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 Abstrakt 

ABSTRAKT 

Diabetes mellitus 1. typu (DM1) je multifaktorálne autoimunitné ochorenie, ktoré spočíva 

v napadnutí inzulín produkujúcich beta buniek v pankrease autoreaktívnymi cytotoxickými CD8 

lymfocytmi. Vďaka kooperácii rôznych zložiek vrodenej aj získanej imunity dochádza k rozvoji 

zápalu a následnej autoimunitnej reakcii. Autoreaktívne T lymfocyty sa podieľajú na priamom aj 

nepriamom ničení beta buniek, B lymfocyty sú producentmi autoprotilátok a bunky vrodenej 

imunity sú považované za iniciátorov autoimunitných pochodov vedúcim k aktivácii T a B buniek.  

V tejto dizertačnej práci poukazujeme na viaceré dysregulované zložky vrodenej aj adaptívnej 

imunity u pacientov s DM1. Tieto zmeny v imunitnom systéme sa často odohrávajú už pred 

samotným objavením sa prvých syndrómov a teda nie sú len dôsledkom hyperglykémie, ktorá 

typicky sprevádza DM1. Zmeny v množstve a aj v niektorých základných funkciách T regulačných 

lymfocytov (Treg) a B lymfocytov sa objavujú už u asymptomatických príbuzných pacientov s DM1. 

Počas prvého roka od objavenia sa príznakov dochádza k postupnému znižovaniu počtu neutrofilov 

v periférii, ktoré pravdepodobne infiltrujú pankreas. Podrobnejšie sme sa zamerali na výskum 

zložiek vrodenej imunity a ich spoluúčasť k patogenéze DM1. Ukázali sme, že produkty neutrofilov, 

ktoré sa nazývajú neutrofilné extracelulárne pasce (NET), sú schopné indukovať IFNγ-produkujúce 

T lymfocyty skrz aktiváciu dendritických buniek (DC). NETy sa skladajú najmä z vlastnej DNA 

a antimikrobiálnych proteínov a sú význačným mechanizmom antiinfekčnej imunity. Avšak 

v posledných rokoch si NETy získali nemalú pozornosť v oblasti autoimunitných ochorení, pretože 

sami o sebe predstavujú potenciálny zdroj autoantigénov. V našej ďalšej práci ukazujeme ako 

monocyty a DC od DM1 pacientov prehnane reagujú na prítomnosť DNA bez ohľadu na jej pôvod, 

vrátane mikrobiálnej aj vlastnej DNA, čo naznačuje, že aberantné rozoznávanie DNA v NEToch sa 

tiež podieľa na zápale spojenom s autoimunitných procesom. Naša ďalšia štúdia venovaná biológii 

DC u DM1 pacientov popisuje signalizáciu IL-27 cytokínu. Výsledky z RNA mikroarrayí odhalili 

zvýšenú expresiu podjednotky IL-27 receptora na myeloidných DC u DM1 pacientov. Toto zvýšené 

množstvo receptorovej podjednotky sa odzrkadľovalo zvýšenou fosforyláciou STAT3 molekuly 

a expresii PD-L1, čo naznačovalo kompenzačnú snahu buniek DM1 pacientov voči prebiehajúcemu 

zápalu spojenému s autoimunitným procesom. 

Táto dizertačná práca poukazuje na viaceré dysregulované aspekty imunity u pacientov s DM1 

a naznačuje, že k týmto poruchám dochádza už pred vznikom ochorenia. Dysregulácia vrodenej 

imunity je naďalej zjavná  aj u chronických pacientov a nie je asociovaná so zmenami 

v metabolizme, z čoho vyplýva že ide o potenciálne geneticky podmienené faktory. Pretože 

presymptomatickí pacienti by mali veľký úžitok z včasnej identifikácie nástupu patologických 

procesov vedúcich k symptomatickému DM1, domnievame sa, že informácie získané v tejto práci 

podkladajú pevné zázemie pre budúci výskum. 

 

Kľúčové slová: diabetes mellitus 1. typu; neutrofily; neutrofilné extracelulárne pasce; dendritické 

bunky; rozoznávanie DNA; IL-27; T regulačné lymfocyty; B lymfocyty  
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 Abstract 

ABSTRACT  

Type 1 diabetes (T1D) is an autoimmune disease with multifactorial aetiology that involves an 

attack of self-reactive cytotoxic CD8 lymphocytes on insulin-producing beta cells in the pancreas. In 

the T1D pathophysiology, both innate and adaptive immunity mechanisms cooperate in the 

development of inflammation leading to autoimmune destruction. Autoreactive T lymphocytes are 

the canonical destructors of the beta cells, and B cells produce autoantibodies; the innate immunity 

cells are considered the initiators of the pathological autoimmune reaction by promoting T and B 

cell activation.  

Here, we provide evidence of both innate and adaptive immunity cell types dysregulation in patients 

with T1D, and that these changes occur before the onset of the disease. The changes in T regulatory 

lymphocytes (Tregs) and B cell subpopulations occur already in asymptomatic T1D first-degree 

relatives. During the first year after the onset of the disease, there is a gradual decrease in the 

neutrophil numbers in the periphery, which probably infiltrate the pancreas. We have focused more 

closely on the innate immunity dysregulation and its contribution to T1D pathogenesis. Initially, we 

describe that neutrophil products called neutrophil extracellular traps (NETs) are able to induce 

IFNγ-producing T cells through activation of dendritic cells (DCs). NET structures are 

predominantly composed of neutrophil DNA and antimicrobial proteins and are an important 

mechanism of antimicrobial defence; however, in recent years, NETs gained considerable attention 

in the field of autoimmune diseases as a source of potential autoantigens. Then, we show that T1D 

monocytes and DCs inappropriately react to the presence of DNA regardless of the origin, including 

microbial or endogenous sources, suggesting that aberrant recognition of DNA contained in NETs 

also participates in the inflammation associated with T1D. Our another study of DC biology in T1D 

patients focused on IL-27 signalling because the results of the RNA microarray assays revealed a 

profound increase in the IL-27 receptor subunit expression on myeloid DCs. The increased receptor 

expression was mirrored by an increase in STAT3 signalling and PD-L1 expression, suggesting 

compensatory mechanisms of ongoing inflammation in long-term treated T1D patients.  

Overall, this doctoral thesis provides evidence of impaired aspects of immunity in T1D patients, 

including adaptive and innate immunity, and suggests that this orchestrated dysregulation occurs 

before the onset of the disease. Innate immunity dysregulation is also apparent in long-term treated 

T1D patients and is not associated with metabolic changes, suggesting that the changes are intrinsic 

and potentially determined genetically. Since presymptomatic patients benefit from early 

identification of the onset of the pathological processes leading to symptomatic T1D, we believe that 

information obtained in this work defines a solid background for future research. 

 

 

Key words: type 1 diabetes; neutrophils, neutrophil extracellular traps; dendritic cells, DNA 

recognition, IL-27; T regulatory lymphocytes, B cells   
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 Literature overview 

LITERATURE OVERVIEW 

1.1 TYPE 1 DIABETES  

Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the destruction of insulin-

producing beta cells in the pancreas. T1D is one of the most common endocrine and metabolic 

conditions occurring in childhood (1). The precise aetiology and pathology of T1D remains unclear; 

however, observations of the natural history of human T1D, including its incidence in twins, suggest 

that the disease results from an attack of the immune system on the beta cells of the pancreas due to 

multiple genetic and environmental factors and subsequent impairment of insulin secretion and 

hyperglycaemia. Long-term hyperglycaemia may frequently lead to a number of serious chronic 

diabetic complications: diabetic retinopathy leading to blindness, diabetic nephropathy leading to 

chronic renal failure and diabetic neuropathy leading to several consequences, such as diabetic foot. 

Despite the improvement in T1D management, patient suffering from this disease are reliant on 

lifelong treatment with exogenous insulin therapy (2). 

T1D prevalence and incidence have an increasing trend worldwide. The data of epidemiologic 

studies showed a 3.4% increase per annum in the incidence rate, suggesting doubling of the 

incidence rate within approximately 20 years in Europe (3). Meta-analysis studies showed that 

incidence in 2020 is 15 per 100,000 people and prevalence is 9.5% with the highest values in North 

America and Europe (4).  

The peak age of T1D incidence is in the age group of 10-14 years (3, 5). More than 1,110,000 

children and adolescents younger than 20 years of age are estimated to have T1D in the world with 

the highest incidence and 

prevalence in North America, 

Australia and Europe (Figure 

1).  

Figure 1. The Incidence rates 
(per 100,000 per annum) of 
T1D in children and 
adolescents 
(diabetesatlas.org) 
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The T1D incidence rates substantially vary in various countries. The regions with the highest 

incidence rate are Scandinavian countries (more than 60 new case per 100,000), Northern America, 

Saudi Arabia and Kuwait (30 new cases per 100 000). Certain countries, such as Venezuela or China, 

are on the opposite side of the T1D incidence spectrum (0.1 case per 100,000) (2, 3, 6). In Europe, a 

study from 26 countries showed a 3.4% increase in T1D incidence in children despite slowing of the 

childhood incidence rates reported in some high-incidence areas, such as Scandinavian countries or 

UK. The highest incidence increase was estimated in Poland (6.6%) and the lowest incidence 

increase was estimated in Spain in Catalonia (0.8%)(3). The observed slowing of incidence increase 

in several high-incidence countries occurs after a relatively long period of an increase in the 

incidence rates (1995–2001), which can potentially reflect a re-established balance between 

environmental exposure and the genetic background of the population (7). 

The Czech National Childhood Diabetes Register (ČENDA) is a web-based nationwide database that 

stores and processes anonymized data from paediatric patients with diabetes and contains the data 

from 4,361 children aged 0-19 years; 94% of these children had T1D, 1.5% had T2D and 4.5% had 

genetically proven diabetes. ČENDA was established in 2013 and is a system allowing online 

comparison of selected key attributes of diabetes control in diabetes clinics in the Czech Republic 

(8). In CR, an annual increase in the incidence ratio was estimated to be 4.7% (3). In 2009-2013, the 

incidence rate was estimated to be 21.8 per 100,000 (3) and is increasing (unpublished data).   

1.1.1 Factors contributing to T1D 

The accepted model of T1D development considers that T1D is due to an interplay between genetic 

predisposition and environmental determinants. Due to increasing prevalence, the environmental 

factors and modern lifestyle associated with excessive calorie intake, physical inactivity, excessive 

hygiene, etc. appear to have a greater influence on the risk of T1D at present than that in the past. 

Multiple evidence based on in vivo observations, epidemiological analysis, animal studies and in 

vitro models support this hypothesis (9, 10). 

1.1.1.1  Genetic susceptibility 

T1D is a polygenic disorder, and more than 60 genetic variants were described to contribute to the 

risk of T1D development. Polymorphism in human leukocyte antigen (HLA) class II largely defines 

the hereditary risk of T1D development. The most important loci include HLA-DR and HLA-DQ. The 

highest risk haplotypes are DRB1*04-DQA1*03:01-DQB1*03:02 (known as DR4-DQ8) and 
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DRB1*03:01-DQA1*05:01-DQB1*02:01 (DR3-DQ2). In the general population, carriers of these 

variants have a 30-fold higher risk of T1D development. First-degree relatives carrying this variant 

have an additional risk of T1D development (11). On the other hand, the DRB1*15-DQA1*01-

DQB1*06:02, DRB1*14-DQA1*01-DQB1*05:03 and DRB1*07-DQA1*02:01-DQB1*03:03 haplotypes are 

associated with protection (11).  

Moreover, polymorphisms of the genes localized outside of the HLA region encoding insulin (INS) 

and PTPN22 (lymphocyte protein tyrosine phosphatase) are associated with higher T1D 

susceptibility (12, 13). Polymorphism of the insulin gene associated with T1D is located in the 

promoter region of the gene. The risk for T1D development is determined by the size of the variable 

number tandem repeats (VNTRs) in the noncoding region. The size of VNTRs in the insulin 

promoter region probably influences the binding of the transcriptional factor AIRE in the thymus 

and thereby governs the insulin expression level. Low insulin expression due to shorter VNTRs may 

be associated with subsequent insufficient elimination of autoreactive T cells during negative 

selection and may lead to generally impaired peripheral tolerance to insulin (12). Additional genes 

outside of the HLA regions are associated with T1D development and are listed in Table 1. Genome-

wide association studies identified several loci associated with enhanced risk of T1D; however, the 

effect on the disease is lower. In most cases, identified genes are associated with immune regulation 

or beta cell functions (14).  

 

Gene Protein Polymorphism 
associated with T1D 

Affected function 

PTPN22 Protein tyrosine 
phosphatase 

rs2476601 Response to T and B cell 
activation. Survival of 
autoreactive cells in thymus 

CTLA4 Cytotoxic T lymphocyte 
associated protein 4 

rs3087243 Negative regulation of 
autoreactive T cells 

IL2RA IL-2 receptor subunit α rs12722495 Response to IL-2 by regulatory T 
cells and memory T cells 

IFIH1 Interferon induced with 
helicase C domain 1 

rs1990760 Receptor for dsRNA, induces IFN 
production 

ERBB3 Erb-b2 receptor tyrosine 
kinase 3 

rs2292239 Regulator of beta cell apoptosis, 
modulates antigen presentation 

BACH2 BTB domain and CNC 
homologue 2 

rs3757247 Regulator of beta cell apoptosis 

Table 1: Selected genes associated with increased T1D susceptibility. Modified from Ilonen, 2019 
(15). 

 



 

- 14 - 

 

 Literature overview 

1.1.1.2  Environmental determinants 

An increase in T1D incidence in children from genetically stable populations and less than 50% 

concordance in T1D development in monozygotic twins (16) evidence the major role of 

environmental factors in the T1D aetiology. This increase has started in the middle of the 20th 

century (3). The number of patients with a low level of HLA-defined genetic risk (17) and increased 

T1D incidence trend in people migrating from low-incidence to high-incidence countries, especially 

in children born in the new countries or who moved at young age (18, 19), also support 

environmental influence on T1D development. The time of residency of the mother in a new country 

is also associated with enhanced risk of T1D in the children born in the new country, indicating an 

important role of foetal period in the subsequent risk of T1D (20). Evidence from longitudinal 

cohort studies of at-risk children indicates that environmental exposure in early life contributes to 

T1D risk and is related to maternal influence on the foetus during pregnancy, neonatal factors or 

later effects during infancy and early childhood. Various environmental factors acting at a various 

time points integrally involve an interaction between the immune system and beta cells (10). 

Potential early-life environmental triggers associated with T1D progression and initiation are 

summarized in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  Early-life environmental factors contributing to T1D development. Modified from 
Craig, 2019. Created with Biorender. 
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Many studies have shown associations between various infections and T1D susceptibility. Viral 

infections, such as human enteroviruses (HEV) (21), rotavirus (22), mumps virus (23), rubella virus 

(24) and cytomegalovirus (25), may induce or accelerate the autodestructive process (26). The 

pathogenic mechanism of viral infections can be based on direct toxicity to beta cells, antigen 

mimicry or immune system hyperactivity. This cross-reactivity has been recognized many years ago 

and has been detected in the case of the pathogens and autoantigens recognized by antibodies 

or/and T cells of patients in a broad variety of autoimmune diseases (27). Strongest evidence of 

viral involvement in T1D was obtained in the case of HEVs, which are also frequently detected in 

peripheral blood and pancreas of T1D patients and in recent-onset T1D patients (28–31). 

Importantly, a large meta-analysis of 33 T1D prevalence studies involving almost 2,000 T1D 

patients and 2,500 control individuals confirmed a significant association between HEV infection 

and the development of T1D (32). In addition to the role of viruses as inducers or accelerators of 

T1D, it is important to acknowledge that viruses also can reduce the incidence rate of T1D according 

to published animal studies (33, 34) thus supporting the so-called “hygiene hypothesis” (35). Viral 

inflammation can function as an “immune-tuning” event leading to the bystander demise of 

aggressive T cells or induction of counteracting regulatory mechanisms (26, 36). 

Intensive studies focused on investigation of the role of gut microbiota and its association with T1D 

susceptibility have not provided conclusive results. A growing number of studies have shown 

various differences in gut microbiome composition between T1D patients, patients at-risk and 

healthy donors (37). These changes may influence T1D susceptibility by affecting intestinal 

permeability, molecular mimicry and modulation of the innate and adaptive immunity. Children 

with T1D have increased intestinal permeability, also called leaky gut, probably due to the aberrant 

gut microbiota (38), and increased intestinal permeability can cause the activation and proliferation 

of diabetogenic CD8+ T cells thus promoting insulitis (39).  

Diet is another environmental factor influencing the development and progression of the disease. 

For example, gluten‐free diet was shown to delay the progression of diabetes (40). Vitamin D is 

considered to protect against T1D; however, no definitive effect was proven (41). Original studies 

also indicated that early exposure to cow milk proteins accelerated T1D (42); however, TRIGR (Trial 

to Reduce IDDM in the Genetically at Risk) clinical study showed no effect (43). Similarly, the role of 

antibiotic abuse as T1D trigger is controversial. Certain studies proposed that the use of antibiotics 

in early life increased T1D susceptibility; however, other studies showed that antibiotics reduce the 

T1D risk in the animal models (44–46). In children, antibiotics used within 1 year are not associated 
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with the higher risk of T1D development (47). Low carbohydrate diets (less than 130 g/day or 26% 

of total energy intake from carbohydrates according to the American Diabetes Association) have 

been associated with lower levels of HbAc1 in a large observational study of 1,020 patients with 

T1D; however, the definitive effect was not demonstrated, and more primary studies are needed 

(48, 49). 

1.1.2 Stages of T1D pathogenesis 

The ability to screen for risk and to stage T1D provides a chance to interfere, delay and ultimately 

prevent the onset of the clinical symptoms (50). Prospective longitudinal studies of individuals at 

risk for T1D development have demonstrated that T1D develops over time and that the disease is a 

continuum that progresses sequentially at variable but predictable rates through distinct 

identifiable stages prior to its symptomatic manifestations.  

According to a T1D model suggested in 1986, T1D was divided into 6 distinct stages (51); however, 

a current model of T1D acknowledged by ADA, TrialNet and other diabetes organizations includes 3 

stages (Figure 3) (50). 

Figure 3: Stages of T1D development. The stages are listed according to the level of beta cell mass. 
Adapted from Insel, 2015 (50). Created with Biorender. 

Stage 1 represents individuals who have developed two or more T1D-associated autoantibodies but 

have normal glycaemia. The risk of T1D development at this stage is similar in genetically at-risk 
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children and first-degree relatives. The 5-year and 10-year risks of symptomatic disease in children 

who reach this stage are approximately 44% and 70%, respectively, and the lifetime risk 

approaches 100% (52–54). 

Stage 2 also includes persons with two or more islet autoantibodies whose disease has progressed 

to the loss of the functional β-cell mass resulting in elevated blood glucose. The 5-year risk of 

symptomatic disease at this stage is approximately 75%, and the lifetime risk approaches 100% 

(55). 

Stage 3 represents manifestations of the typical clinical symptoms and signs of diabetes, which may 

include polyuria, polydipsia, weight loss, fatigue, diabetic ketoacidosis and others. Metabolic 

markers appear after sufficient depletion of the beta cell mass, and critically low numbers of insulin-

producing cells result in hyperglycaemia in combination with other symptoms. At the time of 

metabolic diagnosis, most individuals have residual production of insulin reflected by detectable 

levels of C-peptide in the blood. With time, beta cells are completely destroyed, and C-peptide 

becomes undetectable (50). 

1.1.3 Islet autoantibodies as T1D predictors 

Islet autoantibodies (IAbs) are strongly associated with the T1D development, and their presence is 

currently the most reliable biomarker of islet autoimmunity. IAbs usually appear years before the 

first T1D symptoms, and children with 2 and more IAbs have a 70% risk of the disease development 

in 10 years (52). Autoantibodies that bind to specific proteins found in the pancreas were described 

for the first time almost 40 years ago (56). The main IAbs include antibodies against insulin (IAA), 

GAD65 (glutamic acid decarboxylase 65) (GADA), islet antigen (IA-2A) and zinc transporter 8 

(ZnT8A). IAbs usually develop sequentially, and IAA is often the first to develop in children after 

birth; however, GADA is often detected as the first in older children (57).  

Several screening studies recruited T1D patients, their relatives and general population to better 

understand the natural history of T1D, define the T1D onset and its potential triggers and identify 

the individuals at risk (58). These clinical trials have been focused on the prevention or at least a 

delay in T1D development for as long as 50 years (Table 2). Large international cohorts have been 

studied from birth in relatives of the patients with T1D and more recently in the general population 

with high genetic risk. Investigations of these individuals over time identified the most pronounced 

risk predictors of T1D progression, i.e., islet autoantibodies. IAbs develop in 90–95% of the subjects 
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destined to develop T1D (59). Large birth cohorts, including BABYDIAB in Germany (started in 

1989), Diabetes Prediction and Prevention in Finland (DIPP; started in 1994), and Colorado 

Diabetes Autoimmunity Study in the Young (DAISY; started in 1993), demonstrated a peak in islet 

autoimmunity development within the first 2–5 years of life. T1D then more rapidly progresses in 

the subjects with autoantibodies in the early years compared to the subjects that develop antibodies 

later in the childhood and adulthood (52, 57, 60, 61).   

Study name Initiation 
year 

Participant characteristics 

Barts-Windsor-Middlesex Family Study 1978 Siblings and parents of T1D patients 
diagnosed at age ˂21 and had 1 or more 
siblings without T1D 

Barts-Oxford Study 1985 Siblings and parents of T1D patients 
diagnosed at age ˂15 

BABY-DIAB  Newborn offspring of parents with T1D 
DAISY (Diabetes Autoimmunity Study in 
the Young) 

1993 Newborn offspring with high risk HLA or 
with a first-degree relative with T1D 

DIPP (T1D Prediction and Prevention 
Project) 

1994 Newborn offspring with high risk HLA 

TEDDY (The Environmental Determinants 
of Diabetes in Young) 

2004 Newborn offspring with high risk HLA or 
with a first-degree relative with T1D 
regardless of genetic risk 

TialNet Pathways to Prevention Study 
 

2004 Phase 1: First-degree, second-degree and 
third-degree relatives of T1D patients; 
Phase 2: positive for 1 autoantibody; Phase 
3: completed phase 2 

INNODIA (An Innovative Approach to 
Understanding Type 1 Diabetes) 

2017 New onset in various age groups with first-
degree relatives 

Table 2: T1D natural history studies 

A new and important area of research concentrates on identification of autoantibodies to 

neoantigens or neoepitopes created by various posttranslational modifications, which are likely to 

improve the understanding of the mechanisms of T1D autoimmunity. Additional biomarkers, such 

as cellular immune markers, metabolic changes and genetic background, are likely to enhance the 

prediction of the rate of T1D progression (58). 

1.1.4 Prevention of T1D and prevention trials 

The main goal of the medical care of T1D children shifted from the symptomatic treatment to 

disease-modifying interventions. Children included in the prospective T1D studies often have better 
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metabolic indicators, which facilitate the management of the disease, decrease hypoglycaemic 

episodes and delay the development of long-term complications. Furthermore, probability of a 

honeymoon phase is increased if intensive treatment, which helps patients to maintain higher C-

peptide levels, is initiated as soon as possible after the diagnosis of symptomatic T1D, suggesting 

that patients who are treated as early as possible have improved long-term outcomes (50, 62, 63).  

Primary prevention studies begin prior to the autoimmunity development, typically in children at 

increased T1D genetic risk. Prevention trials (Table 2 and 3) aim to slow down or halt the 

destruction of the beta cells using multiple approaches; unfortunately, the success of the 

interventions remains limited. The various studies use different approaches such as dietary 

changes, antigen-based therapy, immunomodulatory and immunosuppression therapies. Primary 

dietary prevention strategies have been used starting from the 90s to evaluate the role of 

hydrolysed cow milk formula without antigenic compounds (free from intact bovine insulin) (43); 

the Finnish Dietary Intervention Trial for the Prevention of Type 1 Diabetes (FINDIA) used insulin-

free bovine formula, BABYDIET analysed a gluten-free diet in the first year of life, and the TrialNet 

Nutritional Intervention to Prevent Type 1 diabetes study used docosahexaenoic acid. The results of 

all studies have been disappointing and failed to show efficacy, except FINDIA that demonstrated a 

delay in the development of autoantibodies (64, 65).  

The main role of the antigen therapy is to induce peripheral tolerance by exposure of the immune 

system to the antigens in the target organ or by induction of anergy of already present autoreactive 

T cells (66). In the DIPP study in Finland, children were treated with intranasal insulin or placebo, 

and the outcomes in the groups were similar. In Germany, a similar Pre-POINT study was 

performed; the results demonstrated immunological effects, including elevated serum IgG and 

salivary IgA binding to insulin and an increase in regulatory T cells (64). Another study using 

antigen therapy with GAD65 (alum-formulated GAD65 in combination with vitamin D) showed 

promising results and demonstrated partial preservation of the residual beta cell function 

(DIAGNODE study) (64, 67).  

Immunologic modulation in the prevention and intervention studies gained recent visibility after 

encouraging results demonstrating efficacy in the new-onset studies. Attempts to restore self-

tolerance, promote regulatory T cells and reduce effector T cells have been evaluated using several 

different classes of drugs, including anti-CD3 (teplizumab and otelixizumab). Primary promising 

results demonstrated greater beta cell mass preservation and delayed clinical T1D progression in 
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high-risk participants (68, 69). Moreover, administration of abatacept/CTLA-Ig demonstrated a 

slower rate of beta cell decline maintained for 1  year after termination of the a therapy (64). 

Another ongoing study in Australia is using a cellular therapy approach with regulatory T cells and 

autologous cord blood (The CoRD Study) (70). Different approaches targeting immune system are 

discussed in more detail in following sections. 

Name Intervention Number of 
participants 

Primary Outcome Results 

Finnish TRIGR Study Bovine milk protein 
avoidance 

230 Decreased autoantibody 

TRIGR Bovine milk protein 
avoidance 

5156 Decreased autoantibody but 
no T1D prevention 

FINDIA Bovine insulin 
avoidance 

1104 Decreased incidence of 
autoantibody 

BABYDIET Delayed gluten 
exposure 

150 No benefit 

denis Nicotinamide 55 No benefit 
endit Nicotinamide 552 No benefit 
Belgian Diabetes Registry Parental insulin 

 
25 No benefit 

dpt-1 Parental insulin 339 No benefit 
dpt-1 Oral insulin 372 No benefit 
TrialNet oral insulin Oral insulin 560 No benefit 
dipp Nasal insulin 264 No benefit 
DIAGNODE GAD-alum 50 Safe 
tn-10 Teplizumab 76 Delay of diagnosis 

Table 3: Prevention and intervention studies in type 1 diabetes 

After efficacy, safety and feasibility (and hopefully a mechanism) are demonstrated in new-onset 

type 1 diabetes patients, the therapies are moved into the prevention trials. Due to the number of 

potential therapeutic targets, a combination of both immune and nonimmune therapies targeting 

multiple aspects of this disease is likely to be needed. The timing of the initiation and duration of the 

treatment are very important areas of study; however, the timing is sometimes difficult to 

determine (70). 

1.1.5 Insulitis 

In 2007, the Juvenile Diabetes Research Foundation (JDRF) launched a programme called the 

Network of Pancreatic Organ Donors with Diabetes (nPOD). The main aim of this project is to collect 

and distribute the pancreatic and related tissues of cadaveric organ donors with prediabetes or 

ongoing diabetes to study the mechanisms of organ-specific autoimmunity in humans. Insulitis is an 

inflammatory lesion of the islets associated with the loss of beta cells and was not detected in 
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individuals with a single autoantibody thanks to nPOD initiative. Moreover, beta cells are not 

completely destroyed at the time of diagnosis and can persist for a long period of time. 

Inflammatory cells are usually observed in the islet periphery or within the parenchyma, and only 

10-30% of the islets show insulitis at any time point (71, 72). In 80 studied T1D donors, 17 donors 

had insulitis even after 12 years of the disease, suggesting that autoimmunity persists for years after 

diagnosis (73). Residual beta cells are present in patients with insulitis, and the beta cell mass in 

these patients is higher than that in patients without insulitis. T1D patients who had the disease 

with residual insulin secretion for 50 years also had insulitis (74). T1D is an autoimmune disease 

with complex aetiology and undeniable contribution of the immune system at every stage of the 

disease development. In the next section of this thesis, distinct parts of the immune system and their 

participation in T1D pathology are described in detail.  

1.2 IMMUNE SYSTEM DYSREGULATION IN T1D 

T1D is an autoimmune disorder characterized by the destruction of beta cells by self-reactive 

lymphocytes. However, adaptive immunity is not the only factor involved in the destruction of the 

insulin-producing cells. Components of innate immunity also participate in the initiation of the 

damage process. Identification of molecular pathways implicated in T1D pathogenesis may lead to 

therapy that can prevent and cure T1D. Details about the adaptive and innate immunity components 

engaged in the disease and their potential use for therapy are discussed below. 

1.2.1 Antigen-presenting cells 

Monocytes, macrophages and dendritic cells are the main populations involved in antigen 

presentation. These cells are the key components of innate immunity included in the regulation of 

the initiation, development and resolution of inflammation. In addition, these populations 

participate in tissue repair and regeneration. They produce a wide range of cytokines and 

chemokines, which influence and recruit other cell types. These antigen-presenting cells (APC) can 

contribute to several autoimmune diseases, and their infiltration into the diseased tissues is a 

hallmark of the disorders. However, exact contribution of APCs and whether APCs actually initiate 

the inflammation or are a part of already ongoing dysregulation is unknown (75, 76). Other cell 

populations, such as B cells, mTECs and stromal cells, also act as APCs. However, we will discuss in 

detail only the main APC populations, including monocytes, macrophages and DCs, in the next 

chapters. 
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1.2.1.1 Monocytes and macrophages in T1D 

Currently, a variety of observations suggest that monocyte activities are altered in T1D. Altered 

monocyte activities may be a response to the inflammatory and metabolic changes associated with 

T1D or may be intrinsic and potentially genetically determined. Monocytes are useful for the 

generation and study of monocyte-derived antigen-presenting cells, but they also act as 

contributors to the pathological processes by themselves. In T1D patients, reports about monocyte 

numbers in circulation are contradictory. Both decreased (77) and increased (78) monocyte 

numbers in the periphery were described. Prior to the T1D onset, patients have elevated serum 

monocyte-derived cytokines, such as tumour necrosis factor (TNFα), IL-1α, IL-10 and others (79). 

Another study showed that T1D monocytes displayed inflammatory phenotype and enhanced 

production of IL-1β and IL-6 resulting in the induction of Th17 lymphocytes (80). Purified CD14+ 

monocytes from children with newly diagnosed T1D had different gene expression patterns 

compared to that from the healthy subjects. The changes in several pathways involved in adhesion, 

NFκB signalling, regulation of apoptosis, IL-1β processing and other inflammatory functions were 

detected (81). Several studies demonstrated aberrant expression and signalling of the Toll-like 

receptors (TLR) in monocytes from T1D patients, such as TLR2 that recognizes the components of 

gram-positive bacteria and TLR4 that recognizes lipopolysaccharide (82, 83). Accordingly, our 

group have studied TLR9 signalling involved in nucleic acid recognition in T1D patients; the data 

indicated that T1D monocytes also express TLR9 (84). Our observation was unexpected since TLR9 

is expressed almost prominently on plasmacytoid dendritic cells and B cells (85). In addition to 

TLR9-dependent DNA sensing, we showed that monocytes from T1D patients can recognize nucleic 

acids that reach the cytosolic compartment and sense DNA via cytosolic DNA sensors (86). Indeed, 

monocytes from T1D patients triggered the production of proinflammatory cytokines mediated by 

cytosolic molecules STING, TBK1, and other sensors involved in aberrant DNA sensing, suggesting 

the monocyte contribution in the autoimmunity inflammation (84). 

Macrophages are detected in the islets in the pancreatic postmortem sections obtained from 

patients with T1D and at the time of onset (87, 88). Animal models of T1D showed compromised 

phagocytosis in macrophages, suggesting that insufficient clearance of apoptotic cells and 

consequential generation of self-antigens contribute to the T1D development (89). In addition, 

macrophages from non-obese diabetic (NOD) mice are abnormally activated and have enhanced 

cytolytic activity towards beta cells (90). Notably, depletion of macrophages effectively abolished 

T1D in NOD mice. In general macrophages represent one of the main APC population and can 

effectively trigger adaptive immune responses; in T1D, macrophages present antigens to 
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autoreactive CD4+ T cells, resulting in the activation of these cells (91). Moreover, the data obtained 

in a T1D mouse model showed that macrophages are involved in the recruitment of autoreactive 

CD8+ T cells into the islets, and this trafficking apparently depends on type I IFN signalling. 

Depletion of islet-resident macrophages resulted in reduced CD4+ T cell infiltration and severity of 

the disease (92). 

The proinflammatory serum milieu in T1D patients promotes M1 polarization of macrophages (93), 

which results in elevated secretion of IL-6 and IL-1β by macrophages and expression of 

costimulatory markers thus enhancing the inflammation. M1 macrophages also produce bactericidal 

mediators, such as reactive oxygen species (ROS) and nitric oxide (NO), which are toxic to beta cells. 

The data obtained in a mouse model of T1D showed that transfer of immunosuppressive 

alternatively activated M2 macrophages reduced the onset of T1D, hyperglycaemia and kidney 

injury (94). 

1.2.1.2 Dendritic cells 

Dendritic cells (DC) are a heterogeneous group of innate immunity cells. DCs have two general 

functions in controlling T cell immunity. First, DCs act as APCs and present the antigens to T cells 

and activate them; second, DCs secrete cytokines that shape the T cell response. Moreover, DCs play 

an undeniable role in the maintenance of the central and peripheral tolerance. Impairment of these 

activities contribute to the T1D pathogenesis (95, 96).  

Studies of pancreatic biopsies have revealed that activated DCs are present at the islets where they 

contribute to the proinflammatory environment by producing inflammatory cytokines, such as 

TNFα (88, 97). Several reports have analysed the DC numbers in the periphery in newly diagnosed 

T1D patients; however, the data are inconclusive. The levels of plasmacytoid dendritic cells (pDC) 

were found to be decreased (98) or increased (99) at the time of diagnosis. Our group has reported 

a decrease in the number of pDC and myeloid DC (mDCs) in T1D patients and their first-degree 

relatives (100). Additionally, in another study, we have shown that originally low numbers of pDCs 

are increased in the first year after T1D diagnosis (101). 

Similar to macrophages, DCs participate in T1D pathogenesis by impairing the activation of T cells 

due to abnormal antigen presentation, enhanced cytokine production and defective maintenance of 

tolerance mechanisms (95). Investigations in animal models have shown that DCs produce higher 

levels of IL-12, a cytokine necessary for Th1 polarization, and demonstrate enhanced expression of 

costimulatory molecules CD80/86, which resulted in aberrant induction of IFNγ-producing T cells 
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(102, 103). Moreover, pancreas-infiltrating DCs phagocyte apoptotic beta cells and process and 

present an autoantigen on their MHC molecules to autoreactive CD4+ T cells or to CD8+ T cell in 

cross-presentation and thus initiate autoimmune response (104). Different APC functions and 

processes involved in T1D immunopathology are summarized in Figure 4. 

Figure 4: Summary of APC biological processes 
affected in T1D. APC development, cell numbers and 
yields; antigen capture, processing and presentation; 
APC activation and costimulation; cytokine 
production; chemotaxis and cell adhesion are the 
main APC alterations in T1D. Created with Biorender. 
Adapted from Creusot at el. (105). Ag – antigen, FcR – 
Fc receptors, VDR – vitamin D receptor 

 

 

 

 

Our group focused on studies of DCs for several years. Using gene arrays, we have identified several 

genes dysregulated in T1D DCs. A receptor subunit of IL-27, IL-27Ralpha, was identified as one of 

the candidate genes elevated in mDCs. We have performed detailed investigation that demonstrated 

aberrant reactivity of mDCs to IL-27 involving enhanced signalling through STAT3 and increased 

PD-L1 expression on the surface of mDCs (106). IL-27 plays a dual role due to the induction of 

proinflammatory Th1 and regulatory Tr1 cells. Our findings suggested compensatory anti-

inflammatory mechanisms of ongoing inflammation. The expression of PD-L1, PD-L2 and PD-1 are 

essential for the regulation of T cell activation and promotion of immune tolerance. The PD-1/PD-L1 

pathway regulates the induction and maintenance of the central and peripheral immune tolerance 

and protects the tissues against autoimmune attacks (107). Increasing evidence has shown that 

impaired function of PD-1/PD-L1 signalling plays an important role in several autoimmune 

diseases, including psoriasis, inflammatory bowel disease, SLE or T1D (108–112). 

IFNα-producing pDCs are involved in the pathogenesis of T1D. Diana et al. showed that self-DNA 

released upon physiological pancreatic beta cell death activates pDCs through TLR9 to induce type I 

IFN production, which consequently leads to the initiation of autoimmune T cell response (104). 

Notably, TLR9-/- NOD mice were protected against the development of T1D (113). Our investigation 

that focused on microbial and self-nucleic acid sensing by T1D monocytes and DCs demonstrated 
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that T1D pDCs displayed more mature phenotype and higher production of IFNα and other 

proinflammatory cytokines in reactivity to DNA in a TLR9-dependent manner (84).  

1.2.1.3 APC as a therapeutic target 

Crucial role of DCs in the induction and maintenance of self-tolerance has made them an attractive 

target for therapeutic interventions. The main strategies include adoptive transfer of tolerogenic 

DCs, in vitro expansion of T regulatory lymphocytes (Tregs) by specific DC subsets and in vivo 

targeting of DC subsets or their products (95). 

Intervening proinflammatory cytokines produced by APCs can result in preservation of beta cell 

functions. IL-1α and IL-1β are important cytokines produced mostly by monocytes and are involved 

in T1D pathology by activating T helper cells and increasing the numbers of circulating memory T 

cells. The results of a clinical trial suggested that blocking these cytokines by the corresponding 

antagonists may be beneficial for preservation of the beta cells (114). Similarly, blocking TNFα with 

a fusion protein etanercept or the IL-6 and IL-12/23 cytokine pathways improved the protection of 

beta cell functions (115, 116). 

Tolerogenic DCs (tDCs) are DC with so-called semi-mature phenotype that produces IL-10 and low 

amounts of proinflammatory cytokines. tDCs attenuate T cell stimulatory capacity, induce Tregs and 

may be the most effective means for T1D intervention therapy. However, one of the major concerns 

associated with in vivo administration of in vitro prepared tDCs is the stability of their tolerogenic 

activities in the proinflammatory environment (117). The results of the clinical studies with tDCs 

showed that the treatment is safe and result in an increase in Tregs; however, no significant 

differences in glycaemia were observed (118, 119). Most likely, co-administration of tDCs and Tregs 

allows stabilization of FoxP3+ population and elevates IL-10, retinoic acid and TGFβ levels by tDCs 

thus reducing proinflammatory milieu.  

Several approaches to targeting DCs in vivo have been tested in animal models. For example, use of 

microparticles loaded with oligonucleotides specific for CD40, CD80 and CD86 resulted in an 

increase in Treg levels and a delay in the onset of the disease (120). Treatment of NOD mice with 

soluble CTLA4-Ig also resulted in T1D prevention by inducing immunosuppressive mechanism of 

tryptophan catabolism through indolamine dioxygenase (IDO) activation (121). Moreover, 

administration of the low doses of high affinity antigens, which cause in vivo induction of Tregs by 

antigen presentation via DCs, was effective in slowing the disease progression (122, 123). 
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1.2.2 Neutrophils 

The classical view of neutrophils as short-lived cells possessing only a limited capacity for 

biosynthetic activity and releasing granules and reactive oxygen species (ROS) has changed over the 

past years. Neutrophils have a longer circulatory life span (up to 5 days) and they act as a crucial 

element of the inflammatory response to direct and guide the innate immunity response by 

engaging in complex interactions with macrophages, natural killer cells, dendritic cells and T cells 

through soluble mediators or by direct cell-cell contacts (124, 125). Upon activation, neutrophils 

release soluble pattern recognition molecules, promote phagocytosis, stimulate complement and 

modulate inflammation (126, 127). These cells produce a wide variety of cytokines, antimicrobial 

proteins and peptides and neutrophil extracellular traps (NETs). NETs are extracellular web-like 

structures composed of cytosolic and granule proteins assembled on decondensed chromatin (128) 

and are released to trap, neutralize and kill bacteria (128), viruses (129) and fungi (130). 

Studies on the neutrophil functions and phenotype in T1D patients started in the 70s. The obtained 

data have indicated defective chemotaxis, phagocytosis, release of lysosomal content and 

microbicidal activities, impaired ROS production and other abnormalities that was usually 

attributed to hyperglycaemia (131–133). However, the significance of these early studies and used 

technologies has remained questionable for a long time. Currently, the studies of the samples from 

the subjects with or without normoglycaemia enable to explore the role of intrinsic factors versus 

hyperglycaemia in defective neutrophil functions. It is not known whether neutrophils are active 

players in T1D pathogenesis or an indirect marker of distinct pathological mechanisms (134). 

The role of neutrophils in T1D has gained renewed interest in 2013 when Diana et al. published 

their work in NOD mice that for the first time identified the earliest key immunological events of 

T1D pathogenesis. The authors demonstrated that physiological beta cell death promotes 

infiltration of B lymphocytes, pDCs and neutrophils to the pancreas (104). Around the same time, 

another group reported that circulating neutrophils are reduced in T1D patients and in T1D 

autoantibody-positive at-risk individuals (135). Importantly, neutrophils were detected in 

pancreases prior to the onset of T1D and were absent in patients with T2D; these pancreas-resident 

neutrophils extrude NETs (136). Notably, NETs represent endogenous danger signals that are 

sufficient to initiate inflammation in the absence of microbial priming and can potentiate the 

inflammation through the regulation of inflammatory cytokines directly or indirectly by modulating 

and activating other immune cells (137, 138). Moreover, NETs are also a source of autoantigens and 

can contribute to the pathogenesis of certain autoimmune diseases, particularly those associated 
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with autoantibodies against neutrophil-derived proteins, such as an antineutrophil cytoplasmic 

antibody (ANCA)-associated vasculitis (139). In systemic lupus erythaematosus (SLE), NETs can 

trigger the production of type I IFNs by activating pDCs to drive autoimmune pathology (140, 141). 

The proposed role of neutrophils in T1D is illustrated in Figure 5.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Proposed role of neutrophils in T1D. Decreased neutrophil numbers in the peripheral 
blood, impaired phagocytosis, degranulation and migration are altered in T1D patients. Neutrophils 
infiltrate pancreases prior T1D onset, where they undergo NETosis. The inappropriate elimination of 
NET-associated products leads to the stimulation of APCs and consequently to activation of 
autoreactive T and B lymphocytes. Created with Biorender. 

 

In the pancreas, residing NETs may play an active role in disease development by presenting 

modified autoantigens or directly damaging the tissue. Since it is almost impossible to access the 

pancreas in the living subjects, it is important to determine whether the markers of NETosis can be 

detected in the periphery and whether their amounts correlate with pancreatic functions. The data 

of the literature are inconclusive since both increased and decreased NET-related biomarkers have 

been found in T1D patients (142, 143). The discrepancy may results from the selection and 

grouping of the samples (134).  
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The studies of our group also focused on the functions of neutrophil and NETs in T1D patients. Our 

present study showed a continuous decrease in the numbers of neutrophils in the first year after 

T1D onset in addition to other immunological parameters, i.e., cell population and levels of 

antibodies (101). Moreover, our data indicated that only NETs from T1D patients activated DCs 

resulting in enhanced cytokine production, phenotype changes and induction of IFNγ-producing T 

cells. Notably, the transcriptomic analysis revealed that T1D NETs were able to induce pro-T1D 

signature in healthy DCs, suggesting their pathological role in inflammation (144). Moreover, our 

work revealed that T1D monocytes and DCs reacted to NETs by engaging the intracellular DNA 

sensors (TBK1-STING), which was mirrored by releasing proinflammatory cytokines (84), 

supporting the impaired sensing of DNA by innate immune cells in T1D. 

1.2.2.1 Neutrophils as a therapeutic target 

Neutrophils may be also a candidate target for therapeutic approaches due to their involvement in 

T1D pathology. Neutrophil activation, binding to the endothelium, transendothelial migration, 

migration into pancreatic islets and release of cytotoxic products are potential targets (145). Studies 

in mouse models have shown that blocking neutrophil recruitment to the pancreas by a CXCR2 

agonist delayed T1D progression (146). Similarly, inhibition neutrophil adhesion to endothelial 

venules within the pancreas may be an effective approach. Antibodies against L-selectin and VLA-4 

(very late antigen 4) and administration of anti-α4-integrin and anti-LFA-1 antibodies were 

reported to successfully in depress insulitis and reduce the destruction of the beta cells (147).  

1.2.3 T cells 

In healthy individuals, self-reactive lymphocytes are strictly regulated through the mechanisms of 

the central and peripheral tolerance that prevent their activation and accumulation. However, in 

T1D patients, a combination of genetic and environmental factors allows autoreactive clones to 

escape the tolerance checkpoints, leading to autoimmunity. Autoreactive T cells target a broad 

repertoire of the antigens and are considered to be the main destructors of the beta cells. nPOD 

studies showed that CD8+ T cells are the predominant T cell population and the most abundant 

inflammatory cell type in the pancreas in T1D (73). Moreover, autoreactive T cells are also present 

in the peripheral blood of the patients (148, 149), and antigen specificity of this self-reactive 

population increases with the duration of the disease, suggesting that epitope spreading occurs after 

the diagnosis (73). Interestingly, transplantation of a pancreatic segment from a healthy non-

diabetic twin to a diabetic twin was followed by recurrent beta cell destruction, suggesting islet-

specific immunological memory (150). Similarly, T1D can be transferred after bone marrow 
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transplantation, which was not depleted of T cells, from diabetic donors (151). Importantly, 

therapies against T cells have been proven beneficial since they slow down the disease progression 

and prevent recurrent beta cell destruction after islet transplantation (152, 153). 

1.2.3.1 Loss of immunological tolerance to beta cells 

Immunological tolerance is the prevention of an immune response against particular antigens. 

Immunological tolerance is an active, complex and carefully regulated mechanism especially 

important for the prevention of an autoimmune disease. Tolerance can be central or peripheral, 

depending on where the processes are originally established, i.e., thymus and bone marrow 

(central) or tissues and lymph nodes (peripheral). The autoreactive T cell clones are depleted before 

they develop into fully immunocompetent cells in the thymus, where they are exposed to self-

autoantigens. Most self-molecules, including those with tissue-specific expression, such as insulin, 

are expressed in the thymus early in life to establish central tolerance. However, several 

mechanisms may be impaired causing flawed self-tolerance. A polymorphic variable nucleotide 

tandem repeat (VNTR) sequence at the insulin gene influences the level of insulin expression in the 

thymus. Alleles with predisposing T1D variants are associated with lower insulin expression in the 

thymus (12). An additional mechanism involves epigenetic suppression of the expression of a 

parental copy of insulin (154). HLA molecules associated with T1D predisposition weakly interact 

with proinsulin peptides leading to insufficient presentation to TCR thus enabling the survival of 

thymic selection (155). These mechanisms permit autoreactive clones to escape thymic selection. 

Central tolerance is not the only type of tolerance influenced by T1D. Peripheral tolerance develops 

after T cells mature and enter peripheral tissues and lymph nodes, and its role is to ensure that self-

reactive T and B cells, which escaped central tolerance selection, do not react to autoantigens. The 

main mechanisms involved in peripheral tolerance are direct inactivation of effector T cells by 

clonal depletion, anergy induction or conversion into regulatory T cells (Tregs), which suppress the 

effector functions of other T cells. T1D patients demonstrate defective peripheral tolerance, 

including impaired Treg functions or enhanced effector T cell (Teffs) resistance to Treg suppression. 

Certain risk alleles are associated with immune regulation, for example, CTLA-4 and IL-2RA, which 

control important T cell functions (156).     

1.2.3.2 T cell autoantigens and neoantigens 

Identification of autoreactive T cells involved in the pathogenesis is one of the major objectives for 

T1D research enables the development of antigen-specific methods to prevent and/or reverse the 
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disease (157). Self-reactive CD4 and CD8 T cell clones are present in the T1D pancreas and are also 

detected in the periphery; however, peripheral clones are characterized by exceptionally low 

amounts making their detection difficult. However, the ability to detect and subsequently phenotype 

autoreactive T cells in the periphery has been improved. For example, HLA I monomers/multimers 

or HLA II tetramers can be used to detect autoreactive T cells without in vitro amplification, which 

can influence the phenotypes of these cells (158, 159).  

Analysis of antigen specificity of islet-infiltrating T cells from 9 donors 2-20 years after the diagnosis 

revealed a broad repertoire and heterogeneity in T cell responses, which may reflect the differences 

in HLA restriction, environmental exposure, and disease stage. More than 250 T cell lines and clones 

with distinct specificities were obtained, and only a small fraction (19 out of 50 studied) of them 

reacted to known antigens (160). 

Self-reactive CD4 and CD8 T cell clones recognize several autoantigens, including native proteins 

and epitopes of proinsulin, GAD65, tyrosine-phosphatase-like insulinoma associated antigen 2 (IA-

2), islet-specific glucose-6-phosphatase catalytic subunit related protein (IGPR), cation efflux 

transporter ZNT8, chromogranin, islet amyloid peptide (IAPP), etc. (156). However, increasing 

number of studies suggest that islet autoimmunity also targets neoepitopes, which may be 

unavailable for negative thymic selection. Immune system cannot recognize alternatively spliced 

variants expressed in the pancreas that are not expressed in thymus, which may be the reason for 

promotion of autoimmunity against various epitopes of IA-2 and IGRP (161, 162). Moreover, 

inflammation and stress often cause posttranslational modifications (PTM) of many epitopes. For 

example, T cells are able to recognize oxidized cysteine residues of the insulin A chain (163). 

Citrullination or transglutamination enhance GAD65 binding to a specific HLA allele (164). Peptide 

fusions of C-peptide and other beta cell secretory granule proteins, such as chromogranin, IAPP and 

neuropeptide Y, act as high-affinity T cell targets (157). Finally, predisposing HLA types are crucial 

for neoepitope presentation to T cells (165). 

1.2.3.3 CD4 and CD8 T cells 

CD4 T cells in T1D patients assist effector CD8 T cells, stimulate antibody secretion by B cells and 

stimulate islet-resident macrophages. These cells are defined as proinflammatory cells capable of 

producing IFNγ, IL-17 and other mediators (93). CD4 and CD8 T cells represent the dominant 

immune cell types in pancreatic islets and play the key role in beta cell killing. In T1D, CD4 T cell 

responses play a central role in beta cell autoimmunity; however, the exact epitopes recognized by 

these cells remain unknown (157). Autoreactive CD4 T cells are activated in the pancreatic lymph 
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nodes by APCs that present beta cell antigens. These cells are required for efficient activation of 

autoreactive CD8 T cells and macrophages, which destroy beta cells. Moreover, CD4 T cells can 

directly kill beta cells in an antigen-dependent manner (166).  

Autoreactive T cells are present before the clinical onset of T1D. Naïve CD4+CD45RA+ T cells with 

beta cell reactivity can be detected in the cord blood of healthy neonates with genetic risk (167). 

Presence of naïve CD4+ T cells responsive to a beta cell antigen suggests that T cell autoimmune 

reactivity occurs prior to the development of beta cell-specific memory CD4+ T cell responses and 

seroconversion, which can be beneficial as an early diagnosis biomarker helpful for the prevention 

of metabolic complications often associated with the clinical onset of T1D (168). 

CD8+ T cells are the predominant population of T cells infiltrating the pancreas in T1D during 

insulitis. nPOD studies showed that beta cell destruction is mediated in part by direct contact of CD8 

T cells with beta cells via perforin and granzyme B (73, 169). Moreover, nPOD studies proved broad 

antigen specificity of infiltrated CD8 T cells using HLA multimers. The spectrum of recognized 

autoantigens increases with longer disease duration (73). Autoreactive CD8 T cells are activated 

through MHC I, which consequently leads to contact-dependent beta cell death. Hyperexpression of 

HLA I molecules by endocrine cells in insulin-containing islets explains predominance CD8+ T cells 

in insulitis (170). HLA I expression may be triggered by viral infections associated with T1D risk 

factors (171) or by the effects of proinflammatory cytokines, such as IFNγ or TNFα, on beta cells 

(172).  

1.2.3.4 Regulatory T cells 

A specialized population called regulatory T cells (Tregs) functions as suppressors and regulators of 

immune responses and is the major component of the peripheral tolerance mechanisms. A defect in 

these functions has been shown in many autoimmune diseases, including T1D. A population 

expressing FoxP3 and high level of the IL-2R alpha subunit (CD25) can develop in the thymus 

(tTregs or nTregs) and in the periphery (pTregs). Generation of Tregs depends on their encounter 

with an antigen and IL-2 signalling. IL-2 is a crucial cytokine important for Treg generation, survival, 

proliferation and functions (173). Tregs function via several mechanisms, which can be contact-

dependent or -independent (Figure 6). For example, Tregs deprive effector T cells from IL-2 due to 

the expression of a high-affinity receptor for IL-2 or from tryptophan due to IDO (indolamine 

dioxygenase) production. Tregs also release anti-inflammatory cytokines, such as TGFβ, IL-35 or 

adenosine, and Tregs can directly reduce T cell activation by expressing CTLA-4 (174). These and 

several other mechanisms are involved in Treg-mediated suppression (Figure 6).      
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Figure 6: Treg functions and 
their alterations in T1D 
patients. Both contact-dependent 
and -independent 
(immunosuppressive cytokine 
production, IL-2 adsorption) 
mechanisms of Tregs are affected 
in T1D. Created with Biorender. 

 

 

 

 

 

 

The strongest link between Tregs and autoimmunity is observed in the disorder called IPEX 

(immunodysregulation polyendocrinopathy enteropathy X-linked syndrome) caused by loss-of-

function mutations in the FoxP3 gene. Affected individuals develop a wide variety of pathologies and 

autoimmune diseases, including T1D. T1D develops in more than 80% of IPEX patients under 2 

years of age (175), which means FoxP3 deficiency can provoke T1D regardless of T1D-associated 

genetic and environmental factors. These observations indicate a key role of Tregs in prevention of 

T1D development. Conversely, therapies based on increasing the numbers or functional capacity of 

Tregs can delay T1D progression (176). 

Certain alterations in the functions of Tregs in T1D partially clarify the aspects of T1D pathology and 

provide an opportunity for novel therapeutic interventions or adoptive transfer strategies. Many 

identified loci (IL2RA, IL2, CTLA4, PTPN2 and IL10) (177) associated with T1D risks are involved in 

the functional properties of Tregs.  

In general, the peripheral frequency of Tregs in T1D is unaltered compared to that in healthy 

individuals; however, studies focused on Treg numbers in T1D showed variable results (178–181). 

Studies defining only CD4+CD25hi T cells as Treg showed a decrease in Treg numbers (182), whereas 

studies using more accurate markers, FoxP3 and CD127, reported unaltered numbers. Our group 

has reported quantification of Tregs using a more accurate gating strategy based on the expression 

of CD25, FoxP3 and CD127; however, we have demonstrated a decrease in the numbers of Tregs in 
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circulation in a large cohort of long-term treated patients (183). Treg identification in humans is not 

easy because FoxP3 is transiently expressed also in effector T cells (Teffs) and high expression of 

CD25 is also detected on activated T cells, meaning that the population identified as 

CD4+CD25+FoxP3+ may be a mixture of regulatory and non-regulatory T cells (184). Treg definition 

is also hindered by the fact that Treg population is a heterologous group of cells with distinct 

phenotypic subtypes of the cells that reflect various stages of maturation and activation or use 

distinct types of suppression (185). 

In T1D, Tregs demonstrate clearly impaired suppressive properties. In T1D patients, Tregs are less 

able to control the proliferation of Teffs; this phenomenon was reported for the first time in 2005 

(178). Moreover, cytokine analysis revealed a Treg trend towards proinflammatory cytokine 

production in individuals with T1D, whereas Tregs from healthy control subjects also produce IL-

10. The reduced suppressive ability of Tregs appears to be consistent because it is still present in 

patients 20 years after the diagnosis. Additionally, an increase in the population of Tregs producing 

IFNγ and IL-17 was reported in T1D (186, 187). Several groups reported an increase in Treg 

apoptosis close to diagnosis, and Treg apoptosis starts to decrease 6 months after the diagnosis 

(188, 189). 

Considering the key role of IL-2 signalling in all important Treg functions, Treg intrinsic defects 

were postulated to be associated with reduced IL-2 signalling (190, 191). If the source of IL-2 is 

limited, Tregs cannot maintain FoxP3 expression and display reduced suppressive functions; 

however, the precise molecular mechanism remains unknown (192). Our group also reported 

impaired IL-2 signalling in Tregs of T1D patients. Tregs of T1D patients expressed lower level of 

CD25, and reactivity of these Tregs to IL-2 was diminished based on a reduction in STAT5 

phosphorylation (183).   

Interestingly, studies in human cadavers revealed that pancreas barely contains infiltrating FoxP3+ 

T cells (87), suggesting that regulation of the immune response is located elsewhere. An 

investigation of human lymph nodes of T1D individuals showed diminished suppression by Tregs 

and increased production of IL-17 (193). 

In addition to FoxP3+ T cells, other CD4+ T cell subsets display regulatory functions mediated by 

characteristic high IL-10 production. These T regulatory type 1 (Tr1) Tregs can inhibit T cell 

responses and modulate the functions of antigen-presenting cells (APC) via several mechanisms, 

such as expression of inhibitory molecules, cytolytic activity and IL-10 production (194). In T1D, 



 

- 34 - 

 

 Literature overview 

exposure to islet autoantigens results in generation of a population of CD4+ T cells with potent 

suppressive properties and high IL-10 secretion. This population of Tr1 is enriched in individuals at 

risk of T1D which lack islet autoimmunity. These cells are also associated with a less aggressive 

form of T1D and Tr1 cells of first-degree relatives secrete more IL-10 compared with that in T1D 

patients, suggesting that this population is associated with protection from islet autoimmunity (93). 

1.2.3.5 T cells and Tregs as a therapeutic target 

Current strategies for immunotherapies can be classified as antigen-independent and antigen-

dependent. Non-antigen specific interventions include general immunosuppression, antibody-based 

therapies that allow polyclonal depletion of T and B cells, cytokine-based strategies and an increase 

in the numbers of polyclonal Tregs (195). Teplizumab and otelixizumab are antibody-based 

therapies comprising anti-CD3 monoclonal antibodies targeting the CD3/T cell receptor (TCR) 

complex to convert T cells into an anergic stage; the drugs have been tested and clinically approved 

in T1D patients for C-peptide preservation (152). Abatacept is a fusion protein composed of the Fc 

region of human IgG1 fused with the extracellular domain of CTLA4 and a costimulatory molecule 

inducing anergy in T cells; the drug has demonstrated potential against T1D in a recent clinical trial 

(196). The elimination of autoreactive memory T cells is necessary to obtain lasting results. This 

goal can be achieved by blocking CD2 signalling by alefacept, a fusion protein that promotes 

apoptosis in memory and effector T cells. However, a clinical trial utilizing alefacept achieved only 

modest preservation of beta cell functions (197). Anti-thymocyte globulin (ATG) in combination 

with granulocyte colony-stimulating factor (G-CSF) was able to deplete activated T cells and induce 

the protection of the beta cell mass (198). 

Natural polyclonal expansion of autologous Tregs was suggested as a promising therapy for T1D 

patients. A clinical trial has shown that adoptive transfer of Tregs is safe and feasible (199). Another 

clinical trial was testing low doses of IL-2 to selectively promote Treg activity with the rationale that 

Tregs respond to lower doses of IL-2. Although low dose IL-2 therapy was able to increase the Treg 

numbers, it did not result in better glycaemic control (200). 

 To prevent beta cell destruction, the most relevant T effector clones have to be deleted by antigen-

dependent treatment strategies, which allow preservation of normal immune homeostasis. The 

main objectives include induction of tolerance of self-reactive T cells and expansion of autoantigen-

specific Tregs. Success in tolerization of T effector cells depends on various factors, especially 

identification of the autoantigens that drive the process (195). Identification can be achieved by 

beta cell-autoantigen vaccination strategies. Well-known T cell epitopes against insulin and glutamic 
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acid decarboxylase have been investigated. The administration of C19-A2 proinsulin peptide 

resulted in the higher C peptide levels in recently diagnosed T1D patients (201). 

In recent years, immunotherapy using engineered T cells expressing chimeric antigen receptor 

(CAR) specific against CD19 emerged as a breakthrough in cancer immunotherapy of B cell 

leukaemia (202). It is logical to hypothesize that improving Tregs with beta cell-specific CARs may 

enhance Treg functions to protect islet cells from destruction. Several studies demonstrated 

considerable potential for CAR-Tregs therapy in autoimmune and other disorders, such as EAE, 

haemophilia A or asthma (203–206). In T1D, the lack of specific autoantigens to generate islet-

protective CAR-Tregs remains the biggest challenge (207). 

1.2.4 B cells 

Islet antigen-specific T cells are believed to be the main destructors of the beta cells; however, 

increasing evidence shows that islet-specific B lymphocytes are also involved in TD pathogenesis. 

However, precise role of these cells is unclear. The depletion of this population delays the disease 

progression in newly diagnosed patients, and the numbers of pancreatic CD20 B cells correlate with 

beta cell loss (208, 209). B cells are present in small numbers in early insulitis and are recruited as 

beta cell death progresses, suggesting that they are a consequence rather than the cause of insulitis 

(87). B lymphocytes are capable of autoantigen presentation to T cells and production of cytokines 

and autoantibodies in humans and mice (54, 210, 211) (Figure 7). In 2001, a study reported an 

individual deficient in B cells who developed T1D (212), indicating that B cells are not necessary for 

the development of the disease; however, other studies have shown that individuals with 

lymphopaenia may accumulate autoreactive T cells through homeostatic expansion that does not 

involve B cells (213). The exact role of B cells in T1D pathogenesis remains a subject of 

investigation. 

1.2.4.1 B cells as autoantibody and cytokine producers 

The presence of islet autoantibodies is one of the T1D predictors and supports the pathogenic role 

of B cells. Individuals with more than two islet autoantibodies are almost guaranteed to develop 

T1D. However, the autoantibodies do not have pathogenic potential, and their production is 

probably a byproduct of anergic B cell activation (214). All known B cell epitopes are intracellular, 

preventing antibody-dependent cell-mediated cytotoxicity and eliminating the cytolytic function of 

the autoantibodies. A negative correlation between the level of autoantibodies and T cell 

proliferation has been observed (215, 216), suggesting that autoantibodies may function in the 
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immune regulation of ongoing inflammation and that B cells display impaired regulation and not 

pathogenic activities. B cells must be initially activated by T cells and cannot prime naïve T cells, 

signifying that autoantibodies are a consequence of a loss of tolerance towards beta cells, which is T 

cell-mediated. Therefore, it is unlikely that B cells initiate the disease pathology (217). Interestingly, 

prevalence of diabetes-associated autoantibodies in the general population is 3% versus 0.3% 

prevalence of these antibodies in T1D, and 90% of seropositive individuals remain healthy (218).  

B cells can be activated by sensing danger-associated molecular patterns (DAMPs), such as 

extracellular DNA, RNA or others molecules, via TLR (Toll-like receptors) with subsequent release 

of proinflammatory cytokines, such as IL-6 or TNFα (219, 220), that in turn accelerate 

proinflammatory environment and contribute to the initiation of diabetic kidney disease (221).  

1.2.4.2 B cells as antigen-presenting cells 

Several studies suggested that B cells contribute to the T1D pathology by presenting islet 

autoantigens to autoreactive T cells. One of the studies on cadaveric pancreatic tissues focused on 

the infiltrating cell population revealed that B cells accumulate in the pancreas during the 

development of insulitis together with CD8 lymphocytes, supporting an idea about B cell cross-

presentation to CD8 T cells (87). However, B cells are less efficient that DCs if they do not express B 

cell receptor (BCR) for a certain islet autoantigen 

(74, 75). In NOD mice, inhibition of antigen 

presentation activity of B cells prevented T1D 

development demonstrating the importance of B 

cells in antigen presentation to CD4+ T cells and in 

cross-presentation to CD8+ T cells (210, 222). The 

ability to present autoantigens likely results from 

compromised B cell anergy, which can result from 

the effects of genetic and/or environmental factors 

(214). B cells contribute to the later stages of the 

disease by increasing the rate and range of islet 

destruction through epitope spreading (217).   Figure 7: Contribution of B cells in T1D  

1.2.4.3 B cell subpopulations 

T1D is an organ-specific autoimmune disease; ideally, the studies should focus on the cells localized 

in targeted tissues; however, many studies have been performed on peripheral blood presuming 
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that changes in the pancreas are mirrored in the periphery. Several studies attempted to identify the 

changes in the B cell compartment during the disease progression. Autoreactive B cells at both 

stages, including new emigrants and mature naïve cells, have been found in the circulation in T1D 

patients suggesting a deficiency of the tolerance mechanisms (223).  

B cells undergo complex development from the bone marrow as “transitional” B cells to the 

periphery and particularly to the spleen. In the spleen, transitional B cells are rescued from the 

negative selection by apoptosis induced by self-reactivity under the influence of BAFF, also known 

as BlyS (B cell-activating factor). BAFF also drives the transitional B cells towards differentiation 

into long-lived and T cell-independent IgM-producing “marginal zone-like” B cells or “naïve” 

follicular B lymphocytes. Upon encountering their antigens, naïve B cells mature and enter into the 

peripheral lymphoid organs, where they cooperate with T cells and become memory B cells and 

eventually plasmablasts and plasma cells (224). B cell development is illustrated in Figure 8. 

 

 

 

 

 

 

 

 

 

Figure 8: B cell development. Created with Biorender. 

The transition of B cells from the bone marrow to the circulation represents a crucial step mostly 

due to the presence of tolerance checkpoints establishing subsequent antigen-driven development 

of B cells in the peripheral lymphoid tissues. Several studies focused on the alterations in B cell 

subpopulations in T1D with inconclusive outcomes. A study showed elevated percentages of MZ-like 

B cells in adult patients with T1D (225). Another group reported a lack of differences between 

patients and controls; however, the study was limited to a small cohort (226). Our group focused on 

the B cell compartment in the large cohorts of T1D patients and their relatives and demonstrated 
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that B cells are skewed in T1D due to a decrease in the number of cells at earlier stages and a shift 

towards antibody-secreting plasmablasts (227). The differences between the studies are 

predominantly caused by various gating strategies and material used for the analysis.  

B cell at the periphery display disrupted maturation in long-standing T1D patients, who expressed 

considerably lower levels of the BAFF receptor (TACI) compared to the levels of other maturation 

molecules (228). BAFF can rescue and promote the survival of low-affinity autoreactive clones of B 

cells (229) and has thus gained considerable attention, especially in the field of autoimmune 

diseases (230). In our work, we show lower expression of BAFF receptor (BAFFR) on B cells and 

impaired reactivity to BAFF of B cells and T cells (227).  

1.2.4.4 B cells as a therapeutic target 

Current B cell therapies have focused on depletion of B cells in general and have not considered 

antigen specificity, which results in issues due to increased risks of infections and 

hypogammaglobulinaemia. Rituximab is an anti CD20 monoclonal antibody that targets pre-B cells 

and mature B cells and causes cell lysis by inducing antibody-dependent cell-mediated cytotoxicity, 

which reduces the activation of self-reactive T cells. A patient with newly diagnosed T1D receiving 

this treatment demonstrated an increase in the levels of C-peptide and required lower doses of 

insulin 1 year after the treatment. However, 30 months after the treatment, the effect was abolished 

following B cell recovery, which probably mirrored the return of autoreactive B lymphocytes (231, 

232). In an animal model, the treatment also targeted BAFF and a proliferation-inducing ligand 

(APRIL) molecules that play important roles in B cell development and maturation (233). 

1.2.4.5 A novel type of immune cells 

Recently, in 2019, Ahmed et al. described a hybrid lymphocyte, which bears the characteristics of 

both B and T cells and plays a role in T1D autoimmunity; however, the mechanisms and 

development of this population are unknown. Using flow cytometry, the group has identified a cell 

population expressing both TCR and BCR on the surface. The cells express genes specific to T and B 

cells, and the population had higher frequency in T1D patients. In this dual population, BCR is 

expressed as a specific sequence present in the majority of the cells of the population, which is 

unusual because this region is usually very diverse. Notably, the sequence was detected only in T1D 

patients and was not detected in healthy individuals. The authors suggested that the sequence of the 

peptide, which can tightly bind to HLA-DQ8, is a variant that also binds insulin and plays a major 
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role during the initial phase of the disease; the authors suggested that this sequence can be used as a 

marker for early diagnosis (234). 

In summary, the mechanisms of T1D immunopathology are overly complex and involve various cell 

populations and their altered functions. The main cell populations and products involved in the 

autoimmune reactions in T1D are illustrated in Figure 9. 

 

Figure 9: Complex immune reactions involved in T1D immunopathology. Both innate and 
adaptivity immunity cells are involved in T1D pathogenesis. Enhanced NET formation and/or 
insufficient NET elimination lead to inappropriate activation of APC, which consequently activate 
autoreactive T and B lymphocytes. Created with BioRender   
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AIMS OF THE THESIS 

Efforts to understand the mechanisms of the type 1 diabetes (T1D) pathology continue. The number 

of tentative clinical T1D therapies is increasing every year; however, widely available and effective 

therapies for T1D patients are unavailable at this moment. Investigation of the immune system 

dysregulation in T1D will provide further opportunity for the therapeutic approach based on the 

prevention or reversal of immune-mediated damage to insulin-producing cells. In this thesis, we 

have focused mainly on the role of dendritic cells, which is the crucial population shaping the 

adaptive T and B cell responses, T cell tolerogenicity and often ignored neutrophils. 

The specific objectives of this thesis are: 

• To assess the role of neutrophil extracellular traps in shaping dendritic cell response in T1D 

• To evaluate the aberrant sensing of microbial and self-DNA by T1D monocytes and dendritic 

cells in T1D and its potential impact on pathogenesis of the disease 

• To explore the effect of IL-27 on dendritic cells within the context of T1D  

• To monitor the role of T regulatory lymphocytes in prevention or acceleration of T1D 

• To map the alteration of B cell subpopulations in T1D patients and their relatives, especially 

concerning the presence or absence of diagnostic autoantibodies 
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 Results 

1.1 NEUTROPHIL EXTRACELLULAR TRAP INDUCED DENDRITIC CELL 

ACTIVATION LEADS TO TH1 POLARIZATION IN TYPE 1 DIABETES 

Neutrophil extracellular traps (NETs) are a source of autoantigens and danger-associated molecules 

that contribute to the pathogenesis of several autoimmune diseases. The aim of this paper was to 

determine whether NETs are an active player in type 1 diabetes (T1D) pathology. We showed that 

NETs induce a shift towards IFNγ-producing T cells, canonical inducers of T1D, through activation of 

dendritic cells (DCs). This activation was manifested as increased expression of maturation 

markers, production of proinflammatory cytokines and metabolic switch towards glycolysis. 

Moreover, T1D-NETs were able to induce a similar proinflammatory phenotype in healthy DCs, 

while healthy NETs had no effect on DCs. Interestingly, RNA-seq analysis revealed that T1D-NETs 

were able to create a pro-T1D signature in healthy DCs. Our data indicated that NETs and 

neutrophils play an important role in T1D pathogenesis and identify another critical connection 

between innate and adaptive immunity in T1D pathogenesis. 

This was my longest project; the methodology and pipeline for this project was established from the 

ground up, including the techniques of neutrophil isolation, NET generation, microscopy, coculture 

with DCs and T cells, ImageStream and RNA-seq. The project ended up as a part of 2 publications in 

international peer-reviewed journals and 2 Czech articles and was presented as an oral 

presentation at several conferences (FOCIS 2019, Boston USA; EFIS on tour 2019, Prague, CR; and 

CSAKI 2020, Prague, CR). Interestingly, this project was a part of a grant project supported by Czech 

Ministry of Health, which was nominated for the Ministry of Health Award. 

 

 

 

 

 

My contribution: experimental design, generation of NETs and monocyte-derived dendritic cells 

(moDCs), functional tests of moDCs, including phenotype, cytokine production, DC and T cell cocultures, 

analysis of T cell subpopulations, data analysis and interpretation, RNA seq analysis, figures and 

manuscript preparation 
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1.2 MONOCYTES CONTRIBUTE TO DNA SENSING THROUGH THE 

TBK1 SIGNALLING PATHWAY IN TYPE 1 DIABETES PATIENTS 

In this project, we focused on aberrant recognition of both self and nonself nucleic acids by the 

innate immune system in T1D patients. Abnormal sensing of microbial or self-DNA and consequent 

activation of the immune system are known mechanisms associated with immunopathology of 

several autoimmune diseases; however, these issues have been rarely investigated in T1D. Thus, in 

a cohort of T1D patients, we have investigated the role of Toll-like receptor 9 (TLR9), the most 

potent receptor of microbial DNA, and participation of cytosolic sequence-nonspecific DNA sensors 

in DNA sensing of microbial and host DNA. Neutrophil extracellular traps (NETs) were used as a 

model of self-DNA.   

The data demonstrated the prominent production of proinflammatory cytokines by T1D monocytes 

and plasmacytoid DCs (pDCs) upon DNA exposure, which was not mirrored in healthy cells. pDCs 

recognized DNA mostly through TLR9; however, monocytes frequently engaged cytosolic DNA 

receptors other than TLR9. Image cytometry was used to demonstrate colocalization of DNA with 

STING, a cytosolic DNA receptor, in monocytes. Then, we demonstrated the activation of TBK1, a 

kinase facilitating the signalling of these cytosolic DNA sensors. Therefore, monocytes trigger the 

STING and TBK1 signalling pathways to increase the production of proinflammatory cytokines and 

type I interferons, thus contributing to the pathology of T1D.  

We have also shown that this proinflammatory loop involving TBK1 is active upon stimulation with 

artificial ligands and by direct stimulation with diabetic NETs. This work showed that aberrant DNA 

recognition mostly by monocytes in T1D patients is involved in the proinflammatory environment 

associated with the autoimmune processes.  

 

 

 

 

My contribution: in general part about self-DNA recognition, NET generation, cytokine production 

upon NET exposure, inhibition assays, data analysis and interpretation, consultations, figure and 

manuscript preparation 
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 Results 

1.3 ENHANCED STAT3 PHOSPHORYLATION AND PD-L1 

EXPRESSION IN MYELOID DENDRITIC CELLS INDICATE IMPAIRED 

IL-27RALPHA SIGNALLING IN TYPE 1 DIABETES 

The study of dendritic cells in T1D pathology has a rich history at the workplace where I have been 

working during my Ph.D. studies. RNA microarray assays of sorted T1D and healthy DCs were 

performed in cooperation with a biotech company, Sotio, ac. The results of the array-based assays 

revealed significantly higher expression of IL-27 receptor alpha subunit (IL-27Ralpha) in a 

population of myeloid DCs (mDCs). IL-27 has both pro- and anti-inflammatory features and is 

known as an important factor for T cell differentiation; however, its effect on DC remains unknown. 

Therefore, we aimed to determine whether higher expression of the receptor subunit results in 

impaired IL-27 signalling and what are the effects of these changes on DC biology. We have analysed 

the signalling through the IL-27 receptor in mDCs, leading to STAT1 and STAT3 phosphorylation. An 

increase in STAT3 phosphorylation was mirrored by enhanced PD-L1, PD-L2 and PD-1 expression, 

suggesting the presence of certain compensatory mechanisms of mDCs in T1D against ongoing 

inflammation. The results of a similar set of experiments on a group of T2D patients revealed that 

our observations were specific for T1D patients. 

This project resulted in a publication in Cell Reports and in a review article published in Alergie and 

helped to establish cooperation with our fellows from the Sotio, ac. 

 

 

 

 

 

 

 

My contribution: experimental design, set up of phosphoflow, DC phenotype, data interpretation, 

figures and manuscript preparation 
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1.4 CHANGES IN INNATE AND ADAPTIVE IMMUNITY OVER THE FIRST 

YEAR AFTER THE ONSET OF TYPE 1 DIABETES 

This long-term multiparametric study was focused on the changes in the innate and adaptive 

immune system parameters in paediatric type 1 diabetic (T1D) patients in the first year following 

the onset of the disease. The patients were tested at 3 time points (0, 6 and 12 months after the 

onset of the disease) to determine a set of immunological (leukocyte subsets, immunoglobulins, 

complement, autoantibodies, T and B cell subpopulations and DCs) and metabolic (mixed meal 

tolerance test and C peptide area under the curve) parameters. Robust statistical analysis of the data 

demonstrated considerable changes in innate and adaptive immunity during the first year after the 

T1D diagnosis. We documented a gradual decrease in leukocytes, especially neutrophils. On the 

other hand, the levels of Tregs and pDC were increased over time. pDCs have been implicated in the 

stimulation of cytotoxic T cells through IFNα production after recognition of the neutrophil-

associated products in prediabetic pancreas. We proposed that pDCs migrate from the pancreas to 

the peripheral blood after the disease has been manifested. Increased Treg numbers during the first 

year after manifestation may represent a tolerogenic response to pancreatic inflammation. 

Interestingly, immunological parameters did not correlate with residual beta cell activity, 

suggesting that the changes in the immune system parameters are not associated with the metabolic 

changes during the first year after the onset of the disease.   

 

 

 

 

 

 

 

 

My contribution: discussion regarding innate immunity parameters, particularly neutrophils and 

dendritic cells  
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1.5 T REGULATORY LYMPHOCYTES IN TYPE 1 DIABETES: IMPAIRED 

CD25 EXPRESSION AND IL-2 INDUCED STAT5 

PHOSPHORYLATION IN PAEDIATRIC PATIENTS 

T regulatory lymphocytes (Tregs) play a well-known and crucial role in the prevention autoimmune 

diseases mediated by several immunosuppressive functions. In this project, we have investigated 

the numbers and functions of Tregs in a large cohort of T1D patients and their first-degree relatives. 

We have observed a decrease in Treg numbers in the periphery in patients and altered functionality 

of Tregs. In T1D, Tregs expressed lower levels of CD25 (IL-2Ralpha), an essential molecule for Treg 

survival and appropriate functions. In T1D patients, Tregs had impaired IL-2 signalling. A decrease 

in CD25 expression was mirrored by lower STAT5 phosphorylation in Tregs upon IL-2 stimulation. 

Our data demonstrate functional impairment of Tregs in T1D, which may contribute to the 

autoimmune inflammatory response facilitating the destruction of pancreatic beta cells and the 

progression of the disease. 

 

 

 

 

 

 

 

 

 

 

 

My contribution: analysis of Treg population, IL-2 signalling, phosphoflow, data analysis and 

interpretation, figure and manuscript preparation  
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1.6 ALTERATION OF B CELL SUBSETS AND THE RECEPTOR FOR B 

CELL ACTIVATING FACTOR (BAFF) IN PAEDIATRIC PATIENTS 

WITH TYPE 1 DIABETES 

B cells are producers of T1D autoantibodies, which serve as an essential diagnostic marker with a 

potential pathogenic role, and attracted attention as a prospective therapeutic target in various 

autoimmune diseases; thus, we have analysed alterations in B cell subsets in a large cohort of T1D 

patients and their first-degree relatives. Moreover, we have focused on B cell-activating factor 

(BAFF); BAFF is a cytokine crucial for B cell development associated with autoimmunity 

progression since BAFF can promote the survival of autoreactive B cell clones. We have measured 

the expression of B cell-activating factor receptor (BAFFR) on B and T cells in these cohorts and the 

effect of the activating cytokine BAFF on T and B cells. The B panel included naïve, transitional, MZ-

like and switched memory cells and plasmablasts. T1D patients were characterized by significantly 

reduced numbers of early developmental stages and a shift towards antibody-secreting 

plasmablasts in the B cell compartment. Interestingly, we showed that impaired BAFF signalling 

may play a role in the alterations in the B cell compartment in T1D. In T1D, naïve and transitional B 

cells had higher proliferation after BAFF exposure than that in healthy cells. 

 

 

 

 

 

 

 

 

 

My contribution: B panel analysis, BAFF effect on T and B cells, data interpretation, figure and 

manuscript preparation 
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1.7 NEUTROFILNÍ EXTRACELULÁRNÍ PASTI – ZÁCHRANNÉ SÍTĚ 

IMUNITNÍHO SYSTÉMU (NEUTROPHIL EXTRACELLULAR TRAPS – 

IMMUNE SYSTEM’ S SAFETY NET) 

In this literature review published in Czech language, I have described neutrophil extracellular traps 

(NETs), their composition, physiological role, effect on various cell types and their 

immunopathological contribution to immunodeficiencies, autoimmune diseases and cancer. This 

review was recognized as the best review published in Alergie in 2017. 

 

My contribution: the literature review, manuscript and figure preparation 

 

1.8 PATOGÉNY V PASCI DNA (PATHOGENS IN THE DNA TRAP) 

In this popular science article written in Slovak language, I described innate immunity mechanisms 

used in the fight against infections with special focus on neutrophils and theirs NETs. 

 

My contribution: literature review, figure and article preparation 
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 Conclusions 

CONCLUSIONS 

Based on a series of our findings concerning the innate and adaptive immune responses in T1D 

patients, we conclude:  

• adaptive and innate immunity changes occur before the onset of T1D 

• neutrophil numbers gradually decrease after the onset of T1D 

• neutrophil extracellular traps shape T cell polarisation through DC activation and are able to 

induce the pro-T1D profile in healthy DCs 

• monocytes and dendritic cells of patients aberrantly recognize, both self- and nonself-DNA 

• T1D monocytes engage intracellular sensor in DNA recognition 

• enhanced IL-27 signalling in myeloid DCs in long-term treated T1D patients may serve as a 

compensatory mechanism of ongoing inflammation 

• impaired IL-2 signalling in Tregs in T1D represents a crucial point in T regulatory impairment in 

T1D  

• a shift towards mature forms of B lymphocytes in T1D patients 

 

All observed changes reflect a complex network of immune reactions of the innate and adaptive 

immunity in a T1D setting, which finally leads to a loss of immune tolerance and ongoing 

autoimmune process with a clinical presentation of T1D.  
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 Summary 

SUMMARY 

Type 1 diabetes (T1D) is an autoimmune disease with increasing prevalence. Epidemiologic studies 

suggest that T1D incidence is increasing by 3% every year (3); there is no effective therapy that 

prevents the disease, and only symptomatic treatment is available. The detailed understanding of 

the disease pathology will provide new therapeutic approaches.  

The main contribution of this thesis to the current knowledge is that we were the first to 

demonstrate that aberrant DNA recognition by innate immunity cells plays an important role in 

inflammation associated with T1D pathology. Neutrophils and their products, neutrophil 

extracellular traps composed predominantly from self-DNA, have an immense effect on the immune 

response pattern in T1D, particularly on dendritic cells and consequently T lymphocytes, which are 

the canonical T1D inducers. The changes in the innate immune system result in the downstream 

changes in the adaptive immune system components demonstrated by us as the alterations in the 

numbers and functions of Tregs and B cells. In summary, we encourage further studies because the 

findings directly translate to potentially useful diagnostic and therapeutic approaches.  
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