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Preface

This habilitation thesis is a compilation of publications from the domain of
structural bioinformatics authored or co-authored by David Hoksza. The
techniques introduced in the publications were developed between the years
2011 and 2019 mainly at Charles University, Prague. The motivation was to
aid molecular function discovery with the focus on i) similarity modeling of
RNA structures and ii) protein binding site detection.

The thesis is divided into two parts. Part I contains the commentary to the
contributions on which the thesis is based. As the presented research relates
to the domain of bioinformatics, we decided to include a primer introducing
the main bioinformatics concepts so that the thesis can be easily followed
also by readers without any molecular biology background. This introduction,
together with the motivation which follows, form Chapter 1. Chapter 2 and
3 outline the particular contributions of the thesis. Part II then consists of
the 9 publications in which these contributions were introduced. The list of
the publications follows:
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3. David Hoksza and Daniel Svozil. Multiple 3D RNA structure superpo-
sition using neighbor joining. IEEE/ACM transactions on computational
biology and bioinformatics, 12(3):520-530, 2014. DOI: 10.1109/TCBB.2014.2351810

4. Petr éech7 David Hoksza, and Daniel Svozil. MultiSETTER: web server
for multiple RNA structure comparison. BMC bioinformatics, 16(1):
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Chapter 1

Introduction

For many people, the terms bioinformatics and DNA sequencing coincide
and although, indeed, the advent of sequencing would not have been possible
without bioinformatics, bioinformatics is a much broader field. Its origins date
way back in time to the 1960s when protein sequence determination became
available. The Edman degradation method [Edman and Begg, 1967], which
was typically used at that time, was suitable for the determination of only short
sequences and computational methods had thus to be developed to recover
sequences of longer proteins [Gauthier et al., 2018]. The necessity to organize,
store and distribute the obtained experimental data led to the development of
resources such as the Atlas of Protein Sequence and Structure [Dayhoff, 1965],
the first computerized protein collection [Strasser, 2010], ancestor of current
major bioinformatics resources. At approximately the same time, advances
in crystallography enabled to determine the three-dimensional structure of
several proteins, which later became the foundation of the Protein Data
Bank [Berman, 2008]. The Atlas and PDB thus formed the roots of the
two main subfields of bioinformatics: sequence bioinformatics and structural
bioinformatics.

The existence of resources such as the Atlas was and still is essential as it
allows using algorithms to integrate and relate various types of data from a
broad range of species. Such integration efforts then open ways for recovering
information hidden in the experimental data and support discovery by means
of transfer of knowledge between different levels of organization and species.
This approach, fueled by the existence of the experimental data repositories,
effectively enabled the transformation of biology and life sciences in general
from purely experimental science towards more information-oriented science.

The above-mentioned knowledge transfer is only possible due to the role
which similarity plays in molecular biology (see section 1.2). Indeed, the
notion of similarity is deeply entrenched in the roots of bioinformatics and



underlies many of the computational approaches in the field. To understand
why this is the case (section 1.2), we first need to introduce the main molecular
biology concepts (section 1.1), how they are related to each other and how
they map to the concepts in computer science (section 1.1.2).

1.1 Molecular players and their interactions

Although there exists a range of molecules involved in biological processes, the
major focus of bioinformatics is on studying three classes of biopolymers: 1)
DNA; molecules where the genetic information is stored, 2) RNA; molecules
which both have the capacity to transfer the information stored in DNA and
to carry out enzymatic function on their own and 3) proteins; the major
functional molecules which carry out a plethora of biological functions in
living systems such as catalytic function (enzymes), carrying small molecules
(transport proteins), storage of other molecules for later use (storage proteins),
building various structures such tendons, ligaments, hair, nails, silk and others
(structural proteins), protection against external factors such as bacterial
infection (defensive proteins), regulation of various molecular processes such
as metabolism or gene transcription (signal/regulatory proteins) or detection
of stimuli, e.g. on cell membrane (receptor proteins). Apart from the large
biomolecules, also a plethora of small molecules is of interest to molecular
biology since these either modulate the function of the macromolecules or
are the sole purpose of existence of some of the proteins. For example, the
purpose of hemoglobin is to carry around oxygen molecules.

The three macromolecules are closely linked as the information encoded
in DNA is transferred to RNA which then translates to proteins. An RNA
molecule is thus built on the blueprint of a part of a DNA molecule, i.e. gene,
and similarly, a protein is built on the blueprint of an RNA molecule. This
main pathway of information passing, together with DNA/RNA replication
and RNA reverse transcription, is called the central dogma of molecular
biology. The dogma thus describes the way how information is copied in the
system .

The copying of information is one part of the flow of information in the
living systems. The second part consists in spreading of the information.
As soon as the information takes its shape, i.e. the functional form of a
molecule is formed, the information starts spreading through the system by

Tt should be emphasized that the copying is not one-to-one as some regions of DNA are
removed during RNA splicing. Moreover, there exist other indirect sources of information
as the resulting proteins are further edited by a range of posttranslational processes and
information about these processes is not encoded in the gene coding for given protein.



means of interacting with its environment. Interaction ensures the spreading of
information because the function of a molecule is determined by its interaction
with other molecules. This molecular interplay happens between two or more
molecules, which can be one of DNA, RNA, protein, or small molecule.
Binding of molecules can affect the system in various ways. For example, one
of the interacting molecules can change shape, opening the possibility for new
action. A biological process then consists of a (not necessarily linear) series
of such actions among molecules leading to given product or change. These
series of actions securing specific functions are called pathways. Pathways
can be seen as rather well-separated subsystems where the information is
being received and produced via a set of well-defined inputs and outputs.
Disruption of a pathway can then lead to a disease state, or, conversely,
by targeting molecules in a pathway one can alleviate disease symptoms.
However, before targeting a molecule, one first needs to understand which
pathways the molecule is involved in because altering a molecule (for example,
via genetic modification of a gene encoding given protein product or via
introducing a molecule acting as an inhibitor or activator) can affect all the
pathways in which given molecule is involved. However, if the change is
targeted in such a way that it affects specific interaction site of a protein but
keeps the others, then the impact of the change might not have an effect on
the protein’s other functions. Therefore, information about all the functions of
a molecule in the system and how these are carried out is of great importance.
And so are the methods for their detection.

1.1.1 Levels of molecular structure organization

As the molecules exist and interact with each other in a three-dimensional
environment, 3D representation of a molecule, i.e. the spatial arrangement
of atoms and their corresponding physico-chemical properties, contains all
the information governing the molecule behavior. However, to obtain the
structure of a molecule is more difficult than obtaining its sequence. So the
full structure might not always be available or it might not even be required as
it might add an unnecessary level of complexity. For those reasons, different
levels of organization/abstraction known as primary, secondary, tertiary and
quaternary structure are being exploited when working with the DNA, RNA
and protein molecules.

DNA, RNA, and protein molecules are linear polymers which fold into
intricate three-dimensional shapes via intra-molecular residue interactions.
The monomeric units (residues) are (di)nucleotides, in case of DNA and RNA,
and amino acids, in case of proteins. The linear sequence which is formed by
covalent bonds between the residues is called the primary structure, sequence
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Figure 1.1: Illustration of the levels of molecular organization. Please note
that the primary and secondary levels do not represent real molecules. Sec-
ondary level images only show several secondary structure motifs for the
purpose of illustration. The illustration of DNA secondary structure is taken
from [Bochman et al., 2012]. The full secondary structure can be much more
complex. For example Figure 2.3 shows full secondary structure human small
ribosomal RNA subunit. The tertiary /quaternary structures, on the other
hand, are visualizations of real experimental data. The DNA (PDB 1AOI)
visualization shows a nucleosome complex consisting of histone proteins in the
middle encircled by a DNA loop. The RNA visualization (PDB ID 1FKA) is
an example of small ribosomal RNA subunit. Finally, the protein visualization
(PDB ID 2YDV) is an example of a GPCR protein, concretely the adenosine
A2A cell membrane receptor. Here, the red part, consisting of a stack of seven
alpha-helices, is the part of the protein which is nestled in the cell membrane
while the rest of the structure is able to communicate information from the
exterior of a cell to its interior.

or chain. The atoms which are connecting the residues in the chain form
so-called sugar-phosphate (DNA, RNA) or polypeptide (proteins) backbone.
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The secondary structure is characterized by the hydrogen bonds, or possi-
bly other non-covalent bonds, within the molecule. These bonds tend to form
regular substructures which are known as secondary structure elements. DNA
consists of two chains where nucleotide ¢ is hydrogen bound to a nucleotide
n —i (n being the length of the nucleotide chain), but apart from this regular
and well-known pattern DNA secondary structure can also form non-standard
elements such as G-quartets, cruciform or triplex which were long thought to
be only in vitro artefacts [Bochman et al., 2012]. RNA, which contains only a
single chain which folds onto itself, forms a complicated secondary structure
with typical secondary structure elements being hairpin loops, bulges, internal
loops, and multibranch loops [Hendrix et al., 2005]. In the case of proteins,
we recognize two main types of secondary structure elements: a-helix and
[-sheet. Multiple secondary structure elements can come together in the
3D space, forming so-called structural motifs, or super secondary structure.
These are important since the specific arrangement of secondary structure
motifs tend to be associated with particular chemistry and thus function.
Although the same structural motif can be found in molecules with dissimilar
function, they can be used as an indicator of a specific behavior. For example,
lipocalins, a family of proteins which transport hydrophobic molecules, are
known to share beta barrel in its structure[Flower et al., 1993].

The positions of all the atoms of the constituent residues are referred to
as the tertiary structure of a molecule. The tertiary structure is formed by a
process called folding when the linear chain of residues folds into its target
three-dimensional shape.

If multiple chains need to come together for a molecule to assume a
functional form, the resulting multimer is referred to as the quaternary
structure. In the case of proteins, the quaternary structure consists solely
of polypeptide chains. In the case of nucleic acids, a combination of nucleic
acids with other types of molecules can be called quaternary structure as well.

As mentioned at the beginning of this section, the tertiary/quaternary
structure of a molecule dictates the interaction with its environment and
therefore, out of all the organizations, it is closest to the function. However,
structure determination is a complicated process compared to sequence de-
termination. Luckily, as expressed by the central dogma, the sequence codes
for structure and as such, it can be used for gaining insights into molecular
function in cases when the structural information is not available. When,
moreover, the secondary structure is available, it can be used as another piece
of information because the secondary structure can serve as an approximation
of the tertiary structure. This is because knowing which residues are bonded
by non-covalent bonds also gives information about which residues are close
to each other in the space. So in cases where the tertiary structure is not



available, sequence, possibly enriched by secondary structure can take the
role of a proxy to the 3D structure. In any case, having the structure and
being able to operate on it is highly desirable.

1.1.2 Common computational representation

Each of the levels of organization introduced in the previous section can be
expressed by a particular data structure. The ability to express a molecule
via a standard computational representation is important as it allows one
to abstract the molecules into concepts which are easily approachable with
existing computer science techniques. Such techniques can be either used
directly, but more often they need to be adapted to fit the specifics of the
particular application.

Since the approaches introduced later in this thesis operate over structures
of RNA and protein molecules, we will introduce here only representations
which are being used for these two types of molecules.

Primary structure As the primary structure of all the biopolymers we
are interested in is linear, it can be expressed as a word over an alphabet of
either 4 letters, in case of nucleic acids, or 20 letters? in case of proteins. The
letters are often associated with additional information pertinent to given
residue.

The representation of a molecule as a sequence is very helpful because
it allows to either directly apply or adapt the plethora of string algorithms.
Examples include sequence alignment and similarity assessment, searching
for motifs, efficient database search and many others [Gusfield, 1997].

Secondary structure As protein secondary structure does not have
any intricate internal structure, it is commonly represented as a list of
hydrogen-bonded amino acids. A similar representation is possible also for
the secondary structure of RNA molecules. However, unlike in case of proteins
where individual elements are treated separately (at least from the point of
view of the computational representation), RNA secondary structure is often
treated as a single set of hydrogen bonds (nucleotide pairs) covering the whole
molecule. This set is represented either as a graph of a tree. In the graph
representation, the nucleotides correspond to nodes and bonded nucleotides
form edges. A more intriguing option is to represent the secondary structure
as an ordered tree [Elias and Hoksza, 2017]. In this representation, inner
nodes represent base pairs (bonded nucleotides) and unpaired nucleotides

2considering only the basic amino acid types



(a) (b)

Figure 1.2: Tree-based RNA secondary structure representation. Example of
a secondary structure (a) and its corresponding tree representation (b). In
(a) the gray lines represent the covalent bonding, i.e. the sequence, while the
black lines represent hydrogen bonding, i.e. the secondary structure.

form leaves of the tree as illustrated in Figure 1.23. To build such a tree
from an input structure (which can be given as a sequence accompanied by a
list of base pairs), one simply traverses the secondary structure in sequence
order from both ends simultaneously and transforms the encountered paired
and unpaired nucleotides into inner nodes or leaves of the nascent tree. The
order of neighboring nodes is defined by the order in which the nodes are
encountered during the traversal.

Again, the ability to represent secondary structure as a tree (or possibly
a graph) opens the way for utilization of complex graph or tree algorithms
(such as tree edit distance [Elias and Hoksza, 2017]) for secondary structure
analysis.

Tertiary /Quaternary structure The tertiary structure is essentially
an ordered set of labeled 3D coordinates corresponding to every single atom of
the molecule. However, these coordinates have an internal structure, therefore
both protein and RNA molecules use to be stored as a tree with the list of
chains being at the top level, followed by an ordered list of residues for each
chain and list of atoms for each of the residues. The atoms are further labeled
by the atom type, such as C-a amino acid atoms. One can thus discern which

3Tt can happen that the structure also contains so-called pseudoknots; base pairs which
invalidate the tree structure as they are formed between nucleotides in such a way, that
the graph contains cycles. In such a situation, these pairs are usually either ignored or
treated in a special way.
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Figure 1.3: Example of different types of visualization of a protein (PDB ID
4CRW) with two chains. Ball and stick and spacefill visualizations show every
single atom, but in the spacefill visualization, the size of an atom corresponds
to its Van der Waals radius. Backbone visualization tracks only C-alpha
atoms of every amino acid. Cartoon visualization is based on the backbone
atoms but emphasizes secondary structure types (helices and sheets). The
surface visualization is a smoothed version of the spacefill visualization. The
coloring of the surface is based on chains demonstrating how two tertiary
structures form the protein’s quaternary structure.

of the atoms form the polypeptide or sugar-phosphate backbone. As many
algorithms do not need to work with the full atomic resolution, each residue
is often represented by one of its, usually backbone, atoms.

A natural representation of the set of the coordinates themselves, apart
for an unordered set, is the graph representation. One natural way to transfer
a protein structure to a graph is to store residues or atoms as nodes and
chemical interactions as edges. Often a more general condition for edge
formation is used: nodes representing residues or atoms are connected by an
edge if they are within a certain distance from each other [Diallo and Dhifli,
2015, Dong et al., 2014, Jelinek et al., 2017].

Each of the residues exhibits physico-chemical properties which are com-
monly represented as vectors of features alongside the atoms or residues.
These have an impact on the local environment of the protein and thus
often also the points in the close neighborhood are stored and utilized by
algorithms [Krivdak and Hoksza, 2015b, 2018, Jendele et al., 2019].

As there are multiple approaches to visualize the tertiary structure, some
of which we use in this thesis, Figure 1.3 showcases the major types which
one can encounter.



1.2 Similarity as the driving force for in-silico
function discovery

Having introduced the key molecular players, how they relate to each other
and how they are represented, let us now discuss how the concept of similarity
arises in molecular biology and why it is so prevalent.

In section 1.1, we described the flow of information in terms of information
copying and spreading. This is in line with Pevsner’s view [Pevsner, 2015] of
the field of bioinformatics and genomics. Pevsner sees the field from three
perspectives: 1) the perspective of the cell and the central dogma of molecular
biology; ii) the local perspective of the organism, which shows changes between
the different stages of development and regions of the body and iii) the global
perspective of the tree of life, in which millions of species are grouped into
the evolutionary branches [Diniz and Canduri, 2017]. The contributions of
this thesis find its application in function discovery and are thus located in
the second, local, perspective domain. However, all the contributions are, in
fact, enabled by principles expressed in the global perspective from which
comparative approaches, i.e. approaches based on the transfer of knowledge
between macromolecules, draw. By the knowledge transfer, we understand
the transfer of information about one molecule to another molecule, possibly
from another species. For example, having two similar proteins and knowing
the position of an active site for one of them allows us, due to the shared
similarity, to hypothesize about the position of the active site in the other
molecule.

A well-known concept in drug discovery is the similarity principle due
to which the transfer of knowledge between different molecules is possible.
The principle states that similar molecules tend to show similar activities.
An analogous principle can also be seen in molecular biology, however in
molecular biology, one needs to distinguish between similarity due to evolution
and similarity due to shared structural and physico-chemical properties.

Molecular evolution describes how genes behave under the pressure of
molecular and population forces acting upon a genome. As novel genetic
variations arise through mutations, they start spreading across a population
and eventually result in speciation. Mutations can be either simple point
mutations, but can also include larger modifications such as gene duplication.
Both original and duplicated genes continue gathering modifications both
before and after speciation, resulting in a group of genes sharing a common
ancestor gene. The genes in such set are called homologous genes. From
the previous follows that homologous genes can come either from the same
species or from different species.



As homologous genes share a common ancestral gene and the divergence
happened by a series of mutation events, it is possible to define a mapping
between every pair of residues of homologous genes. The further the point
in time in which the genes split, the higher divergence and lower similarity
of the genes. As the modifications result in the change of structure, the
same holds for the function. Although the mutations can happen anywhere
in a gene, some regions tend to be more conserved than others. These are
typically regions which either correspond to active sites of regions which are
important in maintaining the overall shape of the molecule. On the other
hand, mutations in functionally unimportant regions, especially on the protein
surface, tend to be more common. Also, genes coding for molecules which are
expressed in every cell and essential for some core function are more conserved.
This is, for example, the case of genes coding for ribosomal RNAs which are
one of the most conserved genes across all species [[senbarger et al., 2008] as
the ribosomal RNA majority of the ribosomal complexes, the factories where
proteins are assembled.

Naturally, the nucleotide mapping between homologous genes extends
to the RNA and protein products of these genes. Therefore, knowing the
evolutionary mapping of two RNA or protein molecules tells us the correct
alignment of their sequences and correct structural superposition of their
tertiary structures. If one of the molecules is annotated on the residue
level, for example there exist knowledge about which residues are part of an
active site or which regions tend to be often mutated, this knowledge can be
potentially transferred to the rest of the homologous molecules. Of course,
the information needs to be scrutinized because due to the accumulated
mutations, given property might be lost.

We should, however, emphasize that the fact that two genes or their
products are similar, either on the level of sequence or structure, does not
imply they are also homologous. So one needs to be careful when using the
term similarity in the context of molecular biology. In the case of function
discovery, the transfer of residue-level knowledge is only reasonable in a case
when the objects between which the transfer happens are homologous.

On the other hand, it is important to realize that the presence of a shared
structural and physico-chemical similarity between molecules can still point
toward common behavior. Examples are supersecondary structure motifs such
as the beta barrel mentioned in section 1.1.1. Of course, this is a property
stemming from the structural arrangement of physico-chemical properties
rather than from common molecular ancestry. Therefore, using commonalities
on the structural level is valid, however, it needs to be realized that there is
no direct evolutionary basis.

Although similarity does not necessarily imply shared ancestry, it is

10



commonly accepted that proteins (similar case can be done for RNA molecules)
which can be aligned in such a way that they share at least 25% identical
residues tend to be conserved. This percentage increases with the dropping
length of the sequence [Krieger et al., 2003]. Therefore, one can, with care,
use similarity as the sign of common ancestry and carry out the transfer.

As basically all molecules share a common ancestry, the notion of similarity
is indeed omnipresent in the analysis of protein, RNA and DNA molecules.
Although the distinction between similarity due to common ancestry (homol-
ogy) and similarity emerging simply by chance needs to be considered, both
types have their role in function discovery.

One last comment needs to be made to the relation of sequence and
structure concerning the knowledge transfer. As the function of a molecule
is based on its tertiary structure, the structure tends to be more conserved
than sequence. The reason for this higher conservation is that genetic code
is ambiguous, with different nucleotide triplets coding for the same amino
acid. Thus, two different DNA sequences can code for the same protein
sequence. Moreover, how a molecule folds in the three-dimensional shape and
what molecules it can recognize is dependent on the size, shape and physico-
chemical properties of the constituent amino acids. Therefore, mutations
leading to similar amino acids can be quite easily accepted because they result
in very similar three-dimensional folds, sometimes even in cases when the
underlying sequences differ substantially. Using structure, if available, can
therefore in some cases bring insights which sequence alone could not.

1.3 Contributions of the thesis to the field of
functional analysis

The problem of function discovery is a multi-faceted one since life is an
emergent property of a complex interplay of many different types of molecules.
To fully understand the system, one needs to decipher how different molecules
recognize each other and interact. In the previous section, we outlined the
two complementary views of similarity and its application in bioinformatics:
the one rooted in molecular evolution and the one which is based on the
emergent properties of structure and associated physico-chemical properties.
The contributions of this thesis are based on both of these approaches. In the
following list outlining the contributions, the RNA approaches are enabled by
the evolution-based similarity, i.e. homology, while the algorithms for protein
active sites detection are based on learning structural and physico-chemical
properties associated with activity without considering which molecules these
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properties come from, and thus do not assume any level of homology.
o Approaches applicable for RNA function discovery

— Modeling RNA structural similarity (section 2.1)

— Supporting visualization of RNA secondary structure (section 2.2)
« Approaches applicable for protein function discovery

— Prediction of protein-ligand binding sites (section 3.1)

— Prediction of protein-protein binding sites (section 3.2)

1.3.1 Comment on software development

As the goal of the presented research is to support practical function discov-
ery, all the computational approaches are backed up by software solutions
implementing the proposed algorithms. The software solutions are always
developed as command-line applications so that users can plug them in larger
computational pipelines. In some cases, the solution is also available via
a web interface or API. We strongly believe that software development is
an integral component of bioinformatics research and thus developing only
concepts without functional software is not enough. This is especially true
considering the fact that computational biology is becoming increasingly
complex, incorporating a plethora of various, often heterogeneous, data and
computational approaches. The discoveries are then made only via integration
of the data into complex pipelines consisting of multiple different applications.
Therefore, it is becoming important to not only develop algorithmic solutions
to problems but also to accompany them with software solutions which can
be used as parts of complex computational pipelines.

Easy-to-apply software also helps to foster collaboration and gain visibility.
This is the case of the Traveler [Elias and Hoksza, 2017] and P2Rank [Krivak
and Hoksza, 2018, Jendele et al., 2019] software tools, two of the contributions
of this thesis.

Traveler solves a previously unapproachable problem of visualization of
the secondary structure of large RNA molecules for RNA analysis. The
solution is distributed as an easy-to-use command-line application which is
currently incorporated into RNACentral The RNAcentral Consortium [2018],
the world-leading resource of RNA-related data hosted by the European
Bioinformatics Institute (EBI), and is supporting visualization of more than
seven million RNA molecules.

P2Rank [Krivdak and Hoksza, 2018, Jendele et al., 2019] is a software
solution for detecting protein-ligand binding sites on a protein structure.
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P2Rank is distributed as a command-line application, web application and
existing predictions are also available via its REST API. Because a lot of
effort was put into making it a robust software solution it is now the major
contributor of protein-ligand annotations into EBI’s Protein Data Bank in
Europe - Knowledge Base (PDBe-KB) [PDBe-KB consortium, 2019}, the new
PDBe’s major resource of integrated protein data.
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Chapter 2

RNA functional analysis

For a long time, it was believed that the only role of RNA is to transfer
genetic information from the DNA to ribosomes where it is used to translate
it into proteins. However, it was shown that not all RNA is translated into
proteins. Indeed, many RNA molecules which are transcribed from DNA,
have a function on their own. Such molecules are called non-coding RNAs
and are involved in a range of functions from gene regulation to being the
main structural components of the ribosomal complexes.

The growing understanding of the different roles which the RNA molecule
plays in various biological processes resulted in an increasing interest in the
study of RNA. This, in turn, led to the growth of the experiment backed-
up RNA data including sequence information, structural information, but
also the availability of high-quality computationally generated data such as
predicted RNA tertiary structures. However, not only the number of known
RNA molecules has grown; so has their size, calling for novel methods for
retrieval and analysis of large RNA structures.

2.1 Secondary structure-supported tertiary struc-
ture similarity modeling

Similarly to other molecules, the function or RNA is largely determined by its
tertiary structure and thus it is reasonable to involve the structure information
in the function discovery process. As the resources of RNA structures with
determined function grow, it makes sense to use these molecules as a proxy
to the function of molecules with yet undetermined function.

With a database of molecular structures with determined function and a
query molecule with known structure but unknown function, it is possible to
devise a similarity measure which can be used to retrieve from the database
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structurally and thus also possibly functionally similar molecules to the query
molecule. To be able to reason about homology and visually inspect and
interpret the results, it is desirable for the similarity procedure to be able to
output not only a similarity value but also superpositions of the query and
identified database structures.

2.1.1 Pairwise RNA structure superposition

As the number and size (several thousand nucleotides in case of ribosomal
RNAS) of structures is growing a similarity measure should be both efficient
and effective. In [Hoksza and Svozil, 2012], we introduced a solution for
pairwise RNA tertiary structure comparison called SETTER (SEcondary
sTructure-based TERtiary Structure Similarity Algorithm). Although there
had already existed several solutions for RNA structure comparison at the
time of introduction of SETTER (ARTS [Dror et al., 2005], DIAL [Ferre
et al., 2007], iPARTS [Wang et al., 2010], SARSA [Chang et al., 2008a] and
R3DAlign [Rahrig et al., 2010a]), SETTER was able to achieve comparable
or higher effectiveness in several times lower runtime. Moreover, it was able
to superpose even the largest structures which had not been possible before.

In most superposition-based comparative approaches, a mapping between
residues of the molecules to be compared is found and a superposition is
then obtained, typically via root-mean-square deviation (RMSD) or similar
method. This results both to a score which is interpreted as the distance (or
inversely similarity) of the molecules and to a superposition which can be
visualized and inspected. The bottleneck in terms of time complexity is the
process of mapping between the residues. Since the outcome of this phase also
determines the resulting superposition, this step is also essential in providing
high-quality effective similarity measure. In all of the referenced methods,
the complexity of this step is at least O(N?) with N being the number of
atoms to be superimposed. Although none of the methods works with full
atom representation of the molecules, but consider only one representative
atom per nucleotide, N can still be in more than five thousand for the largest
RNA structures.

The main idea of SETTER is thus to decrease the number of elements to
be compared by representing each RNA structure by a set of non-overlapping
generalized secondary structure units (GSSUs). The notion of GSSU is a novel
idea introduced by SETTER. Each GSSU consists of three parts: a stem, a
neck and a loop (see Figure 2.1), thus forming a standardized unit of secondary
structure. The GSSU was proposed to be able to represent the RNA molecule
as a set of function-related, simplified, standardized components. The relation
to function is based on the fact that secondary structure motifs are known
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Figure 2.1: Example of partitioning of a secondary structure into three
generalized secondary structure motifs (GSSU)

to be important for molecular recognition and a secondary structure-based
division would probably follow functional motifs, or it will not, at least, break
them.

The structural alignment of RNA structures S; and Ss is then obtained by
using a distance measure considering RMSD-based transformations between
all possible pairs of GSSUs. To align a pair of GSSU structures, a set of
triplets of key residues from each GSSU are superimposed by the Kabsch
algorithm [Kabsch, 1976]. After finding the best-aligned GSSUs, the rest of
the GSSUs are aligned in a linear fashion resulting in a score representing
the distance of the two RNA structures. Finally, this score is a subject to
statistical significance evaluation. The resulting p-value can then be used in
situations when SETTER is used to scan a collection of RNA structures. All
the steps are in greater detail described in [Hoksza and Svozil, 2012].

The algorithm scales as O(n?) with the size of GSSU and O(n) with
the number of GSSUs in the structure. A further speedup is achieved by
considering only the same type of residues (stem, loop, neck) for pairing
when mapping GSSUs. Finally, SETTER uses an early termination heuristic
condition in the all-to-all GSSU comparison phase. These features combined
result in SETTER’s superior speed compared to the existing solutions allowing
to superpose even the largest RNA structures which had not been possible
before the introduction of SETTER.

Naturally, the speed of a solution need not come for the price of accuracy,
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which is the ultimate goal of most of the bioinformatics applications. However,
to asses the quality of a structure similarity method is not a straightforward
task because the exact evolutionary relations between the nucleotides, i.e. the
mapping, is difficult to obtain. And thus, we cannot with certainty tell whether
a mapping, and thus given structural superposition, is correct. Therefore, to
estimate the quality of RNA structure superposition, typically two, rather
indirect, types of measures are used: geometry-based and function-based.

The geometry-based assessment tests how close two superposed structures
are in the 3D space, often taking account which types of residues are aligned
because one would expect more often the same nucleotide types to be close
together in 3D space. The measures include RMSD, the percentage of
structural identity (PSI), the percentage of sequence identity (PID) [Capriotti
and Marti-Renom, 2008, 2009], the number of mapped nucleotides and the
number of exact base matches [Rahrig et al., 2010b].

Table 2.1: ACC and AUC comparison of SETTER, iPARTS, and SARA
on the FSCOR and T/R-FSCOR datasets. The values are given in % and
are reported for exact/similar classification. In the ”similar” classification,
molecules having the same parent class are treated as if they shared class.
iPARTS should be compared to SETTER with the p-value threshold of 1.0
(i.e. no filtering applied), and SARA should be compared to SETTER with
the p-value threshold of 0.013 which corresponds to a significance threshold
applied in SARA’s publication. For iPARTS, ACC was not reported and
necessary tests could not be performed using the iPARTS web interface.

FSCOR T/R-FSCOR
AUC  ACC | AUC  ACC

iPARTS 72/92 7 77790 7
STRy—10 | 82/91 61.8/72.8 | 87/89 67.4/71.8
SARA 61/83 81.4/95.3 | 58/85 78.0/94.5
STRyy—o013 | 71/87 80.5/95.1 | 83/91 91.7/95.0

The function-based evaluation assesses the quality of a method by its ability
to correctly assign a class to a query RNA from the SCOR database [Tamura
et al., 2004]. SCOR is a human-curated hierarchically organized database of
RNA structures based on the function and tertiary interactions of RNAs. As
such, it can be used in benchmarking of similarity methods where the goal
is to mimic the SCOR class assignment. Using SCOR, one can simulate the
database search scenario where the database structures coming from the same
class as the query structure form the positive set. It is then possible to measure
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accuracy (ACC) as the ability of the method to identify a structure from
the correct class as the most similar to the query. However, to have a better
picture of the overall performance, ROC (receiver operating characteristics)
curve and AUC (area under the AUC) are more suitable. To obtain the
ROC curve, the alignments of all pairs of RNA structures are sorted by their
scores (P-values in case of SETTER). A threshold score is varied between the
minimum and maximum of the sorted scores. All aligned structures with a
score exceeding the threshold are considered positives while the ones below
the threshold are considered negatives. From here, the number of true/false
positives/negatives can be obtained and ROC/AUC computed.

Although our method was evaluated using both geometric and functional
approaches, we believe that the function-based evaluation is closer to the
intended application, i.e. the function determination and annotation. Table 2.1
displays SETTER’s performance in terms of ACC and AUC with respect to
structurally diverse subsets of SCOR (FSCOR, T-SCOR, F-SCOR) [Capriotti
and Marti-Renom, 2008| showing that SETTER performs better than existing
solutions in most cases.

2.1.2 Multiple RNA structure superposition

The efficiency of SETTER allowed us to apply the principle of GSSU de-
composition to a more complex problem of multiple structure superposition
(MSS). The goal of MSS is to superpose multiple structures onto each other in
such a way that positions which share common ancestry are aligned onto each
other as best as possible. This is analogous with the well-studied problem of
multiple sequence alignment which is the basis for phylogenetic reconstruction,
motif finding and a whole range of other applications [Chatzou et al., 2015].

While several multiple RNA sequence alignment algorithms exist [Kiryu
et al., 2007, Moretti et al., 2008], the choice of methods for multiple 3D
structure alignment is rather limited. In existing solutions, the 3D struc-
ture alignment is based either on the RNA secondary structure [Torarinsson
et al., 2007, Tabei et al., 2008] or on the projection of structural features
into a sequence followed by the sequence alignment [Chang et al., 2008b].
However, an algorithm for direct multiple 3D RNA structure alignment was
missing. Therefore, we introduced the MultiSETTER [Hoksza and Svozil,
2014], structure-based multiple superposition solution based on the GSSU
decomposition. MultiSETTER was the first 3D structure-based solution at
the time of publication of the method.

The main idea of MultiSETTER is to adapt the well-known Clustal\W
algorithm [Thompson et al., 1994] which was developed for solving the multiple
sequence alignment problem. In MultiSETTER, we transform the sequence-
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specific parts of ClustalW into their structure counterparts resulting in the
following steps (details can be found in [Hoksza and Svozil, 2014]):

o FEach pair of RNA structures is aligned by SETTER, and the distance
matrix is constructed from the pairwise distances.

o A guide tree is calculated from the distance matrix using the neighbor-
joining algorithm [Saitou and Nei, 1987].

o Two most closely related structures are first superposed and the so-called
average RNA structure is constructed by merging (averaging) positions
of individual atom pairs. The alignment then progressively continues,
merging more and more structures, until the root of the guide tree is
reached. The root contains the global average structure, which we will
call simply the average structure from now on.

» Each of the input structures is superposed onto the average structure
resulting in multiple structure superposition.

The GSSU decomposition not only allows for efficient pairwise comparison
but equally important is its role in the structure merging. To merge a pair
of structures, GSSU mapping is carried out and the actual merging then
happens on the level of the individual GSSUs. The procedure is relatively
straightforward due to the standardized nature of GSSUs. The merging
process is further adjusted to be robust with respect to outliers.

To benchmark our solution, we again utilized the SCOR database from
which we extracted 96 structures classified into 14 families of various sizes and
intrinsic diversities. To test the ability of functional classification of a molecule
@ using MultiSETTER, we computed the average structure for each of the
classes, not considering (). Then we used SETTER to compute the distance of
@ to each of the average structures, i.e., representatives of classes and assigned
@ to the class with the closest average structure. We applied similar approach
for the pairwise alignment where instead of using the average structure, we
used an average of pairwise distances between () and every structure in a
family as a proxy. We showed that using multiple superposition provides
better results than using pairwise alignments. Moreover, we also demonstrated
that MultiSETTER leads to better results than existing sequence-based RNA
multiple alignment solutions.

Alternatively, MSS can also be used to guide the pairwise structural
superposition. Here, a set of homologous structures can be used to improve
the pairwise alignment by anchoring the two structures to be superposed to
the average structure of the set of homologs. This nicely illustrates a quote
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Figure 2.2: The structure alignment of 4ABR and 1P6V structures belonging
to the RF00023 Rfam [Burge et al., 2012] family. a) Pairwise structure
alignment of 4ABR and 1P6V produced by SETTER. b) The alignment of
4ABR and 1P6V taken from the multiple structure alignment of the whole
RF00023 family produced by MultiSETTER

attributed to Artur Lesk: One or two homologous sequences whisper . . . a
full multiple alignment shouts out loud: Figure 2.2 illustrates this by showing
how using the average structure of a family can lead to a better superposition
of two members of the same family than when using the members alone.

2.1.3 Software solution

Both SETTER and MultiSETTER approaches are distributed in a single
software solution. This solution consists of a command-line application and
web interface. The command-line application, which also serves as the back
end for the web solution, contains four modules: i) pairwise superposition
module, ii) multiple superposition module, iii) batch pairwise superposition
module, which is passed a list of structures and computes all pairwise sim-
ilarities and iv) batch multiple superposition module, which is passed an
average structure obtained from the multiple superposition module and a
list of structures which need to be superposed over the average structure.
Each of the steps returns detailed information about the superpositions and a
Jmol [jmo] script which is used to visualize the results in the web application
or can be used offline by the user. The application supports both Windows
and Linux operating systems and most of the steps of the algorithm are also
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parallelized, providing substantial speed up (see [Hoksza and Svozil, 2014))
when running on multi-core architectures. The web application provides an
interface to the MultiSETTER command-line application providing the user
with the ability to submit a pair of or multiple structures. These are processed
and the results, including the 3D superpositions, are subsequently visualized.
Moreover, the user is provided with detail statistics for offline inspection.
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2.2 Template-based secondary structure visu-
alization

Although tertiary structures of RNA molecules are becoming readily available
in structural databases such as PDB, structural biologists are more used to
describe functional regions of RNA molecules in terms of their secondary
structure. This is especially the case with large RNA molecules which have
thousands of nucleotides and inspecting their three-dimensional structure
can be challenging. For that reason, secondary structure visualization is the
go-to choice when visual inspection of large RNA structures is needed. Three
layouting strategies for displaying the secondary structure exist: linked graph,
circular graph, and classical structure [Wiese et al., 2005]. In the linked graph
display, the nucleotides are drawn on a straight line in the sequence order,
and base-paired residues are linked by an arc. The circular graph is similar to
the linked graph representation with the nucleotides laying on a circumference
of a circle and connected with curves. However, both of these representations
lack the ability to capture the secondary structure motifs and therefore the
classical structure is used when detailed visual analysis of secondary structure
motifs and their interaction is required. In the classical structure display, the

positions of nucleotides are chosen so that the secondary structure motifs can
be discerned [Elias and Hoksza, 2017].

As desscribed in section 1.1.2, the secondary structure of an RNA molecule
can be represented as a graph and thus using existing graph drawing algorithms
seems to be a natural solution to the problem of laying out the structure.
However, these standard solutions which tend to optimize the typical aesthetics
criteria are not applicable for RNA secondary structure visualization which
has its specifics [Auber et al., 2006]. These specifics constraint lengths of
some of the edges and define how local motifs should be laid out. Although
these criteria, however vague, exist for small motifs there are no such rules
for how these motifs should be positioned with respect to each other. This
leads to virtually infinitely many possibilities of how to lay out a complex
RNA structure. The absence of rigid criteria when assessing the quality of
a layout leads to the fact that secondary structure visualization is largely
habitual and while the layout of small secondary structure motifs, such as
hairpins, are similar in different tools, their mutual positions differ greatly
across the existing visualization tools. Not only do the layouts differ but
for large structures the layouts are virtually ineligible (see Figure 2.3) and
therefore only semi-manually created layouts had been used for large RNA
molecules.

The fact that large, i.e. ribosomal, RNA structures tend to be highly
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Secondary Structure: small subunit ribosomal RNA
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(a) Layout in the form biological <&
community is used to (downloaded
from the CRW website Cannone et al. (b) Layout generated by Traveler us-
[2002]). ing fruit fly as a template.

(c) Layout generated by VARNA (ver-
sion 3-93). (d) Layout generated by RNAplot.

Figure 2.3: Layout of small subunit of human ribosomal RNA (GenBank
accession number K03432) by two most often used tools - VARNA [Darty
et al., 2009] and RNAplot [Lorenz et al., 2011].

24



ue |

AN € NG
NN NG
S P |

R ;
C{i\ccc ‘u\\\\
‘
SN v N\
o u\\GAG & 3 & \L‘
N\, C s-scc aac Y N\A NN
5-GCC GACU GA 5-GCC GAC c
TN >l % TN
3-UGG CUGA c G [+ 3-UGG CUGH [
GV a /s G A &
A /G c/ 6 A /B
/e A /G i
c A AA c A \
n ) an i g ;
(a) (b) (c) (d) (e) ()

Figure 2.4: Traveler’s ability to recreate layouts. On the left-hand side, we
took a structure with two hairpins (a), removed part of a stem and used
the original structure as the template (b). Then we reinserted the residues
and used (b) as a template to obtain (c). Similarly, (d), (e) and (f) show
re-creation of the starting structure with a more drastic middle step where
the two hairpins lose residues so that the remaining residues form a loop. (f)
demonstrates that Traveler can successfully recreate the original structure.
For clarity, the new residues were labeled I and shown in red, while the
residues which needed to be repositioned are shown in blue.

conserved led us to the observation that the layouts of such structures which
are used in the scientific literature tend to be conserved as well. Therefore,
one could use a molecule with a known layout as a template for laying out
a similar molecule with yet unknown layout. This idea was implemented in
our template-based RNA secondary structure approach called Traveler [Elias
and Hoksza, 2017]. The algorithm takes on its input a structure to be laid
out (target) and a homologous structure with known layout (template). Both
target and template are converted into the respective tree representations
and tree edit distance is applied to identify the minimal sequence of tree edit
operations which would turn the template tree into the target one. Each
tree edit operation is assigned a visual edit operation which is then used to
transform the template layout into the target one. Here, Traveler greatly
benefits from the underlying tree representation since the tree can be used
to identify which nodes are affected by a given operation. For example, if a
node needs to be removed, then this corresponds to the removal of the node
and application of a shift to all nodes in the subtree of the removed node.

Since the set of edit operations that drives the transformation corresponds
to minimal tree edit distance, the conservation of common properties of the
layouts is ensured. The method is thus capable of producing a secondary
structure complying with the intuition of a biologist when a homologous
structure with an appropriate layout is already available.

Testing a layouting solution is rather difficult, especially in the case when
no direct qualitative criteria are available. Therefore, our experiments have
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Figure 2.5: Visualization of human 18S rRNA with Traveler. (a) shows the
target layout, (b) is the template layout while (c) is the desired layout as stored
in the CRW. The Traveler’s output is colored so that red represents inserted
residues, green are relabeled residues and blue are residues that needed to
be shifted due to indels happening within given hairpin (see supplementary
material for full-color coding definition).

been mainly visual, for example validating that the algorithm is able to
recreate motifs 2.4. However, the ultimate goal is to be able to use the
algorithm to visualize secondary structures of ribosomal RNAs which had
not been possible before the Traveler approach was introduced. Example
of this can be seen in 2.5. Another indirect confirmation of validity of the
solution is that Traveler is now being used as a part of the auto-traveler
pipeline [RNAcenral] supporting visualization of more than 7 million RNA
secondary structures in RNAcentral [RNAcentral.

2.2.1 Software solution

Traveler is implemented and distributed as a command-line application for
Linux systems. On its input, it accepts a target secondary structure, a tem-
plate secondary structure, and a template layout and outputs the template-
target mapping and target layout. The software is also proviede as a con-
tainerized version for easier distribution.
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Chapter 3

Protein functional analysis

As the function of a protein directly depends on which molecules it can
recognize and interact with, the techniques for detection of the interaction
sites play a great role in the protein function determination.

In the previous section, we motivated our research with the growth of
RNA structure databases which called for new methods for handling the
newly available RNA data. But proteins have been in the center of interest
long before the surge of interest in RNA. However, due to the difficulty
of obtaining protein structure, the structural databases started to grow
only relatively recently with the advance of protein structure determination
methods. Currently, the number of available structures in the PDB allows its
mining for the purpose of protein function discovery.

In the following two sections, we describe two contributions to the field
of detection of functionally important regions on the protein surface. The
first contribution consists in the proposal of a novel machine learning-based
approach for protein-ligand binding site detection while the second is a method
for detection of protein-protein interaction sites utilizing mining a database
of structural motifs.

3.1 Protein-ligand binding sites discovery

Not only due to its application in rational drug discovery, plethora of protein-
ligand binding site (pocket) detection techniques has been proposed in recent
years. These include i) purely geometric methods, which focus on the detection
of concave pockets and clefts on the surface of a 3D structure [|; ii) energetic
methods which aim at approximating binding energies by placing probes
around the protein surface and calculating interaction energies of those
probes, [],; 3) methods that make use of evolutionary conservation and are
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Figure 3.1: Flowchart of the pocket ranking (PRANK) approach.

thus based on the presumption that binding sites are evolutionary conserved |
and finally 4) consensus methods, which are meta approaches combining
results of multiple detection methods [].

3.1.1 Protein-ligand binding sites rescoring

A pocket detection method takes a protein structure on its input and produces
an ordered list of putative pockets which represent the locations on the protein
surface where ligands are expected to bind. However, as these pockets are
putative, not all of them represent true binding sites and the number of false
positives can be substantial. Pocket ranking, therefore, plays an important
role. While many ligand-binding detection approaches employ complex and
inventive algorithms to locate the pockets, the final ranking is often done
by a simple method such as ordering by size or scoring pockets by a linear
combination of few pocket descriptors [Krivdk and Hoksza, 2015b]. Therefore,
we introduced a novel machine learning-based pocket rescoring algorithm
called PRANK (Protein RANKing) to be used as a post-processing step which
improves the performance of any pocket detection method.

Figure 3.1 outlines PRANK’s four-step ranking algorithm. Detailed de-
scription can be found in [Krivdk and Hoksza, 2015b], here we just briefly
comment on several points which are important for the success of PRANK
and also for the success of the second generation of the algorithm which is

28



able to carry out full-scale pocket detection (see section 3.1.2):

o The Connolly surface [Connolly, 1983], i.e. the solvent accessible surface
on which the inner points are placed, is built in such a way that the
points are positioned in the distance at most 4 A from the surface. This
threshold was chosen because protein-ligand binding happens in this
distance.

» Atomic feature vectors (AFV), are computed for atoms which consist
the putative pockets and which are in the neighborhood of any inner
point. These feature vectors are then aggregated into pocket inner points
feature vectors (IFV). AFVs consist of physico-chemical features derived
either directly from the atom or are inherited from amino acids which
given atom is part of (see the Supplementary of [Krivak and Hoksza,
2015b] for the list of used physico-chemical features). To calculate
the feature vector of an inner pocket point (IFV), the AFVs from its
atomic neighborhood are aggregated using a simple aggregation function
and concatenated with a vector of features computed specifically for
that point from its local neighborhood (e.g. the number of H-bond
donors/acceptors or the protrusion index).

FV(P)= Y AFV(A) w(dist(P.A)) || FV(P), (3.1)
A;e A(P)

where F'V is the vector of the inner points-specific features and w is the
distance weight function :

w(d) =1—d/s . (3.2)

o When training the model, all sampled inner pocket points located within
2.5 A from any ligand atom were labeled as positive.

e The choice of Random Forest as our machine learning technique was
important due to its robustness with respect to the presence of irrelevant
or correlated features which thus do not need to be scaled [Nayal and
Honig, 2006] or filtered [Boulesteix et al., 2012].

e The resulting score for a pocket is computed as the squared sum of
positive class probabilities of all the inner points as returned from the
Random Forest classifier. We found that summing gives steadily better
performance then averaging. Moreover, squaring puts more emphasis
on the impact of points with probability closer to 1.
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Figure 3.2: Visualization of inner pocket points. (a) Displayed is the protein
1AZM bound to one ligand (magenta). Fpocket predicted 13 pockets that
are depicted as colored areas on the protein surface. To rank these pockets,
the protein was first covered with evenly spaced Connolly surface points
(probe radius 1.6 A) and only the points adjacent to one of the pockets were
retained. Color of the points reflects their ligandability (green = 0...red = 0.7)
predicted by Random Forest classifier. PRANK algorithm rescores pockets
according to the cumulative ligandability of their corresponding points. Note
that there are two clusters of ligandable points in the picture, one located
in the upper dark-blue pocket and the other in the light-blue pocket in the
middle. The light-blue pocket, which is, in fact, the true binding site, contains
more ligandable points and therefore will be ranked higher. (b) Detailed view
of the binding site with the ligand and the inner pocket points.

Figure 3.2 shows how the Connolly points are distributed across the
putative binding sites and illustrates how they are scored with points deep in
a true pocket having, indeed, a higher score.

To evaluate our approach we first performed cross-validation experiments
to attest viability of our method and then we trained our model on one
(CHEN11 [Chen et al., 2011]) of the available datasets and used it to test
the rest of the datasets to show generalization ability of the solution. We
observed a substantial increase in the pocket identification success rate in
the top IV scored pockets, N being the number of true pockets in a protein.
This was demonstrated with the two most commonly used pocket detection
methods Fpocket [Le Guilloux et al., 2009] and ConCavity [Capra et al., 2009]
(see Table 3.1 ).
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Table 3.1: Rescoring Fpocket and ConCavity predictions with PRANK: cross-
validation results on CHEN11 dataset and the results of the final prediction
model (trained on CHEN11-Fpocket) for all datasets.

Dataset Top-n [%] Rescored [%] All [%] A Yopossible* P R MCC

Fpocket predictions

CHEN11 (CV)** 47.9 58.8 71 +10.6 47.1 0.60 0.32 0.41
CHEN11 *** 47.9 67.9 71 +20 86.4 0.87 1.0 0.98
ASTEX 58 63.6 81.1 +5.6 24.2 0.56 0.41 0.46
DT198 37.5 56.2 80.2 +18.8 43.9 0.31 0.38 0.33
MP210 56.6 67.7 78.8 +11.1 50 0.58 0.42 0.47
B48 74.1 81.5 92.6 +7.4 40 0.58 0.45 0.49
U48 53.7 77.8 88.9 +24.1 68.4 0.55 0.36 0.42

ConCavity predictions

CHEN11 (CV)** 47.9 50.7 52.3 +2.8 63.3 0.44 0.76 0.40
CHEN11 *** 47.9 52.3 52.3 +4.4 100 0.80 0.82 0.75
ASTEX 55.2 62.9 65.7 +7.7 73.3 0.60 0.55 0.46
DT198 45.8 61.5 65.6 +15.6 78.9 0.33 0.55 0.34
MP210 57.4 66.1 68.2 +8.7 80.6 0.63 0.53 0.49
B48 66.7 77.8 81.5 +11.1 75 0.61 0.53 0.47
U48 64.8 74.1 77.8 +9.3 71.4 0.58 0.46 0.43

Abbreviations: P precision, R recall, MCC Matthews correlation coefficient

* percentage of improvement that was theoretically possible to obtain by reorder-
ing pockets [A / (All — Top-n)]

** cross-validation results

*** results where the test set was de facto the same as the training set for the
Random Forest classifier (included here only for completeness)

3.1.2 Protein-ligand binding sites detection

After successful application of PRANK to improve the ranking of the putative
pockets generated by a third party pocket detection method, we decided
to extend PRANK procedure to also generate pockets on its own, resulting
in a self-contained pocket detection solution. We called this improved ver-
sion P2RANK [Krivdk and Hoksza, 2018]. The following list outlines the
method [Krivdk and Hoksza, 2015a]:

1. Generating a set of regularly spaced points lying on the protein’s Con-
nolly surface (referred to as Connolly points).

2. Calculating feature descriptors of Connolly points based on their local
chemical neighborhood:
a) computing property vectors for protein’s solvent-exposed atoms,

b) projecting distance weighted properties of the adjacent protein
atoms onto Connolly points,

c¢) computing additional features describing Connolly point neighbor-

hood.
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3. Predicting ligandability score of Connolly points by Random Forest
classifier.

4. Clustering points with high ligandability score and thus forming pocket
predictions.

5. Ranking predicted pockets by cumulative ligandability score of their
points.

Figure 3.3: Visualization of ligand-binding sites predicted by P2Rank for a
structure with PDB ID 1FBL. The protein is covered by a layer of points lying
on the Solvent Accessible Surface of the protein. Each point represents its local
chemical neighborhood and is colored according to its predicted ligandability
score (from 0 = green to 1 = red). Points with high ligandablity score are
clustered to form predicted binding sites (marked by coloring adjacent protein
surface). In this case, the largest predicted pocket (shown in the close-up) is
indeed the correctly predicted true binding site that binds a known ligand
(magenta). Visualization is based on a PyMOL script produced by P2Rank.
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The procedure builds on the PRANK algorithm, but instead of working
only with putative pocket points, the full surface is covered by Connolly points
(step 1) and processed. This illustrates Figure 3.3 where, unlike in Figure 3.2,
the points cover the full surface of the protein. Moreover, a clustering step
where points with sufficient ligandability score are joined (step 4) is added. In
this step, first Connolly points that have ligandability score lower than given
threshold are filtered out and single linkage clustering procedure is applied
on the remaining points. Predicted pocket is then associated with the set of
Connolly points in a cluster. For each pocket, we compute the set of protein
solvent-exposed atoms that form the putative ligand-binding surface patch.
P2RANK includes into the output all pockets that are defined by 3 or more
Connolly points.

Table 3.2:  Benchmark on COACH420[Yang et al., 2013] and
HOLOA4K [Schmidtke et al., 2010] datasets.

COACH420 HOLO4K
Top-n  Top-(n+2) | Top-n Top-(n+2)
Fpocket 1.0 56.4 68.9 52.4 63.1
Fpocket 3.1 42.9 56.9 54.9 64.3
SiteHound* [Hernandez et al., 2009 53.0 69.3 50.1 62.1
MetaPocket 2.0%,[Zhang et al., 2011b] | 63.4 74.6 57.9 68.6
DeepSite* [Jiménez et al., 2017] 56.4 63.4 45.6 48.2
P2Rank 72.0 78.3 68.6 74.0
P2Rank+Cons.f 73.2 77.9 72.1 76.7

Comparing identification success rate [%] measured by the DCA criterion (distance
from pocket center to closest ligand atom) with 4 A threshold considering only pockets
ranked at the top of the list (n is the number of ligands in the considered structure).
*Failed to produce predictions for some of the input proteins. Here we display calculated
success rates based only on those protein subsets for which the corresponding method
was finished successfully.

1 P2Rank with conservation (the default prediction model of PrankWeb)

The set of features associated with atoms and Connolly points are the
same for PRANK and P2RANK. However, since binding sites tend to be
more conserved than other parts of the molecule, later in [Jendele et al., 2019]
we extended the set of features by conservation score assigned to each amino
acid. This score is propagated to the atom level. To obtain the conservation,
P2RANK implements a complex conservation pipeline (see the flowchart and
supplementary material in [Jendele et al., 2019]). The results of P2RANK with
conservation, i.e. the most recent version of the method, taken from [Jendele
et al., 2019] are summarized in Table 3.2. Although we list 17 pocket detection
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methods in [Jendele et al., 2019], only the five listed in the table allow for
batch processing; either as a command-line application or via REST API as
P2RANK does. Also, prediction speeds vary greatly between tools, ranging
from under one second (Fpocket, P2Rank) to ;10 h (COACH) for prediction
on one average-sized protein (2500 atoms).

3.1.3 Software solution

P2RANK and PRANK are currently distributed as a single software solution
written in Scala and thus available on all common platforms. It is distributed
with a pre-trained model but includes a module allowing users to train a model
from their data. With the model available, the user can submit one or more
structures for which the pockets should be detected. The result includes detail
statistics about the identified pockets, including which atoms were labeled
as parts of which pocket and PyMOL [Schrédinger, LLC, 2015] script for
visualization of the results. The P2RANK application serves as the backend
to the PrankWeb [Jendele et al., 2019] web application, which provides users
with a simple way how to annotate a submitted protein structure. The
result page allows the users to visually inspect the putative binding sites and
download detailed information about the sites, including a PyMOL script for
offline visual inspection. Moreover, the web interface enables the users to
contrast the putative pockets with the conservation information to further
aid the interpretation of the results.
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3.2 Protein-protein binding sites discovery

Alongside our efforts focused on protein-ligand detection, we also studied
methods which could be used to discover protein-protein interaction (PPI)
sites. Unlike in protein-ligand detection, the typical goal of PPI detection is
to decide whether a residue is part of a PPI, i.e. it is a binary classification
task. Note that this is a simpler task than finding the full pocket because
it is missing the clustering phase present in P2RANK. Similarly to protein-
ligand binding site detection, the PPI detection methods can be grouped into
three, possibly intersecting, classes: evolutionary-based, template-based, and
machine learning-based methods. The evolutionary-based methods utilize
the co-evolution principle which is based on the observation that changes in
one interaction site are compensated by changes in the opposite interaction
site in order to preserve the functionality [Res et al., 2005]. In the template-
based approaches, the methods use another protein with known interaction
sites which can be transferred to the protein of interest [Zhang et al., 2010,
2011a]. However, the information required by evolutionary and template-
based predictors is often not available and thus machine learning methods are
often utilized. Machine learning methods try to learn surface characteristics
which are observed with PPI amino acids and their neighborhoods. A model is
then trained to recognize the characteristics and patterns commonly exhibited
by PPIs [Chen and Zhou, 2005, Zhang et al., 2010, 2011a, Zellner et al., 2012,
Bendell et al., 2014, Dong et al., 2014, Wierschin et al., 2015].

The detection of PPI sites is more challenging than the detection of
protein-ligand sites as the PPI sites tend to be more flat, thus more difficult
to reveal. Indeed, when analyzing features which were most important for
P2RANK prediction, we found out that protrusion was the most important
feature. Although it was not sufficient to explain the ligand-binding site by
itself it was an important indicator. This is not the case with PPIs. For
that reason, we decided rather to focus on the topology of the structural
neighborhood of amino acids and features of the residues in this neighborhood,
which led us to the development of PPI detection method called INSPiRE
(INteraction Sites PREdictor) [Jelinek et al., 2017]. INSPiRE is a knowledge-
based three-step procedure: i) it extracts patterns representing local structural
neighborhoods and interface/non-interface information for all the amino acids
of every knowledge base protein; ii) it converts the patterns into a suitable
data format for efficient storage and retrieval and iii) it labels amino acids
of unknown proteins as interface or non-interface based on how often their
structural neighborhood appears as interface/non-interface in the knowledge
base.

Protein structures in INSPiRE are represented as graphs where nodes
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correspond to amino acids. Two nodes are connected by an edge if they are at
most 6 A apart. Our knowledge base, which was built using the whole PDB,
contained over 60,000 complexes with over 54 million amino acids (nodes) and
almost 293 million edges. An amino acid is marked as an interface amino acid
if at least one of its atoms is sufficiently close to any atom of any other chain.
Moreover, each atom is assigned amino acid type and value representing the
fraction of the amino acid’s surface that is exposed to a solvent (RASA value).
For each node N in the graph, INSPiRE extracts a subgraph, called structural
element, which is induced either by nodes up to graph distance ¢ from N (the
central node) or by nodes up to Euclidean distance d from N. This subgraph
is then stored in the knowledge base.

In the prediction phase, INSPiRE needs for each structural element of a
query protein to find out how many similar or identical structural elements are
in the knowledge base. Since the knowledge base contains close to 55 millions
structural elements, we needed an efficient way to store and retrieve those
elements. The problem of finding matching or similar elements translates into
the NP-complete problem of subgraph isomorphism and is time demanding
even for small graphs, which is our case. We considered three possibilities
to solve this problem: graph-based data storage, relational data storage and
molecular fingerprints stored in binary format.

As we showed in [Hoksza and Jelinek, 2015], where we tried to use Neo4j
graph database for this purpose, searching for induced subgraphs of stored
graphs is viable for structural elements only up to about 12 edges. However,
in our knowledge base approximately 45% of nodes had more than 12 edges
in the structural neighborhood with graph distance of size 1. So even for such
small neighborhoods, the use of the graph database is not an option.

Using relational data storage is possible with precomputing the neighbor-
hood information and storing it in the database [Hoksza and Jelinek, 2015].
We were able to implement this approach for radial pattern, where only the
center and edges going from the center were considered. However, adding
edges among the remaining nodes leads to false positives which need to be
filtered out. Moreover, we found out that the filtration ratio of the database
query is strongly dependent on the distribution of the employed feature types
and often turned out to be quite weak.

In the end, we took inspiration from cheminformatics, specifically, we
utilized molecular fingerprints which are traditionally used in virtual screening
of small-molecule libraries. The basic principle of molecular fingerprints is to
capture structural features of a molecular graph and encode them in a bit string
which can be used later when assessing the similarity of a pair of compounds.
The advantage is that such representation is highly storage-efficient, and the
time-consuming operation of comparison of two molecular graphs is reduced
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Table 3.3:  Comparison on PlaneDimers[Zellner et al., 2012] &
TransCompl [Zellner et al., 2012] datasets in terms of MCC.

PlaneDimers | TransCompl
INSPiRE 0.681 0.529
SPPIDER Porollo and Meller [2007] 0.330 0.150
PresCont Zellner et al. [2012] 0.330 0.170
MetaPPISP Qin and Zhou [2007] 0.040 0.311

to a highly time-efficient bit string comparison. The resulting fingerprints, i.e.
the encoded structural elements, can not be used directly to identify exact
matches due to the employed hashing and because more amino acids can
share a feature value and thus their stored images are ambiguous. Therefore,
if an exact match is required, matched fingerprints still need to be scanned for
false positives. On the other hand, using fingerprints allows us to efficiently
mine similar structural elements that are not exact matches. This is due
to the fact that similarity of fingerprints and structural elements similarity
correlate [Jelinek et al., 2017].

When using fingerprints, the knowledge base contains for each of the
amino acids a bitstring representing its structural neighborhood. In the
prediction phase, the query protein is translated into its graph representation
and labeled with the selected features (amino acid type or RASA). Then, for
each query amino acid Ag and its neighborhood graph Ny, the subset of the
knowledge base is selected for which the value of the central amino acid is the
same as for Ag. From this filtered set, INSPiRE picks n structural elements
which are most similar to Ng. Afterward, the retrieved elements are divided
based on whether their central amino acid is labeled as an interface (set ),
or non-interface (set V). Finally, the probability of Ag being interface is
estimated as |I|/|N].

Since only two of the PPI prediction methods were available for large
scale evaluation, we chose six most often cited methods which were tested

Table 3.4: Comparison on the DS188 dataset [Zhang et al., 2010].

MCC | Precision | Recall | ACC F1
INSPiRE 0.481 0.534 0.567 | 0.879 | 0.550
PredUs Zhang et al. [2011a] 0.345 0.503 0.575 | 0.726 | 0.530
PrISE Jordan et al. [2012] 0.338 0.480 0.432 | 0.806 | 0.455
RAD-T Bendell et al. [2014] 0.222 0.285 0.647 | 0.652 | 0.355
MetaPPISP Qin and Zhou [2007] | 0.262 0.490 0.267 | 0.811 | 0.346
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on public datasets and evaluated INSPiRE on the same data. Because our
knowledge base was built over the full PDB, when searching for similar
structural elements to a query in the evaluation, all the query protein’s
structural elements in the knowledge base were disregarded. Table 3.3 and
Table 3.4 show that INSPiRE substantially outperforms existing methods in
terms of MCC. Although INSPiRE uses the full PDB as its knowledge base
the removal of the query structural elements is, as we believe, sufficient to
prove that INSPiRE is at least on par with the best state-of-the-art methods.
Currently, we are developing a benchmarking dataset containing dissimilar
time-based subsets of the PDB and preliminary results indeed confirm that
INSPiRE is able to outperform existing solutions.

3.2.1 Software solution

The software solution, intended as a complex PPI framework, is currently being
developed and is accessible at https://github.com/Jelinek-J/INSPiRE.
The framework exposes individual steps of the PPI process, such as the
creation of the knowledge base, features extraction or annotation of a single
protein given a knowledge base.
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