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0 Preface

This thesis consists of some selected special topics whose common ground is
settled in General Topology (GT). These topics can be divided into three main
areas: Continuum Theory (CT), Topological Dynamics (TD) and Descriptive Set
Theory (DST). The aim of the chapters 1-3 is to discuss some specific parts in
each of the fields that are related to our results. Especially we want to focus
on some recent progress initiated occasionally by our results and also to mention
some intriguing open problems. We also describe roughly some proof methods.
Of course, there is no aim to give a comprehensive introduction either to CT, TD
or DST. In spite of the fact each of the fields is well defined, all the three parts are
mutually interconnected, and the interplay of these branches forms fruitful topic
as well. Depending on the point of view, some of our papers could be moved to
different sections without any doubt.

Over the last ten years my research focus was moving from CT through TD to
applications of DST in both CT and TD. I was mainly influenced by Engelking [41]
in GT; Nadler [70], Macias [64], van Mill [76], Illanes and Nadler |55] in CT; Katok
and Haselblatt [57], Brucks and Bruin [24] and Kurka [61] in TD; Kechris [58],
Gao [44] and Hjorth [49] in DST.



0.1

List of papers

All the ten papers attached to this thesis were published or submitted within
the last five years. I decided not to attach my joint papers [47] and [35] (that
were also published within the last five years) because they do not fit into the
framework of this thesis.
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1 Continuum Theory

The main object of this field is continuum that is a compact connected metrizable
space. The following classes arise naturally by some sort of simple constructions
applied to simple spaces: Peano continua (continuous images of [0, 1]), chainable
continua (inverse limits of arcs with continuous bonding maps), dendrites (inverse
limits of trees with monotone bonding maps), tree-like continua (inverse limits of
trees) or compactifications of the ray [0,00). Up to now it seems that all these
classes and a lot of others are well understood in general. On the other hand
plenty of specific problems are still open, some of them for a very long time [73].
Many of them are related to the topology of the plane.

Recently a solution of one such longstanding problem was published. The
problem was to describe all homogeneous continua in the plane. Of course a
point or a circle are such, but there were two other known for several decades:
the pseudoarc and the circle of pseudoarcs. Recently it was proved that there are
no others [50]. One can deduce from this how all the homogeneous compacta in
the plane look like.

Homogeneity as a concept of C'T can be studied in a more general context of
transitive group actions which presents a bridge between different disciplines. A
useful tool from the field of DST for studying homogeneity is a theorem of Effros
in which X is usually assumed to be a continuum and G the full group of its
homeomorphisms [14]:

Theorem 1. Let G be a Polish group acting transitively on a Polish space X.
Then the action is microtransitive, i.e. whenever U C G is a neighborhood of the
identinty element and x € X then Uz is a neighborhood of x.

As homogeneity seems to be a rather rare property it is natural to study
generalized homogeneity. The most simple way is to consider a bound on the
number of orbits. A direct application of Theorem [I| to chainable continua was
used in [20] when studying the concept of half-homogeneity in order to give a
topological characterization of a special continuum (which is called arc-less arc
in there) built on the idea of the pseudoarc.

1.1 Blocking points

A classical result in CT states that every non-degenerate continuum has at least
two non-cut points (a cut point is defined by the property that its complement
is disconnected) [70, Theorem 6.6]. Using a result of Bing |16] we concluded a
more general result in [A] that follows.

Theorem 2. Fvery continuum is spanned by its non-block points.

Consequently every non-degenerate continuum contains at least two non-block
points. Notice that a point x is a non-block point of a continuum X if and only
if there is an increasing sequence of continua in X \ {2} whose union is dense.
Thus clearly every non-block point is a non-cut point but not vice versa.

Blocking properties of points play an important role in understanding one-
dimensional continua. These concepts were inspired by the corresponding prop-
erties of vertices and edges in combinatorial graphs and trees. The type of extreme



points considered in [A] was recently intensively studied also in the non-metrizable
setting [3-6,12] and with respect to hyperspaces [26],27,43].

1.2 Blocking sets

Continua of topological dimension one form a varied world of objects that is
difficult to classify. On the other hand there is a reasonable visualisation of
these objects since they are all embeddable into R?. By generalizing the idea of
a combinatorial tree one can deal with the classes of dendrites, dendroids or A-
dendroids. Blocking properties of sets form an ingredient that helps to understand
connections in these spaces.

Definition 3. Let X be a continuum. For A, B € 2% we say that B does not
block A if AN B = () and the union of all subcontinua of X intersecting A and
contained in X \ B is dense in X. When B blocks A, we say that B is a blocker
of A. For a subset H C 2% we use the notation

B(H) = {B € 2X: B blocks each element of H}.

Let us denote by F(X) the system of all finite subsets of X. Illanes and
Krupski proved that for a locally connected continuum X it holds that B(F(X)) =
B(2%). They asked whether the last equality is in fact a characterization of local
connectedness. We provided a negative answer to their question in [B].

Theorem 4. There exists a non-locally connected A-dendroid X for which
B(F(X)) = B(2%).

On the other hand we proved that in the realm of hereditarily decomposable
chainable continua or among smooth dendroids the answer to the question of
[lanes and Krupski is positive [B]. To this end, radially conver metrics turned
out to be a useful tool (these are known to exist in every smooth dendroid).
Whether the equality B(F (X)) = B(2%) remains true for the pseudoarc is still
an open question.

Definition 5. Let X be a continuum. A set A C X is called a shore set if there
exist subcontinua K, C X \ A such that the sequence (K,) converges to X in 2%
with respect to the Vietoris topology.

Answering a question of [19] we proved that in a smooth dendroid the union
of finitely many disjoint closed shore sets is a shore set [B]. This forms a direct
continuation of the research initiated by Illanes and subsequently by van Nall
[54,71.[72].

1.3 Incomparable compactifications of the ray

In [C], we study compactifications of the ray (i.e. the space [0,00)) whose re-
mainder is a fixed Peano continuum X. Such a compactification is called a spiral
over X. The main result of our paper [C] follows.

Theorem 6. Let X be a non-degenerate Peano continuum. Then there is a
family of continuum many spirals over X each pair of which is incomparable by
continuous mappings (i.e. there is no continuous surjection between two distinct
elements in the family).



The paper [C] follows some ideas of [74] where topological properties of spirals
over a circle were revisited. Namely, there is a similarity in the general strategy
formed by a reduction of a topological problem through analysis and infinite
combinatorics to a set theoretical problem of some almost disjoint system. Similar
type of construction appeared recently e.g. in a very far context of W-spaces [13].
Identifying big classes of topologically distinct objects has a long history with its
origins arguably in the work of Waraszkiewicz [77]. Also this topic was recently
investigated by Minc [69] in the context of spirals over arbitrary non-degenerate
continua.

1.4 Compactifiable classes of compacta

Motivated by a paper of Minc [69] we introduced several new notions in [D] and
we studied their properties systematically.

Definition 7. Let C be a class of compact metrizable spaces. We say that C is
compactifiable if there is a compact metrizable space K C X x Y such that every
space in C is homeomorphic to some vertical section K, = {y € Y: (z,y) € K}
and vice versa. Similarly we say that a class C is strongly compactifiable if there
is a compact subset IC of the hyperspace of the Hilbert cube, such that every
element of C is homeomorphic to some element of I and vice versa.

We proved in [D] that there is a surprisingly close connection of these notions
to analytic sets and also to some low Borel classes. This provides an interesting
interplay between CT and DST.

Theorem 8. Let C be a class of metrizable compacta. If C is compactifiable, then
the set of all compacta in [0,1]N that are homeomorphic to some member of C is
analytic. On the other hand if C is an analytic set (as a subset of the hyperspace
of the Hilbert cube) and contains all Peano continua, then C is compactifiable.

Especially, by the theorem above, the class of all Peano continua is compact-
ifiable, since it is known to be Borel. In spite of the fact that it is easy to prove
that strongly compactifiable classes are compactifiable, it is not known whether
the converse implication holds. Possible class that distinguishes these notions
could be the class of Peano continua which is known to be compactifiable but not
known to be strongly compactifiable (Question 4.20 in [D]).



2 Topological Dynamics

The central concept of TD is (classical topological) dynamical system. A dynami-
cal system is a compact metrizable space with a continuous map of that space into
itself. Two dynamical systems are called conjugate if there is a homeomorphism
of the underlying spaces that preserves the dynamics. The most basic dynamical
property of a point is being fized. By Brouwer’s fixed point theorem such points
are always available when dealing with continuous selfmaps of an n-dimensional
cell and one can easily deduce that consequently every absolute retract has the
fixed point property as well.

A complete opposite to a dynamical system with a fixed point is a minimal
system, that is, a dynamical system in which the (forward) orbit of every point
is dense. A canonical example is an irrational rotation of the circle or generally
rotations of compact monothetic groups (these include e.g. p-adic integers). There
are many examples on the Cantor set such as the Devaney systems. It is known
that minimal homeomorphisms of the Cantor set form a coanalytic and non-Borel
set [53], which makes them difficult to handle. Minimal dynamical systems form
the smallest building blocks. Indeed, as a consequence of Zorn’s lemma every
dynamical system contains a minimal subsystem.

The entropy of a dynamical system is a quantitative way of describing the
complexity of the dynamics. It measures the exponential growth-rate of the
number of far orbits. In the case of dynamical systems on a graph, entropy can
be expressed using the notion of a horseshoe [63], which makes entropy more
accessible.

Dynamical systems are naturally generalized to continuous actions of topo-
logical groups or semigroups. These naturally occur e.g. as full homeomor-
phism groups of a compact space acting on themselves. Even the existence of
a (common) fixed point is then much more complicated since we need to reflect
both the structure of the underlying space as well as algebraic properties of the
(semi)group.

2.1 Fixed points of continuous group actions

The existence of fixed points in the realm of continuous selfmaps of low dimen-
sional continua requires some sort of acyclicity. This suggests to consider the
classes of chainable continua, dendrites, dendroids, A-dendroids, uniquely arc-
wise connected continua and tree-like continua. Surprisingly, tree-like continua
do not have the fixed point property [15]. The original example was recently
revisited and simplified [4§].

There is a fairly general question on what groups or semigroups acting on
which spaces always produce a fixed point. There is a huge number of results
and one can hardly expect to obtain a full characterization. We contributed to
this area in [E] by the following theorem and by a systematic search for results
of this kind.

Theorem 9. Fvery compact group action on a uniquely arc-wise connected con-
tinuum has a fized point.

As noted by Boronski, there exists a pair of commuting homeomorphisms
of a chainable continuum without a common fixed point [21]. His result is an
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inverse limit construction of an inverse sequence formed by functions constructed
independently by Boyce and Huneke [23,51]. Thus even the abelian group Z?* can
act on a chainable continuum without having a fixed point. On the other hand,
every action of N on a chainable continuum has a fixed point |70].

Invariant measures plays an important ingredient in the proof of Theorem [9]
It can be considered as a generalization of a fixed point. A formal similarity of
the notation f[u] = p is not the only reason: more importantly, if the invariant
measure is a Dirac measure, then the exceptional point is indeed a fixed point.
There is a classical result of Krylov and Bogolyubov that every continuous self-
map of a compact metrizable space admits an invariant measure [62]. This was
extended soon after to continuous actions of amenable groups (and thus covering
all compact groups and all abelian groups). Nowadays, a full characterisation
is available: a topological group G is amenable if and only if every continuous
action of G on a compact metrizable space admits an invariant measure [45].

2.2 Rectification of piecewise monotone maps with posi-
tive entropy

In 1980’s, Milnor and Thurston developed the celebrated kneading theory. By this
theory one can assign to a piecewise monotone function a matrix (with formal
power series in each entry) whose properties capture the dynamical spirit of the
function. They also proved that a piecewise monotone transitive map with pos-
itive topological entropy can be conjugate to a map with constant slope (which
equals to the exponential of the topological entropy) [68]. This last result was
later generalized to trees [9] and recently to finite graphs [2]. A similar type of
result was obtained by Bobok for countably piecewise monotone maps on the
interval |18]. We extended these results in [G] in both directions covering the
case for graphs (and in fact all tame graphs) as well as the countably piecewise
monotone case. To this end we introduced the class of tame graphs.

Let us denote by F(X) the set of all end points of a continuum X (i.e. points
of order one) and by B(X) the set of all branch points (i.e. points of order at
least three).

Definition 10. A continuum X is called a tame graph if the set E(X) U B(X)
has countable closure.

This new class of tame graphs includes not only all graphs but also some
infinite dendrites, which makes our results more general.

2.3 Minimal maps on continua

The question whether a given compact space admits a minimal homeomorphism
turned out to be a very difficult task and thus even singular results in this area
are of high importance. Handel constructed a minimal homeomorphism of the
pseudo-circle [46]. A minimal noninvertible map on the pseudocircle was con-
structed by Boronski, Kennedy and Oprocha [22]. On the other hand Kolyada,
Snoha and Trofimchuk observed that for every minimal map there is a comeager
set of points whose preimages are singletons [59]. Roughly speaking a minimal
map is always quite close to a homeomorphism. To the contrary, a continuum



with a cut point does not admit a minimal homeomorphism [42]; recently this
was extended to mappings instead of homeomorphisms [65].

Auslander conjectured that no non-degenerate non-separating plane contin-
uum admits a minimal map. Even though this is a weakening of the popular and
longstanding conjecture that every non-separating plane continuum has the fixed
point property, it has not been solved yet.

The complete description of spaces admitting a minimal homeomorphism was
given by Blokh, Oversteegen and Tymchatyn within the realm of 2-dimensional
manifolds (with or without boundary) [17] and by Balibrea and his coauthors
within almost zero-dimensional spaces (i.e. spaces in which the union of degen-
erate components is dense) [10].

The main result of [F] is a an answer to a question of Artigue [§] dealing with
minimal maps. We proved the following theorem.

Theorem 11. There is a minimal homeomorphism f of a Peano continuum X,
a dense G set E C X and e > 0 such that for every subcontinuum K C X which
intersects E there is some n € N for which diam(f™(K)) > €.

The idea of our proof is quite simple: we consider an irrational rotation of
the two-dimensional torus and then we find a suitable extension on the Sierpinski
Ty-set (which already is a one-dimensional continuum).

Several properties similar to minimality and transitivity were recently system-
atically studied in [1].
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3 Descriptive Set Theory

Central object of DST is Polish space (i.e. a space that is completely metrizable
and separable) and its definable subsets. The measurable space obtained by taking
the o-algebra of Borel sets of a Polish space (the so-called standard Borel space)
is also of interest very often. The absence of topology collapses almost everything.
Indeed, up to isomorphism there is only one uncountable standard Borel space
and its cardinality is |R|. A o-ideal is a collection of sets that is closed under
countable unions and also closed with respect to subsets. The main examples of
o-ideals in this context are measure zero sets in measure spaces and meager sets
in topological spaces.

A Polish group is a group endowed with a Polish topology, such that the group
operations are continuous. There are many examples occuring e.g. as homeomor-
phism groups of compact metric spaces. One of the most important problems in
this field is the Topological Vaught conjecture, which states that a continuous ac-
tion of a Polish group on a Polish space has either countably many orbits or there
are perfectly many of them [14]. A limitation for a possible counterexample was
given by Burgess who proved that an analytic equivalence relation on a Polish
space has either countably many, w; or perfectly many equivalence classes [25].

3.1 Haar meager sets in Polish groups

In 1972, Christensen defined Haar null sets in Polish groups as a generalization of
Haar measure zero sets for locally compact Polish groups [32]. This notion turned
out to be useful in several applications, e.g. in some differentiability results on
real functions [78] or in dynamical systems [52]. Several decades later, Darji
established Haar meager sets as a topological counterpart to Haar null sets [36].

Definition 12. A set X in an abelian Polish group G is called Haar meager if
there exists a Borel set B O X and a continuous map f of a compact metrizable
space K to G such that f~!(x + B) is meager for every z € G.

We extended the above definition naturally to the nonabelian case by assuming
that the preimages of all two-sided translates are meager and we proved that Haar
meager sets form a o-ideal and that they are meager in every Polish group [H].
It is a folklore that the real line (or a locally compact Polish group) can be
decomposed into the union of a meager set and a (Haar) measure zero set. We
proved the following analogy answering partially a question of Jabtonska [56].

Theorem 13. Every uncountable abelian Polish group which has a countable local
base at the identity element formed by clopen subgroups (e.g. the group ZN) can
be decomposed into the union of a Haar meager set and a Haar null set.

It is still not known whether such a decomposition can be found in any un-
countable Polish group even in the abelian case. Also it is not known whether
compact sets in non-locally compact Polish groups are Haar meager. A partial
positive answer holds for groups admitting two-sided invariant metric.

A lot of attention has been paid to whether the definition is optimal. Recently
it was proved that the witnessing function f in Definition [12| cannot be equiva-
lently supposed to be one-to-one [40]. We proved that considering the Borel hull
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B in the definition of Haar meager sets is essential, or at least some other sort of
definability is needed to get an equivalent notion [H, [3§].

Some further recent research includes a common generalisation of Haar mea-
ger and Haar null sets, termed Haar-Z sets, with respect to a general o-ideal
Z [11]. Tt seems that the notion of generic Haar meager sets might become of
higher importance in the future since it avoids some pathological behavior of Haar
meager sets. A recent comprehensive survey paper on Haar meager and Haar null
sets can be found in [39).

3.2 Complexity of C),-spaces

Classification of C,-spaces with pointwise topology turned out to be a difficult
problem. For example, it is not even known whether some of the spaces C,(2%),
C,([0,1]) and C,(]0, 1]*) are homeomorphic [66, Question 2.14]. Recently, the first
separable metrizable space X was found for which C,(X) is not homeomorphic to
its own square [60]. To this end the rigid Bernstein set can be used. This shows
how difficult it is to handle the topology of pointwise convergence. The question
whether there is a compact metrizable space X with the same property remains
unsolved.

Let us consider the set C,(X) of all continuous real-valued functions on X as
a measurable space endowed with the o-algebra of Borel sets that are generated
by the topology of pointwise convergence on C,(X). In spite of the fact that
the topology of C,(X) is usually non-metrizable, the corresponding measurable
space can be considered as a subspace of a standard Borel space for a separable
metrizable space X. Indeed, the set C,(X) can be embedded into R” for some
countable dense set D C X and this embedding is known to be measurable [7].

Some sort of classification (with respect to the Borel-Wadge hierarchy) of the
measurable space C,(X) is already an accessible task if we consider reasonable
assumptions. If X is o-compact then C,(X) as well as C(X) is standard Borel
and if X is ¥ (i.e. analytic) but not g-compact then C,(X) as well as C;(X) is
Borel-TI;-complete [33], [37]. Joining the results 7] and [I] we obtain the following
theorem that assumes the axiom of projective determinacy (PD).

Theorem 14. Suppose PD holds and let X be a separable metrizable projective
space which is not in X}. Let n > 2 be the first for which X is in 1. Then the
measurable space Cp(X) as well as C}(X) is Borel-IL)-complete.

The assumption of PD is a natural one here. Indeed, the only consequence of
PD used in the proof of Theorem [14] is that a subset of a Polish space which is
not in IT} is X!-hard. It should be noted here that it is not known whether PD
is relatively consistent with ZFC.

3.3 Classification of metrizable compacta up to homeo-
morphism

One of the most basic characteristics of a category of objects is the set theoret-

ical cardinality of the maximal family of non-isomorphic objects (this is what

we dealed with in Section . In this section we deal with a deeper study of

complexity (sometimes called definable cardinality) expressed by the following
definition.
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Definition 15. Suppose that X and Y are standard Borel spaces and let £ and
F' be equivalence relations on X and Y respectively. We say that E is Borel
reducible to F', and we denote this by E <p F, if there exists a Borel mapping
f: X — Y such that

vBr s f(2)F (),

for every x, 2’ € X. The function f is called a Borel reduction. We say that E is
Borel bireducible with F', and we write £ ~g F', if FE is Borel reducible to F' and
F" is Borel reducible to E.

The intuitive meaning of £ <p F' from the definition above is that once we
can classify points in Y up to the equivalence relation F', we can also classify
points in X up to the equivalence relation E. A concrete example of such a result
is a consequence of the Banach-Stone theorem [75]:

Proposition 16. The homeomorphism equivalence relation of compact metrizable
spaces is Borel reducible to the isometry equivalence relation of separable Banach
spaces.

Results of this kind are usually stated in such a vague form and some sort
of coding is needed for a formal statement. In this case one can consider the
hyperspace of the Hilbert cube as the set of codes for compact metrizable spaces
and the set of all closed subspaces of the universal space C([0, 1]) space equipped
with the Effros Borel structure to formalize Proposition The converse of that
result is also true: the isometry equivalence relation of separable Banach spaces is
Borel reducible to the homeomorphism equivalence relation of compact metrizable
spaces. It should be noted that in spite of the fact that the first reduction is
given naturally by assigning the Banach space C'(K) of all real valued continuous
functions to a given compact metrizable space K, the other one is not known to
have a simple natural description and it follows e.g. by a combination of the main
results of Zielinski [79] and Melleray [67]. We can conclude that classification of
compact metrizable spaces up to homeomorphism is of the same complexity as
classification of separable Banach spaces up to isometry.

A systematic search for classification results of this kind is a fresh part of
DST with many applications. In [J] we were dealing with classification results of
some metrizable compacta up to homeomorphism. Among others, we proved the
following result there.

Theorem 17. The homeomorphism equivalence relation of absolute retracts is
Borel bireducible to the universal orbit equivalence relation.

This extends and simplifies recent similar results for continua and locally
connected continua by Chang and Gao [30] and Ciesla [34]. We also identified
the complexity of a class of one-dimensional spaces.

Theorem 18. The homeomorphism equivalence relation of metrizable rim-finite
continua is classifiable by countable structures (i.e. Borel reducible to the Su-
universal orbit equivalence relation).

This extends a similar result for dendrites by Camerlo, Darji and Marcone
[28]. Zero-dimensional compacta are known also to be classifiable by countable

13



structures [29]. Thus it was a surprise to observe that the change from continua to
compacta increases the complexity, i.e. the homeomorphism equivalence relation
of rim-finite compacta is not classifiable by countable structures [J].

Recently Chang and Gao dealt with the homeomorphism equivalence relations

for compacta that are embedded into an n-dimensional cell [31]. However, one
of the main questions whether there is a Borel reduction that is significantly
decreasing topological dimension remains open.
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