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This is a very well-thought and well-written dissertation whose author definitely deserves 
the title of a Doctor. 

The work addresses several complex questions posed by the rich and complex dynamics of 
close-in terrestrial planets. These are the planets mostly affected by tides, a phenomenon 
which influences the planets’ orbits and spin and also heats up the planets, thus adding to 
their internal evolution. The interplay between the orbital and rotational dynamics, on the 
one side, and the geophysical evolution, on the other side, makes this research highly 
complex and requires combination of analytical and numerical tools.  
 
The author has carefully chosen the questions to explore, and has demonstrated a 
professional knowledge of both celestial mechanics and geophysics, along with a solid 
proficiency in numerics. The conception and execution of the modeling is sufficiently broad 
as to allow application to a wide variety of terrestrial planets. The author has made a 
considerable contribution in the planetary sciences, and the principal results of her research 
have already been published in peer-reviewed scientific journals. This contribution safely 
covers the requirements for a Ph.D. degree. 
 
Chapter 1 offers a concise but deep review of the orbital and rotational mechanics methods 
employed in the project. On one point, the author’s story goes beyond a mere review, 
though. It has been known for some time that certain inclination functions provided in 
Kaula’s works have signs opposite to those given in other sources. Veras et al (2019) 
suggested that Kaula’s signs were in error.  I am glad to see that the author of this Thesis has 
put an end to this controversy by establishing, in Section 1.3.3, that the difference in signs 
had resulted simply from different conventions, not from an error.  This is a small but bona 
fide contribution. 

Chapter 2 serves as a geophysical exordium. It provides a squeezed explanation on how our 
knowledge about rocky exoplanets is gleaned, and how the observed data and numerical 
modeling set constraints on the planets’ composition and structure.  The chapter also 
presents the necessary information on rheological models, as well as on the mechanisms 
determining the heating and cooling of a terrestrial planet.   
 
Chapter 3 explains the basics of tidal torques and tidal heating. This chapter also presents the 
author’s study of the sensitivity of the tidal heating rate to the eccentricity, to the core mass 
fraction (CMF), and to the values of the mantle’s average rigidity and viscosity. 
 



Chapter 4 addresses coupled thermal and orbital evolution of model bodies exemplified with 
three low–mass exoplanets with nonzero eccentricity: Proxima Centauri b,  GJ 625 b,  and  
GJ 411 b.  The study is carried out through the medium of a semianalytical model of a spin-
orbit evolution of a layered planet with emerging subsurface magma ocean. The model 
includes a self–consistent calculation of the tidal dissipation rate, and a simplified 
parameterised model of the mantle convection in the stagnant–lid regime.  The dependence 
of the tidal dissipation rate and the highest stable spin state on the rheological parameters is 
explored. Coupled thermal-orbital evolution of each of the three planets is investigated. 
 
Chapter 5 is devoted to consideration of the secular effect from a perturber on an outer orbit. 
The setting implies large mutual inclinations of the two orbits, which may give rise to the 
Lidov-Kozai cycles. A combined calculation of the tidally– and externally–induced orbital 
and spin evolution of a planet is carried out. 
 
Chapter 6 deals with planet-planet tides in tightly packed systems. The author derives the 
tidal potential due to planet–planet loading, transformed to a planetocentric coordinate 
system and expressed via the Keplerian elements, in the spirit of the Darwin-Kaula series. 
Therefrom, the author naturally derives an expression for the tidal torque. I am very 
impressed with this piece of work.  It is destined to be in textbooks.  
 
Chapter 7 is dedicated to developing an alternative, numerical, approach to tides.  The author 
presents a numerical scheme to compute the tidal torque and the tidal heating rate in a 
possibly nonhomogeneous mantle.  The approach employs a spherical harmonic 
decomposition and the method of finite differences. 
 
 
Comments and criticisms 
 
My comments and criticisms vary in their scale from cosmetic to minor, and none of them 
will influence my very positive impression of this thesis. 

• Section 2.2  On the right-hand side of equation (2.4),  sin ε must be changed to sin|ε|, 
to keep Q positive definite.  Also, to avoid confusion between formulae (2.3) and 
(2.4), it is necessary to point out that (2.3) renders the nominal (“seismic”) lag, while 
(2.4) gives us the tidal lag. Generally, the two are different. Equation (2.3) entails 1/Q 
= sin |δ| where δ is the phase lag between the strain and the stress. Generally, there is a 
difference between δ and ε, and this difference becomes noticeable at the lowest 
frequencies. 
 
The same pertains to formulae (1.34) and (1.35) in Section 1.3.2. 
 



• In Section 1.3.1, we read:  
 
“To remain in the domain of the perturbation theory, we also require that the 
disturbing function for each of the planets is much smaller than the Newtonian 
potential due to the primary, < ……>   In other words, the trajectories of both 
planets can be at each time t described by a Keplerian orbit.” 

 
This popular belief is incorrect. If we examine, step by step, the derivation of the 
Lagrange- or Delaunay-type systems of planetary equations, we will find that, 
embarrassingly enough, these derivations do NOT require the perturbation to be small.  
In principle, it can be larger than the fiducial, Newtonian, part of the interaction.  
Consequently, the resulting perturbed orbits can, in principle, differ very considerably 
from the fiducial conics.   
 
I certainly don’t hold this minor oversight against the defendant, because it in no way 
influences her calculations. Also, the topic has never been presented well in textbooks. 
 

• In Section 2.3.2, it might be good to point out that, for expression (2.43) for the tidal 
dissipation rate to come out so short and elegant, we have to average not only over the 
orbital period but also over the period of apsidal precession, under the assumption that 
(a) apsidal precession is uniform and (b) its period is shorter than the geophysical 
timescales for which the said expression is relevant. This may be a minefield if you 
attempt to consider faster geophysical changes.  
 
This pertains also to equation (4.9) in Section 4.3.2. 
 

• After equation (A1) in Appendix A, it might be good to say that the vector u is lacking 
a longitudinal (toroidal) component because the toroidal force is neglected. 

 
As I said above, none of these points is considerable.   
 
 
Now I would like to ask the author several questions. 

• Although I have already asked this question in my correspondence with the author – 
and have received from her a perfectly clear answer – I would repeat it here, to keep 
our discussion in the open, and also in case other involved colleagues get interested in 
this topic. So here it goes: why in Kaula’s expansion for the potential do we have a 
product of two G functions in the tidal problem and a product of G by H in the orbital 
case (eqn 1.14)? 



• Regarding the author’s expression (2.34) for the Andrade creep function.  I used to 
think that the second term in this expression should read as    
 
                                           −  𝑖𝑖

η ω
  =  −  𝑖𝑖 𝐽𝐽𝑈𝑈

ω τ𝑀𝑀
 

 
where  τ𝑀𝑀 =  η/𝐽𝐽𝑈𝑈.  Why does the author have in (2.34)  δ𝐽𝐽 =  𝐽𝐽𝑅𝑅  − 𝐽𝐽𝑈𝑈  instead of 
simply 𝐽𝐽𝑈𝑈 ?  Is this a misprint?  Or does the author define the timescale as η/δ𝐽𝐽 ? 
 

• The opening paragraph of Section 3.2.2 says that to reduce the truncation error to 
10−4  for e = 0.5, the terms with  𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 = 7  were sufficient. This is surprising. In the 
paper by Makarov et al. (2012),1 when dealing with e ≈ 0.27, we had to take into 
account the terms from q = −1 through q = 6.  It is also known that with each decimal 
step in the value of e the number of terms required is growing very rapidly.2 Getting a 
reasonable precision with  𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 = 7  for e = 0.5 looks miraculous. Did the author, 
perhaps, imply e = 0.05 ?  Or was such a small number of terms sufficient in Section 
3.2.2 because no orbit integration was involved there? (Orbit and spin propagation 
would imply higher precision at every step.)   
 

• Regarding the PSR regime depicted in Figure 3.5, the author very rightly warns us 
that the PSR is available only for very low mantle viscosities.  What are the actual 
surface temperatures corresponding to the PSR in that figure?  Are they really high 
enough to ensure the absence of permanent triaxiality?  Or is the PSR shown here for 
purely illustrative purposes and should not be taken close to heart? 
 

• How was equation (3.7) derived from (3.6)? 
 
 
Recommendation for the future research: 
 

• There is a topic virtually neglected in the literature hitherto.  So far, I have seen it 
addressed only passingly, on one or two occasions only.  This is the sensitivity of the 
combined thermal-orbital and spin evolution to the rheological parameter ζ .   If the 
author wants, she may, in the future, consider looking into this issue. 
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• I am glad that the author has mentioned, in Section 5.5, both the 𝐽𝐽2-generated and 
relativistic additions to the apsidal-precession rate. In fact, there also exists a 𝐽𝐽2-
generated addition to the nodal precession. Now, let us recall that both precession 
rates enter the expressions for the Fourier tidal model. For extremely tight 
configurations, this effect becomes noticeable, as was recently demonstrated by 
Santiago Luna in his PhD Thesis; also see Figure 2a in his A&A paper.3  The presence 
of these additions in the expressions for the tidal modes will be working to render 
small deviations of the stable states from the exact spin-orbit resonances. These 
deviations, however, will be close to zero in the presence of an additional torque 
generated by the permanent triaxiality. I am wondering if 𝐽𝐽2 will manage to entail any 
considerable effect aside from that described in Ibid.   
 

 
 
I recommend that this work be accepted as a doctoral thesis. 
 
 
Michael Efroimsky, Ph.D. 
Astronomer 
US Naval Observatory 
Washington DC 20392 
USA 
 
michael.efroimsky@navy.mil 

                                                           
3 Luna, S., et al. 2020. ``The dynamical evolution of close-in binary systems formed by a super-Earth and its host star.” 
Astronomy & Astrophysics, 641 : A109 


