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Notation and abbreviations
Indices:
i, j, . . . ∈ {1, 2} fundamental SU(2)L indices
α, β, . . . ∈ {1, 2, 3} fundamental SU(3)C indices
a, b, . . . ∈ {1, . . . 4 or 5} fundamental indices of SU(4)C or SU(5)
I, J, . . . ∈ {1, 2, 3} indices in adjoint representation of SU(2)L
A,B, . . . ∈ {1, . . . , 8 or 15} indices in adjoint of SU(3)C or SU(4)C
µ, ν, . . . ∈ {0, 1, 2, 3} Lorentz timespace indices
M,N, . . . ∈ {1, 2, 3, 4} Dirac 4-spinor indices
l, l′ ∈ {e, µ, τ} or {1, 2, 3} lepton flavour index
q, q′ ∈ {d, s, b} or {1, 2, 3} down-type quark

Matrices:

q =
[︄
u
d

]︄
SU(2)L or SU(2)R structures

ê =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
e
µ
τ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ flavour structures

⎛⎜⎝qrqg
qb

⎞⎟⎠ ,(︄q
ℓ

)︄
other matrix structures: SU(3)C , 3+1 structure of SU(4)C , . . .

Other notation and conventions:
Q = T 3

L + Y normalization of the weak hypercharge
Y2, Ye, . . . Yukawa couplings are always labeled by an index
σI , λA Pauli and Gell-Mann matrices
λ1, λ2, . . . quartic scalar coupling constants
L↑

0 proper ortochronal Lorentz group
L Lagrangian
Gµ,Wµ, Bµ, Aµ gauge fields usually carry the Lorentz index
G2 color-octet scalar field
GSM Standard Model gauge group SU(3)C×SU(2)L×U(1)Y
G421 compact notation for SU(4)×SU(2)×U(1)
B beauty meson
B,F,L,M,W,Z baryon, fermion, lepton and other global numbers
C Fermion conjugation matrix
C,P, T discrete transformations
(ψLψ′

L) shorthand for ψL
TCψ′

L
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Selected abbreviations:
BNV / LNV baryon/lepton number violation
(B)SM (beyond the) Standard Model of particle interactions
EW(SB) electroweak (symmetry breaking)
FCNC flavour-changing neutral current
FPW model Fileviez Pérez – Wise model
(G/V)LQ (gauge/vector) leptoquark
GUT grand unified theory
irrep irreducible representation
LF[U](V) lepton flavour [universality] (violation)
MQLS(M) Minimal quark-lepton symmetry (model)
NP new physics (i.e., physics BSM)
QCD / QED quantum chromo-/electro-dynamics
QLU quark-lepton unification
QFT quantum field theory
RG(E) renormalization group (equations)
(SM)EFT (Standard Model) effective field theory
SSB spontaneous symmetry breaking
SUSY sypersymmetry
WC Wilson coefficient
WET Weak effective theory
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Introduction
Symmetries of laws of Nature are one of the most fruitful concepts in the mo-
dern fundamental physics. Since the beginning of the 20th century, many of
the important new paradigms in theoretical physics relied on postulating the
existence of new symmetries – consider theory of relativity, gauge theories such
as the Standard Model (SM) or grand unified theories, supersymmetry (SUSY)
or conformal field theory – or questioning their exactness (Galilean spacetime
symmetry, parity violation).

On the experimental side, testing various predictions based on symmetries
forms a large part of the past and contemporary research in high-energy physics.
Corresponding to the fundamental concepts mentioned, a variety of tests of Lo-
rentz invariance have been performed [1] as well as searches for CPT violation [2]
which test the paradigm of local Lorentz-invariant quantum field theories. Fur-
thermore, various consequences of non-Abelian gauge symmetries are now fairly
established for both cornerstones of the SM – the quantum chromodynamics
(QCD) and the theory of electroweak interactions. One can mention the well
known evidence for color with absence of fine structures in hadronic spectra,
which points towards the unbroken nature of the SU(3)C symmetry, confirma-
tion of the very existence of the self-interacting gauge fields and their universal
interaction strengths, or the evidence for more complex predictions of gauge the-
ories such as asymptotic freedom. Needless to say, the discovery of the Higgs
boson [3, 4] was nothing but confirmation of the electroweak-symmetry breaking
mechanism. Going beyond the SM, a substantial part of the Atlas and CMS
experimental focus in the first two runs was SUSY motivated (e.g. [5]), though
lacking any significant signal.

Apart from the fundamental symmetries mentioned so far, equally important
are the (exact or approximate) accidental symmetries of the physical laws – the
invariances which are not contained in the basic assumptions of the theory but
emerge anyway when the theory is built. Accidental symmetries of the SM provide
crucial probes of theories beyond the Standard Model (BSM) which do not respect
them.

In context of the exact accidental symmetries of the SM, let us mention testing
the most important implication of continuous symmetries – the conservation laws.
First, the limits on proton partial lifetimes like Γ−1

p→e+π0 > 1.6×1034 years [6] form
an incredibly strong test of baryon number conservation, probing energy scales
many orders of magnitude above the energies of particle colliders. Secondly, lepton
number violation (LNV) is being searched for in a variety of different modes,
especially in tens of experiments looking for neutrinoless double beta decay [7, 8],
and furthermore in subnuclear particle decays (e.g. [9, 10, 11]) and in high-energy
collisions [12, 13]. Thirdly, the discovery of neutrino oscillations [14, 15, 16, 17]
provided the evidence for non-conservation of lepton flavour, another symmetry
predicted by the SM. On the other hand, lepton flavour violation (LFV) in the
charged lepton sector has not been observed so far (see, e.g., the reviews [18, 19]).

Furthermore, on-going direct tests of approximate symmetries of the SM are
being performed. One of the long-term priorities of the contemporary particle
physics is the focus on the CP violation, study of which is also highly motivated
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by cosmology. In particular, studying the CP properties of the B-meson decays
is the main raison d’etre of the B-factories as well as of the LHCb experiment.
Historically, the isospin symmetry (or, more generally, the SU(Nq) symmetry)
of strong interactions is actually what made the theory of group representations
the basic mathematical tool in particle physics. This approximate quark flavour
symmetry of the SM is also continuously being tested [20]. Similarly in the
lepton sector, the lepton flavour universality (LFU) is being probed. In the last
decade, several hints of signals of new sources of violation of this approximate
symmetry of the SM in the B-meson decays (the so-called B-meson anomalies)
have been reported [21, 22, 23]. Finally, let us also mention the the famous
ρ = m2

W/(m2
Z cosθW ) parameter, tree-level value of which is fixed by the custodial

symmetry [24] of the SM scalar potential.
In this work, we touch upon several aspects of various symmetries mentioned.

In both demonstrative examples and seriously meant phenomenological analyses
a lot of our attention is devoted to leptoquarks (LQs). These BSM fields pro-
vide an excellent material to study since they necessarily break the quark and
lepton flavour symmetries, some of them may even induce the lepton and baryon
number violation, and they naturally arise in the theories with extended gauge
symmetries.

In Chapter 1 we review the status of baryon and lepton numbers in the per-
turbative regime of quantum field theories like the SM and its extensions. In
doing so, we adopt a slightly nontraditional perspective, focusing on relations
between the gauge and accidental symmetries. Being a mere angle of view, this
approach does not bring new phenomenological results; nevertheless, thanks to its
intuitiveness it has a certain pedagogical value. For example, we point out that
in a broad class of BSM models the color Levi-Civita symbol can be understood
as a baryon-number-charged spurion and thus easily indicate baryon number vi-
olating interactions. The main idea has been shortly described in the appendix
of author’s first publication [25].

Chapter 2 inspects the theory of quark-lepton unification of the Pati-Salam
type. We apply the approach from Chapter 1 and clarify the status of baryon and
lepton numbers in this class of models, as one can be easily confused by the famous
but sometimes misleading motto ”lepton number as the fourth color” [26] which
is widely used to characterize the main new idea of this theory. Furthermore, we
present a detailed tree-level analysis of the two minimal models of quark-lepton
unification [27, 28], based on the SU(4)C × SU(2)L × U(1)R gauge symmetry
group. The original parts of this analysis consist of identification and a detailed
investigation of the scalar potential (published in Refs. [25, 29]) and a careful
parameter counting, including the discussion of number of physical phases in the
mixing matrices between leptons and quarks.

In Chapter 3, various model-independent prerequisites for the phenomeno-
logical studies in later chapters are provided. We formally introduce the lepton
flavour group and its important subgroups and describe in detail how this ap-
proximate symmetry of the SM would be further violated in the presence of
leptoquarks. After a brief introduction to low-energy effective theories we point
out some subtleties of this framework on an example of leptonic pseudoscalar
decays P 0 → l+1 l

−
2 . Furthermore, we overview the current status of the signals of

LFU violation in the semileptonic B-meson decays.
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The two distinct topics in Chapters 2 and 3 get interconnected in the 4th

chapter which studies the abilities of the quark-lepton symmetry models to ac-
commodate the B-meson anomalies. Original author’s results are presented, most
of which have been published in Refs. [25, 29, 30].

Finally, Chapter 5 contains a yet unpublished phenomenological study [31] of
possible first signals of the gauge leptoquark in theories of quark-lepton unifica-
tion, taking fully into account the freedom in quark-lepton mixing and considering
a large number of relevant processes.

Chapter / Appendix 1 2 3 4 5 A B C
Baryon and lepton numbers, B−L ✓ ✓ 5.2.2 ✓ ✓
Leptoquarks 1.2.2 ✓ 3.5 ✓ ✓ ✓ ✓
Flavour physics 2.8 ✓ ✓ ✓ ✓
Quark-lepton SU(4)C unification ✓ ✓ ✓ ✓
B-meson anomalies ✓ ✓ 5.2

Table 1: Coverage of various topics in different chapters and appendices of this thesis.
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1. Baryon and lepton number in
the SM and beyond
The baryon and lepton numbers, B and L, are important quantities which seem
to be conserved in all measurements performed so far. This is in harmony with
the perturbative regime of the SM in which B and L are protected by global
symmetries of the classical action.

Nevertheless, there are strong cosmological motivations to believe that B- and
L-violating processes do exist. The initial observation is the apparent nonzero
baryon number density in the visible Universe, augmented by the electron density
which neutralizes the electric charge of our world to an extreme level.1 On the
other hand, the today’s baryon to photon number density ratio (nB − nB̄)/nγ ∼
10−10 indicates that the relative difference between baryon and antibaryon abun-
dance (nB −nB̄)/(nB +nB̄) had been extremely tiny in the early hot Universe at
temperatures above 1 GeV, when the production of baryon-antibaryon pairs was
essentially as easy as their annihilation. Such a scenario seems more and more
contrived as times closer and closer to the Big Bang are considered, which sug-
gests that B ∝ (nB − nB̄) ̸= 0 has evolved in physical processes from symmetric
initial conditions.

The necessary conditions for baryogenesis are B, C and CP violation in the
relevant effective physical laws and an out-of-equilibrium state [32]. As is well
known, C and CP are violated in the SM; however, the size of CP violation is
too tiny [33]. In fact, also processes violating baryon number are predicted even
within the SM: since both B and L are anomalous, they may be violated in the
non-perturbative ”sphaleronic” phenomena which should have occurred in the hot
Universe, keeping only B − L untouched. However, in the thermal equilibrium
at temperatures around T ∼ 1 TeV, these processes are more likely to smear any
previously cooked ∆B = ∆L departure from zero than to create one. [34] Depar-
ture from thermal equilibrium at the electroweak (EW) scale could have emerged
as a first-order phase transition inhering in scalar field bubble nucleation. For
such scenarios, mechanisms of electroweak baryogenesis are known. Nevertheless,
this scenario is not applicable in the SM since the SM Higgs potential with the
measured Higgs mass leads to the phase transition which is not of the 1st order.

Thus, the electroweak baryogenesis calls for physics BSM which would improve
the conditions for the phase transition as well as bring additional sources of CP
violation. A more prosaic option, studied in this work, is a perturbative baryon
number violation (BNV) or lepton number violation (LNV) in the New Physics
sector, which would open many other doors also in the cosmological considerations
if ∆B ̸= ∆L can be created at even earlier times. Especially, even creating only
L ̸= 0 might be sufficient as its would be later partially transformed into an
excess of baryons via the electroweak sphalerons [35, 36].

Baryon and/or lepton number violation at the level of classical action is not
uncommon in the BSM theories: LNV is present in the models employing some
kind of the seesaw mechanism; both B and L non-conservation is predicted by

1Notice that the lepton number density of the today’s Universe is not known due to our
ignorance of the (anti)neutrino abundances.
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grand unified theories (GUTs) [37]. For the prominent role of B and L, LNV
and especially BNV usually become one of the most important characteristics of
the models in which they occur. Hence, even though systematic study of global
symmetries of a given model is a straightforward task, it is useful to be able to
recognize the B and L violation ”at first sight”.

This chapter is devoted to certain aspects of baryon and lepton numbers in
the SM, SMEFT and various renormalizable BSM models. We focus mainly on
the identification of perturbative BNV and LNV in the theory, putting aside the
experimental signals. In Section 1.1 we overview the status of U(1)B × U(1)L in
the SM and remind how these accidental symmetries may be broken in the sim-
plest neutrino extension of the SM or by the effective operators of higher mass
dimension. Then, we focus on formal relations between the accidental and im-
posed symmetries in Section 1.2. During the whole chapter, the flavour structure
is made as implicit as possible; discussion of this aspect is postponed to later
chapters of this work.

1.1 Standard Model and first steps beyond
This introductory section serves mostly to set up the conventions. We review here
the Lagrangian of the SM as well as a few simple examples of lepton or baryon
number violating scenarios that do not go beyond the SM gauge group

GSM = SU(3)C × SU(2)L × U(1)Y . (1.1)

1.1.1 Symmetries of the Standard Model
Let us begin fixing the conventions by casting the SM Lagrangian in the following
form:

LSM = − 1
2G

α
µνβG

βµν
α − 1

2W
i
µνjW

µνj
i − 1

4BµνB
µν

+ ℓLii( /DℓL)i + eRi /DeR + qLαii( /DqL)αi + uRαi( /DuR)α + dRαi( /DdR)α

+ (Dµϕ)†
i (Dµϕ)i + µ2ϕ†

iϕ
i − λ

(︂
ϕ†
iϕ

i
)︂2

−
(︂
qLαiYd dR

αϕi + qLαiYuuR
αεijϕ†

j + ℓLiYeeR ϕ
i + h.c.

)︂
(1.2)

Here α, β ∈ {1, 2, 3} stand for the SU(3)C fundamental indices, whereas i, j ∈
{1, 2} refer to SU(2)L. The field-strength tensors Gµν ,Wµν and Bµν relate to
the three factors in Eq. (1.1). The corresponding gauge fields appear in the
covariant derivatives, e.g., (DqL)iα = ∂µqL

αi+ ig3G
α
µβqL

βi+ igW i
µjqL

αj + i1
6g

′BµqL
αi.

We represent them as traceless tensors in the fundamental representations of the
relevant gauge groups, avoiding using other kinds of indices in Eq. (1.2). An
alternative notation for the case of gluons would be

Gα
µβ = 1

2
(︂
λA
)︂α
β
GA
µ (1.3)

where the implicit sum runs over A ∈ {1, . . . , 8}. The SM gauge group is spon-
taneously broken as

GSM → Gvac = SU(3)C × U(1)Q (1.4)
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GSM → Gvac B L F

Field content of the Standard Model
Fermions:

ℓL(1,2,−1/2) =
[︄
νL(1,0)
eL(1,−1)

]︄
0 1 1

eR(1,1,−1) = eR(1,−1) 0 1 1

qL(1,2,−1/2) =
[︄
uL(3,+2/3)
dL(3,−1/3)

]︄
1/3 0 1

uR(3,1,+2/3) = uR(3,+2/3) 1/3 0 1
dR(3,1,−1/3) = dR(3,−1/3) 1/3 0 1
Scalar bosons:

ϕ(1,2,+1/2) =
[︄

w+

(vew +H0 + iz0)/
√

2

]︄
0 0 0

Gauge bosons:
Gµ(8,1,0) 0 0 0

Wµ(1,3,1) =
1
2

[︄
W 3
µ W+

µ

√
2

W−
µ

√
2 W 3

µ

]︄
0 0 0

Bµ(1,1,0) 0 0 0

Extension of the SM by right-handed neutrinos
Fermions:
νR(1,1,0) = νR(1,0) 0 1 1

Table 1.1: Fields in the Standard Model and their baryon, lepton and fermion numbers.

by the vacuum expectation value (VEV) of the Higgs doublet:

⟨ϕ⟩ = 1√
2

[︄
0
vew

]︄
. (1.5)

It is well known that the Standard Model features a U(1)B×U(1)L global sym-
metry, implying conservation of the baryon number B and the lepton number L

which are assigned to the fields as in Table 1.1. In the current paradigm, this is an
accidental symmetry – it has not been imposed but has resulted as a consequence
of the specific field content when writing down the most general renormalizable
Lagrangian invariant with respect to GSM and the Lorentz group L↑

0.

1.1.2 Neutrino masses and lepton number violation
A well known shortcoming of the SM is the absence of neutrino masses. One way
of improving this consists in including the right-handed neutrinos νR ∼ (1, 1, 0)
in the theory and extending the Lagrangian accordingly by

LνR = νR /∂νR +
(︂
ℓLiYννR ε

ijϕ†
j + h.c.

)︂
, (1.6)

generating the neutrino masses via the same Higgs mechanism that gives masses
to the other SM fermions. However, the theoretical demand to include every term
which is allowed, together with the attitude of not imposing the lepton number
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conservation calls for yet another part: the Majorana mass term

LνR – Maj. = νR
TMR C νR + h.c. , (1.7)

which in the case MR ≫ vew leads to the famous type-I seesaw mechanism of
generating parametrically smaller neutrino masses of order Y 2

ν v
2
ew/MR [38, 39].

As the interaction in Eq. (1.6) requires that νR carries L = +1, the Majorana
mass term breaks the lepton number by two units, which might be observable as a
neutrinoless double beta decay. This is the basic illustration that the conservation
of B and L depends strongly on the field content of the model.

1.1.3 SMEFT
The Standard Model effective field theory (SMEFT) is the framework for syste-
matic description of high energy new physics effects in terms of operators with
the mass dimension d > 4 built from the SM fields only. The SMEFT Lagrangian
reads

LSMEFT = LSM +
∑︂
A

(CAOA + h.c. where necessary) (1.8)

where OA’s form a basis of all effective operators respecting the GSM × L↑
0 in-

variance, up to a given mass dimension d. Specific scenarios are defined by the
values of all the Wilson coefficients CA. These dimensionful coefficients are real
for hermitean operators and complex for non-hermitean ones. In the latter case,
the conjugated terms are automatically included and we don’t count them as
independent.2 Construction of the complete and non-redundant set of operators
of a given dimension is a highly non-trivial task, especially when the existence of
3 fermion generations is taken into account. Recently, the problem of counting
the number of independent operators built from given powers of individual fields
have been fully resolved and automatized [41] while algorithmizing the explicit
index contractions is still in progress [42].

For one fermion generation, there is only a single SMEFT operator of mass
dimension d = 5, the so-called Weinberg term [43],

OW =
[︂
(ℓLi)TCℓLj

]︂
ϕkϕl εik εjl (1.9)

which breaks the lepton number by ∆L = 2. This operator provides an effective
description of the seesaw scenarios [38, 44, 45] such as the model in Section 1.1.2.

At d = 6, the number of independent operators for a single fermion generation
is 63, out of which 59 conserve both B and L [46]. The four remaining ones induce
∆B = ∆L = 1 and read [47]

Oduqℓ = εαβγ
[︂
(dRα)TCuRβ

]︂ [︂
(qLγi)TCℓLj

]︂
εij , (1.10a)

Oqque = εαβγ
[︂
(qLαi)TCqLβj

]︂ [︂
(uRγ)TCeR

]︂
εij , (1.10b)

Oqqqℓ = εαβγ
[︂
(qLαi)TCqLβj

]︂ [︂
(qLγk)TCℓLl

]︂
εil εjk , (1.10c)

Oduue = εαβγ
[︂
(dRα)TCuRβ

]︂ [︂
(uRγ)TCeR

]︂
. (1.10d)

2 Our convention is in accordance with the WCxf standards [40]. In contrast, the non-
hermitian operators and their conjugates have been counted separately in Ref. [41]; the number
of operators then corresponds to the number of real parameters to be fixed.
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Generally, SMEFT operators of mass dimension d follow the rule ∆B − ∆L =
2d+ 4k where k ∈ Z [48].

Notice that all the dimension-6 BNV operators (1.10) contain the SU(3)C
Levi-Civita tensor, unlike the other 59 ones. This simple observation suggests
there is an equivalence between baryon number violation and appearance of the
fully antisymmetric color tensor, which can actually be proven to hold for SMEFT
operators of arbitrary dimension. In Section 1.2, we will put this relation on
deeper grounds, showing that similar conclusions may be drawn also for models
with extended field content and even for other symmetry groups.

1.2 Relations between imposed and accidental
symmetries: ”SU2U approach”

In this section, we will discuss some broader contexts of the notice made above
– that baryon number violating SMEFT operators can be identified by the color
Levi-Civita symbol. After better specifying and proving this statement, we will
discuss its extended validity for more general BSM models as well as the coun-
terparts of this observation for other symmetries.

Some parts of the discussion here are well known or trivial. Nevertheless, we
believe that this section as is stands has a certain pedagogical value, bringing an
intuitive insight to the appearance of some accidental symmetries. The key idea
of this chapter has been published in the appendix or Ref. [25].

1.2.1 Baryon number and color
Let us start with a simple observation that the baryon numbers of all the SM
fields (ℓL, eR, qLα, uRα, dRα, ϕ,Wµ, Bµ, G

α
µβ) can be related to their SU(3)C quantum

numbers by

B = 1
3

(︃(︂
# upper SU(3)C indices

)︂
−
(︂
# lower SU(3)C indices

)︂)︃
. (1.11)

As hermitean conjugation swaps the position of these indices, antiparticles carry
opposite B charges. Generally, the only objects carrying color indices which might
appear in a Lagrangian are the dynamical fields and the invariant tensors – the
Kronecker symbol δαβ and the Levi-Civita tensor (εαβγ or εαβγ) [49]. From the
perspective of Eq. (1.11), δ is a neutral spurion while ε is charged. The SU(3)C
invariance of a given model ensures that every upper index is contracted with
a lower one in the corresponding Lagrangian. This implies that any SU(3)C

invariant Lagrangian that does not contain the color Levi-Civita tensor
is invariant with respect to U(1)B, action of which is defined by Eq. (1.11).
More generally, for any interaction term, the following relation between B viola-
tion and appearance of the Levi-Civita tensors holds:

∆B =
(︂
# εαβγ

)︂
−
(︂
# εαβγ

)︂
. (1.12)

This observation is not very useful for the SM as it is just a slightly complicated
proof of baryon number conservation. For SMEFT, it provides a rather elegant
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explanation of the rule of thumb in Eq. (1.12).3 This equation also holds for any
explicit BSM model provided that B is ascribed to the new fields in accordance
with (1.11). As we will see later, prescription (1.11) provides a convenient choice4

of baryon number in many BSM models.
Notice that our approach relates an imposed SU(N) symmetry to an acci-

dental U(1) symmetry. Eq. (1.11) implies that the elements of the center of the
non-Abelian group, e2πin/31 ∈ Z3 ⊂ SU(3)C for n = 0, 1, 2, always act the same
way as e2πinB ∈ U(1)B. Therefore, ignoring the local nature of the non-Abelian
part, both SU(3)C and U(1)B can be understood as subgroups of U(3) rather than
of the larger group SU(3)C ×U(1)B. The U(3) group, with its Cartan subalgebra
spanned by

λ3 =

⎛⎜⎝1 0 0
0 −1 0
0 0 0

⎞⎟⎠ , λ8 = 1√
3

⎛⎜⎝1 0 0
0 1 0
0 0 −2

⎞⎟⎠ , B = 1
3

⎛⎜⎝1 0 0
0 1 0
0 0 1

⎞⎟⎠ , (1.13)

acts on all the fields according to their color indices by proper multiplications by a
single unitary matrix Uα

β . For this reason, we call the above described procedure
of formally extending of the SU(N) symmetry group to U(N) the SU2U approach.
Its applicability range is wider than N = 3. In the rest of this section we give
some additional remarks about SU2U , all of which apply or can be generalized
to any SU(N) gauge group.

First, the SU2U applied on any SU(N) gauge factor in any model always
generates a good symmetry of the gauge interactions since the Levi-Civita tensors
do not naturally appear in the kinetic terms.

Secondly, note that a different basis of the Cartan subalgebra of U(3) can be
chosen than the one in Eq. (1.13), namely

r =

⎛⎜⎝1 0 0
0 0 0
0 0 0

⎞⎟⎠ , g =

⎛⎜⎝0 0 0
0 1 0
0 0 0

⎞⎟⎠ , b =

⎛⎜⎝0 0 0
0 0 0
0 0 1

⎞⎟⎠ . (1.14)

This demonstrates that the intuitive concept of conservation of color in the strict
sense, implying never-ending colored lines in Feynman diagrams, relies not only
on the SU(3)C invariance but also on the baryon number conservation – see
Fig. 1.1 for an illustration.

Last but not least, the SU2U approach requires that only the vector indices
α, β ∈ {1, 2, 3} are used even for larger SU(3)C representations (such as gluons in
the SM). This is always possible since every irreducible representation of SU(3)
can be found in the tensor product of sufficiently large number of fundamental
triplets and anti-triplets. On the other hand, such a product is not unique, which,
in turn, brings a redundancy in the definition of B. This will be commented on
in the following parts.

3Our reasoning could not have been done in Ref. [46] since upper and lower indices are not
rigorously distinguished there.

4If a BSM model features a global symmetry which coincides with baryon number for the
SM fields, a convenient choice of B for the new fields should generate that symmetry completely.

5This and all subsequent Feynman diagrams have been drawn using tikz-feynman [51].
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Figure 1.1: Left [50] – In the illustrations of SM processes, colored lines never end.
Right5 – This does not apply for baryon number violating models, even though SU(3)C
remains a good symmetry there.
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∆ij

(1)0
-2

eR (1)0
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2

Table 1.2: Catalogue of all possible Yukawa interactions of SM fermions with scalar
fields. Their the hypercharges are denoted explicitly while the SU(3)C and SU(2)L
quantum numbers can be read off from the indices (multiple indices of the same kind
are symmetric). Scalars with multiple interactions are denoted by the same symbol.
The naming scheme for leptoquarks has been adopted from Ref. [52].

1.2.2 Yukawa-interacting BSM scalars
In this part we illustrate both the usefulness and caveats of the SU2U approach
on a series of single scalar boson extensions of the SM.

Let us begin with listing all possible Yukawa interactions of the SM fermions
with hypothetical scalars. The procedure is straightforward: for a given pair
of left-handed (or conjugated right-handed) fermions ψ1, ψ2 transforming as R1
and R2 under GSM, the boson σ must transform according to an irreducible
representation Rσ contained in R1 ⊗ R2. The result is cast in the fermion-pair-
indexed form in Table 1.2. An extension of this table including interactions with
right-handed neutrinos, a linearized version of these tables and analogous tables
for vector bosons can be found in Appendix A. From Table 1.2, we pick a few
examples.
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Scalar leptoquark

First, consider extending the SM by the scalar R2 ∼ (3, 2,+7/6). As it carries a
color index, the SU2U approach suggests B(R2) = +1/3. Looking at the most
general renormalizable Lagrangian

LSM⊕R2 = LSM + (DµR2)†
iα (DµR2)iα − µ2

R2

(︂
R2

†
iαR2

iα
)︂

−
(︂
qLiαY4 eR R2

iα + uRαY2 ℓL
jεij R2

jα + h.c.
)︂

− κ
(︂
R2

†
iαR2

iα
)︂2

− ρ
(︂
R2

†
iαR2

iα
)︂ (︂
ϕ†
jϕ

j
)︂

− ρ3
(︂
ϕ†
iR2

αiR2
†
αjϕ

j
)︂
,

(1.15)

one finds that the Yukawa interactions on the second line indeed call for B(R2) =
+1/3 and L(R2) = −1, while the other terms, built of the (R2

†R2) quadratics,
do not pose any constraints on any additional quantum numbers. Both baryon
and lepton numbers remain conserved in this model. The R2 leptoquark will play
a prominent role in Chapter 4, whence the labels of the Yukawa couplings have
been adopted from.

Scalar diquark

As a second example, let us consider the scalar χ ≡ (S̄1)† ∼ (3, 1,+2/3) added to
the Standard Model. The Lagrangian reads

LSM⊕S̄1 = LSM + (Dµχ)†
α (Dµχ)α −

(︂
dR
αTC Ydd dRβχγεαβγ + h.c.

)︂
−m2

χ

(︂
χ†
αχ

α
)︂

− κ
(︂
χ†
αχ

α
)︂2

− ρ
(︂
χ†
αχ

α
)︂ (︂
ϕ†
jϕ

j
)︂
.

(1.16)

A naive application of the SU2U perspective yields B(χ) = +1/3 and warns that
the Yukawa interaction between two quarks6 and χ violates the baryon number.
However, we can exploit the possibility to realize color triplets by antisymmetric
rank-two tensors and redefine the field as

χˆ︂αβ = εαβγ χ
γ. (1.17)

Using the inverse relation χγ = 1
2χˆ︂αβ εαβγ, the entire Lagrangian can be rewritten

without the Levi-Civita symbol as

LSM⊕S̄1 = LSM + 1
2 (Dµχ)†ˆ︂αβ (Dµχ)ˆ︂αβ −

(︂
dR
αTC Ydd dRβχˆ︂αβ + h.c.

)︂
− 1

2m
2
χ

(︂
χ†ˆ︂αβχˆ︂αβ)︂− 1

4κ
(︂
χ†ˆ︂αβχˆ︂αβ)︂2

− 1
2ρ
(︂
χ†ˆ︂αβχˆ︂αβ)︂ (︂ϕ†

jϕ
j
)︂
.

(1.18)

Hence, with the proper assignment of baryon number B(χ) = −2/3, the U(1)B
transformation is an exact symmetry of the model.

In this example we have explicitly shown that there is a redundancy hidden
in the prescription (1.11). We will comment on this later in Subs. 1.2.3. For the
moment, just recall that the statement above Eq. (1.12) is a one way implication:
presence of the Levi-Civita tensor in the Lagrangian does not immediately imply
baryon number violation – it might be just an inconvenient choice of realization
of the color structures.7

6Multiple generations necessitate to be considered in the Yukawa interaction, since the
Yukawa coupling Ydd is antisymmetric in the flavour space.

7Similar suitable-basis-specific formulations are usual in theoretical physics. For example,
CP is conserved if there is a basis in which all the couplings are real; the timespace is flat if
there are coordinates in which gµν = diag(1,−1,−1,−1).
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Baryon number violating scalar

Finally, consider again the same scalar field as in the previous example, this time
in the model containing also right-handed neutrinos. In such a case, χ = S̄1 can
have both diquark and leptoquark interactions:

−LS̄1−Yuk
SM⊕νR⊕S̄1

= dR
αTC Ydd dRβχγεαβγ + uRα C Yuν νRTχα + h.c. (1.19)

Clearly, the redefinition in (1.17) would not help getting rid of ε anymore since
it would occur in the second term instead. This model therefore violates baryon
number. If the νR is light enough, such a scalar field could contribute to the proton
decay via the diagram in Fig. 1.1. In the FPW model studied in Chapters 2
and 4, the S̄1 field actually features only the second type of Yukawa couplings in
Eq. (1.19) and thus violates neither lepton nor baryon number.

1.2.3 Redundancies and congruence classes
In this part, we elucidate some connection between the SU2U approach and a
more formal treatment in the group theory [53, 49].

Every irreducible representation (irrep) R of SU(N) with the Dynkin labels
(a1, . . . , aN−1) belongs to a certain congruence class characterized by its N-ality:

cR =
N−1∑︂
n=1

nan (mod N) . (1.20)

The trivial representation has c1 = 0. If R ⊗R′ = ⨁︁
mRm, then for each Rm

cRm = cR + cR′ (mod N) . (1.21)

This implies that the N -alities cφk
of fields φk constituting an SU(N)-invariant

interaction ∏︁k φk must add up to a multiple of N . The same holds also for any
following modification of the sets of N -alities:

c′
φ = cφ + κφN, κφ ∈ Z. (1.22)

If the modified N -alities c′
φk

add up strictly to zero for every term in the SU(N)
invariant Lagrangian, these numbers form the charges of a global U(1) symmetry.
Nevertheless, there is no guarantee that there exist such a set of κφ’s that this
indeed happens.

What has just been described is actually the SU2U approach in a slightly
different language. The connection relies on the fact that the N -ality of an
SU(N) representation R realised as a tensor with upper and lower vector indices
is equal to

cR =
[︂

(# upper indices) − (# lower indices)
]︂

(mod N) . (1.23)

Considering the SU(3)C group in particular, the (modified) trialities correspond
to 3B, while the arbitrariness in the choice of κφ’s corresponds to the possibility
of notation changes like (1.17). The discussion after Eq. (1.21) corresponds to the
fact that all indices must be contracted and the only nontrivial SU(3)C invariant
tensor is the Levi-Civita symbol which has 3 color indices.
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1.2.4 Lepton number and the weak group?
Could the SU2U be applied also on the weak isospin group SU(2)L to obtain the
lepton number? Apparently, using the SU(2)L directly on the SM Lagrangian
in the form of Eq. (1.2) fails due to the two-dimensional antisymmetric tensor
in the up-quark Yukawa interaction. Nevertheless, after the following change of
notation,

uR
αˆ︁ij ≡ uR

αεij , (1.24)

the whole SM Lagrangian can be rewritten, with use of uRα = 1
2uR

αˆ︁ijεij, to the
form without explicit εij. Indeed, the relevant terms then read

LuR
SM = 1

2uRα
ˆ︁ij (︃i/∂ + 2

3g
′ /B
)︃
uR

αˆ︁ij + 1
2uRα

ˆ︁ij g3 /G
α
βuR

βˆ︁ij − qLiαYuuR
αˆ︁ijϕ†

j . (1.25)

Using this awkward but valid notation, the SU2U approach can be applied on
the SU(2)L gauge group, guaranteeing the existence of a global symmetry U(1)W
with the charges of the fields given by

W = 1
2

(︃(︂
# upper SU(2)L indices

)︂
−
(︂
# lower SU(2)L indices

)︂)︃
. (1.26)

The U(1)W symmetry is spontaneously broken because W(ϕ) = +1/2, but the
combination

(B + L) = W − Y (1.27)

yields a good symmetry even after the electroweak symmetry breaking. Of course,
the quantity L, defined implicitly in Eq. (1.27), is nothing else but the well known
lepton number.

To conclude, the SU2U approach can be in principle applied on both non-
Abelian gauge factors of GSM in order to rediscover the U(1)B ×U(1)L symmetry
of the model. However, the price paid consists in losing its key benefit: the
intuitiveness.

1.2.5 Fermion number and Lorentz symmetry
Another well-known conserved quantity of the SM is the fermion number F, given
by the following linear combination:

F = 3B + L. (1.28)

It is trivially recognized that F of various fields is intimately related to their
representation or another symmetry of the SM: the (proper ortochronal) Lorentz
group L↑

0. In the SM, the situation is quite simple: half-integer-spin particles
have F = 1, integer-spin particles have F = 0. When generalizations of SM
are considered, this rule must be also generalized: fermions carry odd-integer F,
while F of bosons is even. In other words, fermion number of a given field must
respect the congruency class or its Lorentz representation.

Let us recall the emergence of fermion number conservation in field theories.
The models in relativistic quantum field theories (QFTs) are defined by their
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gauge symmetry group G and by listing the irreducible representations of G×L↑
0.

In the renormalizable theories, just scalars and left-handed Weyl fermions need
to be listed while the spin-1 fields follow from the gauge structure. The left-
handed spinors can be optionally denoted as right-handed spinors instead, using
the relation

(ψL)c = C ψL
T = (ψc)R ≡ ˜︁ψR. (1.29)

Using the Dirac 4-spinor notation, the model conserves fermion number provided
that its Lagrangian can be written, exploiting the freedom from Eq. (1.29), with-
out the conjugation matrix C. Indeed, the objects carrying upper and lower Dirac
indices which might appear in the formulas are the fermion fields ψM , ψM and
the covariant symbols (γµ)MN , (γ5)MN and CMN or8 CMN . Analogously to the SU2U
approach, one ascribes the fermion number to all the objects as

F =
(︂
# upper Dirac indices

)︂
−
(︂
# lower Dirac indices

)︂
. (1.30)

Then, the corresponding group U(1)F is a good symmetry of the model provided
that the only possible F-charged spurion – the conjugation matrix C – is absent.

If desired, the previously presented models can be used as simple examples:
the SM in Eq. (1.2) and its leptoquark extension in Eq. (1.15) are free of the C
matrix and conserve the fermion number; the ∆F = 2 seesaw operator in Eq. (1.9)
and its explicit realization in Subs. 1.1.2 indeed contain C in the Lagrangian; the
∆F = 4 SMEFT operators of dimension 6 in (1.10) contain C twice while the
others do not. The correct assignment of the fermion number to the diqarks in
the B- and L-conserving models is F = 2; formally, the corresponding absence of
the conjugation matrix in Eq. (1.18) can be achieved by including the C matrix
into the definition of the diquark itself, χαMN = CMNχ

α.
It should be clarified that the purpose of the last two subsections is not to

persuade the reader that uR should be written with two antisymmetric SU(2)L
indices, nor to assert that the conjugation matrix must be strictly avoided when
casting fermion number conserving Lagrangians. Rather than that, we wanted
to argue that the relation between baryon number and SU(3)C symmetry lies
on the same grounds as the relation between the fermion number and Lorentz
symmetry. (In this respect, the chapter Tests of conservation laws in Ref. [54]
presents a different attitude).

1.2.6 Weak hypercharge rules them all
Another well known fact is that all the SM fields (see Table 1.1) satisfy, as rep-
resentations of GSM,

Y
mod 1== 1

2c
SU(2)L − 1

3c
SU(3)C (1.31)

where cSU(2)L and cSU(3)C refer to the weak isospin duality and color triality,
respectively.9 This relation holds also for any BSM field φ for which an interaction

8Strictly speaking, the position of Dirac indices is CMN and C†
MN . However, in the chiral

basis, C† = −C.
9In our notation, A = B (mod 1) denotes cutting off the integer part is applied on the

right-hand side of the exact equation. On the other hand, A mod n== B means that that A and B
may differ by an integer multiple of n.
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vertex containing a single φ-leg and several SM-field legs exists, such as the scalars
discussed in Subs. 1.2.2. Furthermore, Eq. (1.31) is valid for any irrep of GSM
which can stem from a representation of the SO(10) grand unified theory. In the
broken phase, a similar well known relation between color triality and electric
charge follows from Eq. (1.31),

Q
mod 1== −1

3c
SU(3)C , (1.32)

which, in turn, implies that colorless particles (both elementary and composite)
carry integer electric charge.

Equation (1.31) in some sense selects irreps of GSM which, for various reasons,
are being considered interesting for model building. In fact, it has the same
structure as the relations discussed so far, which in the similar formalism read

B
mod 1== 1

3c
SU(3)C , (1.33)

L
mod 1== 1

2c
SU(2)L − 1

3c
SU(3)C − Y, (1.34)

F
mod 1== J. (1.35)

However, the role of Equations (1.33) – (1.35) is different: they suggest convenient
choices of global charges once the model is build. Provided that Eq. (1.31) holds,
Eq. (1.34) simplifies to

L
mod 1== 0, (1.36)

claiming that the lepton number of any field in the theory should be an integer.
In contrast, Eq. (1.33) implies a nontrivial relationship between baryon number
and weak hypercharge:

B
mod 1/2== −Y. (1.37)

1.2.7 A counterexample
There are situations in which the SU2U approach fails. Here, a counterexample
BSM model will be presented, featuring the baryon number symmetry which is
not in strict connection with the triality of color. Such a situation can arise when
the matter field content of the model is divided into several sectors, and only
gauge and scalar-portal (ϕ†ϕX†X) interactions between different sectors exist.
Then, the would-be global U(1)B symmetry suggested by the SU2U approach
may be explicitly broken in the non-standard sector but remain conserved in the
sector containing the SM fields. Such models arise, for example, when the SM is
augmented by a field with quantum numbers which do not respect Eq. (1.31).

As a particular example, consider extending the SM by a scalar X ∼ (3, 3, 0).
As explained above, it cannot have any Yukawa interactions with the SM fermions
and only the portal coupling with the SM Higgs. Thus, the U(1)B ×U(1)L invari-
ance remains intact if we simply ascribe B(X) = L(X) = 0. The SU2U approach,
on the other hand, inappropriately calls for B(Xα) mod 1== +1/3. Nevertheless, the
X field cannot carry any conserved charge because of its trilinear self-interaction

LX3 = mXαi
j X

βj
k X

γk
i εαβγ . (1.38)
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non-Abelian symmetry generator of Abelian symmetry
L↑

0 F

SU(2)L L + B + Y
SU(3)C B

SU(4)C B − 1√
6T

15
C

SU(5) B − L − 4
5Y

Table 1.3: Pairs of related imposed and accidental symmetries.

1.3 Summary and overview
In gauge field theories, global symmetries commonly appear without being im-
posed. The accidental U(1)B × U(1)L symmetry of the SM is explicitly violated
in many of its extensions.

The charges of accidental U(1) symmetries can be often related to the con-
gruency classes of the imposed non-Abelian (space-time and gauge) symmetries.
For several important examples, these relations are summarized in Table 1.3: the
first three relations have been thoroughly discussed in this chapter; the case of
SU(4)C will be elaborated on in Chapter 2; for SU(5) in the GUT framework see
Appendix B.

If the Lagrangian of an SU(N) invariant theory (written with explicit indices)
is free of the corresponding Levi-Civita tensor, the existence of an accidental U(1)
symmetry is guaranteed and its action can be inferred simply from the difference
between number of upper and lower SU(N) indices carried by the dynamical
fields.

In SMEFT, also the opposite implication holds: baryon number violating
terms can be simply identified by the color Levi-Civita symbols. Similar conclu-
sions will be made in Section 2.3 in context of SU(4)C theories of the Pati-Salam
type.
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2. Quark-lepton unification
Quark-lepton unification (QLU) is a framework introduced by Pati and Salam
in the article called Lepton number as a fourth color [26]. As this title suggests,
the main idea of QLU is based on extending the QCD gauge factor SU(3)C to
SU(4)C and accommodating the quarks and leptons in common representations.
In the minimal setting, these read

FL
ia =

(︄
qL
αi

ℓL
i

)︄
, fuR

a =
(︄
uR

α

νR

)︄
, fdR

a =
(︄
dR
α

eR

)︄
, (2.1)

where a ∈ {1, 2, 3, 4} denotes the SU(4)C fundamental index while α ∈ {1, 2, 3}.
The original Pati-Salam model combined this assumption with left-right sym-

metry. However, this work focuses mainly on more modest scenarios with the
G421 = SU(4)C × SU(2)L × U(1)R (2.2)

gauge structure, as detailed in Section 2.1. In Section 2.2, the Minimal quark-
lepton symmetry model (MQLSM) is introduced, the smallest SM extension fea-
turing the SU(4)C unification. For more general situations but with this partic-
ular example in mind, we overview the status of baryon and lepton numbers in
models of QLU in Sections 2.3 and 2.4, and argue that the title of Ref. [26] may
be slightly misleading for some cases.

Afterwards, an overview of the gauge boson sector in theories based on G421
is given in Section 2.5, followed by a detailed analysis of the scalar sector of the
MQLSM in Section 2.6 where the most general scalar potential is identified and
studied [25]. In Section 2.7, the Fileviez Pérez – Wise (FPW) model is presented,
an extension of the MQLSM by the inverse seesaw mechanism. Since both MQLS
and FPW models have identical bosonic sectors, Sections 2.5 and 2.6 hold for
both models. Section 2.8 is focused on fermionic interactions with the BSM
bosons in the considered models. Finally, in Section 2.9 we count the number of
free parameters and discuss the number of physical phases in the flavour mixing
matrices between quarks and leptons which, to our best knowledge, has not been
described in the literature yet.

Such a detailed analysis provides a solid background for Chapters 4 and 5
where phenomenological analyses of those (or similar) models will be presented.

2.1 Gauge symmetry and its breaking
Let us begin with a closer look at the structure and fate of the extended gauge
symmetry cast in Eq. (2.2). The SU(4)C factor is supposed to be spontaneously
broken at some high scale way above the electroweak one, which (unlike for GUTs)
can be chosen arbitrarily since our framework unifies the fermions but not the
gauge interactions. The smallest possible first step of the SU(4)C breaking is

SU(4)C → SU(3)C × U(1)[B−L] . (2.3)
The Abelian factor in Eq. (2.3) is generated by

T 15
C = 1

2
√

6

(︄
13×3 0

0 −3

)︄
(2.4)

23



G421 SU(4)C U(1)R SU(2)L
T 1,...,8
C

g3 = g4
G1,...,8
µ = A1,...,8

µ

[B−L] =
√︂

8
3T

15
C

gBL =
√︂

3
8g4

A15
µ

G3121 SU(3)C U(1)[B−L]

↓
Y = 1

2 [B−L] +R
g′ = gBLgR√

g2
BL+(gR/2)2 = 2gBL sin θ′

Bµ = sin θ′A15
µ + cos θ′B′

µ

GSM U(1)Y

↓
Q = T 3

L + Y

e = gg′√
g2+g′2

= g sin θW
Aµ = cos θWBµ − sin θWW 3

µ

Gvac U(1)Q

Table 2.1: Scheme of the sequential symmetry breaking in the quark-lepton symmetry
scenarios. For each step, the corresponding branching rules, matching equations and
gauge bosons which remain massless are specified.

and its name becomes clear when one considers its multiple

[B−L] =
√︄

8
3T

15
C = diag (1/3, 1/3, 1/3,−1) (2.5)

applied to the unified representations in Eq. (2.1). Nevertheless, we will always
keep the square brackets in order to indicate that [B−L] is an indivisible symbol.

In the next step, the intermediate symmetry

G3121 = SU(3)C × U(1)[B−L] × SU(2)L × U(1)R (2.6)

is further broken down to GSM, following the branching rule

Y = R + 1
2[B−L] . (2.7)

More details about the spontaneous symmetry breaking can be found in Table 2.1.
Notice that G421 is a subgroup of the Pati-Salam group

G422 = SU(4)C × SU(2)L × SU(2)R, (2.8)

Lie algebra of which is a maximal subalgebra of so(10). Therefore, the BSM mo-
dels considered may well be low-energy limits of the Pati-Salam-like framework
or even of a grand unified theory. On the other hand, in recent years several
models were built around the gauge group SU(4)CL

×SU(n)CR
×SU(2)L ×U(1)

with n = 3 [55, 56, 57, 58, 59, 60] or n = 4 [55, 61, 62, 63] where the standard
QCD generators arise as TAC = TACL

+TACR
for A = 1, . . . , 8. These models can not

be effectively described in our framework.

2.2 Minimal quark-lepton symmetry model
In order to give a specific example, we will shortly present the MQLSM, the
simplest model featuring the SU(4)C group which may be compatible with the
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G421 → GSM [B−L] M F B L

Field content of the MQSLM
Fermions:

FL(4,2,0) =
(︄
qL
ℓL

)︄ (︄
1/3
−1

)︄
1 1

(︄
1
0

)︄ (︄
0
1

)︄

fuR (4,1,+1/2) =
(︄
uR
νR

)︄ (︄
1/3
−1

)︄
1 1

(︄
1
0

)︄ (︄
0
1

)︄

fdR (4,1,−1/2) =
(︄
dR
eR

)︄ (︄
1/3
−1

)︄
1 1

(︄
1
0

)︄ (︄
0
1

)︄
Gauge bosons:

Aµ(15,1,0) =
⎛⎝Gµ+ A15

µ

2
√

6 U1µ(3,1,+2/3)
U1µ

† −3
2
√

6A
15
µ (1,1,0)

⎞⎠ (︄
0 4/3

−4/3 0

)︄
0 0

(︄
0 1/3

−1/3 0

)︄(︄
0 −1
1 0

)︄
Wµ(1,3,0) 0 0 0 0 0
B′
µ(1,1,0) 0 0 0 0 0

Scalar bosons:

χ(4,1,+1/2) =
(︄
S̄†

1(3,1,+2/3)
χ0

(1,1,0)

)︄ (︄
1/3
−1

)︄
1 0

(︄
1/3
0

)︄ (︄
−1
0

)︄
H(1,2,+1/2) 0 0 0 0 0

Φ(15,2,+1/2) =
(︄
G2(8,2,+1/2) R2(3,2,+7/6)
R̃†

2(3̄,2,−1/6) 0

)︄ (︄
0 4/3

−4/3 0

)︄
0 0

(︄
0 1/3

−1/3 0

)︄(︄
0 −1
1 0

)︄
+

√
2T 15

C H2(1,2,+1/2)

Fields which extend the MQLSM to the FPW model
Fermions:
NL (1,1,0) 0 0 1 0 1

Table 2.2: Field content of the MQLS and FPW models. On the right hand side of the
table, the corresponding quantum numbers discussed in Secs. 2.3 and 2.4 are displayed.

SM at low energies. The MQLSM has been introduced in Ref. [27] (with an
optional extra scalar field (15, 1, 0)) and further elaborated on in Refs. [64, 65,
66, 61, 67, 68, 69]. It is also a starting point for construction of other similar
models [28] which we will investigate later on.

The meaning of minimality of this model is three-fold: the first aspect is its
gauge group G421, indeed a minimal extension of GSM containing the SU(4)C
factor (barring the case of SU(4)C × SU(2)L with weak hypercharge identified
with T 15

C which obviously does not lead to the SM at low energies). The other
two aspects relate to the minimal fermion and scalar sectors, respectively, as
summarized in Table 2.2. In particular, the fermionic sector consist only of the
fields in Eq. (2.1) and thus contains no other fields but the SM fermions and right-
handed neutrinos. The scalar sector consists of χ ∼ (4, 1,+1/2) which breaks the
SU(4)C symmetry, one Higgs doublet H ∼ (1, 2,+1/2) and an additional field
Φ ∼ (15, 2,+1/2) which contains another Higgs doublet, H2. We parametrize
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their VEVs as1

⟨χ⟩ = 1√
2

(︄
0
vχ

)︄
, ⟨H⟩ = sin β√

2

[︄
0
vew

]︄
, ⟨Φ⟩ = cos β

2
√

6

(︄
1 0
0 −3

)︄
⊗
[︄

0
vew

]︄
. (2.9)

Under the assumption vχ ≫ vew, the scalars participate in the spontaneous gauge
symmetry breaking as follows:

G421
⟨χ⟩, ⟨Φ⟩−−−−→ GSM

⟨H⟩, ⟨Φ⟩−−−−→ Gvac , (2.10)

effectively skipping the intermediate stage G3121. The presence of two Higgs
doublets stemming from different SU(4)C representations (singlet and adjoint,
no other options exist [70]) is needed in order to give masses independently to
the quarks and leptons in the common quadruplets. Indeed, the fermion mass
matrices are given by2

Mu =
(︄
Y1 sin β + Y2

cos β√
12

)︄
vew√

2
, Md =

(︄
Y3 sin β + Y4

cos β√
12

)︄
vew√

2
, (2.11a)

MD
ν =

(︄
Y1 sin β − 3Y2

cos β√
12

)︄
vew√

2
, Me =

(︄
Y3 sin β − 3Y4

cos β√
12

)︄
vew√

2
, (2.11b)

where Y1,2,3,4 are Yukawa matrices entering the Lagrangian of the model which
we cast in the full form for future purposes:

LMQLSM = −1
2A

a
µνbA

bµν
a − 1

2W
i
µνjW

µνj
i − 1

4B
′
µνB

′µν + FLia( /DFL)ia + fu
R a( /Dfu

R )a

+ fd
R a( /Dfd

R )a + (Dµχ)†
a(Dµχ)a + (DµH)†

i (DµH)i + (DµΦ)†a
ib (DµΦ)ib

a

−
(︂
fu
R aY1H

iFL
jaεij + fu

R aY2Φia
b FL

jbεij + fd
R aY3H

†
i FL

ia + fd
R aY4Φ†a

ib FL
ib + h.c.

)︂
− µ2

HH
†
i H

i − µ2
χχ

†
aχ

a − µ2
ϕΦ†a

ib Φib
a − λ1H

†
i H

iΦ†a
ib Φib

a

− λ2Φ†a
ib Φib

a χ
†
cχ

c − λ3H
†
i H

iχ†
aχ

a −
(︂
λ4H

†
i χ

†
aΦ†ia

b χb + h.c.
)︂

− λ5H
†
i Φia

b Φ†b
jaH

j

− λ6χ
†
aΦia

b Φ†b
icχ

c − λ7

(︂
H†

i H
i
)︂2

− λ8
(︁
χ†

aχ
a
)︁2 − λ9Φ†a

ib Φib
c Φ†c

jdΦjd
a − λ10

(︂
Φ†a

ib Φib
a

)︂2

−
(︂
λ11H

†
i Φia

b Φjb
a H

†
j + λ12H

†
i Φia

b Φjb
c Φ†c

ja + λ13H
†
i Φia

b Φ†b
jcΦjc

a + h.c.
)︂

− λ14χ
†
aΦ†a

ib Φib
c χ

c − λ15Φ†a
ib Φjb

c Φ†c
jdΦid

a − λ16Φ†a
ib Φjb

a Φ†c
jdΦid

c

− λ17Φ†a
ib Φ†b

jaΦic
d Φjd

c − λ18Φ†a
ib Φ†b

jcΦic
d Φjd

a − λ19Φ†a
ib Φ†b

jcΦjc
d Φid

a .

(2.12)

The MQLSM is able to fully reproduce the SM at low energies. We postpone
the description and investigation of new physics (second Higgs doublet, Z ′ boson,
heavy scalar gluons, various kinds of leptoquarks) to later sections and chap-
ters. In the next two sections we will provide some more general insight into the
the status of baryon and lepton number in models with quark-lepton symmetry,
taking the MQLSM as an important example.

2.3 Baryon number and the M symmetry
In this part we apply the SU2U approach described in Section 1.2 on the SU(4)C
group. The SU(4)C gauge interactions conserve a global charge M which is

1Recall that the round brackets denote the SU(4)C space (using the 3+1 block structure)
while the square brackets identify SU(2)L doublets.

2In Ref. [28] the numerical factors multiplying Y2 and Y4 are wrong due to inappropriate
normalization of H2 within the Φ field.
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ascribed uniformly to all elements of a given irreducible representation as

M =
(︂
# upper SU(4)C indices

)︂
−
(︂
# lower SU(4)C indices

)︂
. (2.13)

In other words, in the formalism where the SU(4)C structure is realized by tensors
over 4-dimensional vector spaces and where T 1,...,15

C act via traceless Hermitean
4×4 matrices, M acting on the same structures via a unit matrix generates a
global symmetry of the SU(4)C gauge interactions. Moreover, U(1)M is a valid
accidental symmetry of the entire model (including interactions of scalars) if its
complete Lagrangian does not contain any antisymmetric tensor εabcd. As one
can verify by a brief look at Eq. (2.12), the MQLSM is a good example of such a
model.

Eventually, U(1)M gets spontaneously broken together with U(1)[B−L], but the
combination

B = 1
4 (M + [B−L]) = diag (1/3, 1/3, 1/3, 0) , (2.14)

a natural candidate for the baryon number, remains unbroken. For the MQLSM,
this statement can be easily verified by confronting Table 2.2 with Eq. (2.9).
A general proof is also simple: provided that SU(3)C is an unbroken part of the
SU(4)C symmetry, all VEVs are annihilated by its generators TAC for A = 1, . . . , 8.
Thus, all VEVs also vanish under the action of the quadratic Casimir operator
of the SU(3)C subgroup, CSU(3)C

2 = ∑︁8
A=1 T

A
C T

A
C , which acts on every SU(4)C

multiplet as a multiple of B defined above.3 Hence, B also annihilates all the
VEVs.

The arguments from the last two paragraphs together result in the follow-
ing useful conclusion: Absence of εabcd in the Lagrangian of an SU(4)C

gauge theory implies conservation of baryon number. An alternative, but
equivalent reasoning may be given as follows: as we know, the baryon number de-
fined according to the SU2U perspective can be violated only if the Levi-Civita
tensor εαβγ appears in the Lagrangian. When rewriting the SU(4)C invariant
interactions to the broken phase by splitting the indices like a → (α, 4), the
3-dimensional εαβγ can only emerge from the 4-dimensional antisymmetric ten-
sor εabcd.

There are many examples of SU(4)C models featuring the U(1)M symmetry
and thus conserving B, including the MQLSM and its extensions inspected in
Chapters 4 and 5.

On the other hand, there are also models with different scalar sectors for
which the U(1)M defined in (2.13) is not a good symmetry. As the first example,
consider the scalar self-interaction

εa1a2a3a4εb1b2b3b4∆ii′

a1b1∆jj′

a2b2∆kk′

a3b3∆ll′

a4b4εijεi′j′εklεk′l′ (2.15)

of the (10, 3, 0) irrep of G421, which also has the Yukawa interaction FL
TC∆FL.

Within the G422 framework, ∆ can stand for (10, 3, 1) or also4 (10, 1, 3), both
3Notice though that the proportionality factor between the actions of CSU(3)C

2 and B may
differ among various field multiplets. Moreover, as discussed in Section 1.2, our definitions of M
and B above contain redundancies. Hence, the M and B generators can not be strictly related
to the Casimir operators of SU(4)C and SU(3)C , respectively.

4The indices i, i′, . . . in (2.15) denote either SU(2)L or SU(2)R structure, depending on the
representation considered.
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emerging in the ”classic” left-right symmetric model of Ref. [71]. Such scalar
fields induce neutron-antineutron oscillations (i.e., ∆B = 2) but keep proton
stable due to an exact ”remnant” discrete symmetry.

As another example, let us take the interaction of ∆ with an SU(4)C adjoint,
SU(2)L doublet Φ (cf. also the MQLSM) via the term

εabcd∆aa′∆bb′Φa′

c Φb′

d (2.16)

(with SU(2) indices supressed). Baryon numbers of the substructures in ∆ and
Φ are fixed by their Yukawa interactions in the Pati-Salam model [70] which,
together with (2.16), trigger proton decay (∆B = 1). Both these examples can
be also found in Section 6.5 of Mohapatra’s coursebook [72].

Finally, the Alternative Pati-Salam model [73] has been suggested as a TeV
realization of the G422 symmetry. However, it can be shown that B would be
violated if there was the interaction

εabcd χ
ia
Lχ

jb
L χ

ci′

R χ
dj′

R εijεi′j′ (2.17)

of the scalar fields χL ∼ (4, 2, 1) and χR ∼ (4, 1, 2).
Notice that identifying baryon number violating models is fairly easy using

the U(1)M symmetry considerations, since Eq. (2.14) together with the SU2U
approach tell us that B-changing interaction terms can be recognized by the
presence of the SU(4)C Levi-Civita tensors:

∆B = ∆M =
(︂
# εabcd

)︂
−
(︂
# εabcd

)︂
. (2.18)

For another SU(4)-based model where Eq. (2.18) is applicable see Ref. [74].
In the model of Ref. [57] with an SU(4) × SU(3) gauge subgroup, an interaction
term with the corresponding Levi-Civita symbols triggers explicit violation of
another would-be extra accidental symmetry.

2.4 Lepton number not as the fourth color
As described above, the MQLSM features a global U(1)M symmetry which at
the end guarantees conservation of B. One might thus conclude that the lepton
number must be spontaneously broken because [B−L] is so; such a deduction
would be, however, wrong. It can be easily verified by looking at the MQLSM
Lagrangian (2.12) that it conserves also the fermion number F (since there is no
C matrix). Hence, the lepton number in MQLSM must be conserved, provided
that it is defined by

L = F − 3B . (2.19)

One can easily verify at Table 2.2 that such a definition leads to correct values of
L for all the SM fields and that L is respected by the vacuum [cf. (2.9)]. It should
be stressed that it differs from the notion of fourth color which unambiguously
means acting on SU(4)C tensors by

L4th-col = diag(0, 0, 0, 1) = M − 3[B−L]
4 = B − [B−L] , (2.20)
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G422 → GSM [B−L] M=F B L

Field content of the Mohapatra-Marshak model [71]
Fermions:

FL(4,2,1) =
(︄
qL
ℓL

)︄ (︄
1/3
−1

)︄
1

(︄
1/3
0

)︄ (︄
0
1

)︄

FR(4,1,2) =
(︄

[uR dR]
[νR eR]

)︄ (︄
1/3
−1

)︄
1

(︄
1/3
0

)︄ (︄
0
1

)︄
Scalar bosons:
ϕ(1,2,2) =

[︂
H H ′†

]︂
0 0 0 0

∆L(10,3,1) =
(︄
X(6̄,3,−1/3) S3(3̄,3,+1/3)
S3(3̄,3,+1/3) ∆L44(1,3,+1)

)︄ (︄
-2/3 2/3
2/3 2

)︄
−2

(︄
-2/3 -1/3
-1/3 0

)︄(︄
0 -1
-1 -2

)︄

∆R(10,1,3) =
(︄
χ(6̄,1,T 3

R−1/3) S1(3̄,1,T 3
R+1/3)

S1(3̄,1,T 3
R+1/3) ∆R44(1,1,T 3

R+1)

)︄ (︄
-2/3 2/3
2/3 2

)︄
−2

(︄
-2/3 -1/3
-1/3 0

)︄(︄
0 -1
-1 -2

)︄
⊗ [T 3

R = −1, 0,+1]
Fields which extend the above model to the Pati-Salam model [70]

Scalar bosons:

Φ(15,2,2) =
[︄(︄

G2(8,2,+1/2) R2(3,2,+7/6)
R̃†

2(3̄,2,−1/6) 0

)︄
,

(︄
0 4/3

-4/3 0

)︄
0

(︄
0 1/3

-1/3 0

)︄(︄
0 -1
1 0

)︄
(︄
G′†

2 R̃′
2

R′†
2 0

)︄]︄
+

√
2T 15

C

[︂
H2, H

′†
2

]︂

Table 2.3: Fermions and scalars in the models of Pati-Salam type and their quantum
numbers. Horizontal structures in square brackets denote SU(2)R.

a quantity which is spontaneously broken indeed. It is of course just a matter of
notation introduced in Eq. (2.5) which leads us to write down that, generally,

B − L ̸= [B−L] . (2.21)

For the MQLSM, this bizarre inequality is manifest for the elements of the scalar
field χ (see Table 2.2).

Despite that, denoting the generator of U(1)T 15
C

simply by B − L is quite
commonly used. To this end, we would like to stress that such a notation should
be used with great caution as it may become a source of confusion. In Chapter 5.2,
we will discuss a particular example from the literature where overlooking the
inequality (2.21) lead to incorrect phenomenological conclusions. The observation
that a spontaneously broken gauge symmetry which charges quarks by +1/3 and
leptons by −1 needs not necessarily be identical to B − L has been recently
advocated also in Ref. [75].

It is perhaps worth comparing the situation with the ”classic” models of quark-
lepton unification with left-right symmetry based on the G422 group [71, 70].
Due to a different scalar sector (see Table 2.3), the M charge defined according
to Eq. (2.13) exactly coincides with the most reasonable attempt to ascribe the
fermion number. Hence, there is just a single candidate for an accidental non-
local U(1) symmetry, which is explicitly broken by the scalar interaction (2.15)
and potentially also by (2.16). Provided M = F, Eqs. (2.14) and (2.19) imply
that [B−L] = B − L does hold for all the fields in a given model. Eventually,
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this gauge symmetry is broken spontaneously by ⟨∆R44⟩ and no combination of
B and L represents a precise symmetry in the broken phase.

Let us recapitulate the last two sections: quark-lepton SU(4)C unification does
not necessarily induce BNV nor LNV. Violation of L can occur both explicitly
or spontaneously, while B can be violated only explicitly. E.g., in the MQLSM,
both B and L are conserved, while the FPW model which will be introduced
later violates L explicitly. In the models of the Pati-Salam type, both B and
L are explicitly violated, with a combination B − L broken only spontaneously.
If the explicitly violating scalar interactions in these models were absent, lepton
number would be spontaneously broken but B would remain conserved.

2.5 Vector bosons
In this section, we describe in detail the gauge field content in the quark-lepton
unification scenarios based on the G421 gauge group as outlined in Table 2.1.
A similar study can be found, for example, in Ref. [27]; we present it here for the
sake of completeness. We strive to be as general as possible, going beyond the
specific scalar content of the MQLSM. To this end, we use the notation

⟨TX⟩ =
∑︂
φ

⟨φ⟩†TX⟨φ⟩ , ⟨TXTY ⟩ =
∑︂
φ

⟨φ⟩†TXTY ⟨φ⟩ (2.22)

where the sum runs over all scalar multiplets in the model and TX , TY stand for
specific gauge symmetry generators.

The gauge fields as they arise from the associated factors of G421 read (see
also Table 2.2):

SU(4)C : Aµ =
⎛⎝Gµ + 1

2
√

6A
15
µ U1µ/

√
2

U1
†
µ/

√
2 − 3

2
√

6A
15
µ

⎞⎠ (2.23a)

SU(2)L : Wµ = 1
2

[︄
W 3
µ

√
2W+

µ√
2W−

µ −W 3
µ

]︄
(2.23b)

U(1)R : B′
µ. (2.23c)

Gauge leptoquark

The first step of the spontaneous symmetry breaking (SSB), i.e. SU(4)C →
SU(3)C × U(1)[B−L], generates mass of the leptoquark field U1µ ∼ (3, 1,+2/3):

1
2m

2
U1 = g2

4⟨T 9
CT

9
C⟩ . (2.24)

Its interactions with the SM fermions are described in Section 2.8.1. The low-
energy effects of this leptoquark will be studied thoroughly in Chapter 5.

Neutral gauge bosons

The renormalization group (RG) evolution of the gauge couplings between the
SU(4)C breaking scale and that of [B−L] breaking is more complicated than
usually: because the G3121 group contains two U(1) factors, the gauge kinetic
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mixing term A15
µνB

′µν appears during the running, bringing a new parameter into
the game [76]. For simplicity, we will assume that the energy interval with two
unbroken Abelian factors is so short that these effects are negligible. Then, the
neutral vector boson mass matrix in the {A15, B′,W 3} basis reads

1
2M

2
ZZ′γ =

⎛⎜⎝ g2
BL⟨[B−L]2⟩ gBL gR⟨[B−L]R⟩ gBL g⟨[B−L]T 3

L⟩
gR gBL⟨R [B−L]⟩ g2

R⟨RR⟩ gR g⟨RT 3
L⟩

g gBL⟨T 3
L[B − L]⟩ g gR⟨T 3

LR⟩ g2⟨T 3
LT

3
L⟩

⎞⎟⎠ . (2.25)

Provided Q = T 3
L +R+ 1

2 [B−L] is unbroken, ⟨QT ⟩ = 0 for any generator T , and
the matrix in (2.25) has a zero eigenvalue, corresponding to the vanishing photon
mass. The other two eigenstates yield the Z boson and a new massive field, Z ′.

Usually, the limit of two separate symmetry breaking stages, G3121 → GSM →
Gvac, can be considered. After the first of these steps, with the symmetries
generated by Y = R + [B−L]/2 and T 3

L yet unbroken, Eq. (2.25) simplifies to

1
2M

2
ZZ′γ = ⟨R⟩2 ξ ξT with ξ =

⎛⎜⎝2gBL
−gR

0

⎞⎟⎠ , (2.26)

which can be diagonalized via the rotation by the angle θ′ satisfying

tan θ′ = gR
2gBL

, sin θ′ = g′

2gBL
, cos θ′ = g′

gR
. (2.27)

If the running effects between the G3121-breaking scale µBL and that of G421-
symmetry breaking can be neglected, one has gBL(µBL) ≈

√︂
3
8g3(µBL) and sin θ′

can be given readily in terms of the SM parameters. This rotation mixes the
gauge fields A15

µ and B′
µ into a massive state Z ′

0 with

1
2m

2
Z′

0
= g2

BL

cos2 θ′ ⟨[B−L]⟩2 (2.28)

and a Bµ field corresponding to the weak hypercharge Y which, after the elec-
troweak symmetry breaking (EWSB), mixes further with W 3

µ in the SM-like fash-
ion. To sum up,⎛⎜⎝A

15
µ

B′
µ

W 3
µ

⎞⎟⎠ =

⎛⎜⎝ cos θ′ sin θ′ 0
− sin θ′ cos θ′ 0

0 0 1

⎞⎟⎠
⎛⎜⎝Z

′
0µ
Bµ

W 3
µ

⎞⎟⎠ ≈

⎛⎜⎝ cθ′ sθ′ 0
−sθ′ cθ′ 0

0 0 1

⎞⎟⎠
⎛⎜⎝1 0 0

0 cw sw
0 −sw cw

⎞⎟⎠
⎛⎜⎝Z

′
µ

Zµ
Aµ

⎞⎟⎠
(2.29)

with cθ′ = cos θ′, sw = sin θw etc. The coupling of the Z ′ boson can be obtained
by rewriting the relevant terms in the covariant derivative accordingly,

gBL[B−L]A15
µ + gRRB

′
µ = g′Y Bµ + gBL

cos θ′

(︂
[B−L] − 2Y sin2 θ′

)︂
Z ′

0µ , (2.30)

which is an analogue to the similar relation well known from the SM:

g′Y Bµ + gT 3
LW

3
µ ≈ eQAµ + g

cos θw

(︂
T 3
L −Q sin2 θw

)︂
Zµ . (2.31)

31



The approximate equalities in Eqs. (2.29) and (2.31) become exact in the limit
⟨R⟩/⟨T 3

L⟩ → ∞. With the finite ratio of the symmetry breaking scales, the true
mass eigenstate Z ′ does not fully coincide with Z ′

0; however, this small difference
is currently unimportant as there have been no convincing signals of the very
existence of the Z ′ field so far. On the other hand, a small admixture of Z ′

0 in
the known Z boson (with mZ = 91 GeV) might slightly modify its couplings with
the SM fermions as well as the SM formula for the Z-boson mass.

2.5.1 Vector boson masses in MQLSM
Now, let us study the gauge boson masses in the MQLSM in particular. The
VEVs of the scalar fields given in Eq. (2.9) imply the following relations:

⟨T 9
CT

9
C⟩ =

v2
χ

8 + v2
ew cos2 β

3 , ⟨[B−L]2⟩ = 1
2v

2
χ . (2.32)

In the limit with separated symmetry breaking stages (vχ ≫ vew) one obtains

mU1 ≈ g4vχ
2 , mZ′ ≈ gBLvχ

cos θ′ . (2.33)

As there is no G3121 intermediate stage in the MQLSM, one can write down

g4 =
√︄

8
3gBL = g3(vχ), sin θ′ =

√︄
2
3
g′(vχ)
g3(vχ) , (2.34)

which implies

mZ′

mU1

≈
√︄

3
2 cos θ′ =

⌜⃓⃓⎷3
2 − g′2(vχ)

g2
3(vχ) . (2.35)

This ratio ranges between 1.17 for vχ = 2 TeV and 1.11 for vχ = 20 000 TeV,
assuming the one-loop SM running of the gauge couplings.

2.6 Scalar potential and scalar masses
In this section, the scalar sector of the MQLSM is described in detail. Note that
it remains unchanged also for the FPW model [28] which shall be introduced in
the next section. Identification of the full form of the scalar potential and its
analysis has been published in Refs. [25, 29].

Recall from Table 2.2 on page 25 and from Eq. (2.9) that, after the symmetry
breaking from G421 to GSM by vχ, the scalar fields of the model can be written in
the following way:

χa =

⎛⎜⎝ S̄†
1
α

vχ + χ0
R + iz′

0√
2

⎞⎟⎠ , H i, Φia
b =

⎛⎝G2
αi
β + δαβ

H i
2√
12 R2

αi

R̃†
2βj ε

ji − 3√
12H2

i

⎞⎠ . (2.36)

The EWSB is triggered by the VEVs of the two Higgs doublets:

⟨H⟩ = sin β√
2

[︄
0
vew

]︄
, ⟨H2⟩ = cos β√

2

[︄
0
vew

]︄
. (2.37)
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The axial part z′
0 of the neutral component of χ becomes eaten by the Z ′

0
while would-be the Goldstone boson associated to the vector leptoquark U1 is
approximately (neglecting the subdominant contribution of ⟨H2⟩ to the SU(4)C
breaking) given by u1 ≈ S̄†

1. The Goldstone modes emerging after the EWSB
reside in the Ĥ doublet

Ĥ =
[︄

w+

1√
2(vew +H0 + z)

]︄
(2.38)

which is defined by the following rotation:(︄
Ĥ ′

Ĥ

)︄
=
(︄

cos β − sin β
sin β cos β

)︄(︄
H
H2

)︄
. (2.39)

In the new basis, the whole electroweak VEV is hidden inside Ĥ and the remain-
ing component H0 has exactly the SM-Higgs-like interactions with the fermions.
However, H0 is generally not and exact mass eignestate. Nevertheless, a light
physical scalar h with mh ∝ vew must appear in the mass spectrum [77], while
the rest of the physical scalars should have larger masses of the order of vχ, in
accordance with the minimal survival hypothesis [78]. In such a case, the mass
eigenstate h is well approximated by the field H0 in Eq. (2.38) and thus has all
the characteristics of the SM Higgs boson [79], as its mixing with χ0

R as well as
with H ′0 from

Ĥ ′ =
[︄

H+

1√
2(H ′0 + iA0)

]︄
(2.40)

must be suppressed by v2
ew/v

2
χ. The field H+ is an exact mass eigenstate as there

are no other fields to mix with.
In the strongly interacting sector one finds electroweak doublets of massive

scalar gluons G2 and of two leptoquark fields R2 and R̃2 (cf. Tables 1.2 and A.3):

G2
α
β =

[︄
G+

1√
2(G0

R + iG0
I)

]︄α
β

, R2
α =

[︄
R

+5/3
2

R
+2/3
2

]︄α
, R̃2

α =
[︄
R̃

+2/3
2

R̃
−1/3
2

]︄α
. (2.41)

The mass of G2 is bounded from below by the K0-K0 mixing and bb̄tt̄ production
at the LHC [29, 80, 81]. Also the leptoquark masses are limited by the Atlas
[82, 83, 84, 85, 86] and CMS [87, 88, 89] searches to be way above the electroweak
scale. Hence, the mixing among R+2/3

2 , R̃+2/3
2 and S̄†

1, which appears only after the
EWSB, is parametrically suppressed and all the fields in (2.38), (2.40) and (2.41)
represent exact or approximate mass eigenstates. Moreover, the isospin mass
splitting within the individual doublets must be quite tiny: since a general mass
formula reads m2

T 3
L=±1/2 = av2

χ ± bv2
ew, taking the square root gives mT 3

L=±1/2 ≈
√
avχ ± b

2
√
a
v2

ew/vχ. Hence, it makes sense to simply talk about mG2 ,mR2 and
mR̃2

.
Although the description made above can be drawn from general principles,

a detailed analysis of the scalar potential is necessary in order to find if there
are any relations between the masses of various GSM representations. The scalar
potential has been cast in in Ref. [28] but 9 terms terms are missing there. We
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have found [25] and verified by dedicated automated tools [90] that the most
general renormalizable form of the scalar potential reads

V = µ2
HH

†
iH

i + µ2
χχ

†χ+ µ2
ΦTr(Φ†

iΦi) + λ1H
†
iH

iχ†χ+ λ2H
†
iH

iTr(Φ†
jΦj)

+ λ3 χ
†χTr(Φ†

iΦi) +
(︂
λ4 H

†
i χ

†Φiχ+ h.c.
)︂

+ λ5H
†
i Tr(Φ†

jΦi)Hj

+ λ6χ
†ΦiΦ†

iχ+ λ7(H†
iH

i)2 + λ8(χ†χ)2 + λ9Tr(Φ†
iΦiΦ†

jΦj) + λ10(Tr(Φ†
iΦi))2

+
(︂
λ11H

†
i Tr(Φi Φj)H†

j + λ12H
†
i Tr(Φi Φj Φ†

j) + λ13H
†
i Tr(Φi Φ†

j Φj) + h.c.
)︂

+ λ14χ
†Φ†

iΦiχ+ λ15Tr(Φ†
i Φj Φ†

j Φi) + λ16Tr(Φ†
i Φj) Tr(Φ†

j Φi)
+ λ17Tr(Φ†

i Φ†
j) Tr(Φi Φj) + λ18Tr(Φ†

i Φ†
j Φi Φj) + λ19Tr(Φ†

i Φ†
j Φj Φi), (2.42)

where SU(4)C structure is fully captured in the matrix notation while the SU(2)L
indices are denoted explicitly. Without loss of generality, λ4 can be chosen real
since its phase can be always absorbed by a redefinition of H†Φ. After inter-
changing µH,χ,Φ for vχ, vew and β via the minimization conditions and neglecting
electroweak contributions (vew → 0), one finds for the non-zero masses

m2
χ0

R
= 2λ8v

2
χ , (2.43a)

m2
G2 =

(︄√
3λ4

4 tan β − 3
8 (λ6 + λ14)

)︄
v2
χ , (2.43b)

m2
R2 =

(︄√
3λ4

4 tan β + λ14 − 3λ6

8

)︄
v2
χ , (2.43c)

m2
R̃2

=
(︄√

3λ4

4 tan β + λ6 − 3λ14

8

)︄
v2
χ , (2.43d)

m2
Ĥ′ =

√
3λ4

2 sin(2β)v
2
χ . (2.43e)

Notice that despite the large number of quartic couplings in Eq. (2.42), only
3 of them are important regarding the masses of the fields stemming from Φ.
Eliminating those 3 parameters from the four equations (2.43b) – (2.43e) yields
the following mass sum rule:

m2
G2 + 2m2

Ĥ′ sin2 β = 3
2(m2

R2 +m2
R̃2

) . (2.44)

Apart from perturbativity in λ’s, this equation represents the only theoretical
constraint on the scalar masses in the model.

2.7 Inverse seesaw and the FPW model
The MQLSM, introduced in Section 2.2, contains Dirac neutrinos, masses of
which are generated the same way as masses of the other fermions. To give a
natural interpretation of the smallness of the neutrino masses, a variant of a see-
saw mechanism is usually employed. The SU(4)C models automatically contain
leptonic GSM-singlets νR which might suggest the type-I seesaw presented in Sec-
tion 1.1.2. Type-I seesaw would require the Majorana mass term generated by
the VEV of an extra scalar, transforming as a 10-dimensional representation of

34



SU(4)C and featuring the interaction (fuR aYνfuR )∆ab. Adding ∆ to the MQLSM
might in principle lead to a consistent model of low-energy QLU; for example,
no BNV terms can be written for mass dimension d ≤ 5. Nevertheless, the sup-
pression of the neutrino masses by a single negative power of ⟨∆44⟩ is insufficient
to provide a natural scale for the neutrino masses assuming the scale of SU(4)C
breaking ≲ 1000 TeV.

An alternative is provided by the inverse seesaw mechanism, originally deve-
loped in Ref. [91]. Implementation of the inverse seesaw on top of the MQLSM
has been suggested in Ref. [28] by Fileviez Pérez and Wise, and thus we call it the
FPW model. Note that a similar effective model combining the vector leptoquark
U1 with the inverse seesaw has been studied in Ref. [92].

The extension consists in adding 3 generations of gauge-singlet fermions NL

to the MQLSM (see Table 2.2). The part of the Lagrangian relevant for fermion
masses

−LYuk+mass
FPW = fuR aY1H

iFL
ajεji + fuR aY2Φia

b FL
bjεji + fdR aY3H

†
i FL

ai + fdR aY4Φ†a
ibFL

bi

+ fuR aY5χ
aNL + 1

2NL
TCµNL + h.c. (2.45)

contains, apart from the four terms which were present in the MQLSM, the
fifth Yukawa interaction which produces a Dirac mass term for νRNL, and also a
Majorana mass term with a symmetric matrix µ = µT. The fermion number F is
explicitly broken in this model and, due to Eq. (2.19), so is the lepton number L.
The tree-level neutrino mass terms, as they follow from (2.45), read

−Lν-mass
FPW =

⎧⎩νLT νR
cT NL

T
⎫⎭ C

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 MD

ν 0
MD

ν
T 0 Mχ

ν

0 Mχ
ν

T µ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
νL
νR
c

NL

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ (2.46)

where MD
ν ∼ vew can be found in Eq. (2.11b) and

Mχ
ν = 1√

2
Y5vχ . (2.47)

The full symmetric mass matrix above (to be denoted by MMaj
ν ) is diagonalized

when sandwitched as U∗MMaj
ν U †. Consistency with observations requires a tech-

nically natural [93] assumption of smallness of the entries in µ. In such a case,
the νL’s are close to Majorana mass eigenstates with tiny masses of order

mν ≃ µ

(︄
MD

ν

Y5vχ

)︄2

∼ µ
v2

ew
v2
χ

. (2.48)

The remaining fields form pseudo-Dirac pairs with masses close to eigenvalues of
Y5vχ/

√
2. For more precise expressions see, e.g., Ref. [94].

Notice that the elements of MMaj
ν which are exactly zero at the tree level

gain corrections from loop diagrams and might eventually become the dominant
contributions to the light neutrino masses.

2.8 Flavour structure and fermion interactions
So far, the fact that the SM fermions appear in 3 generations was not explicitly
emphasized and flavour aspects of the considered models were essentially ignored.
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On the other hand, almost all the discussions and formulae are fully compatible
with the existence of 3 fermion generations provided that the symbols such as
eR, qL, f

u
R etc. are columns of three copies of fermion fields with identical quantum

numbers and that all Y ’s and µ’s are 3×3 matrices.5 From this point on, flavour
will be a central subject of interest.

From the defining basis in which the gauge interactions are flavour-diagonal
(as follows from the kinetic term ψi /Dψ), the fermion fields are transformed into
the mass basis ψ̂ by the diagonalization matrices V ψ:

ψ̂L,R = V ψ
L,R ψL,R for ψ = u, d, e, ν. (2.49)

In the case of the FPW model, Eq. (2.49) for ψ = ν neglects the mixing between
different sectors (νL, νRc and NL) and approximates the rotation to the mass basis
by a block-diagonal structure. Such an approximation is sufficient for studying
physics of hadrons and charged leptons. On the other hand, non-unitarity of V ν

L

can be probed by neutrino oscillation experiments and mixing among νL and NL

is important for leptogenesis.
Formally, the rotation matrices follow from the singular value decomposition

of the mass matrices in the defining basis,

Mψ = V ψ
R

†
M̂ψV

ψ
L for ψ = u, d, e, (2.50)

where

M̂u =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
mu 0 0
0 mc 0
0 0 mt

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , M̂d =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
md 0 0
0 ms 0
0 0 mb

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , M̂e =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
me 0 0
0 mµ 0
0 0 mτ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ .
(2.51)

Analogously, we define M̂D
ν = V ν

RM
D
ν V

ν
L

†. In the MQLSM, it can be approximated
by M̂D

ν ≈ 03×3. On the other hand, M̂D
ν in the FPW model is not directly related

to the physical neutrino masses, which are given by the seesaw formula instead.
In accordance with a usual convention, we introduce the basis for the weak

isodoublets in which the T 3
L = −1/2 components are in the mass basis,

q̂L = V d
LqL =

[︄
V †

CKMûL
d̂L

]︄
, ℓ̂L = V e

LℓL =
[︄
VPMNS ν̂L

êL

]︄
=
[︄
ν̊L
êL

]︄
. (2.52)

while

ν̊L =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
νe
νµ
ντ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ . (2.53)

Experimentally, so far only the combinations

VCKM = V u
L V

d
L

† and V †
PMNS = V ν

L V
e
L

† (2.54)
are directly observable. As we will see in the next section, the quark-lepton unifi-
cation hypothesis predicts that also the following independent unitary matrices,

UL = V d
L V

e
L

† , UR = V d
R V

e
R

† , U ′
R = V u

R V
ν
R

† (2.55)
are of physical relevance.

5Only the definition of effective operators in Section 1.1.3 requires some explicit generaliza-
tion.
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uL
U ′

L →→

VCKM
↓↓

νL

dL UL

→→ eL

VPMNS

↑↑ uR
U ′

R →→ νR

dR UR

→→ eR

Figure 2.1: Scheme of fermion mixing in the quark-lepton symmetry models.

2.8.1 Gauge interactions
Analogously to the charged-current weak interactions

LW± = g√
2
(︂
ûLαγ

µVCKMd̂L
α + ν̂Lγ

µV †
PMNSêL

)︂
W+
µ + h.c., (2.56)

the interaction among fermions and the vector leptoquark is driven by the ma-
trices defined in Eq. (2.55):

LU1 = g4√
2

(︃
q̂Lαiγ

µULℓ̂L
i + d̂Rαγ

µURêR + ûRαγ
µU ′

Rν̂R

)︃
U1

α
µ + h.c. (2.57)

This can be rewritten as

LU1 = g4√
2

(︃
d̂γµ [PLUL + PRUR] ê+ ûγµ [PLU ′

L + PRU ′
R] ν̂

)︃
U1µ + h.c. (2.58)

where PL,R = (1 ∓ γ5)/2 are the chirality projectors and
U ′
L = VCKM UL VPMNS (2.59)

is not another independent matrix. Notice that the gauge LQ interaction might
conserve parity if UR = UL and U ′

R = U ′
L but there is no simple motivation for

such an assumption in this framework.
The Z ′ interactions with the fermions in the MQLS and FPW models are

diagonal and flavour-universal, with the coupling given by Eq. (2.30). On the
other hand, as shall be discussed later in Section 5.2, this is not necessarily true
in more complicated scenarios.

2.8.2 Yukawa interactions
Generally, the pattern of Yukawa interactions of the scalar fields from multiplets
participating in the symmetry breaking is often in some way related to the fermion
masses. The notorious example is the flavour-diagonal interaction of the physical
Higgs field in the SM:

LH0−int
SM =

∑︂
ψ=u,d,e

− 1
vew

ψ̂ M̂ψ ψ̂ H
0 . (2.60)

In the quark-lepton symmetry models, similar relations are obtained by inverting
the set of equations in (2.11):

Y1 =
√︄

1
8

3Mu +MD
ν

vew sin β , Y2 =
√︄

3
2
Mu −MD

ν

vew cos β , (2.61a)

Y3 =
√︄

1
8

3Md +Me

vew sin β , Y4 =
√︄

3
2
Md −Me

vew cos β . (2.61b)
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Plugging this into the first line of Eq. (2.45), rewriting the SU(4)C structure
in the broken phase and switching to the mass basis according to Eqs. (2.49)
and (2.50) yields

−LYuk-int
MQLSM =

√
2

vew
Ĥ i
(︃
ûRM̂uVCKMq̂L

jεji + q̂LiM̂dd̂R + ℓLiM̂eêR + ν̂RM̂
D
ν VPMNSℓ̂L

j
εji

)︃

+ Ĥ ′i
√

2vew sin 2β

(︃
ûR
[︂
(2 cos 2β + 1)M̂u + U ′

RM̂
D
ν U

′
L

†]︂
VCKMq̂L

jεji

+ ν̂R
[︂
(2 cos 2β − 1)M̂D

ν + 3U ′
R

†
M̂uU

′
L

]︂
V †

PMNSℓ̂L
j
εji

+ q̂Li
[︂
(2 cos 2β + 1)M̂d + ULM̂eUR

†
]︂
d̂R

+ ℓ̂Li
[︂
(2 cos 2β − 1)M̂e + 3UL†M̂dUR

]︂
êR

)︃

+

√︂
3/2G2

αi
β

vew cos β
(︂
ûRα

(︂
M̂u − U ′

RM̂
D
ν U

′
L

†)︂
VCKMq̂L

βjεji + q̂Lαi(M̂d − ULM̂eUR
†)d̂Rβ

)︂

+

√︂
3/2R2

αi

vew cos β

(︃
ûRα

(︂
M̂uU

′
L − U ′

RM̂
D
ν

)︂
V †

PMNSℓ̂L
j
εji + q̂Li

(︂
ULM̂e − M̂dUR

)︂
êR

)︃

+

√︂
3/2 R̃2

αi

vew cos β

(︃
d̂Rα

(︂
M̂dUL − URM̂e

)︂
εij ℓ̂L

j + qLαiV
†

CKM

(︂
M̂uU

′
R − U ′

LM̂
D
ν

)︂
ν̂R

)︃
+ h.c.

(2.62)

On the first line, one can find the well known interaction of the light Higgs boson
from which Eq. (2.60) can be easily obtained. The cast form of interactions of
G2, R2 and R̃2 is consistent with Ref. [66].

The FPW model contains an additional Yukawa matrix [see Eq. (2.45)] which,
apart from interactions of the unphysical Goldstones u1 and z′

0, induces also the
interaction χ0

R νR Y5NL. However, as NL mostly forms the heavy neutrino mass
eigenstates, this interaction is essentially irrelevant.

2.9 Parameter counting
We will close Chapter 2 by counting the independent parameters of both mo-
dels considered and suggesting a suitable choice of the inputs. For convenience,
we will indicate the number of parameters by a Gaussian integer with its real
and imaginary part denoting the number of real parameters and complex phases,
respectively. The total dimension of the parameter space can then be obtained
by means of the Manhattan measure, ||a+ bi|| = a+ b.

2.9.1 Bosonic sector
In the gauge sector there are 3 couplings g4, g and gR which must be matched
onto the SM gauge couplings g3, g and g′ at the appropriate scales, using the
formulas from Table 2.1.

In the scalar potential one finds 3 dimensionful parameters µχ,H,Φ. These can
be traded for vew = 246 GeV, vχ, which determines the masses of the vector LQ
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and of the Z ′ boson (as well as a natural scale for most of the scalar spectrum),
and β which in the end dictates the overall strength of Yukawa interactions of
the BSM scalars.

Furthermore, there are 19 + 4i degrees of freedom in the scalar quartic cou-
plings. Only one of the four complex phases can be made real by scalar field
phase redefinition. Thus, generally, the model explicitly violates CP . We suggest
to rephase the three scalars such that their VEVs are real, as we have tacitly
assumed so far. The couplings λ4, λ6, λ8, λ14 can be interchanged with masses of
four BSM scalar multiplets among those of Equations (2.43), while the remaining
mass follows from Eq. (2.44). Finally, the other λ’s need to be chosen so as to
reproduce the Higgs boson mass mH0 = 125 GeV.

2.9.2 Fermionic sector in the MQLSM
Naively, there are four complex Yukawa matrices in the MQLSM Lagrangian
(2.12), yielding 4 (3 × 3) (1 + i) parameters. However, some of these are physi-
cally irrelevant since there is a freedom of 3 (3 + 6i) parameters corresponding to
the unitary flavour transformations of the SU(4)C multiplets FL, fuR , fdR , which do
not change the flavour diagonality of the gauge interactions and define equivalence
classes among the Yukawa matrices leading to the same predictions. (For exam-
ple, it is sufficient to work in the gauge interaction basis where, simultaneously,
the left- and right-handed charged leptons and right-handed up-type quarks are
in the mass basis.) Two of the phase transformations correspond to the action of
the U(1)B × U(1)L symmetry and, thus, should not count. In total, one arrives
at (36 + 36i) − [(9 + 18i) − 2i] = 27 + 20i parameters.

These should reproduce the 12 + i parameters of the SM (charged fermion
masses and the CKM matrix) and the 6 + i parameters corresponding to the
neutrino masses and the PMNS matrix. The remaining and 3 (3 + 6i) extra
parameters reside in the mixing matrices UL, UR and U ′

R. Note that unlike for
CKM and PMNS, no phases can be removed. This is perfectly understandable:
the freedom of rephasing the left-handed fermion fields has already been used
to simplify VCKM and VPMNS and their right-handed counterparts were rephased
identically in order to keep the mass terms real.

On the other hand, the PMNS matrix is irrelevant for the physical processes
where the neutrino mass differences are negligible. It might be thus more conve-
nient to formally move three phases from UL to VPMNS.

2.9.3 Fermionic sector in the FPW model
Extending the MQLSM to the FPW model brings 9(1+i)+6(1+i) new parameters
from Y5 and µ, 3 + 6i new redundancies from possible flavour redefinitions of NL

and breaks the U(1)L symmetry. Thus, there is 12+8i new parameters compared
to the MQLSM.

In the mass basis, they appear as two extra Majorana phases in the PMNS
matrix, six masses of the three heavy quasi-Dirac fermions, and the rest resides in
the small mixing across νL, νRc and NL. For the best way to parametrize extended
neutrino sectors cf. Ref. [95].
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3. Flavour symmetries, B-meson
anomalies and leptoquarks
Chapter 1 discussed U(1)B and U(1)L – the (classically) exact accidental sym-
metries of the SM which do not distinguish between the fermion generations. In
fact, we did not even have to specify the number of families (or generations) in
Chapter 1. This chapter is devoted to approximate symmetries of Nature, in par-
ticular, to the lepton flavour (LF) symmetries. Throughout this work, we take
flavour symmetries as accidental, as they are in the SM.

This chapter provides the fundamentals necessary for the phenomenological
studies presented in Chapters 4 and 5; readers well aware of the matters can
safely skip the entire Chapter 3. After introducing the concept of lepton flavour
symmetries in Section 3.1, we overview the basic tool of flavour physics – the
Weak effective theory (WET) – in the subsequent part. In Section 3.3, we revise
in detail the formulae for pseudoscalar mesons decays P 0 → ll′ in WET which
will be crucial in Chapter 5. Section 3.4 reviews the current status of the hints of
LFU violation in the B-physics sector and their interpretation in terms of effective
theories; these anomalies will be studied in Chapter 4. Finally, in Section 3.5 we
present in brief some general aspects of flavour physics of leptoquarks – the fields
that will play a prominent role in both Chapters 4 and 5.

3.1 Flavour symmetries
Since the concept of (lepton) flavour group is being used in several different ways,
let us fix the conventions first. By the SM flavour group we mean

Gflavour = U(3)3
QF × U(3)2

LF (3.1)

where the quark and lepton flavour groups in the wider sense read

U(3)3
QF = U(3)q × U(3)d × U(3)u , U(3)2

LF = U(3)ℓ × U(3)e . (3.2)

We will only discuss the leptonic part which acts on the three generations of
leptons via

ℓL → Uℓ ℓL, eR → Ue eR with Uℓ ∈ U(3)ℓ, Ue ∈ U(3)e . (3.3)

Gflavour would be an exact symmetry of the SM if there were no Yukawa interac-
tions. Especially, U(3)2

LF is not respected by any nonzero entry in Ye. On the
other hand, the SM predicts that U(3)2

LF should be a good approximate symme-
try in high-energy processes where the lepton interactions with the Higgs field,
and hence also their masses, can be neglected.

For most practical purposes it is sufficient to consider only the diagonal sub-
group U(3)ℓ+e ⊂ U(3)2

LF obtained by Uℓ = Ue which, at the level of Lie algebras,
can be factorized as

U(3)ℓ+e = U(1)L × SU(3)LF, (3.4)
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where U(1)L is the exact symmetry of the SM discussed in Chapter 1. In contrast,
SU(3)LF – another candidate to be called lepton flavour group – would be a valid
symmetry of the SM only if Ye = y 1, i.e., if all 3 charged leptons had the same
mass. In our Universe, the leptonic spectrum is hierarchical (me ≪ mµ ≪ mτ )
which implies that SU(3)LF is an approximate symmetry of the SM essentially
only in the situations when the whole U(3)2

LF is so.
Nevertheless, there is a subgroup of SU(3)LF which is a precise symmetry of

the SM: the lepton flavour group in the strict sense,

U(1)2
LF = U(1)Lµ−Le × U(1)Lτ −Le , (3.5)

in the charged-lepton mass basis generated by diagonal traceless matrices. In
combination with the L conservation, the U(1)2

LF symmetry implies conservation
of the individual lepton family numbers satisfying Le+Lµ+Lτ = L. Notice that
despite various conventions for what is called the lepton flavour group, the term
lepton flavour violation (LFV) is being used strictly in relation with U(1)2

LF.
Experimentally, LFV has been proven by the only discovery of particle physics

beyond the SM so far – the neutrino oscillations [16]. On the other hand, no
charged lepton flavour violation has been observed yet (e.g., [96, 97, 98, 99]),
in agreement with the expectations from the SM extended with Dirac neutrino
masses [100].

Inspecting other parts of the anticipated approximate LF symmetry consists
especially in testing the lepton flavour universality (LFU) which we associate
with the permutation group (S3)LFU ⊂ U(3)ℓ+e. The LFU symmetry implies that
replacements e ↔ µ and e ↔ τ should not change the amplitude for a considered
process. LFU can be tested, e.g., in the leptonic W and Z boson decays or the
(chirality-unsuppressed) semileptonic decays of heavy mesons. The sources of
lepton flavour universality violation (LFUV) in the SM are strictly related to the
lepton mass differences and are theoretically quite well understood.

Generally, since none of U(1)2
LF or (S3)LFU is a subgroup of the other, LFV

does not necessarily imply LFUV nor vice versa. On the other hand, various BSM
fields (such as leptoquarks) would often induce violation of both.

Finally, we note that New Physics might violate the U(1)2
LF or (S3)LFU sym-

metries only partially to U(1) × Zn [101] or S2 = Z2, respectively.

3.2 Flavoured effective theories
In this section we return to the concept of effective field theory (EFT) and fix
some additional conventions regarding the flavour structures.

Flavoured SMEFT

We have already introduced SMEFT – a way to universally describe New Physics
(NP) effects in the majority of BSM models – in Section 1.1.3. At this moment,
it should be perhaps emphasized that we have committed an oversimplification
there as we have neglected the existence of multiple fermion generations. To this
end, each line in Eqs. (1.9) and (1.10) actually represents several distinct and
independent operators. We adhere to the so-called Warsaw basis within the wcxf
standards [40] in which the fermion generations are labeled by numbers and the
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weak doublets are in the mass basis of their T 3
L = −1/2 component, i.e., of down-

type quarks and charged leptons. For example, one particular fully specified
baryon number violating operator corresponding to (1.10a) reads

Oduqℓ 1231 = εαβγ
[︂
(dαR)TC cβR

]︂ [︂
(qL(b)

γi)TCℓLj(e)
]︂
εij . (3.6)

Needless to say, adding family indices greatly increases the dimension of the
Wilson coefficient space: there is 84 linearly independent dimension-6 effective
operators built from single generation SM fields, but 3045 such operators in the
flavoured SMEFT [41].

Weak effective theory

Currently, the LHC experiments have probed the electroweak scale quite thor-
oughly, finding an impressive agreement with the Standard Model. This suggests
that a possible New Physics, shall there be any, should be well described by
SMEFT indeed. Limits on various SMEFT coefficients can be drawn, for exam-
ple, from the electroweak precision measurements. On the other hand, SMEFT
is not the most appropriate tool when it comes to phenomenology in low-energy
precision physics (such as hadron decays). The reason is two-fold: Firstly, the
SU(2)L invariance is lost at lower energies and it is thus more convenient to have
all the fermions in the mass basis. Secondly, there are important renormalization
effects which need to be taken into account; the running of the Wilson coefficients
via renormalization group equations (RGE) proceeds differently above and below
the electroweak scale.

Thus, instead of SMEFT, flavour physics at hadronic scales µ ∼ GeV is best
described using the Weak effective theory (WET) [102]: an SU(3)C × U(1)Q
gauge invariant low energy model in which the higher-dimensional interaction
terms encode the effects of both NP and SM fields with masses m ≫ µ. In
particular, for the B physics, the 5-quark WET is employed. It is defined by the
Langrangian

LWET(5)(νLl, e, d, u, s, µ, c, τ, b, Aµ, Gµ) = LQCD+QED + Leff , (3.7)

the non-renormalizable part of which reads

Leff = −Heff =
OA=O†

A∑︂
A

CAOA +
OA ̸=O†

A∑︂
A

(︂
CAOA + C∗

AO†
A

)︂
. (3.8)

The Wilson coefficients can be further written as CA = CSM
A +CNP

A with CSM
A OA

covering the interactions of W,Z,H0 and t.
Generally, a phenomenological inspection of a BSM model may proceed as

follows:

1. If the scenario is not given in terms of SMEFT but of new explicit dynamical
degrees of freedom (such as new fields in the case of QFT), these need to
be matched onto effective operators in SMEFT.

2. The SMEFT Wilson coefficients are ran down to the EW scale µew ∼ mZ .
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3. Effective SMEFT operators as well as heavy SM field dynamics is matched
onto WET at the µew scale. [103]

4. The Wilson coefficients (WCs) the of WET are ran down by RGE to the
scale of the considered process.

5. Predictions are made using a general expression for a given process in the
WET.

The advantage of such an approach is that the steps 2–5 are independent on
the particular NP scenario, and thence need to be studied only once and can
be automatized. To this end, we particularly mention the wilson package [104],
which can accomplish the steps 2–4.

The flavoured WET(5) basis consists of more than a thousand independent
operators of d = 5 or 6. Nevertheless, usually only a small subset significantly
contributes to a particular process.

Semileptonic FCNC operators

NP is being probed in studying the rare decays of mesons – processes mediated by
flavor changing neutral currents (FCNC) which are suppressed in the SM by loop
and CKM factors as well as by the GIM mechanism. We will put a lot of focus on
the FCNC meson decays with leptons in the final state. These are mainly driven
by the two-quark two-lepton operators listed below.

O9 qq′ll′ = N
(︂
q′
LγµqL

)︂ (︂
l′γµl

)︂
O′

9 qq′ll′ = N
(︂
q′
RγµqR

)︂ (︂
l′γµl

)︂
(3.9a)

O10 qq′ll′ = N
(︂
q′
LγµqL

)︂ (︂
l′γµγ5l

)︂
O′

10 qq′ll′ = N
(︂
q′
RγµqR

)︂ (︂
l′γµγ5l

)︂
(3.9b)

OS qq′ll′ = N ζ
(︂
q′
LqR

)︂ (︂
l′ l
)︂

O′
S qq′ll′ = N ζ

(︂
q′
RqL

)︂ (︂
l′ l
)︂

(3.9c)

OP qq′ll′ = N ζ
(︂
q′
LqR

)︂ (︂
l′γ5l

)︂
O′
P qq′ll′ = N ζ

(︂
q′
RqL

)︂ (︂
l′γ5l

)︂
(3.9d)

OT qq′ll′ = N ζ
(︂
q′σµνq

)︂ (︂
l′σµνl

)︂
OT5 qq′ll′ = N ζ

(︂
q′σµνq

)︂ (︂
l′σµνγ5l

)︂
(3.9e)

Within this context, the quark-flavour changing electromagnetic dipole operators
are usually also relevant:

O7 qq′ = N ζ7
(︂
q′
RσµνqR

)︂
F µν , O′

7 qq′ = N ζ7
(︂
q′
LσµνqL

)︂
F µν . (3.10)

The normalization factors N , N ζ and N ζ7 differ among various conventions
(and, within one convention, among quark flavours). The weak interactions only
contribute to vector-type operators CSM

9,10 with l = l′ and to the EM-dipole.
Dimension-6 SMEFT operators may match onto C(′) NP

9,10,S,P with arbitrary fla-
vour structures, with only the following constraints:

CS = −CP and C ′
S = +C ′

P . (3.11)

The semileptonic operators OT and OT5 cannot arise from a GSM-invariant dimen-
sion-6 operator [103] nor do they stem from the heavy sector of the SM; for this
reason, they are often being ignored from the beginning. Nevertheless, they may
arise from d = 8 SMEFT operators [105].
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Lepton flavour symmetries are violated in both parts of the WET Lagrangian
(3.7): LQED+QCD breaks LFU by the lepton mass terms, while Leff may generally
break the whole lepton flavour group by the coefficients CNP

A . Considering the
four-fermion operators (3.9) in particular, any non-zero CNP

X qq′ll′ with l ̸= l′ breaks
U(1)2

LF, while (S3)LFU symmetry requires CNP
X qq′ll′ = CNP

X qq′πlπl′
for all permuta-

tions π of {e, µ, τ}. The weak interactions, encoded in CSM’s, are symmetric with
respect to the entire SU(3)LF group.

3.3 Leptonic meson decays
Purely leptonic decays of pseudoscalar mesons P 0 → l+1 l

−
2 constitute the first

important class of rare decays discussed above. Due to same-handedness of the
lepton pairs in effective weak four-fermion interactions (i.e., C(′) SM

P,S = 0) within
the SM, angular momentum conservation implies chirality suppression. To this
end, the LF symmetry in CSM’s together with the well understood low-energy
LFUV from ∆ml naively predicts relations like

BR(P 0 → e+e−)
BR(P 0 → µ+µ−) = m2

e(mP −me)2

m2
µ(mP −mµ)2 . (3.12)

Unfortunately, the extreme suppression of the ee channel (B0
d,s → ee are unob-

served, with the limits many orders of magnitude below the SM prediction [106])
together with theoretical uncertainties in the K0

L → ll channel from long-distance
corrections [107] make such an easy test inapplicable. Nevertheless, measure-
ments or searches for these decays provide strong limits on CNP’s anyway, once
theory and experiment are compared individually for the individual branching
ratios.

In this section, we revise the formulae for branching fractions for the decays
P 0 → l+1 l

−
2 with P 0 = K0

L , K
0
S , B

0, Bs in the WET built around the two-quark-
two-lepton operators (3.9), including the lepton flavour violating cases. These
formulas are not difficult to derive and can be found in the correct form, e.g., in
Ref. [108], using a different operator basis than that in Eqs. (3.9). On the other
hand, several different variants of the expressions can be found over the literature
which are not applicable to all the considered decays since they:

• are flawed by subtle mistakes [109, 110, 111]1 and thus only allow for order-
of-magnitude estimates but are insufficient for a careful analysis,

• only hold for the weak eigenstate mesons (not for K0
L,S) [52, 111], but some-

times are applied on also on the decays of K0
L [113, 114, 115, 116],

• do not handle the LFV case l1 ̸= l2 [52, 109, 110, 112].

Formulae for BR(P 0 → l+1 l
−
2 ) will be essential in Chapter 5 and so we re-derive

them here in detail. We have found and fixed a mistake in the public code flavio
[117, 118] (ver. 2.2.0 [119]) concerning the predictions of BR(K0

L,S → e±µ∓); the
update should be included in some of the upcoming official versions.

1Problems in [109, 110] have been explained in Ref. [112]. Issues with the expressions in
[111] will be described here on page 47.
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3.3.1 Amplitudes for weak eigenstates
Let us start the derivation by parametrizing the hadronic matrix elements for the
pseudoscalar meson P = q′q as follows:

⟨0| q′γµq |P (k)⟩ = 0, ⟨0| q′γµγ5q |P (k)⟩ = ifPk
µ, (3.13a)

⟨0| q′q |P (k)⟩ = 0, ⟨0| q′γ5q |P (k)⟩ = −ifPmP , (3.13b)

where fP is the relevant meson decay constant and

mP = m2
P

mq +mq′
. (3.14)

The vanishing matrix elements of the scalar and vector quark currents imply that
only the WC combinations [see (3.9)]

C∆X qq′ll′ = CX qq′ll′ − C ′
X qq′ll′ (3.15)

matter. As ψ1(γµ)γ5ψ2
C−→ +ψ2(γµ)γ5ψ1 and pseudoscalar mesons are C-even,

there are no extra phases or signs for the antiparticles in the relations (3.13).
Provided q ̸= q′, the operators in Eqns. (3.9) are all non-hermitean. Since

(︂
ψγµχ

)︂†
= +χγµψ,

(︂
ψγµγ5χ

)︂†
= +χγµγ5ψ, (3.16a)(︂

ψχ
)︂†

= +χψ,
(︂
ψγ5χ

)︂†
= −χγ5ψ, (3.16b)

the operator O∆S qq′ll′ ≡ OS qq′ll′ −O′
S qq′ll′ = N ζ(q′γ5q)(l′l) yields an extra minus

sign under hermitean conjugation while the other relevant operators, O∆9,∆10,∆P
in obvious notation, do not. Consequently, the hermiticity of the effective Hamil-
tonian implies the following relations among the corresponding Wilson coeffi-
cients:

N ∗C∆9 qq′ll′
∗ = + NC∆9 q′ql′l , N ∗C∆10 qq′ll′

∗ = + NC∆10 q′ql′l , (3.17a)
N ∗C∆S qq′ll′

∗ = − NC∆S q′ql′l , N ∗C∆P qq′ll′
∗ = + NC∆P q′ql′l . (3.17b)

In the flavio basis [117, 120], the Wilson coefficients of the sdll′, bsll′ and
bdll′ types need to be defined while those with the dsll′, sbll′ and dbll′ flavour

structures can be obtained from Eqs. (3.17). For example, the part of effective
Hamiltonian relevant for leptonic decays of Bs and B̄s reads

−Hbsll′

eff =
∑︂
l,l′

[︃
− N

2 C∆9 bsll′ (sγµγ5b)
(︂
l′γµl

)︂
− N

2

∗
C ∗

∆9 bsll′
(︂
bγµγ5s

)︂ (︂
lγµl′

)︂

− N
2 C∆10 bsll′ (sγµγ5b)

(︂
l′γµγ5l

)︂
− N

2

∗
C ∗

∆10 bsll′
(︂
bγµγ5s

)︂ (︂
lγµγ5l

′
)︂

+ ζN
2 C∆S bsll′ (sγ5b)

(︂
l′l
)︂

− ζN
2

∗
C ∗

∆S bsll′

(︂
bγ5s

)︂ (︂
ll′
)︂

+ ζN
2 C∆P bsll′ (sγ5b)

(︂
l′γ5l

)︂
+ ζN

2

∗
C ∗

∆P bsll′ (sγ5s)
(︂
lγ5l

′
)︂ ]︃
.

(3.18)
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The covariant S-matrix element for the decay of the weak eigenstate P̄ →
l+1 l

−
2 , where P̄ (qq̄′) = K̄0(sd̄), B̄0(bd̄) or B̄s(bs̄), takes the form

MP̄→l+1 l
−
2

= −N
2 fP u(p2) [mPS qq′l1l2 +mPP qq′l1l2γ5] v(p1) (3.19)

with
mP S qq′l1l2 = (m2 −m1)C∆9 qq′l1l2 +mP ζC∆S qq′l1l2 , (3.20a)
mPP qq′l1l2 = (m2 +m1)C∆10 qq′l1l2 +mP ζC∆P qq′l1l2 . (3.20b)

The prefactor mP multiplying S and P is a mere convention (used in flavio,
in Refs. [52, 112] but not in [111]). Notice that the first term in Eq. (3.20a)
changes sign under l1 ↔ l2 and thus S qq′l1l2 ̸= S qq′l2l1 in the case of lepton
flavour universal WC’s [121]. This is not a paradox: LFUV is brought to the
game by the fact that m1 ̸= m2.

For the decays of the conjugated states P (q′q̄) = K0(ds̄), B0(db̄) and Bs(sb̄),
the matrix elements read

MP→l+1 l
−
2

= −N
2

∗
fP mP u(p2)

[︃
− S∗

qq′l2l1 + P∗
qq′l2l1γ5

]︃
v(p1) . (3.21)

It is interesting to trace back the origin of the minus sign in front of S∗
qq′l2l1 : the

first term in the definition (3.20a) changes sign due to the factor (m1 −m2) while
in the second term the opposite sign arises from Eq. (3.18).

3.3.2 Instantaneous B-meson decays
The B0 and Bs mesons usually decay before their first oscillation. To a good
approximation, the oscillations can be neglected and one can effectively consider
the decay of the weak eigenstates. For a more rigorous approach in the LF
conserving case, see Ref. [122].

From Eq. (3.19) or (3.21), one can derive, using the standard trace techniques,

BR(Bs → l−1 l
+
2 ) = BR(B̄s → l+1 l

−
2 ) = τBs

|N |2

32π

√︂
λ(m2

Bs
,m2

1,m
2
2)

mBs

f 2
Bs

×
[︂(︂
m2
Bs

−(m1+m2)2
)︂

|S bsl1l2|2 +
(︂
m2
Bs

−(m1−m2)2
)︂

|P bsl1l2|2
]︂ (3.22)

with λ(a2, b2, c2) = [a2 − (b− c)2][a2 − (b+ c)2]. The prediction is CP -symmetric
regardless of possible complex phases of the Wilson coefficients. On the other
hand, if l1 ̸= l2, the other pair of CP conjugated processes, Bs → l+1 l

−
2 and

B̄s → l+1 l
−
2 , is in fact absolutely independent on those in Eq. (3.22) as it is

driven by different effective operators, i.e., by those multiplied by C∆X bsl1l2 .
This subtlety has been overlooked in Ref. [111] which inappropriately employs
the Wilson coefficients CX bsl2l1 in predicting Bs → l−1 l

+
2 and indicates that only

the WC proportional to m2 − m1 in Eq. (3.20a) should be important regarding
the differences between BR(Bs → l−1 l

+
2 ) and BR(Bs → l+1 l

−
2 ). Apart from this

issue and a small typo concerning the (pseudo)scalar operator normalization coef-
ficient ζ, Eq. (3.22) agrees with the expressions in [111].

Needless to say, incidental swapping l1 ↔ l2 in Eq. (3.22) becomes irrelevant
once only the sum of both decay channels is considered. Neglecting the lighter
lepton mass, this sum is driven by

BR(Bs → l±1 l
∓
2 ) ∝ |S bsl1l2|2 + |S bsl2l1 |2 + |P bsl1l2|2 + |P bsl2l1|2 . (3.23)
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3.3.3 Decays of neutral kaons
Experimentally studied neutral kaons are far from the weak basis and thus the
equations in the previous part need to be modified. Neglecting the indirect CP
violation, the relations between weak and mass kaon eigenstates read

|K0
L⟩ = |K0⟩ + |K̄0⟩√

2
, |K0

S ⟩ = |K0⟩ − |K̄0⟩√
2

. (3.24)

Accordingly, one obtains

MK0
L,S→l+1 l

−
2

= −1
2fK

0 u(p1)
[︂
SL,S
l1l2 + PL,S

l1l2 γ5
]︂
v(p2), (3.25)

where

SL,S
l1l2 =

−N ∗S∗
sdl2l1 ± N S sdl1l2√

2
, PL,S

l1l2 =
N ∗P∗

sdl2l1 ± N P sdl1l2√
2

(3.26)

with S sdlilj ,P sdlilj defined in (3.20). Recall that the relevant effective operators
are conventionally defined in the form (dΓs)(l2Γ′l1), while those with the (s̄d)
quark flavours are obtained by hermitean conjugation. The BR can be readily
obtained in analogy with Eq. (3.22):

BR(K0
L,S → l+1 l

−
2 ) = (3.27)

=
τK0

L,S

32π

√
λ

m2
K0

m3
K0f 2

K0

[︄(︄
1 − (m1 +m2)2

m2
K0

)︄ ⃓⃓⃓
SL,S
l1l2

⃓⃓⃓2
+
(︄

1 − (m1 −m2)2

m2
K0

)︄ ⃓⃓⃓
PL,S
l1l2

⃓⃓⃓2]︄

This formula is compatible with the expressions in Ref. [108].

LFV decays

Notice that, as long as the indirect CPV in K0 is neglected, we have
⃓⃓⃓
SL,S
eµ

⃓⃓⃓
=⃓⃓⃓

SL,S
µe

⃓⃓⃓
and

⃓⃓⃓
PL,S
eµ

⃓⃓⃓
=
⃓⃓⃓
PL,S
µe

⃓⃓⃓
, which leads to

BR(K0
L,S → e+µ−) = BR(K0

L,S → e−µ+). (3.28)

Thus, the prediction for the sum of the two final states is, in the case of K0
L ,

proportional to

BR(K0
L → e±µ∓) ∝ 2

|N |2

⎛⎝⃓⃓⃓⃓⃓−N ∗S∗
sdeµ + N S sdµe√

2

⃓⃓⃓⃓
⃓
2

+
⃓⃓⃓⃓
⃓N

∗P∗
sdeµ + N P sdµe√

2

⃓⃓⃓⃓
⃓
2
⎞⎠

= |S sdeµ|2 + |S sdµe|2 + |P sdeµ|2 + |P sdµe|2

− 2 Re
[︄

N 2

|N |2
(S sdµeS sdeµ + P sdµeP sdeµ)

]︄
. (3.29)

Notably enough, this structure differs from that in Eq. (3.23) by the last term.
Hence, ignoring the kaon oscillations is not justified even when summing over the
lepton pair charges. For K0

S , the last double-term in (3.29) simply changes sign.
Obviously, K0

L → eµ and K0
S → eµ are driven by different directions in the space

of Wilson coefficients. The former process is experimentally well constrained [98]
while the latter has never been searched for [54]. From the EFT point of view, a
search for the K0

S → eµ decay would be of interest.
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LF conserving decays and long distance contributions

For l1 = l2 = l, Eq. (3.27) simplifies to

BR(K0
L,S → l+l−) =

τK0
L,S
βlm

3
K0f 2

K0

32π

[︃
β2
l

⃓⃓⃓
SL,S
ll

⃓⃓⃓2
+
⃓⃓⃓
PL,S
ll

⃓⃓⃓2]︃
(3.30)

with βl =
√︂
λ(m2

K0 ,m2
l ,m

2
l )/m2

K0 =
√︂

1 − 4m2
l /m

2
K0 , and the expressions in

(3.26) reduce to

SL
ll = i

√
2 Im (N S sdll) , PL

ll =
√

2Re (N P sdll) , (3.31a)
SS
ll = −

√
2 Re (N S sdll) , PS

ll = −i
√

2 Im (N P sdll) . (3.31b)

These results are fully compatible with the expressions in Ref. [112].
For the LF conserving decays, the SM brings a long-distance (LD) contribution

to PL and SS, arising from the γ∗γ∗ intermediate state, which can not be encoded
in the four-fermion operators in (3.9). For K0

L → ll, the LD contributions are
comparable in magnitude to the short-distance ones from Eq. (3.31a) and from
the dominant theoretical uncertainty to the prediction of the BR of this process.
For more details, see, e.g., Refs. [107, 112].

3.4 B-meson anomalies in semileptonic decays
The second class of FCNC decays we will focus on are the pseudoscalar meson
decays P → P ′(∗)l+1 l

−
2 which, apart from leptons, contain a pseudoscalar (P ′)

or vector (P ′∗) meson in the final state. As three-body decays, these processes
provide a rich variety of kinematical observables, in contrast with the purely
leptonic decays where the BR is the only observable available.

The semileptonic meson decays P → P ′l+1 l
−
2 are driven by the combinations

CX + C ′
X of Wilson coefficients [123], in contrast with P 0 → l+1 l

−
2 which are

triggered by C∆X defined in Eq. (3.15). Another important difference with respect
to the purely leptonic decays is that there is no helicity suppression in P → P ′(∗)ll′

for the vector-type effective operators (C9,10) which are generated in the EW
interactions. Hence, the semileptonic decays proceed at much higher rates than
P 0 → l+l− and SM predicts that they should be approximately lepton flavour
universal. For the full expressions for the differential decay widths in the WET,
see Ref. [111].

In the recent years, an enormous wave of interest arose around the hints of
non-SM sources of LFUV in the ratios

RK(∗) = BR(B → K(∗)µ+µ−)
BR(B → K(∗)e+e−) . (3.32)

The measured individual BR’s are of the order of 10−6 [124, 125]. For the one-loop
SM contributions to these processes, see Fig. 3.1.

RK and RK∗ are usually measured separately in several bins of the lepton
pair invariant mass squared q2, with the resonance intervals around m2

J/ψ(1S) and
m2
ψ(2S) omitted from the analysis. In the lowest q2 region, dominated by the

photon penguin with a pole at q2 → 0, the lepton masses become important and
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Figure 3.1: Box and penguin diagrams contributing to RK(∗) in the Standard Model.

are expected to spoil the LFU. For q2 > 1 GeV2, the four-fermion WET operators
dominate. The hadronic form-factor and electromagnetic uncertainties mostly
cancel and the SM predicts RSM

K(∗) = 1 to a better than 1% accuracy [126] (see
also references in [22]).

Experimentally, RK is easier to measure for the charged B mesons while RK∗

is easier for the neutral ones, due to the charged hadrons in the final state (K∗0 →
K+π−). Both RK and RK∗ were first measured by Belle (RK = 1.03±0.19±0.06,
RK∗ = 0.83 ± 0.17 ± 0.08, where the first uncertainty is statistical and the latter
is systematic) [125] and BaBar [127] without finding a tension with the SM.
Nevertheless, the statistical uncertainties were quite large. The hint of LFUV
in RK was reported by LHCb in 2014 [21], which found a 2.6-σ deviation from
unity in RK = 0.745+0.090

−0.074 ± 0.036, for the interval 1 GeV2 < q2 < 6 GeV2. This
has been later [128] updated to

RK = 0.846+0.060
−0.054

+0.016
−0.014 (3.33)

for 1.1 GeV2 < q2 < 6 GeV2, with the significance of the discrepancy similar to
the previous result.2 The updated Belle measurement [130] is compatible with
both SM and the LHCb value.

The RK∗ measurement at LHCb has been performed on neutral B mesons
with the result [22]

RK∗ = 0.69+0.11
−0.07 ± 0.05 (3.34)

in the ⟨1.1, 6⟩ GeV2 interval. The updated analysis by Belle [131] for the same q2

range reported RK∗ = 0.96+0.45
−0.29 ± 0.11.

Apart from the ratios RK(∗) , some deficit has been found in the widths of
B → K(∗)µ+µ− decays themselves [132] as well as in BR(Bs → ϕµ+µ−) [133]; pre-
dictions of individual BR’s, however, suffer from larger uncertainties, especially
from the hadronic form factors. Furthermore, certain discrepancies have been re-
ported in the so-called P ′

5 observable in an angular analysis of the B → K∗µ+µ−

decay [134]. Normalized to the total branching ratio, the hadronic uncertain-
ties are reduced but still quite important. Although neither of these additional
anomalies would probably raise much of an attention alone, all of them, together
with the theoretically clean observables RK(∗) , can be interpreted as a negative
interference between NP and SM contributions to the b → sµµ amplitudes.

Last but not least, an apparently detached subset of anomalies in B decays
2Very recently, another update was announced by LHCb: RK = 0.846+0.042

−0.039
+0.013
−0.012 [129].

The reduced uncertainties of this measurement are not considered in this thesis.
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consists of the ratios of the charged current decays

RD(∗) = BR(B → D(∗)τν)
BR(B → D(∗)lν)

, l = µ or e. (3.35)

Here, the mτ forms a large but well understood source of LFUV within the SM,
leading to the prediction RSM

D = 0.299±0.003 and RSM
D∗ = 0.258±0.005 (see [135]

and the references therein). These observables have been measured by BaBar
[23], Belle [136, 137, 138] and LHCb [139, 140]. The current experimental world
averages [135] are RD = 0.340 ± 0.027 ± 0.013 and RD∗ = 0.295 ± 0.011 ± 0.008.
Taking into account the correlations, the measured values of RD(∗) are 3σ above
the SM predictions [135]. The experimentally established LFU in the analogous
µ/e ratio indicates that there might be a NP in the b → cτ ν̄ channel. Notice
that anticipated BSM contributions should be quite large in order to significantly
influence the unsuppressed charged-current decays (e.g., BR(B+ → D∗0τ+ν) ≈
2 % [141]).

These so-called B anomalies have been analysed within the WET framework
by many studies, with the results slightly varying in details, depending on the
statistical methods applied and on the experimental data available at the time
they were performed [142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153].
For a recent global analysis, we especially refer to [154], where the following best
simplified scenarios accounting for the neutral current anomalies have been found:

1. Scenario with CNP
9 bsµµ = −CNP

10 bsµµ can fit essentially all the aforementioned
FCNC observables. This WC combination corresponds to the chiral op-
erator (bLγµsL)(µLγµµL) which is also exciting regarding the explicit NP
models.

2. Scenario with CNP
9 bsµµ.

3. Scenario with CNP
10 bsµµ.

4. Scenario with NP in the electron sector, namely CNP
9 bsee = +CNP

10 bsee, which
induces the operator (bLγµsL)(eRγµeR). Obviously, such a setup can not
address the additional anomalies in the bsµµ sector; nevertheless, RK and
RK∗ can be described so successfully that the resulting maximal likelihood
outclasses that of other simplified scenarios.

As mentioned before, it seems reasonable to assume that NP resides at some
high energy scale and, therefore it should well described by SMEFT. As men-
tioned in Section 3.2, this puts no constraints on 2-down-type-quark-2-lepton
WC’s except from those in Eq. (3.11). On the other hand, operators containing
left-handed quarks or leptons necessarily enter with their weak-isospin counter-
parts which leads to correlations with many other processes, including RD(∗) .
Ref. [154] contains the global analysis also within the SMEFT framework.

3.5 Flavour physics of leptoquarks in a nutshell
Leptoquarks (LQs) are hypothetical bosons featuring an interaction vertex with
a lepton and a quark. This defining feature implies that they must be color
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Figure 3.2: Leptoquark mediation of lepton flavour violating processes.
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Figure 3.3: Leptoquark contribution to the semileptonic meson decays may be flavour
non-universal.

triplets or antitriplets. On the other hand, their spin may be either 0 or 1 and
the SU(2)L × U(1)Y representation is not uniquely fixed – see Tables 1.2, A.1
and A.3 or Ref. [52] for all possibilities. In this section, we assume that the LQ
has no baryon number violating interaction (i.e., no diquark-type coupling).

Leptoquarks and flavour symmetries

For simplicity, we will take into account only the SU(3)C × U(1)Q gauge sym-
metry and ignore the Lorentz structures in the following few paragraphs. As an
example consider a leptoquark (denoted by ∆) with the electric charge Q = 2/3,
interacting with the charged leptons via

d̂α Y∆ ê∆α + h.c. =
⎧⎩d s b

⎫⎭
α

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
hde hdµ hdτ
hse hsµ hsτ
hbe hbµ hbτ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
e
µ
τ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭∆α + h.c. (3.36)

Such an interaction generally breaks the flavour symmetries but, in special cases,
some of the important flavour subgroups may remain intact:

• If only a single column of the interaction matrix Y∆ is nonzero, then the
LQ can be ascribed the corresponding flavour number Ll introduced in
Section 3.1 and there is no lepton flavour violation. Conversely, whenever
there are at least two non-zero columns in Y∆, the U(1)2

LF symmetry is
violated and the leptoquark mediates LFV processes. An example can be
found in Fig. 3.2.

• On the other hand, respecting the (S3)LFU symmetry requires that all three
columns of the interaction matrix are equal. Thus, the leptoquark brings
new sources of lepton flavour universality violation whenever (at least) two
columns of Y∆ differ. See Fig. 3.3 for the hypothetical LQ contributions to
the processes discussed in Section 3.4.
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To sum up, leptoquarks always induce LFV or LFUV as their interactions
never respect the whole flavour group. (In the trivial case Y∆ = 03×3, the consi-
dered boson does not deserve to be called a leptoquark.) Analogous conclusions
for the quark flavour and rows of Y∆ can be drawn easily.

As the direct searches for various kinds of LQs have put the mass limits up
to more than a TeV [82, 83, 84, 85, 86, 87, 88, 89], effects of LQs in precision
phenomenology should be well described by the effective theories. Keeping the
Lorentz structure suppressed, the Wilson coefficients of the (q′q)(l′l) effective
interactions are given by C q′ql′l ∝ h∗

ql′hq′l/m
2
∆. One can arrange the coefficients

to a matrix C with multiindices (lq′) and (l′q) and reverse the logic: the relevant
effective interaction can stem from a single LQ if and only if C has rank one [155].

For some of the many general-purpose studies of leptoquarks in flavour phy-
sics, we refer to [52, 156].

Leptoquarks and B-meson anomalies

Clearly, the LQs look like natural candidates to account for the B anomalies
described in Section 3.4. Leptoquark effects depend on their SU(2)L × U(1)Y
quantum numbers which constrain the charges and chiralities of quarks and lep-
tons they can couple to, which, in turn, determine the Lorentz structure of the
resulting semileptonic effective operators [cf. (3.9)]. For a catalogue of LQs which
could contribute to the b → sl+l− amplitudes (a subset of the list in Table A.3)
and their brief characterzation, see Ref. [123].

Numerous studies have been already published, analyzing the capabilities of
various types of LQs to accommodate various subsets of the B anomalies, and
confronting these scenarios with other experimental constraints. We refer to some
of them in two categories:

• Simplified models – SM extensions consisting solely in adding a single LQ
to the theory. Scalar LQs have been discussed, e.g., in [143, 121, 157, 158,
150, 159, 160]. In the case of vector leptoquarks, the gauge nature of these
fields was not imposed: [161, 162, 121, 163, 149, 164, 165, 166]. Within such
a simplified approach, the vector U1 ∼ (3, 1,+2

3) has been identified as a
particularly feasible candidate (e.g., [167, 154]) as it can induce at the tree
level the Wilson coefficients C9 = −C10, which points towards the effective
scenario no. 1 mentioned on page 51; furthermore, it generates operators
contributing to b → cτ ν̄.

• Full dedicated models. Strictly speaking, there is nothing incomplete on the
SM enriched by a scalar LQ. Nevertheless, we include to this category only
the renormalizable models containing multiple BSM fields which were build
in order to resolve the tension in the B decays, for example: [168, 169].
A large subset of such models assumes an extended gauge structure; e.g.
[170, 56, 57, 58, 60, 62, 171, 172, 173, 174].
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4. Quark-lepton unification
confronted with LFUV in
B decays
In Chapter 2, two scenarios of quark-lepton unification have been thoroughly
introduced: the MQLSM and the FPW model. Chapter 3 presented the B-
meson anomalies. The current chapter is devoted to exploring if the neutral
current B anomalies could be compatible with the models from Chapter 2, at
least to some extent. Most of the material presented has been published in
Refs. [25, 29, 30]. On top of that, also the deviations in RD(∗) shall be shortly
discussed at the end of the chapter.

The considered models are by no means simplified models discussed at the end
of Section 3.5, neither have they been build in order to address the B anoma-
lies. The motivation for the two models is different – they are the most modest
BSM realizations of the quark-lepton SU(4)C symmetry with Dirac or Majorana
neutrinos. It is therefore not expectable that the models would alleviate all the
tension between the SM and experiment in B decays. On the other hand, as they
contain several leptoquarks, the relevant phenomenology can be quite rich.

Refs. [25, 29] have multiple co-authors. The author of this thesis contributed
to finding the complete scalar potential, identification of the promising parts of
the parameter space of the FPW model, recognizing some of the key limiting
observables and debugging, while the loop calculations of specific processes, their
computer implementation and scanning have been performed by the others.

4.1 BSM fields: the menu
As detailed in Chapter 2, the MQLS and FPW models contain 3 distinct phys-
ical leptoquark states: the vector leptoquark (VLQ) U1 ∼ (3, 1,+2/3) and two
scalar doublets R̃2 ∼ (3, 2,+1/6) and R2 ∼ (3, 2,+7/6). Furthermore, there is a
Z ′ boson around, another potential candidate to account for the B anomalies.
However, interactions of all these fields are subject to constraints stemming from
the extended gauge symmetry. Notice that the S̄1 field, which also has the quan-
tum numbers of a LQ, dominates the Goldstone modes and disappears from the
physical spectrum; moreover, it can not couple to the charged leptons.

As already mentioned in Section 3.5, the U1 leptoquark has been identified
as a great candidate to accommodate the anomalies in several publications [154].
However, the specific interaction patterns suggested do not obey the requirement
that the VLQ interactions are unitary in the flavour space (cf. Section 2.8.1).
In the quark-lepton symmetry models, U1 is necessarily coupled to both left-
handed and right-handed quark-lepton vector-type currents [see Eq. (2.57)]. The
induced effective vertices thus contain also the structures (qLγµl′L)(lRγµq′

R) which
after the Fierz transformation lead to the scalar-type operators (qLq′

R)(lRl′L), trig-
gering the strongly constrained decays P 0 → l+1 l

−
2 . The mass limit on the gauge

leptoquark from these processes ranges from about 86 TeV [175] to thousands
of TeV [61], depending on the mixing matrices UL and UR defined in Eq. (2.55).
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With such a heavy mass, the impact of the gauge LQ on the semileptonic decays
is inevitably too small compared to the observed deviations. There are several
ways to circumvent the requirement of unitarity of UL,R (extra fermions, more
complicated gauge structure, compositeness), all of which go beyond the field
of our current interest – ”economical” models of quark-lepton unification. The
gauge leptoquark U1 will be elaborated on more in Chapter 5.

Also the Z ′ boson has been suggested as a possible source of the LFUV in
the B decays (see, e.g., [149] and references therein). However, prospects of Z ′

in the MQLSM and FPW model are desperate in this respect. Firstly, mZ′ is
correlated with the mass of U1 [see Eq. (2.35)] and hence too high. Secondly, the
Z ′ interactions are flavour diagonal and, hence, do not contribute to the quark
flavour changing processes. Thirdly, the Z ′ couplings respect the LFU.

Hence, in the rest of this chapter we focus on the scalar leptoquarks in the
model. We assume that the SU(4)C breaking scale is at the several-thousand-TeV
ballpark, making the gauge LQ, the Z ′ boson and most of the scalar spectrum
safely decoupled from the low-energy phenomenology, but that some of the scalar
LQs are accidentally much lighter.

As explained on page 34, the only constraints on scalar masses are given by
Eq. (2.44), which implies that either of the two scalar LQs may be much lighter
than most of the BSM scalar spectrum but not both of them. This, among other
things, precludes an interesting scenario in which the 2/3-charged components
of R2 and R̃2 undergo large mixing, which has been studied in Ref. [176] in the
context of anomalous muon magnetic moment.

As both R2 and R̃2 are SU(2)L doublets, they couple via Yukawa interactions
to one SM fermion doublet and an SU(2)L singlet. Since the chiralities of SM
fermions with F = +1 are strictly related to their SU(2)L quantum numbers
(whence the label of the group), the resulting effective operators necessarily have
the ’2L2R’ chiral structure.1 On the other hand, the SM contributions to quark-
flavour changing neutral currents (see Fig. 3.1) are purely left-handed in the quark
sector and accidentally almost left-handed in the lepton sector. In other words,
the WCs from C9(sLγµbL)(lγµl)+C10(sLγµbL)(lγµγ5l) induced by the electroweak
physics satisfy [149]

CSM
9 ≈ −CSM

10 . (4.1)

Due to this chirality mismatch between SM and LQ-doublet mediated amplitudes,
there is just a very restricted room for negative interference in the b → sµµ
channel, desired for accommodation of the additional discrepancies discussed in
Section 3.4.

Thus, one may only hope for attributing the anomalous values of RK and RK∗

to the scalar LQ contributing mainly to the B → K(∗)e+e− channel.2 In such a
case, the R̃2 leptoquark leads to opposite signs of RK−1 and RK∗ −1, at odds
with observation. On the other hand, effects of R2 may quite well account for
both RK and RK∗ [149].

1This can not be inferred just from the scalar nature of the LQs. Consider the interaction
(qLiαℓL

j)S3ijα of the S3 ∼ (3̄, 3, 1/3) leptoquark as a counterexample.
2Note that the angular observables in B → K∗ee have been measured [177] with larger

experimental uncertainties than those for B → K∗µµ [134]. See also Ref. [178].
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Furthermore, R2 has been suggested as a possible origin of the RD(∗) anoma-
lies [179, 180, 181]; we will comment on the charged-current anomalies at the end
of this chapter.

Hence, in what follows we assume for simplicity that the R2 leptoquark is the
only BSM field with mass in the TeV ballpark while the rest of the BSM spectrum
is much heavier. We remind the reader that such a scenario is compatible the
scalar potential of the models considered.

4.2 Semileptonic decays with the R2 leptoquark
Recall from Eq. (1.15) that the Yukawa interactions of the chosen LQ generally
take the form

LR2−Yuk = R2
i
(︃
ûRŶ2ℓ̂L

j
εji + q̂LiŶ4êR

)︃
+ h.c. (4.2)

where the circumflex and upper indices of Y2,4 indicate that these Yukawa ma-
trices introduced in Eq. (2.45) are now in the mass basis of the denoted fermion
types. At the tree level, this interaction gives rise to the following 4-fermion
SMEFT operators (with generation indices suppressed) [182]:

Y2 × Y ∗
2 : (ℓLi uR) (uR ℓLi) = −1

2(uRγµuR)(ℓLγµℓL) = −1
2Oℓu (4.3a)

Y2 × Y ∗
4 : (ℓLi uR) εij (qLjeR) = −1

2(ℓLi eR) εij (qLjuR) − 1
8(ℓLiσµνeR) εij (qLjσµνuR)

= −1
2O(1)

ℓequ − 1
8O(3)

ℓequ (4.3b)

Y4 × Y ∗
4 : (qLi eR) (eR qLi) = −1

2(qLiγµqLi)(eRγµeR) = −1
2Oqe (4.3c)

For the the b → sll processes, only the Oqe operator is relevant since the others
involve also up-type quarks. Below the electroweak scale, the T 3

L = −1/2 part of
the sum over i in Eq. (4.3c) is matched to the WET operator (q′

Lγ
µqL)(l′RγµlR)

which in the standard basis (3.9) corresponds to the direction in the space of
Wilson coefficients defined by

CNP
9 qq′ll′ = +CNP

10 qq′ll′ . (4.4)

This relation together with Eq. (4.1) implies the non-interference of the SM and
NP amplitudes for the P → P ′ll′ decays. Hence,

RK ≈ |CSM
9 bsll|2 + |CNP

9 bsee|2

|CSM
9 bsll|2 + |CNP

9 bsµµ|2
. (4.5)

In the simplest scenarios, one can turn on only the be and se coupling that
are needed for inducing CNP

9,10 bsee. Thus, the ideal pattern of the Yukawa matrices
for addressing RK(∗) by the interaction in Fig. 3.3 is

Ŷ2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 0
0 0 0
0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , Ŷ4 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 0
yse 0 0
ybe 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ . (4.6)
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Figure 4.1: Left – Tree-level contribution of the R2 leptoquark to RK(∗) . Right – Loop
contribution of R2 to the b → sµµ processes, not applicable as a dominant contribution
to the B anomalies in the considered models of quark-lepton unification.

With the couplings of perturbative size, the mass of the R2 leptoquark should
not exceed several units of TeV. The corresponding WET scenario, though it
cannot address the additional b → sµµ anomalies, ranked the 2nd position in
the likelihood comparison of simplified effective models in Ref. [149] and the 4th
position in the more recent study [154] (see also page 51).

In the models under consideration, Eq. (2.62) implies that the Yukawa matri-
ces Ŷ2 and Ŷ4 are subject to the following constraints:

Ŷ2 =

√︂
3/2

vew cos β
(︂
U ′
RM̂

D
ν V

†
PMNS − M̂uVCKMUL

)︂
, (4.7a)

Ŷ4 =

√︂
3/2

vew cos β
(︂
M̂dUR − ULM̂e

)︂
. (4.7b)

Hence, the idealized case of Eq. (4.6) cannot be automatically adopted. Due to
the different roles of M̂D

ν in the MQLSM and the FPW model, also the possible
patterns of Ŷ2 differ between these two models.

4.3 MQLSM model
In the MQLSM, M̂D

ν is a diagonal light-neutrino mass matrix, and as such is
completely negligible in Eq. (4.7a). Hence, the largest Yukawa couplings of R2
unavoidably reside in the 3rd row of Ŷ2, elements of which are enhanced by the top
quark mass [65]. Expanding the SU(2)L and flavour structures from Eq. (4.2),
these interactions take the form

LYuk-large
MQLSM =

√︄
3
2

mt

vew cos β tR
(︂
(VteeL + VtµµL + VtττL)R5/3

2 − νLtR
2/3
2

)︂
+ h.c. (4.8)

where Vtl (with l = e, µ, τ) are elements of the third row of the unitary matrix
VCKMUL and νLt = ∑︁

l VtlνLl. Due to Vtb ≈ 1, the relevant mixing factors are
approximately given by Vtl ≈ uLbl where uLql denote the entries of the UL matrix
alone.

Ref. [164] suggested that the R2 leptoquark could accommodate the neutral-
current B anomalies via the loop diagram in Fig. 4.1 which induces the contri-
butions to the ’preferred’ Wilson coefficients CNP

9 bsµµ = −CNP
10 bsµµ. Naively, this is

achievable in the MQLSM simply by setting uLbµ = 1; in such a case, the Yukawa
coupling for tRµLR5/3

2 is much larger than all the other entries in Ŷ2 and Ŷ4. How-
ever, as explained in Refs. [164, 159], avoiding other experimental constraints
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requires an even stronger interaction of R5/3
2 with cRµL; this is not consistent

with the MQLSM in which Eq. (4.7a) implies that couplings of R5/3
2 to qRlL are

proportional to the corresponding quark masses. Hence, in what follows, we fo-
cus solely on the scenarios advocated in Section 4.2 where the LQ is supposed to
address RK(∗) at the tree level via its couplings to the electrons.

The two Yukawa coupling yde, yse from Eq. (4.6) are suppressed by mb/mt

and ms/mt in comparison to the largest coupling in Eq. (4.8). Setting them
strong enough to significantly influence RK(∗) by choosing cos β small thus implies
nonperturbative values of some of the vertices in Eq. (4.8).

Moreover, there are very strong bound on the lepton flavour violating muon
decays such as BR(µ → eγ) < 4.2 × 10−13 [96]. These constraints in context of
the MQLSM have been studied in Ref. [68]. One-loop R2-mediated amplitudes
to this decay (see Fig. 3.2) are mq/mµ enhanced when both Ŷ2 and Ŷ4 are invol-
ved [164, 25]. It can be shown that the bounds on LFV are incompatible with RK

significantly below 1. We will comment on this shortly during the next section
which is devoted to the FPW model.

To conclude, the MQLSM is inconsistent with the RK(∗) anomaly.

4.4 FPW model
Naively, the nature of neutrino masses has little to do with the b → sll transitions.
Nevertheless, extending the MQLSM by inverse seesaw is relevant for our study
as it brings new free parameters to the game. In particular, in the FPW model
we have essentially absolute freedom in choosing the Dirac mass matrix M̂D

ν . In
turn, as follows from Eq. (4.7a), the Ŷ2 matrix can be chosen arbitrarily without
fixing the other relevant free parameters, UL and UR. We will adopt the idealized
case of Eq. (4.6),

Y2 = 03×3 (4.9)

which holds in any flavour basis. This assumption does not mean that we restrict
our analysis to the case where all the elements of Ŷ2 are strictly zero. In fact, some
of the elements may even lead to important signals of new physics. However, we
do not have the ambition to list all possible additional NP signals. Instead, we
want to focus on those predictions that cannot be avoided when accommodating
the RK(∗) anomaly. Such an attitude focuses on the testability of the whole model
without restricting to ad-hoc chosen parts of the parameter space.

We should concede that by adopting Eq. (4.9) we leave out the potentially
viable scenarios where Y2 contributes to a negative interference among amplitudes
of processes which are experimentally well constrained. In particular, consider
the decays µ → eγ and µ → eee. In the FPW model, these are mediated by
several kinds of loops:

1. Due to existence of heavy neutrino states in the FPW model, there are
interesting W -loop contributions. Unlike for the type-I seesaw, the cur-
rent scenario allows for their masses well below vχ ∼ 103 TeV and these
contributions are not necessarily desperately small.

2. There are quark-R2 loops, governed by (schematically) Y2 × Y ∗
2 , Y4 × Y ∗

4
and especially by Y4 ×Y ∗

2 which contributes most significantly to the dipole
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operators (µL,RσµνeR,L)Fµν at the mµ scale due to a relative mq/mµ enhance-
ment [164] – see also the lepton chiralities in the O(3)

ℓequ SMEFT operator
in (4.3b).

In Ref. [25], a simplistic study of the amplitude interference in the µ → eγ channel
in the case of non-zero Y2 has been performed. In what follows, we shall assume
that the elements of Ŷ2 are so small that their effects are irrelevant, and that
the extra neutrinos are heavy enough so that their contributions to low energy
processes are negligible.

Expanding the SU(2)L structure of the second Yukawa interaction in Eq. (4.2)
yields

LY4−int
R2 = d̂L Ŷ4 êR R

+2/3
2 + ûL VCKMŶ4 êR R

+5/3
2 + h.c. (4.10)

Denoting the elements of the Ŷ de
4 matrix by

Ŷ4 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
yde ydµ ydτ
yse ysµ ysτ
ybe ybµ ybτ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , (4.11)

the matrix equation in (4.7b) can be rewritten into individual components: the
coupling between R

2/3
2 , a d-type quark q and a charged lepton l in the FPW (as

well as in MQLS) model is given by [65]

yql =

√︂
3/2

vew cos β
(︂
uRqlmq − uLqlml

)︂
. (4.12)

where uRql and uLql denote the elements of the yet unfixed mixing matrices UR and
UL, respectively.

4.4.1 Constraining the parameter space
In what follows, the ideal Yukawa pattern identified in Eq. (4.6) will be confronted
with the constraint (4.12) stemming from the extended gauge symmetry.

We approximate Eq. (4.12) by neglecting me and md everywhere, and fur-
ther by neglecting the second generation masses when compared to the third
generation ones.3 The resulting structure reads

Ŷ4 =

√︂
3/2

vew cos β

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 −uL12mµ −uL13mτ

uR21ms uR22ms− uL22mµ −uL23mτ

uR31mb uL32mb uR33mb − uL33mτ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ . (4.13)

Generally, such a rich interaction structure leads to LFV processes (cf. Sec-
tion 3.5). In our situation, the most important experimental constraints include
K0
L → e±µ∓ which is triggered by ydµy

∗
se, the decays µ → eγ and µ → ee+e−

(driven by various combinations of yqey∗
q′µ), B+ → K+µ+e− and B+ → K+µ−e+.

For O(1) elements of uL,Rql and the LQ light enough to significantly affect RK(∗) ,
these limits would be violated by several orders of magnitude [25]. For example,

3The latter approximation will be justified a few paragraphs below.
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BR(B+ → K+µ−e+)exp < 7×10−9 [183] while the deviation in RK is much larger:
BR(B+ → K+e+e−)exp − BR(B+ → K+µ+µ−)exp = 1.1 × 10−7 [54]. The LFV
processes involving also τ leptons are less stringently constrained.

Suppressing all the Lµ-violating processes while keeping yse and ybe non-
negligible requires that4

ydµ = ysµ = ybµ = 0 (4.14)

approximately holds. As explained in Section 3.5, the leptoquark would not
mediate any muon-family-number violating process in such a situation. The most
general unitary parametrization of the matrices UL,R conforming this requirement
takes the form

UR =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
eiδ8 cos γ sinα ei(−δ1+δ7+δ8) cosα ei(δ3+δ8−δ2) sinα sin γ

−eiδ1 cosα cos γ eiδ7 sinα −ei(δ1−δ2+δ3) cosα sin γ
−eiδ2 sin γ 0 eiδ3 cos γ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , (4.15a)

UL =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
eiδ9 cosϕ 0 −eiδ4 sinϕ

−ei(δ5+δ9−δ4) cosα′ sinϕ eiδ7 sinα′ −eiδ5 cosϕ cosα′

ei(δ6+δ9−δ4) sinϕ sinα′ ei(δ6+δ7−δ5) cosα′ eiδ6 cosϕ sinα′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , (4.15b)

where α and α′ are related via ms sinα = mb sinα′. It leads to the following
structure of the relevant Yukawa matrix:

Ŷ4 =

√︂
3/2

vew cos β

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 eiδ4mτ sinϕ

−eiδ1ms cosα cos γ 0 eiδ5mτ cosϕ cosα′

−eiδ2mb sin γ 0 eiδ3mb cos γ − eiδ6mτ cosϕ sinα′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ .
(4.16)

A comment about the accuracy of this form might be worth here: the mixing
matrices in (4.15) solve Eq. (4.14) exactly for the approximate form (4.13) of the
Yukawa matrix. For the exact form of Ŷ4, it is easy to find the corresponding
UL,R matrices numerically and check that they are close to those in (4.15). We
have used the exact solutions to Eq. (4.14) in the numerical study [29] but in this
text we stick to the approximation made above for the sake of clarity.

Notice that having successfully gotten rid of the muon number violating cou-
plings, we cannot prevent completely the Lτ − Le violation at the same time.

As far as LFV is concerned, there is no clear choice for the remaining free
parameters. On the other hand, there is a unique way to maximize |yseybe| which
triggers the effective interaction contributing to RK(∗) :

α ≃ 0, γ ≃ π

4 . (4.17)

Such a setting leads to the following pattern of the Yukawa matrix:

Ŷ4 ≃

√︂
3/2

vew cos β

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 mτe

iδ4 sinϕ
mse

iδ1/
√

2 0 mτe
iδ5 cosϕ

mbe
iδ2/

√
2 0 −mbe

iδ3/
√

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ . (4.18)

4For a detailed study of correlation between the B anomalies and µ-e violation using a
different kind of leptoquark, see Ref. [166].
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In what follows, we will mostly investigate this special case (4.18) in which sup-
press the LFV processes can be suppressed globally, simply by pushing down the
overall effective operator prefactor 1/(m2

R2 cos2 β) (with mR2 stemming from the
propagator) as much as possible.

Adopting Eq. (4.18), achieving the current experimental value of RK cast in
Eq. (3.33) requires

mR2 cos β ≃ 20 GeV. (4.19)

Hence, cos β ≪ 1 must be set in order to evade the bounds from direct lep-
toquark searches. On the other hand, perturbativity of the Yukawa couplings,
corresponding roughly to cos β ≳ mb/vew, forbids extremely small values of cos β.

Let us shortly compare this situation with the MQLSM where the Ŷ2 matrix
is essentially fixed by the choice of UL [see. Eq. (4.7a)]. Adopting the form in
Eq. (4.15b) is necessary to ensure that R2 does not couple to µR via Ŷ4; however,
it also implies that the couplings of R2 to cRµL or tRµL via Ŷ2 are non-negligible.
Furthermore, perturbativity of entries in [see Eq. (4.8)] requites cos β to be O(1).
Thus, the MQLSM can not significantly address the RK(∗) anomaly.

4.4.2 Predictions
In this part we present the predictions within the FPW model based on the
Yukawa matrices given in Eqs. (4.9) and (4.18). The relevant free parameters
are the LQ mass mR2 , the Higgs doublet mixing parameter cos β and the angle
ϕ and phases δi entering the Ŷ4 matrix. The detailed numerical computation of
predictions that presented below was performed in Ref. [29] using and extending
the computer package FlavorKit [184, 185] based on SPheno [186, 187, 188] and
SARAH [189, 190]. Rather than going into details of the calculation of individual
processes, we provide some simplified arguments here.

To get some insight also into the dominant interactions of the Q = +5/3
component of the R2 doublet [see Eq. (4.10)], consider the case δi = 0 with ms

neglected and approximate of the CKM matrix by the Cabibbo rotation:

VCKMŶ4 ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
cθc sθc 0

−sθc cθc 0
0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 mτsϕ
0 0 mτcϕ
mb√

2 0 −mb√
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 mτ sin(ϕ+ θc)
0 0 mτ cos(ϕ+ θc)

mb/
√

2 0 −mb/
√

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ .
(4.20)

In what follows we shall carefully distinguish between (i) unavoidable effects of
this scenario, (ii) predictions which vary significantly within the considered part
of the parameter space and (iii) additional possible signals which may arise due
to small deviations from the considered Yukawa patterns. Interestingly enough,
the first category turns out to be quite rich.

Low energy phenomenology

As we have already mentioned, the tree-level interactions of R+2/3
2 lead to the

(q′
Lγ

µqL)(l′RγµlR) four-fermion operators with down-type quarks and charged lep-
tons (CNP

9 = +CNP
10 ), with the flavour structure given by products of two pairs
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Figure 4.2: Leptoquark-mediated B-meson decays appearing in our scenario.
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Figure 4.3: Dominant penguin and tree diagrams which contribute to various LFV
τ decays. Notice that the latter depends strongly on the remaining parameters in
Eq. (4.18) while the magnitude of the former is essentially constant.

of the large Yukawa elements ybe, ybτ , ysτ and/or ydτ , and the smaller but impor-
tant coupling yse [see Eq. (4.18)]. The R+5/3

2 partner induces analogous operators
with the up-type quarks involved. Notice that all the large elements of Ŷ4 and
VCKMŶ4 correspond to the LQ couplings to a third generation fermion. Fur-
thermore, important loop-induced interactions contribute to other Lorentz and
flavour structures.

First, let us focus on the B-physics where we expect important contributions
from R2 to the semileptonic decays. Recall that the considered part of the pa-
rameter space has been chosen such that |ybeyse| is as large as possible in order
to address the neutral-current B anomalies RK(∗) and that Eq. (4.19) determines
the condition for accommodating the central value of RK , regardless of the choice
of the remaining free parameters ϕ and δi. Due to the relative smallness of yse,
parametrically larger amplitudes are predicted for the semileptonic decays con-
taining at least one τ lepton in the final state. Nevertheless, due to the notorious
difficulties with the tauon identification, these predictions of the considered model
are well under the experimental sensitivity [191, 192, 54].

On the other hand, we have found that more important bounds stem from the
decays of the τ lepton itself. Recall that the non-vanishing first and third columns
of Ŷ4 and VCKMŶ4 in Eqs. (4.16) and (4.20) facilitate LFV decays τ → eX. As
depicted in Figs. 3.2 and 4.3, the leptoquarks contribute to τ → eγ and τ → eee
at the loop level and to the decays containing mesons already at the classical level.
However, due to the magnitudes of the relevant couplings, the penguins are often
even more important than trees in the current situation and their interference
must be properly taken into account.

Among the τ− → e−X processes including X = γ, e+e−, µ+µ−, π0, K0
S , ϕ,

K+K−, π+K−, K+π−, the most stringent bound turns out to arise from BR(τ →
eπ+π−) including – but not consisting solely of – the ρ-resonance intermediate
state. The process τ → eπ+π− is mediated by the Z- and γ-penguins (which are
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Figure 4.4: From Ref. [29]. Correlation between RK(∗) and branching fraction of τ →
eπ+π− in the region corresponding to the Yukawa pattern approximately given in
Eq. (4.18). The red line denotes the current experimental limit on the LFV decay from
Belle [10] while the vertical belt is the 1-σ region of the 2019 LHCb measurement
[128].

essentially independent on ϕ and δi’s) and, furthermore, by an R5/3
2 -mediated tree

graph. The latter is proportional to the small parameter yue whose dependence
on the ϕ and δi goes beyond the approximations made in Eq. (4.20).

Figure 4.4 shows the correlation between RK and BR(τ → eππ) resulting from
the scan over mR2 and unfixed angles and phases in (4.18). The only remaining
parameter cos β enters the low-energy calculations in a product with mR2 and was
fixed to the value 0.02. The picture shows a clear tension between the currently
measured value of RK and the limit on BR(τ → eππ). Note that there is no
simple way of overcoming this problem by departing from the Yukawa pattern in
Eq. (4.18). Thus, if the current value of RK is confirmed by more statistics in
the future, the FPW model will be ruled out.

In what follows, we consider the limit case which is just on the edge of inval-
idation by the τ → eπ+π− search, which allows for

mR2 cos β = 30 GeV. (4.21)

In such a case, a smaller but still potentially significant departure from LFU
is possible (with RK = 0.95). For such a scenario, predictions for many other
LFV τ decay channels have been given in Ref. [29]. Most of them, including
BR(τ → eγ) = (3∼4)×10−9, are going to be probed by the Belle II experiment
in the near future [193].

There are also other possible additional signals which might arise from a small
departure from Eqs. (4.9) and (4.18), especially the processes changing both Lµ

and Le. On the other hand, the LFV decays τ → µX should not be observed in
the near future. In Ref. [29], we have also mentioned possible low-energy signals
of the color-octet G2 which could be another relatively light BSM scalar around.

Collider searches

Let us briefly comment on direct LQ searches. The Yukawa interactions in
Eq. (4.18), regardless on the values of the free parameters in there, imply the
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following relations between the dominant LQ decay channels:

BR(R+2/3
2 →e+jb) ≃ BR(R+2/3

2 →τ+jb) ≃ m2
b

2m2
τ

BR(R+2/3
2 →τ+j) , (4.22a)

BR(R+5/3
2 →e+t) ≃ BR(R+5/3

2 →τ+t) ≃ m2
b

2m2
τ

BR(R+5/3
2 →τ+j) , (4.22b)

where j denotes a light-quark jet and jb is a b-jet. The other branching fractions
are negligible. Since m2

b/2m2
τ ≃ 1.2 at the 1.5 TeV scale, each of the ratios

displayed in (4.22) amounts roughly to 1/3.
Leptoquarks could be produced in pp collisions in pairs via gluon-gluon fusion.

Notice that while the low energy precision observables constrain the product
mR2 cos β, the LQ on-shell pair production is driven by the strong force and
depends on mR2 solely. Experimental limits on LQs with several decay modes
are generally weaker than those on LQs decaying dominantly into a single final
state. Thus, the mass limit found in Ref. [29] reached only up to 900 GeV. Very
recently, new searches for scalar LQs have been performed by Atlas: in Ref. [85],
new limit mLQ < 1250 GeV is given for BR(R+2/3

2 → eb) ≈ 0.31. The limits from
the searches considering the tτ [86] or te [84] final state are slightly lower. The
current limits on the LQ single production are generally weaker.

4.5 Conclusions and discussion
In this chapter, we have studied the capability of two simple quark-lepton sym-
metry models introduced in Chapter 2 of describing the hints of NP in the neutral
current B-meson decays. We have found that the MQLSM is unable to alleviate
the tension among theory and experiment in these processes.

For the FPW model, we have found a setup with a light R2 leptoquark doublet
which can partially accommodate the deviations in RK and RK∗ but not the
additional b → sµµ anomalies. In such a case, the LFV decays τ → eπ+π− and
τ → eγ are bound to be observed at Belle II. As the LQ mass remains unfixed
in that setup, disproving the scenario by negative collider LQ searches would be
quite hard.

In looking for viable scenarios accommodating RK(∗) , we have explored essen-
tially all the parameter space of the FPW model. The only cases which might
have escaped our attention are the contrived schemes with a negative interference
among various BSM amplitudes.

While we have focused on the neutral-current B anomalies, the R2 leptoquark
has also been suggested as a candidate to account for the charged-current ones
[179, 180, 181]. A natural question is whether R2 could significantly influence
both RK(∗) and RD(∗) simultaneously. In this respect, the minimal set of couplings
required has been advocated recently in Ref. [160]; it consists in adding two more
entries to the Yukawa matrices compared to Eq. (4.6):

Ŷ2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 0
0 0 ỹcτ
0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , Ŷ4 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 0
yse 0 0
ybe 0 ybτ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ . (4.23)
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Notice that this form is quite close to the pattern in Eqs. (4.9) and (4.18) studied
in context of the FPW model. Especially, note that a large the non-zero value
of ybτ in (4.18) has been enforced by the extended gauge symmetry and by the
requirement of complying the limits on muon number violation. Furthermore,
since Ŷ2 can be chosen arbitrarily in the FPW model, ỹcτ can be simply set
to a desired value. On the other hand, as Ŷ4 in Eq. (4.18) contains also sizable
elements ysτ and/or ydτ , the predictions and constraints in the FPW model might
differ considerably from those in the simplified scenario of Ref. [160]. Addressing
both RK(∗) and RD(∗) within the FPW model of quark-lepton unification might
be a topic of a future work.
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5. Gauge leptoquark in SU(4)C

This chapter presents a yet unpublished study [31] of the low-energy phenomeno-
logy of the gauge leptoquark (GLQ) in the models the SU(4)C gauge symmetry,
such as the MQLSM or the FPW model which we have elaborated on in Chap-
ters 2 and 4.

One can verify in Table A.1 that a general interaction of the vector leptoquark
(VLQ) field U1 ∼ (3, 1,+2/3) with the SM fermions consistent with the gauge
symmetries of the SM can be written as

LU1 = g4√
2

(︃
d̂γµ [PLUL + PRUR] ê+ ûLγ

µVCKMULν̊L

)︃
U1µ + h.c. (5.1)

where UL and UR are complex matrices in the flavour space.
As we have already noted in Section 3.5, vector leptoquarks have raised a lot

of attention recently, being identified as excellent candidates to account for the
neutral-current and potentially also charged-current B-meson anomalies. Nev-
ertheless, the suggested flavour and chirality patterns are not consistent with
the gauge nature of the LQ. As explained in Chapter 2, quark-lepton unification
(QLU) à la Pati-Salam determines the gauge coupling at the scale of SU(4)C
breaking and restricts the interaction patterns to unitary matrices, i.e.

g4(mU1) = g3(mU1) and UL, UR ∈ U(3). (5.2)

In contrast, the current benchmark VLQ setup for acommoddation of the B ano-
malies is roughly [154]

g4UL
mU1

= 1
2 TeV

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 0
0 −0.05ξ 0.6
0 0.05/ξ 0.7

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , g4UR
mU1

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 0
0 0 0
0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , (5.3)

where ξ is a positive O(1) number. Clearly, such a form is in clash with the
conditions (5.2). For this reason, the B anomalies could not be attributed to the
GLQ in the two models of QLU in Chapter 4.

Despite its inability to account for the discrepancies in the B-meson decays,
we still find the gauge leptoquark in the QLU framework worth a detailed and
dedicated study as it is a common feature of many specific models. In Section 5.1,
assuming that the B anomalies will eventually disappear or are caused by other
BSM fields, we shall analyse the possible near-future first signals1 of the U1 field
with interactions satisfying (5.2). Many phenomenological studies of the GLQ
in quark-lepton unification are available. The novelty of the one presented here
consists in simultaneously focusing on two points:

1. Essentially all possible forms of the unitary matrices UL and UR are con-
sidered, keeping in mind that there is no prior measure on the parameter
space. In particular, the setups which might be labeled as fine-tuned sce-
narios or small parts of the parameter space are not dismissed. To our best
knowledge, such a study has only been performed in Ref. [175].

1The meaning of first signal will be specified later.
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2. An attempt is made to consider all observables which might become the
first signal of the gauge LQ. To this end, we employ the packages flavio
[118, 117] and smelli [194, 195] which make it possible to easily consider
much more processes and measurements than Ref. [175].

Furthermore, in Section 5.2, modest generalizations of the scenario studied in
the previous part shall be investigated, consisting in adding 1 or 2 generations
of extra leptons to the model. Like in Section 5.1, we will make the key steps
towards finding the catalogue of all possible first signals in each of the models
considered. Finally, we will discuss the number of extra leptons necessary to
significantly alleviate the discrepancies between theory and experiment in the
B-meson decays.

In both sections, the other potentially important BSM fields are neglected,
such as the scalars studied in Chapter 4 for the case of FPW and MQLS models.
Notice, however, that scenarios where the VLQ effects are stronger than those of
scalars are quite eligible; for example, consider the scalar sector of the MQLSM
(cf. Chapter 2) with β ≈ π/4 and rather large λ’s. After all, in the electroweak
physics, the low-energy effects of the gauge bosons W± and Z0 are much stronger
than the effects of the fluctuations of the Higgs field around its ground-state
configuration. Neglecting the rest of the BSM spectrum implies that the only
relevant free parameters are the LQ mass mU1 and the interaction matrices UL
and UR.

5.1 Gauge LQ in quark-lepton unification
This section is devoted to the low-energy signals of the gauge LQ in the models
with SM quarks and leptons in common representations of the SU(4)C gauge
group, such as the MQLS [27] and the FPW models [28] introduced in Chapter 2
or the Pati-Salam model [26, 70]. Interactions of such a leptoquark satisfy the
conditions in (5.2).

As follows from the discussion in Section 3.5, the unitarity of the UL,R ma-
trices implies that the gauge LQ interactions always violate the lepton flavour
symmetries. In particular, the condition of column normalization implies that
none of the columns can be empty, the U(1)2

LF symmetry is broken and the LQ
inevitably mediates LFV processes. Complementarily, the column orthogonality
condition implies violation of (S3)LFU.

Concerning the Lorentz structure of the GLQ interactions, integrating out
the interaction in Eq. (5.1) at the tree level gives rise to the following SMEFT
operators (supressing the flavour indices):

Oed = (eRγµeR)(dRγµdR) , (5.4a)
Oℓedq = (ℓLeR)(dRqL) , (5.4b)

O(1)
ℓq + O(3)

ℓq = (ℓLγµℓL)(qLγµqL) + (ℓLγµσIℓL)(qLγµσIqL) , (5.4c)

where σI represents the Pauli matrices in the SU(2)L space. With explicit flavour
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structure, the corresponding Wilson coefficients are given by [182]

Ced l̄lq̄q = −1 g2
4

2m2
U1

uRql̄
∗
uRq̄l , (5.5a)

Cℓedq l̄lq̄q = +2 g2
4

2m2
U1

uRql̄
∗
uLq̄l , (5.5b)

C
(1)
ℓq l̄lq̄q

= C
(3)
ℓq l̄lq̄q

= −1
2

g2
4

2m2
U1

uLql̄
∗
uLq̄l , (5.5c)

where uL,Rql denotes elements of UL,R, respectively, and q, q̄, l, l̄ are four indepen-
dent flavour indices. Recall that we use the basis in which the T 3

L = −1
2 compo-

nents of fermion doublets are the mass eigenstates.
The tree level matching of the SMEFT coefficients (5.5) to those of the Weak

effective theory such as those in (3.9) is straightforward. In particular, notice
that that the O(1)

ℓq operator, triggered by products of two elements of UL, gives
rise to the WC’s CNP

9 = −CNP
10 which are well suited for addressing the b → sµµ

anomalies [cf. page 51]. However, way more stringent bounds are set on the
scalar-type operators Oℓedq, which under the EW scale perform as the neutral-
current interactions OS − OP =

(︂
q′
R qL

)︂ (︂
l′LlR

)︂
as well as to the charged current

operators like (qR uL) (νL lR), where q denotes a d-type quark. As discussed in
detail in Section 3.3, these interactions trigger the purely leptonic meson decays
without any chirality suppression. Such processes are measured with an extreme
absolute precision [196, 197, 198, 199, 200, 201] or severely limited [98, 202, 203,
204, 205, 106, 206] and hence form important constraints on the couplings and
mass of the gauge LQ.

Many studies of VLQ effects have been issued during the last few decades,
adopting special patterns of UL and UR. Some of them do not take into account
the SU(4)C constraints; for example, Ref. [207] assumed only chiral coupling to
the first generation; also [113] considered mostly the chiral leptoquark, i.e., the
setup in which one of the interaction matrices vanishes. Ref. [108] simply assumed
order-one elements in the relevant entries of UL,R.

Among the literature which took the constraints (5.2) seriously, Refs. [208,
209] from the early 1980’s considered UL = UR = 1 and found a mass limit mU1 >
310 TeV stemming from the experimental bound on the LFV decay K0

L → eµ.
Since then, this limit has been risen up by more precise experimental limits on
BR(K0

L → eµ) [210, 98] to the incredibly high value of mU1 > 2000 TeV [61] for
the case with ”trivial” quark-lepton mixing.

However, the GLQ can have different phenomenology with different forms
of UL,R. Valencia and Willenbrock [211] in 1994 considered special cases where
UL = UR are the permutation matrices, i.e. where each lepton is coupled to a
single quark, and studied various two-body meson and tau decays. They found
that apart from K0

L → eµ, the gauge LQ mass was for some mixing patterns
limited from below to 250 TeV by the test of the SM prediction of the LFU
violation

Re/µ(π+ → l+ν) = Γ(π+ → e+ν) /Γ(π+ → µ+ν), (5.6)

by an analogous observable Re/µ(K+ → l+ν) or by BR(B+ → e+ν) which lead
to a much weaker bound mU1 > 13 TeV.
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Figure 5.1: Tree-level amplitude for a LFV decay of K0
L .

Kuznetsov and Mikheev in 1994 [212] considered various (semi)leptonic K and
π decays and the µ → e conversion on nuclei, and cast inequalities employing the
GLQ mass and elements of quark-lepton mixing matrices, virtually taking the
full freedom in the quark-lepton mixing into account, but still tacitly assuming
UL = UR. Apart from BR(K0

L → eµ) and Re/µ(K+ → l+ν), important bounds
have been found to stem also from BR’s of K0

L → l+l−, K → πµe and from
coherent µ → e conversion on Titanium nuclei. Needless to say, both analyses
[211] and [212] are outdated nowadays due to the new experimental data.

Ref. [61] considered K0
L → eµ and B0 → eτ for general UL,R but did not

confront the obtained limits with other observations. In Ref. [213], which is the
2012 update of [212], also the recent B factory results on B and τ decays have
been included and the general case UL ̸= UR has been considered. A specific form
of UL and UR has been found for which the stated GLQ mass limit was as low as
38 TeV. However, as pointed out in Ref. [175], this finding is invalid because the
authors forgot to include the predictions for the µ−e+ final state when studying
BR(B0 → µ±e∓) and BR(Bs → µ±e∓).

The correct treatment has been applied in the recent study by Smirnov [175]
who considered all kinematically allowed decays P 0 → l+1 l

−
2 for P 0 = K0

L , B
0, Bs

and took fully into account the freedom in the fermion mixing by performing a
scan. The global lower limit stemming from these processes was found to be

mU1 > 86 TeV, (5.7)

the corresponding forms of UL and UR were given as well as detailed predictions
for all the considered BR’s in that scenario. We have completely recalculated
Ref. [175] and verified that the computations in there are correct. Some aspects
of the calculations can be found in Section 5.1.1.

Despite that, there is still some work left to be done. Firstly, other important
processes like P+ → l+ν, semileptonic meson decays or µ → e conversion on
nuclei should be taken into account. Secondly, even if considering more bounds
did not change the answer (5.7), there are other interesting aspects to be studied.
There is no theoretical reason to assume that the quark-lepton mixing matrices
really follow the pattern which minimizes the VLQ mass limit, neither is such a
setup more interesting from the point of view of the high-energy frontier: 86 TeV
is still too heavy to be observed on any of the currently discussed 21th century
colliders.

Hence, rather than giving detailed predictions for the particular point in the
parameter space corresponding to the global LQ mass limit (like in [175]), we
are interested in listing all possible first signals of the GLQ. To this end, we
construct a catalogue of all observables which currently determine the VLQ mass
limit for some form of the mixing matrices UL,R. These observables are excellent
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candidates for future NP signals since even a small improvement in precision will
investigate a new part of the parameter space.

In Section 5.1.1, the simplified approach used Ref. [175] is presented, since it
has been used as a starting point for our analysis. In Section 5.1.2 some concepts
are explained which can be well understood on that level of rigor. Section 5.1.3
presents the advancement in the analysis gained by our approach which is based
on the public general-purpose tools flavio and smelli. Postopning the technical
details about the scanning of the parameter space to Appendix C, we present the
results in Section 5.1.4.

5.1.1 Smirnov’s approach
In this part, let us overview the strategy adopted from Ref. [175] which has been
applied as the first stage of our analysis. Especially, we want to point at the
following aspects of the investigation:

1. The effects of the U1 leptoquark are taken into account at the tree level.

2. Four-loop QCD running of the induced effective operators is taken into account
[214]. For simplicity, the effective operators are defined at the scale 100 TeV
regardless of the considered LQ mass.

3. SM contributions to the considered processes are completely neglected in the
calculation. To highlight this approximation, the predictions for branching ra-
tios are labelled as BRV . The measured BR’s of the observed decays (K0

L → ee,
K0
L → µµ, B0

s → µµ) are taken as limits on BRV . Such a rough approxima-
tion is meaningful due to large relative theoretical uncertainties for the SM
amplitudes.

4. Ref. [175] has taken into account the branching ratios of P → l±l′∓ decays
where P = K0

L , B
0, B0

s and ll′ corresponds to various kinematically allowed
combinations of leptons and antileptons. In this work, also the leptonic decays
of K0

S are considered and updated limits on B0
d,s → eµ [206] are taken into

account.

5. No processes with neutrinos are analyzed; therefore, the study holds for both
situations with light or heavy right-handed neutrinos.

6. The masses of electrons and muons in the final state are neglected, as well as
the indirect CP violation in the neutral kaon mass eigenstates.

7. The VLQ mass limits for given UL,R are determined as the maximum of individ-
ual limits obtained from the considered observables. The decay responsible for
the strongest limit is considered to be the candidate for the first future signal
of the LQ for the investigated form of the quark-lepton mixing matrices.

The branching ratio for a process with light leptons only is calculated by the
following formula:

BRV (P → l+l′−) = mPπα
2
sf

2
Pm

2
P (RV

P )2

2m4
U1Γtot

P

β2
P,ll′ . (5.8)
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The formfactors are fK = 155.72 MeV, fB0 = 190.9 MeV, fB0
s

= 227.2 MeV and
the gluonic corrections to the pseudoscalar quark currents amount to RV

K = 3.47
and RV

B = 2.1 [214]. The lepton-flavour-dependent factor is a sum over two
different helicity combinations

β2
P,ll′ = |aLR(P, l, l′)|2 + |aRL(P, l, l′)|2

2 (5.9)

where for weak eigenstates

aLR(P, l, l′) = uLq̄l u
R
ql′

∗
, aRL(P, l, l′) = uRq̄l u

L
ql′

∗
, (5.10)

with q̄ and q standing for (the index of) the valence antiquark and quark of P ,
respectively. For CP eigenstates,

a(K0
L,S, l, l

′) = a(K0, l, l′) ± a(K̄0, l, l′)√
2

, (5.11)

where + and − relate to K0
L and K0

S , respectively, and a stands for either aLR
or aRL.

For processes with a single τ -lepton in the final state, the expression for BRV

in Eq. (5.8) must be multiplied by a phase space factor (1−m2
τ/m

2
P )2. Along with

that, the substitution uL,Rrτ →
[︂
uL,Rrτ − uR,Lrτ mτ/(2mPR

V
P )
]︂

for r = q, q̄ is applied in
Eq. (5.10). For two τ -leptons in the final state, see Ref. [40]. The formulae above
can be obtained by matching the SMEFT Wilson coefficients (5.5) to those of the
WET, plugging them into the general formulae from Section 3.3 and neglecting
me and mµ.

To review the CP properties of the predictions, notice that aRL(P, l, l′) =
aLR(P̄, l′, l)∗ always holds for the weak eigenstates P . This implies β2

P,ll′ =
β2
P̄,l′l

and therefore the predictions are CP symmetric, i.e. BRV (P → l+l′−) =
BRV (P̄ → l′+l−), even if the entries in UL,R are complex. This corresponds to
the fact that we consider a single Feynman graph for each amplitude and there is
thus no room for interference. Accordingly, BRV (P → l±l′∓) = BRV (P̄ → l±l′∓)
and K0

L = K0
L implies BRV (K0

L → l+l′−) = BRV (K0
L → l−l′+).

5.1.2 Dominance of K0
L limits, subdeterminants and maxi-

mal non-unitarity of the leptoquark interactions
As pointed out in [175], the experimental limits on BR’s of K0

L → e±µ∓ and
K0
L → e+e− and the measured value of BR(K0

L → µ+µ−) put far more stringent
constraints on mU1 than those from the decays of the B0

d,s mesons. Naively, one
could say that the K0

L decays determine the limits on mU1 in the ”vast majority
of the parameter space”. For an illustration see Fig. 5.2.

Nevertheless, we are interested especially in the ”special” cases where the
strongest constraints on mU1 are set by other processes than K0

L → ll′. In order
to efficiently scan over this interesting part of the parameter space, it is both
convenient and sufficient to investigate the hypersurface in the parameter space
where the VLQ does not give any contribution to K0

L → ll′, i.e.,

β2
K0

L ,11 = β2
K0

L ,12 = β2
K0

L ,21 = β2
K0

L ,22 = 0. (5.12)
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Figure 5.2: Illustration of lower limits on the gauge LQ mass stemming from several
observables, calculated along a one-dimensional subset of the mixing parameter space,
defined by Table C.1 in Appendix C. In this slice, the most important bounds are given
by BR(K0

L → e±µ∓) and BR(B0 → e±µ∓). The mass limits are obtained in using the
approach described in Section 5.1.1.

In Ref. [175], these equations have been solved for a particular parametrization
of UL,R. Here, we shall investigate them without an explicit parametrization in
order to get some more insight which will be useful also in the next section.

Since aLR(K0
L , l, l

′) = aRL(K0
L , l

′, l)∗, Eqs. (5.12) are equivalent to

aLR(K0
L , l, l

′) = 0 for (ll′) = (ee), (eµ), (µe), (µµ). (5.13)

Interestingly enough, these four equations can be written as(︄
uR22 uR12
uR21 uR11

)︄∗ (︄
uL11 uL12
uL21 uL22

)︄
=
(︄

0 0
0 0

)︄
. (5.14)

For UR fixed, (5.14) represents two pairs of linear homogeneous equations for
elements of UL. The trivial solution uL11 = uL12 = uL21 = uL22 = 0 is in conflict with
the unitarity of the 3 × 3 matrix UL. Existence of nontrivial solutions requires
that the determinant of the coefficient matrix must be zero. Apparently, this
determinant is identical to the 3, 3-minor (subdeterminant) of UR. Analogously,
existence of nontrivial solutions for elements of UR requires that the second matrix
in (5.14) is singular. Hence, preventing the U1 leptoquark from mediating K0

L →
l+l′− decays necessitates that the determinants of the upper left 2×2 submatrices
of both UR and UL vanish.

Furthermore, absolute values of determinants of two complementary subma-
trices of any unitary matrix are the same. Therefore, the subdeterminants of our
interest are equal in magnitude to the 3, 3−elements of UR and UL, respectively.
Hence, we conclude that a necessary condition for avoiding the K0

L → l+l′− decays
via VLQ in the quark-lepton symmetry models reads

uRbτ = uLbτ = 0, (5.15)

with an implication mentioned also in [175]: BRV (B0
d,s → ττ) = 0.
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Notice that the ”solutions” to the B anomalies which leave out the unitarity
constrains on UL,R, such as the one in Eq. (5.3), usually assume that the bτ
elements are the largest ones in order to address also RD(∗) . As we can see, such a
setting in a certain sense violates the unitarity of the mixing matrix in maximal
possible amount.

For solutions of Eq. (5.14) in a specific unitary parametrization of UL,R and
technical details about scanning over the resulting parameter subspace, see Ap-
pendix C.

5.1.3 A more robust approach
In paralell with the approach introduced in Section 5.1.1, we have also performed
a similar analysis using the family of general-purpose open-source tools wilson
[104, 215], flavio [118, 117] and smelli [194, 195]. We present the features of
this approach as a list which can be compared with that on page 71.

1. Like in the previous approach, we match the VLQ interactions onto SMEFT
at the tree level. We have implemented a python function taking UL,R and mU1

as input arguments and returning a dictionary of SMEFT Wilson coefficients
given by Eq. (5.5) in the format compatible with the wcxf standard [40, 120],
which is used by the packages mentioned above.

2. The RGE running of the SMEFT effective operators from the scale µ = mU1

to the EW scale, tree-level matching onto WET and further evolution to the
meson mass energy scales is handled automatically by the wilson package.
The full numerical solution to the one-loop SMEFT RGEs (the ’integrate’
option) is performed since we have exemplified that the ’leadinglog’ approx-
imation leads to O(1) relative differences in certain predictions. Analytical so-
lution to the one-loop QCD and QED running is applied under the electroweak
scale in wilson. For more details see [104] and references therein.

3. The SM contributions to the amplitudes of the calculated processes are au-
tomatically taken into account by flavio. As a result of this (and of the
RGE running), the predictions do not scale uniformly as m−4

U1 , which was a
simplifying feature of the previous approach [see Eq. (5.8)].

4. The global likelihood tool smelli is employed. This package uses flavio for
predictions and confronts them with the measurements, including the corre-
lations. By default, version 2.2.0 of smelli takes into account hundreds of
observables, most of which are, however, irrelevant for our scenarios. On the
other hand, the very interesting processes BR(B0

d,s → e+e−) as well as µ → e
conversion on nuclei were not included. To this end, we have modified the
package to regard also these observables. As already mentioned on page 45,
we have found and fixed an important bug in the calculation of K0

L,S → e±µ∓

decays in flavio v2.2.0 [119]. The complete list of considered observables
can be found in Table C.3 on page 99.

5. As tacitly assumed during the entire Chapter 5, no light right-handed neutrinos
are taken into account. Since the νR fields are mandatory in quark-lepton
unification, the analysis, strictly speaking, holds only for the case with heavy νR
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Figure 5.3: Various important processes mediated by the gauge leptoquark.

(e.g., for the FPW model). In the case of light Dirac neutrinos (e.g., MQLSM),
new channels like B− → e−

L νR open, and the constraints on the gauge LQ are
generally slightly stronger. Extending the packages flavio and wilson in
order to take into account also the effective operators containing νR would be
far beyond the scope of this work.

6. Light lepton masses are taken into account in flavio for all observables, but
indirect CPV in neutral kaons remains neglected in the K0

L,S → ll′ decays.

7. For UL and UR fixed, we determine the first signal by finding a LQ mass for
which some of the following conditions are fulfilled:

(a) In the list of individual observables (neglecting all correlations) with a
pull ∆χ2/2 > 2.5 between the current prediction and experiment there
is a single observable which is absent in the analogous list of observables
with a pull ∆χ2/2 > 2.0 comparing experiment with SM. This observable
is then taken as a potential future first signal.

(b) The global log-likelihood of the situation worsens by 3.5 ∼ 5 units com-
pared to the log-likelihood of the SM. In such a case, the possible future
first signal is identified with the observable whose contribution to the
likelihood changed most significantly compared to the SM.

(c) The global log-likelihood of the situation improves at least by 4 units
compared to the SM. In such a case, the observable (or set of observables)
contributing most to the improvement is considered as a possible current
signal of the LQ.

In all cases, the contributions of individual observable measurements to the glo-
bal likelihood are obtained via the obstable method provided by the smelli
package [194].
Admittedly, these criteria seem to be chosen slightly arbitrarily. Nevertheless,
we have exemplified that they lead to the same results as the more intuitive
criterion in paragraph 7 of Section 5.1.1 whenever the other differences among
the two methods (paragraphs 2 – 6) are irrelevant.

5.1.4 Results
We have performed a scan over the space of pairs of unitary matrices UL and
UR. For each investigated point in this space, the limiting LQ mass has been
found, along with the predictions for various observables based on that mass. For
technical details about the scan see Appendix C.
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Observable Experiment SM prediction
BR(K0

L → e±µ∓) < 4.7 × 10−12 [98] 0
BR(K0

L → e+e−) 8.7+5.7
−4.1 × 10−12 [198] (9.0 ± 0.5) × 10−12 [216, 217]

BR(K0
L → µ+µ−) (6.84 ± 0.11) × 10−9 [54] (7.4 ± 1.3) × 10−9

BR(K0
S → µ+µ−) < 2.1 × 10−10 [205] (5.2 ± 1.5) × 10−12 [218]

BR(B0 → e±µ∓) < 1.0 × 10−9 [204] 0
BR(Bs → e±µ∓) < 5.4 × 10−9 [204] 0
BR(B0 → µ+µ−) 1.1+1.4

−1.3 × 10−10 [54] (1.1 ± 0.1) × 10−10

BR(Bs → µ+µ−) (3.0 ± 0.4) × 10−9 [54] (3.7 ± 0.2) × 10−9

CR(µ → e,Au) < 7 × 10−13 [219] 0
Re/µ(π+ → l+ν) 1.2327(23) × 10−4 [54] 1.2352(1) × 10−4 [220]
Re/µ(K+ → l+ν) 2.488(9) × 10−5 [54] 2.476(2)×10−5

Table 5.1: Complete list of observables which currently constrain the gauge LQ mass
for some form of unitary quark-lepton mixing matrices. The experimental limits are
given at 90% C.L. The SM predictions have been calculated in flavio unless cited.

As stated earlier in Eq. (5.7), the simplified approach of Ref. [175] described
in Section 5.1.1 leads to the global lower leptoquark mass limit of 86 TeV. When
taking into account more observables in the more robust approach presented in
Section 5.1.3, the experimental limit on the µ → e coherent conversion on nuclei,
CR(µ → e,Au), turns out to be violated by 3 orders of magnitude by the predic-
tions based on the benchmark point of Ref. [175] which is supposed to saturate
the global limit on mU1 . Nevertheless, we have found another form of UL and UR
which allows for a similarly light gauge LQ even when all the constraints included
in smelli are considered. Thus, the global lower mass limit is indeed given by
Eq. (5.7).

Table 5.1 presents the catalogue of observables which currently give the largest
constraint on the GLQ mass for some configuration of UL and UR. (These observ-
ables correspond to the future first signals as defined above.) For each of these
processes, an example of the corresponding UL,R is given in Appendix C.2. We
would like to stress that this list is complete. To fully appreciate the result, notice
that even a very small improvement in precision of any experimental limit listed
in Table 5.1 will probe a so-far allowed part of the parameter space of the model,
and could potentially detect a NP signal. (The only exception is the observed
decay K0

L → µµ for which the SM uncertainties dominate.) Conversely, under a
very idealized assumption that the experimental sensitivity will grow uniformly
for all the observables considered, neither of the other processes is predicted to be
the first seen signal of the GLQ. More realistically, the precision of the measure-
ment of (or search for) any other observable needs to be improved by a larger step
in order to put a new constraint on the model parameters or to have a theoretical
chance of observing a signal of the gauge LQ. How large these steps must be is
shown for several important examples in Table 5.2.

Concerning searches for LFV, Table 5.1 contains limits on K0
L , B

0
d,s → eµ and

on the µ → e coherent conversion on nuclei; further searches for these processes
are therefore of great interest.

The remaining observables in Table 5.1 all employ the leptonic decays of pseu-
doscalar mesons which are chirality suppressed in the SM and can be understood
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Observable Exp. limit Model prediction SM
BR(K0

S → e+e−) < 9 × 10−9 [203] ≤ 2 × 10−9 2 × 10−14 [203]
BR(K0

S → e±µ∓) N/A [54] ≤ 3 × 10−10 0
BR(B0 → e+e−) < 2.5 × 10−9 [106] ≤ 1.1 × 10−10 3 × 10−15 [221]
BR(Bs → e+e−) < 9.4 × 10−9 [106] ≤ 3 × 10−9 9 × 10−14 [221]
BR(B0 → e±τ∓) < 2.8 × 10−5 [202] ≤ 6 × 10−9 0
BR(Bs → e±τ∓) N/A [54] ≤ 2.5 × 10−9 0
BR(B0 → µ±τ∓) < 1.2 × 10−5 [206] ≤ 5 × 10−9 0
BR(Bs → µ±τ∓) < 3.4 × 10−5 [206] ≤ 2.3 × 10−9 0
BR(B0 → τ+τ−) < 1.6 × 10−3 [222] 2 × 10−8 2 × 10−8 [221]
BR(Bs → τ+τ−) < 5.2 × 10−3 [222] 8 × 10−7 8 × 10−7 [221]

Table 5.2: Examples of processes which are not listed in Table 5.1. The third column
shows predictions stemming from the situations (defined by UL, UR and mU1) which are
fully compatible with all the current experiments, obtained by the numerical scan. We
also list the SM predictions for comparison.

as tests of LFUV in the SM.
Firstly, significant deviations could arise in the ratios of charged current decays

Re/µ(P+ → lν) with P = π,K when the LQ couples mostly to the electrons. Al-
though the decay widths involved cannot be measured with an absolute precision
similar to the rare decays above, the deviations from the SM can be significant
due to the interference among the NP and SM amplitudes (and subdominantly
also due to including the other neutrino flavours).

Secondly, limits on mU1 stem also from the observed BRs of K0
L → ee, µµ and

B0
d,s → µµ. Concerning K0

L → µµ, the experimental precision is better than the
theoretical error estimates in the SM stemming from long distance contributions,
as briefly discussed in Section 3.3.

Finally, a very interesting limit on the GLQ mass for some patterns of quark-
lepton mixing is set by the recent LHCb search for K0

S → µµ; the anticipated
discovery of this decay after the upcoming LHC runs thus provides an exciting
opportunity for the Pati-Salam-type leptoquark.

In Table 5.2, the P 0 → ll′ decays that currently do not pose the largest bound
on mU1 are listed, together with the predictions from the parameters fully com-
patible with all the current experimental searches. All parameter values studied
during the scanning are included.

As τ leptons are generally experimentally hard to handle, all process involving
τ ’s belong to this category. In fact, 3 ∼ 4 orders of magnitude improvements
in limits on B0

d,s → lτ would be necessary in order compete with the other
constraints, which is far under the prospected sensitivity of Belle II [193] and
hardly achievable even at LHCb at the high-luminosity phase. Furthermore,
as discussed in Section 5.1.2, due to the unitarity of UL,R, the LQ amplitudes
mediating of B0

d,s → ττ are severely limited by the probes of K0
L → ll′ and our

predictions for the former essentially coincide with the SM. Hence, the prospected
sensitivity of Belle II about 10−6 for BR(B0 → ττ) [223] is not sufficient.

On the other hand, the experimental sensitivities to K0
S , B

0 and Bs decays
to e+e− require less than 1 order of magnitude improvement in order to probe
the currently unexplored parts of the parameter space. Note that BRV (B0

d,s →
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e+e−) = BRV (B0
d,s → µ+µ−) is predicted for any parameter point for which

BRV (K0
L → ll′) = 0 [175]; currently, the muonic channel is measured more ac-

curately. However, when further searches for NP in the P 0 → µ+µ− decays will
become limited by the SM uncertainties, new searches for B0

d,s, K
0
S → ee will

become essential.
No experimental limits on the decay K0

S → eµ are available [54]. Based on the
current limits on K0

S → ee [203] and K0
S → µµ [205], the required experimental

sensitivity around 10−10 for K0
S → eµ should be reachable by KLOE II or LHCb.

5.2 SU(4)C models with extra leptons
The second part of Chapter 5 is devoted to more complicated models featuring
the vector LQ. Although they could be considered as aesthetically less appealing,
such models have been studied thoroughly in the recent years, mainly due to the
attempts to accommodate the B-meson anomalies, as mentioned at the beginning
of this chapter. Generally, several tricks to circumvent the theoretical requirement
of unitarity of UL,R have been suggested in the literature. They can be divided
into three categories, according to the paradigm abandoned:

1. Adding extra generations of fermions while maintaining the gauge symmetry
group G421 or G422 [170, 172].

2. Assuming more complicated gauge structure. Especially, the models based
on the G4N21 = SU(4)CL

× SU(N)CR
× SU(2)L × U(1)R gauge symmetry

become popular; here N = 3 or 4 and the QCD generators are given by
TAC = TACL

+ TACR
for A = 1, . . . , 8.

In the basic setting of chiral quark-lepton symmetry [62], where left-handed
fermions are charged by SU(4)CL

while the right-handed ones transform
non-trivially under SU(N)CR

, the Uµ
1 field interacting with the left-handed

quark-lepton currents is a chiral leptoquark – it has no or suppressed cou-
plings to the right-handed currents, avoiding the scalar-type effective opera-
tors Oℓedq which are responsible for all the most stringent limits in Table 5.1.
In more general cases with N = 3, some quark and lepton fields are unified
within the SU(4) factor while others live in separate irreps of SU(3) [59].
Usually, more than 3 generations of fermions are considered in total [224,
56, 57, 58, 60].

3. Assuming that the vector LQ is not a gauge field but a composite resonance
formed by some more fundamental strongly interacting fields [162, 225, 226].

This work is focusing solely on the first option. Since the SM leptons do not en-
tirely stem from the same SU(4)C representations as the quarks, we shall not use
the term quark-lepton unification for these theories but rather call them extended
SU(4)C models.
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5.2.1 Specification of the models
Like in the previously considered SU(4)C×SU(2)L×U(1)R scenarios, the models
contain 3 generations of each of the following chiral fermion SU(4)C quadruplets:

FL(4,2,0) =
(︄
qL

4ℓL

)︄
, fuR (4,1,+1/2) =

(︄
uR
νR

)︄
, fdR (4,1,−1/2) =

(︄
dR
4eR

)︄
, (5.16)

Notice that we have slightly updated the notation by adding an ”isotopic index”
to the leptons living inside the quadruplets. On top of that, kL generations of
SU(2)L-doublet vector-like fermions

1ℓL(1,2,+1/2) + 1ℓR(1,2,+1/2) (5.17)

and kR generations of weak-singlet vector-like fermions

1eL(1,1,−1) + 1eR(1,1,−1) , (5.18)

are assumed. These new fields are intact to the gauge LQ interactions. After
the G421 → GSM symmetry breaking, they can mix with the leptons from the
quadruplets. We assume that the 3 lightest eigenstates correspond to e, µ, τ ,
while the kL + kR remaining ones are are too heavy to be observed. As the weak
hypercharges of the 3 known leptons are quite precisely measured, they must be
composed solely from the fields 1eR,

4eR,
1ℓL and 4ℓL. For all practical purposes, it

is sufficient to assume the following mixing pattern in the charged lepton sector:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
êR
ER

1ℓR
−

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩ V e
R

03×kL

0kR×kL

0kL×3 0kL×kR
1kL×kL

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

4eR
1eR

1ℓR
−

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , (5.19)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
êL
EL
1eL

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩ V e
L

03×kR

0kL×kR

0kR×3 0kR×kL
1kR×kR

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

4ℓL
−

1ℓL
−

1eL

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , (5.20)

where, generally, ℓ− denotes the electrically charged component an ℓ doublet2,
ê = êL + êR is the triplet of light leptons while ER and 1ℓR

− with their chiral
counterparts EL and 1eL form the heavy mass eigenstates. The form of the mixing
in the heavy lepton sector is irrelevant for our considerations. Finally, V e

L and
V e
R are arbitrary unitary matrices of dimension 3 + kL and 3 + kR, respectively.

Including the ”non-standard” fields 1ℓR and 1eL in the model ensures the ABJ
anomaly cancellation and enables one to write down arbitrarily large Dirac mass
terms for the vector-like pairs.

The Q = 0 components of 4ℓL and 1ℓL naturally follow their charged SU(2)L
partners during the mixing at the first stage of SSB: those belonging to EL become
equally heavy while the companions of êL become the light neutrinos, eventually
gaining mass after the EWSB.

Finally, let us have a look at the gauge LQ interactions. Like in Section 5.1,
we assume that νR are heavy due to the inverse seesaw which implies that the

2Notice that 1eL ̸= 1ℓL
− and 1eR ̸= 1ℓR

−.
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U1 leptoquark interactions from fuR i /Df
u
R are unimportant for the low-energy phe-

nomenology. Interactions with the other fermions can be rewritten as follows:

L = g4√
2
(︂
qL γ

µ 4ℓL + dR γ
µ 4eR

)︂
U1µ + h.c.

= g4√
2

⎡⎣⎧⎩q̂L 0
⎫⎭ γµ⎧⎪⎪⎪⎩V d

L 0
0 1

⎫⎪⎪⎪⎭⎧⎪⎪⎪⎩ V e
L

⎫⎪⎪⎪⎭†⎧⎪⎪⎪⎪⎩ ℓ̂LLL

⎫⎪⎪⎪⎪⎭
+
⎧⎩d̂R 0

⎫⎭ γµ⎧⎪⎪⎪⎩V d
R 0
0 1

⎫⎪⎪⎪⎭⎧⎪⎪⎪⎩ V e
R

⎫⎪⎪⎪⎭†⎧⎪⎪⎪⎩ êRER

⎫⎪⎪⎪⎭
⎤⎦U1µ + h.c.

= g4√
2

[︄⎧⎩q̂L 0
⎫⎭ γµ⎧⎪⎪⎪⎩ UL

⎫⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎩ ℓ̂LLL

⎫⎪⎪⎪⎪⎭+
⎧⎩d̂R 0

⎫⎭ γµ⎧⎪⎪⎪⎩ UR

⎫⎪⎪⎪⎭⎧⎪⎪⎪⎩ êRER

⎫⎪⎪⎪⎭
]︄
U1µ + h.c.

(5.21)

The LL field on the last line is the heavy SU(2)L doublet containing EL as a
component. Apparently, the novelty of such extended SU(4)C models consists in
the fact that the unitary matrices UL,R, defined by the last line of Eq. (5.21), are
of dimension 3 + kL,R. Using the block-form notation,

UL =
⎧⎪⎪⎪⎩(UL)ff (UL)fF

(UL)Ff (UL)FF

⎫⎪⎪⎪⎭ , UR =
⎧⎪⎪⎪⎩(UR)ff (UR)fF

(UR)Ff (UR)FF

⎫⎪⎪⎪⎭ , (5.22)

only the 3 × 3 submatrices (UL,R)ff are relevant for the interactions among the
SM fermions. The larger the numbers kL,R of extra lepton generations, the more
parametric freedom in (UL,R)ff is available. With kL = kR = 3, the arbitrari-
ness in UL, UR and mU1 already allows to choose any form of g4

mU1
(UL,R)ff , which

is all that is relevant for the low-energy phenomenology at the leading order
[cf. Eq. (5.5)].

Similar models have already been studied in the literature, usually considering
the cases equivalent to (kL, kR) = (3, 0) [73], (0, 3) [172] or (3, 3) [170]. In this
work, we focus on the more economical models with kL,R < 3, which are less
challenging if one aims to capture all the possible NP signals in the model, but
more restrictive if parameters leading to a chosen signal (such as the b → sµµ
anomalies) are searched for.

Note that enlarging the dimension of UL,R is indeed the only considered con-
sequence of extending the theory of quark-lepton unification in Section 5.1: we
assume that the extra leptons are too heavy to be observed and, like in the first
part of this chapter, we ignore the details of the scalar sector responsible for
the mixing. Note, however, that a construction of the scalar sector leading to a
chosen form of UL,R is not a trivial task (see, e.g. [57]).

5.2.2 A note on the Z′ boson
Although one can simply assume that the low-energy effects of the gauge LQ are
stronger than those of the BSM Yukawas, another heavy field should be cared of
more deeply: the Z ′ boson. Recall from Section 2.5 that Z ′ can never be much
heavier than U1 as it gains mass only after the U(1)[B−L] breaking which is a
subgroup of SU(4)C , and that the Z ′ coupling [see Eq. (2.30)] is proportional to
[B−L] − 2Y sin2 θ′.
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In the models of QLU, the Z ′ has flavour-diagonal interactions with both
leptons and quarks. With the SU(4)C breaking scale about 100 TeV or higher,
the corresponding flavour-conserving 4-fermion operators are safely negligible.
On the other hand, in what follows we are going to study also the situations with
a much lighter LQ, i.e., with a lower SU(4)C breaking scale.

Lepton-flavour conserving effective semileptonic interactions mediated by Z ′

could interfere with the SM amplitudes in the qq Z∗,Z′∗
−−−−→ l+l− production in the

s ≫ mZ kinematic region. NP contributions to these processes are constrained
by the high-pT dilepton spectra measurements by Atlas and CMS, leading to
limits around mZ′ < 5 TeV (depending on the Z ′ coupling assumed) [227, 228].
As noted in Ref. [59], these limits also indirectly constrain the mass of the gauge
LQ.

Ref. [59] further claims that ”the couplings of the Z ′ to SM fermions are neces-
sarily flavour universal” and ”proportional to the identity matrix in flavour space”
even in the models with extra fermions because the relevant charged lepton mix-
ing ”necessarily involve states with the same B − L charge”. This is, however, a
misconception arising from not-distinguishing between the gauge symmetry gen-
erator [B−L] and the difference of the accidental global symmetries B−L, as we
have discussed in detail in Section 2.4. All the fermionic fields 4ℓL,

4eR,
1ℓL,R,

1eL,R
are fully justified to be called leptons and carry the lepton number L, which is con-
served by the gauge interactions. On the other hand, only the fields 4ℓL and 4eL,
which stem from SU(4)C quadruplets, are also charged with respect to [B−L],
the diagonal generator of the SU(4)C group. As a consequence of this, applying
flavour rotations on the left-handed ([B−L] − 2Y sin2 θ′) lepton currents yields

⎧⎩4ℓL 1ℓL
⎫⎭⎧⎪⎪⎪⎩−1 + sin2 θ′ 0

0 sin2 θ′

⎫⎪⎪⎪⎭ γµ⎧⎪⎪⎪⎩4ℓL
1ℓL

⎫⎪⎪⎪⎭
=
⎧⎩ℓ̂L LL

⎫⎭V e
L

⎧⎪⎪⎪⎩−1 + sin2 θ′ 0
0 sin2 θ′

⎫⎪⎪⎪⎭V e
L

† γµ
⎧⎪⎪⎪⎪⎩ ℓ̂LLL

⎫⎪⎪⎪⎪⎭
(5.23a)

and similarly for the right-handed currents:
⎧⎩4eR 1eR

⎫⎭⎧⎪⎪⎪⎩−1 + 2 sin2 θ′ 0
0 2 sin2 θ′

⎫⎪⎪⎪⎭ γµ⎧⎪⎪⎪⎩4eR
1eR

⎫⎪⎪⎪⎭
=
⎧⎩êR ER

⎫⎭V e
R

⎧⎪⎪⎪⎩−1 + 2 sin2 θ′ 0
0 2 sin2 θ′

⎫⎪⎪⎪⎭V e
R

† γµ
⎧⎪⎪⎪⎩ êR
ER

⎫⎪⎪⎪⎭ . (5.23b)

Finally, using the block notation of Eq. (5.22), one arrives to the following formula
for the Z ′ couplings with the SM fermions:

LZ′ll = gBL
cos θ′

[︃
ℓ̂Li
(︂
s′21 − (UL)†

ff (UL)ff
)︂
γµℓ̂L

i

+ êR
(︂
2s′21 sin2θ′ − (UR)†

ff (UR)ff
)︂
γµêR

+ 1 + s′2

3 q̂Liγ
µq̂L

i + 1 − 4s′2

3 ûRγ
µûR + 1 + 2s′2

3 d̂Rγ
µd̂R

]︃
Z ′
µ ,

(5.24)

where s′2 ≡ sin2 θ′ amounts to 0.08 at the 2 TeV scale or to s′2 ≃ 0.12 in
the 200 TeV ballpark (assuming SM-like gauge coupling running up to mZ′).
Thus, the Z ′ interactions with leptons in the extended SU(4)C models are not

81



necessarily flavour-universal and, in general, the diagonal couplings could actually
be strongly suppressed.

Thus, the limits on the BSM gauge field masses from the high-energy dilepton
spectra may be considerably weakened for certain patterns of (UL,R)ff . The
simplified reasoning of Ref. [59] mentioned above has been used as the argument
for abandoning the models with the G421 gauge group and focusing on G4321-based
models instead when attempting to accommodate RD(∗) which call for large NP
effects. In this respect, we note that achieving the form of (UL,R)ff from Eq. (5.3)
in the G421 framework would imply that the Z ′ couplings to the light leptons are
suppressed while its couplings to τ+τ− are experimentally less constrained [229].
Nevertheless, the scenarios with the SU(4)C-breaking scale as low as 2 TeV require
full model specification as the effects of the new scalar and fermionic degrees of
freedom would be important.

In any case, this study is focusing on the extended SU(4)C models with kL +
kR ≤ 2. Such frameworks can not accommodate the RD(∗) anomalies even if the
Z ′ is completely ignored due to the residual constraints on the GLQ interaction
matrices (UL,R)ff from the unitarity of UL,R. As will be discussed in the next
subsection, mU1 is globally bounded from below to about 18 TeV in the considered
class of models. For many particular forms of UL and UR, the lower LQ mass
limit is parametrically higher. For such cases, the vector-type effective operators
induced by Z ′ are generally less restrictive than those originating from interactions
of the U1 leptoquark which are both vector-type (Oed,Oℓq) and scalar-type (Oℓedq).

In this analysis, the contributions of Z ′ to the WC’s are not calculated. In-
cluding them could be a part of a future study.

5.2.3 First signals of gauge leptoquark in slightly exten-
ded SU(4)C models

We have performed a a similar analysis to that of Section 5.1 for the extended
SU(4)C models with (kL, kR) = (1, 0), (0, 1), (2, 0), (0, 2) and (1, 1).

With growing number of free parameters, more couplings in (UL,R)ff can be
”rotated away” to the other parts of UL,R. New interaction patterns become
allowed, with lower lower limits on mU1 . For some cases, the bounds follow from
measurements which have not been identified as constraining the parameter space
in the basic model of quark lepton unification. Hence, naturally, the catalogue of
observables which currently constrain mU1 for some form of UL,R grows with the
growing dimensions of these unitary matrices. This is captured in Table 5.3.

While a large effort has been spent to fully capture the parametric freedom
in the cases (kL, kR) = (1, 0) or (0, 1), the number of parameters for kL + kR = 2
is quite high and we admit that the corresponding lists in Table 5.3 may not be
complete.

5.2.4 Addressing neutral current B anomalies
In order to accommodate the neutral current anomalies in B-meson decays, the
elements uLsµ and uLbµ need to be non-negligible. To avoid the scalar-type operators
Oℓedq involving electrons or muons, which are responsible for the most severe
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Model kL = 0
dimUL = 3

kL = 1
dimUL = 4

kL = 2
dimUL = 5

kR = 0
dimUR = 3 see Table 5.1

BR(B0 → ee)
BR(Bs → ee)

(ε′/ε)K0

BR(B+ → K+µ+e−)
BR(B+ → K+µ−e+)

εK0

. . .

kR = 1
dimUR = 4

BR(B0 → ee)
BR(Bs → ee)

(ε′/ε)K0

εK0

. . .

kR = 2
dimUR = 5

BR(B+ → K+µ+e−)
BR(B+ → K+µ−e+)

εK0

RK(∗)

. . .

Table 5.3: Possible dominant signals of the gauge LQ for some form of UL,R in extended
SU(4)C models featuring kL extra lepton doublets and kR extra charged-lepton singlets.
For a given cell, all observables from the cells above and to the left are implicitly
assumed to be included. The ellipses indicate that the catalogues in the relevant cell
may not be complete.

constraints discussed in Section 5.1, nR = 2 generations of extra lepton SU(2)L-
singlets are required.

The model with dim(UL) = 3 and dim(UR) = 5 allows for the following setup:

UL =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 eiδL

eiδ1 cos γ −eiδ2 sin γ 0
eiδ2 sin γ eiδ1 cos γ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , (UR)ff =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 0
0 0 0
0 0 eiδR

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ . (5.25)

Note that a similar pattern for UL has been suggested in Ref. [172] and also
in Ref. [62] within the SU(4)CL

× SU(4)CR
× SU(2)L × U(1)R framework where

the couplings to the right-handed fermions are suppressed globally.
Adopting Eq. (5.25), the best fit is close to the simple case3

γ ≃ π/4 , δ1 ≃ δ2 ≃ δL ≃ δR ≃ 0 , mU1 = 22 TeV, (5.26)

which improves the global log-likelihood function smelli [194] by more than 14
units compared to the SM. Such a scenario accommodates well the RK(∗) anomaly
and also significantly mitigates the tension in the additional b → sµµ obser-
vables. Using the normalization factor N = 4GF√

2 VtbV
∗
ts

e2

16π2 [see (3.9)], Eqs. (5.25)
and (5.26) imply

CNP
9 bsµµ = −CNP

9 bsee = +CNP
9 bsµe = −CNP

9 bseµ = −0.24 , (5.27a)
CNP

10 bsll′ = −CNP
9 bsll′ (5.27b)

at the 5 GeV scale.
3The need of much lighter scalar leptoquark R2 encountered in Chapter 4 follows from the

non-interference between the NP and SM amplitudes and from the smallness of the yse coupling
in Eq. (4.13).
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Observable Model prediction Experiment
RK [(1.1; 6) GeV2] 0.79 0.85 ± 0.06 [128]
RK∗ [(1.1; 6) GeV2] 0.79 0.68 ± 0.12 [22]
BR(Bs → µ+µ−) 3.2 × 10−9 (3.0 ± 0.4) × 10−9 [54]
BR(B+ → K+µ+e−) 2.1 × 10−9 < 6.4 × 10−9 [183]
BR(B+ → K+e+µ−) 2.1 × 10−9 < 7.0 × 10−9 [183]
BR(µ → eγ) 1.9 × 10−13 < 4.2 × 10−13 [96]
BR(B0 → τ+τ−) 9 × 10−7 < 1.6 × 10−3 [222]
BR(Bs → e±τ∓) 6.4 × 10−7 N/A [54]
BR(Bs → µ±τ∓) 6.4 × 10−7 < 3.4 × 10−5 [206]

Table 5.4: Predictions for several observables with important NP contribution for the
benchmark case of Eqs. (5.25) and (5.26).

In comparison, the benchmark one-dimensional effective scenario with only
CNP

9 bsµµ = −CNP
10 bsµµ = −0.53 [154] improves the log-likelihood by 18 units; the

simplified vector LQ setup in Eq. (5.3) improves the log-likelihood by 30 units as
it also accommodates RD(∗) . Notice that translating the likelihoods to the number
of sigmas depends on the number of free parameters.

Predictions for several important observables following from Eqs. (5.25) and
(5.26) are given in Table 5.4. As outlined in Section 5.1.3, the LQ has been inte-
grated out at the tree level and the calculated LFV dipole operators responsible
for µ → eγ arise solely from the one-loop RGE running of the Wilson coefficients.
Thus, the predictions for the loop processes should be interpreted with caution.

In the scenarios with nonzero couplings uLse, uLbe, uLsµ and uLbµ of a vector lep-
toquark addressing the neutral-current B anomalies, the strongest bounds arise
from B+ → K+µ±e∓ and from the the LFV loop processes like µ → eγ (see
Ref. [166] for a dedicated study). Generally, the constraints from the latter are
quite strong. However, in the chiral leptoquark models with unitary interaction
matrix, µ → eγ is suppressed by an analogue of the GIM mechanism. As the
only non-vanishing element of (UR)ff in (5.25) is essentially irrelevant for µ → eγ,
the same applies also to our case. Note that Ref. [166] did not consider the sub-
leading terms and hence found exactly zero contributions to µ → eγ for the case
uLseu

L
sµ

∗ = −uLbeuLbµ
∗. Ref. [62] considered the case equivalent to UL from (5.25)

and UR = 0, finding the constraint mU1 > 10 TeV based on the BaBar search
[230] for B → Keµ. The very recent measurement by LHCb [183] has pushed
the limit to 17 TeV for the considered interaction pattern.

Finally, let us note that although the Z ′ interactions are not lepton-flavour
universal, the couplings in the particular case of Eq. (5.25) are lepton-flavour
diagonal and, hence, the Z ′ does not mediate any LFV processes. At the same
time, with a mass above 20 TeV, Z ′ is also safely hidden to the high-energy
searches at LHC.

To conclude, the interactions of the SU(4)C gauge leptoquark in a model with
two extra weak-isosinglet charged leptons can accommodate the neutral-current
B-meson anomalies to a large extent. The setup can be excluded by future
negative searches for B → Keµ at LHCb or Belle II [231].
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Conclusion
Let us recapitulate the outcomes of this work in three layers.

The first layer consists in offering new views on known concepts. In this re-
spect, we have suggested a perspective (the ”SU2U approach”) relating accidental
and imposed symmetries. We have argued that the relation of fermion number
F to the Lorentz symmetry is the same as the relation of baryon number B to
SU(3)C . It has been shown that, similarly to the fact that models with a La-
grangian free of explicit fermion conjugation matrix C conserve fermion number,
Lagrangians without the color Levi-Civita tensor εαβγ conserve baryon number
[25]. Similar relations have been found for other symmetries. With this formalism,
we have explained comprehensively why both baryon and lepton numbers may re-
main exactly (perturbatively) conserved even in some models with the Pati-Salam
type SU(4)C quark-lepton symmetry which necessarily feature a spontaneously
broken symmetry usually denoted by B − L.

Furthermore, identifying lepton flavour universality with the permutation
group S3, we have pointed out the complementary roles of lepton flavour vio-
lation and lepton flavour universality violation in effective theories as well as in
models with leptoquarks.

The second layer of results consists in analysing general properties of BSM
models. Focusing on theories with extended gauge symmetry SU(4)C ×SU(2)L×
U(1)R, we have identified the most general scalar potential in the MQLS/FPW
models of quark-lepton unification and found the resulting relations between the
masses of BSM scalars masses [25] in Chapter 2. Furthermore, we have discussed
the number of physical phases in the quark-lepton mixing matrices.

Thirdly but most importantly, two phenomenological analyses of leptoquark
effects have been presented, adopting models with SU(4)C gauge symmetry of
the Pati-Salam type.

The study presented in Chapter 4 and published in Refs. [25, 29, 30] searched
for a possible accommodation of the neutral-current B anomalies within the
MQLS and FPW models. We have found that the MQLSM is incapable of ex-
plaining the anomalies, and also its extension – the FPW model, is at (or slightly
past) the edge of exclusion. The only perhaps applicable scenario consistent with
the measured values of RK(∗) relies on a light scalar leptoquark R2, predicting that
τ → eπ+π− should be observed in the future at the level slightly above the cur-
rent experimental limit, and also that τ → eγ should be found at Belle II. We
have argued that such a setup also naturally provides an opportunity to partially
account for the deviations in RD(∗) .

In Chapter 5, possible current or future effects of gauge leptoquarks have been
studied in the theory of quark-lepton unification as well as in the similar SU(4)C
models assuming extra generations of leptons [31]. For the former case, the cata-
logue consisting of measurements which currently set the border of the excluded
part of the parameter space has been compiled. The involved observables have a
potential to discover the gauge LQ signal even with a small improvement of the
experimental sensitivity. For the decays P 0 → l+1 l

−
2 not listed in this catalogue,

we have found the future experimental bounds needed in order to further probe
the considered model.
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In Section 5.2, the gauge LQ has been studied in the models with vector-like
BSM leptons. The catalogue of constraining observables from Section 5.1 has
been extended to include the scenarios with kL extra leptonic SU(2)L doublets
and kR extra lepton singlets. In particular, the cases with kL + kR ≤ 2 have been
considered. Finally, it has been shown that the SU(4)C gauge LQ model with
2 extra weak-isosinglet charged leptons can significantly alleviate the tension in
the b → sµµ data.
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A. Single-boson SM extensions
In this appendix the catalogue of all bosons which could interact with the SM-
fermion pairs is provided. Our results are compatible with, e.g., Refs. [52, 232,
233, 234] (but not the same due to different assumptions). On the other hand,
several papers which reached different conclusions are also mentioned below.

The scalar bosons which could interact with the SM fermions have been col-
lected in Table 1.2 on page 15. Here the analogue for vector bosons is given in
Table A.1. If right-handed neutrinos are added to the SM, these tables should be
extended by Table A.2 (left and right). For the scalar fields, the same information
as in Table 1.2 is presented in a different format in Table A.3. Throughout this
appendix, the Lorentz contractions are implicit.

Concerning the BSM scalars in Tables 1.2 and A.3, their renormalizable inter-
actions with the SM Higgs ϕ would not induce new sources of B or L violation, up
to two exceptions: ∆∼(1, 3, 1) and φ0 ∼(1, 1, 0). Their lepton number should be
L = −2 according to their Yukawa couplings (with ℓLℓL and νRνR, respectively),
but their interactions with the Higgs call for L = 0. Furthermore, these fields
could acquire a VEV, leading to spontaneous lepton number violation in the case
the explicit LNV was suppressed.

Note that there is a fake candidate for a baryon number violating interaction
of the R̃2 ∼ (3, 2,+1/6) field, which must carry B = +1/3 due to its Yukawa
interactions. This field the seems to violate B by

R̃2
αi
R̃2

βj
R̃2

γk
ϕ†
k εij εαβγ . (A.1)

However, this term is identically zero and hence R̃2 is safe concerning proton
decay.

Misidentification of the above term has compromised the results of Ref. [235].
This has been corrected in Ref. [236]; nevertheless, the catalogue of baryon-
number-violating scalar interactions is still not complete there: the scalar S̃1 ∼
(3̄, 1, 4/3) is missing since its two Yukawa interactions (with uR uR and dR eR) are
formally ascribed to two different fields. Finally, the correct conclusion in this
respect has been made in [234]. In Ref. [237], two-scalar extensions of the SM are
investigated, listing those leading to |∆B| = 2 but no proton decay. This work
also suffers from misinterpreting the (A.1) catch. Nevertheless, it is straightfor-
ward to verify that the main results of this work are unaffected by this issue.

Refs. [123, 238] misidentified the U1 leptoquark as a potentially baryon number
violating field. In fact, it cannot have a diquark coupling since the claimed
interaction with two d-type quarks can not be written in a Lorentz-invariant way.

Ref. [239] is missing the interaction (uRαdRβ)χαβ of the (6, 1,−1/3) scalar but
this is irrelevant for the topic of its interest – the BNV d = 5 operators built from
the SM fields and a single BSM scalar. We confirm that the list cast in [239] is
correct up to a single missing term H†

i (uRαdRβ)R̃ γi
2 εαβγ.

Similarly, findings of Ref. [240] regarding minimal flavour violation have not
been affected by omitting R2 and R̃2 in the considerations.
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Ψ(Y )3B
L eR (1)0

-1 ℓL
j (-1

2)0
1 dRβ (1

3)-1
0 uRβ (-2

3)-1
0 qL

βj (1
6)1

0

qLαi(-1
6)-1

0 V2
†αi (-5

6)1
1
U1

αδij
U3

αi
j

(2
3)1

-1
Ṽ2γjε

αβγεij˜︁Ωαβi
(-1

6)2
0
V2γjε

αβγεij

Ωαβi
(5

6)2
0

B δαβ δ
i
j

W i
j δ
α
β

Gα
βδ

i
j

G3
αi
βj

(0)0
0

uR
α (2

3)1
0 Ũ1

†
α (-5

3)-1
-1 Ṽ2αj (-1

6)-1
-1

W−
R δ

β
α

G−β
α

(-1)0
0

B δβα
Gβ
α

(0)0
0

dR
α (-1

3)1
0 U †

1α (-2
3)-1

1 V2αj (5
6)-1

-1
B δβα
Gβ
α

(0)0
0

ℓLi (1
2)0

-1 A2
i (-3

2)0
2

B δij
W i
j

(0)0
0

eR (-1)0
1 B (0)0

0

Table A.1: Table of all possible interactions of the SM-fermion bilinears with vector
fields. G,W and B correspond to the gauge fields of the SM.

Ψ(Y )3B
L νR (0)0

-1

qL
iα (1

6)1
0 R̃†

2αi (-1
6)-1

1

uRα (-2
3)-1

0 S̄†
1
α (2

3)1
1

dRα (1
3)-1

0 S†
1
α(-1

3)1
1

ℓL
i(-1

2)0
1 ϕj εij (1

2)0
0

eR (1)0
-1 φ− (-1)0

2

νR (0)0
-1 φ0 (0)0

2

Ψ(Y )3B
L νR (0)0

-1

qLiα (-1
6)-1

0 Ṽ †
2
iα (1

6)1
1

uR
α (2

3)1
0 U †

1α (-2
3)-1

1

dR
α (-1

3)1
0 Ū †

1α (1
3)-1

1

ℓLi (1
2)0

-1 Ã2
i (-1

2)0
2

eR (-1)0
1 W+

R (+1)0
0

νR (0)0
1 B (0)0

0

Table A.2: Columns to be added to Tables 1.2 and A.1 if right-handed neutrinos are
considered.
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Scalar field Yukawa and relevant Higgs interactions B L F

Leptoquarks:
R2 ∼ (3, 2,+7/6) (uRα ℓLj)εjiR2

iα + (qLαi eR)R2
αi +1/3 −1 0

R̃2 ∼ (3, 2,+1/6) (dRα ℓLj)εjiR̃2
iα+ (qLαi νR)R̃2

iα +1/3 −1 0
Diquark – leptoquarks:
S3 ∼ (3̄, 3,+1/3) (qLαi qLβj)εαβγS3γij +2/3 0 +2

(qLαiℓLj)S3αij −1/3 −1 −2
S1 ∼ (3̄, 1,+1/3) (qLiαεijqLjβ)εαβγS1γ + (uRαdRβ)εαβγS1γ +2/3 0 +2

(qLαiεijℓLj)S1α + (uRα eR)S1α+ (dRανR)S1α −1/3 −1 −2
S̃1 ∼ (3̄, 1,+4/3) (uRα uRβ)εαβγS̃1γ +2/3 0 +2

(eR dRα)S̃1α −1/3 −1 −2
Diquark – leptoquark:
S̄1 ∼ (3̄, 1,−2/3) (dRα dRβ)εαβγS̄1γ +2/3 0 +2

(νRuRα)S̄1α −1/3 −1 −2
Diquarks:
χ ∼ (6̄, 1,−1/3) (qLαiεij qLβj)χαβ + (uRα dRβ)χαβ −2/3 0 −2
χ̄ ∼ (6̄, 1,+2/3) (dRα dRβ)χ̄αβ −2/3 0 −2
χ̃ ∼ (6̄, 1,−4/3) (uRα uRβ)χ̃αβ −2/3 0 −2
X ∼ (6̄, 3,−1/3) (qLαi qLβj)Xαβij −2/3 0 −2
Dileptons:
φ+ ∼ (1, 1, 1) (ℓLiεijℓLj)φ+ 0 −2 −2
φ++ ∼ (1, 1, 2) (eR eR)φ++ 0 −2 −2
Dileptons –B&L-uninvolved:
∆ ∼ (1, 3, 1) ! (ℓLi ℓLj)∆ij 0 −2 −2

ϕ†
iε
ij∆jkε

klϕ†
l 0 0 0

φ0 ∼ (1, 1, 0) ! (νRνR)φ0 0 −2 −2
ϕiϕ†

iφ
0 0 0 0

B&L-uninvolved:
G2 ∼ (8, 2,+1/2) (qLαidRβ)G2

αi
β + (uRβ qLαi)G2

βj
α εij 0 0 0

ϕ ∼ (1, 2,+1/2) ! qLαidR
αϕi + uRαqL

αjεjiϕ
i+

+ℓLieRϕi+νRℓLjεjiϕi 0 0 0

Table A.3: List of all possible spinless bosons which may interact with the SM fermion
bilinears. Interactions with right-handed neutrinos are also included but denoted by
gray color. The Lorentz contractions are implicit. Fields labeled by ’!’ contain a neutral
component which can acquire a VEV.
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B. Accidental symmetry in the
SU(5) grand unified theory
By definition, grand unified theories (GUTs) are build around a simple gauge
group. Thus, there is only a single candidate for an accidental U(1) symmetry
suggested by the SU2U approach developed in Chapter 1. Accordingly, the B−L

conserving proton decay is a well known prediction of the SU(5) GUTs.
As an example, let us consider the simple Georgi-Glashow model [241], field

content of which is summarized in Table B.1. Suppressing the coupling constants
for notational simplicity, the most interesting interaction terms read

LGG = kinetic terms + (Ψ
ˆ︁
abψa)H†

b + (Ψ
ˆ︁
abΨ

ˆ︁
cd)Heεabcde + h.c.

+H†
aΦa

bH
b +H†

aΦa
bΦb

cH
c + Φa

bΦb
cΦc

a + Φa
bΦb

cΦc
dΦd

a

+ (H†
aH

a)2 + (Φa
bΦb

a)2 + (Φa
bΦb

a)(H†
cH

c) .
(B.1)

The fermion number is violated, but the model features a global symmetry U(1)Z
whose charges are also specified in Table B.1. The relation between SU(5) and
Z is established by observing that, for each multiplet,

Z
mod 5== cSU(5) mod 5==

(︂
# upper SU(5) indices

)︂
−
(︂
# lower SU(5) indices

)︂
(B.2)

where cSU(5) denotes the quintility of the representation (see Section 1.2.3).
Z remains a good symmetry after the first stage of symmetry breaking by ⟨Φ⟩

but it gets broken together with the weak hypercharge during the EWSB by ⟨H⟩.
In order to obtain a global symmetry respected by the vacuum of the theory, the
combination proportional to ⟨Y ⟩Z − ⟨Z⟩Y must be considered, which yields the
anticipated result

B − L = 1
10Z + 4

5Y. (B.3)

Notice that Z is not directly given by the differences between upper and lower
indices used in Eq. (B.1) and that the Levi-Civita tensor is present in there.
Formally, resolving this apparent non-compatibility with the intuitive picture of
the SU2U approach would require redefining

Heεabcde ≡ Hˆ︃abcd ⇔ He = 1
4!H

ˆ︃
abcd ε

abcde, (B.4)

ψa εbcdef ≡ ψaˆ︂bcdef ⇔ ψa = 1
5!ψa

ˆ︂bcdef ε
bcdef , (B.5)

in which case the relevant Lagrangian terms take the form1

LGG = kinetic terms + 1
4!(Ψ

ˆ︁
abψaˆ︂bcdef )H

ˆ︁cdef + (Ψ
ˆ︁
abΨ

ˆ︁
cd)Hˆ︃abcd + h.c.

− 1
(3!)2H

†ˆ︃bcdeΦa
bHˆ︃acde + . . .

(B.6)

1The derivation makes use of ψaH
†
b = ψaδ

g
bH

†
g = ψa

1
4!εbcdefε

gcdefH†
g = ψa ˆ︂bcdefH

ˆ︁cdef and
H†

aΦa
bH

b = 1
(4!)2H

†ˆ︁cdef εacdef Φa
bε

bghijHˆ︃ghij = 1
(4!)2H

†ˆ︁cdef Φa
bδ

bghij
acdefH

ˆ︃
ghij = −42

(4!)2H
† ˆ︁bdef Φa

bHˆ︁adef

where the relation Φa
a = 0 has been used in the last step.
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SU(5) → GSM Y Z B − L

Field content of the Georgi-Glashow model
Fermions:
ψ(5̄) =

(︂
dR
c
α ℓL

jεji
)︂ (︂

1/3 −1/2
)︂

−6
(︂
−1/3 −1

)︂
Ψ(10) =

(︄
εαβγuR

c
γ −qLβi

qL
αj εijeR

c

)︄ (︄
−2/3 1/6
1/6 1

)︄
2

(︄
−1/3 1/3
1/3 1

)︄
Scalars:

H(5) =
(︄
S†

1
α

ϕi

)︄ (︄
−1/3
1/2

)︄
−4

(︄
−2/3

0

)︄

Φ(24) =
(︄
Gα
β + 1

3δ
α
βφ ϖα

j

ϖ†i
β wij − 1

2δ
i
jφ

)︄ (︄
0 −5/6

5/6 0

)︄
0

(︄
0 −2/3

2/3 0

)︄
Gauge fields:

Aµ(24) =
(︄
Gα
µβ + 1

3δ
α
βBµ V2

†α
µj

V2
i
µβ W i

µj − 1
2δ
i
jBµ

)︄ (︄
0 −5/6

5/6 0

)︄
0

(︄
0 −2/3

2/3 0

)︄

Table B.1: Fields in the simplest SU(5) GUT, weak hypercharges of their components
and generators of the global symmetry in the model. For better readability, some field
normalization factors have been omitted.
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C. Details of the analysis of the
gauge leptoquark signals
In Chapter 5, we have presented the aim to fully take into account the available
parameter space of the simplified model, keeping in mind that there is no prior
(Bayesian) measure on it. This is, however, impossible just with the numerical
scanning as some kind of a measure needs to be introduced in order to define
either a grid or a random distribution for choosing the points investigated, and
one should assure that the scan is ”dense enough”. Hence, numerical scanning
has been augmented by studying the correlations among various predictions an-
alytically.

Note that some measure-dependent statements like ”the LQ mass limit for
most forms of UL,R is set by BR(K0

L → eµ)” correspond well to measure-free
claims like ”the highest mass limits stem from BR(K0

L → eµ)”, as can be seen
from Fig. 5.2 on page 73.

C.1 Parametrization and scanning
For easiness, we will afford to refer to ”tiny parts in the parameter space” within
this appendix, based on the naive measure ∏︁ij dλijLdλijR in the notation of the
so-called composite parametrization of the flavour matrices UL,R. The composite
parametrization of unitary matrices of arbitrary dimension n has been introduced
in Refs. [242, 243] and its implementation in Wolfram Mathematica is available
[244]. It turned out to be particularly convenient for the current study. Its n2

parameters λij consist of 1
2n(n− 1) anlges (i < j) and 1

2n(n+ 1) phases (i ≥ j).
For n = 3, the parametrization reads⎧⎪⎪⎪⎪⎪⎩ c12c13e

iλ11
(︁
c23s12 − c12s13s23e

iλ32
)︁
eiλ22

(︁
s12s23 + c12c23s13e

iλ32
)︁
eiλ33

−c13s12e
iλ11+iλ21

(︁
c12c23+s12s13s23e

iλ32
)︁
eiλ22+iλ21

(︁
c12s23 − c23s12s13e

iλ32
)︁
eiλ33+iλ21

−s13e
iλ11+iλ31 −c13s23e

iλ22+iλ31+iλ32 c13c23e
iλ31+iλ32+iλ33

⎫⎪⎪⎪⎪⎪⎭
(C.1)

where cij = cosλij, sij = sinλij. For higher dimensions, see the original literature.

Avoiding constraints from K0
L → l1l2 decays

In Section 5.1.2, we have presented Smirnov’s argument that due to the stringent
experimental bounds on NP in K0

L → ee, µµ, eµ, a scan over close neighborhood

λ11L λ12L λ13L λ21L λ22L λ23L λ31L λ32L λ33L
π

7
π

16
π

7 −π

7
π

7 (0, 2π) π

7
π

7
π

7
λ11R λ12R λ13R λ21R λ22R λ23R λ31R λ32R λ33R

π

7 − π

16
47π
96

π

7
π

7
π

2
π

7
π

7
π

7

Table C.1: Angles and phases defining the slice of the parameter space used in Fig. 5.2.
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of the parameter subspace in which the NP contributions to these processes van-
ish is essentially sufficient in order to find the other limiting observables. This
observation is useful in analyzing the 3 × 3 matrices UL,R in Section 5.1 as well
as the extended models in Section 5.2 where the dimensions of UL,R are 3 + kL,R.
To this end, the complete solution of the four equations (5.14) for unitary UL,R
of arbitrary dimensions is obtained by fixing

λ23L → π

2 , λ23R → π

2 , λ12R → −λ12L, λ21L → −λ21R, (C.2)

in obvious notation. For kL = kR = 0, this essentially coincides with ”solution A”
from Ref. [175], which employed a different parametrization. Note that (C.2) does
not fix the magnitude of any single element of UL,R, except for uL,Rbτ = 0 in the
kL = kR = 0 case (which is unavoidable, as explained in Section 5.1.2).

In fact, there is also another seemingly independent algebraic solution of (5.14)
in the composite parametrization: λ13L = λ13R = π/2. Nevertheless, six of the
remaining parameters in the obtained structure (which can be also fully defined
by fixing |uLbe| = |uRbe| = 1) are redundant, and one can show that it actually
corresponds to a specific subset of the more-dimensional set obtained by (C.2).1

Note that a tricky interconnection among the relevant amplitudes implies that
the parameter subspace suppressing only K0

L → ee and K0
L → eµ but allowing

for contributions to K0
L → µµ (which may also be of relevance since NP in the

last channel is actually less stringently constrained) is less-dimensional than the
set suppressing also the µ+µ− final state, and is covered by

λ13L → π

2 , λ21L → −λ21R, λ12L → π

2 − λ12R, λ11L, λ32L, λ23L → 0 (C.3)

or by (C.3) with L ↔ R.

Avoiding limits from µ → e conversion

Another very important constraint stems from the limits on µ → e conversion on
the nuclei [219]. A leptoquark with Q = +2/3 mediates this process at the tree
level by an interaction with the d quarks and also the sea s quarks in the nucle-
ons. The calculation in flavio is based on Ref. [245]. The scalar-type effective
vertices, (dRdL)(eLµR) and (dRdL)(µLeR), are predicted to trigger this process even
more efficiently than the vector-type ones. Thus, to avoid these constraints when
searching for limits from other interesting processes, the following condition must
be approximately fulfilled:

|uLdeuRdµ|2 + |uRdeuLdµ|2 = 0. (C.4)

Even without imposing unitarity, it can be shown that any UL, UR pair obeying
Eq. (C.4) together with the set of Eqs. (5.14) must necessarily follow one of these

1Of course, this hassle is a result of not considering rigorously the domain of the parametriza-
tion. An analogy: among all point on the Earth surface lying on the Greenwich meridian there
is also the North and South poles. However, on the poles one can formally choose any longitude
as it is actually irrelevant.
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patterns:

(UL)ff =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
• 0 •
• 0 •
• • •

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , (UR)ff =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
• 0 •
• 0 •
• • •

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ ; (C.5a)

(UL)ff =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 • •
0 • •
• • •

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , (UR)ff =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 • •
0 • •
• • •

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ ; (C.5b)

(UL)ff =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 •
• • •
• • •

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , (UR)ff =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 •
• • •
• • •

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ ; (C.5c)

(UL)ff =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 •
0 0 •
• • •

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , (UR)ff =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
• • •
• • •
• • •

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ ; (C.5d)

(UL)ff =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
• • •
• • •
• • •

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , (UR)ff =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 •
0 0 •
• • •

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ ; (C.5e)

where • denotes an unfixed value. Notice that only the patterns (C.5a) – (C.5c)
can be obtained for 3 × 3 unitary matrices, while the zeros in (C.5d) and (C.5e)
require that (UL,R)ff is a part of a unitary matrix of dimension ≥ 4.

Finding the unitary parametrization fulfilling both Eqs. (5.14) and (C.4) is
lengthy but straightforward. The solutions in the composite parametrization
must be found for each pair of (dimUL, dimUR) separately, unlike for Eq. (5.14)
alone.

Notable but order-of-magnitude smaller contributions to the coherent µ → e
conversion arise also from vector-type operators (triggered by uLdeuLdµ

∗ and uRdeuRdµ
∗)

and well as the muon conversion on the sea s-quarks in the nucleons (such am-
plitudes are proportional to uLseuRsµ or uLseuRsµ).

Scanning of the parameter space

In what follows, parameter point means a particular form of UL and UR. Note
that for each parameter point, a range of leptoquark masses is allowed and has
to be considered (see Section 5.1.3).

For each of the models studied in Chapter 5, the presented results rely on
investigating the matrices UL,R obtained in several different ways:

• 103 parameter points have been obtained by random scanning of the pa-
rameter space with the measure ∏︁ij dλijLdλijR.

• About 2×103 parameter points have been chosen by random scanning (using
the same naive measure) of the parameter space restricted by Eq. (C.2).

• More than 104 parameter points have been obtained by random scanning
restricted by Eq. (C.2) and by solutions to Eq. (C.4).

• For the basic model (kL,R = 0), also many manually chosen and tuned points
have been investigated. Considering various special parts of the parameter
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space enables one to claim with a high level of confidence that the catalogue
in Table 5.1 is complete.

Note that considering 10× as many parameter points would require a non-trivial
modification of the code since analysis of a single point currently typically takes
more than a minute.

C.2 Examples
For each observable whose measurement currently limits the gauge-LQ mass for
some parameter point in the basic model of quark-lepton unification (kL, kR) =
(0, 0) (see Table 5.1), a corresponding example form of the UL,R matrices is pro-
vided in Table C.2.

Notice that the form of UL,R for which mU1 is restricted by BR(B0 → µµ) has
been highly tuned so that: (i) there is a cancellation of amplitudes for coherent
µ → e conversion on d-quarks and see s-quarks in the nuclei; (ii) the LQ and
SM amplitudes to Bs → µµ satisfy MNP ≃ −2MSM, yielding BR(Bs → µµ) ≃
BRSM(Bs → µµ).

C.3 Observables included in the likelihood
The set of observables taken into account by smelli in the analysis of Chapter 5
is listed in Table C.3 In our setting, the global likelihood is a product of 5 par-
tial likelihoods, each of which considers several (tens of) observables. Generally,
smelli offers 7 more partial likelihoods but we have checked that they essentially
do not differ from their SM value in the considered scenarios. Thus, they have
been omitted in order to save the computing time.

The names of the observables are adopted from flavio. Observables in an-
gle brackets are measured in several bins of dilepton invariant mass squared
which we do not indicate explicitly. For example, the RK∗ ratio, denoted as
<Rmue>(B0->K*ll) here, is considered in two different bins measured by LHCb
and two other bins measured by Belle II. For further details, see the on-line
documentation of the flavio package [117].
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Observable UL UR

BR(K0
L → eµ)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0
0 1 0
0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
BR(K0

L → ee)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1√
2 0 1√

2
1√
2 0 − 1√

2
0 1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1√
2 0 − 1√

2
− 1√

2 0 1√
2

0 1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
BR(K0

L → µµ)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 1√

2
1√
2

0 1√
2 − 1√

2
1 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 1√
2

1√
2

0 1√
2 − 1√

2
1 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
BR(K0

S → µµ)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 1√

2
1√
2

0 1√
2 − 1√

2
1 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 1√
2

1√
2

0 − 1√
2

1√
2

1 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
BR(B0 → µµ)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 − 1√

21 −
√︂

20
21

0 −
√︂

20
21

1√
21

−1 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1√
21 0 −

√︂
20
21√︂

20
21 0 − 1√

21
0 −e0.8i 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
BR(Bs → µµ)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0. 0. i

−0.26 − 0.34i 0.78 − 0.45i 0.
−0.74 − 0.52i −0.29 + 0.32i 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0. 0. 1

0.20 − 0.29i 0.83 − 0.43i 0.
−0.14 − 0.92i −0.12 + 0.34i 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
BR(B0 → eµ)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 −1 0
0 0 1

−1 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 −1 0
0 0 1

−1 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
BR(Bs → eµ)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 1
0 1 0
1 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 1
0 1 0
1 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
CR(µ → e,Au)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1√
2

1√
2 0

0 0 1
1√
2 − 1√

2 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2

1√
2 0

0 0 1
1√
2 − 1√

2 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Re/µ(K+ → lν)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 1
1 0 0
0 1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 1
1 0 0
0 1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Re/µ(π+ → lν)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0
0 0 1
0 1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0
0 0 1
0 1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Table C.2: Examples of quark-lepton mixing matrices and corresponding dominant
signals of the gauge leptoquark.
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likelihood lfu fccc
BR(Bc->taunu)
FLtot(B0->D*taunu)
<BR>/BR(B->Dtaunu)
<BR>/BR(B->D*taunu)
BR(pi+->enu)
Remu(K+->lnu)

likelihood lfu fcnc
<Rmue>(B0->K*ll)
<Rmue>(B+->K*ll)
<Rmue>(B+->Kll)
<Rmue>(B0->Kll)
<Dmue P4p>(B0->K*ll)
BR(B+->Ktautau)
BR(B0->tautau)
BR(Bs->tautau)

fast likelihood leptons
BR(tau->enunu)
BR(tau->mununu)
BR(tau->pinu)
BR(tau->Knu)
a e
a mu
a tau

likelihood lfv
BR(B+->K*emu)
BR(B+->K*mue)
BR(B0->K*emu)
BR(B0->K*mue)
BR(B+->Kemu)
BR(B+->Ketau)
BR(B+->Kmue)
BR(B+->Kmutau)
BR(B+->Ktaue)
BR(B+->Ktaumu)
BR(B+->pimutau)
BR(B+->pitaue)
BR(B+->pietau)
BR(B+->pitaumu)
BR(B0->emu,mue)
BR(B0->etau,taue)
BR(B0->mutau,taumu)
BR(Bs->emu,mue)
BR(Bs->mutau,taumu)
BR(B0->piemu,mue)
BR(B+->piemu,mue)
BR(KL->emu,mue)
BR(mu->eee)
BR(mu->egamma)

BR(tau->eee)
BR(tau->muee)
BR(tau->mugamma)
BR(tau->mumumu)
BR(tau->emumu)
BR(tau->muemu)
BR(tau->emue)
BR(tau->egamma)
BR(tau->rhoe)
BR(tau->rhomu)
BR(tau->phie)
BR(tau->phimu)
CR(mu->e,Ti)
CR(mu->e,Au)

fast likelihood quarks
<FL>(B0->K*mumu)
<P1>(B0->K*mumu)
<P4p>(B0->K*mumu)
<P5p>(B0->K*mumu)
<dBR/dq2>(B+->K*mumu)
<dBR/dq2>(B0->K*mumu)
<dBR/dq2>(Bs->phimumu)
<dBR/dq2>(B+->Kmumu)
<dBR/dq2>(B0->Kmumu)
<BR>(B->Xsmumu)
<AFB>(B0->K*mumu)
<P2>(B+->K*mumu)
<P4p>(B+->K*mumu)
<FL>(B+->K*mumu)
<P5p>(B+->K*mumu)
<P1>(B+->K*mumu)
<dBR/dq2>(Lambdab->Lambdamumu)
<AFBh>(Lambdab->Lambdamumu)
<AFBl>(Lambdab->Lambdamumu)
<AFBlh>(Lambdab->Lambdamumu)
BR(Bs->mumu)
BR(B0->mumu)
BR(Bs->ee)
BR(B0->ee)
BR(B+->K*gamma)
BR(B0->K*gamma)
BR(B->Xsgamma)
ACP(B->Xgamma)
BR(B0->K*gamma)/BR(Bs->phigamma)
BR(Bs->phigamma)
ADeltaGamma(Bs->phigamma)
S phigamma
S K*gamma
<FL>(Bs->phimumu)
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<S3>(Bs->phimumu)
<S4>(Bs->phimumu)
<BR>(B->Xsee)
<P2>(B0->K*ee)
<FL>(B0->K*ee)
<P1>(B0->K*ee)
<ATIm>(B0->K*ee)
BR(B0->pitaunu)
BR(B+->enu)
BR(B+->munu)
DeltaM s
x12Im D
S psiK
S psiphi
eps K
epsp/eps
BR(K+->pinunu)
BR(KL->pinunu)
BR(KL->mumu)
BR(KS->mumu)
BR(KL->ee)
BR(KS->ee)
BR(K+->munu)
BR(KL->pienu)
BR(KS->pienu)
BR(K+->pienu)
BR(KL->pimunu)

BR(KS->pimunu)
BR(K+->pimunu)
lnC(K->pimunu)
RT(K->pimunu)
tau n
Atilde n
lambdaAB n
a n
atilde n
Btilde n
D n
R n
Ft(10C)
Ft(14O)
Ft(22Mg)
Ft(26mAl)
Ft(34Cl)
Ft(34Ar)
Ft(38mK)
Ft(38Ca)
Ft(42Sc)
Ft(46V)
Ft(50Mn)
Ft(54Co)
Ft(62Ga)
Ft(74Rb)
Gamma(pi+->munu)

Table C.3: The list of observables included in our version of the smelli global likeli-
hood. (The table begins on the previous page.)
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