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I. Introduction

The arithmetics of quadratic forms has a long and rich history. In this thesis we focus
on the situation over rings of integers of number fields, but before moving to them, let
us start by introducing some relevant results and history over the integers. Then we
will turn to a review of the number field case before describing the important results
from each of the seven articles included in this thesis:

[1] V. Blomer, V. Kala, Number fields without universal n-ary quadratic forms, Math.
Proc. Cambridge Philos. Soc. 159 (2015), 239-252.

[2] V. Kala, Universal quadratic forms and elements of small norm in real quadratic
fields, Bull. Aust. Math. Soc. 94 (2016), 7-14.

[B] V. Kala, Norms of indecomposable integers in real quadratic fields, J. Number
Theory 166 (2016), 193-207.

[4] V. Blomer, V. Kala, On the rank of universal quadratic forms over real quadratic
fields, Doc. Math. 23 (2018), 15-34.

[5]  A. Dahl, V. Kala, Distribution of class numbers in continued fraction families of
real quadratic fields, Proc. Edinb. Math. Soc. 61 (2018), 1193-1212.

[6] V. Kala, J. Svoboda, Universal quadratic forms over multiquadratic fields,
Ramanujan J. 48 (2019), 151-157.

[7]  T. Hejda, V. Kala, Additive structure of totally positive quadratic integers, 16 pp.,
Manuscr. Math. (2020), to appear.

We will then conclude by discussing some follow-up works and some of my further
research directions.

Parts of this Introduction are taken from my papers [1]-[7], [HK], [KY] and from
my grant proposals without mentioning this later in the text.

I.1 Quadratic forms over Z

Let 7 € N be a positive integer and let Q(X1,...,X,) be an r-ary quadratic form over
Z,i.e.,
Q(Xl, c. 7Xr) = Z ainin with Q45 €.

1<i<j<r

We say that the quadratic form @) over Z
e is positive (definite) if Q(x1,...,x,) > 0 for all (z1,...,2,) € Z"\ {(0,...,0)},

e is indefinite if Q(zy,...,2,) > 0 and Q(y1,...,y.) < 0 for some (zy,...,z,),
<y17 s 7y7’) S Zra

e is diagonal if a;; = 0 for all @ # 7,



e is classical if 2 | a;; for all i # j,

e represents an integer a € Z if there are (xy, ..., ,) € Z" such that Q(z1,...,x,) =
a’

e is universal if it represents all positive integers.

The study of representations of integers by quadratic forms has a long history; let
us briefly mention here only a few highlights:

One can perhaps argue that they were first considered as Pythagorean triples, i.e.,
solutions of the Diophantine equation X2 + Y? = Z2, or, equivalently, representations
of 0 by the indefinite ternary form X2 +Y? — Z2. A list of 15 such triples occurs
already on the Babylonian clay tablet Plimpton 322 [Rob| from around 1800 BC!

The Pell equation, i.e., representation of 1 and other small integers by the binary
form X? — dY? (for some d € Z that is not a square), was considered as early as
400 BC by Greek mathematicians in connection with approximating v/2, v/3 by rational
numbers. Later it was studied, e.g., by Archimedes (3rd century BC) and Diophantus
(3rd century AD) and in India by Brahmagupta (7th century AD) and Bhaskara
(12th century AD) [wil.

The modern European history starts with giants such as Fermat, Euler, and Gauss,
who seriously considered representations of primes by binary definite forms X? + dY?
(for d € Z~o) [Cox] and obtained results such as a prime number p is of the form
X2 +Y?%if and only if p=2 or p=1 (mod 4).

In 1770 Lagrange proved the four square theorem stating that every positive integer
n is of the form X? +Y? + Z? + W?; Jacobi then in 1834 gave a formula for the
number of representations of n in this form. In a similar vein, Legendre in 1790 proved
the three square theorem that characterizes the integers of the form X? + Y2 + Z2 [wil.
These results eventually led, e.g., to the still active Waring problem, and to using
modular forms for studying the representations of integers by quadratic forms.

It is typically easier for an indefinite quadratic form to represent a given integer:
for example, every odd integer n can be represented by the binary form X2 — Y2, as
can be seen by using the factorization 1-n = (z —y) - (x +y). From this it then follows
that, e.g., every ternary form X? — Y? + dZ? with 4 1 d is universal. The situation is
more complicated for anisotropic forms (i.e., forms that do not represent 0), but still it
seems that positive forms have a richer and harder theory.

The early 20th century saw the characterization of all universal quaternary diagonal
positive forms aX? + bY? + ¢Z? + dW? by Ramanujan [Ra], and an extension of this
work to non-diagonal forms by Dickson [Di], who also introduced the term “universal
quadratic form”.

Finally in the 90’s, Conway and his students Miller, Schneeberger, and Simons [BL,
BH]| came up with the following fascinating criteria for universality:

Theorem 1. Let Q be a positive quadratic form over Z. Then:
(a) If Q is classical and represents the nine integers
1,2,3,5,6,7,10,14, and 15,

then it is universal.



(b) If Q represents the twenty nine integers

1,2,3,5,6,7,10,13,14, 15,17, 19, 21, 22, 23, 26,
29,30, 31, 34, 35, 37,42, 58,93, 110, 145, 203, and 290,

then it is universal.

(¢) Both of these sets of integers are minimal in the sense that for each integer n in
the set, there exists a corresponding quadratic form that represents all of N\ {n},
but does not represent n.

While the 15-theorem in part (a) is not too hard to prove, the 290-theorem in
part (b), that was proved by Bhargava and Hanke [BH], is very challenging, not only
because of the large amount of computations needed.

There have been a number of further exciting developments related to universal
quadratic forms over Z, such as the conjectural 451-theorem by Rouse [Ro], but let us
now focus on the main topic of this thesis, that is, to universal forms over number
fields.

1.2 Totally real number fields

Let us start by introducing some basic terminology concerning number fields (that we
will use throughout this Introduction, unless stated otherwise).

Let K be a number field of degree d, i.e., a finite field extension of the field of
rational numbers Q of degree d = [K : Q]. We will denote the ring of algebraic integers

of K by OK.
Let us further assume that K is totally real, i.e., that K has d distinct real
embeddings o, =id,...,04 : K — R. The norm and trace of an element o« € K are

then N(a) = o1(a) -+ - o4(a) and Tr(a) = o1(a) + - - - + o4(a).

For two elements «, § € K we define that « > § if 0;(«) > 0;(3) for all 4; further
ar= pif a = g or a=p. We say that « is totally positive if a > 0; the semiring of
totally positive integers in K is denoted OF.

Finally, of critical importance for our study of universal forms is the notion of
indecomposability: A totally positive integer o € OF; is indecomposable, if it cannot
be decomposed as a sum « = 3 + 7 of two totally positive integers 3,y € OF.

Brunotte [Brll, Br2] gave a general upper bound on the norm of an indecomposable
integer, and so in each K, there are finitely many indecomposables up to multiplication
by totally positive units. Unfortunately, the bound is exponential in the regulator of
the number field, and so is not very useful. Hence for most applications, it is important
to obtain more information about indecomposables, ideally in the form of an explicit
construction. In real quadratic fields, this is possible using continued fractions, as we
shall see in Section [l



1.3 Universal forms over number fields: the basics
and history

Let 7 € N be a positive integer and let Q(X1,...,X,) be an r-ary quadratic form over
OK, i.e.,
Q(Xla'--er) = Z ainin with Qij € OK.

1<i<j<r

We say that the quadratic form Q) over O

e is totally positive (definite) if

Q(z1,...,x.) = 0 for all (zy1,...,2,.) € Ok \ {(0,...,0)},

e is diagonal if a;; = 0 for all @ # 7,
e is classical if 2 | a;; (in Ok) for all @ # j,

e represents an algebraic integer o € O if there are (zy,...,2,) € O} such that

Q(xb s 7xr‘> = Q,
e is universal over K if it represents all totally positive algebraic integers a € OF.

Note that, as stated, the first and last of these definitions make sense only over a
totally real number field K. While one can naturally extend them also to fields with
complex embeddings, the resulting universal forms behave similarly as indefinite forms
over Z and do not have as rich and hard theory as totally positive forms. Before fully
restricting ourselves to this case, let us thus only briefly remark that, for example,
Siegel [Si] and Estes-Hsia [EH|] characterized general number fields with universal sums
of five and three squares. Another interesting topic is the study of universal Hermitian
quadratic forms over imaginary quadratic fields, e.g., [EK2, [KP1].

From now on, let us assume that K is totally real and consider only totally positive
universal quadratic forms over K.

Their study started in 1941, when Maafl [Ma] used theta series to prove that the
sum of three squares is universal over the ring of integers of Q(v/5). Conversely, in 1945
Siegel [Si] showed that the sum of any number of squares is universal only over the
number fields Q, Q(+/5). For our further discussion it will be interesting to note that
indecomposable integers figured prominently in his proof (under the name “extremal
elements”).

In order to study universal forms, it is thus necessary to consider forms with more
general coefficients a;;.

Hsia, Kitaoka, and Kneser [HKK] in 1978 established a version of local-global
principle for universal forms over number fields. In particular, it follows from it that a
totally positive universal form exists over every totally real number field K.

This was then followed by numerous results attempting to understand the structure
of universal forms over K, and in particular, to study the existence of universal forms
of small rank r. It is easy to see that there is never a universal form of rank » = 1 or 2.



Moreover, when the degree d of K is odd, it quickly follows from Hilbert reciprocity
law that there is no ternary universal form [EKI].

As we have seen with the universality of the sum of three squares over Q(v/5),
ternary universal forms may exist in even degrees. Nevertheless, Kitaoka formulated the
influential conjecture that there are only finitely many totally real fields K admitting a
ternary universal form.

Thus if we denote by m(K') the minimal rank of a universal form over K (following
Earnest [Ea]), then m(K) > 3 for every totally real number field K and, conjecturally,
m(K) = 3 for only finitely many fields K. Further let mgi,(K) be the minimal rank
of a diagonal universal form over K.

Motivated by Kitaoka’s conjecture, Chan, M.-H. Kim, and Raghavan [CKR] found
all classical universal forms over real quadratic number fields Q(v/D) — they exist only
when D = 2,3,5. Several other authors investigated the universality of forms of other
small ranks over specific real quadratic fields, in particular, Deutsch [Dell, [De2l De3],
Lee [Lel, and Sasaki [Sa2]. See also the nice survey by M.-H. Kim [Km].

Considering infinite families of real quadratic fields K = Q(v/D), B. M. Kim [Kil]
Ki2|] proved that there are only finitely many K over which there is a diagonal 7-ary
universal quadratic form (specifically, mgi.g(Q(v/D)) > 8 if D > 153721 is squarefree),
and constructed explicit 8-ary diagonal universal forms for each squarefree D = n? — 1,
establishing that mgi.s(Q(v/D)) = 8 for infinitely many values of D.

Not much more has been known about universal forms over totally real fields by
2014. Before turning to these most recent developments that constitute the principal
topic of this thesis, let us briefly comment on three closely related fields of interest:

Regular quadratic forms are forms that represent all elements that are not ruled
out by local obstructions [CI, [Ea]. Their theory in many aspects parallels the theory
of universal forms; in fact, tools such as Watson’s transformations [CE+| [Wal] allow
one to convert regular forms into universal ones. In connection to this, let us also
briefly mention the recent computational results by Kirschmer and Lorch [LK] [Ki]
that classify 1-class genera of quadratic lattices over number fields.

We have already seen [Si] that typically not all totally positive integers are sums of
squares, but we can ask: What is the smallest integer m such that if an element is the
sum of squares, then it is the sum of at most m squares? This integer m is called
the Pythagoras number of the order Ok and is known to be always finite, but can
be arbitrarily large [Sc2] (cf. also [Pa]). In the case of real quadratic number fields
K = Q(v/D) the Pythagoras number is always < 5, and this bound is sharp [Pe]. In
fact, one can show that P(Ok) = 3 for D = 2,3,5 [Cd, [Scl] and determine all D for
which P(Ok) =4 (as in [CP]).

Finally, let us note that besides from studying representations of integers by
quadratic forms, there have been numerous works considering representations of
quadratic forms by quadratic forms and, in particular, by the sum of squares, e.g., [Moll,
Mo2, [Kol, BI, Td, [KOTl [Sall, [Ohl KO2l, KO3, JKO, BC+]. Most of them deal with
forms over Z, but it is another exciting direction of future research to consider the
situation over number fields in detail.

Let us now turn our attention to the articles comprising this thesis.



I.4 [1I] Number fields without universal n-ary
quadratic forms

We have already mentioned that it immediately follows from the theorem of Hsia,
Kitaoka, and Kneser [HKK] that there exists a universal form over every totally real
number field K. Unfortunately, this result is not very explicit and, in particular, does
not allow us to estimate the minimal rank m(K) of such a form. It is not even clear
whether over every K there is a universal form in, say, 1000000 variables.

An answer to this question is the main result of the paper [I], at least in the case
of classical forms.

Theorem 2 (Blomer-Kala 2015, [I, Theorem 1]). For every positive integer M there
are infinitely many real quadratic fields K = Q(\/ﬁ) such that every classical universal
quadratic form over K has rank greater than M.

As far as I know, this is the first result dealing with universal quadratic forms of
large rank. There are three main ideas behind this theorem:

First is the observation that indecomposable elements are hard to be represented
by quadratic forms, and so they often have to appear as diagonal coefficients of
universal quadratic forms. As the simplest example, consider the representation of
an indecomposable o by a diagonal universal form, o = Q(z1,...,2,) = Y 1<jcp 4T3
By the indecomposability of a, we see that o = a;x? for some 7. Thus the number of
different classes of indecomposables modulo squares gives a lower bound for the rank r.

Second, we can use continued fractions to construct real quadratic fields K = Q(v/D)
with many indecomposables. Let

1
\/B:u()—l—il = [ug, Ty, - - -, Us)
u1+u2+...

be the periodic continued fraction expansion with u; € Z~q. Let ’qi’_' = [uo, . .., u;] be the

convergents and define a; = p; + qi\/ﬁ. Then a; + rayy; with odd 2 and 0 < r < ;49
are precisely all indecomposables > 1. Here we for simplicity assumed that D = 2,3
(mod 4), although the description is analogous when D =1 (mod 4) with the exception
that one considers the continued fraction for %.

This characterization is somewhat technical, but the important thing is that we
have very explicit control over the indecomposables: they come in certain arithmetic
sequences, which are combined with a recurrent structure, i.e., a; 1 = u;0; + ;1.

It is also important that we can control the norms of convergents and indecompos-
ables using the well-known estimates

2v'D 2V D
Y < IN(w)] < .
Uir1 + 2 Uit1

(1)

Finally, we can choose the continued fraction coefficients almost arbitrarily in order
to construct the real quadratic fields needed in Theorem 2|



Fix positive integers s and uy,...,us1 and consider continued fractions of the
form /D = [ug, uy, ..., 2ug). If the sequence uy, . .., u,_; is symmetric (i.e., u; = us_;)
and satisfies certain mild parity condition, then by a theorem of Friesen and Halter-
Koch [Fr, [H-K], all the possible Ds are given by the values of a quadratic polynomial
q(t) and the values of ug = [v/D| are given by a linear polynomial in t. Further, there
are infinitely many such Ds that are squarefree. These families generalize most of the
well-known 1-parameter families of real quadratic fields, such as Chowla’s D = 4n? + 1
or Yokoi’'s D = n? + 4.

In [1], we considered continued fractions of the form v/D = [ug,u, u, .. ., u, 2uq)
with s — 1 elements v in the period. Using quite delicate arithmetic arguments we

then established that, when w is suitably chosen and s is even, every classical universal
form over Q(v/D) has rank at least s/2 — 1, which proved Theorem

I.5 [2] Universal quadratic forms and elements of
small norm in real quadratic fields

The results of the paper [I] have at least two big interconnected disadvantages: they

apply only in the case of classical forms, and they depend on very delicate arguments

and specific calculations.

In the follow-up paper [2] T managed to overcome these issues and to develop a
more systematic approach that led to the following theorem.

Theorem 3 (Kala 2016, [2, Theorem 1.1]). For every positive integer M there are
infinitely many real quadratic fields K = Q(\/E) such that every universal quadratic
form over K has rank greater than M, i.e., m(K) > M.

As one tool served the following general proposition.

Proposition 4 (|2, Proposition 2.1]). Assume that there are M elements v1,...,yu €
OF such that for all1 <i<j < M,

4yy; =% for some vy € Ok implies v = 0. (2)
Then each universal form over K has rank at least M.

Further, it turned out to be better to choose different coefficients of the continued
fraction than in [I], namely, rapidly growing ones such as u; = 33", This choice
allowed me to use the bounds to establish the property (2)), which proved Theorem

I.6 [3] Norms of indecomposable integers in real
quadratic fields
As we have just seen, the estimates for the norms of the convergents a; were one of

the key steps in the proofs of Theorems [2] and [3] Is it possible to prove analogous
results also for the norms of general indecomposable «; , := o; + ro;1?

10



Dress and Scharlau [DS] established the basic bound N(w;,) < D which was then
improved by Jang and Kim [JK] to N(«;,) < D/k, where —k is the maximum negative
norm of an element of O (both of these results can be further naturally strengthened
when D =1 (mod 4)).

Jang and Kim further conjectured that in fact N(«;,) <
smallest such that &k | D — a?.

D—a?
k

, Where a € Z> is

In the article [3] I disproved their conjecture. In order to do that, I first established
explicit formulas for the norms of the indecomposables in K = Q(v/D) in terms of the
continued fraction coefficients u;. These formulas then guided me towards discovering
suitable shapes of continued fractions that could yield counterexamples, and finally to
the specific example D = 24 009 857 226 825 282 345 490.

I.7 [4] On the rank of universal quadratic forms
over real quadratic fields

While Theorems [2] and [3] established that ranks of universal forms can be arbitrarily
large, they leave much unanswered, for they apply only to very sparse sets of real
quadratic fields and, even for these fields, do not provided explicit bounds on the ranks.
In the article [4] we addressed these issues, at least for diagonal forms.
Let again K = Q(v/D) with /D = [ug, T, ---, 1] and assume for simplicity that
D = 2,3 (mod 4). Define the following sum of continued fraction coefficients:

(3)

Uy +us + -+ Usq if s is even,
Np = o
2ug + up +ug + - +ue_q if s is odd.
For & > 0 define N}, _ as the sum in (3), but ranging only over coefficients u; > D/5F=.
Finally recall that maie (/) denotes the minimal rank of a diagonal universal
quadratic form over K. Then we proved the following estimates of this rank:

Theorem 5 (Blomer-Kala 2018, [4, Theorems 1 and 2]). We have
Np .
max (=2, C.Np,, ) < maag(K) < 8Np
KS ’

for any € > 0, where C. > 0 is a constant (depending only on ) and k = 2 if s is odd
and k =1 otherwise.

Further, Np < ev/D (log D)? for an absolute constant ¢ > 0. If s is odd, equivalently
if Ok has a unit of negative norm, we have N, . > 2v/D for every e < 1/8.

The estimates of mgiag (/) are based on studying the representability of indecom-
posables of Q(v/D). To show the upper bound, we generalized Kim’s result [Ki2]
and constructed an explicit diagonal universal form, whose coefficients are certain
indecomposables. The lower bound hinges on showing that sufficiently many indecom-
posables (essentially) have to appear as the coefficients of any diagonal universal form;
the obstacle to obtaining sharper results was the difficulty of dealing with properties
of indecomposables such as and, in particular, with estimating the number of

11



squarefree indecomposables. In fact, we suspect that ¢; Np < M qgiag for a constant ¢
that is not very small (e.g., ¢; = 0.01).

Moreover, we have established an asymptotic formula for the sum of coefficients,
which can be viewed as a variation of Kronecker’s limit formula for real quadratic
fields and highlights the fascinating connection between special L-values and continued
fractions.

Theorem 6 (Blomer-Kala 2018, [4, Theorem 3]). As D — oo, we have

iui ~ C(A\/Ez)([/(l)) -+ ;L(l,XA) log \/B),

=1

where A = 4D, h = hp is the class number, (‘®)(s) is the Riemann zeta function
with Euler factors at primes dividing A removed, xa 1S the usual quadratic character
associated with the fundamental discriminant A, and L(D) is the constant Taylor
coefficient of the (-function associated to the class of principal ideals.

Kronecker’s limit formula is concerned with finding a closed expression for L(D)
(and more general functions). Zagier and Hirzebruch observed that for real quadratic
fields there is a connection between L(D) and the coefficients of the continued fraction
of v/D. The exact formula in [Zal, Corollary 2] (which is derived by a completely
different method than Theorem @, however, seems to be hard to use to obtain any
sort of asymptotic statement. The beautiful formula [Za2l, Satz 2, § 14], on the other
hand, is of different nature, since it treats the alternating sum 3%, (—1)"u;, cf. [Za2,
p. 131] (and gives in particular no information if s is odd). Yet another variation of
the connection between special values of class group L-functions for real quadratic
fields and continued fractions can be found in a nice paper of Biré and Granville [BG|
Theorem 1].

I.8 [5] Distribution of class numbers in continued
fraction families of real quadratic fields

The class number of a number field K measures the extent of the failure of the unique
factorization, and so is one of the most important invariants of K. Its behavior
is largely unknown, despite very precise predictions in the form of Cohen-Lenstra
heuristics [CL] (and numerous improvements [Bh2l [CM) [Mal]). In particular, the Class
Number One problem asking whether there are infinitely many (real quadratic) number
fields with class number one is widely open; ditto for similar questions for other small
class numbers, even when “small” is allowed to grow with the discriminant of K.

The situation is quite different in families, such as Q(v/4n? + 1), where class
numbers behave similarly as in imaginary quadratic fields: there are only finitely many
members of the family with class number one [KT] and the class numbers grow with
the discriminant in a fairly clean way [DL].

The results of [4] suggested a connection between the minimal rank of universal
forms m(K), maiag (/) and the class number hg, at least in the real quadratic case
K = Q(v/D): The class number is roughly inversely proportional to the (logarithm of

12



the) fundamental unit ¢ by the class number formula. Both the fundamental unit
and indecomposables are constructed from the periodic continued fraction for v/D,
and so log e is roughly of the same size as the number of indecomposables (modulo
units). Thus the connection between the rank and hy follows from an explicit relation
between the number of indecomposables and ranks of universal forms — which we
established for diagonal forms in Theorem

Dahl and Lamzouri [DI] determined very precise asymptotics for the growth of
class numbers in the family Q(v/m? + 4) (for odd m = 2k — 1), when the corresponding

continued fraction is very short, i.e., —”(%_;)QHH = [k, 2k — 1].

With Alexander Dahl [5] in 2018 we then generalized these asymptotics to all
continued fraction families of real quadratic fields, i.e., to families in which the period
length s and all the coefficients uy, ..., us_; are fixed. The distinguishing property
of these families is that one has control over the size of the fundamental unit, and
thus over the class number. At the same time, the fields in these families have a very
similar structure of their indecomposables.

We constructed a random model for the behavior of class numbers in these families
and proved very precise results (that are somewhat too technical for this Introduction).

I.9 [6] Universal quadratic forms over
multiquadratic fields

With my Bachelor’s student Josef Svoboda [6] in 2019 we extended the results of [2]
to all totally real multiquadratic fields, i.e., to fields K = Q(\/p1, - .., /Px) Where
p1,- ., P are positive integers: We proved a precise analogue of Theorem [3] for such
fields of given degree 2F.

The idea was to again apply Proposition 4] which we did by first ensuring the
existence of the elements +; in the quadratic field Q(,/p1) and then by choosing
P2, - - ., px carefully so that the property was not violated.

.10 [7] Additive structure of totally positive
quadratic integers

In order to progress on the study of properties such as , it is crucial to better
understand the additive and multiplicative properties of indecomposables. In the
article [7] with my postdoc Tom&s Hejda, we have completely described the additive
semigroup OF(+) in the real quadratic case:
Let
A:={a;, |1 >—-1oddand 0 <7 < wu;g —1}\{1}

denote the set of indecomposable elements > 1 and A" := {y' | y € A} the set of their
conjugates, that is, of indecomposables < 1.

Considering the trace, it is easy to see that each element of O} can be expressed as
a (finite) sum of indecomposables; in other words, the indecomposables AU A" U {1}

13



generate the semigroup O (+). Let us further introduce an alternative notation of the
indecomposables for convenience. We define j3;, j € Z, by the condition that

<P Pa<Pa<f=l<f << B

is the increasing sequence of the indecomposables. Note that we have 3; = 3_; for all
Jj € Z.
Then it is quite easy to see from the definitions that

Bj—1 =B + Bjxa = 0 for j € Z, (4)
where
2 if Bjj = a;, with odd 4 > =1 and 1 <7 < uiyo — 1,
Vi =
’ Uip1 + 2 if Bl = aup with odd i > —1.

The equalities (4]) can be considered as the trivial relations between the indecomposables
that always have to hold. A priori it is not at all clear that there can not be any
further accidental relations. However, we proved that this is indeed the case.

Theorem 7 (Hejda-Kala 2020, [7, Theorem 2]). Let x € OF be given as a finite sum
x = Y k;B; with k; € Z. Then there exist unique jo,e, f € withe > 1 and f > 0 such
that © = eﬁjo + fﬂj0+1.

Every relation of the form Y h;3; = 0 (with h; € Z and only finitely many non-
zeros) is a Z-linear combination of the relations (4)); in particular, this is true for

65]6 + fﬁjo—i—l — ijﬂj =0.

This amounts to giving a certain presentation of the semigroup O (+); we further
used this presentation to show that this semigroup determines the real quadratic field
uniquely and to characterize all the uniquely decomposable elements, i.e., elements of
O%(+) that can be decomposed as a sum of indecomposables in a unique way. For
example, 2 is always uniquely decomposable.

I.11 Follow-up works

As outlined above, the basic approach of using indecomposables has been successful
in breaking through the former barriers in the theory of universal forms over real
quadratic fields. These results led to a lot of follow-up activity both by other
researchers [Col [KP2| [Ya] and by my students |[CL-+, KTZ, [TV]. Let me now briefly
comment on some of these results:

Collinet [Co] showed that, unlike Theorems [2] and [3| when one works over the ring
(’)K[%], every element is represented by the sum of five squares.

By working with interlacing polynomials, Yatsyna [Ya] was able to construct some
indecomposable integers in certain number fields of degree greater than two and thus
to extend Theorem [3] to that case.

B. M. Kim, M.-H. Kim, and D. Park [KP2|] very recently proved that there are
finitely many real quadratic fields that admit a 7-ary universal quadratic form (without
having to assume that such a form is diagonal or classical).
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As part of the Student Number Theory Seminar that I have been organizing since
2017, my students have worked on the case of biquadratic fields. First, Cech, Lachman,
Svoboda, Tinkové, and Zemkova [CL+] studied their indecomposables and in particular
the question of when does an element that is indecomposable in a quadratic field
Q(v/D) remain indecomposable also in a biquadratic field Q(v/D, VE).

Building on these results (and, for example, working with uniquely decomposable
elements as in [7]), Krasensky, Tinkové, and Zemkova [KTZ] then studied universal
quadratic forms over biquadratic fields and proved Kitaoka’s conjecture for classical
forms over them, i.e., they established that there are no ternary classical universal
forms over any biquadratic field.

In a joint work [T'V] with Voutier, Tinkova built on the results of [3]. They signifi-
cantly improved the estimates on the norms and found the smallest counterexamples
to the conjecture of Jang and Kim.

1.12 Future directions

One thing that is conspicuous about all the articles included in this thesis is that they
deal only with the situation of real quadratic fields Q(v/D) (or, as in the case of [6],
with the closely related multiquadratic fields). The principal reason for this is the
absence of a good theory of (generalized) continued fractions for higher degree fields
and, consequently, the lack of understanding of indecomposables.

Resolving this big problem is the main focus of my current research.

For number fields K of degree d, there are multidimensional generalizations of
continued fractions such as the Jacobi-Perron algorithm (JPA) [Be, [Sch] that repeatedly
applies a simple transformation to (d — 1)-tuples of elements from K. Notably, if the
resulting sequence is periodic, then a suitable “convergent” is a unit in Ok [BeH].

Surprisingly, it seems that the other convergents to JPA have never been studied.
In the case of cubic fields we are working on this with my Ph.D. student Magdaléna
Tinkova. We are considering the convergents and other elements defined from periodic
JPA’s over Shanks’ simplest cubic fields [Sh] that are indecomposable. The preliminary
results look promising and will hopefully soon lead to bounds for the ranks of universal
forms over the simplest cubic fields. Of course, extending this to all number fields will
be a tall order.

Further, I hope to expand on the connection to the class number. In a general
totally real field I would like to ideally establish an explicit correspondence between
the minimal rank of a universal quadratic form, the number of indecomposables, and
the class number. Such a connection should then enable the transfer of results and
insights across these topics.

One can view the articles contained in this thesis as first steps towards establishing
this correspondence: The papers [1} [2, 4] [6] primarily consider the universal forms part,
[3, [7] develop the theory of indecomposable integers, and [5] deals with class numbers.

Besides from this vision, I also plan to expand the methods to the study of regular
forms and of forms over orders in number fields (this is the main topic of my Ph.D.
student Jakub Krasensky), and to representations of quadratic forms of higher rank by
quadratic forms.
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