X; = U%xjxi is a symmetric positive
definite if X; has a full column rank. Then Ag, is a sum of two symmetric positive

11
definite matrices is again symmetric PD matrix. Then we can write Ag, = A3 A3,
The term in brackets from (x) can be converted to the square, i.e.

~ 1 _1 1 1
(x) =C-— §(A2 By — hs Bj,) (A5, By — Ay’ Bj)
~ 1 _1 1 11
=C =58y - As2hsPBE )AL A (B, Aﬁm\ﬁ?BT )
- 1 B
=C - 5(ﬁg — 05 BE) hs, (By — A5 B )

Together we have
1 -
p(B,ly.T.5,.) o exp] — S(8,~ 83/BL a8, - 45BL)}. (43)
It follows from 1’ that the full conditional distribution of B, is Np(AEngTg : Aggl).

The covariance matrix ¥ is diagonal with o on the diagonal. So, we derive a
full conditional distribution just for the inverse transformation of o2, i.e. 7= o2,
Due to the fact that 7 is independent of class membership we are allowed to derive
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a full conditional distribution without a conditioning to a fixed class g. A prior
distribution of 7 is specified as I'(a,, b,) and is independent of other priors. Plug
in this to (3.14) then the full conditional distribution of 7 takes a form,

G
p(rly,t.0,...) < [I TI p(w:|Vi = g,b:,6,)p(6))

g=11iv;=g

where a, and b, are unknown parameters that we have to specified in advance.
With particular densities, we obtain

G
p(rly.t.6,.. ) oc [ [ 7 te rr%

g=1liv;=g

.
exp{ = 2 (v — KBy — Zib) Ty — XiB, — b))}

G Ny
=11 T(“T“‘”eXp{ (O
g=1

Z ;(yz - Xiﬁg - Zibi)T(yi - Xi,@g - Zﬂh’)) },
10;=g

the scaling constants are omitted and > n; = Ny, the number of subject in

1:0;=g

the class N,. Subsequently, 25:1 % = % and, we write,

G n;
p(7-|y7 t) (57 e ) 0.8 TaT+Zg:1 Zi:vi:g B !

< 1
GXP{ -7 (br + Z Z 5(% - X8y — Zibi)T(yi — XiBg — Zibi)> }7

g=114w;=g

=b,

thus a full conditional distribution of 7 while using all observed data is equal to

F(aT + %, l~77>, under the condition that both parameters of the distribution are

positive. It holds because % is positive as N, € N and the second parameter

consists of sum of quadratic terms.

Next, we derive a full conditional distribution of a latent variable b for fixed
g. This variable represents the random effects of individuals in the longitudinal
model. For fixed g, where b, is a vector, where the individual components are
subvectors b; such that i € {j € N: V; = g}. Again we proceed from (4.2)). The
prior distributions of the parameters that are independent of random effects are
omitted,

V=g
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Plug in the corresponding densities and omit scaled constants.

1
p<bg|y7t7 d,.. O< H exp{ - 7(y - Xvﬁg - Zibi)T(yi - Xiﬁg - Zz’bi)}

1 _
eXp{ - §(bi — 1y) "D, (b — ug)}

1
x I1 exp{ — 5 (BTZTS 176 — 2675y - XiB)

;=g

&
+b]D, b~ 267D, s, )|
&

Follow similar steps as we did when we derived the full conditional distribution
of B, factor out b;

(¥) = C+b] (Z]27'Z;+ D) by — 2b] (7 (i — XiBy) + D, 1ty ),

= [Eig = Fig

where Z]¥717; is a symmetric and positive-definite matrix when we assume that
Y is a symmetric and positive-definite matrix. It holds because it is a covariance
matrix. Multiplication by a design matrix Z; does not change anything if Z; has
a full column rank. The matrix Dy is a covariance matrix, thus it is a symmetric
and positive definite from the definition. Then E;; is a sum of two symmetric
positive definite matrices and is also a symmetric positive-definite matrix. Then

11
we can write i, = E2 2 and we can rewrite (x) such that,

()= C+ (Exbi - [EZ-;%FZ.TQ)T([E% b — E,,°FT)
= O+ (b~ E,°E,*FT) 'ELE (b, — £, °E, °FT)
= O+ (b~ £, FL) By (b — E,'F]).
Finally,
p(byly, t,8,...) H eXp{ - 1(b —E; 1FT>T[E2-9 (b — [EiglFl.Tg)}
x exp{ - ; 3 (b — B, FT) g (b - [EiglFng)}
1Vi=g

X exp{ — ;(bg - [Eg—lF;)T[Eg (bg - [E;lFD},

where E, is a block matrix consisted of submatrices E;;, such that ¢ € {j €
N : V; = g} on the diagonal, zeros otherwise, as a consequence of mutual in-
dependence of b; and b; for @ # j. A vector F, is composed out of subvectors
Fi,,i € {j e N:V; =g}. Tosum up, a full conditional distribution of b, is
Nk, (E;'F, E;"), where kg = 315, 1(V; = g) and a full conditional distribution
of b; is Ny (E;, 1FT E,')-

197
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There are two more parameters of the longitudinal model performing like the
parameters of the distribution of the random effects, i.e. a vector of expected
values p, and the covariance matrix D, given a class g. First, we derive a full
conditional distribution for pg. A prior of p, is Ny(teog, Xog), s0 then we have,

p(l'l’g|y7t767 . ) X H p(b’LH/; = g? Dgu“g)])(lj’g)

;=g

x T1 e = 50— )0, (0~ 1)}

1v;=g

1 _
eXp{ - §(ug — Hog)" S, (g — —uog)}

ocexp{—;(—Z >

V=

#g Dy b+ oty Dy hag
g

¢
~2p1, 55, prog + by o, Hy) ) }
¢

where 3, _,1 = SK 1(V; = g) = k,. Next, we apply the same steps as we
already did several times, thus, we factor out p,.

(0) = C=2py (So, + 32 Dy'bi) +pg (S, + koD, ) by,
;=g _—
= Ky

=J4

where K, is a symmetric positive definite matrix due to the fact that it is a sum
of two symmetric positive matrices as Yo, and Dy are covariance matrices. Thus,

F
K, = K;K; and by converting (%) into the square, we get
. 1 Lotk -
() = €+ (K ay — K 3T (K, — 35 H0T)
C+ (g — H(g_l'];;r)-rkg(llfg - M;J;)-

To sum up,

1 -
p(ug’?/?ta 67 N ) X eXp{ - 5([119 - IKg 1J;—)T[Kg<[,llg - [K;J;]r)}7

a full conditional distribution of p, is again g-dimensional normal distribution,
ie., Ng(K 'I7 K 1).

Last but not least we need to derive a full conditional derivation for a co-
variance matrix D,. However, we will not derive it for the covariance matrix,
but for the inverse of the covariance matrix. A prior distribution of inverse of
the covariance matrix is W, (dp,, Bp,). By using the same process as before, we
obtain,
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p(ng_l‘ya t> 67 ce ) 0.8 H p(blﬂ/; =g, |Dg_17 “g)p(ﬂ);l)

110, =g

1 1 .
x T1 Dyl Fexp{ = 5 (b = 1)"0; (b~ 1)
LU, =g
T | PR
|[Dgl| 2 exp{—Qtr([Blengl)}
_p) 2B 1 Th-1 11
05 15 exp{ = S (X (b= 1) D, by — ) + (B! ) |

1V, =g

(*)

Next, we rewrite a term (x) using a properties of a trace of a matrix (AP-
PENDIX |A.2)), thus,

(1) = tr( D (b — pg) "D, (b — pay)) + tr(Bp!D, ")

1V, =g
= 3 tr((bs — pg) (bi — ) "D, ) + t2(Bp)D, ")
;=g
= tr( > (bi— ) (b — ) "D, + B;'D,")
10 =¢g
= tr{( Z (b — pg) (b; — Ng)T + [B[IS_;)'D;I}-
1V, =g

~—1
B
Dg

By putting together the previous results, we get

_ _q, %0y 9 1 ~—1_ _
p(D; 'y, t.6,...) o |D;| 5 exp{—2tr([B[Dg|Dgl>}, (4.4)

so that it is again a Wishart distribution. To conclude, for given class g, the
densityp(lD;l]y,t,é, ...) is proportional to Wy(dp, + 1,Bp,) if Bp, is positive
definite. It holds because Bp, is a positive definite matrix and the second term
is a sum of quadratic terms that are nonnegative. Moreover, dp, + 1 should be
greater then ¢ and dp, > ¢ from definitions, thus, this condition is satisfied.

In the case of the longitudinal model we derived a full conditional distribu-
tion for By, T, b;, p, and IDgl, for all of them we figured out that the form of
derived densities was proportional to densities of some standard distributions.
That makes the estimation of the model easier and it allows us to use a Gibbs
algorithm because it is possible to generate easily from those standard distribu-
tions. The results are summarized in the following lemma.

Lemma 1. Lets assume that the model defined in section 3.9 holds, then the full
conditional distributions of the parameters related to the longitudinal model are

p<139|y7 t7 67 R ) ~ Np<AgngTg’ AE;)’

where A, = S5+ + Y KIS and By, = Y KT Xy — Zibs) + pg,,
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p(tly,t,8,...) ~ F(aT ];[,ZN))

where b, = b, + * ZG 1 Yii—g(Yi — KiBg — i) T (y; — KBy — Z;b;),
1T -1
p(bily.t,0,...) ~ Ng(E, F;. E.),

where By, = 2] %717, + [D;1 and Fiy = Xy — X:8,) + D, Yy,

p(pgly, t,8,...) ~ Ng(K 1T K1)
where Ky = (3o, + kgDy ') and Jg = g, + Y=g Dy 'b; and as the last,

p(D,Yy,t.6,...) ~ W,(dp, + 1,Bp,),
where [én)g =Yg (Ui — pg) (b — pg) T + [ngl.

Proof. See previous derivations. O]

4.2 The survival model

In this part we focus on the full conditional distributions for parameters of the
survival model. By 8,, we denote a set of parameters for the survival model that
are class-specific. Note that not necessarily all of the parameters depend on the
class however it is allowed to be like that in contrast to a standard deviation o
from the longitudinal model which never depends on the class.

We proceed from . By the definition of a hierarchical model and condi-
tional independence, the part of corresponding to the contribution of the
longitudinal model and class probabilities is constant with respect to the parame-
ters of interest, thus it is not needed in the following derivations. We assume that
Aog follows a priori Weibull distribution. Then the contribution of the survival
model to the posterior distribution of @ is of the form

p(0sly, t,0) o< p(t, 0|V, 0,)p(V, 0,)
1T p(t:. 6:|Vi = g.0,)p(6,) =

;=g

H )\z(tl“/z =9, 95)618(@“/1 =9, esg)p(asg) =
V=g

- d; -

11 {)\og(ti,l/g,ng)exp(Xi(t)Tag)} exp(—Ai(ti\yg,ng,ag,Xi(tD (4.5)

V=g
- 8

p(ve)p(ng)p(ety) = H Vgngt;'/g_leXp(Xi@)Tag)}

exp( = vy [ O s ol o ol exy)

On the next lines the full conditional distributions p(n,ly,...), p(v,ly,...),
and p(ayly, ... ) are derived. The full conditional distributions of parameters of
ny and v, depend on the parametrization of Ay, due to the fact that those param-
eters are parameters of the Weibull distribution, i.e. with different parametriza-
tion we have to derive a full conditional distribution for corresponding parameters
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corresponding to the actual parametrization. However, the full conditional distri-
bution of e, is independent of the parametrization of a baseline hazard Ay, thus
it can be used even if the baseline hazard is a piecewise constant or the B-splines
are employed.

First, we derive a full conditional distribution for a scale parameter 7,. The
prior distribution p(n,) was defined as I'(a,g, b,y). The prior independence of 7,,
vy and oy, is assumed and all other parameters are considered as a constant, so

then it follows from ({4.5)),

t; ~ a, —
p(ngly. t,8,...) o [] ngiexp{—ngvg/ 8”"‘1exp(Xi(S)Tag)dS}ng"g Hebngla,
0

1:0;=g

Denote v, [3 s”gflexp()N(i(s)Tag)ds = (4, and merge the exponents together,
then

Zi:v-: 5i+ang71
p(ngly,t,6,...) ccn " exp{—ng(bng—i- Z C’Z-g)}.

i:vi:g
This is a well-known density of Gamma distribution without a normalized con-
stant. Thus, a full conditional distribution of 7, follows F( D iwimg 0i T+ Qng, byg +
Y iwi—g Cig) if both parameters of Gamma distribution are positive. The term

Y im—g 0i + g is positive because >-;.,._,0; > 0 is a sum of indicators and a,,

was defined as a positive parameter. The second term is also positive because
Cig = % where A;(7;]05,) is nonnegative from the definition of the cumu-
lative hazard function, 7, > 0 and b;; > 0 because they are parameters of the
Gamma distribution or Weibull distribution.

The second parameter of a baseline hazard is a shape parameter v, of the
Weibull distribution. The full conditional distribution of v, for fixed class g with

a prior p(vy) ~ I'(ay,, by,) plugged in (4.5)) is of the form,

t; -
plraly, .8, ) o TT (™Yo = ng, [ exp(Xu(s)Texy)ds |
V=g

716_171’9'/9
Next, we reorder the terms to try to factor out vy,

0; itavg—
p(yg‘yatv 6) H {6i(Vg - 1)10gtz

v;=

t; -
— 1, (779 /0 SVg—lexp(Xi(s)Tag)dS + bl,g)}
5 +ayg—
x 1/921 v exp{yg( > 6;logt;
10, =g

— 1)y Z / Yo~ Laxp (Xy(s) ag)ds—bl,g>}.

’LU_

Unfortunately, the full conditional distribution of v, does not seem to be from
the family of well-known distributions. Even if it is assumed that X;(s) = X;
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does not depend on time and it is possible to compute an integral, the term is
not simplified enough to reach a form of some known distribution, i.e we have

v — ditay,—1
p<1/9‘y7t7 67 te ) X I/gz:“)l_g ’ eXp{Vg< Z 51108;751 - bug)

1V =¢g

~ T v
— g Z exp(X; O‘g)tz’g}-

V=g

The results lead to an application of the a different algorithm than the Gibbs
algorithm, e.g. the Metropolis-Hastings algorithm, when we want to estimate the
parameters, because we are not able to generate easily from this distribution.

The last group of parameters is a vector of as that explains the effect of co-
variates to the occurrence of event. Again we proceed from (4.5) and all terms
that does not depend on a, are omitted and p(ey,) is plugged in. The prior
distribution is defined as a; ~ N,.(fq,, Xq,), thus we obtain,

0;
p(aglyat767 H {exp T 9)}

V=

i y OTer 1 —
exp(—z/gng/o sva—1eXils) 9ds>exp(—§( g—uag)TZagl(ag—uag)),

To simplify the term, we denote by Cin, = —vyng ;... =g Joi st i) e dg and
put together all remaining terms in exponent where « is present, i.e.

~ 1 _ _
p(a9|y7 t7 67 s ) X eXp(Oiag + Z 61Xz(t)-rag - 5(&;2(1;&9 - Qu,ZgZaglag) ),

1V;=g

()

as a consequence of presence of Cj,,, there is no possibility to adjust the exponent
into the form where o, can be fully factored out. At least (x) can be converted
into the square,

-~ 1 _ _
(x) = Z 6:X,(t) ety — 5(‘1;2@;0‘9 - QngEaglag)

= Dqy
— —7(225049 — ZégDTJT(Z;;O‘g - E‘%‘QDL) +C
- _7(0[9 - EagDTg)TE‘_"gl (Oég - Eangg) T C’

11
where ¥4,34, = Yo, and C is a constant with respect to the full conditional

distribution, i.e. there is no e, involved. All together we obtain,

plogly,t,6,...) o exp{ - ;(ag — Eangg)nggl (ag - Eangg) - Ciag}.
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Nevertheless, we run into the same problem as in the case of v, because of the
cumulative hazard function, especially as it is not possible to rearrange a term
Cia, in a way that would allow us to find any simple form of full conditional
distribution. Note that if this term is omitted, the expression corresponds to a
normal distribution.

To conclude, we did not obtain any form of standard distribution for p(v,ly, .. .)
and p(oyly, ... ), on the other hand, p(n,|y, . ..) belongs to the family of standard
distributions. As a consequence it is not possible to employ a Gibbs algorithm
due to the fact that we are not able to easily generate from the full conditional
distributions. Instead, we propose the usage of the Metropolis-Hasting algorithm
as an alternative. The results of this section are summarized in the following
lemma.

Lemma 2. Lets assume that the model defined in section 3.9 holds, then the full
conditional distributions of the parameters related to the survival model are

p(779|y’t7 67 ce. ) ~ F( Z 61 + ang7bng + Z Cig)7
10, =g 1w =g

where Ciy = vy [3¢ 8%~ Leap(Xi(s) Tay,)ds,

Zlv 5 +ay,—
p(Vg|y7t767-”) X Vg o exp{Vg( Z 5iZOQti—bl,g)

110;=g

~T v
—Tg Z erp(X, ag)tz‘g}>

V=g

and as the last,

ployly,t,9,...) x exp{ — ;(ag — Zangg>TE;gl (ag — E%Dlg> — Cmg},

where Oio‘g = ~Vyglly ZZ W= gfoz Vg_lex C!gds Dag - l’l’a E +Zz 4 96 X ( )

Proof. See previous derivations. O]

4.3 The class probability model

The last part of our model is associated with class membership. Class probability
can be modeled in several ways. First, we derive a full conditional distribution
of the latent variable V; that is assumed to follow a discrete distribution A(mr;),
where m; = (14, . . . ,ng)T. Then we focus on the full conditional distribution of
parameters that occurs in definition of class probability, if those are modelled as
functions of covariates using ([2.7).

The joint full conditional distribution for V' is proportional to,

1(Vi=g)
pVIy.t.5....) oc TTTT {planlbe 00p(bl6)p(r.516.))

g=1i=1

P[V; = g16,]"V"=9p(6,)p(0,)p(6,),
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because of the prior independence, the priors of @ can be omitted. Subsequently,
put together all terms with an indicator in the exponent,

1(Vi=g)
VI .0, o TLTT{ ptwlb. 0,(b10,)0(1, 010.P1. = 58}

g=1i=1

XTig

The expression above represents a density of the joint full conditional distribution
of V' except a normalized constant. The random variables V;, ¢« = 1,..., K are
independent. The probabilities 7;, are proportional to the product of densities
p(yi|bi, 015)p(bi|01,)p(ti, 0;|05,). This product is equal to 7;, after the standard-
ization. Afterwards, it is possible to claim that the full conditional distribution
of V; is again a discrete distribution, multinomial distribution, with probabilities
T, = (7?11, ..., 7ig)T, such that 7;, € (0,1) foralli =1,...,K and g = 1,...G,
and Z | Tig = L.

4.3.1 Modeling class probabilities

By the end of this chapter, we will discuss probability modeling. In the first
case we consider that probabilities 7 do not depend on other parameters, in the
second case we model probabilities through a multinomial logistic regression as
(3-3). In both cases we differentiate between two options, first, the probabilities
do not depend on the subject, i.e. w; = & for i = 1,..., K, or the probabilities
are subject specific, i.e. m; # m;, for i # j.

For the case where the class-membership probability is not subject specific
Tig = Ty and as a prior we choose a Dirichlet distribution, i.e.

K
quww»mHﬂW%wz

It follows that a full conditional distribution of 7r is again a Dirichlet distribution,
however, with parameters @, = (X5, 1(V; = D4ar,, ..., 2K, 1(Vi = G)+aq,)".
Remark. If the probabilities are subject specific, by the same steps as above we
derive a full conditional distribution for 7r;, such that

G
p(mily,t,6,...) x W;I(Vz':g)p(m) _ pivi= g) H amig

ig
. g=1

1 ﬁ ]I(VZ':g)JraﬁZ.gfl
B(a’ﬂz) g=1 Y

Then, the full conditional distribution of 7r; is a Dirichlet distribution with pa-
rameters @, = (L(V; = 1) + any,. .., 1(V; = G) + ag,.)7.
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Now assume that probabilities take a form of . First, assume that proba-
bilities are not subject specific, i.e. do not depend on i. This can be understood
as a special case of multinomial logistic regression with only one G-level covariate
that classifies the individuals to the classes. Later, we generalize this approach
to the dependency of the set of covariates.

The expression implies that a parameter 7w depends on parameters £ and
a prior of £ is a multivariate normal for the reason that & performs as a vector
of effects of the covariates. Thus, the full conditional distribution of & takes the
following form,

p(w(§)ly.t. 90, .. ocHng H=ap(m(€))

g=1i=1

659

G K 1(Vi=g) n 1 -

The denominator in a probability term that is independent of ¢ and it is the same
for all g, thus, it can be factored out and we rearrange the prior of &,

p(Ely, .8, ) <Zl 165[) Hag exp(SgZIL )

(%)

_ 2
exp ( B ;(fg Ugugg) ) |

g

(*)

Subsequently, the term (%) is converted into the square for each g fixed separately,
ie.,

1G g — 2
—6Yavi—g) -3y B
2
=£gzll(%:g)—1(§§ g9“59)+(J

- 21 (€ = 26, (e, + 02, S 1(Vi = g)) +C
=1

(&~ (e, + 02 EK 1Vi=9)) .

By substituting (x) and omitting C, which is independent of &g, we get the full
conditional distribution of & except for the normalized constant,

= €° 1
2 K 2
{ 1 (& — (e, + 02 S 1(V; = 9)) }
expy — = 3
2 o¢,

39



Sadly, as a result of the presence of the first fraction, the derived density does
not belong to the family of standard distributions.

When 7 is a subject specific, the situation is analogous to the one just derived.
Nevertheless &, is not scalar but a vector of a dimension m and there is a set of
covariates that are included in the probability term as it was defined in (3.3)).

Now, & = (éogs-- -+ Em-1.6)T and & = (€7,....€5)T and p(€) = p(€1) - -~
p(€q) because p(§) ~ Nya(pte, Xe¢) where ¢ is a block-matrix with m x m ma-
trices Y¢, on diagonal and zeros otherwise. ¢, = diag(affg, e ,Ugmg), it follows
that ¥¢ is a diagonal matrix and the individual components of £ are independent
with respect to a prior distribution. It follows that a full conditional distribution
takes a form,

K G
p(€ly.t.6,...) o IT TT ma€)n(€)
i=1g=1
K G eg Xi 1(Vi=g) 7% 1 Ta-1
“IHI (5o oy ) el e ( - 56— n TSN (E - o)) »
1
X e R H o X g%~ 56~ e) Vg6 e )

()

For fixed g we put the terms in the exponent together and analogously to the
previous case we get

x =Y 5TX ng £, — 2£;Egglu£g)+0
110, =g
1 B B -
= —5[53 D 25;(Egg1usg + ‘Z Xi)]+C
1:0,=¢g

=56 = e, + 3¢ 3 %) 56, (6 — (e, + ¢, 3 X0)]+C.

Lvy=g 1:0;=g

fe,

where C' and C' are constants with respect to &,. So if (%) is plugged to 1' C
is omitted, then the full conditional distribution of & is as follows,

p(€ly,t,0,...) x

1 1 - _ N
H i=1 Zl 1 &1 X 1;[ = p( ) H$g>TE£;(€g B #§g>]>

Unfortunately neither for subject specific probabilities nor for probabilities inde-
pendent of subjects we are able to classify the density as a one from the family of
the standard distributions. We must resort to the Metropolis-Hastings algorithm
or some other type of algorithm where there is no need to generate from full
conditional distribution.

To conclude, the full conditional distributions for all Bayesian parameters
where derived in this chapter, we also provided the reader with recommendations
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of which type of algorithm should be use to estimate the model. In the next
chapter these theoretical results are used to calculate a practical example. The
results of this section are summarized in the following lemma.

Lemma 3. Lets assume that the model defined in section|[3.9 holds, then the full

conditional distributions of the parameters related to the probability class model
are

p(‘/;’yat767 .- ) ~ MUItG(ﬁ-i)J

where 7; = (Fq,...,%ig) fori = 1,...,K and, Tig o< p(yilbi, 0,)p(b;|6,)

p(rly,t.8,...) ~ Dir(ar),
where @; = (X, 1(Vi =D 4any, ..., 2K, 1(V; = G) +ax.)T, if the probabilities
are subject-specific then,
p(mily,t,é,...) ~ Dir(a,),
where @z, = (1(V; = 1) + anyyy - -, L(Vi = G) + an,.) ", and the last but not least,
p(&ly,t,8,...) x

1 G

T emn( — 106~ fie, )75 (€ — ie,)]).

K G TX .
| i et Xi g=1

where i:l/{g = “Eg + 259 Zi:’ui:g XZ

Proof. See previous derivations. O]
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5. A simulation study

In the last chapter, we would like to provide the reader with a short simulation
study in which we would like to focus on the ability of the model to distinguish
between classes and then compare the ability of this approach to estimate pa-
rameters depending on the sample size. We use JAGS (Plummer| [2003]) and a
statistical software R (R Core Team|[2017]) to compute the results of the simu-
lation study. First we describe the data simulation process and then present the
results of the study.

5.1 A description of the situation

We now describe the data simulation process and provide the model that was
used to simulate the data. This model is based on a joint latent class model.
We simulate 4 different situations. For each situation we have 100 data sets, the
situations differ in the number of observations. We assumed three classes in our
population, i.e. G = 3. The proportions of the classes in the simulated data sets
and the number of subjects for the individual scenarios are summarized in Table
b.1] In order to better imagine the situation, we define a model that corresponds
to real data situation - a clinical trial on patients with schizophrenia.

First, we start with the description of the longitudinal part of the model. We
observe K subjects, patients with a schizophrenia, for 12 weeks, i.e. 84 days.
During this period, each patient should complete a form 10 times about their
mental fitness and the symptoms of the disease, a so-called PANSS (Positive and
Negative Syndrome Scale). This longitudinal marker leads to the response vector
Y. These 10 individual time points were simulated evenly on the period of 84
days. Approximately half of the subjects were treated with a drug A and the rest
were treated with a new drug B. The effect of the new drug B differs between
classes and we also allow a different time effect in all three classes, the intercept
and random effects are common to all classes. Thus, the model matrix X for fixed
effects has three columns: intercept, drug (drugB) and time (t) and the model
matrix Z for random effect has two columns: intercept and time (t). The general
version of the model is,

Class g: PANSSZ = BO + BlgdrugBi + 6291:1' + bOi + bliti + [SF

Table 5.1: Summary of the number of subjects in different classes per scenario,
7 is a proportion of the class with respect to the whole population.

Scenario 1  Scenario 2 Scenario 3 Scenario 4

Class 1 (m =0.2) 20 40 80 120
Class 2 (m = 0.5) 50 100 200 300
Class 3 (m3 = 0.3) 30 60 120 180
K 100 200 400 600

*Total number of subjects
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The models we used for the simulation are the following,

Class 1: PANSSz =120 + 002drugBl - 02tz + bOi + bliti + €5,
Class 2: PANSS; = 120 + 5drugBi + 0.5%; + bg; + by;t; + €;,
Class 3: PANSSZ =120 — :l()(j.ff‘llgBZ — 05tZ + bOi + bliti + i,

where b; ~ N3(0,D),D = diag(0.2,0.25) and ¢;; ~ N(0,6). There is n; = 10
observation for each subject, however this number was reduced for some subjects
because of censoring. The mechanism of generating censoring times is specified
in the following paragraph.

The survival part of the model is represented by the Cox model with one factor
variable. We include an effect of drug B, similarly to the longitudinal model. The
effect of this variable differs between the classes. The baseline hazard follows a
Weibull distribution and parameters are not class specific. As an event, we can
imagine the occurrence of serious mental problems with an urgent need to see a
doctor. The general version of the model is,

Class g1 A\(T}) = Nio(y T}, m, v)exp(drugB,),

The models that were used to simulate an event time are defined as,

Class 1:  A\(T}) = Xio(T;, n, v)exp(0.4drugB,),
Class 2: A\(T}) = \io(T7, n, v)exp(—0.18drugB, ),
Class 3: A\(T}) = A\io(T}, n, v)exp(—0.59drugB, ),

where v = 1.1 and 7 = 1/¢® are the parameters of Weibull distribution (Appendix
).

Next, we generated censoring times C; for each subject as a min(U(60, 90), 84)),
where U(60, 90) represents Uniform distribution on the interval (60, 90). Then we
took T; = min(T}, C;) and §; = 1(T; < C;). The final modification of the data was
that we omitted observations that were observed after censoring time per each
subject from the data set generated in the first part.

As a statistical tool to analyze the data we define a model using JAGS and then
we compute the estimates of the parameters of interest. We specified the prior
distribution as weakly informative. The possible choices of weak informative prior
distributions were discussed in Subsection [3.2.1] i.e. for the regression coefficients
and the expected values of random effects we opted for a normal distribution with
zero mean and inverse variance equal to 0.001. Then the gamma distribution was
used as a prior for parameter of Weibull distribution, inverse variance of error
terms and Wishart distribution was employed as a prior of the inverse covariance
matrix of random effects. For class probability we use a Dirichlet distribution
with parameters equal to 1/G.

As a JAGS setting for computation of Markov chains, we select 1000 steps of
the simulation as an adaptation to the model, then the length of the burn-in was
B = 5000 and finally, the length of the Markov chain that was used to compute
the estimates was chosen as M = 25000. However, we decided to use the thinning
interval in order to try to decrease an autocorrelation and we set up thin = 2.
In total, three Markov chains were generated for each data set.
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Table 5.2: MC means of posterior means of non-class-specific parameters for all
scenarios. The MC based standard error (SE) is in brackets on the line below the
means.

o B 7 17 gin gim 2522
Scenario 1
Estimate 6.05 118.64 2742.3 4.05 0.03 0.00 0.03
SD (0.17)  (1.55) (22678) (0.78) (0.01) (0.01) (0.01)
Scenario 2
Estimate 6.06 118.63 25.69 4.51 0.03 0.00 0.03
SD (0.11) (0.88) (171.34) (0.57) (0.00) (0.01) (0.01)
Scenario 3
Estimate 6.07 118.82 0.62 4.85 0.03 0.00 0.03
SD (0.07) (1.04) (4.29) (0.36) (0.01) (0.00) (0.01)
Scenario 4
Estimate 6.06 118.50 0.00 5.15 0.03 0.00 0.03
SD (0.06) (1.69) (0.00) (0.30) (0.01) (0.01) (0.01)

5.2 Results

In this section we summarized the results of the simulation study. As it was
already mentioned, three Markov chains for each data set were generated and the
estimates of the parameters were computed from these values. Unfortunately,
JAGS was not able to finish a computing procedure in all cases. Some values were
generated close to zero, it probably happens when the algorithm classifies the
subject to the wrong class and then the density at the generated values is close to
zero which creates problems in the algorithm and it stops. Using JAGS we are not
able to prevent these situations. Thus there is always mentioned a final number
of data set that we used to obtain presented estimates.

The estimates are summarized in Table [5.2, presented are the parameters
that are not class specific, i.e regression coefficient from the longitudinal model
(Bo), standard deviation of the error terms (o), components of the covariance
matrix D, and parameters of the Weibull distribution (7, v), and the class specific
parameters are displayed in Table i.e., the regression coeflicients (314, B2, and
o) and class probabilities (71, 7o and m3).

For the first scenario, we have on average N = 885 observation per K = 100
subjects and in approximately half of the cases per data set an event occurs.
The algorithm was working for all 100 data sets. In the second scenario, there
is on average N = 1794 observations for K = 200 subjects. Unfortunately, we
obtained the estimates just for 92 data sets. Next, we have N = 3622 observations
on average when K = 400 subjects in the data set and the algorithm was able
to finish the calculations for 98 data sets. The data set in the fourth scenario
has on average N = 5425 observations for K = 600 subjects and the algorithm
converged to the solution for 99 samples.

Now we would like to compare the behavior of the estimates of the parameters.
First, we evaluate the model ability to differentiate between the classes. The true
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Table 5.3: MC means of posterior means of class-specific parameters for all sce-
narios. The MC based standard error (SE) is in brackets.

A A

51 By o 7
Scenario 1(K = 100)
Class 1 0.74 (1L31)  0.17 (0.47) —7.81 (5.25) 0.31 (0.05)
Class 2 1.37 (1.61)  0.25 (0.51) —7.85 (5.20) 0.44 (0.05)
Class 3 —6.25 (2.04) —0.38 (0.46) —2.09 (5.58) 0.27 (0.07)
Scenario 2 (K = 200)
Class 1 0.79 (1.31)  0.10 (0.34) —5.02 (4.29) 0.30 (0.04)
Class 2 0.61 (1.49)  0.36 (0.36) —4.89 (4.12) 0.4 (0.04)
Class 3 —6.26 (2.06) —0.41 (0.37) —2.95 (4.54) 0.26 (0.06)
Scenario 3 (K = 400)
Class 1 0.61 (1.08)  0.10 (0.26) —1.64 (2.24) 0.31 (0.03)
Class 2 0.17 (1.28)  0.23 (0.24) —1.43 (2.11) 0.43 (0.04)
Class 3 —6.65 (1.65) —0.39 (0.24) —0.75 (1.82) 0.26 (0.04)
Scenario 4 (K = 600)
Class 1 —0.05 (1.49)  0.10 (0.23) —0.54 (1.17) 0.31 (0.03)
Class 2 0.25 (1.34)  0.24 (0.21) —0.45 (0.96) 0.42 (0.02)
Class 3 —6.64 (1.80) —0.37 (0.21) —0.21 (0.53) 0.27 (0.04)

value of the probability vector 7 from Table is compared to the last column
of Table [5.3] The model is able to recognize the largest class (class 2), however
it underestimates the proportion of this class in the population in all scenarios.
We got the estimates between 0.42 and 0.44 compared to the true value of 0.5.
Looking at the estimated regression coefficients in Table [5.3] Furthermore, the
model probably had a problem to differentiate between class 1 and 2 and some of
the subjects that belong originally to the class 2 were wrongly classified as a class
1. This can be the reason why 7; overestimated the true value (0.31 compared
to 0.2). Also the subjects from class 3 were most likely sometimes classified to
the wrong class (73 = 0.26 or 0.27 and w3 = 0.3), as a class 1. Nevertheless the
classification to class 3 was the most precise in contrast to the others.

The intercept (3 is close to the true value (B = 118.7 in contrast to 5 = 120)
and also the estimates of variance of the error terms are around 6 that is the
true value of 0. For these parameters the model works well even if the number
of subjects is the smallest possible (Scenario 1, K = 100). The components of
covariance matrix D are underestimated in all scenarios. Moving on to the class-
specific parameters in the longitudinal model, it is visible that all of the estimates
in class 2 and 3 are shrinked towards zero in contrast to the true values of the
parameters. As it was already mentioned class 1 is probably the most infected by
the subject the from different classes, most likely by subjects from class 2, thus the
estimates are influenced by this fact and they are larger than the true values. As a
consequence of the misclassification of some subjects, the class-specific estimates
approach the average across the classes of the true parameter values according to
how strong the misclassification was. Due to the opposite signs of the true values
of the coefficients, the estimates seem to be shrinked towards zero.
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To conclude, the increasing number of subjects does not have such a huge
impact on the longitudinal part of the model (regression coefficients and compo-
nents of covariance matrix of random effects) and estimation class probabilities.
We observed just the lower variance, however the estimates themselves do not
differ so much.

Completely different behavior is noticed in the parameters of the Cox model.
It is probably linked up with the unstable behavior of an estimate of . Mainly,
for small sample sizes we obtained values on the scale from close to zero to tens
thousands. With an increasing sample size is 7) shrinked towards zero. The esti-
mates of v are quite stable however far away from the true value of the parameter.
The estimates of o, are strongly underestimated for small sample size. Similarly,
as ), &g are shrinked towards zero for larger sample sizes. The difference is in
sign, while ) is positive, &, are negative. This behavior can be rising from the
definition of the model. The parameter n plays the role of intercept oy = log(n)
in exp(ag + a,drugB;), then the huge values of its estimate are balanced by the
large negative values of dy.

Since we are not sure when the Markov chain is long enough to obtain reliable
results, we tried to calculate estimates from scenario 2 for a longer burn-in period,
B = 15000 and B = 30000. Unfortunately, even this step did not improve
the performance of the model. We do not include the table of estimates here,
because the results were comparable with the estimates given in the Table |5.3
and Table 5.2

5.3 Discussion

The results of the simulation study are not too encouraging. It did not perform
badly for class 3 and we also got some not entirely nonsensical results for class
2, e.g., it was able to recognize that it is the largest class in the population.
Probably, due to the fact that these classes behave in the opposite direction with
respect to the longitudinal model and it is easy to distinguish between them.
However, class 1 gathers the subjects that do not behave either as class 2 or
3 but are more or less without the effect of a new drug and with a moderate
time effect. Then it was not easy for the algorithm to classify subjects correctly
into this class and it led to a mixing classes 1 and 2. The estimation process
had the biggest problem to classify correctly the subjects to class 1. Moreover,
the estimation of the parameters of the Cox model was definitely less precise
than for the parameters of the longitudinal model and it required a larger sample
size because the estimates in the Cox model were unstable for small samples.
However, we cannot be sure that we let Markov chains run long enough because
there is no rule for choosing the length of simulated chains. Longer chains could
lead to better results.

Furthermore, we have tried only some parameters to be specific to individ-
ual classes, perhaps this approach is better for studying populations where, for
example, random effects are class-specific. Nevertheless, there was not enough
space to consider all the possibilities and evaluate to which specifics of the class
this method of estimation is most sensitive.
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Next, this simulation study was somewhat limited by the application of JAGS.
In several situations, calculations could not be completed due to the JAGS settings.
It would be better to develop our own functions (e.g. create a new R package) so
that we can calculate everything ourselves because of the drawbacks that JAGS
has. However, it was beyond the scope of this work. For future work, we suggest
to provide users with an R package, maybe then the application of the suggested
methods in the thesis will be more user-friendly, and it would be used more often
in data analysis.
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Conclusion

In this thesis the joint models for longitudinal and time-to-event data were intro-
duced. We mentioned two types of these models, namely joint latent class models
and joint models with shared random effects. The models were shortly presented
and due to the fact that there are several issues with these models that can be
discussed we focus on one of the problems.

Therefore, the rest of the thesis was focused on the joint latent class models.
The main intention of this thesis was to describe a parameter estimation of the
model from the Bayesian point of view. This involves a proper definition of the
model in the Bayesian framework, then the discussion of suitable choices of prior
distributions for all parameters. The crucial role of the Bayesian estimation of
the parameters in the model is played by full conditional distributions, which
are then used in computational algorithms for parameter estimation. Thus, we
derived full conditional distributions for all parameters of interest in the model.
For all of the parameters of the longitudinal model we found out that the form of
the derived densities was proportional to densities of some standard distributions.
The same cannot be said for the derived densities of the parameters related to
the Cox model, apart from the derived density of the scale parameter 7,, the
densities are not proportional to any form of standard distribution. Last but not
least, the full conditional distributions were derived for the parameters of the class
probabilities. We mentioned two options of how to define class probabilities. For
only one option, where the probability does not depend on any other parameter,
the resulting density is proportional to the standard distribution. These results
can be used in an algorithm (e.g. the Metropolis-Hasting or the Gibbs algorithm)
to compute the estimates of the model parameters.

We did not provide the reader with our own functions for computing the
estimates, however we defined the model using JAGS software and performed a
small simulation study. The results of the study were not optimal, nevertheless
there are many other settings that were not examined and the Bayesian methods
can work for the different setting much better. We discussed the drawbacks of
the usage of JAGS and for future work we propose to develop a new functions or R
package, that would simplify the application of the Bayesian estimation methods
for users.

Moreover, there are a large number of problems that can be discussed in more
detail for the joint models or specifically for the latent class joint models. For
instance, to our best knowledge, there is no literature that focuses on selecting the
number of latent classes in the latent class joint model when using the Bayesian
approach to compute the estimates. However, covering all of these issues was
beyond the scope of this work.
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A. Attachments

A.1 Probability distributions

In this part of the Appendix we recapitulate definitions of some of the standard
distributions used in the thesis. The main purpose is that in some cases several
parametrizations are used and we would like to make it clear which parametriza-
tion was used in the text.

Definition. The random variable X follows a Wishart distribution with a density
of the form

l] q q d 1 —q— 1
700 = {2 nme HF( ) B exp{ (B ), X >0
where B is a positive definite matrix, d > ¢ — 1 are degrees of freedom, X is a
positive definite (d x d)-matrix, and we write X ~ W,(d, B).

Definition. The random variable X follows a Weibull distribution with a density
of the form

f(z) =nva”texp{—na"}, x>0
where v > 0 and 1 > 0 and we write X ~ We(v,n).

Definition. The random variable X follows a Dirichlet distribution with a den-
sity of the form

U el where B M5 0(@) ¢~y 0,1
f(w) - B<a)gxz ’ where ( ) F(ZZ 1az ; xl )

where X = (X3,...,Xx)", a= (a1,...,ax)",a; > 0 and we write X ~ Dir(a).

A.2 DMatrix Algebra

In the following theorem we put together the properties of the trace of the ma-
trix that are used in the derivation of the full conditional distributions. This
knowledge comes from the textbooks of linear algebra.

Theorem 2. Suppose that A; are (n x n)-matrices for i = 1,..., K, B is an
(n x m)-matriz, C is an (m X n)-matriz, and ¢ € R, then the following holds

(i) (5K, ch) = e K, (),
(ii) tr(BC) = tr(CD).
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