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ABSTRACT 

Helminth neuroinfections represent a serious health issue, but the mechanisms of the host im-

mune response often remain neglected despite the fact they might contribute to pathogenesis. 

This is partly due to the unavailability of clinical samples and the lack of suitable laboratory mod-

els. Herein, I focused on the characterization of several aspects of the immune response of mice 

infected with the neuropathogenic avian schistosome Trichobilharzia regenti.  

After the percutaneous infection of mice (accidental hosts), most T. regenti schistosomula are 

entrapped and eliminated in the skin, but the parasite antigens initiating the protective immune 

reaction are not known. Our in vitro experiments revealed that T. regenti cathepsin B2, a cyste-

ine peptidase used for the skin penetration, activates bone marrow-derived dendritic cells much 

stronger than the parasite homogenate, suggesting its role in initiating the mixed type1/2 host 

immune response. However, some schistosomula manage to escape from the skin and continue 

their migration to the spinal cord. Here they crawl preferentially within the white matter which 

we demonstrated by the robust 3D imaging techniques, ultramicroscopy and micro-CT. The in-

vasion of the spinal cord is accompanied by striking hypertrophy of astrocytes and microglia. We 

showed that living schistosomula induce production of interleukin 6 in astrocyte cultures, but 

their homogenate or active isoforms of T. regenti cysteine peptidases trigger even stronger re-

action, including the increased secretion of tumor necrosis factor α and nitric oxide by astrocytes 

and/or microglia. It seems that these glial cells actively participate in maintaining the neuroin-

flammation initiated by the infection. Finally, we examined the role of nitric oxide in the host 

immune response. Our data show that nitric oxide is produced early in the skin phase of the 

infection, but it does not directly kill the schistosomula. It rather continuously debilitates the 

parasite by disrupting its proteolytic machinery.  

Taken together, the thesis markedly extends the knowledge of the host-parasite immune inter-

actions between the neuropathogenic schistosomes and their accidental mammalian hosts. 

These novel data set a good starting point for further research on T. regenti neuropathogenicity 

and the impacts of helminth-caused neuroinflammation on the host. Such findings will be valu-

able not only in the field of parasitic neuroinfections but might also be appreciated in the re-

search of (autoimmune) neurodegenerative diseases. 

Key words: avian schistosomes, Trichobilharzia regenti, immune response, skin, spinal cord, as-

trocytes, microglia, nitric oxide, cysteine peptidases, 3D imaging. 
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ABSTRAKT 

Helmintární neuroinfekce představují závažný zdravotní problém, ale mechanismy hostitelovy 

imunitní odpovědi často zůstávají opomíjeny, i když se mohou účastnit patogeneze. To je zčásti 

způsobeno nedostupností klinických vzorků, ale také nedostatkem vhodných laboratorních mo-

delů. V této práci jsem se proto zaměřil na studium vybraných aspektů imunitní odpovědi myší 

nakažených neuropatogenní ptačí schistosomou Trichobilharzia regenti.  

Většina schistosomul je u těchto náhodných hostitelů zastavena a eliminována časně po perku-

tánní infekci ihned v kůži. Není však jasné, jaké parazitární antigeny protektivní imunitní reakci 

spouštějí. Naše in vitro experimenty odhalily, že katepsin B2, cysteinová peptidáza používaná 

parazitem k penetraci kůže, aktivuje dendritické buňky odvozené z kostní dřeně mnohem více 

než kompletní parazitární homogenát. To naznačuje její úlohu ve spouštění počáteční imunitní 

odpovědi, která je polarizována směrem k typu 1/2. Některá schistosomula jsou však schopna 

kůži opustit a migrují dále do míchy. S využitím 3D zobrazovacích technik, ultramikroskopie a 

mikro-CT, jsme prokázali jejich preferenční lokalizaci v bílé hmotě. Přítomnost schistosomul 

v míše vyvolává výraznou hypertrofii astrocytů a mikroglií. Živá schistosomula u astrocytů indu-

kují produkci interleukinu 6, jejich homogenát či aktivní isoformy cysteinových peptidáz však u 

astrocytů a/nebo mikroglií zvyšují i sekreci tumor nekrotizujícího faktoru alfa a oxidu dusnatého. 

To naznačuje aktivní zapojení těchto gliových buněk do udržování neurozánětu indukovaného 

infekcí. V poslední části práce jsme studovali vliv oxidu dusnatého na průběh infekce. Naše data 

ukazují, že k produkci oxidu dusnatého dochází v časné fázi infekce v kůži, avšak oxid dusnatý u 

parazita nevyvolává akutní cytotoxicitu. Spíše se zdá, že narušuje jeho proteolytický aparát, což 

vede k postupnému oslabování parazita.  

Tato práce výrazně rozšiřuje znalosti o imunitních interakcích mezi neuropatogenní schistoso-

mou a jejím náhodným savčím hostitelem. Nově získané poznatky představují dobrý výchozí bod 

pro navazující studium neuropatogenního působení T. regenti a vlivu neurozánětu na hostitele. 

Tato zjištění jsou cenným příspěvkem nejen pro studium parazitárních neuroinfekcí, ale mohou 

najít uplatnění i při výzkumu (autoimunitních) neurodegenerativních onemocnění.  

Klíčová slova: ptačí schistosomy, Trichobilharzia regenti, imunitní odpověď, kůže, mícha, astro-

cyty, mikroglie, oxid dusnatý, cysteinové peptidázy, 3D zobrazování. 
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1. INTRODUCTION 

Parasitic helminths often invade the central nervous system (CNS) of mammals, including hu-

mans. Invasion of the CNS is either a natural part of the helminth somatic migration or it repre-

sents an unwanted, ectopic localization (Finsterer and Auer 2013). The clinical manifestation of 

helminth neuroinfections ranges from mostly asymptomatic to very severe which leads to sen-

sory or cognitive deficits and seizures or epilepsy (Carpio et al. 2016, Vezzani et al. 2016, Garcia 

et al. 2019). Many factors, such as parasite burden, size, motility, or localization within the CNS, 

influence the course and outcome of the neuroinfection. Moreover, the host immune response 

affects helminth growth and survival but might also participate in pathogenesis (Adalid-Peralta 

et al. 2018). Thus, a better understanding of host-helminth immune interactions is essential to 

get a comprehensive insight into the biology of neuroinfections. It would allow us to develop 

better protective measures, treatment strategies, and diagnostic tools. Additionally, the lessons 

learned from the neuroinfections could be potentially utilized in the study of immunopatholog-

ical processes associated with (autoimmune) neurodegenerative diseases (Fan et al. 2015).  

In the theoretical part of the thesis, I briefly introduce the general concepts of the immune re-

sponse in the CNS and address it specifically for selected helminth neuroinfections. Then I move 

to schistosomes (blood flukes) and summarize the current knowledge about Trichobilharzia re-

genti, the neuropathogenic schistosome used in the practical part of the thesis. Its inherent neu-

rotropic behavior in birds and mammals (definitive and accidental hosts, respectively) makes 

T. regenti a natural model for exploration of the helminth-parasite interactions either in the CNS 

or in the periphery. Original results of the practical part are then presented within five articles 

published/accepted for publication in peer-reviewed journals.  

1.1. The immune response in the CNS 

The CNS has traditionally been regarded as an immune-privileged site due to its incapability to 

launch an immune reaction against alloantigens. They were believed to be virtually sequestered 

within the nervous tissue not being exposed to and recognized by the immune system. The un-

usual ability of implanted tumors or normal tissue grafts to survive in the brain parenchyma 

(Murphy and Sturm 1923, Medawar 1948, Widner and Brundin 1988) and ingenious barrier sys-

tems preventing unwanted leukocyte influx into the CNS (Reese and Karnovsky 1967, Brightman 

and Reese 1969, Saunders et al. 2014) have supported the view of the CNS immune privilege for 

decades. Furthermore, pathogen- or danger-associated molecular patterns (PAMPs or DAMPs, 

respectively) do not induce a strong innate immune response (Andersson et al. 1992, Schnell et 
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al. 1999, Locatelli et al. 2012) and bacterial or viral antigens injected into the parenchyma mostly 

remain unnoticed by the host adaptive immune response (Matyszak and Perry 1995, Stevenson 

et al. 1997, Matyszak and Perry 1998). Such immunologically quiescent conditions offer patho-

gens a suitable niche to establish latent infections (Forrester et al. 2018).  

However, several contrasting observations, such as efficient detection of antigens implanted 

into the ventricular system (Murphy and Sturm 1923, Matyszak and Perry 1996, Stevenson et al. 

1997), CNS antigen drainage into the deep cervical lymph nodes (Harling-Berg et al. 1989, Cserr 

et al. 1992) or the recent (re)discovery of meningeal lymphatic vessels (Louveau et al. 2015b), 

cast doubt on the paradigm of the immune privilege absoluteness. In this respect, the CNS 

should be considered immunologically “unique” (Louveau et al. 2015a) rather than “privileged” 

as the latter might be misunderstood or misinterpreted. Also, the term “brain-associated im-

mune deviation” was introduced pointing to the inherent active maintenance of the suspended 

immune status in the CNS (Wenkel et al. 2000).  

Some of the specific features related to the CNS immunology are demonstrated below focusing 

on the recent advances in the field. Specifically, these topics are covered: the blood-brain bar-

rier, the afferent and efferent communication of the CNS with the peripheral immunity and im-

munoregulatory mechanisms of the CNS parenchyma.  

1.1.1. Specific features of the CNS immunity  

The blood-brain barrier (BBB), separating the CNS parenchyma from the circulatory system, is 

the most striking anatomic feature related to the CNS immunity. In capillaries, the BBB is com-

posed of (a) endothelial cells bound together by tight junctions, (b) pericytes incompletely cov-

ering the vascular endothelium, (c) the basement membrane coating the endothelium and per-

icytes, and (d) astrocyte foot projections forming glia limitans around the basement membrane 

and the pericytes (Sharif et al. 2018). Additionally, perivascular spaces inhabited by long-lived 

antigen presenting myeloid cells are found in the postcapillary venules (Owens et al. 2008, 

Faraco et al. 2017). Due to the hard-to-breach architecture, the BBB was regarded as the static 

physical barrier guarding the fragile CNS parenchyma against external invaders – either patho-

gens or immune cells. However, the BBB has essential physiological roles in healthy individuals 

as it regulates the transport into and out of the CNS to maintain parenchymal homeostasis. 

Hence, the term “neurovascular unit” has been established to highlight the dynamic and com-

plex functions of this structure (Hawkins and Davis 2005, Villabona-Rueda et al. 2019).  
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Despite historical doubts, the CNS mutually communicates with the peripheral immune system. 

The afferent way (CNS  periphery), including the antigen drainage and presentation to naïve T 

cells, mostly relies on the soluble route. Specifically, the CNS antigens from the ventricular or 

subarachnoid spaces are drained by the cerebrospinal fluid (CSF) either (a) into the blood 

through arachnoid villi (especially in humans) (Upton and Weller 1985) or (b) into the deep cer-

vical lymph nodes via the nasal and dural lymphatic vessels going through the cribriform plate 

of the ethmoid bone (especially in rodents) (Kida et al. 1993, Aspelund et al. 2015, Louveau et 

al. 2015b, Norwood et al. 2019). Interestingly, the CSF pathway does not take a significant 

amount of the parenchymal antigens contained in the interstitial fluid (ISF) which are rather 

drained through the perivascular spaces within vessel walls (Carare et al. 2008). The connection 

between the CSF and the ISF called “glymphatic system” has been proposed (Iliff et al. 2012) but 

its physiological and immunological importance is still a matter of a debate (Louveau et al. 2017, 

Abbott et al. 2018).  

Considering the cellular afferent way, the healthy CNS was originally considered to lack classical 

dendritic cells (DCs) known from the peripheral tissues. It corroborated with the presumed im-

mune privilege status (Hart and Fabre 1981). Later, the DCs capable of T cell priming were de-

scribed both in the perivascular and parenchymal sites of the inflamed brain tissue (Fischer and 

Reichmann 2001). However, their origin and relationship to other populations in the CNS, such 

as microglia or macrophages, remained unclear or even controversial as well as their presence 

in non-inflamed tissue (Greter et al. 2005, Bulloch et al. 2008, Dando et al. 2016, Papadopoulos 

et al. 2020). The puzzle was recently solved thanks to the precise microdissection of the partic-

ular CNS compartments and application of the mass cytometry. The study revealed that conven-

tional DCs are localized in the healthy leptomeninges and choroid plexus but are rarely found in 

the parenchyma (Mundt et al. 2019). However, myeloid populations associated with the healthy 

or inflamed CNS display enormous phenotype heterogeneity and functional diversity (Ajami et 

al. 2018, Mundt et al. 2019, Dando et al. 2019). This makes the traditional naming and charac-

terization of the cell populations no less than challenging. A similar portion of uncertainty/con-

troversy has accompanied the migration of the DCs from the CNS to the lymph nodes. Passage 

of the DCs from brains to the lymph nodes was suggested during neuroinflammation (van Zwam 

et al. 2009, Schiefenhövel et al. 2017) and they were also reported from the healthy meningeal 

lymphatic vessels (Louveau et al. 2015b). However, these observations need to be further clari-

fied and validated.  

The efferent way (periphery  CNS) includes the migration of peripheral immune cells into the 

CNS. Three major routes from blood to the CNS were identified: (1) across the choroid plexus to 
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the CSF, (2) through the meningeal vessels to the subarachnoid space filled with the CSF, and (3) 

via the perivascular spaces of the inflamed parenchymal postcapillary venules (Kerfoot and Kubes 

2002, Ransohoff et al. 2003, Kivisäkk et al. 2003, Reboldi et al. 2009). While leukocytes (mainly 

CD4+ memory T cells) colonize the CSF under physiological conditions, the brain parenchyma is 

believed to lack leukocytes in young individuals without any kind of neuroinflammatory disease 

(Svenningsson et al. 1995, Kivisäkk et al. 2003, Engelhardt et al. 2017). T cells can be sometimes 

found within the perivascular spaces of healthy brains but are halted here if they do not recognize 

a cognate antigen displayed on the perivascular antigen presenting cells (Krakowski and Owens 

2000, Greter et al. 2005, Herz et al. 2011). However, infiltration by leukocytes of the brain paren-

chyma was reported from aged healthy individuals. It presumably correlates with the aging-de-

pendent breakdown of the BBB and can have pathological consequences (Gemechu and 

Bentivoglio 2012, Montagne et al. 2015, Ritzel et al. 2016, Erickson and Banks 2019).  

Several immunoregulatory mechanisms are employed in the CNS parenchyma to prevent inflam-

mation-related damage of the nervous tissue. These mechanisms target pro-inflammatory ac-

tivities of immigrating peripheral leukocytes as well as resident parenchymal microglia. Neurons 

and astrocytes are responsible for most of the immunoregulatory mechanisms. For example, 

neurons themselves express relatively low amounts of major histocompatibility complex (MHC) 

class I molecules (Joly et al. 1991, Joly and Oldstone 1992). Consequently, fragments of intracel-

lular proteins are less displayed which prevents cytotoxic T cell-mediated killing. On the other 

hand, it creates a suitable niche for intracellular pathogens, such as tick born encephalitis virus 

of Toxoplasma gondii, which preferably dwell in neurons (Bílý et al. 2015, Cabral et al. 2016). 

Additionally, neurons use several pathways to mitigate activation and pro-inflammatory secre-

tion of microglia to reduce their neurotoxicity during neuroinflammation (Neumann et al. 1998, 

Mott et al. 2004, Cardona et al. 2006, Mizuno et al. 2011).  

Anti-inflammatory properties can also be ascribed to astrocytes. For example, they attenuate 

the microglia-driven neuroinflammation and associated neuronal damage by secretion of regu-

latory cytokines (e.g., transforming growth factor beta, TGF-β) (Aloisi et al. 1997, Norden et al. 

2014, Cekanaviciute et al. 2014). Furthermore, astrocytes might trigger apoptosis in infiltrating 

immune cells by expression of FasL (Bechmann et al. 1999, Kohji and Matsumoto 2000, 

Bechmann et al. 2002) or induce upregulation of cytotoxic T-lymphocyte-associated protein 4 

(CTLA-4), the T cell “switch-off” receptor (Gimsa et al. 2004). Beyond the regulatory processes 

directly in the CNS parenchyma, a growing body of evidence suggests that gut microbiome sig-

nificantly influences both astrocytes and microglia with potential consequences for the severity 

of the neuroinflammation (Erny et al. 2015, Rothhammer et al. 2016, Fung 2020).  
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1.1.2. The host-immune response against neurotropic helminths  

Apart from the specific features of the CNS immunity, biology of the particular parasite species 

must be considered in studies of the host immune response to interpret the results in an appro-

priate context. For example, parasitic helminths are multicellular animals that can mechanically 

break the BBB architecture during the migration towards and within the CNS. This might facili-

tate uncontrolled infiltration of the CNS parenchyma by peripheral leukocytes and serum pro-

teins (such as complement) which normally do not pass through the selectively semipermeable 

BBB (Abbott 2002). Of note, such a strategy is different from unicellular pathogens that usually 

cross the BBB more gently (Forrester et al. 2018).  

Also, helminth migration within the host is not restricted exclusively to the nervous tissue even 

in the case of strictly neurotropic species. Indeed, they infect their vertebrate hosts percutane-

ously or perorally and proceed with a somatic migration including the CNS (Finsterer and Auer 

2013). Consequently, the host immune system is already activated (after the initial peripheral 

encounter with the helminth) at the point when the CNS itself is invaded. The intensity and po-

larization/type of such peripheral reaction should be considered as it can significantly influence 

the CNS immune status and readiness (Hoogland et al. 2015, Hoogland et al. 2018, Huang et al. 

2018, Tejera et al. 2019). Additionally, not all individuals usually make their way to the CNS. A 

part of them can be eliminated soon after the infection at the entry site (Kouřilová et al. 2004a) 

and some migrate through tissues other than the CNS, depending on the level of their neurot-

ropism (Janecek et al. 2014). In both cases, the “out-of-CNS” individuals represent a plentiful 

source of antigens boosting the peripheral immunity which must be taken into account when 

interpreting data related to the CNS immune reaction.  

The availability of suitable laboratory models largely dictates the orientation of the helminth 

neuroinfection research. Neurocysticercosis and neurotoxocarosis are hence in focus as their 

models have been successfully established and deeply explored (de Lange et al. 2019, Strube et 

al. 2020). On the contrary, this is not the case of many other human helminth neuroinfections 

(overviewed in Table 1, see page 6). For example, despite human schistosomosis is #1 helminth 

disease, a valid model representing its neurological form is lacking (Silva et al. 2002, Lambertucci 

et al. 2014, Tan et al. 2019). Thus, new in vivo model systems for studying helminth neuroinfec-

tions are needed to reveal the diversity of host-parasite immune interaction in order to develop 

better treatment and prevent immunopathological sequelae injuring the host. Knowledge 

gained for recently studied neuroinfections (see Sections 1.1.3–1.1.5) represents a good starting 

point in this field.  
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Table 1. An overview of helminths affecting the CNS of humans1. The species typically associated 

with the CNS pathology are marked by an asterisk (*) (Katchanov and Nawa 2010, Garcia et al. 

2013, Finsterer and Auer 2013). A question mark (?) indicates expected, but not experimentally 

confirmed data. 

Helminth  CNS invading stage Mode of the CNS invasion 

TREMATODES   

Paragonimus spp. juveniles migration within soft tissues (?) 

Schistosoma spp.* eggs hematogenous dissemination 

CESTODES   

Echinococcus spp.* hexacanths hematogenous dissemination 

Spirometra spp. plerocercoids migration within soft tissues (?) 

Taenia solium* hexacanths hematogenous dissemination 

NEMATODES   

Angiostrongylus spp.* larvae (L3) hematogenous dissemination 

Baylisascaris spp. * larvae (L3) hematogenous dissemination 

Gnathostoma spp. larvae (L3) migration within nerves or soft tissues (?) 

Toxocara spp.* larvae (L3) hematogenous dissemination 

Trichinella spp. larvae (L1) hematogenous dissemination 

 

1.1.3. Neurocysticercosis  

Neurocysticercosis (NCC) is perhaps the most common helminth infection of the human CNS. It 

is caused by hexacanths of the pork tapeworm Taenia solium which are disseminated into the 

CNS where they develop into cysticerci (cysts). Humans hence become the intermediate hosts. 

NCC affects 2.5–8.3 million people living mostly in rural areas of developing countries in Amer-

ica, Asia, and Africa. Of note, it is the most frequent preventable cause of epilepsy being respon-

sible for 30% of epilepsy cases in those endemic areas (WHO 2019 [online]). The worldwide dis-

tribution and grave effects on human health make NCC #1 among helminth neuroinfections. 

Thus, enormous scientific efforts have been made to reveal the host immune response and its 

role in the NCC pathogenesis. The large availability of human clinical samples and the develop-

ment of diverse animal models (Arora et al. 2017, de Lange et al. 2019) have significantly facili-

tated the research. As the topic is regularly and extensively reviewed (e.g., Garcia et al. 2014, 

Fleury et al. 2016, Gonzales et al. 2016, Prodjinotho et al. 2020, Garcia et al. 2020), the “big 

picture” of the host immune response will be introduced here to enable a comparison of NCC 

 
1 Admittedly, more species have been reported to infect the human CNS (e.g., Fasciola hepatica, Strongy-
loides stercoralis, filarial species etc.) (Garcia et al. 2013). However, such cases are scarce, and the species 
do not typically exhibit neurotropic behavior and neurological pathology. 
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with neurotoxocarosis and neuroschistosomosis presented later (see Sections 1.1.4 and 1.1.5, 

respectively).  

The localization of the cysts within the CNS (parenchymal or extraparenchymal) and their viability 

(viable or degenerating/dying) define the host immune reaction and clinical outcome of the dis-

ease. The parenchymal cysts are usually small (<2 cm in humans), stationary and no significant 

inflammatory response develops around them as far as they are viable. It seems to be due to the 

active evasion/suppression of the host inflammatory reactions, possibly by induction of the toler-

ogenic dendritic cells or anti-inflammatory M2 macrophages/microglia (Rodríguez-Sosa et al. 

2002, Terrazas et al. 2011, Sun et al. 2014, Chauhan et al. 2015, Quenum Zangbede et al. 2018). 

The parasite excretory/secretory products (ESP) are most likely responsible for these effects. A 

positive correlation between the number of the brain cysts (i.e., the amount of the released ESP) 

and the anti-inflammatory milieu supports this hypothesis (Tharmalingam et al. 2016). Astro-

gliosis, activation of microglia and a mixed Th1/Th2 response might occur early after the infection 

(Toenjes and Kuhn 2003, Mejia Maza et al. 2019) but it is soon shifted to Th2 which is associated 

with the asymptomatic course of the disease (Chavarría et al. 2003, Verma et al. 2011a).  

As the cysts degenerate and die, either naturally or due to the anthelminthic treatment, they 

lose the ability to modulate the host immune response and their intrinsic antigens are also newly 

exposed to the immune system (Restrepo et al. 1998, Uddin et al. 2010, Amit et al. 2011). Con-

sequently, strong neuroinflammation develops being accompanied by remarkable gliosis and 

infiltration of the peripheral leukocytes into the affected nervous tissue (Alvarez et al. 2002, 

Singh et al. 2015a, Mishra et al. 2016, Sampaio et al. 2020). The strong immune reaction is driven 

by pro-inflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), interferon gamma 

(IFN-γ), interleukin (IL)-1β, and IL-6, but pro-inflammatory/regulatory IL-4, IL-10, and IL-13 can 

also be present to control the neuroinflammation (Restrepo et al. 2001, Sáenz et al. 2012). An-

tigens of scolexes and cyst membranes trigger the expression of a plethora of chemokines, such 

as chemokine (C-C motif) ligand (CCL) 2, chemokine (C-X-C motif) ligand (CXCL) 8 or CXCL10. 

Astrocytes and monocytes seem to be the major sources of these chemokines and those pro-

duced by recruited γδ T cells likely amplify the response. Indeed, depletion of γδ T cells signifi-

cantly reduces the cellular infiltration into the CNS (Cardona et al. 2003, Uddin et al. 2005, Uddin 

et al. 2006, Uddin et al. 2010). The increased production of proinflammatory cytokines, chemo-

kines and matrix metalloproteases (MMPs) results in the disruption of the BBB. It further facili-

tates the influx of the peripheral leukocytes and boosts the neuroinflammation (Alvarez and 

Teale 2007, Alvarez and Teale 2008, Prasad et al. 2009, Verma et al. 2011b, Marzal et al. 2014, 

Mahanty et al. 2015, Singh et al. 2015b). Calcified nodules continuously form around the 
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destroyed cysts and the adjacent nervous tissue exhibits noticeable astrogliosis indicating the 

tissue repair by a glial scar after the exacerbated neuroinflammation (Fleury et al. 2016).  

Headache, dizziness, seizures, or even epilepsy are the main clinical manifestations of patholog-

ical processes in the CNS associated with the degenerating/dying cysts (Garcia et al. 1993, 

Ndimubanzi et al. 2010, Garcia et al. 2020). Substance P, a neuropeptide belonging to the 

tachykinin family, was identified as a mediator of the seizures making them potentially prevent-

able or treatable by administration of the appropriate receptor antagonists (Robinson et al. 

2012). It might be beneficial for the patients as corticosteroids or antiepileptics, currently ad-

ministered along with the anthelminthic drugs to prevent seizures, could have unwanted side 

effects. This example clearly shows that the precise examination of neuroinfection-related im-

munopathology might bring important data for prevention or treatment.  

NCC caused by the extraparenchymal cysts is much less explored as it is diagnosed less fre-

quently despite it can have more severe clinical consequences (Chavarría et al. 2005). Indeed, 

the cysts localized in the CNS ventricles or subarachnoid spaces can grow and spread which in-

creases morbidity and mortality of the extraparenchymal NCC (Baro et al. 2020, Prodjinotho et 

al. 2020). The clinical manifestation includes obstructive hydrocephalus, increased intracranial 

pressure, compression of the brainstem, and meningitis (Bazan et al. 2016). The patients suffer-

ing from the extraparenchymal NCC exhibit elevated parasite-specific IgG in the CSF, which has 

a pro-inflammatory cytokine profile accompanied by increased production of reactive oxygen 

species (Chavarría et al. 2005, Rodríguez et al. 2008). Contrary to the NCC associated with paren-

chymal cysts, the inflammation is triggered even if the cysts are viable, but the reason for this is 

not known. The possible explanation might be that the cysts are growing and produce more 

membrane antigens with pro-inflammatory effects that exceed the antigens with an immuno-

regulatory function (Garcia et al. 2020). Furthermore, the intimate contact of the cysts with the 

CSF and more intense draining of the parasite antigens towards the lymph nodes might fuel the 

host immunity. However, none of this has yet been proven.  

1.1.4. Neurotoxocarosis 

Neurotoxocarosis (NT; or cerebral toxocarosis) results from the invasion of the CNS by larvae of 

Toxocara canis or T. cati, ascarid intestinal roundworms frequently infecting dogs and cats, re-

spectively. Humans and rodents represent paratenic hosts who become infected by ingestion of 

embryonated eggs. The parasites are not able to develop in the paratenic hosts and migrate 

throughout their body. It usually triggers a tissue inflammation in the affected organs, such as 

liver and lungs (larva migrans visceralis), eyes (larva migrans ocularis) or the CNS (NT). An 
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enigmatic “covert/common” toxocarosis, displaying nonspecific symptoms, has also been rec-

ognized in humans (Ma et al. 2018). Serological studies revealed a worldwide distribution of 

human toxocarosis, but the real number of people infected with Toxocara spp. is hard to reach 

as most of the cases are likely asymptomatic and remain unnoticed (Rostami et al. 2019, 

Nicoletti 2020). For example, only around 100 human cases of NT have been described in the 

past 70 years which is considered very low and pointing to underestimation and neglect of the 

disease (Nicoletti 2016, Deshayes et al. 2016, Nicoletti 2020). Indeed, the human samples are 

scarcely available for studying the CNS immune response, perhaps except for post mortem ex-

aminations. Hence, animal models of NT are the main source of information.  

Mice are the most frequently used experimental hosts of Toxocara spp. which corroborates with 

their role of paratenic hosts even under the natural conditions (Antolová et al. 2013, Strube et 

al. 2013, Krücken et al. 2017). Three phases of murine toxocarosis can roughly be defined: (1) 

the acute phase (0–14 days post infection; dpi) associated with the initial somatic migration of 

the larvae mostly into the liver and lungs, (2) the subacute phase (14–28 dpi) characterized by 

the onset of the CNS neuroinflammation and the host behavioral changes, and (3) the chronic 

phase (after 28 dpi) when the behavioral changes and pathological processes progressively de-

teriorate (Janecek et al. 2014, Resende et al. 2015, Janecek et al. 2017, Ruiz-Manzano et al. 2019, 

Strube et al. 2020). The larvae invade the CNS as soon as 2–3 dpi (Janecek et al. 2014, Resende 

et al. 2015) and then continuously accumulate in the nervous tissue2. The species believed to 

prevail in human infections, T. canis, exhibits a stronger affinity towards the CNS in mice than T. 

cati and causes more severe pathology. Also, T. canis preferably migrates into the cerebrum 

while T. cati tends to gather in the cerebellum (Janecek et al. 2014).  

Severe pathology accompanies the larval migration within the CNS. Specifically, hemorrhagic 

lesions, BBB impairment, parenchymal damage, neuronal death, and axonal injury accompanied 

by accumulation of β-amyloid precursor protein were recorded in mice. Demyelination and 

downregulation of myelin-associated genes also contribute to the CNS pathology (Liao et al. 

2008a, Cardillo et al. 2009, Janecek et al. 2014, Heuer et al. 2015, Springer et al. 2019). The 

pathological effects are presumably associated with the mechanical tissue damage caused by 

the migrating larvae, but the impact of the host immune response cannot be excluded.  

The larval migration activates astrocytes and microglia, the CNS resident immune cells. Astro-

cytes are hypertrophied as revealed by increased production of glial fibrillary acidic protein 

 
2 Nevertheless, other patterns of the CNS colonization, such as biphasic or peaking at the beginning of the 
chronic phase, were also suggested (reviewed by Strube et al. 2020). 
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(GFAP) and likely participate in the tissue and BBB repair. Microglia are often found as “gitter 

cells” phagocytosing myelin but their other than scavenger functions during the infection (e.g., 

anti-parasitic, immunoregulatory) have not been addressed yet (Othman et al. 2010, Janecek et 

al. 2014, Eid et al. 2015, Springer et al. 2019). Othman et al. (2010) suggested that nitric oxide 

(NO) production by “glial cells” might have detrimental effects on the nervous tissue. However, 

their hypothesis, based only on immunohistochemical staining of inducible NO synthase (iNOS), 

needs to be tested in appropriate experimental setup. Overall, further functional and phenotype 

analyses are needed to reveal the roles of astrocytes and microglia during NT.  

Infiltration of peripheral leukocytes into the CNS parenchyma is rarely observed in mice (Liao et 

al. 2008a, Liao et al. 2008b, Othman et al. 2010, Eid et al. 2015) even though human NT often 

manifests as eosinophilic meningoencephalitis (Moreira-Silva et al. 2004, Fan et al. 2015). The 

specific reason for this is not known but is probably related to slightly different pathology and 

course of the infection in various mouse strains (Epe et al. 1994, Cox and Holland 2001). Indeed, 

Springer et al. (2019) recently observed perivascular cuffs containing eosinophilic granulocytes 

in C57BL/6 mice. Nevertheless, the larvae are not trapped by any of the immune cells and no 

granulomas are usually found in the mouse CNS (Liao et al. 2008a, Cardillo et al. 2009, Janecek 

et al. 2014, Springer et al. 2019). This could be explained by immunological non-reactivity of the 

larvae or better by immunomodulation/immune evasion of the host (Maizels 2013). Alterna-

tively, the simple fact that the larvae are big (350–400 µm in length) and actively moving organ-

isms should be considered as they might simply escape the host immune cells (Xinou et al. 2003). 

It agrees with scarce findings of formed, but “empty” granulomas in the CNS of NT human pa-

tients (Dent et al. 1956, Hill et al. 1985, Nelson et al. 1990). Collectively, these data indicate that 

cell-based immune response is not protective against NT either in mice or men.  

Cytokines/chemokines direct the neuroinflammation during NT and so are co-responsible for 

the disease outcome. Corroborating with the generally “proinflammatory” picture of NT, upreg-

ulated expression of genes coding for IL-5, IL-6, TNF-α, IFN-γ, but also regulatory IL-10 were de-

tected in the brains of infected mice at various timepoints (Hamilton et al. 2008, Othman et al. 

2010, Eid et al. 2015). However, a comprehensive look at the cytokine/chemokine profile was 

missing until the microarray gene expression analysis of brains performed by Janecek et al. 

(2015) in the chronic phase. They revealed that IL-4, IL-5, IL-6, IL-13, and IL-19 were among the 

most differentially expressed cytokines being accompanied by an increased expression of many 

chemokines. These cytokine/chemokine expression data were recently challenged by a large-

scale study measuring the real concentration of selected cytokines/chemokines in the affected 

CNS tissues (Waindok and Strube 2019). Interestingly, the levels of pro-inflammatory cytokines 
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(e.g., TNF-α or IFN-γ) never exceeded those measured in the healthy mice and continuously de-

creased during the infection. On the contrary, IL-4 and IL-5 rocketed in the acute and subacute 

phase while CCL11 (or eotaxin 1) and CCL3 (or macrophage inflammatory protein 1 alpha, MIP-

1α) were elevated all the time which correlates with the previous expression data (Waindok and 

Strube 2019). Production of anti-inflammatory bioactive lipid mediators might help to control 

the inflammation (Waindok et al. 2019) which would be beneficial both for the parasite and the 

host.  

The collapse of the CNS homeostasis, related to exacerbated neuroinflammation or disruption 

of neurotransmitters (Othman et al. 2010), is reflected in motoric dysfunction, reduced activity 

and anxiety or impairment of learning and memory in infected mice (Olson and Rose 1966, 

Hamilton et al. 2006, Janecek et al. 2017). Neurological malfunctions (e.g., extremity weakness, 

paresis, or cognitive disorders) appear also in NT human patients and their severity is dependent 

on the number and localization of the larvae (Finsterer and Auer 2007). NT was even speculated 

to be associated with the development of mental retardation or neurological disorders, such as 

Alzheimer's disease and epilepsy (Nicoletti et al. 2007, Nicoletti et al. 2008, Holland and 

Hamilton 2013, Fan et al. 2015, Gale et al. 2016, Chou et al. 2017). These hypotheses must ur-

gently be tested in order to (re)evaluate the risk which human toxocarosis might pose to millions 

of people worldwide.  

1.1.5. Neuroschistosomosis  

Neuroschistosomosis (NS) arises from the lodging of Schistosoma spp. eggs within the CNS. The 

cerebral form is usually caused by S. japonicum, while S. mansoni and S. haematobium affect the 

spinal cord. The reason for this is the size and shape of the eggs – those of S. japonicum are 

smaller and have no protrusions which enable their dissemination via blood circulation as far as 

to the brain. On the contrary, bigger eggs of S. mansoni and S. haematobium, even with protru-

sions, usually get stuck lower in the spinal cord (Scrimgeour and Gajdusek 1985). However, the 

CNS involvement seems to be a bit unusual as it is reported from less than 5% of schistosomiasis 

patients (Watt et al. 1986, Ferrari and Moreira 2011, Ross et al. 2012).  

The similar pattern is observed also in mice in which egg dissemination into the CNS is rare or 

even negligible event (Aloe et al. 1996, Silva et al. 2002, Fan and Kang 2003, Lambertucci et al. 

2014, Alves Fidelis et al. 2018, Dang-Trinh et al. 2018, Carvalho et al. 2019). It makes the classi-

cally (i.e. percutaneously by cercariae) infected mice unsuitable models to study NS. Conse-

quently, microinjection of the eggs directly into the CNS parenchyma or subarachnoid spaces 

has been applied in some pilot studies (Wang et al. 2011, de Carvalho et al. 2017, Tan et al. 
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2019). The microinjection-based approach does not recapitulate the natural course of the infec-

tion, but it was shown to work well for modeling intestinal and urogenital schistosomosis (Fu et 

al. 2012, Richardson et al. 2014, Mayer et al. 2017). Nevertheless, its application in the case of 

NS needs to be further validated since the protocols have not been standardized yet and do not 

provide sufficiently plausible and reproducible outcomes. The conclusions on the host immune 

response during NS are thus largely based on clinical and pathological findings from human pa-

tients. It is beneficial as it forestalls a bias possibly related to the use of animal models (Fallon 

2000, Cheever et al. 2000). On the other hand, it rules out any kind of hypotheses verification 

by experimentation due to ethical reasons.  

The pathogenesis of NS is far from being fully understood but the general features seem to be 

similar as in the peripheral organs, such as the liver. Specifically, deposition of the eggs in the 

CNS induces an inflammatory response leading to granuloma formation, which is orchestrated 

by CD4+ T cells (Ferrari et al. 2008). The granulomatous reaction developing around the eggs 

comprises three stages: (1) the necrotic-exudative stage – the granuloma is large and composed 

of eosinophils, lymphocytes, plasma cells, and microglia/macrophages, a zone of periovular ne-

crosis is present, the adjacent nervous tissue is congested, edematous, and exhibits astrogliosis; 

(2) the productive stage – the granuloma is smaller and contains epithelioid and multinucleated 

giant cells, lymphocytes and plasma cells, no periovular necrosis is evident, egg shells are de-

formed; (3) the healing stage – the granuloma undergoes fibrotic changes and astrogliosis is 

present in the adjacent nervous tissue (Pittella 1997, Tan et al. 2019). The local inflammation 

and pressing the nervous tissue by periovular granuloma (the mass effect) are responsible for 

the pathology. Depending on the granuloma localization, the corresponding clinical form is (a) 

pseudotumoral encephalic or (b) spinal cord schistosomiasis presenting with (a) nystagmus, 

speech disturbances, motor weakness, and increased intracranial pressure or (b) lumbar and 

lower limb pain, muscle weakness and bladder dysfunction (Ferrari et al. 2008, Ferrari and 

Moreira 2011)3. Nonetheless, the NS might also remain asymptomatic if the granulomas are very 

few and sparsely distributed (Ferrari 2004, Ferrari et al. 2008).  

The cytokine milieu in the CSF of NT patients indicates the Th2 polarization. Specifically, IL-1β, 

IL-4, IL-6, IL-10, and IL-13 were elevated both in the CSF and serum of NT patients while TNF-α 

and IFN-γ were found to be significantly decreased (Ferrari et al. 2006, Sousa-Pereira et al. 2006, 

 
3 Additionally, acute schistosomal encephalopathy is recognized which is not necessarily associated with 
egg deposition within the CNS. It presents as vasculitis presumably mediated by eosinophils or immune 
complexes, but the specific pathogenesis remains unknown (Jauréguiberry et al. 2007, Ferrari and Moreira 
2011). 
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Kruschewsky et al. 2016). The concentration of IL-4 and IL-6 was even higher in the CSF than 

serum which suggests intrathecal production of the cytokines and favoring type 2 immunity 

(Ferrari et al. 2006). Considering the cytokine milieu directly in the CNS parenchyma, no data 

are available for humans, but a recent study tried to address this issue in mice. However, their 

immunohistochemical images are unsatisfactory and together with inappropriate methodical 

controls do not allow one to make any conclusions (Carvalho et al. 2019).  

1.2. Avian schistosomes, neglected relatives of human blood flukes 

The family Schistosomatidae (Digenea) includes 14 genera of trematodes parasitizing in birds or 

mammals (Figure 1) (Horák et al. 2019). Human blood flukes (the genus Schistosoma) are the most 

prominent representatives of the family since they cause severe hepato-intestinal or urogenital 

disease to >140 million people living mostly in poor communities in (sub)tropical areas (GBD 2017 

Disease and Injury Incidence and Prevalence Collaborators 2018, McManus et al. 2018). However, 

avian schistosomes should also attract research and public attention due to their worldwide dis-

tribution (Lashaki et al. 2020) and pathogenicity in vertebrates, including humans.  

 

Figure 1. A cladogram of the Schistosomatidae family. Four clades are distinguished each using dif-

ferent definitive hosts (birds or mammals) and environments (marine or freshwater). Underlined 

genera are confirmed causative agents of human cercarial dermatitis. Adapted from (Horák et al. 

2015).  
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Most importantly, avian schistosomes are causative agents of human cercarial dermatitis (CD) 

also known as swimmer’s itch. It is an allergic disease developing after repeated exposure of skin 

to especially avian4 schistosomes (Kolářová et al. 2013, Macháček et al. 2018). In the last decade, 

the number of reported CD outbreaks has markedly increased (Soldánová et al. 2013, Lawton et 

al. 2014, Horák et al. 2015, Gordy et al. 2018, De Liberato et al. 2019, Tracz et al. 2019, Gulyás 

et al. 2020). Hence, CD is regarded as a (re)emerging disease that has substantial economic con-

sequences, especially if recreational areas are afflicted (Horák et al. 2015). Furthermore, it is 

recognized as an occupational hazard for people working in contaminated water (Harries 2004), 

such as rice farmers, hydrologists, environmental samplers, or lifeguards. To develop better pro-

tective measures and diagnostic or therapeutic tools, the intricate host-parasite interactions, 

specifically the host immune response, must be untangled.  

Among avian schistosomes, the genus Trichobilharzia has become the most conspicuous. Ac-

commodating >30 species, it is the largest genus of the Schistosomatidae family (Brant and Loker 

2013) and it is reckoned as the primary etiological agent of CD (Kolářová 2007, Soldánová et al. 

2013, Horák et al. 2015). Two Trichobilharzia species, differing in tissue tropism, are readily avail-

able for experimental work as their complete life cycle can routinely be maintained under the 

laboratory conditions: the viscerotropic T. szidati (Neuhaus 1952), and the neurotropic T. regenti 

(Horák et al. 1998a). Both species are valuable models for studying host-schistosome interac-

tions and involvement of the latter into the “50 Helminth Genomes Project” (Coghlan et al. 2019) 

recently attested significance of the species and avian schistosomes in general.  

According to the topic of the presented thesis, the biology of T. regenti will further be described 

with a special emphasis on the infection of and the development in accidental mammalian hosts.  

1.2.1. Biology of Trichobilharzia regenti, the neurotropic avian schistosome 

Trichobilharzia regenti, discovered in Southern Bohemia by Horák et al. (1998a), is the avian 

schistosome widely distributed across Europe (Picard and Jousson 2001, Rudolfová et al. 2007, 

Korsunenko et al. 2010, Jouet et al. 2010, Christiansen et al. 2016, Prüter et al. 2017, 

Marszewska et al. 2018). Recently, it was also introduced by migratory birds and game 

 
4 Admittedly, CD can also be triggered by human schistosomes, such as S. mansoni. However, the symp-
toms are usually not as severe as in the case of CD induced by avian schistosomes. Furthermore, they 
mostly develop only in naïve persons from non-endemic areas (Boros 1989, Langenberg et al. 2020). Out-
breaks of CD among farmers caused by repeated exposure to mammalian schistosomes were reported 
from India and Nepal and were associated mainly with species parasitizing in domesticated animals 
(reviewed in Horák et al. 2015). 
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waterfowl to northern Iran (Ashrafi et al. 2018) and New Zealand (Brant and Davis 2011), re-

spectively, which highlights its epidemiological significance.  

The life cycle of T. regenti follows a general pattern typical for schistosomes, i.e., two hosts (in-

vertebrate and vertebrate) are exploited and cercariae infect the definitive host by penetration 

of the skin (Figure 2). However, certain differences between the life cycle of T. regenti and other 

schistosomes, specifically the best-known human species, do exist. They are mentioned in the 

next paragraph and summarized in Table 2.  

 

Figure 2. The life cycle of Trichobilharzia regenti. Different types of the hosts are depicted in grey 

boxes, the free-living infectious stages are outlined in blue. Major pathology caused to the verte-

brate hosts is shown in italics. 

 

Table 2: A comparison of life cycle features of Trichobilharzia regenti and Schistosoma mansoni. 

The first is an avian schistosome used in the thesis, the latter is the major human schistosome 

widely used as a model species. 

 Trichobilharzia regenti Schistosoma mansoni 

Number of hosts 2 2 

Intermediate hosts Radix spp. (Lymnaeidae) Biomphalaria spp. (Planorbidae) 

Definitive hosts anatid birds primates, rodents 

- mode of infection percutaneous percutaneous 

- migration nervous system, meninges circulatory system 

- nutrition nervous tissue, blood blood 

- final site nasal mucosa (extravascularly) visceral veins (intravascularly) 

- release  miracidia hatch from eggs directly 

in tissue 

eggs excreted in feces, miracidia 

hatch in outer environment 

Role of humans accidental hosts definitive hosts 

Primary disease cercarial dermatitis hepato-intestinal schistosomiasis 
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First and foremost, T. regenti is the avian schistosome. Anatid birds, such as mallards, mute swans, 

greylag geese, or diving ducks, serve as definitive hosts (Jouet et al. 2010, Skírnisson et al. 2012). 

Contrary to human schistosomes, adults of T. regenti dwell in the nasal mucosa of infected birds. 

Here they copulate and lay eggs, being localized mostly outside of the blood vessels (Chanová and 

Horák 2007). Miracidia often hatch directly in the nasal tissue (Horák et al. 1998a) and are released 

into the water where they search for the intermediate hosts, lymnaeid snails of the genus Radix 

spp. (Horák et al. 1998a, Jouet et al. 2008, Huňová et al. 2012). After 5–6 weeks of intramolluscan 

development, ocellate furcocercariae leave the snails (Horák et al. 1998a), ready to seek and per-

cutaneously infect the vertebrate host. No published data on host finding and recognition are 

available for T. regenti cercariae, but it is assumed that the stimuli are similar to those used by the 

closely related species T. szidati. It relies on physical (shadow, warmth) and chemical (skin choles-

terol and ceramides) signals (Feiler and Haas 1988a, Feiler and Haas 1988b).  

After attachment to the vertebrate host, cutaneous unsaturated fatty acids induce emptying of 

cercarial penetration glands and the released histolytic peptidases facilitate the creeping of the 

parasite through the skin (Haas and van de Roemer 1998, Mikeš et al. 2005). Lipid extracts of 

both duck and human skin trigger the penetration which suggests that there is no strong pref-

erence of cercariae towards the infection of birds (suitable definitive hosts) compared to the 

mammals (dead-end accidental hosts) (Haas and van de Roemer 1998). The inability to avoid 

such unfavorable penetration, possibly associated with a short cercarial lifespan, makes mam-

mals “epidemiological sinks” of the parasite (Johnson et al. 2019).  

After penetration of the skin, the newly transformed T. regenti schistosomula search for the 

peripheral nerves via which they migrate towards the spinal cord (Horák et al. 1999, Hrádková 

and Horák 2002). In the definitive hosts, schistosomula continue their migration through the 

spinal cord, the brain, and meninges to the nasal mucosa where they mature (Hrádková and 

Horák 2002, Chanová and Horák 2007); a day-by-day time course of the infection in ducks is 

shown in Table 3 (see page 17). The parasite migration via the CNS is frequently associated with 

leg paralysis and orientation/balance disorders of the infected birds (Horák et al. 1999). Not only 

is this neurotropic migration pattern completely different from that typical for human/visceral 

schistosomes5 (Horák et al. 2002, Brant and Loker 2013, Nation et al. 2020) but it is also rarely 

seen among helminths in general (Kristensson et al. 2013).  

 
5 Prüter et al. (2017) recently found the visceral schistosome species Bilharziella polonica in the spinal 
cord and brain meninges of mallards from Germany. They suggested the neurotropic infection route anal-
ogous to T. regenti, but the parasites were not found in the nasal mucosa.  
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Table 3: Migration of Trichobilharzia regenti in experimentally infected domestic ducks. The blue 

cells indicate the distribution of living T. regenti life stages during the infection. Migration data 

were compiled from several studies (Horák et al. 1999, Kolářová et al. 2001, Hrádková and Horák 

2002, Chanová and Horák 2007). Abbreviations: DPI, days post infection; PerNe, peripheral 

nerves; SynSC, synsacral spinal cord; ThoSC, thoracic spinal cord; CerSC, cervical spinal cord; 

MeOb, medulla oblongata; Cere, cerebellum; Hemi, cerebral hemispheres; Men, meninges; 

NasM, nasal mucosa.  

DPI 1 2 3 4 5 6 7 8 9 1
0

 

1
1

 

1
2

 

1
3

 

1
4

 

1
5

 

1
6

 

1
7

 

1
8

 

1
9

 

2
0

 

2
1

 

2
2

 

2
3

 

2
4

 

2
5

 

Skin                          

PerNe                          

SynSC                          

ThoSC                          

CerSC                          

MeOb                          

Cere                          

Hemi                          

Men                          

NasM                          

 

The neurotropic behavior of T. regenti was demonstrated also in mice (Hrádková and Horák 

2002). However, the course and fate of the infection are different than in ducks as mammals are 

unsuitable accidental hosts of T. regenti. The most prominent feature of such host-parasite in-

compatibility is effective halting and elimination of the vast majority (ca 90%) of the newly trans-

formed schistosomula in the skin right after the penetration (Kouřilová et al. 2004a). The re-

maining schistosomula can escape to the CNS but most of them stay stuck in the thoracic and 

cervical spinal cord. Some schistosomula can reach the cerebellum or hemispheres, but the in-

vasion of the brain is considered rather exceptional in immunocompetent mice (Horák et al. 

1999, Hrádková and Horák 2002, Lichtenbergová et al. 2011, Chanová and Hrdý 2016); a day-by-

day time course of the infection in mice is shown in Table 4 (see page 18). Furthermore, growth 

and development of schistosomula are suppressed in mice, possibly by the host immune re-

sponse and/or the absence of some essential nutritional or stimulatory factors; the parasites 

never reach maturity (Blažová and Horák 2005).  
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Table 4: Migration of Trichobilharzia regenti in experimentally infected immunocompetent mice6. 

The blue cells indicate the distribution of living T. regenti life stages during the infection. Migra-

tion data were compiled from several studies (Kolářová et al. 2001, Hrádková and Horák 2002, 

Kouřilová et al. 2004a, Kouřilová et al. 2004b, Lichtenbergová et al. 2011, Chanová and Hrdý 2016, 

Bulantová et al. 2016). Abbreviations: DPI, days post infection; PerNe, peripheral nerves; LuSC, 

lumbar spinal cord; ThoSC, thoracic spinal cord; CerSC, cervical spinal cord; MeOb, medulla ob-

longata; Cere, cerebellum; Hemi, cerebral hemispheres; Men, meninges; NasM, nasal mucosa.  
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A significant role of the host immune response in the control of the infection in mice is supported 

by several observations. First, schistosomula migrate faster and more frequently to the CNS in 

immunocompromised SCID mice which consequently have a higher parasite burden in the CNS 

compared to immunocompetent strains (Hrádková and Horák 2002, Kouřilová et al. 2004b). Sec-

ond, damaged and dead schistosomula are detected in the CNS of immunocompromised SCID 

mice at later timepoints (Lichtenbergová et al. 2011). Last, enhanced parasite trapping is ob-

served in the skin of repeatedly infected immunocompetent mice which suggests the develop-

ment of a protective immunity (Kouřilová et al. 2004a, Kouřilová et al. 2004b). Although several 

studies aimed to describe the immune response of mice infected with T. regenti (see Sections 

1.2.2 and 1.2.3), the mechanisms responsible for parasite elimination either in the skin or the 

CNS remain unknown.  

1.2.2. The skin phase of T. regenti infection in mammals 

The skin is a primary physical barrier of the host which cercariae must breach. Histolytic enzymes 

are released from cercarial glands and facilitate penetration of the skin (Mikeš et al. 2005) (see 

 
6 Pooled data from infections of BALB/c and C57BL/6J mice are shown since the migration pattern seems 
to be similar in both strains. However, a thorough comparative study, not performed yet, should be done 
to verify these observations. 



19 

Section 1.2.4). Within the next 12–24 hours, cercariae transform into schistosomula. The process 

of transformation is accompanied by tail disposal, shedding of glycocalyx (Horák et al. 1998b, 

Řimnáčová et al. 2017), the formation of a double membrane covering the tegument (shown in 

vitro; Chanová et al. 2009) and switch from aerobic to microaerobic metabolism (Leontovyč et 

al. 2016). These morphological and biochemical changes support the parasite survival in the 

host. Even though the somatic migration was described for T. regenti (see above) as well as for 

other Trichobilharzia species (Olivier 1953, Haas and Pietsch 1991, Horák and Kolářová 2001, 

Chanová et al. 2007, Horák et al. 2008), most of the schistosomula are entrapped in the skin by 

leukocytic infiltrate. It demonstrates the importance of the initial skin immune response in the 

parasite control.  

In naïve mice, penetration of the skin by T. regenti cercariae evokes tissue edema, vasodilata-

tion, and the influx of inflammatory cells. Neutrophils are the first leukocytes infiltrating the site 

of infection as soon as 4–6 hours post infection (hpi) when schistosomula are localized mostly in 

the epidermis or at epidermal/dermal junction (Kouřilová et al. 2004b). Schistosomula then 

move deeper to the dermis and neutrophils and eosinophils accumulate around them 12–24 

hpi. To a lesser extent, macrophages, degranulating mast cells, and CD4+ cells also appear in the 

inflammatory foci which usually dissipate by 4–8 dpi (Kouřilová et al. 2004a, Kouřilová et al. 

2004b). The immune cell infiltration, not observed in immunocompromised SCID mice, is ex-

pected to stop and eliminate schistosomula (Kouřilová et al. 2004b). The skin inflammation is 

accompanied by local production of various cytokines, such as IL-1β, IL-6, IL-4, IL-10, IL12p40, or 

IFN-γ. These data from skin biopsies indicate a mixed Th1/Th2 response which was observed 

also in the skin draining lymph nodes (Kouřilová et al. 2004a).  

The skin pathology and immune response markedly differ in mice repeatedly exposed to T. re-

genti cercariae. Pustules and abscesses appear in the epidermis and a mixture of leukocytes 

massively infiltrates the dermis (Kouřilová et al. 2004a). The inflammation, accompanied by peri-

vasculitis, folliculitis, and parakeratosis, is much stronger, compared to naïve mice. It results in 

a more effective elimination of the schistosomula which are thus only rarely found in the CNS of 

repeatedly infected mice (Kouřilová et al. 2004a, Lichtenbergová et al. 2011). Histamine and 

Th2-associated cytokines, namely IL-4 and IL-10, are substantially produced in the skin early af-

ter the penetration. A shift towards Th2 response is later observed also in the skin draining 

lymph nodes (Kouřilová et al. 2004a). A systemic Th2 polarization in repeatedly infected mice is 

evident from elevated levels of parasite-specific IgG1 and IgE (Kouřilová et al. 2004a, 

Lichtenbergová et al. 2008b).  
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Repeated exposures of mice to cercariae of avian schistosomes, including T. regenti, are used as a 

model of CD. In humans, the disease is manifested by maculo-papulo-vesicular skin eruptions as-

sociated with edema and intensive itching. However, a generalized systemic reaction including 

fever, limb swelling, nausea, or diarrhea can also occur in some individuals (Kolářová et al. 2013). 

The course of CD and severity of the clinical signs and symptoms is related to the degree of host 

sensitization, i.e., they appear faster and are more pronounced in individuals with a history of CD 

(Gay et al. 1999, Macháček et al. 2018); this complies with the observations from mice (Kouřilová 

et al. 2004b). The histopathological image of CD in mice and humans also seems to be comparable, 

even following the similar timescale (Haemmerli 1953, Gay et al. 1999, Kouřilová et al. 2004b).  

Taken together, the infection of mice/mammals with T. regenti induces immediate skin hyper-

sensitivity followed by a late phase inflammatory response. The host immune response is re-

sponsible for arresting and elimination of the parasites in the skin, but the specific effector mol-

ecules/processes have not been identified yet. Also, the host immune response in the skin is not 

quite effective, especially if naïve mice are infected, and some schistosomula can continue their 

migration towards the CNS.  

1.2.3. The CNS phase of T. regenti infection in mammals 

Schistosomula that manage to leave the mouse skin migrate within the epineurium or inside the 

peripheral nerve fascicles towards the spinal cord which they enter via the spinal roots as soon 

as 2 dpi (Lichtenbergová et al. 2011). This early phase of migration through the nervous tissue is 

associated with no or only weak inflammation or focal edema (Kouřilová et al. 2004b). It is not 

clear whether this is due to immunomodulatory activities of the schistosomula or the generally 

delayed onset of the immune response in the CNS.  

In the spinal cord, the inflammation develops by 6–7 dpi. Lymphocytes, plasma cells, and eosin-

ophils infiltrate the perivascular areas, and inflammatory exudates sometimes appear also in the 

subarachnoid spaces (Kouřilová et al. 2004b). Neutrophils, activated microglia, and macro-

phages gather around the schistosomula or form a typical “rocket tail” infiltration behind them 

(Kouřilová et al. 2004b, Lichtenbergová et al. 2011). Schistosomula appear mostly in the gray 

and white matter, but they can be found also within the leptomeninges or in the central canal 

of the spinal cord (Kolářová et al. 2001, Kouřilová et al. 2004b, Lichtenbergová et al. 2011, 

Chanová and Hrdý 2016). They mechanically induce axonal injury and actively feed on myelin, 

but substantial demyelination is usually not observed (Lichtenbergová et al. 2011, Leontovyč et 

al. 2019). Activated astrocytes participate in tissue repair in the schistosomula migration tracks 
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(Faulkner et al. 2004, Sofroniew 2009, Lichtenbergová et al. 2011) which sometimes contain 

hemorrhages (Kouřilová et al. 2004b).  

As the neuroinflammation escalates 14–21 dpi, the inflammatory lesions around already dam-

aged schistosomula are found with an increasing frequency. Massive clusters of microglia, mac-

rophages, eosinophils, neutrophils, and a few CD3+ lymphocytes enclose the parasites. Espe-

cially microglia and macrophages are believed to be responsible for their killing (Lichtenbergová 

et al. 2011), but it has not been proven yet. The intense neuroinflammation also seems to harm 

the adjacent tissue in which axonal damage or dystrophic/necrotic changes of neurons can be 

detected (Kolářová et al. 2001, Lichtenbergová et al. 2011). However, neuromotor disorders are 

usually not observed in immunocompetent mice. On the contrary, leg paralysis is often reported 

from immunocompromised mice, in which more frequent axonal injury, resulting from a higher 

schistosomula burden, is probably responsible for the pathology (Kouřilová et al. 2004b, 

Lichtenbergová et al. 2011).  

Altogether, invasion of the murine CNS by T. regenti schistosomula triggers the neuroinflamma-

tion which effectively controls the infection. However, the immunostimulatory capacity of dif-

ferent parasite antigens is not known. Among others, a special attention should be paid to pep-

tidases as they are released into the nervous tissue in large amount (see Section 1.2.4.). Both 

resident immune cells (microglia and astrocytes) and recruited leukocytes participate in the host 

immune response. However, their role in parasite clearance or regulation of the neuroinflam-

mation has not been addressed. Additionally, the precise schistosomula tracking within the spi-

nal cord matters should be performed as it might have an impact on the immune response and 

pathology. Finally, the effects of the neuroinflammation on dynamics of the peripheral immunity 

remain to be discovered. 

1.2.4. Peptidases in the biology of T. regenti 

Peptidases are multifunctional proteolytic enzymes essential to helminths, including T. regenti. 

They participate in penetration of the host, parasite somatic migration, ontogenetic develop-

ment, protein digestion, and host-parasite immune interactions (McKerrow et al. 2006, Grote et 

al. 2018, Caffrey et al. 2018). Consequently, they are promising vaccine candidates and drug 

targets (Pearson et al. 2010, Ricciardi et al. 2016, Tallima et al. 2017, Stutzer et al. 2018, 

McKerrow 2018). Depending on the chemical nature of the groups responsible for catalysis, sev-

eral peptidase catalytic types are recognized: aspartic, cysteine, glutamic, metallo, serine, and 

threonine (Barrett et al. 2013).  
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Cysteine peptidases are the most abundant type of proteolytic enzymes represented in the ge-

nome of T. regenti (Coghlan et al. 2019). Their activity can be detected in cercarial extracts 

(Mikeš et al. 2005, Kašný et al. 2007) and transcripts coding for cysteine peptidases are upregu-

lated in schistosomula migrating through the spinal cord (Leontovyč et al. 2016, Leontovyč et al. 

2019). Of all cysteine peptidases, cathepsins B seem to predominate being expressed mainly, 

but not exclusively, in schistosomula and adults. It suggests their important role during invasion 

of and survival in the vertebrate hosts (Mikeš et al. 2005, Dolečková et al. 2010, Leontovyč et al. 

2019). Two representatives, T. regenti cathepsins B1 and B2 (TrCB1 and TrCB2, respectively), 

have been identified and functionally characterized so far (for a summary see Table 5).  

Table 5: A comparison of cathepsin B1 and B2 (TrCB1 and TrCB2, respectively), cysteine pepti-

dases of Trichobilharzia regenti. A question mark (?) indicates the expected localization/function.  

 TrCB1 TrCB2 

Localization gastrodermis  

(schistosomula, adults?) 

penetration glands  

(cercariae, schistosomula?) 

Substrates myelin basic protein, albumin, 

IgG, fibrinogen, collagen, myosin 

keratin, collagen, elastin, myelin 

basic protein, fibrinogen 

Biological function digestion, immune evasion? skin penetration, tissue migration 

Isoforms active: TrCB1.1–TrCB1.4 

inactive: TrCB1.5, TrCB1.6 

no isoforms found 

 

TrCB1 is a digestive peptidase localized in the gastrodermis of T. regenti schistosomula (Dvořák et 

al. 2005). In this manner, it is similar to the blood-processing cathepsins B1 of adult S. mansoni 

and S. japonicum (Caffrey and Ruppel 1997, Sajid et al. 2003). However, the substrate preference 

of TrCB1 is different: it efficiently degrades myelin basic protein while hemoglobin is a poor sub-

strate. Perhaps, it is an adaptation of T. regenti to the specific migration route and nutrition mode 

(nervous tissue) which are different from blood-feeding human schistosomes (Dvořák et al. 2005). 

Recently, other substrates, such as albumin, IgG, fibrinogen, collagen, or myosin, were identified 

(Dvořáková et al. 2020) but the biological relevance of their hydrolysis remains to be evaluated. 

Interestingly, TrCB1 has six isoforms but two of them (TrCB1.5 and TrCB1.6) are inactive due to the 

substitution of the catalytic cysteine by glycine (Dvořák et al. 2005). Anyway, these inactive 

isoforms are highly expressed in migrating schistosomula (Leontovyč et al. 2016). Their function is 

not fully understood but the inactive peptidases are generally believed to (a) regulate the activity 

of active isoforms by competing for substrates or inhibitors (Merckelbach et al. 1994, Dvořák et al. 

2005) or (b) alter the host immunity (Bergström et al. 2009, Reynolds et al. 2014).  
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TrCB2 is a peptidase localized in the cercarial post-acetabular penetration glands and presuma-

bly participates in the penetration of the vertebrate skin. It is supported by effective degradation 

of skin proteins (e.g., keratin, collagen, or elastin) by TrCB2 (Dolečková et al. 2009). By these 

features, it is similar to cathepsin B-like peptidases of S. japonicum (Dvořák et al. 2008, Ingram 

et al. 2011). However, it differs from cathepsin B2 of S. mansoni which is found in the tegument 

of adults and has not yet recognized function (Caffrey et al. 2002). By acting in the skin penetra-

tion process, TrCB2 rather resembles S. mansoni cercarial elastase which is, however, a serine 

peptidase (Salter et al. 2000). Apart from cercariae, TrCB2 is highly expressed also in schisto-

somula. They use it as a histolytic enzyme enabling migration in the nervous tissue since TrCB2 

can degrade myelin basic protein as well (Dolečková et al. 2009, Dolečková et al. 2010, 

Leontovyč et al. 2016).  

Cathepsins B also play an important role in the host-parasite immune interactions. In the case 

of human schistosomes, they are naturally immunogenic and possibly applicable in immunodi-

agnostics (Ruppel et al. 1987, Ruppel et al. 1990, Li et al. 1996). Nevertheless, this is probably 

not the case of T. regenti cathepsins B which do not seem to elicit a specific antibody response 

in ducks, mice, or humans (Lichtenbergová et al. 2008a, Turjanicová et al. 2015). It was specu-

lated that a 34-kDa antigen recognized by sera from mice repeatedly exposed to T. regenti and 

by those from patients with CD could be TrCB1 (Lichtenbergová et al. 2008b). However, the an-

tigen was later identified as a glycolytic enzyme glyceraldehyde-3-phosphate isomerase (Kašný 

et al. 2009). Regarding effects on the cellular immunity, T. regenti peptidases released during 

the skin penetration were proposed to be the major allergens triggering the immediate inflam-

matory response (Kouřilová et al. 2004a). Of note, allergenic/Th2-inducing capacity was shown 

for cysteine peptidases of other parasites, including schistosomes (Furmonaviciene et al. 2000, 

Pulendran et al. 2010). Furthermore, S. mansoni cathepsin B1 was recently demonstrated to 

induce all Th1, Th2, and Th17 responses which suggests that these secreted enzymes might have 

a broad immunogenic capacity (Soloviova et al. 2019). However, the immunostimulatory prop-

erties of TrCB1 and TrCB2 and their impact on T cell polarization remain unknown.  

 

Altogether, T. regenti is the avian schistosome that deserves research attention as it can be 

broadly used to study host-parasite interactions:  

1) It is a suitable comparative model for human schistosomes. They have a lot in common 

but still differ significantly in certain features which could tell us a lot about the diver-

sity of life strategies within the Schistosomatidae family.  



24 

2) It is an established model used to trigger CD under laboratory conditions. Due to the 

increasing number of human CD cases, there is an urgent need to develop better diag-

nostic and therapeutic tools for which it will be indispensable.  

3) It is a promising model for studying multicellular neuropathogens. Exploration of fac-

tors driving its neurotropism and neuropathogenicity might be useful not only in the 

field of neuroinfections, but also in neurodegenerative diseases.   
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2. AIMS OF THE THESIS 

Despite >20 years of research on T. regenti in mammals, essential knowledge gaps (highlighted 

in the foregoing literature review) remain in our understanding of the host immune response. 

In the thesis, we focused on the characterization of several aspects of the host immune response 

of naïve mice infected with the neuropathogenic schistosome T. regenti. The specific aims were:  

• Characterize the parasite-specific antibody response within four weeks after the infec-

tion and the effect of T. regenti antigens on bone marrow-derived dendritic cells.  

• Examine the response of murine astrocytes and microglia exposed to T. regenti anti-

gens with a special emphasis on the production of cytokines and NO.  

• Elucidate the role of NO in the host immune response against T. regenti.  

• Assess the suitability of fluorescence tracers and 3D-imaging techniques for studying 

T. regenti migration and the host immune response in the CNS of mice.  
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4. SUMMARY & CONCLUSIONS 

The presented thesis aimed at the characterization of several aspects of the immune response 

of mice infected with the neuropathogenic schistosome Trichobilharzia regenti. The parasite 

serves as a suitable comparative model for human schistosomes and was established as a trigger 

of CD. It is also a promising tool for studying multicellular neuropathogens due to its strong in-

herent affinity towards the nervous tissue. However, the host-parasite immune interactions 

have insufficiently been explored, especially in naïve, previously uninfected mammals.  

The penetration of the mouse skin by T. regenti cercariae triggers an influx of inflammatory cells 

that accumulate around the newly transformed schistosomula. This initial phase of the infection 

is well characterized histopathologically, especially in repeatedly infected mice suffering from 

CD, and resembles the reaction mounted against human schistosomes (Incani and McLaren 

1984, Kouřilová et al. 2004a, Kouřilová et al. 2004b). Antigens present in parasite glycocalyx, 

ESP, and perhaps extracellular vesicles are expected to initiate the host immune response in the 

case of human schistosomes (Perona-Wright et al. 2006, Paveley et al. 2009, Kuipers et al. 2020), 

but no data have been available for bird species. Thus, we tested the effect of T. regenti antigens 

on murine bone marrow-derived dendritic cells (BMDCs) (Majer et al. 2020 = PUBLICATION #4).  

The cercarial homogenate, containing a mixture of surface and somatic antigens, only marginally 

affected maturation status and inflammation-promoting phenotype of BMDCs. The reason 

might be that dendritic cells do not normally encounter damaged schistosomula during the ini-

tial phase of the infection. They should rather recognize ESP released into the host tissues during 

the skin penetration as suggested but not tested by Kouřilová et al. (2004a). Accordingly, we 

demonstrated that the recombinant cysteine peptidase rTrCB2 activated mouse BMDCs and in-

duced expression of Ccl5, Cxcl10, Il12, Il33, and Il10 (Majer et al. 2020 = PUBLICATION #4). CCL5 

could promote the production of IL-6 which was present in the skin early after T. regenti infec-

tion (Fischer et al. 2001, Kouřilová et al. 2004a) and CXCL-10 might boost Th1 response (Bonecchi 

et al. 1998, Khan et al. 2000, Vasquez et al. 2008). The cytokine profile displayed by rTrCB2-

stimulated BMDCs, including IL-10, IL-12, and IL-33, suggests the mixed type 1/2 response, which 

agrees with the already published data (Kouřilová et al. 2004a). The mixed response is also sup-

ported by the equal levels of parasite-specific IgG1 and IgG2 associated with Th2 and Th1, re-

spectively (Finkelman et al. 1988, Majer et al. 2020 = PUBLICATION #4).  

The effects of rTrCB2 might be caused either by its direct immunogenicity or by its enzymatic 

activity which could be sensed by the protease-activated receptors (Bonnart et al. 2017, Cano 

et al. 2019). The latter explanation seems to be more probable as it accords with our report of 
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the inability to stimulate immune cells by enzymatically inactive rTrCB1.6 (Dvořáková et al. 2020 

= PUBLICATION #3). Similarly, the proteolytic activity of S. mansoni cathepsin B1 is necessary for 

the induction of T cell response in mice (Soloviova et al. 2019). However, the hypothesis needs 

further experimental validation.  

The strong skin inflammation is believed to impede T. regenti further migration. Indeed, 90% of 

schistosomula are estimated to be arrested and eliminated here in mammals (Kouřilová et al. 

2004a). It seems to be a consequence of the host-parasite evolutionary incompatibility, specifically 

the inability of T. regenti, the avian schistosome, to evade the immune response of mammals. The 

latter is often seen in human schistosomes which are much better adapted to survive in mamma-

lian hosts (Jenkins et al. 2005, Angeles et al. 2020). Nevertheless, the particular immune mecha-

nisms responsible for the elimination of the avian schistosomes in the mammalian skin have been 

unknown. Regarding both historical and recent reports of the harmful impact of NO on human 

schistosomes (James and Glaven 1989, Ahmed et al. 1997, Shen et al. 2017), we evaluated its ef-

fect on T. regenti infection in mice (Macháček et al. 2020 = PUBLICATION #5).  

We detected iNOS in the epidermal layer adjacent to the penetrating cercariae 8 hpi, but no 

signal was noticed later either in the epidermis or skin infiltrating leukocytes. We also did not 

observe any schistosomula damage after their in vitro treatment by NO-donors which suggested 

that NO did not cause acute cytotoxicity to T. regenti schistosomula. As the acute cytotoxicity is 

mostly related to the disruption of aerobic mitochondrial metabolism in human schistosomes 

(Ahmed et al. 1997), our data support the view that early T. regenti schistosomula rather rely on 

anaerobic/microaerobic energy metabolism (Leontovyč et al. 2016).  

Unexpectedly, further experiments based on in vivo inhibition of NO formation suggested am-

biguous actions of NO. It likely promoted the parasite growth in the early phase of the infection 

but prevented it later, which was accompanied by suspended schistosomula migration in the 

CNS. The latter effects might stem from continuous and chronic debilitation of the parasite, 

partly related to NO inactivation of its vital peptidases (Macháček et al. 2020 = PUBLICATION #5). 

Specifically, we demonstrated that NO decreased activity of rTrCB1.1 and rTrCB2, the peptidases 

essential for parasite digestion and migration (Dvořák et al. 2005, Dolečková et al. 2009). Such 

NO-related disruption of the proteolytic machinery has already been described for parasitic pro-

tists (Colasanti et al. 2001, Bocedi et al. 2004), but to the best of author's knowledge, this is the 

first time the phenomenon is reported for parasitic helminths.  

Activation of microglia and astrocyte hypertrophy are striking features of the mouse immune 

reaction in the spinal cord invaded by T. regenti schistosomula which were able to escape from 
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the skin (Lichtenbergová et al. 2011). This is a common feature observed also in other helminth 

neuroinfections, but little is usually known about the function of these glial cells. Astrocytes are 

generally believed to participate in tissue repair (Sofroniew and Vinters 2010) while microglia 

are regarded as the major immune players participating in the parasite clearance (Rock et al. 

2004). However, studies testing these assumptions are mostly lacking for helminth neuroinfec-

tions. To better understand the role of astrocytes and microglia in T. regenti infected mice, we 

examined their production of NO and cytokines after treatment by various T. regenti antigens 

(Macháček et al. 2016 = PUBLICATION #2, Dvořáková et al. 2020 = PUBLICATION #3).  

We observed significant differences between the immunogenicity of living schistosomula (LS) 

and the soluble fraction of their homogenate (HSF). LS did not induce NO production in either 

astrocytes or microglia which corroborates with our in vivo data from the spinal cord, where 

iNOS was present no more than around 60% of schistosomula 3 dpi (Macháček et al. 2020 = 

PUBLICATION #5). Considering the cytokines, LS induced production of IL-6 in astrocytes which 

might be associated both with initiating the CNS inflammation nut also nervous tissue repair 

(Swartz et al. 2001). On the contrary, HSF triggered the production of NO, IL-6, and TNF-α which 

might facilitate the inflammatory processes and nervous tissue damage occurring after the schis-

tosomula death when intrinsic antigens are released (Chao et al. 1992, Lichtenbergová et al. 

2011, di Penta et al. 2013).  

The similar immunostimulatory properties towards astrocytes and microglia were recorded also 

for rTrCB1.1 and rTrCB2, but not the inactive isoform rTrCB1.6. It potentially makes the active 

cysteine peptidases strong PAMPs which trigger the host immune reaction both in the periphery 

(Majer et al. 2020 = PUBLICATION #4) and in the CNS (Macháček et al. 2016 = PUBLICATION #2, 

Dvořáková et al. 2020 = PUBLICATION #3). This is generally in agreement with the view that the 

mammalian immune system can be very sensitive to helminth cysteine peptidases as they are 

released into the tissues in large amounts contrary to the host own peptidases often tightly 

stored in intracellular compartments (Sokol et al. 2008, Soloviova et al. 2019). Of note, none of 

the tested antigens influenced the secretion of IL-10 or TGF-β which implies their limited capac-

ity to trigger directly the immunoregulatory phenotype in astrocytes or microglia.  

The host immune reaction against pathogens varies in different CNS compartments and tissues 

(Andersson et al. 1992, Stevenson et al. 1997, Schnell et al. 1999) so the accurate data on the 

parasite migration and distribution within the CNS is required for appropriate interpretation of 

the experimental outcomes. The conventional imaging methods, such as histology, usually pro-

vide a good resolution and overview of a small region of interest. However, they become 
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laborious and time demanding if a comprehensive screening of bigger tissue samples or even 

entire organs is necessary. This is why various 3D imaging techniques (e.g. micro-computed to-

mography (μCT), ultramicroscopy, light sheet microscopy, etc.) have gained emerging popularity 

not only in parasitology (O’Sullivan et al. 2018). We applied some of these techniques to revise 

the previous histology-based data on T. regenti distribution within the vertebrate CNS tissues 

(Kolářová et al. 2001, Kouřilová et al. 2004b, Lichtenbergová et al. 2011). Additionally, we tested 

the suitability of fluorescence tracers for staining cercariae/schistosomula to enable better par-

asite tracking within the CNS.  

Imaging of the murine spinal cord by ultramicroscopy and the duck spinal cord by μCT revealed 

that the schistosomula are predominantly localized in the white matter (Bulantová et al. 2016 = 

PUBLICATION #1). The preference for this tissue, which tends to develop stronger inflammation 

than the gray matter (Andersson et al. 1992), is likely a consequence of the T. regenti adaptation 

to feeding on myelin that is the main constituent of the white matter (Leontovyč et al. 2019). If 

suitable contrasting agents were applied, there was no need to stain the parasite to enable its 

later identification in the samples imaged by μCT. On the contrary, pre-infection fluorescence 

staining was required to visualize the schistosomula by ultramicroscopy. For this purpose, we 

found suitable tracers that retain the fluoresce long enough to study T. regenti behavior in the 

spinal cord (Bulantová et al. 2016 = PUBLICATION #1). The major advantage of the latter ap-

proach is that more tracers or fluorescently labeled antibodies can be used which would enable 

more focused spatial characterization of the host immune response (Ertürk et al. 2012).  

In conclusion, the thesis presents the role of various T. regenti antigens in triggering the mouse 

immune response either in the periphery or within the CNS. Reciprocally, the effects of the anti-

parasitic host immune effector molecule, NO, on T. regenti schistosomula, and the course of the 

infection were examined. Finally, the applicability of fluorescence tracers and 3D-imaging tech-

niques for studying T. regenti migration in mice and the associated host immune response were 

tested. Taken together, the thesis markedly extends the knowledge of the host-parasite inter-

actions between the neuropathogenic schistosomes and their accidental mammalian hosts. 

These novel data set a good starting point for further research on T. regenti neuropathogenicity 

and the impacts of helminth-caused neuroinflammation on the host. Such findings will be valu-

able not only in the field of parasitic neuroinfections but might also be appreciated in the re-

search of (autoimmune) neurodegenerative diseases.  
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