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ABSTRACT 
 

The computerized device for membrane potential measurement using the 

tetraphenylphosphonium-selective electrode was constructed. Signal acquisition, processing 

and data storage were realized by MATLAB/Simulink software. The selective membrane was 

optimized incorporating TPP+TPB- precipitate into the membrane. The electrode had a 

Nernstian response from 3x10-6 M TPP+. The TPP+TPB- precipitate was later replaced by 

sodium tetrakis[3,5-bis(1,1,1,3,3,3-hexafluoro-2-methoxy-2-propyl)phenyl]borate (NaHFPB). 

The electrode with incorporated NaHFPB had a Nernstian response from 1x10-6 M TPP+ and 

had better sensitivity than commercially available electrodes. The values of selectivity 

coefficients for K+, Na+, Ca2+ and Mg2+ were calculated. 

The device was used for mitochondrial membrane potential measurement of isolated 

mitochondria and for evaluating the respiratory chain function of digitonin-permeabilized 

cells (hepatocytes, HeLa G, BSC-40 and control transmitochondrial cybrids). This method 

was used also for monitoring the mitochondrial permeability transition pore (MPTP) function 

of isolated mitochondria and permeabilized hepatocytes. MPTP opening was induced by high 

calcium concentration and the action of calcium was enhanced by pro-oxidant tert-butyl 

hydroperoxide (t-BHP). This process was inhibited by cyclosporin A.  

We also found that t-BHP caused mψΔ  dissipation in permeabilized hepatocytes 

which could be caused by complex I or mitochondrial aconitase inhibition. In addition, t-BHP 

brought about MPTP opening. 

Our data indicate that the constructed device can be successfully used for studies of 

many aspects of mitochondrial bioenergetics, for evaluation of hepatotoxic action of various 

agents and as a diagnostic tool for mitochondrial oxidative phosphorylation disorders. 
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1. INTRODUCTION 
 

  Ion-selective electrodes have become the well-established group of sensors in the 

laboratory. Except the glass pH-electrode, electrodes selective to various ions such as Na+, 

K+, Ca2+, I- [31] and even protamin [33] were developed. The main advantage of the ion-

selective electrodes is their large sensitivity range, usually from 1 to 10-6 M. 

 Ion-selective electrodes are typically employed under zero-condition in a galvanic cell 

which consists of an ion-selective electrode, a reference electrode (Ag/AgCl electrode or 

Hg/Hg2Cl2 electrode), aqueous medium and a device for electromotive force monitoring 

(emf). Emf across the galvanic cell is the sum of all individual contributions: 

emf = Econst + ED + EM,     (1) 

EM is the membrane potential, ED is the liquid junction potential at the sample/bridge 

electrolyte interface and Econst is the sample-independent constant. If the membrane internal 

diffusion potential is zero and the activity of the primary ion in the membrane does not 

change, the phase boundary potential at the membrane/sample interface (E) is described by 

the Nernst equation: 

( )sia
zF
RTEE ln0 += ,      (2) 

where E0 denotes the sample-independent variable; R, T , z and F are the universal gas 

constant, the absolute temperature, the valence and the Faraday constant, respectively, and 

( )sia  is the ion activity of the primary ion in the sample solution. In real measurements, the 

electrode can respond to various ions present in the medium other than the primary ions. 

These ions are called interfering ions. If interference occurs, the semiempirical Nicolskii-

Eisenman [34] equation is used for description of the ion-selective electrode response: 

( )ji zz
j

pot
iji

i

ijaKija
Fz

RTEE /0 )()(ln ++= ,    (3) 

where )(ijai  and )(ija j  are the activities of the primary ion i and interfering ion j in the mixed 

solution, pot
ijK  is the Nicolskii coefficient, zi is the valence of the ion i and zj is the valence of 

the interfering ion j.  

 The serious limitation of the Nicolskii-Eisenman equation is, however, that for zi ≠ zj, 

this equation is inconsistent and in the case of exchanging the indices for i and for j the 

Nicolskii-Eisenman equation does not give the same analytical expression. For this reason, 

the new formalism was developed [2]. The general result is expressed as: 
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For zi=1 and zj=2 the equation (4) is expressed as follows: 
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For small interference (ca 10 %), the equation (4) can be replaced by: 
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The selectivity, one of the most important characteristics of the ion-selective electrode, can be 

determined using two different procedures (according to the IUPAC commission, 1997) [38]: 

Fixed interference method and Separate solution method. These two methods give meaningful 

results only if Nernstian slopes are observed for every ion involved [1]. When the condition of 

Nernstian response for every ion is not fulfilled, the Matched potential method can be applied. 

But the obtained selectivity coefficients ( MPM
ijk ) depend highly on the experimental conditions 

[3]. 

 

For measurement of the membrane potential, lipid-soluble cations and anions are 

widely used. These include fluorescent probes (rhodamine 123, tetramethylrhodamine methyl 

ester, JC-1 [30]), radiolabeled probes ([14C]tetraphenylphosphonium, 

[3H]methyltriphenylphosphonium [7]) and unlabeled probes (tetraphenylphosphonium 

(TPP+), dibenzyldimethyl ammonium (DDA+) [21, 36]. They are electrophoretically 

transported across the cell membranes [16, 25] and distributed between cells/organelles and 

their surroundings in accordance with the Nernst equation 

in

out

a
a

zF
RT ln=Δψ ,     (9) 

where aout and ain are the activities of lipid-soluble ions inside the cell/organelle and in the 

medium. The changes of lipid-soluble cation concentration (ion activity) in the medium due to 

their uptake into the mitochondria can be determined by ion-selective electrodes. This allows 

calculation of the membrane potential in absolute scale of millivolts. Maratsugu et el. (1977) 

[26] used DDA+ as a mψΔ  (mitochondrial membrane potential) indicator and developed the 

DDA+-selective electrode. This electrode had a liquid membrane with an incorporated ion-

exchanger. The liquid selective membrane was soon replaced by the PVC-based membrane 
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[36]. As TPP+ for its transport to the mitochondria did not require tetraphenyl boron in the 

medium and its transport to mitochondria is 15 times faster than DDA+, DDA+ was replaced 

by TPP+ and the PVC-based TPP+-selective electrode was constructed [21]. This approach 

was widely used and TPP+-selective electrodes had a Nernstian response, but their 

reproducibility is not fully satisfying and has to be optimized. 

 

 Mitochondria are the main energy producers in eukaryotic cells. Their key role is the 

synthesis of ATP from ADP and phosphate. This process is driven by the electrochemical 

potential generated by the respiratory chain enzymes (complexes I, III and IV) located in the 

inner mitochondrial membrane. The transfer of electrons from substrates to oxygen provides 

energy for pumping of protons across the membrane and thus generates the electrochemical 

potential ( Hμ~Δ ) described by the equation:  

mH FpHRT ψμ Δ+Δ−=Δ 3,2~  ,    (8) 

where pHΔ  is the pH difference and mψΔ  is the mitochondrial membrane potential across 

the mitochondrial membrane. 

Besides ATP synthesis, mitochondria are involved in calcium metabolism and in the 

initiation of apoptotic and necrotic cell death as well. Recently, the participation of the 

mitochondrial permeability transition pore (MPTP) in cell death is discussed [10, 11, 17]. 

Opening of this pore is also associated with hypoxia and ischemia-reperfusion-induced 

oxidative stress, with acceleration of aging processes [24], with various neurodegenerative 

diseases [35] such as Alzheimer disease [41], and with chemical toxicity effects [32]. 

Mitochondrial permeability transition (MPT) is characterized by increased 

permeability of the inner mitochondrial membrane to solutes of molecular mass up to ~ 1500 

Da [5], subsequent membrane depolarization and the massive swelling due to the colloidal 

osmotic pressure exerted by the matrix proteins. Mitochondrial swelling may cause the 

rupture of the outer mitochondrial membrane and the release of various molecules from the 

intermembrane space such as cytochrome c, which, after binding Apaf-1 in the cytosol, causes 

the activation of caspase 9, triggering the apoptotic cascade [11, 12]. The cause of the MPT is 

the opening of a non-specific pore at the inner/outer membrane contact site of mitochondria, 

known as the mitochondrial permeability transition pore. Its structure is still elusive, but the 

main candidates which could form a core of the complex are: adenine nucleotide translocator 

(ANT), voltage activated anion channel (VDAC or porin), cyclophilin D (CyP-D). Creatine 
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kinase, VDAC-associated hexokinase, peripheral benzodiazepine receptor [6], pro-apoptotic 

and anti-apoptotic Bcl-2 family proteins could play a regulatory role.  

Opening of MPTP is triggered by calcium overload. Several factors such as oxidative 

stress, adenine nucleotide depletion, increased inorganic phosphate and mitochondrial 

depolarization greatly enhance the sensitivity of the pore to Ca2+. MPTP opening can be 

inhibited by cyclosporin A. Various peroxides such as tert-butylhydroperoxide, which are 

used as a model of oxidantive damage [22, 28, 39], can bring about the MPTP opening [17].  

 MPTP was discovered and studied on isolated mitochondria and mitochondrial 

swelling. However, some data have recently appeared indicating that mitochondrial contact 

with the endoplasmic reticulum and other structures as well as with other mitochondria are 

important for mitochondrial functional activity [15, 37]. Permeabilized cells by digitonin can 

be used as a useful biological model because the intracellular network is maintained [14] and 

internalized mitochondria are accessible for exogenous substrates and cofactors.  

As TPP+-selective electrode is very useful method for real-time mψΔ  monitoring, we 

constructed the computerized device using these electrodes and used this method for 

evaluation of mψΔ  and respiratory chain function in isolated mitochondria and mitochondria 

of isolated hepatocytes and cultured cells permeabilized by digitonin. The determination of 

mψΔ  in situ in permeabilized cells has some advantages because during the isolation some of 

the mitochondria may be lost or destroyed and only a fraction of the original mitochondria is 

isolated.  

Because peroxides facilitate MPTP opening, we used the TPP+-selective electrodes for 

assessing the MPTP function under oxidative stress and enhancing the effect of calcium on 

MPTP opening.  
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2. AIM OF THE STUDY 
 

The goal of this study was to construct the computerized device for membrane 

potential measurement using the TPP+-selective electrode, optimize TPP+-selective membrane 

composition and calculate selectivity coefficients of the optimized membrane for various ions. 

The second goal was to test the constructed device by measuring mψΔ  of isolated 

mitochondria and to evaluate mψΔ  in digitonin-permeabilized cells, where mψΔ  is assessed 

in situ. 

 

1. The construction of the device for membrane potential measurement using TPP+-

selective electrode  

 

• The construction of the apparatus for membrane potential measurement using TPP+-

selective electrode 

• The connection to the computer and data acquisition, filtration and storage in 

MATLAB/Simulink software 

• Optimization of the TPP+-selective membrane 

• Calculation of the selectivity coefficients of the optimized electrode for various ions 

 

2. Measurement of the mitochondrial membrane potential using the constructed device 

 

• Measurement of the mitochondrial membrane potential of isolated mitochondria – 

evaluation of the respiratory chain function. 

• Measurement of mψΔ  in situ - mψΔ  of isolated hepatocytes and cultured cells 

permeabilized by digitonin. Evaluation of their respiratory chain function. 

• The action of calcium and pro-oxidant tert-butylhydroperoxide on mψΔ  of isolated 

hepatocytes and isolated mitochondria. The involvement of the mitochondrial 

permeability transition pore. 
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3. RESULTS AND DISCUSSION 
 

3.1 Construction of the device for membrane potential measurement 
 

 The computerized device for membrane potential measurement was constructed in our 

laboratory. It contains the measuring chamber (maximum sample volume of 5 ml) with the 

magnetic stirrer, the reference electrode, the TPP+-selective electrode and PC which includes 

the high-impedance measuring card PCI-603E (National Instruments, USA) (Fig.1). Real-

time signal acquisition, processing, display and data storage were realized by 

MATLAB/Simulink software (The MathWorks, Inc., USA). Fig. 2 shows the connection of 

the Simulink modules. The constructed device was placed into the Faraday cage to shield 

against electromagnetic radiation. 

 

 

 

 

 

 

 

 

 

 
Fig. 1 A Schematic diagram of the membrane potential measuring circuit: 1, the measuring chamber; 2, the 
reference Ag/AgCl electrode; 3, the TPP+-selective electrode; 4, the magnetic stirrer; 5 PC with PCI-603E 
measuring card. B Construction details of the TPP+-selective electrode: 1, the electrode body; 2, the Plexiglas 
ring; 3, the Ag/AgCl wire; 4, the opening for inner electrode filling; 5, the Plexiglas block where the Ag wire is 
sealed; 6, the Plexiglas ring with the tread to fasten the Plexiglas block inside the electrode body; 7, PVC 
membrane selective to TPP+. C Photograph of the electrodes assembly.  
 

We chose Plexiglas and Teflon as materials suitable for the electrode body and the measuring 

chamber because of their physical properties. For details of the electrode construction see Fig. 

1 B. The TPP+-selective membrane was glued to the electrode body using tetrahydrofuran and 

fixed with a Plexiglas ring, which has an inner conical shape to ensure constant tension of the 

PVC membrane. 

 

A B C
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Fig. 2 The Simulink modules connection.1, Adapter executes the communication with the measurement card ; 2, 
RT BufIn allows the adjustment of the buffer capacity and input parameters – frequency of the data acquisition 
and the input channel. The buffer was set to 1000 samples; 3, Data filtration realized by moving average filter; 
4, Real-time display of the acquired data; 5, Data storage; 6, Recording of the user’s message; 7 Data display.   
 

  

3.1.1 Preparation of the TPP+-selective membrane 
  

The PVC-based TPP+-selective membranes were prepared according to Kamo et al. 

(1979) [21], which contained tetraphenyl boron (TPB-). Three different types of PVC made in 

the Czech Republic were tested: Neralit 581, Neralit 682 and Naralit 702 (Spolana, 

Neratovice). The most suitable was Neralit 702 because of its elasticity and solidity. 

 We compared the response of the electrodes, which were filled with either 10 mM 

TPP+Cl- or with 10 mM TPP+Br- as the inner filling solution. The electrode filled with 

TPP+Cl- had a non-Nernstian response in contrast to the electrode filled with TPP+Br-. 

However, the response of the latter electrode was not fully reproducible after changing the 

membrane. To improve it, we modified the membrane preparation according to Shinbo et al. 
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(1978) [36]. Instead of Na+TPB- we added the precipitate of TPP+Cl- and Na+TPB- to the 

membrane. The modified TPP+-selective electrode had the Nernstian response to TPP+ from 

3x10-6 M, which was independent of the filling solution (10 mM TPP+Cl- or TPP+Br-). The 

electrode with the new prepared membrane had a stable and reproducible response for 2 to 3 

months. The response time of the electrode was 4 – 6 s. 

 Because TPP+ was washed out from the modified membrane, we replaced the 

precipitate by sodium tetrakis[3,5-bis(1,1,1,3,3,3-hexafluoro-2-methoxy-2-

propyl)phenyl]borate (Na+HFPB-) which is more stable than Na+TPB- [4]. TPP+Cl- (10 mM) 

was used as the inner filling solution. The prepared electrode had a reproducible Nernstian 

response from 1x10-6 M (Fig. 3) and the response time was 8-12 s due to the ion-exchange at 

the membrane/sample interface.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Calibration curve of the TPP+-selective electrode with the membrane containing HFPB-Na+. The 
calibration was done in 0.1 M NaCl background. 
 

In contrast with our improved electrodes, commercially available TPP+-selective electrodes 

(World Precision Instruments) have the Nernstian response from 10-4,5 M TPP+. Therefore, 

our electrodes are more suitable for membrane potential measurement due to their higher 

sensitivity in the concentration range 10-5 – 10-6 M TPP+ where the membrane potential is 

usually measured. 
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3.3.2 Calculation of the selectivity coefficients of TPP+-selective electrodes 
 

The selectivity coefficients ( pot
ijK ) for the TPP+-selective membrane with the 

incorporated TPP+TPB- were calculated according to the Fixed interference method for K+ 

((4.23±0.97)x10-6) and Na+ ((4.38±2.29)x10-6) and from the Nicolskii-Eisenman equation (the 

nonlinear method of least squares) ((5.126±0.70)x10-6 for K+) and (3.40±1.06)x10-6 for Na+). 

The calculated selectivity coefficients were influenced by TPP+ washing out from the 

membrane. Therefore, their values could be overestimated by this process. 

The selectivity coefficients were calculated (see Tab. 1) also for the TPP+-selective 

membrane with incorporated Na+HFPB-, where TPP+ washing out was minimized.  

 

j K+ Na+ Ca2+ Mg2+ 

pot
jTPPK ,  

(IUPAC) 
(2.31±0.34)x10-6 (1.94±0.56)x10-6 (4.76±0.68)x10-7 (5.29±1.60)x10-7 

pot
jTPPK ,  

(NE) 
(2.48±0.58)x10-6 (1.73±0.13)x10-6 (5.01±0.55)x10-7 (5.78±0.22)x10-7 

pot
jTPPK ,  

(Bakker et al.)  
- - (5.46±0.56)x10-7 (7.1±2.5)x10-7 

 
Tab.1 The values of selectivity coefficients calculated according to the IUPAC, from the Nicolskii-Eisenman 
equation (NE) (3) and equation according to Bakker et al. (5). (Electrode with incorporated Na+HFPB-) 
 

 

Except the Nicolskii-Eisenman equation (3) and the equation according to Bakker et al. (5), 

the equation for small interference (6) was used. We found that this equation for pot
ijK  

calculation is not convenient (see Fig. 4). The Nicolskii-Eisenman equation (for univalent and 

bivalent cations) and the equation according to Bakker et al. (5) (for bivalent cations) are both 

suitable, but the Nicolskii-Eisenman equation is easier to compute.  

The only selectivity coefficient for K+ ( pot
KTPPK ,  = 10-6) of the electrode made by World 

Precision Instruments according to the World Precision Instruments catalogue [9] was pot
KTPPK ,  

= 10-6. pot
KTPPK ,  of this electrode is comparable with the calculated value of pot

KTPPK ,  (Tab.1) of 

our improved electrode with incorporated Na+HFPB-.  
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Fig.4 Calibration curve of the TPP+-selective electrode with incorporated Na+HFPB- in the A K+(0.1 M KCl) 
background, B Na+ background (0.1 M NaCl), C Mg2+ background and D Ca2+ background and the model 
curves according to the Nicolskii-Eisenman equation (-), Bakker et al. (1997)(5) and (-),equation for small 
interference (6) (-). 
 

 

 

A B 

C D 
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3.2 Measurement of the mitochondrial membrane potential 
 

3.2.1 Mitochondrial membrane potential of isolated rat mitochondria and evaluation of 
their respiratory chain function 
  

The constructed device was used for evaluation of the mitochondrial membrane 

potential of isolated mitochondria. To quantify the amount of TPP+ accumulated in 

mitochondia, the TPP+-electrode was calibrated by successive addition of TPP+ before each 

measurement (Fig. 5 A). Changes in mitochondrial membrane potential due to the addition of 

the substrates and inhibitors of the respiratory chain are presented as changes of TPP+ 

concentration (Fig. 5 B). 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 A Calibration of TPP+-selective electrode in concentration range 2 – 8 μM TPP+. Arrows indicate 
addition of TPP+ to final concentration: 2μM, 4 μM, 6μM, 8μM. (Inset) Electrode response as a function of 
logarithm of TPP+concentration. B Analysis of mψΔ  of isolated rat mitochondria. Arrows indicate the addition 
of mitochondria (mit, 0.3 mg/ml), pyruvate (pyr, 10 mM), malate (mal 2.5 mM), rotenone (rot, 1 μM), succinate 
(succ, 10 mM), ADP (0.5 mM), oligomycin (oligomy, 1 μM), FCCP (1 μM). 
 
 

The analysis of the changes in mψΔ  of isolated rat liver mitochondria was performed in K-

medium (80 mM KCl, 10 mM Tris-HCl, 3 mM MgCl2, 5 mM KH2PO4 and 1 mM EDTA, pH 

7.4). After the addition of mitochondria the TPP+ concentration in the medium decreased due 

to TPP+ uptake into the mitochondrial matrix. The following slow efflux of TPP+ into the 

medium indicated the decrease of mψΔ  owing to depletion of endogenous substrates. 

A B
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Pyruvate and malate (the substrates of NADH-dependent dehydrogenases) prevented the 

TPP+ concentration increase. Addition of rotenone induced dissipation of mψΔ  due to its 

inhibition of complex I. Subsequent addition of succinate (substrate of complex II) again 

restored mψΔ  to values even higher than those obtained in the presence of pyruvate and 

malate. ADP was added to test the function of ATP synthase, which caused the release of 

TPP+ indicating a partial depolarization. Oligomycin, a specific inhibitor of ATP synthase, 

restored mψΔ  and the uncoupler FCCP decreased mψΔ  to a minimum value. The mψΔ  

dissipation was caused also by the addition of antimycin A and myxothiazol – specific 

inhibitors of complex III (not shown). 

The value of mψΔ  included in Fig. 5 was calculated using the equation: 

  
PKPV

PKVTPPTPPV
F

RT

im

tt
m +

−−
=Δ

++
000 ]/[][

lnψ ,    (9) 

where V0 is the volume of the medium before mitochondria addition, Vt is the final volume, 

Vm is the volume of mitochondrial matrix (μl/mg protein), [TPP+]0 and [TPP+]t are the 

concentrations of TPP+ prior to the addition of mitochondria and at time t, respectively, P is 

the mitochondrial protein content in the chamber (mg), K0 (14.3 μl/mg) and Ki (7.9 μl/mg) are 

apparent external and internal partition coefficient of TPP+ [40]. In parallel experiments on 

the oxygraph we confirmed that mitochondria used for measurements were tightly coupled, 

with a respiratory control index of 4-6. 

 The obtained data are in accordance with the previously published studies [21, 26, 29]. 

 

 

3.2.2 Mitochondrial membrane potential of isolated rat hepatocytes and cultured cells. 
Evaluation of their respiratory chain function 
 

 The mitochondrial membrane potential was analyzed in isolated rat hepatocytes and 

cultured cells (HeLa G, BSC-40 and control transmitochondrial cybrids) permeabilized by 

small amount of digitonin. Fig. 6 A shows TPP+ concentration change upon their 

permeabilization with digitonin and subsequent addition of substrates and inhibitors of the 

respiratory chain. Measurements were performed in the K-medium. After the addition of 

hepatocytes, small accumulation of TPP+ occurred. Addition of digitonin caused collapse of 

the plasma membrane potential and pronounced decrease of TPP+ concentration in the 
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medium due to the probe accumulation in the mitochondria. The changes in mψΔ  after 

subsequent addition of substrates and inhibitors were similar to mψΔ  changes of isolated 

mitochondria. Parallel experiments on the oxygraph showed that under similar conditions the 

mitochondria in permeabilized hepatocytes were coupled and the changes after addition of 

substrates and inhibitors corresponded to the measurements of mψΔ  [23]. The value of mψΔ  

= 0 is represented by TPP+ concentration after FCCP addition (Fig. 8 B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Analysis of mψΔ  of isolated hepatocytes. Arrows indicate the addition of A hepatocytes (hep, 1.65 
million cells/ml), digitonin (dig, 0.035 mg/ml), pyruvate and malate,( mal, 2.5 mM; pyr,10 mM), rotenone (rot, 1 
μM), succinate (succ, 10 mM), ADP (0.5 mM), oligomycin (oligomy, 1 μM); B hepatocytes (1.65 million 
cells/ml), digitonin (0.035 mg/ml), pyruvate and malate (10 mM, 2.5 mM) , succinate (10 mM), FCCP (1 μM). 
 

 

 This approach was used also for assessing mitochondrial function in other types of 

cultured cells such as control transmitochondrial cybrids, HeLa G or BSC-40. The changes in 

mψΔ  after addition of substrates and inhibitors of the respiratory chain were similar to mψΔ  

changes of isolated hepatocytes. The amount of the sample per ml of medium needed for good 

response was three to fivefold higher than the amount of hepatocytes. The optimal 

concentration of digitonin was tested for each cell type (HeLa G and BSC-40 – 0.075 mg/ml; 

cybrids – 0.1 mg/ml). 

  

A B
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3.2.3 The evaluation of the mitochondrial permeability transition pore function 
 

TPP+-selective electrodes were also used for mψΔ  monitoring during the 

mitochondrial permeability transition pore (MPTP) opening in isolated rat mitochondria and 

permeabilized rat hepatocytes. MPTP opening and consequent mψΔ  dissipation was induced 

by high concentration of calcium (100 μM) (Fig.7) as was previously described [20, 27].  

 

 

 

 

 

 

 

 

 

 

 
Fig. 7 TPP+ concentration changes after Ca2+addition. Arrows indicate addition of rotenone (rot, 1 μM), 
succinate (succ, 10 mM), mitochondria (mit, 0.4 mg/ml) and Ca2+(Ca, 100 μM). 
 
 
 The process of the MPTP opening can be enhanced at low Ca2+ concentration by 

oxidative stress. In the presence of 1.5 mM pro-oxidant tert-butylhydroperoxide (t-BHP) and 

low calcium concentration (12.5 μM) the dissipation of mψΔ  occurred (Fig. 8 A). This 

dissipation was inhibited by cyclosporin A (Fig. B), which indicates that mψΔ  decrease was 

caused by MPTP opening. Low calcium concentration (12.5 μM) and t-BHP (1.5 mM) did not 

induce MPTP opening (Fig. 8 C and D). 
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Fig. 8 TPP+ concentration changes due to calcium and t-BHP addition. Arrows indicate addition of 
mitochondria (mit, 0.4 mg/ml), rotenone (rot, 1 μM), succinate (succ, 10 mM), Ca2+ (Ca, 12.5 μM), t-BHP (1.5 
mM) and cyclosporin A (CS, 2 μM). 
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 When we tested changes of the mψΔ  in hepatocytes permeabilized by digitonin and 

energized by succinate (in K-medium without EDTA which did not influence Ca2+ 

concentration in the medium), we found that the membrane potential is maintained only for a  

short period of time after digitonin addition (about 4 min.) and then quickly dissipated (Fig. 9 

A). This dissipation was reversed by the addition of ethylene glycol-bis-(β-aminotethylether) 

tetraacetic acid (EGTA) or it was completely prevented by cyclosporin A (Fig.9B). This 

indicates involvement of Ca2+-activated MPTP function. The effect was concentration-

dependent and in agreement with previous findings [18] at higher Ca2+ concentration (above 

250 μM), mψΔ  dissipated even in the presence of cyclosporin A (Fig. 9B).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Fig. 9 TPP+ concentration changes induced by calcium and EGTA.. Arrows indicate addition of A succinate 
(succ, 10 mM), hepatocytes (hep, 1.64 million cells/ml), digitonin (dig, 0.035 mg/ml), EGTA (350 μM), Ca2+ (Ca, 
50, 100, 150, 200 μM), EGTA (3 mM), FCCP (1 μM); B succinate (10 mM), hepatocytes (1.64 million cells/ml), 
cyclosporin A (CS, 2 μM), digitonin (0.035 mg/ml), EGTA (350 μM),Ca2+ (125, 250, 375 μM), EGTA (3 mM), 
FCCP (1 μM). 
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 These findings show that Ca2+ present in the medium during hepatocyte isolation 

cannot be completely removed by repeated washing, or that hepatocytes are sufficiently 

preloaded by Ca2+ during the isolation procedure to open the MPTP after digitonin addition. 

 Therefore, in further experiments, when we tested effect of t-BHP, we used medium 

with 1 mM EDTA that completely prevented the dissipation of mψΔ  by contaminating Ca2+ 

ions (Fig. 10 A). Under these experimental conditions, the mψΔ  was not affected by Ca2+ 

added in concentrations below 200 μM (Fig. 10 A). Also t-BHP up to 1.5 mM in the medium 

with 1 mM EDTA had no dissipating effect (Fig. 10 B). However, when 1.5 mM t-BHP was 

added in the presence of 50 μM Ca2+, the mψΔ  was dissipated (Fig. 10 C). The dissipation 

was prevented by cyclosporin A (Fig. 10 D). This confirms previous observations indicating 

that oxidative stress increases the sensitivity of MPTP to Ca2+ [18]. 

We also tested rotenone, a potent inhibitor of MPTP [19], but it did not completely 

inhibit mψΔ  dissipation compared to cyclosporin A (not shown). 

 

 

3.2.4 t-BHP action on mitochondrial respiratory chain function 
 

 The action of t-BHP on mitochondrial respiratory chain function was studied in 

digitonin-permeabilized rat hepatocytes in K-medium. According to Drahota et al. (2005) [13] 

critical concentration for respiratory chain inhibition was 0.75-3 mM t-BHP. Therefore, we 

used the concentration range 0.3 – 3 mM t-BHP. The t-BHP action is time and concentration 

dependent. 

 We compared the mψΔ  changes in the presence of t-BHP and different substrates of 

the respiratory chain – pyruvate + malate and succinate. When pyruvate and malate were 

present in the medium, addition of t-BHP (0.5, 1.5 and 3 mM t-BHP) caused mψΔ  dissipation 

(Fig. 11 A). This process was not cyclosporin A-sensitive (Fig. 11 B). Mitochondria were 

again energized by the addition of succinate. In the case of mitochondria energized by 

succinate (complex I inhibited by rotenone), mψΔ dissipated in the presence of 3 mM t-BHP 

(Fig. 11 C) due to the lower sensitivity of complex II to oxidative damage [13]. The mψΔ  

dissipation was completely inhibited by cyclosporin A (Fig. 11 D).  
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Fig. 10 Changes of TPP+ concentration in the medium induced by calcium and t-BHP. Hepatocytes were 
incubated in K-medium with 1 mM EDTA. Arrows indicate addition to the final concentration of A succinate 
(succ, 10 mM), hepatocytes (hep, 1.8 million cells/ml), digitonin (dig, 0.035 mg/ml), Ca2+ (Ca, 100 μM), Ca2+ 
(200 μM), Ca2+ (300 μM); B succinate (10 mM), hepatocytes (1.8 million cells/ml), digitonin (0.035 mg/ml), t-
BHP (0.3 mM), t-BHP (0.4 mM), t-BHP (1.5 mM), t-BHP (3 mM), FCCP (1 μM); C succinate (succ, 10 mM), 
hepatocytes (1.64 million cells/ml), digitonin (0.035 mg/ml), Ca2+ (50 μmol/l), t-BHP (1.5 mM), FCCP (1 μM); 
D hepatocytes (1.64 million cells/ml), cyclosporin A (CS, 2 μM), succinate (10 mM), digitonin (0.035 mg/ml), 
Ca2+ (50 μM), t-BHP (1.5 mM), FCCP (1 μM).  
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Fig. 11 Changes of TPP+ concentration in the medium induced by t-BHP. Arrows indicate addition of A 
hepatocytes (hep 1.8 million cells/ml), digitonin (dig, 0.035 mg/ml), pyruvate and malate (pyr, 10 mM, mal 2.5 
mM) t-BHP (1.5 mM), succinate (succ, 10 mM), FCCP (1μM), B hepatocytes (1.8 million cells/ml), digitonin 
(0.035 mg/ml), pyruvate and malate ( 10 mM, 2.5 mM), cyclosporin A (CS, 2 μM), t-BHP (1.5 mM), FCCP 
(1μM), C hepatocytes (1.8 million cells/ml), digitonin (0.035 mg/ml), pyruvate and malate (10 mM, 2.5 mM), 
rotenone (rot, 1μM), succinate (10 mM), t-BHP(3 mM), FCCP (1μM), D hepatocytes (1.8 million cells/ml), 
digitonin (0.035 mg/ml), rotenone (1μM), succinate (10 mM), cyclosporin A (2 μM), t-BHP (1.5 and 3 mM), 
FCCP (1μM). 
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Our findings confirm the uncoupling effect of t-BHP (by 50 %) measured by respiration rate 

of mitochondria [42]. 

The action of t-BHP on mψΔ  of isolated hepatocytes may be summarized as: 

1. Dissipation of the mψΔ , which is not cyclosporin A-sensitive, is probably caused by 

inhibition of complex I due to modification of Fe-S centers of complex I by oxidative 

damage [13] or due to mitochondrial aconitase inhibition [8].  

2. Uncoupling effect of t-BHP, which is cyclosporin A-sensitive, could be caused by 

opening of MPTP. 

We may thus conclude that our constructed device for measuring the mψΔ  changes can be 

used for the evaluation of hepatotoxic action of various agents that damage hepatocyte energy 

metabolism due to the activation of MPTP opening and other factors that influence the mψΔ .  



 25

4. CONCLUSION 
 
1. Construction of the device for membrane potential measurement 

  

 The computerized device for membrane potential measurement using the TPP+-

selective electrode was constructed. Data acquisition and subsequent data processing was 

realized by MATLAB/Simulink software. 

 The PVC-based sensitive membrane composition of the TPP+-selective electrode was 

changed by the addition of TPP+TPB- precipitate. This electrode had a Nernstian response to 

TPP+ from 3x10-6 M TPP+. Because TPP+ was washing out from the modified membrane, the 

precipitate was changed by sodium tetrakis[3,5-bis(1,1,1,3,3,3-hexafluoro-2-methoxy-2-

propyl)phenyl]borate. This membrane had Nernstian response to TPP+ from 1x10-6 M TPP+ 

and TPP+ did not wash out from the membrane to the medium. Therefore, it was possible to 

compute the selectivity coefficients for Na+, K+, Ca2+ and Mg2+ according to the IUPAC 

recommendation, the Nicolskii-Eisenman equation and the equation that respects the different 

valency of primary and interfering ions (5) (Bakker et al., 1997). In the case of univalent 

cations, the Nicolskii-Eisenman equation is suitable for describing the calibration of the 

electrode. For divalent cations, the proper model of the calibration curve is the Nicolskii-

Eisenman equation and the equation according to Bakker et al. (1997), however the Nicolskii-

Eisenman equation is easier to compute. 

 The constructed device is suitable for TPP+ concentration measurement that allows 

real-time monitoring of the membrane potential. Optimization of the TPP+-selective 

membrane decreased the detection limit compared to the commercially available electrode 

(World Precision Instruments). Thereby the sensitivity of the TPP+ concentration 

measurement in the concentration range 10-5-10-6 M increased. This concentration range is 

suitable for membrane potential measurement. 
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2. Measurement of the mitochondrial membrane potential 

 

 The constructed device was tested by measuring mψΔ  in isolated mitochondria. The 

TPP+ concentration changes in the medium were dependent on the addition of various 

substrates and inhibitors of the respiratory chain. The measured data were in accordance with 

the data previously published. 

 Mitochondrial membrane potential was also measured in digitonin-permeabilized 

cells. In these experimental conditions, the mitochondrial membrane potential is measured in 

situ and the intracellular network is maintained. mψΔ  of the permeabilized hepatocytes, HeLa 

G, BSC-40 and control transmitochondrial cybrids was evaluated as changes of TPP+ 

concentration in the medium. 

 This method was used for monitoring the mitochondrial permeability transition pore 

function in isolated mitochondria and mitochondria of permeabilized hepatocytes. MPTP was 

induced by high Ca2+ concentration. The action of Ca2+ at low concentration was enhanced by 

pro-oxidant tert-butylhydroperoxide. The process was inhibited by cyclosporin A. After 

plasma membrane permeabilization of isolated hepatocytes (in the medium without EDTA) 

MPTP opened due to the Ca2+ preload during the isolation procedure or due to the presence of 

Ca2+, which could not be removed by repeated washing. 

 The action of the pro-oxidant t-BHP on respiratory chain function was studied in 

isolated hepatocytes. We propose that t-BHP dissipation was caused by the inhibition of the 

complex I or mitochondrial aconitase. t-BHP induced MPTP opening as well. 

 The mψΔ measurement using TPP+-selective electrodes in isolated mitochondria and 

permeabilized cells showed that this technique is useful for studies of many aspect of the 

mitochondrial bioenergetics. It may also be used as a tool for study of mitochondrial disorders 

and their diagnostics. In addition, the mψΔ  changes can be used for the evaluation of 

hepatotoxic action of various agents that damage energy metabolism due to the activation of 

MPTP opening, which is the first step in apoptotic and necrotic processes. 
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