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Abstract: 

In the past decades, nanoparticles have been viewed as a potentially powerful 

platform for various applications in biomedical sciences. The possible application of 

nanoparticles varies from drug delivery agents to novel imaging platforms and surely, 

some application potential still remains hidden.  Thus, it is necessary to broadly study 

their in vitro behavior in order to assess the precise theranostic potential as well as to 

distinguish possible threats to human health. Even though nanoparticles are getting more 

and more attention in current research, still only a limited amount of information is 

available, especially regarding interactions of ultra-small (< 5 nm) nanoparticles with 

biological environment and cells. 

The aim of the work presented herein is to provide the reader with information 

concerning interactions of various ultra-small nanoparticles (silicon-based, gold, 

nanodiamonds) with biological environment and human cells. Dose- and time-dependent 

influence of the various nanoparticles on behavior of different human cells (osteoblasts, 

monocytes, keratinocytes, mesenchymal stem cells) was established under different 

conditions, stressing out the importance of protein corona (a layer of proteins originating 

from cultivation medium attached to nanoparticles). Biocompatibility of two different 

types of silicon-based nanoparticles was tested on different human cells, showing 

selectivity of one type of the nanoparticles (silicon carbide with different surface 

terminations) towards immune cells. Furthermore, deeper study of the silicon carbide 

nanoparticles in respect to their immunomodulatory potential and influence on behavior 

(e.g. doubling time, differentiation potential) and metabolism of monocytic cells was 

established. Biocompatibility of gold ultra-small nanoparticles and nanodiamonds was 

also tested on various human cells. Protein corona forming on these two types of 

nanoparticles was subsequently analyzed by mass spectrometry, showing that ultra-small 

nanoparticles are capable of interaction with quite large numbers of proteins. 

Furthermore, the nanoparticle-cell interactions were observed by various imaging 

methods, such as holographic microscopy, electron microscopy (TEM, SEM, cryoFIB-

SEM SIMS-TOF), flow cytometry or Raman spectroscopic imaging. 

This thesis not only presents the importance of basic research on proper 

characterization of nanoparticle-cell interactions but also suggests possible future 

directions for further research and possible applications of used nanomaterials in 

biomedical research. 
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1. Introduction 

Even thought it might seem like that, nanoparticles (NPs) are not entirely a 

phenomenon of the past decades. NPs occur naturally, originating from cosmic fallout or 

geological processes such as volcanic eruptions or are even produced by living organisms 

(Plane 2012; Simakov 2018; Hosea et al. 1986). Some viruses can be also considered to 

be living NPs due to their size. Taking this long-term occurrence into account, human 

usage of NPs in colloidal state can be dated all the way into ancient Egypt in the form of 

various dyes (Walter et al. 2006; Johnson-McDaniel et al. 2013; Sciau et al. 2009; Artioli, 

Angelini, and Polla 2008). This ancient usage of NPs, however was probably without the 

artists knowing that they are working with nanomaterials. Even though the users of these 

colloids did not know it, they were the first to start the era of NPs production and wide 

usage. The first documented report of NPs preparations belongs to Michael Faraday on 

April 2nd 1856. He described in his notes the preparation of colloidal gold NPs and later 

published it (Faraday 1856, 1857). Since then, different NPs started to be more and more 

studied, characterized and utilized. Nowadays, beside still naturally occurring NPs, 

industrially engineered NPs take up a large portion of what humans come into contact. 

These NPs are produced by automobiles, cigarettes or construction dust (Kagawa 2002; 

Ning et al. 2006; Stefani, Wardman, and Lambert 2005). Furthermore, NPs are today 

being used widely in cosmetics and industrial production of cars and electronic parts (Raj 

et al. 2012; Santos et al. 2015). Humankind have been living in close contact with NPs 

since the beginning of their existence and will continue to live with them. Thus it is 

obvious why people seek deeper understanding of NPs and their existence.  
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2. Nanoparticles in Biomedicine 

As NPs are omnipresent they pose an interesting platform for possible applications in 

industry, cosmetics or medicine. For biomedical application, it is crucial to define and 

describe characteristics and basic interactions of NPs with living structures, but also to 

consider their possible negative effects on human health. 

2.1. Definition and Characterization of Nanoparticles 

Nowadays there are multiple ways of NPs classification for example by size, shape or 

chemical properties.  

Usually, structures ranging in their diameter from 1 nm to 100 nm are classified as 

NPs (Vert et al. 2012; "Nanotechnologies — Vocabulary — Part 2: Nano-objects"  2015). 

Most commonly used NPs in biomedical sciences have diameter at around 20-70 nm. 

This size is particularly advantageous for active endocytic (cellular process of 

transporting substances into cell) internalization of such NPs (Zhao and Stenzel 2018). In 

the past several years, a subsection of NPs called ultra-small NPs (USNPs) started to be 

distinguished. Such particles typically have diameter smaller than 5 nm. These small 

structures of different materials possess different electrical, optical or catalytic properties 

when compared to the bulk material itself. This is especially due to the increased 

surface/volume ratio (Fig. 1), the quantum effect that occurs in such small structures and 

their solubility in colloids. Thus, their size provides general properties common for all 

NPs regardless of other characteristics. Even though NPs can occur in form of dust or 

aerosol, they are predominantly bound to liquid milieu in the form of suspension or 

colloids (Buzea, Pacheco, and Robbie 2007).  

Shape-wise, NPs can be spherical, cubic, star-shaped or even in the form of nano-

tubes, as long as all of their dimensions fit in the 1-100 nm scale. The shape of NPs is one 

of the characteristics that defines possible interactions of them with cells. As reviewed by 

Wang et al. in some cases, rod shaped NPs are being internalized more easily than the 

same spherical NPs (Wang, Gaus, et al. 2019). It has also been showed that shape of NPs 

may influence the endocytic mechanism employed for their internalization (Xie et al. 

2017). Some NPs can also possess porous structure that is particularly interesting in 

respect of their delivery properties. Such pores in NPs can be loaded with cargo which 

can then be delivered to desired cells (Arayne and Sultana 2006). 
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Further, more specific characteristics of NPs depend highly on the material of origin. 

They can be metallic (e.g. gold, silver, platinum or iron), carbon- or semiconductor-based, 

organic etc.  

Metal-based (Au, Fe, Pt etc.) NPs possess similar mechanical characteristics as the 

bulk material itself, however their nano-size provides them with interesting opto-

electrical properties. Surface plasmon resonance and surface-enhanced Raman scattering 

(SERS) marks conductive NPs for development of different bioassays (Petryayeva and 

Krull 2011).  Some metal-based NPs also possess magnetic properties that can be utilized 

in phenomenon called magnetic fluid hyperthermia or in magnetic-based biosensing 

assays (Sharifi, Shokrollahi, and Amiri 2012; Kabe et al. 2019). Moreover, silver NPs 

have demonstrated antimicrobial activity, indicating potential to avoid over-using of 

antibiotics (Qing et al. 2018). In addition to being highly electron-dense and thus very 

useful in transmission electron microscopy (TEM), gold NPs (AuNPs) are also interesting 

due to the fluorescence resonance energy transfer (Horisberger and Rosset 1977; Dulkeith 

et al. 2005). This effect causes enhancement of fluorescent signal nearby the AuNPs 

which can be used to acquire higher quantum yield from weak fluorophores. 

Semiconductor-based NPs can be manufactured from variety of materials such as 

silicon, germanium, zinc, cadmium and their oxides and other compounds (hydroxides, 

salts etc.). These NPs are particularly useful in electronics or as sensors thanks to their 

electro-conductivity. In biomedicine, these NPs are especially interesting for their 

Figure 1: Schematic representation of size and surface/volume ratio of 

nanoparticles. Adapted from Zarschler et al. (Zarschler et al. 2016) 
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naturally occurring fluorescence stable to photo-bleaching (Flessau et al. 2014; Kailasa, 

Cheng, and Wu 2013).  When semiconductor- or even metal-based USNP has this feature, 

it can be commonly called as a quantum dot (QD). Furthermore, semiconductor-based, 

and mainly silicon-based, NPs have often porous structure which allows for application 

as delivery platform for varying cargo (Stojanovic et al. 2016).  

Carbon nanotubes, fullerens or nanodiamonds (NDs) are most common carbon-based 

NPs. Their major common characteristics is high conductivity and biocompatibility, as 

carbon is one of the main building blocks of organic structures. Carbon nanotubes are 

single- or multi-walled structures of rolled tightly bound hollow hexagonal lattice of 

carbon atoms. Beside their biocompatibility and good conductivity, carbon nanotubes are 

also exceptionally resistant to mechanical stress (Yu et al. 2000). Fullerens, atoms of 

carbon forming a meshed hollow sphere, have been viewed as potential imaging and 

cargo-delivery systems. Thanks to their relative biocompatibility and easy 

functionalization they can pose as an envelope for other substances (Lalwani and 

Sitharaman 2013). On the other hand, NDs are capable of forming so-called nitrogen 

vacancies leading to naturally occurring fluorescence and thus QDs formation (Kaur and 

Badea 2013). However, currently used carbon-based NPs have tendency to aggregate in 

liquid environment due to high Van der Waals and electrostatic interactions, which makes 

their application in biomedicine so far difficult (Koh and Cheng 2014). 

NPs based on various organic polymers (polycaprolactone, polyethylene glycol 

(PEG), chitosan etc.) or lipids are promising platform especially for drug delivery. They 

can be designed as a specific carrier envelope which is biocompatible and biodegradable 

into monomeric state and then metabolized. Using surface functionalization and polymer 

design, such NPs can be used for targeted and controlled cargo delivery of therapeutics 

(El-Say and El-Sawy 2017). Their therapeutic potential is clearly visible as 50 % of  NPs 

approved for clinical use by the American Food and Drug Administration (FDA) are 

polymers or lipids (Ventola 2017). 

2.2. Nanoparticles in Biomedical Context 

2.2.1. Nanoparticles’ Interaction with Biological Environment 

It is commonly accepted that interaction of NPs and biological environment is crucial 

for their further fate. Usually, NPs are administered to liquid biological environment, e.g. 
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cultivation medium in vitro or blood and lymph in vivo. Certain NPs can be administered 

directly to human cells through lungs, skin or gastrointestinal tract. However, even in this 

case the NPs still firstly interact with the cellular environment and form so called 

biomolecular corona, sometimes also referred to as protein corona (PC), as its main 

components are proteins (Gagner et al. 2012). This layer of proteins, lipids and other 

components forms the actual identity of NPs that cells can interact with. The proteins 

interact with NPs surface mostly non-covalently by Van der Waals forces, hydrogen 

bonds or electrostatic and hydrophobic interactions, or even by steric interactions (Yu, 

Liu, et al. 2019; Kumar et al. 2018). 

PC in the true sense of the word is composed of two layers of biomolecules. The first, 

tightly bound layer is usually described as hard corona and the second, more loosely 

bound, is called soft corona (Fig. 2A). It is still a subject of investigation what are the key 

characteristics for protein binding. Usually, proteins with the highest electrochemical 

affinity to the NPs surface charge form the PC, however not strictly (Monopoli et al. 

2012).  This additional covering of NPs by biomolecules from the environment can be an 

issue, especially for NPs functionalized for specific cell targeting. Functionalized surface 

of NPs can be covered by the formed PC and thus the desired target does not have to be 

found (Mirshafiee et al. 2013; Salvati et al. 2013). To avoid this problem, protein repelling 

functionalization (e.g. by PEG) can be used (Pelaz et al. 2015). PEG coating, so called 

PEGylation, has several effects on NPs. Firstly, due to PEG charge, it can turn 

hydrophobic NP into hydrophilic one and thus allows for its easier solubility in aqueous 

solutions. Secondly, PEGylation makes NPs less recognizable for immune system and 

thus prolongs their circulation in vivo (Milla, Dosio, and Cattel 2012). Furthermore, it has 

been shown that functionalization of surfaces by PEG decreases the ability of proteins to 

bind to them (Bernhard et al. 2017). Other possible approach for avoiding PC to 

compromise targeting potential of functionalized NPs is protein pre-coating. NPs can be 

intentionally covered by selected proteins along with targeting agents, forming an 

“artificial” PC (Oh et al. 2018). However, both PCs must still be taken into account, as 

neither of the solutions is fully successful. 

 Until recently, it was hard to study both, hard and soft PC simultaneously. In the past 

years, however several new methods have been developed for this purpose (Winzen et al. 

2015; Weber et al. 2018). Thus, new possibilities of PC characterization and its further 

manipulation have risen. This is especially important in respect to soft PC studies, as soft 
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PC is the main mediator of NPs-cell interaction and so far, very limited information of its 

composition is available. 

However, the above-described commonly accepted PC design is applicable only to 

larger NPs (several tens of nm). USNPs cannot form this PC sensu stricto, as they are 

smaller or of the same size as most of the proteins. The way of interactions of these 

extremely small NPs with biological environment is still discussed among scientists. Two 

main ways of USNPs-protein interaction are proposed. Firstly, formation of protein 

network, connected by USNPs (Fig. 2B) and secondly, interaction of single protein with 

single USNP (Fig. 2C) (Piella, Bastus, and Puntes 2017; Chatterjee and Mukherjee 2014). 

Thus, USNPs may mediate formation of protein clusters by weak electrostatic 

interactions. Such interactions among different NPs or NPs and proteins then lead to 

formation of NPs-protein agglomerates. These agglomerates, in respect to their 

composition, influence cells and may cause varying effects (Bradac et al. 2018; Wang et 

al. 2018). Stearic interaction of single protein with USNP is so far predominantly just 

theorized and it is highly unlikely that such interaction occurs in vivo (Dravecz et al. 2018; 

Chatterjee and Mukherjee 2014). Under controlled conditions in vitro, however this might 

be possible and applied for example in enzyme function manipulation (Zhang et al. 2009).  

No matter the exact mechanism of NPs-protein interaction and the precise 

composition of PC, the interaction of NPs with biological environment has highly 

significant role in mediation of NPs-cell interactions and NPs further fate within the cells. 

Figure 2: Schema of possible interactions of nanoparticles and proteins. Created via 

BioRender Software. 
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2.2.2. Nanoparticle-Cell Interaction 

Once NPs are administered into biological environment (e.g. cultivation medium in 

vitro or blood in vivo) interaction with cells is unavoidable. Cellular internalization of 

NPs is highly debated topic in recent years and is strongly influenced especially by NPs 

characteristics (e.g. size, shape etc.). Prior to any cellular absorption, NPs need to interact 

with cellular membrane. It has been shown that NPs directly interacting with membranes 

(e.g. lipid bilayers) may affect membrane stability and stiffness (Contini et al. 2017; 

Lolicato et al. 2019). 

Generally, NPs can enter cells by active (e.g. endocytosis) or passive ways. Active 

internalization pathways differ from passive by requirement of certain degree of energy. 

As written previously, NPs hardly interact with cells directly. The interaction is being 

mediated by proteins and other molecules covering the NPs. This might be one of the key 

determinants deciding the way of cellular uptake of NPs, as proteins forming PC might 

trigger receptor-mediated endocytosis (i.e. clathrin- or caveolin-dependent and clathrin- 

or caveolin-independent endocytosis and phagocytosis). Furthermore, NPs can also be 

internalized into cells by non-specific pathways such as pinocytosis (fluid-phase 

endocytosis) or via passive transport (i.e. direct transfer through cell membrane) (Fig. 3).  

Precise endocytic mechanism is directed especially by NP´s (or USNP-protein 

aggregate) size. Particles of sizes above 500 nm can usually be internalized by 

phagocytosis, which is a specific endocytic mechanism reserved for immune cells 

(Aderem and Underhill 1999). Other cells, not capable of phagocytosis internalize such 

big NPs by the means of macropinocytosis (subsection of pinocytosis) (Kuhn et al. 2014). 

Smaller particles can enter cells by other, more specific mechanisms such as clathrin- and 

caveolin-dependent endocytosis or -independent mechanisms (Kettiger et al. 2013).  

USNPs under experimental conditions, are able to enter the cell directly through cell 

membrane in dependence on their size and surface charge (Wang et al. 2012; Jiang et al. 

2015). 

Clathrin-dependent endocytosis is highly connected with specific receptors (e.g. 

transferrin receptor, IL-13 receptor or LDL receptor) and usually concerns NPs approx. 

100 nm in diameter (Kettiger et al. 2013). After binding of specific ligand to such 

receptors, clathrin-coated pit is formed and further process of invagination and uptake 

can progress. Endosome formed by this process are either recycled back to plasmatic 
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membrane or progress through the endosomal/lysosomal pathway (Kaksonen and Roux 

2018). In order to allow for NPs to enter cells by this pathway they can be engineered to 

specifically bind to receptors that recruit clathrin to cellular membrane. Such specificity 

can be achieved for example by functionalization of NPs surface with ligand of specific 

receptor (Gao et al. 2013). This, however brings us back to the issue of formation and 

manipulation of PC (especially soft PC). Secondly, certain, mainly polymeric, NPs can 

be engineered to disintegrate in response to the decreasing pH or enzymatic activity 

within the endosomal pathway and thus releasing their cargo (Benyettou et al. 2015; Lv 

et al. 2016; Acar et al. 2017; Zhu et al. 2019).  

Similarly to clathrin-dependent endocytosis, caveolin-dependent endocytosis is also 

receptor-specific. This type of endocytosis is mediated via caveolae, plasmatic membrane 

invaginations rich in cholesterol and sphingolipids, associated with caveolin-1. Receptors 

connected with this type of endocytosis are for example GPI-anchored proteins, growth 

hormone or IL-2 receptors (Parton and Simons 2007). NPs that have approx. 50 – 80 nm 

in diameter are usually engulfed by caveolin-dependent endocytosis (Kettiger et al. 2013). 

Figure 3: Simplyfied schematic representation of possible trafficking of 

nanoparticles in cell (A = clathrin-dependent endocytosis, B = caveolin-

dependent endocytosis, C = clathrin/caveolin independent endocytosis, D = 

phagocytosis, E = pinocytosis, F = direct transfer). Created via BioRender 

Software. 
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Endosomes formed from caveolae can, besides undergoing classical endosomal pathway, 

be directed straight to Golgi apparatus or endoplasmic reticulum (Le and Nabi 2003). 

Thus, via directly targeting caveolin-dependent endocytosis NPs cargo can be delivered 

to these organelles (Xin et al. 2017). Furthermore, caveolin-dependent endocytosis has 

been shown as a potential way for overcoming barrier formed by endothelial cells (Wang 

et al. 2011; Oh et al. 2014). It has been shown, that these polarized cells are capable of 

internalization of NPs via caveolae and via transcytosis transport the NPs to the opposite 

side of the endothelia barrier. This could be used as possible shuttle for specific drugs to 

be delivered to specific tissues with high efficacy. 

Clathrin- and caveolin-independent endocytosis (i.e. flotillin-mediated or ARF6-

associated) is overall less-explored than clathrin- and caveolin–dependent mechanisms. 

Such endocytosis can be observed in engulfment of some virus-like particles (Damm et 

al. 2005). These special types of NPs utilize preferably regions on cytoplasm, called lipid 

rafts, associated with mediator proteins such as ADP-ribosylation factor 6 or Cdc42 

protein (Kumari, Mg, and Mayor 2010). However, cases of such endocytic mechanisms 

for engineered NPs internalization are rare (Kasper et al. 2013).  

Last widely used specific endocytic pathway, phagocytosis, is utilized only by 

specific cells – professional phagocytes (e.g. macrophages, dendritic cells or neutrophils). 

This mechanism is usually reserved for larger NPs (e.g. > 500 nm). Once again it is a 

receptor-mediated endocytosis, usually started by binding of debris or pathogen, which 

need to be cleared from body. Specific phagocytic receptors are for example Fc receptor, 

mannose receptor or complement receptor. This type of endocytosis is especially 

interesting, when intravenous application of NPs is considered. NPs are scavenged by 

phagocytes due to their opsonization (binding of molecules which increase affinity of 

phagocytic cells to opsonized structure) and cleared quickly from bloodstream (Tavano 

et al. 2018; Lazarovits et al. 2015). To avoid such fast clearance and prolong circulation 

lifetime of NPs, some researchers have been deploying NPs pre-coating with different 

solutions, such as PEG (Qie et al. 2016). These substances, however might cause adverse 

immunogenic effects and thus must be considered very carefully (Luo et al. 2017). 

Beside the above-described specific cellular uptake mechanisms, NPs can also be 

internalized by the cells via non-specific constantly ongoing process called pinocytosis. 

Pinocytosis is sometimes referred to as “cellular drinking” as it is engulfment of 
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extracellular fluid, mediated by actin induced membrane protrusions. As stated 

previously, pinocytosis can be divided into subsections – macropinocytosis capable of 

engulfing large particles (> 500 nm) and micropinocytosis forming smaller vesicles.  

Thus, micropinocytosis can absorb very small NPs (< 10 nm) coincidentally when the 

NPs are dispersed in extracellular fluid. Vesicles formed by pinocytosis with sizes 

ranging from 100 to 500 nm are called pinosomes and are known to be prone to escape 

of internalized material from absorbed vesicle (Kerr and Teasdale 2009). Pinocytic uptake 

of NPs therefore can be exploited in order to upgrade delivery potential of differing drugs 

into cells (Iversen, Frerker, and Sandvig 2012; Liu and Ghosh 2019).  

Direct transfer of NPs into cells is highly problematic to observe under standard 

conditions in vitro and nearly impossible in vivo. Direct penetration is highly dependent 

not only on NPs size and shape, but also on membrane stiffness (Torrano et al. 2016; 

Wang, Guo, et al. 2019). Although there have been some reports of naturally occurring 

cell membrane penetrating NPs, it is still more common to achieve translocation of NPs 

to cytoplasm by experimental approaches such as microinjection or electroporation 

(Tiefenboeck et al. 2017; Yu et al. 2016). Both of these approaches are applicable mainly 

in vitro, thus possible useful for ex vivo stimulation or manipulation of cells (Phonesouk 

et al. 2019). However, in vivo application of microinjection of NPs in order to cross 

biological barriers have been also reported for some experimental models (Paatero et al. 

2017; Johansen et al. 2016). Main advantage of direct transport of NPs into cytoplasm is 

further sub-cellular targeting and even direct entry of NPs into cell nucleus without the 

need to engage endosomal escape mechanisms (Huo et al. 2014). 

Endosomal escape is a potentially harmful mechanism that needs to be deployed by 

NPs in the case when their desired target is outside the classical endosomal pathway. All 

content of endosomes undergoes slow degradation. The acidic pH inside endosomes 

gradually decreases from 6.5 to approximately 4. The cargo is then either transported to 

cytoplasm for the cell to utilize it furtherly or to lysosome for complete degradation and 

subsequent elimination from the cell.  Unless the NPs (i.e. polymeric NPs) are designed 

to unload their cargo or directly act (e.g. by change in fluorescence) in response to the 

decreasing pH or activity of endosomal enzymes, the endosomal entrapment must be 

overcome. Such escape can be achieved by NPs´ surface modification with cell 

penetrating peptides or other membrane disrupting modifications (Evans et al. 2019; 

Dalal and Jana 2017). Penetration of endosomal vesicles, however may lead to potentially 
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harmful outcomes and must be carefully considered (Melamed et al. 2018). When the 

NPs cannot undergo endosomal escape, they can either be directly excreted by the cell, 

or they can be cumulated in lysosomes. Such accumulation in lysosomes can be 

potentially highly toxic, even for initially non-toxic content of lysosomes. This effect is 

well demonstrated by rare metabolic lysosomal storage diseases (Winchester, Vellodi, 

and Young 2000). 

Once inside cell, NPs may have various effects on them. As mentioned before, NPs 

can be designed as sensors and thus only reflect the environment in intracellular 

compartment where they are localized after endocytosis. Other NPs are simply used as an 

imaging agents and should not have any influence over cells whatsoever. NPs that serve 

as drug delivery platforms unload their cargo which then furtherly acts and alters the cell 

in its specific way. Beside this, NPs can also cause other effects such as genotoxicity, 

alter gene expression, cause mitochondrial function alteration (e.g. changes in 

mitochondrial potential) or even trigger apoptosis (programmed cell death) (Xie, Mason, 

and Wise 2011; Thakur et al. 2020; Gallud et al. 2019; Ma and Yang 2016). Mitochondrial 

function alteration is especially interesting as it may lead to various outcomes for cellular 

behavior. It has been reported that NPs can strongly impact mitochondrial respiration and 

in consequence affect overall cellular metabolism (Tucci et al. 2013). 

Although endocytic mechanisms of NPs-cell interactions are broadly studied and well 

defined, exocytosis and subsequent clearance of NPs from organism are much less 

understood. It has been showed that in case of endosomal escape, NPs tend to accumulate 

inside the cell cytoplasm and do not undergo exocytosis (Stayton et al. 2009). In such 

case, biocompatibility of used NPs material is crucial. Several researchers have pointed 

out that NPs in fact undergo exocytosis and even tried to prolong their stay inside cells in 

order to give them enough time to influence such cells (Oh and Park 2014; Kim et al. 

2015; Jiang et al. 2010). It has also been reported that NPs can be encapsulated by cells 

into extracellular vesicles called exosomes (Sancho-Albero et al. 2019). Such vesicles are 

very important in inter-cellular communication and pose highly interesting platform not 

only for NPs delivery, but also for alteration of exosomal secretion by NPs. To deeply 

study mechanisms of NPs excretion and exploit them, however still requires more 

sophisticated methods. Even less information than on cellular exocytosis of NPs is 

available in respect to clearance of NPs from organisms. Commonly, it is accepted that 

biocompatible and biodegradable nanoparticles, especially NPs with diameter under 8 
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nm, leave body by renal clearance (Ehlerding, Chen, and Cai 2016; Choi et al. 2007). 

However, certain NPs (e.g. metal-based or polymeric) also tend to accumulate in cells 

and are not furtherly cleared from organism (Satterlee et al. 2017; Miller et al. 2019). This 

can be used for example in targeted tumor therapy, however long-term studies of toxicity 

of such accumulated NPs are still lacking. 

2.2.3. Nanoparticles and Immune System 

Within any living organism, immune system is the first line of defense against all 

foreign substances entering the body. As stated previously, all living organisms have been 

exposed to NPs on daily basis and it has even be suggested, that these interactions might 

already be causing some damage (Hirai et al. 2016). Being so, our immune system 

(monocytes, macrophages, lymphocytes etc.) have surely developed a recognition and 

response system for NPs. Both components of complex immune system – innate and 

adaptive immunity – can respond to NPs and start immune reaction (Vivier and Malissen 

2005). In respect to NPs it is necessary to determine the interactions with the immune 

system for two main reasons. First, possible toxic and inflammation potential of NPs must 

be evaluated before their application in vivo, as overreaction of the immune system may 

cause extensive damage. Second, new ways of evasion from immune system recognition 

and subsequent clearance is highly important in respect of prolonged circulation of NPs 

in vivo (Caracciolo et al. 2015). 

Innate immune system generates non-specific inflammatory response to conserved 

immunogenic patterns. This response is mediated via pattern-recognition receptors of the 

cells. Thus, NPs surface modification or PC formation play key roles in this process. 

Specifically, PC corona was shown to mediate complement activation, which induces 

inflammatory response by cellular components of immune system (Ding and Sun 2019). 

Moreover, direct interaction of NPs with innate immune cells such as monocytes can also 

induce inflammatory response (Senapati et al. 2015). Furthermore, it has been shown that 

some NPs are capable of inflammasome activation and thus induce immune response (e.g. 

pro-inflammatory cytokine production) (Gomez, Urcuqui-Inchima, and Hernandez 

2017). However, NPs have been shown not only to induce inflammation, but also to 

modulate already ongoing response (Gliga et al. 2020). Targeting certain components of 

innate immunity by NPs in order to manipulate subsequent adaptive immunity response 

in desired direction is also an interesting option. Using such mechanism may eventually 
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lead to enhancement of, for example, natural cancer immunity or mitigation of allergic 

reactions (Lee et al. 2019; Jatana et al. 2017). 

In contrast to innate immune system, adaptive immunity is more sophisticated system 

involving highly specific mechanisms of antigen detection, including generation of 

immunological memory. This part of immune system is of particular interest in respect to 

cancer therapy and specific antibody production. For example induction of T-cell (cells 

responsible for assisting to development of immune response, immunological memory 

and killing of other cells infected by pathogens) mediated suppression of tumor growth 

by NPs administration was recently reported (Korangath et al. 2020). Other possible use 

of NPs-immune system interaction might lie in ex vivo stimulation of T-cells and their re-

administration to body (Perica et al. 2015; Scholz et al. 2017).  Furthermore, NPs showed 

a potential to lower allergic reaction in peanut allergy in mice by stabilizing T-cell 

response to the allergen (De S. Reboucas et al. 2014). B-cells, secretory cells responsible 

for production of specific antibodies, can also be targeted by NPs and lead to specific 

secretion of desired antibodies (Temchura et al. 2014). 

In vivo, both of the two previously described systems always work closely together in 

order to correctly respond to internal and external dangers. NPs could potentially exploit 

this complex mechanism in terms of immunomodulation. Immunomodulation – an 

umbrella term describing both reinforcement and impairment of immune system function 

– could help us to fight against cancer and other diseases currently swiping the population. 

2.2.4. Possible Applications of Nanoparticles in Biomedicine 

There is a wide variety of NPs in research, clinical trials or even experimental 

application in current biomedicine. Herein, just the application potential of silicon-based, 

gold NPs and NDs (NPs studied in this thesis) will be described briefly.  

Silicon-based NPs are a wide group of particles consisting of silicon (Si), its oxides or 

compounds with other elements. Usually, the main advantage of silicon-based materials 

is derived from their semiconductor nature. However, degradation and clearance of Si-

based NPs have much larger potential than of any other semiconductor for biological 

applications. Silicon NPs can be degraded into orthosilicic acid, being then excreted from 

body by urine (Park et al. 2009). As such, Si-based NPs are predominantly used in the 

form of QDs for bio-imaging or in their porous form (i.e. mesoporus) as drug delivery 

systems. In bio-imaging, Si-based NPs are viewed as counterpart to commonly used QDs 
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that are predominantly highly toxic (Pramanik et al. 2018). Si-based QDs proved to be 

non-toxic and easily detected both, in vitro and in vivo (Tamba et al. 2015; Erogbogbo et 

al. 2011). Furthermore, the use of mesoporous silicon NPs for either direct photodynamic 

therapy, or as a coupling agent for its delivery, have also been reported (Secret et al. 2013; 

Kim et al. 2017).  

 Thanks to their physico-chemical and photo-optical properties, AuNPs have been 

broadly studied for the use in biomedicine.  The combination of AuNPs and a sensitizer 

proved to be particularly effective in photodynamic cancer therapy, where light-induced 

reactive oxygen species (ROS) kill cancerous cells (Yang et al. 2015; Meyers et al. 2015). 

Significantly higher potential for AuNPs application, however lies in photo-thermal 

therapy. The ability of AuNPs to absorb light in visible or near infra-red spectrum and 

subsequently generate heat in order to damage cancerous cells proved to be efficient (Park 

et al. 2019; Ali, Wu, and El-Sayed 2019). Some types of AuNPs beside their photo-

thermal effect have also been reported to directly cause ROS production. The combination 

of these two mechanisms strengthens the damage caused to cancerous cells, killing them 

in more efficient way (Guerrero-Florez et al. 2020). Beside the above-mentioned cancer 

therapy applications, AuNPs can also be utilized as drug-delivery agens, bio-sensing 

platforms or in bio-imaging (Kong et al. 2017; Jiang et al. 2018; Wu et al. 2019). 

 As carbon is a main building block of life, biocompatibility of carbon-based NPs 

is without any doubt. NDs possess the sp3 formation and inert core of classical diamond. 

Furthermore, they also have prominent hardness, superb thermal conductivity, tunable 

surface modification options and in some cases natural fluorescence derived from 

nitrogen vacancies (Kaur and Badea 2013). These properties mark NDs as potential 

material for biomedical usage. Natural fluorescence of NDs derived from the presence of 

nitrogen vacancies does not suffer from photobleaching as much as conventionally used 

fluorophores. As such, surface-modified NDs can be targeted and used as non-toxic 

staining agents for bio-imaging (Chang et al. 2013; Su et al. 2017). Thanks to the fact, 

that NDs are easily surface-modified, drug-delivery application or even enhancement of 

photo-thermal therapy are envisioned (Yu, Yang, et al. 2019; Harvey et al. 2019). 

Interesting NDs’ application is achieved in biocompatible bone scaffold design. It has 

been shown that NDs can act as potent adjuvant for bone cell adhesion and proliferation 

and thus improve the scaffold mechanical properties (Wu et al. 2017; Yassin et al. 2017).  
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3. Aims of the Thesis 

3.1. Interactions of Silicon Quantum Dots with Human Cells 

To determine the influence of silicon quantum dots on different types of human cells 

in culture with the focus on the importance of protein corona formation.  

3.2. Interactions of Silicon Carbide Nanoparticles with Human 

Cells  

To test the interactions of silicon carbide nanoparticles with different human cells and 

subsequently their potential as immunomodulatory agents with the focus on surface 

termination importance. 

3.3. Interactions of Gold Nanoparticles with Human Cells 

To describe the influence of ultra-small PEGylated gold nanoparticles on human 

osteoblasts. 

3.4. Nanodiamond Nanoparticles Interaction with Proteins and 

Human Cells 

To assess basic interactions of nanodiamonds with proteins from fetal bovine serum in 

culture media and subsequently with human cells. 
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4. Materials and Methods 

In this section, methods used to acquire data for publications are stated in short, as 

detailed descriptions can be found in the publication full texts enclosed at the end of this 

thesis. Methods used in unpublished data sections are described in detail and clearly 

marked. If not stated otherwise, the described methods were performed solely by the 

Author. 

4.1. Nanoparticles 

Silicon Quantum Dots – Section 6.1. 

Silicon QDs (SiQDs) were provided by the group of Dr. Minoru Fujii (Department 

of Electrical and Electronic Engineering, University of Kobe, Japan). Silicon crystals, co-

doped with boron (B) and phosphorus (P) with diameter of approximately 4 nm were fully 

water-soluble with stable fluorescence (405 nm/700-850 nm) (Fujii, Sugimoto, and 

Imakita 2016). Particles were provided in methanol solution, from which they were 

transferred to water directly prior to use. Methanol to water transition was achieved by 

mixing NPs-methanol solution with sterile deionized H2O (50:50) and subsequently 

subjected to evaporation of half of the volume at 70°C. 

Silicon Carbide Nanoparticles – Section 6.2. 

Silicon carbide (SiC) based NPs with different terminations (-x/-NH2/-OH) were 

prepared by the group of prof. Gali (Wigner Research Centre for Physics and Department 

of Atomic Physics, Budapest University of Technology and Economics, Hungary). They 

were provided as a suspension in water with size range of 1-2.5 nm (Beke et al. 2012; 

Szekrényes et al. 2014) and diluted directly into cell culture media after brief (30 min) 

sonication in a sonication bath. 

Gold Nanoparticles – Section 6.3. 

 Gold NPs (AuNPs) originated from Dr. Řezníčková (Department of Solid State 

Engineering, University of Chemistry and Technology, Czech Republic) and were 

prepared as a colloid in PEG/PEG-NH2/PEG-SH solution by direct sputtering. Their size 

distribution varied from 1-4 nm in diameter (Reznickova et al. 2019; Reznickova et al. 

2017). They were directly diluted into cell-culture media. 
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Detonation Nanodiamonds – Section 6.4. 

 DNDs used in this work were provided by the group of Dr. Stehlík and Dr. Rezek 

(Institute of Physics of the Czech Academy of Sciences and Faculty of Electrical 

Engineering, Czech Technical University, Czech Republic, respectively). They were 

prepared as a suspension in water of surface-oxidized (O-DNDs) and surface-

hydrogenated (H-DNDs) 4 and 2 nm NPs (Stehlik et al. 2016; Stehlik et al. 2017). 

4.2. Cells and Culture Conditions 

Cell lines of human osteoblasts (SAOS-2), human monocytes (THP-1) and human 

keratinocytes derived from healthy skin tissue (HaCaT) and skin carcinoma (A431) were 

used. Primary human mesenchymal stem cells (hMSC) acquired from bone marrow of 

healthy donors were also used. 

Standard sub-cultivation conditions (75 cm2 cell culture flasks, TPP) for each cell type 

were as follows: 

 SAOS-2: McCoy’s 5A medium with addition of 15% heat-inactivated fetal 

bovine serum (iFBS), L-glutamine and penicillin/streptomycin antibiotic 

mixture 

 THP-1: RPMI 1640 medium supplemented with 10 % iFBS, L-glutamine and 

penicillin/streptomycin antibiotic mixture  

 hMSC: Alpha Modified Eagle Medium (αMEM) medium with phenol red 

supplemented with 10 % iFBS, L-glutamine and penicillin/streptomycin 

antibiotic mixture 

 HaCaT: Dulbecco's Modified Eagle Medium (DMEM) supplemented with    

10 % iFBS, L-glutamine and penicillin/streptomycin antibiotic mixture  

 A431: DMEM medium supplemented with 10 % iFBS, L-glutamine and 

penicillin/streptomycin antibiotic mixture 

Experimental conditions (96 or 6-well dishes, TPP) for all types of cells included 

variable of 5 % non-heat-inactivated fetal bovine serum (FBS) supplementation or 6 hours 

cultivation completely without FBS to allow direct NPs-cell interaction without formation 

of PC (referred to as serum-free conditions or medium without serum/FBS 

supplementation throughout the thesis). Identical batch of FBS was used for all NPs-

related experiments:  
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 SAOS-2/HaCaT/A431: DMEM medium supplemented with 5 % FBS, L-

glutamine and penicillin/streptomycin antibiotic mixture 

 THP-1: RPMI 1640 medium supplemented with 5 % FBS, L-glutamine and 

penicillin/streptomycin antibiotic mixture  

 hMSC: Alpha Modified Eagle Medium (αMEM) medium with phenol red 

supplemented with 10 % FBS, L-glutamine and penicillin/streptomycin 

antibiotic mixture 

Differentiation of THP-1 cells into macrophage-like (MF) or dendritic cell-like 

(DC) phenotype was done as follows: 

 MF: THP-1 cells were seeded at a concentration of 157 000 cells/cm2 in 2 ml 

of standard cultivation medium with addition of 1 µM or 100 nM phorbol-

myristate acetate (PMA) in 6-well plate and cultivated for 72 hours 

 DC: THP-1 cells were seeded at a concentration of 157 000 cells/cm2 in 2 ml 

of standard cultivation medium with addition of 0.1 µg/ml of each GM-CSF 

and IL-4 and then cultured for 5 days. After 3 days of cultivation, additional 1 

ml of fresh medium with 3 µg/ml of each of the supplements was added to the 

cells. 

4.3. Doubling Time of Cells 

In order to assess influence of SiC-based NPs on cellular proliferation (i.e. time 

needed for the cell population to double) of monocytic THP-1 cells, doubling time was 

established (Section 6.2.2.).  

The cells were seeded in 6-well dishes at a concentration of 10 000 cells/cm2 on a 

shaker in the medium with 5% FBS supplementation with 100 μg/ml of SiC-based NPs 

for 6 hours. After that time shaker was turned off and cultivation continued until 24 and 

48 hours. After 4, 24 and 48 hours, one whole 6-well dish was harvested and cell count 

in each well was determined by counting in Bürker chamber. From this count, doubling 

time was determined by using doubling time computational website 

(http://www.doubling-time.com/compute.php?lang=en). 

 

 

http://www.doubling-time.com/compute.php?lang=en
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4.4. Metabolic Activity 

Metabolic activity of cells was assessed by colorimetric dehydrogenase-dependent 

MTS assay by Promega (Cell Titer961 AqueousOne). 10% MTS solution was added to 

experimental culture media with cells for 2 hours (37°C, CO2) and then absorbance was 

measured at 455 nm (620 nm as reference) using Labsystem Multiskan MS reader or 

Tecan Spark reader. The results were then correlated to cell count (either counted by flow 

cytometer, in Bürker chamber (monocytic THP-1) or by Cy-Quant staining (adherent 

cells)), as increase in cell number may manipulate the results significantly. The lowering 

of metabolic activity under 75 % of control level was considered cytotoxic (Flahaut et al. 

2006). 

4.5. CyQuant Cell Count 

In order to determine relative changes in cell count, measurement of DNA content by 

fluorescent staining with CyQuant NF (no freeze) cell proliferation assay (Invitrogen) 

was employed. After MTS assay, cells were washed and 50 µl of staining solution (1:500 

CyQuant dye in HBSS buffer, both provided with the assay) was added to cells for 1 hour 

(37°C, CO2) and then fluorescence intensity was measured (excitation 485 nm, emission 

530 nm) with Tecan Spark reader. 

4.6. Cytokine Detection 

Production of wide panel of 42 cytokines was detected by Human Cytokine Antibody 

Array from Abcam.  Supernatant harvested from cells with NPs was incubated with array 

membrane overnight at 4°C on rocking shaker, all other steps were done in accordance 

with manufacturers manual (Section 6.2.1.). Obtained data were processed by ImageLab 

software (BioRad). 

4.7. Flow Cytometry 

Flow cytometry (FC) measurements were applied for cell count of THP-1 cells and 

for mitochondrial mass and potential measurements. The method thereof is described in 

Publication C.  

Furthermore SiQDs detection in SAOS-2 cells was conducted using FC (Unpublished 

data - Section 6.1.2.). The cells were pre-seeded at a concentration of 10 000 cells/cm2 

on 6-well dishes in the standard cultivation medium for 24 hours. After that, the cells 
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were washed in phosphate buffer saline (PBS) and incubated with 100 µg/ml SiQDs for 

2 hours in DMEM with or without 5 % FBS. Subsequently cells were harvested by 

trypsin/EDTA and SiQDs were detected by BD FACS Aria at excitation wavelength 405 

nm and emission was acquired at 750-810 nm. Only live cells were gated and furtherly 

processed in comparison to unstained control via FlowJo software.  

 

4.8. Imaging 

Multiple differing imaging techniques were applied in order to achieve detection of 

used USNPs in cells. Standard light and fluorescent microscopy (Olympus IX71 with a 

color camera DP74), was used in order to periodically check cellular morphology in 

subcultures and perform histological staining evaluation (Section 6.2.1.).  

In order to observe SiQDs interaction with the cells, following method was applied 

(Unpublished data - Section 6.1.2.).  

 Live-cell imaging of SiQDs interacting with SAOS-2 cells was conducted 

using Nanolive 3D Cell Explorer-fluo holographic microscope (Nanolive). 

Cells were pre-seeded under standard cultivation conditions at concentration 

of 10 000 cells/cm2 on glass bottom 35 mm dishes (Ibidi) for 24 hours, then 

100 µg/ml of SiQDs in DMEM + 5 % FBS were added and cells were 

incubated in controlled atmosphere, humidified and heated chamber 

(OKOlab) directly in the microscope. The acquired data were furtherly 

processed via STEVE software (Nanolive). 

Detection of AuNPs in cells was conducted using transmission electron microscopy 

(TEM) and Raman spectroscopy (Unpublished data – Section 6.3.2.).  

 For TEM imaging SAOS-2 cells were pre-seeded at a concentration of 10 000 

cells/cm2 in the standard cultivation medium into 35 mm Petri dishes with 

inserted sterilized  12 mm cover glasses on the bottom. After 24 hours, 

medium was discarded and cells were washed with PBS. Fresh DMEM 

medium with 5% FBS containing 14 μg/ml of AuNP-PEG-SH was added to 

cells and incubated for 24 hours. After this time, cells were washed twice in 

PBS and fixed by combination of 2% glutaraldehyde and 2% 

paraformaldehyde. Samples were then repeatedly washed in PBS and 
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subsequently dehydrated by ethanol row (10 min in 20%, 40%, 50%, 60%, 

70%, 100% ethanol and 10 min in acetone). After dehydration, cells were 

mounted in resin and submerged in liquid nitrogen. Cover glass was then 

discarded and ultrathin slices were made. The samples were observed by TEM 

FEI Morgani microscope equipped with MegaView II CCD camera. TEM 

samples (resin mounting and microtome slicing) were prepared and images of 

AuNPs were taken at Institute of Biology and Medical Genetics (1LF, UK) 

with kind cooperation of Dr. Pavla Bažantová. 

 For Raman spectroscopy SAOS-2 cells were pre-seeded at a concentration of 

10 000 cells/cm2 in the standard cultivation medium into 35 mm Petri dish 

with sterilized  12 mm quartz glass cover slips (SPI Supplies). After 24 hours, 

medium was discarded and cells were washed with PBS. Fresh DMEM 

medium with 5% FBS medium containing 14 μg/ml of AuNP-PEG-SH NPs 

was added to cells and incubated for 24 hours. After 24 hours, supernatant was 

discarded and cells were washed in PBS and fixed by 4% paraformaldehyde. 

Subsequently, samples were mounted to quartz glass slide and sealed by 

CoverGrip sealant (Biotium). Raman imaging was performed with kind 

cooperation of doc. Mojžeš at Division of Biomolecular Physics (MFF, UK) 

at  WITec alpha300 RSA (WITec) and oil-immersion objective UPlanFLN 

100x (NA 1.30, Olympus) at 647.1 nm line of Kr+ ion laser using 20 mW 

power at the focal plane. Raman maps were analyzed by the means of the True 

Component Analysis from the software packet WITec Project Plus 5.1 

(WITec) decomposing spectral datasets to individual spectral components 

differing in their relative contribution throughout the investigated object.  

The presence of SiC NPs inside SAOS-2 cells was tested employing special 

technique described below (Unpublished data – Section 6.2.2.). 

 A special method called cryo-TOF-SIMS FIB SEM microscopy developed by 

Tescan was tested in order to obtain information of intracellular localization 

of SiC-based NPs. SAOS-2 cells were pre-seeded in the standard cultivation 

medium at a concentration of 10 000 cells/cm2 for 24 hours on gold grids 

provided by Tescan. Cells were then transferred to Brno and after media 

change left in CO2 incubator for stabilization for 4 hours. Subsequently, media 

was discarded and changed for the medium with 5 % FBS and 100 µg/ml SiC-
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x and incubated overnight. In the control cells, medium was changed but no 

particles were added. After overnight incubation, the cells were washed with 

the fresh medium and vitrified at Tescan facility (-183° C, Leica GP2). The 

vitrified samples were measured by Dr. Jakub Javůrek (Tescan s.r.o., Brno) at 

Tescan facility using Tescan Lyra3 Ga+ FIB SEM (focused ion beam scanning 

electron microscopy) equipped with a compact TOF-SIMS (time of flight 

secondary ion mass spectrometry) allowing for elemental analysis of milled 

material. 

All microscopic images were processed for smoothness and brightness correction 

via ImageJ software (NIH). 

4.9. Agilent Seahorse Cell Metabolism Detection 

Glycolysis versus oxidative phosphorylation (OXPHOS) adenosine-tri-phosphate 

(ATP) production rate was determined in respect to SiC-based NPs and THP-1 cells 

(Unpublished data – Section 6.2.2.).  

The cells were cultured in 6-well dish at a concentration of 10 000 cells/cm2 on a 

shaker in the medium without FBS supplementation with 100 μg/ml of SiC-based NPs 

for 6 hours. Then the shaker was turned off and FBS was added in order to provide a final 

concentration of 5 % FBS. Cells were subsequently cultured for another 18 hours. After 

this time, cells were harvested by centrifugation (210 g, 5 min), split in two samples and 

processed in accordance with a standard Seahorse procedures for Seahorse ATP rate assay 

protocol. Briefly, cells were re-suspended in a Seahorse RPMI Medium and seeded on 

Seahorse cartridges pre-coated with poly-L-lysine (Sigma-Aldrich). Furthermore, cellular 

metabolism was measured in a Seahorse XFP mini analyzer (all Seahorse materials and 

instruments provided by Agilent). After the measurement, supernatant was discarded and 

the cell-containing cartridges were frozen (-20 °C) overnight. Subsequently, cell nuclei 

were stained with 4′,6-Diamidino-2-phenylindole dihydrochloride (DAPI, Sigma-

Aldrich). Fluorescent images of DAPI stained cells were obtained using an Olympus 

IX71 microscope. Cell count for data normalization was determined using CellProfiler 

Analyst software (Cell Profiler). Data regarding oxygen consumption rate (OCR) and 

extracellular acidification rate (ECAR) of the cells were processed via Wave software 

(Agilent). 
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4.10. Exosome isolation and detection 

Production of small extracellular vesicles – exosomes – by THP-1 cells stimulated 

with SiC-based NPs was assessed (Unpublished data – Section 6.2.2.). 

The cells were cultured in a 6-well dish at a concentration of 10 000 cells/cm2 in the 

medium without FBS supplementation with 100 μg/ml of SiC-x NPs on a shaker for 6 

hours. Then, the shaker was turned off and FBS was added in order to provide the final 

concentration of 5 % FBS. The cells were subsequently cultured for another 18 hours. 

After this time, the cells were harvested by centrifugation (210 g, 5 min). The supernatant 

from the cells was transferred to a clean sterile tube and was furtherly processed by a 

differential ultracentrifugation. Shortly, supernatant was sequentially centrifuged (at 300 

g for 10 min, 2000 g for 10 min and 10 000 g for 30 min) and always transferred to a 

fresh tube. After these steps, an ultracentrifugation was performed at 100 000 – 200 000 

g for 70 min twice with supernatant elimination after each step. The resulting pellet was 

analyzed by Browns’ motion analysis (Nano-particle tracking analysis (NTA), NanoSight 

NS300, Malvern Panalytical Ltd) and by Western blot against CD81 human exosomal 

marker. The Western blot and NTA were prepared with kind cooperation of Dr. Petr 

Přikryl (Institute of Pathological Physiology, 1LF UK) and Prof. František Štěpánek 

(Chemical Robotics Laboratory, VŠCHT), respectively. 

4.11. Mass spectrometry 

Presence of PC (i.e. proteins associated with NPs) was tested for PEGylated AuNPs 

(Section 6.3.2.). The same method was also employed for analysis of PC on DNDs 

(Section 6.4.1., Publication D), where detailed procedure can be found. 

Briefly, 14 mg/ml of AuNP-PEG and AuNP-PEG-SH was incubated in DMEM 

medium supplemented with 5 % FBS at room temperature under constant rotation on a 

rotator overnight. The samples were then centrifuged (10 510 g, 4°C, 30 min). 

Supernatant was discarded and resulting pellet was re-suspended in 500 µl of PBS and 

again centrifuged. This washing step was employed 5 times. After washing, the resulting 

pellet was dissolved in 30 ul of passive lysis buffer (PLB, Promega). 15 µl of resulting 

sample was used for mass spectrometry analysis as described in Publication D (i.e. liquid 

chromatography–mass spectrometry/mass spectrometry (LC–MS/MS)). Remaining 15 µl 
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was analyzed by a 12% Sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-

PAGE). The sample preparation and SDS-PAGE were prepared with kind cooperation of 

Dr. Iva Machová (Biomedical Center, LFP UK). Mass spectrometry was performed and 

data analyzed by Dr. Martin Hubálek (Mass spectrometry group, ÚOCHB, VŠCHT). 

4.12. Statistical Analysis 

Statistical analysis was conducted in Statistica software (StatSof) employing non-

parametric matched pair Wilcoxson test and two factor ANNOVA with post-hos Fischer-

LSD analysis 
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6. Results 

In order to maintain consistency the results are presented in the same order as Aims of 

the thesis. Each aim is divided into a chapter regarding already published data and a 

chapter regarding unpublished data, if any, related to the same topic. 

6.1. Interactions of Silicon Quantum Dots with Cells 

6.1.1. Published Data (Publications A and B) 

Publication A: Ostrovska, Lucie, Antonin Broz, Anna Fucikova, Tereza Belinova, 

Hiroshi Sugimoto, Takashi Kanno, Minoru Fujii, Jan Valenta, and Marie Hubalek 

Kalbacova. "The Impact of Doped Silicon Quantum Dots on Human Osteoblasts."  

Publication B: Belinova, Tereza, Lucie Vrabcova, Iva Machova, Anna Fucikova, Jan 

Valenta, Hiroshi Sugimoto, Minoru Fujii, and Marie Hubalek Kalbacova. "Silicon 

Quantum Dots and Their Impact on Different Human Cells 

The two above-mentioned publications summarize the long term work regarding 

SiQDs and their influence on different human cells. Commonly used QDs are usually 

made of heavy metals and thus tend to be toxic and not biocompatible. SiQDs are a 

promising platform to replace these commonly used QDs with relatively biocompatible 

and non-toxic material. Publication A was written while the author of the thesis was 

finishing Master studies at Faculty of Science. However, the work was not used to obtain 

any academic title of the author of this thesis and combined with publication B (where 

the thesis author is the first author) provides the reader with more complex overview of 

the matter of SiQDs and their potential in biomedicine, thus it is included herein. 

In the Publication A novel SiQDs co-doped with phosphorus and boron were 

tested in respect to their behavior in biological environment and their influence on 

osteoblastic SAOS-2 cells. Two sizes of SiQDs were fabricated – SiQD 1100 and 1050 

with diameter of 4 and 3 nm, respectively. Both NPs exhibited relatively high external 

quantum yield of 12 % and in long-time storage stable fluorescence with excitation of 

405 nm and emission of 750 and 850 nm for SiQD 1050 and 1100, respectively. Both of 

the particles exhibited strong colloidal stability and slight (approx. 50 nm) fluorescence 

emission decrease in time. 
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After broad physico-chemical characterization, the NPs were cultivated with 

SAOS-2 cells under two different conditions – serum free (i.e. without PC formation) and 

5% FBS containing medium (i.e. with PC formation) and their influence on metabolic 

activity of the cells was assessed in respect to increasing concentration (5, 25 and 125 

μg/ml) and time (6, 24 and 48 hours). The results can be seen in Figure 5 in Publication 

A. SiQD 1100 have proved to be more toxic under both applied conditions, however much 

earlier effect was observed without the presence of FBS (thus without PC). In serum-free 

medium, the cells showed a decrease in metabolic activity earlier and with rising time 

also at lower concentrations than in medium with 5 % FBS. SiQD 1050 on the other hand 

showed cytotoxic effect only after longer incubation (24 hours) and only in serum-free 

medium. In medium with 5% FBS, the cells exhibited cytotoxic response (i.e. metabolic 

activity under 75% of control) only with the highest (125 μg/ml) concentration of NPs 

after 48 hours of incubation. 

The cells with NPs were then subjected to microscopic examinations which 

revealed significant and quite interesting differences (Figures 6 and 7 in Publication A). 

SiQD 1050 showed formation of huge aggregates in the cultivation medium covering the 

cultivation surface and exhibited in low, foggy fluorescence emission, almost exclusively 

outside cells. Quite surprisingly, cluster formation remained under serum-free conditions, 

while detected fluorescence even decreased, making the NPs almost invisible. The most 

interesting results were obtained from SiQD 1100 and thus, further work was focused 

only on this type of SiQDs. With rising time (from 2 to 6 to 24 hours), the signal from 

SiQDs 1100 was getting stronger in medium with 5% FBS and started to change 

localization from medium around cells (2 hours) to not only the medium surrounding 

cells, but into the cells themselves (6 hours). After 24-hour incubation of cells with 50 

μg/ml of SiQD 1100 in medium with 5% FBS, strong signal localized in intracellular 

vesicles was observed. In serum-free medium, still strong, however highly diffuse and 

non-localized signal was detected. After 2 hours under serum-free conditions, the 

fluorescent signal was already observed inside cells. After 6 hours of cultivation, FBS 

was added to the cultivation medium to avoid cell death due to the lack of nutrients and 

SiQD 1100 clusters with FBS-originating proteins were detected in culture medium. After 

24 hours, strong, but not localized (i.e. diffused) fluorescent signal was detected in the 

cells cultivated with NPs without PC. Thus, presence of FBS (therefore presence of PC) 
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not only influenced cellular metabolic activity, but also had impact on intracellular 

localization of SiQDs. 

From results described above, SiQD 1100 proved to be more interesting for further 

studies and thus, Publication B was focused on influence of only these NPs on different 

types of human cells. Beside osteoblastic SAOS-2 cells representing well-described 

stable cell line, suspension immune THP-1 cells in monocytic (in vivo freely circulating 

in blood)  and macrophage-like (MF, tissue-specific adherent immune cells) state and 

primary healthy human mesenchymal stem (hMSC) cells were used in order to assess 

cell-type specific response of the cells to SiQDs. The cells were incubated with growing 

concentration of NPs (25, 50 and 100 μg/ml) for 6, 24 and 48 hours in FBS supplemented 

and serum-free medium. The results confirmed the importance of FBS presence and thus 

PC formation (Figure 2 in Publication B). All the cell types tested were sensitive to NPs 

presence significantly more in serum-free medium (thus without PC). Cell-type 

dependent response to SiQDs was clearly detected. Whereas clear concentration-

dependent decrease in metabolic activity was observed in SAOS-2 cells, simple decrease 

without any concentration dependence in hMSC was detected. Immune cells (monocytic 

THP-1 and MF) proved to be particularly responsive in respect of the NPs.  While 

supplemented with 5 % FBS, monocytic THP-1 cells showed significant increase of 

metabolic activity after 6 hours, which disappeared after 24 hours, where the metabolic 

activity was comparable to control level. In serum-free medium (i.e. without PC) the cells 

did not show such rapid increase of metabolic activity after 6 hours, however strong dose-

dependent cytotoxicity was observed after 24 hours. In MF THP-1 cells, no effect was 

observed under either condition after 6 hours, however after 24 hours, significant decrease 

in metabolic activity was detected in serum-free medium, while only slight decrease was 

visible in FBS supplemented medium. 

The results acquired from metabolic activity tests of SAOS-2 and hMSC cells 

were furtherly accompanied by testing of mechanism of the observed inhibition. Presence 

of lactate dehydrogenase (LDH) in cell supernatant reflects cell membrane rupture and 

thus resulting necrosis (Figure 3 in Publication B). Human mesenchymal stem cells 

(hMSC), showing decrease in metabolic activity only after 24 hours did not show any 

significant levels of LDH in the supernatant and thus cell membrane rupture could be 

ruled out. SAOS-2 cells, on the other hand, showed increasing levels of LDH detected in 

the medium with increasing incubation time. The levels were however significantly 
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higher than control levels of LDH only after 48 hours of incubation. This finding was in 

correspondence with metabolic activity results, where significant metabolic activity 

inhibition was observed at that time point. 

When the results from the two above-mentioned publications are combined, 

SiQDs are shown as possible substitute for commonly used, highly toxic, QDs. Cell type 

dependent and specifically dose-dependent toxicity was observed in higher doses of NPs, 

however even lower dose proved to be clearly detectable in cells with sufficient 

fluorescence intensity. More importantly, both of the publications stressed out the 

importance of formation of PC caused by FBS supplementation of culture medium. 

6.1.2. Unpublished Data 

Even though the above-mentioned published results showed interesting results 

regarding SiQDs-cell interaction, more proof of direct contact and intracellular 

localization of the NPs was still needed. Two imaging techniques were applied in order 

to obtain further information. 

Nanolive Holographic Microscopy 

As a non-invasive live-cell imaging without photo-induced cellular stress is needed, 

holographic imaging techniques are a rising opportunity. This method is based on light 

diffraction and described in detail in corresponding patents (US patent No. 8,937,722 and 

EU patent No. 2011/121523). Even though SiQDs used herein have the potential to be 

detected by fluorescent microscopy, their excitation wavelength does not allow long term 

fluorescent live-cell imaging, as the 405 nm excitation wavelength is highly toxic for 

cells. 

In the previous results the earliest time point of 6 hours was employed and resulted in 

significant decrease in metabolic activity of SAOS-2 cells treated with 100 μg/ml of 

SiQDs 1100. The evolution of SiQDs-cell interaction in time points leading to this toxic 

event was observed by non-invasive method of holographic microscopy. Surprisingly, the 

cells showed morphological textbook example of apoptosis within particularly short time 

of approx. 185 min (Fig. 4, Video 1 in electronic supplement) with continuous effect up 

until 6 hours of incubation. The results obtained in Publication B showed that toxicity of 

100 μg/ml of SiQD 1100 after 6 hours of incubation in the medium with FBS was not 

connected with necrosis, as no LDH was detected in the cell supernatant (Figure 3a in 
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Publication B). The results from live-cell imaging suggested mechanism responsible for 

the cytotoxic lowering of metabolic activity after 6 hours in the medium with FBS might 

be apoptosis.  

Detection of SiQDs in SAOS-2 Cells by Flow Cytometry 

 As the holographic microscopy data showed, SiQDs interact with cells almost 

immediately after their administration. To furtherly show the importance of PC 

formation, as was suggested in Publication A (Figures 6 and 7 in Publication A), on 

SiQDs, FC assessment of SiQDs uptake by SAOS-2 cells was conducted after 2 hours of 

incubation in the medium containing 100 μg/ml SiQDs with and without 5 % FBS 

supplementation. 

Figure 5B shows SAOS-2 cells in 5% DMEM medium with 100 μg/ml of SiQDs. 

Approx. 17 % of live cells show fluorescence closely connected with SiQDs presence 

which is in correspondence with microscopic observations reported in section 6.1.1. In 

the medium without FBS supplementation, vast majority (98 %) of the healthy cells 

0 min 185 min    

 

Figure 4: Holographic images of SiQDs influence on SAOS-2 cells. Representative images 

of changes in cellular morphology of SAOS-2 cells after treatment with 100 μg/ml of 

SiQDs in DMEM supplemented with 5 % FBS. The scale bar represents 20 µm 

 

Control 

SiQDs 

375 min 
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exhibits SiQDs related fluorescence. Short-term incubation of SAOS-2 cells with SiQD 

1100 showed, that the presence of FBS (and thus PC) has determining influence on NPs 

interaction with the cells.  

 

 

 

 

 

A 

B 

Figure 5: Flow cytometry analysis of SAOS-2 cells with 100 μg/ml of SiQDs in 

the medium with 5 % FBS. Histograms show fluorescence intensity and layout at 

excitation of 405 nm and emission of 780 – 810 nm for control, SiQDs untreated, 

cells (A) and cells with 100 μg/ml of SiQDs (B). 
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Figure 6: Flow cytometry analysis of SAOS-2 cells with 100 μg/ml of SiQDs in 

the medium without FBS. Histograms show fluorescence intensity and layout at 

excitation of 405 nm and emission of 780 – 810 nm for control, SiQDs untreated, 

cells (A) and cells with 100 μg/ml of SiQDs (B). 
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6.2. Interactions of Silicon Carbide Nanoparticles with Human 

Cells  

6.2.1. Published Data (Publication C) 

Publication C: Bělinová, Tereza, Iva Machová, David Beke, Anna Fučíková, Adam 

Gali, Zuzana Humlová, Jan Valenta, and Marie Hubálek Kalbáčová. 

"Immunomodulatory Potential of Differently-Terminated Ultra-Small Silicon 

Carbide Nanoparticles."  

 The main biology-relevant advantage of USNPs lies in their size, which is often 

comparable to pores in differing cellular membranes (e.g. plasmatic membrane, nuclear 

membrane). Silicon carbide (SiC) has huge potential in biomedical applications for its 

combined biocompatibility and biodegradability of silicon and carbon. The combination 

of advantages of USNPs and SiC-based material is thus very promising for applications 

in biomedicine. 

 In Publication C, immunomodulatory effects of differently terminated SiC-based 

USNPs were assessed. NPs made out of SiC with average diameter of approx. 4 nm were 

prepared with three different surface terminations; SiC-x NPs called as prepared, which 

had variety of oxygen species and a high concentration of carboxyl groups on their 

surface, SiC-OH NPs, which had portion of the carboxyl groups substituted for –OH 

groups and SiC-NH2 NPs where the –OH terminations were once again substituted for 

amine groups. These particles exhibited great colloidal stability not only in water, as their 

original deposition milieu, but also in the cell culture medium and even in medium 

supplemented with FBS (Figure 2 in Publication C). This is a remarkable property not 

often seen for NPs, as protein interactions usually lead to their agglomeration and increase 

in zeta potential (key parameter showing NPs colloidal stability). 

 The prepared NPs were cultured in rising concentrations (25, 50 and 100 μg/ml) 

with SAOS-2 cells, monocytic THP-1 and macrophage-like (MF) THP-1 for 6 and 24 

hours (Figure 3 in Publication C). The influence of protein supplementation was also 

included as a variable. The results showed that no matter the surface termination and 

incubation conditions, SiC-based USNPs are inert in respect to SAOS-2 cell line. 

However, highly interesting results were obtained for both of the immune cell types. MF 

cells responded by a decrease of the metabolic activity only to SiC-x NPs after 24 hours 



34 

 

in the medium with FBS, whereas the in serum-free medium, all of the NPs caused 

significant cytotoxicity after 6 hours, which continued to exhibit in concentration-

dependent manner even after 24 hours with SiC-x and SiC-OH, but not SiC-NH2. 

 The most interesting results were obtained from monocytic THP-1 cells. Under 

both conditions, the cells showed only a slight response to all NPs after 6 hours. However, 

after 24 hours three completely different responses were obtained, especially with the 

highest concentration (i.e. 100 μg/ml) of NPs. SiC-x NPs exhibited strong metabolic 

activity inhibition, SiC-OH NPs retained inert behavior and metabolic activity was at the 

same level as the control, while SiC-NH2 NPs resulted in significant metabolic activation 

of cells. Based on these results and the presumption that the metabolic activity test 

employed (i.e. MTS) is closely connected to mitochondrial dehydrogenase activity, 

determination of mitochondrial mass and membrane potential after 24 hours in the serum-

free medium was employed (Figure 4 in Publication C). Mitochondrial mass remained 

unchanged in all SiC-based NPs treated cells. A mitochondrial potential determination 

showed that the decrease of metabolic activity in SiC-x treated cells was connected to the 

decrease in mitochondrial membrane potential. SiC-OH treated cells, which seemed 

similar to control cells in respect to the metabolic activity retained also the same 

mitochondrial membrane potential. Surprisingly, SiC-NH2 treated cells which showed 

significant increase of metabolic activity (200 % of the control cells) had the 

mitochondrial potential at the same level as the SiC-x treated cells. 

 These interesting results showing the influence of SiC-based NPs on immune cells 

were followed by determination of cytokine production of these cells, in response to SiC-

NPs stimulation. All of the particles resulted in increased production of IL-8, GRO-α and 

RANTES pro-inflammatory cytokines, copying the profile of LPS stimulated cells as 

inflammatory positive control (Figure 5 in Publication C) while at significantly lower 

levels.  

 No significant changes in morphology were observed after the short term (24 

hours) incubation. In order to assess the possible influence of SiC-based NPs on 

differentiation potential of monocytic THP-1 cells, long term cultivation of 7 days (Figure 

6 in Publication C) was performed. SiC-x NPs, as predicted from observed metabolic 

inhibition after 24 hours resulted in nearly no living cells after 7 days. SiC-OH on the 

other hand resulted in interesting mixture of morphologies of monocytic cells, MF and 
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even DC. SiC-NH2 NPs after 7 days resulted in increase of cell number with significant 

number of MF morphology. 

 This work comprehensively described the potential immunomodulatory effect of 

SiC-based USNPs with different terminations. The surface termination herein proved to 

be of extreme significance from biological point of view. The immunomodulatory 

potential of these NPs deserves to be studied in more detail as a rising opportunity for 

their application. 

6.2.2. Unpublished data 

Influence of SiC-x NPs on Metabolic Activity of Human Keratinocytes and hMSC Cells  

 In order to test if SiC-based NPs alter metabolic activity selectively in immune 

cells (represented by THP-1 cell line) as suggested in Publication C, influence of SiC-x 

NPs was tested on two keratinocyte cell lines – HaCaT (representing non-cancerous cells) 

and A431 (representing cancerous cells) cells. In order to assess influence of these NPs 

in respect to primary cells, metabolic activity of human mesenchymal stem cells (hMSC) 

changes after the treatment with SiC-x NPs was tested. All the cell types were incubated 

with gradually increasing concentrations of SiC-x in the medium with 5% FBS for 24 

hours. The results showed some slight statistically significant decrease in the metabolic 

Figure 7: Metabolic activity of human keratinocytes (HaCaT and A431) 

and primary human mesenchymal stem cells (hMSC) after incubation 

with increasing concentrations of SiC-x for 24 hours in medium with 5% 

FBS. Dashed line shows 100 %, asterisk marks statistically significant 

results (p < 0.05) 



36 

 

activity of HaCaT (with 25 μg/ml and 100 μg/ml) and hMSC (100 μg/ml), but such 

reduction (to approx. 85 % of control levels) should not be considered as biologically 

significant (Fig. 7). 

Doubling Time of THP-1 Cells after Treatment with SiC-based NPs 

 In order to establish the influence of different SiC-based NPs on ability of THP-1 

cells to proliferate, doubling time was established. Doubling time represents a number of 

hours that the cells need to double their number. As seen in Figure 8 SiC-NH2 NPs shorten 

doubling time of THP-1 cells to 28 hours, whereas SiC-x NPs prolong their proliferation 

to 51 hours. SiC-OH NPs retain approx. the same doubling time as control cells. Thus, it 

can be concluded that the surface termination of SiC-based NPs has determinant effect 

on THP-1 cell proliferation. 

Metabolism Dependence of THP-1 Cells Based on SiC-based NPs Influence 

 As Publication C suggested, the observed metabolic activity stimulation in THP-

1 monocytic cells was most probably not connected with strictly mitochondrial 

dehydrogenases. To assess changes in the metabolism of THP-1 monocytic cells, 

Seahorse ATP production rate analysis was employed. In this assay OCR (oxygen 

consumption rate) and ECAR (extracellular acidification rate) basal values are assessed 

and furtherly ATP production from OXPHOS and glycolysis is determined. After basal 

values are measured, injection of oligomycin is employed which leads to partial 

mitochondrial ATP synthesis inhibition (significant reduction of electron flow). 

Figure 8: Doubling time of THP-1 cells after treatment SiC-based NPs. 

The cells were treated by 100 μg/ml of SiC-based NPs in DMEM medium 

with 5 % FBS for 4, 24 and 48 hours.  
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Subsequent complete inhibition of mitochondrial respiration is then achieved by injection 

of rotenone/antimycin A mixture. From the acquired ECAR and OCR data glycolytic and 

oxidative ATP production is calculated.  The obtained results showed interesting shifts in 

ATP production (Fig. 9B). Control cells rely predominantly (59.1 %) on OXPHOS for 

ATP ptoduction. The treatment of cells with 100 μg/ml SiC-x NPs shifts the metabolism 

even more towards OXPHOS-dependent one (70.1 %). These cells previously showed 

significant decrease in metabolic activity (Fig. 9A). The SiC-OH and SiC-NH2 treated 

cells showed shift from OXPHOS to slightly more glycolytic metabolism (46.9 and 51.4 

% ATP produced by glycolysis respectively).  

 

Production of Exosomes from THP-1 Cells Stimulated by SiC-x NPs 

 Exosomes are one of the key mechanisms used by cells to communicate with each 

other. Usually, exosomes are small vesicles (30 – 100 nm) containing various signaling 

molecules or small RNA fragments. They proved to be particularly interesting in 

modulating the response of both, adaptive and innate immune system. Thus, a pilot test 

of SiC-based NPs influence on exosomal secretion was conducted on THP-1 cells to 

deeper study the potential immunomodulatory effects of these NPs. 

 The cells were incubated with 100 μg/ml of SiC-x NPs for 24 hours in the medium 

without FBS. As this was a pilot study, only SiC-x NPs were used, as the most consistent 

results were obtained from other methods with these NPs. The results showed that SiC-x 

treated cells produce significantly (by two orders) more exosomes than untreated control 

A B 

Figure 9: ATP production distribution between glycolysis and OXPHOS. The cells 

were treated by 100 μg/ml of SiC-based NPs for 24 hours in serum-free medium, 

their metabolic activity (A, Fig. 4 in Publication C) and glycolysis/OXPHOS ATP 

production (B) were measured. 
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cells (Fig. 10B and 10A, respectively). After 6 hours of incubation, FBS containing 

exosomes was added to the cultivation medium, thus the particles detected by NTA 

analysis could be considered of FBS origin. Subsequent western blot analysis, however 

confirmed that the acquired vesicles are truly exosomes by staining against human CD81, 

which is typically enriched in exosomal membrane (Fig. 10C). However, no significant 

difference in signal strength was detected and thus the difference in number of 

extracellular vesicles detected by NTA could not be correlated to exosome count. 

Detection of SiC-x NPs in SAOS-2 Cells by Cryo-TOF-SIMS FIB SEM Microscopy 

 The SiC-based USNPs described above suffered from high fluorescence signal 

quenching after administration to cell-culture medium, thus making them hard to detect 

and establish if they are inside cells using fluorescence-based microscopic techniques. 

A B 

C 

CD81 

Figure 10: Exosomes production by THP-1 cells. A – 

exosomes detected by NTA analysis in control cells; B – 

exosomes detected by NTA analysis in cells treated by 100 

µg/ml SiC-x; C – western blot analysis of isolated 

exosomes 
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Silicon and carbon are both not particularly electron dense materials that could be 

positively distinguished from cellular background by the means of standard or even high 

resolution TEM. Thus, in search for adequate imaging technique a cooperation with 

Czech technological company Tescan was established. Their unique cryoSEM 

microscope provided interesting results. The principle of the employed cryo-TOF-SIMS 

FIB SEM lies in a combination of FIB where focused beam of high-energy ions is 

systematically etching and milling the sample observed by SEM and TOF-SIMS directly 

detects the elemental composition of the milled area. Retrospective software 

reconstruction then theoretically provides precise map of element composition of the 

original sample. 

 The method seemed highly promising in respect to mapping of SiC-x presence 

inside the cells on nearly molecular level, however proved to be unpredictable. Samples 

were pre-cultured in Prague and then transferred to Brno. There the cells were kept in an 

incubator to adjust after the transfer for 4 hours and furtherly processed. Only after the 

whole measurement was finished, an issue was observed as nearly no cells were 

detectable on control grids and thus background for Si presence in the cells could not be 

established properly (Fig. 11). The reason for the lack of cells on control grids is 

unknown, however it might have been caused by the transport-related stress or unwary 

C 

B A 

 

Figure 11: SEM images and 

spectral analysis of SiC-x 

treated cells by cryo-TOF-

SIMS FIB SEM microscopy. 

SEM image of cell prior FIB-

SEM (A) and after (B). Mass 

spectra of cell area marked by 

red rectangle (C). 
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handling of the grids. The results of measured control grid can be found in supplementary 

data (Fig.18 in Section 9). Contrary to control, the samples containing SiC-x NPs were 

still nicely covered with cells and Si was detected in milled area (Fig. 11). However, the 

Si concentration was almost at noise level. 

6.3. Interactions of Gold Nanoparticles with Cells 

6.3.1. Published Data (Publication D) 

Publication D: Reznickova, A., N. Slavikova, Z. Kolska, K. Kolarova, T. Belinova, M. 

Hubalek Kalbacova, M. Cieslar, and V. Svorcik. "PEGylated Gold Nanoparticles: 

Stability, Cytotoxicity and Antibacterial Activity."  

 The research presented in above-mentioned publication was mainly focused on 

determination of the preparation and characterization of gold USNPs conducted by 

laboratory of dr. Řezníčková. AuNPs as mentioned before have a huge potential in 

biomedical applications, especially in imaging and possibly also in photo-thermal 

therapy. Metal NPs are commonly prepared by several methods, one of which is direct 

sputtering onto a surface or into a fluid, creating either modified surface or NPs solution, 

respectively. In order to lessen the interactions of NPs with each other or with other 

biomolecules (and thus the formation of clusters or PC respectively), NPs can be directly 

prepared into solutions of stabilizing molecules. Most commonly used, and also FDA 

approved, stabilizing agent for NPs is PEG. Herein, three types of PEG were employed 

for direct AuNPs deposition – pure PEG, amine-terminated (-NH2) and thiol-terminated 

(-SH), differing in their properties (e.g. colloidal stability, size of polymer). 

 The results showed that direct sputtering of Au into the three types of PEG 

solution produced NPs with narrow size distribution of 1-6 nm in diameter, with the best 

homogeneity achieved by deposition into thiol-terminated PEG (1-3 nm). Such small 

structures, however resulted in loss of surface plasmon resonance and related absorption. 

All of the AuNPs proved to be thermo-stable and also retain their dispersibility and size 

distribution in time (up to 14 days after sputtering). After broad characterization of 

AuNPs deposited in different PEG solutions, their cytotoxicity was assessed on SAOS-2 

cells. The cells were cultured with AuNPs for 24 hours and then their metabolic activity 

was determined (Fig. 7 in Publication D). From the results, it is obvious that AuNPs 

deposited in PEG-SH solution are the most bio-compatible option, as even the highest 
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used concentration of NPs (14 mg/l) did not result in cytotoxic effect on cells. The other 

two AuNPs (AuNP-PEG and AuNP-PEG-NH2) resulted in significantly decreased cell 

metabolic activity and their overall bad shape was also confirmed by light microscopy 

(Fig. 8 in Publication D).  

 Overall, the result of research conducted for this publication showed, that USNPs 

of gold deposited into thiol-terminated PEG have superior properties to the ones deposited 

in pure PEG or amine-terminated PEG. Direct deposition for 900 sec provides sufficiently 

dense colloid, while retaining great thermal-stability, narrow size distribution and 

dispersibility in short- and long-term storage. These NPs also proved to be the least 

cytotoxic and thus most biocompatible in respect to osteoblastic cells and also showed 

mild antibacterial activity, which however can be neglected.  

6.3.2. Unpublished data 

Influence of FBS Supplementation of Medium on Metabolic Activity of SAOS-2 cells with 

AuNP-PEG-SH 

In order to test influence of FBS supplementation (and thus PC formation) 

osteoblastic SAOS-2 cells were cultured with rising concentrations of AuNP-PEG-SH in 

the DMEM medium either with 5 % FBS or serum-free for 24 hours (Fig. 12). The results 

showed that the presence of FBS in the culture media within the first 6 hours of incubation 

is crucial. In the medium with 5 % FBS, the cells decreased metabolic activity slightly 

under the level of the control cells. The cells incubated with NPs in the serum-free 

medium increased their metabolic activity with increasing concentration of AuNP-PEG-

Figure 12: Metabolic activity of SAOS-2 cells treated with AuNP-PEG-SH. Cells were treated 

with rising (1, 7 and 14 mg/l) concentration of AuNP-PEG-SH in DMEM with 5% FBS or 

serum-free DMEM for 24 hours. Dashed line shows 100 %, asterisk represents statistical 

significant change (p>0.05) 
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SH. In order to test if the observed influence is caused by NPs or PEG-SH in which the 

NPs were deposited, PEG-SH treated control was employed (CTRL (PEG-SH) in Fig. 

14). This control was achieved by addition (volume-vise) of the same amount of pure 

PEG-SH without NPs as in the highest concentration of NPs (i.e. 14 mg/l). It can be 

concluded that the effects observed under both conditions are more likely connected with 

PEG-SH acting as influencer than the AuNPs deposited in it. 

Mass Spectrometry Analysis of PC formed on AuNP-PEG  

Mass spectrometry analysis of PC formed in DMEM medium with 5% FBS on AuNP-

PEG and AuNP-PEG-SH was performed. While samples were prepared for both, AuNP-

PEG and AuNP-PEG-SH, detectable pellet containing AuNPs was acquired only for 

AuNP-PEG. No observable pellet and thus sample was acquired from AuNP-PEG-SH 

and thus no analysis was performed with it. After throughout analysis of protein adsorbed 

on AuNP-PEG, 39 proteins originating from FBS have been detected (Tab. 1). All the 

proteins identified to associate with the NPs have origin in plasma (i.e. FBS) and are 

somehow connected either to serum complement activation (main innate immune system 

enhancing immune response; complement component C3, complement C1Q subunit C, 

complement component C1q, alpha-2-antiplasmin) or play significant role in cytoskeletal 

formation and cellular adhesion (vitronectin, albumin, talin etc.). Detailed function of 

each protein can be found in Table 2A and 2B (Section 9).  

Accession Name Accession Name

E1BNR0 Apolipoprotein B F1MSZ6 Antithrombin-III

Q03247 Apolipoprotein E P02081 Hemoglobin fetal subunit beta

P15497 Apolipoprotein A-I P01966 Hemoglobin subunit alpha

Q9N2I2 Plasma serine protease inhibitor

F1MNW4 Inter-alpha-trypsin inhibitor heavy chain H2 P02769 Albumin

Q0VCM5 Inter-alpha-trypsin inhibitor heavy chain H1

Q3T052 Inter-alpha-trypsin inhibitor heavy chain H4 Q2UVX4 Complement C3

P12763 Alpha-2-HS-glycoprotein

Q28178 Thrombospondin-1 Q1RMH5 C1QC protein

M0QVY0 Intermediate filament rod domain-containing protein Q5E9E3 Complement C1q subcomponent subunit A

P06394 Keratin, type I cytoskeletal 10 P28800 Alpha-2-antiplasmin

Q3ZBS7 Vitronectin E1BH06 Uncharacterized protein

A0A140T8C8 Kininogen-1

Q5XQN5 Keratin, type II cytoskeletal 5 Q7SIH1 Alpha-2-macroglobulin

F1MDH3 Talin 1 A6QPP2 SERPIND1 protein

P63261 Actin, cytoplasmic 2 P00760 Cationic trypsin

F1MC11 Keratin, type I cytoskeletal 14 P34955 Alpha-1-antiproteinase

G3MZ71 Keratin 2

Q3SX14 Gelsolin Q3MHL4 Adenosylhomocysteinase

P08728 Keratin, type I cytoskeletal 19 P10096 Glyceraldehyde-3-phosphate dehydrogenase

A1L595 REVERSED Keratin, type I cytoskeletal 17 A5D984 Pyruvate kinase

G3N0V2 Keratin 1 P19858 L-lactate dehydrogenase A chain

Proteins with cholesterol transfer, heparin and lipase binding and 

low-density lipoprotein (LDL) particle receptor binding activity

Proteins associated with hyaluronan metabolic processes 

Proteins with cytoskelet and adhesion associated function

Proteins with various proteinase and inhibitory activity

Proteins associated with cellular metabolism

Proteins associated with immune system function

Proteins with hemostatic role in plasma

Table 1: Mass spectrometry analysis of proteins on AuNP-PEG nanoparticles. All proteins 

originate from Bos Taurus. 
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Furthermore, SDS-PAGE electrophoresis was conducted from each washing step 

(Fig. 16, line number 1-5) and 15 µl of final pellet (Fig.13, line P). The gel electrophoresis 

demonstrated washing of extra FBS proteins not tightly associated with NPs. The gel 

electrophoresis of the acquired pellet also showed, that sufficient (detectable) amount of 

proteins is bound to AuNP-PEG to be detectable by this method.  

Transmission Electron Microscopy of AuNP-PEG-SH in SAOS-2 Cells 

The osteoblastic SAOS-2 cells were cultured with 14 mg/l of AuNP-PEG-SH for 

24 hours in the medium supplemented with 5 % FBS and subsequently subjected to 

analysis by TEM in order to assess their intracellular localization. After throughout 

analysis of the sample, precisely distinguishable structures with high electron density 

were located both, inside of cells (Fig. 14) and in vesicle outside of cell (Fig. 15). One 

can only speculate the origin of both vesicles, however it can be concluded that these NPs 

in FBS supplemented medium undergo vesicle-related trafficking and are not diffusely 

distributed in cytoplasm.  

Figure 13: SDS-PAGE gel of AuNP-PEG. 

Numbers mark supernatant sample from 

corresponding washing step. P marks 15 µl 

of dissolved final pellet of AuNP-PEG. 
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Figure 14: TEM images of AuNP-PEG-SH 

inside SAOS-2 cell. A – overall view of cell 

(scale bar represents 10 µm); B – close-up to the 

marked region inside the cell (M – 

mitochondria, scale bar represents 2 µm); C – 

rotated close-up of the marked region (M – 

mitochondria, scale bar represents 1 µm); 

arrows mark vesicle of interest 

A B

 

C 

M 

M 

M 

M 

Figure 15: TEM images of AuNP-PEG-SH in 

vesicle outside of cell. A – overall view of cell 

(scale bar represents 10 µm); B – rotated close-

up to the marked region of the cell (scale bar 

represents 2 µm); C – rotated close-up of the 

marked region (scale bar represents 0.2 µm); 

arrow marks NPs 

A B

 

C 
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Raman Spectroscopic Imaging of AuNP-PEG-SH in SAOS-2 Cells 

Even though the loss of a distinct extinction peak related to the surface plasmon 

resonance related absorbance peak of AuNPs after functionalization PEG was reported in 

Publication D, the possibility to employ Raman spectroscopy and surface enhanced 

Raman scattering (SERS) for thiol-terminated PEG functionalized AuNPs was tested. 

The cells were incubated with 14 mg/l of NPs for 24 hours in FBS supplemented medium 

and subsequently Raman maps cell cytoplasm (lateral xy-scan in the equatorial plane of 

the cell) cross section were recorded. No significant spectral difference was observed 

between the control sample and AuNP-treated cells. Thus the negative consequences of 

the disappearance of SERS predicted in Publication D were confirmed. Even though no 

signs of SERS mechanism either Raman confirmation of the presence of AuNP-PEG-SH 

in the cells were obtained, the acquired Raman maps were analyzed and presented herein 

in order to demonstrate analytical possibilities of Raman microscopy for bio-imaging of 

cells. The True Component Analysis applied for acquired maps analysis is a multivariate 

method considering spectral differences throughout the spectral region used for the 

analysis. If the chemical composition of the object is a homogeneous mixture of several 

components in the relative ratio one to another, only a single spectral component is found, 

regardless of the fluctuations of the total amount of the homogeneous mixture. However, 

if the ratio between various components (chemical species) is not constant, the algorithm 

reveals regions with different compositions and provides characteristic Raman spectra 

from which one can deduce corresponding spectral differences. Thus, the analysis applied 

to Raman maps revealed only two distinct components differing in their Raman spectra. 

The components were called “Biomass A” (red spectra) and “Biomass B” (blue spectra) 

(Fig. 15A). The corresponding Raman maps (Fig. 15 D, E) show the spatial distribution 

of the respective components, i.e., regions differing in their composition are highlighted. 

Furthermore, both components provided rather similar Raman spectra without spectral 

features which could be assigned to SERS or to Raman signal of functionalized AuNPs. 

The distinctive Raman signal observed in Fig. 15 E (Biomass B, the bottom part of the 

image) is most probably caused by some impurity (organic microparticle outside the cell) 

caught by an optical tweezer formed from the focused laser beam, and thus it has no 

biological relevancy. 
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Biomass A 

E 

B C 

A 

Figure 16: Raman imaging of SAOS-2 cells treated with AuNP-PEG-SH. A – Raman spectral 

components detected in the studied cells; control cells (solid line) and AuNP-PEG-SH treated 

cells (dashed line). B – microscopic image of control cells; C – microscopic image of AuNP-

PEG-SH treated cells; red rectangles mark measured areas shown in panels D and E. Scale bar 

represents 10 µm; D, E – reconstructed Raman maps from each spectra of control (D) and 

AuNP-PEG-SH treated (E) cells. Scale bare represents 4 µm. 

 

D 

Biomass B 
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6.4. Nanodiamond Nanoparticles Interaction with Proteins and 

Human Cells 

6.4.1. Published Data (Publication E) 

Publication E: Machova, Iva, Martin Hubalek, Tereza Belinova, Anna Fucikova, Stepan 

Stehlik, Bohuslav Rezek, and Marie Hubalek Kalbacova. "The Bio-Chemically 

Selective Interaction of Hydrogenated and Oxidized Ultra-Small Nanodiamonds 

with Proteins and Cells."  

 In this research a comprehensive study of interactions of ultra-small DNDs with 

proteins from cultivating medium were broadly characterized and the relation with cells 

was also discussed. The NPs used herein were DNDs with 2 nm diameter and two 

different surface terminations; oxidized (O-) and hydrogenated (H-). The NPs themselves 

were already characterized within the prior studies (Stehlik et al. 2016; Stehlik et al. 

2017). Thus, this work focused on composition of PC formed on DNDs and interactions 

of cells with these DNDs. The DNDs possess differing charges (negative for O-DNDs 

and positive for H-DNDs) and thus the differences in bound proteins were studied. The 

NPs were pre-cultured in the cultivation medium (i.e. DMEM) with or without 

supplementation with 5 % FBS and subsequently zeta potential (electrical charge 

determining colloidal stability of NPs) was assessed (Table 1 in Publication E). 

Interestingly, O-DNDs did not show significant shift of zeta potential and thus loss of 

colloidal stability after transition into DMEM media with or even without FBS. Contrary 

to this, positively charged H-DNDs shifted their zeta potential closer to 0 mV (approx. 

4.9 mV) after transition into simple DMEM making them highly instable in colloids. With 

addition of FBS, the zeta potential of H-DNDs shifted even to negative charge (- 18.7 

mV). Thus these results suggested formation of PC and also H-DND-protein aggregates. 

The PC formed on such small structures is hardly PC sensu stricto, however the 

composition of protein network formed around both DNDs was analyzed in respect to 

qualitative and quantitative extent of proteins (Figure 2 and 3 and Table 2 in Publication 

E). Surprisingly, large amount of proteins was found to be associated with both DNDs 

(approx. 164 and 173 for H-DNDs and O-DNDs, respectively). Their quantitative 

analysis furtherly showed that 26 proteins were specific with high fold change for O-

DNDs and 12 proteins for H-DNDs. Vast majority of the enriched protein on both DNDs 

types was smaller than 100 kDa. Charge-vise predominantly negatively charged proteins 
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were bound to originally positive H-DNDs and conversely, majority of proteins bound to 

negatively charged O-DNDs were positive. 

 The PC impact was also assessed in respect to metabolic activity of SAOS-2 cells. 

The cells were cultured with the increasing concentration (5, 10, 25, 50 and 100 μg/ml) 

of each DNDs in FBS supplemented and serum-free medium for 6 and 24 hours (Figure 

4 in Publication E). O-DNDs exhibited cytotoxic effect on cells only after 24 hours in the 

serum-free medium. H-DNDs, on the other hand, showed significant dose-dependent 

cytotoxicity under both conditions and even after shorter time (6 hours). These results 

showing influence of DNDs on metabolic activity were also accompanied by SEM 

images, showing cellular morphology and surrounding NPs (Figure 5 in Publication E). 

Formation of dense aggregates of NPs with proteins was observed with both DNDs. 

Obvious difference was clearly visible in the size and position of DNDs clusters. O-DNDs 

formed smaller and more evenly distributed clusters, whereas H-DNDs resulted in larger 

clusters predominantly covering entire cellular surface.   
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7. Discussion 

7.1. Interactions of Silicon Quantum Dots with Human Cells 

The obtained results from SiQDs experiments showed the importance of serum 

supplementation as a mediator of possible PC formation. This decisive feature was not 

only of significant importance in respect to cellular metabolic activity and subsequent 

cytotoxicity of NPs in different types of human cells, but especially important for 

intracellular localization of the SiQDs and also the detected signal intensity.  

 It has been long known that the presence of PC can significantly affect uptake of NPs 

(Lesniak et al. 2012; Lesniak et al. 2013; Saikia et al. 2016). In the Publication A, it was 

shown that SiQDs 1050 tend to form huge aggregates and lose fluorescence in the 

cultivation medium, both with and without FBS and thus these NPs were not studied 

furtherly. On the other hand, SiQDs 1100 showed a nice signal localized in the cells in 

vesicle-like structures (in medium with 5 % FBS) or a diffused signal most probably 

originating from cytoplasm (in serum-free medium). It might be speculated that with the 

presence of PC, SiQDs form aggregates that are recognized by specific receptors 

associated with endocytic mechanisms and subsequently locates the NPs into (possibly) 

endosomal vesicles. This presumption had been tested and partially confirmed by Lucie 

Vrabcova in her PhD thesis, where co-localization studies of SiQD 1100 with endosomal 

structures with subsequent advanced image analysis were conducted (Section 6.3.1. in  

(Vrabcova 2019)). The results of co-localization studies showed that the NPs signal co-

localizes with late endosomes after 1 hour of incubation in FBS containing medium and 

with lysosomes after 24 hours. In contrast to FBS containing medium, the absence of the 

serum proteins (and thus no PC) resulted in diffuse signal of SiQDs 1100, not centralized 

into vesicles, thus suggesting that the NPs crossed the membrane without endocytosis 

employment. Such transition through membrane without inducing extreme toxicity was 

already speculated before (Nakamura et al. 2019).  

Furthermore, interesting influence of FBS supplementation on SiQDs fluorescence 

intensity was observed in the Publication A. In the presence of serum, and thus PC, the 

signal from NPs was less bright than under the serum-free conditions. A similar signal 

decrease was detected even by sensitive detectors of fluorescent cytometer (Fig.5 and 6). 

In case of the cells treated with SiQDs 1100 in the presence of FBS for 2 hours, only 

approx. 17 % of cells showed fluorescence related to NPs presence. After the same 
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incubation time, cells treated with SiQDs in the medium without serum (and thus PC) 

approx. 98 % of the cells showed NPs-related fluorescence. The lack of signal in the 

presence of FBS might be explained in two ways. Firstly, it is possible that in the short 

time employed (i.e. 2 hours), not enough particles were internalized by the cells to allow 

for their detection. Endocytic mechanisms are known to act in the order of minutes 

whereas direct diffusion or penetration of NPs may happen almost immediately 

(Watanabe and Boucrot 2017; Taylor, Perrais, and Merrifield 2011). It can be suggested 

that after longer times, SiQDs accumulate in cells and thus are more detectable as 

proposed with different types of NPs (Lammel et al. 2019). The accumulation would also 

imply that the NPs do not leave the cell and remain inside. Secondly, the lower 

fluorescence intensity might be explained by the formation of PC. It is known that 

fluorescence signal can be quenched by so called static quenching. This effect is observed 

when, prior to excitation, the fluorescent probe comes in close contact with substance that 

has absorption spectrum closely resembling the excitation wavelength of the probe. In 

that case, the excitation wavelength is absorbed by the substance (i.e. PC) and the probe 

(i.e. SiQDs) lose their quantum yield. In order to test this second hypothesis, our 

colleagues from Japan tested differences in quantum yield of SiQD 1100 in the different 

media (McCoy’s 5 A and DMEM) with and without FBS. The results surprisingly 

showed, that the quenching is not caused by FBS, but by the culture media itself (Fig. 

17). Thus, it can be concluded that the medium is responsible for the signal quenching 

and FBS presence only increases this effect. 

Name Content

SiMc0QY16 SiQD 1100 in McCoy’s 5A medium, 0 % FBS 

SiMc5QY16 SiQD 1100 in McCoy’s 5A medium, 5 % FBS 

SiD0QY16 SiQD 1100 in DMEM medium, 0 % FBS 

SiD5QY16 SiQD 1100 in DMEM medium, 5 % FBS 

Ref SiQD 1100 in water

Figure 17: Fluorescence intensity spectra of SiQD 1100 in different media. Data 

provided by Asuka Inoue, Hiroshi Sugimoto and Minoru Fuuji (Department of 

Electrical and Electronic Engineering, University of Kobe, Japan). 
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It must be pointed out that the used method (i.e. flow cytometry) has a huge limitation. 

The signal origin does not necessarily need to be from inside of the cell, it can also 

originate from SiQDs attached to cell membrane and thus the results must be interpreted 

with caution. In biology Trypan mlue stain is commonly used not only to discriminate 

between healthy and damaged cells (Trypan mlue does not enter cells with intact 

membrane) but also to eliminate surface-originating green fluorescence in flow cytometry 

by absorbing the energy of green light emmited by the fluorophore. Simmilar mechanism 

could be employed in case of SiQD 1100 and another, in biology widely used, stain – 

Methylen mlue. However, this hypothesis must be tested. 

Results obtained from metabolic activity measurements of all tested cell types – 

osteoblastic SAOS-2 cells, primary human mesenchymal stem cells (hMSC) and two 

types of immune cells (monocytic and macrophage-like THP-1 cells), again stressed out 

the importance of PC. The obtained data showed that without FBS (and thus PC) all of 

the cells respond to the SiQD 1100 by decrease in their metabolic activity to the cytotoxic 

level (approx. 75 % of control). Such protective effect of PC formation on NPs toxicity 

have been already described (Wang et al. 2013). 

In the Publication B, time-dependent decrease of metabolic activity of SAOS-2 cells 

was observed after treatment with 100 μg/ml of SiQD 1100, no matter the incubation 

conditions (i.e. with or without PC). The influence of the treatment on cellular 

morphology was observed by holographic live cell imaging. The live cell imaging showed 

that the cells undergo textbook example of apoptosis as soon as after approx. 3 hours 

when cultured with 100 μg/ml of SiQDs in FBS supplemented medium and thus it can be 

speculated that the same mechanism is employed even in serum-free medium. It has been 

reported that USNPs are capable of apoptosis induction in nutrition deprived cells (Kim 

et al. 2016). In the Publication B, decrease of metabolic activity was correlated to the 

levels of LDH detected in cell supernatant (and thus necrosis). LDH was detected only 

after longer cultivation time (i.e. 48 hours) and can be explained not by the NPs directly 

causing necrosis but by the phenomenon called secondary necrosis which occurs when 

apoptotic bodies are not eliminated by phagocytes and lose their integrity (Silva 2010; 

Fink and Cookson 2005).  
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7.2. Interactions of Silicon Carbide Nanoparticles with Human 

Cells  

SiC-based NPs with different surface terminations showing decent colloidal stability 

in the biological media, even in the presence of proteins, showed to be especially 

interesting in respect to modulating immune cells behavior. Once again, the protective 

influence of PC was described with these NPs, as all toxic or stimulating effects were 

more obvious under the serum-free conditions. The metabolic activity data acquired for 

the Publication C suggested that monocytic THP-1 cells must be highly sensitive to 

surface termination of SiC-based NPs, as a reference cell line of osteoblastic SAOS-2 

cells did not respond to any of the SiC-based NPs. In order to test specificity of SiC-x 

NPs towards immune cells, three other cell types – healthy and cancerous keratinocytes 

cell lines (HaCaT and A431, respectively) and primary human mesenchymal stem cells 

(hMSC) were also tested. The results showed that the SiC-x NPs cause significant harm 

only to monocytic THP-1 cells after 24 hours incubation (as seen in the Publication C). 

These cells are derived from acute monocytic leukemia and thus the observed selectivity 

of SiC-x NPs towards them might be of interest in respect of leukemia treatment. It has 

been shown that iron oxide nanoparticles, approved by the FDA for treatment of iron 

deficiency, can selectively kill acute myeloid leukemia cells (Trujillo-Alonso et al. 2019). 

However, more detailed research regarding precise mechanism of the observed effect is 

highly needed before any application can be proposed.  

The various effects of the differently terminated SiC-based NPs on monocytic THP-

1 cells led to deeper interest in what exactly is happening with the cells. The method used 

for detection of changes in the metabolic activity is dependent on the activity of cellular 

dehydrogenases and commonly misinterpreted to reflect mitochondrial activity. The 

assumption was, that higher metabolic activity means also higher mitochondrial potential, 

as presumably mitochondrial dehydrogenases are more active. This presumption led to 

deeper interest in actual mitochondrial state of cells after the treatment with the SiC-based 

NPs. The results, however revealed that completely opposite effect (i.e. lower 

mitochondrial potential) than presumed was observed in SiC-NH2 treated cells. It has 

been shown that changes in mitochondrial potential do not necessarily reflect changes in 

mitochondrial ATP production and dehydrogenases activity (Wu et al. 2005). However, 

it has been reported that the reduction of tertrazolium salt to formazan responsible for 

absorbance changes in the metabolic activity test used herein can occur outside of 
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mitochondria thus suggesting employment of other cellular dehydrogenases beside 

NADP(H) dehydrogenase in OXPHOS (and thus mitochondria) (Bernas and Dobrucki 

2002; Berridge and Tan 1993).  

Besides OXPHOS,   glycolysis is the main producer of ATP and thus, glyceraldehyde 

3-phospate dehydrogenase instead of NADP(H) dehydrogenase could be responsible for 

the changes in metabolic activity observed in the Publication C. In order to confirm this 

hypothesis, Seahorse ATP production rate measurement was conducted. The results 

showed that, compared to control, cells stimulated with 100 μg/ml SiC-NH2 and SiC-OH 

NPs for 24 hour showed higher dependence on glycolysis to produce ATP. This might be 

explained by induction of differentiation of monocytic cells into macrophages. Reactive 

oxygen species produced in OXPHOS are used in macrophages to eliminate bacteria in 

human body and thus the switch from OXPHOS to glycolysis can be observed 

(Freemerman et al. 2014). This presumption is even more supported when combined with 

long-term cultivation results from differing cellular morphologies acquired from the cells 

after 7 days shown in the Publication C. SiC-NH2 stimulated monocytic THP-1 after that 

time show strong macrophage-like histological phenotype. Very little is known about 

differentiation of monocytes induced by NPs, however it has been shown that NPs can 

slow differentiation of THP-1 cells into macrophages (Xu et al. 2015). However, this is 

not happening in case of SiC-NH2 NPs and thus, these NPs might be viewed as a potential 

platform for immunodeficiency treatment. SiC-x treated cells, as opposed to the rest of 

the samples and control, showed much higher OXPHOS-dependence. The long-term 

observation of the cells showed that SiC-x treated THP-1 cells do not survive well. In 

combination with this observation, the increased OXPHOS-dependence of these cells 

might be connected to ongoing apoptosis. Apoptosis (programmed cell death) is highly 

energy-dependent process requiring high amounts of ATP (Zamaraeva et al. 2005). 

Mitochondria play a key role in apoptosis induction as well as ATP production via 

OXPHOS (Kwong et al. 2007). Thus, the shift to highly OXPHOS-dependent metabolism 

in SiC-x treated cells might indicate early apoptosis caused by these NPs. 

The immunomodulatory potential of SiC-based NPs was also shown by increased 

production of pro-inflammatory cytokines by the monocytic THP-1 cells as reported and 

discussed in the Publication C. The pro-inflammatory cytokine production was, however 

significantly lower than positive control (i.e. LPS stimulated cells) mimicking acute 

inflammatory response. Thus, SiC-based NPs are an immunogenic material, which should 
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be furtherly exploited. In the past years, immunomodulation has been given rising 

attention especially in order to direct immune system and subsequently the rest of cells in 

human body to treat itself. Currently, rising focus in determining immunomodulatory 

principles is given to exosomes as mediators of intracellular communication (Bellmunt et 

al. 2019; Kurywchak, Tavormina, and Kalluri 2018). In a pilot test determining if SiC-x 

NPs can stimulate THP-1 cells to produce more exosomes, interesting results were 

obtained. The cells that are in metabolically bad shape and in long term are not able to 

survive produce significantly higher amount of exosomes than control (untreated) cells. 

Thus the SiC-x treated cells are sending more signals to the surrounding cells. In order to 

understand the importance of such exosomes, complex study of exosomal content and 

exosomes’ influence on other cells is highly desirable. However, the huge number of 

exosomes detected from supernatant of SiC-x treated cells might be compromised, as the 

cells are potentially undergoing apoptosis and thus to certain extent there might be a 

contamination of the sample with apoptotic bodies present. Detection of CD81 as 

classical exosomal marker was employed, however some researches point out that this 

marker can be also found on apoptotic bodies (Crescitelli et al. 2013). Thus detection of 

other exosomal markers (e.g. CD9 or CD63) along with the precise determination of the 

vesicular content is highly necessary. This theory can be supported by the fact that no 

significant difference in signal intensity of CD81 was detected on western blot among 

SiC-treated sample and control.  

Furthermore, the effect of SiC-based NPs on doubling time (and thus proliferation) of 

THP-1 cells was also tested. The results showed that SiC-x NPs, that overall proved to be 

the most harmful, increase cell doubling time to 51 hours (i.e. decreased proliferation). 

This increase is in correspondence with overall toxic effect (low metabolic activity, low 

mitochondrial potential, lack of long-term survival) of these NPs on THP-1cells. Cells 

treated with SiC-OH NPs were inert in respect of their metabolic activity and showed just 

slight changes in OXPHOS/glycolysis metabolic dependence. Their doubling time also 

remained at approximately the same level as control (untreated) cells. The cells treated 

with SiC-NH2 NPs exhibited interesting decrease of their doubling time, which suggests 

higher proliferation. This was also slightly supported by the long term observation in the 

Publication C, where after 7 days of treatment with SiC-NH2, more cells were observed 

than in the control. It has been shown that amine (-NH2) termination of NPs and also other 

materials has highly positive effect on cellular proliferation as well as their adhesion 
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(Hopper et al. 2014; Faucheux et al. 2004), thus the positive effect of SiC-NH2 NPs on 

doubling time of THP-1 cells is not surprising. 

In respect of SiC-based NPs detection inside the cells by the means of microscopy, a 

major drawback has been encountered. These NPs emit fluorescence, which is, however 

quenched in biological environment into an extent making the NPs undetectable by 

conventional methods. While classic electron microscopy techniques does not provide 

sufficient level of contrast for NPs made of biocompatible and also not electron-dense 

materials such as SiC-based NPs, special microscopic techniques that are nowadays still 

being developed have to be employed. The pilot study trying to detect silicon (Si) in the 

cells on elemental level showed that the content of Si in the cells treated with SiC-x NPs 

is lower than what is needed for cellular mapping, however still detectable by the cryo-

TOF-SIMS FIB SEM Microscopy. Due to the transport reasons (cells were prepared in 

Prague and experiment was conducted in Brno), adherent osteoblastic SAOS-2 cells were 

used for the detection. These cells however were inert in respect of the NPs and thus the 

particles might not even be inside the cells, which may be the reason for low concentration 

of Si detected in the sample. Other possible explanation might also be that the NPs are 

dispersed in cellular cytoplasm in too low concentration to be precisely detected. 

However, there are no scientific data to prove either of this hypothesis. The intracellular 

localization and detection of these SiC-based USNPs is however crucial and must be 

furtherly studied. 

7.3. Interactions of Gold Nanoparticles with Human Cells 

PEGylation is commonly used in NPs-related research as an easy and an efficient 

method to prolong NPs’ circulation in vivo (by increasing NPs hydrodynamic diameter 

as well as minimizing recognition of the NPs by immune cells), providing water solubility 

to hydrophobic NPs and stability to NPs with high tendency to aggregate (Knop et al. 

2010; Jokerst et al. 2011).  Different termination of PEG used for PEGylation can 

furtherly affect the interaction of PEGylated NPs with cells. Thiol-terminated PEG 

provides the resulting PEGylated NPs with negative charge, whereas amine-terminated 

PEG with positive charge.   The data from the Publication D showed that USNPs of gold 

directly sputtered into thiol-terminated PEG have superior properties than these NPs 

sputtered into pure PEG or amine-terminated PEG. It have also been proved that the NPs 

are usable for further biological evaluations, as they did not resulted in significant damage 
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of the cells. It can be speculated that this superiority might originate from the fact, that 

thiol functional groups play a key role in biology. They forms a significant parameter in 

retaining tertial protein structures by formation of cystin from cysteine residues, but it 

also poses an important role as an enzymatic cofactor or in redox reactions in cells (Poole 

2015).   

PEGylation is also known to decrease binding of proteins to NPs (and thus PC 

formation) (Partikel et al. 2019). Herein, the presence of proteins was detected on AuNP-

PEG due to the fact that AuNP-PEG-SH (which showed to be superior to the remaining 

PEGylated NPs in the Publication D) retained extremely high colloidal stability and no 

detectable pellet to be used for mass spectrometry analysis was acquired. Such superior 

colloidal stabilization of AuNPs by PEG-SH has been reported previously and marks 

AuNP-PEG-SH even more as a potential bio-applicable material (Gao et al. 2012). The 

results obtained from mass spectroscopy analysis of AuNP-PEG incubated in the medium 

with FBS confirms that PEGylation of AuNPs leads to lower protein binding, as only 39 

proteins were detected to be bound to AuNP-PEG (as opposed to more than 160 proteins 

in case of  O-DNDs with similar size and charge (Section 6.4.1)).  

Influence of PC formation on cytotoxicity of AuNP-PEG-SH was tested in respect to 

osteoblastic SAOS-2 cells. FBS supplementation of the cultivation medium had obvious 

impact on cellular metabolic activity. Without the formed PC, AuNP-PEG-SH in higher 

(7 and 14 mg/l) concentrations caused significant increase of metabolic activity. This can 

be explained by the role of thiol group in biology, discussed above. However, when the 

results were compared to control group treated with PEG-SH without AuNPs, obvious 

resemblance was observed and thus it can be concluded, that the effect of AuNP-PEG-

SH might not be directly connected with the USNPs, but with PEG-SH itself. Even though 

PEG has been approved by the FDA for clinical use and is commonly viewed as inert and 

non-immunogenic, it has been shown that its presence in the serum-free medium can be 

a stimulating factor for cell growth (Shintani, Iwamoto, and Kitano 1988). 

Typically, AuNPs can enhance Raman spectra by the means of SERS effect, 

especially molecules or structures in their vicinity (Govindaraju et al. 2015; Nguyen et al. 

2012). However, in the Publication D it has been shown that AuNP-PEG-SH used herein 

did undergo loss of their surface plasmon resonance (which is a prerequisite for SERS 

excited by wavelengths falling into the plasmon resonance band) due to their small size 
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and its narrow distribution (Boisselier and Astruc 2009). Even though pure metals as well 

as corresponding NPs made from them do not provide any Raman signal, it was 

hypothesized that some absorption for longer wavelengths can be still visible in the 

absorption spectra of the functionalized AuNPs, which theoretically could provide some 

surface enhancement Raman scattering of the functional groups attached to AuNPs (i.e. 

PEG-SH), and thus visualization of the cellular structures penetrated by AuNPs. 

However, a distinct thiol-related Raman band was not detected, even though it should 

exist and thus Raman imaging proved to be ineffective in respect to these NPs (Garrell, 

Szafranski, and Tanner 1990). However, it was demonstrated that Raman imaging can be 

employed to identify different chemical composition of the sub-cellular structures (e.g. 

structures containing greater fraction of lipids or presence of nucleoli in nucleus) as 

shown in Fig. 16. 

The AuNPs are the most promising of all NPs reported in this work in respect of their 

precise detection and tracking in the cells despite being non-fluorescent. TEM was 

employed in order to detect the NPs and opened new possibilities of studying of AuNP-

PEG-SH – cell interaction. The NPs were clearly detectable, enriched in vesicles inside 

cells. The NPs were even detected in the vesicle outside the cell suggesting NPs 

exocytosis. As no contrasting and processing of the samples were done, it is without a 

doubt that the dense particles detected are indeed AuNP-PEG-SH and not staining 

residues. It can only be speculated in what exact vesicle the NPs were already located 

inside cells. The intracellular trafficking and endosomal localization of gold NPs has been 

reported (Liu et al. 2017). However, further study, employing specific antibody staining 

and identifying of the true nature of the vesicles containing NPs must be conducted. The 

observed vesicle outside of the cell after 24 hours of incubation of NPs with cells points 

out that AuNP-PEG-SH undergo complete trafficking, exocytosis including. Thus these 

NPs could potentially be cleared from body or even trafficked to other cells (Choi et al. 

2007; Liu et al. 2019). 

7.4. Nanodiamond Nanoparticles Interaction with Proteins and 

Human Cells 

DNDs interactions with proteins and human cells were broadly discussed in the 

Publication E. No additional unpublished data to broaden the discussion were obtained 

and thus cannot be discussed herein. However, the results regarding PC composition and 
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DNDs behavior in biological environment will be set in a broader context with other 

tested NPs in the next chapter (Section 7.5.). 

7.5. The Importance of Protein Corona in Nanoparticle 

Research 

As showed multiple times throughout this thesis, PC has a significant influence on 

interactions of NPs with cells. It has been long established that conventional NPs (>10 

nm) interact with proteins by formation of layered PC consisting of tightly bound (hard 

corona) and loosely bound (soft corona) proteins (Milani et al. 2012). In the case of 

USNPs (< 5 nm, all NPs used throughout this thesis) such PC composition is highly 

improbable as these NPs are of the approximately same size, or even smaller, than the 

proteins forming PC. However, clear connection of PC presence and USNPs influence on 

cells can be still observed throughout the thesis. All of the used USNPs are less harmful 

for the cells in the medium supplemented with FBS than in serum-free medium and as 

suggested in the Publication A it can even play significant role in intracellular localization 

of the used USNPs. Thus, some form of PC or other USNPs-protein interaction must be 

present. 

It has been shown that USNPs may act like a “binding agent” for proteins and thus 

forming artificial PC, resembling protein network (Glancy et al. 2019). The composition 

of such protein network may then affect directly the internalization mechanism in similar 

manner as PC of bigger NPs (Francia et al. 2019). For example, it has been shown that 

100 nm SiO2 NPs can specifically bind to LDL receptor and be furtherly internalized by 

the cells while having LDL particulates as a component of their PC (Lara et al. 2017). 

Herein, LDL particulates were found to be associated with AuNP-PEG by mass 

spectrometry, thus it might be speculated that such mechanism can be employed also in 

the case of USNPs. Furthermore, the Publication A showed direct connection of FBS 

presence or absence in the medium with vesicular or cytoplasmic localization of the 

fluorescent signal of SiQDs, respectively. Even though the SiQDs formed clusters in the 

presence of FBS, they still retained the ability to enter cells and so PC has obvious 

determining effect on NPs’ uptake (Lesniak et al. 2012). Contrary to this, some DNDs 

formed huge aggregates which most probably were unable to penetrate the cells and 

possibly exerted in different cytotoxic mechanism (e.g. mechanical blocking of cell 

membrane) as showed in the Publication E. The DNDs-related results showed that 

physico-chemical properties (e.g. charge or zeta potential) are crucial in respect of 
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determination of protein corona (or in case of DNDs more of USNPs-protein network) 

composition. 

From results presented herein it is obvious that correct and precise physico-chemical 

characterization can help with understanding on how the USNPs will interact with 

proteins in the cultivation medium. In case of larger NPs (> 10 nm) appropriate design of 

NP in order to avoid creation of PC or even manipulate its composition can lead to major 

breakthrough for NPs’ application in biomedicine (Zhang et al. 2019; Grafe et al. 2016). 

In case of USNPs, the study of PC formation and composition is even more important, as 

it may influence not even the mode of interaction of the NPs with cells, but also the fact 

whether such interaction will even occur.  The study and manipulation of PC formation 

on USNPs is still poorly understood, however rising attention is nowadays directed into 

this topic (Yin et al. 2020). As recently reviewed by Rampado et al. it is highly important 

to devote significant effort in studying PC and its possible exploitation in biomedicine 

(Rampado et al. 2020). However, such research is still highly time- and funding-

demanding. Furthermore, currently used methods for studying PC do not allow for precise 

identification of the nature of USNPs-protein interaction. Indirect methods, such as 

dynamic light scattering, TEM, SEM or atomic force microscopy do not allow for precise 

identification of proteins bound to USNPs. Subsequently, direct methods for quantitative 

and qualitative analysis such as mass spectrometry or SDS-PAGE are in case USNPs 

somehow artificial (Carrillo-Carrion, Carril, and Parak 2017). These methods require 

separation of the NPs with PC from the cultivation media, which will eventually lead to 

bulk pellet of multiple NPs with proteins. The analysis itself then provides only 

information about proteins generally associating with the NPs, but not about the nature 

of such interaction with single NP resolution. Thus, if the formation of USNPs-protein 

network is not obvious from indirect methods (as it was in case of DNDs herein) only 

general idea of proteins that associate with NPs is obtained. Even though the influence of 

PC in case of USNPs is certain, the actual form of the PC or protein network remains 

poorly understood. However, the precise determination of NPs-protein interactions must 

be investigated in order to describe and possibly exploit these interactions for biomedical 

applications.  
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8. Conclusions 

8.1. Interactions of Silicon Quantum Dots with Human Cells 

The results from phosphorus and boron co-doped SiQDs have showed that protein 

corona formation is a key factor that determines not only the cellular response but also 

further trafficking and behavior of SiQDs inside the cells. Furthermore, these NPs showed 

that different cells respond to SiQDs presence in different manners and thus cell type and 

origin must be taken into account. 

8.2. Interactions of Silicon Carbide Nanoparticles with Human 

Cells 

Surface termination of highly biocompatible SiC-based NPs showed proved to be a 

determining factor effecting the response of the monocytes in vitro. Changes in 

metabolism, differentiation and cytokine production stimulation as well as increased 

exosomes production show that these NPs are capable of immunomodulation of 

monocytic THP-1 cells. 

8.3. Interactions of Gold Nanoparticles with Human Cells 

The testing of PEGylated AuNPs showed that PEG functionalization has determining 

effect on response of human osteoblasts to exposure to these NPs. Furthermore, vesicle-

related trafficking of AuNP-PEG-SH was showed. With low toxicity and good 

detectability AuNP-PEG-SH are NPs with huge potential for further studies, especially 

of vesicle-related trafficking of ultra-small nanoparticles. 

8.4. Nanodiamond Nanoparticles Interaction with Proteins and 

Human Cells 

Detonation nanodiamonds with hydrogenated or oxidized surface were shown to 

interact with different proteins based especially on their physico-chemical properties. 

Formation of huge protein aggregates mediated by the NPs was showed to have 

determinant effect to cellular metabolic activity. 
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9. Supplementary data 

 

C 

B A 

 

Figure 18: SEM images and 

spectral analysis of control 

cells by cryo-TOF-SIMS FIB 

SEM microscopy. SEM 

image of damaged grid prior 

to FIB-SEM (A) possible cell 

remaining on damaged grid 

(B). Mass spectra of possible 

cell area marked by red 

rectangle – sample region and 

of background–whole field 

observed in B (C). 
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