
Charles University in Prague
Faculty of Mathematics and Physics

BACHELOR THESIS

Michal Ferov

Irreducible polynomials modulo p

Department of algebra

Supervisor: Mgr. Štepán Holub, Ph.D.

Study program: Mathematics
Field of study: Mathematical methods of information security

2008

I would like to thank to my supervisor Mgr. Štěpán Holub, Ph.D. for scien-
tific counseling, many useful suggestions and advices, and for all his time.
I would like also to thank to Mgr. Petr Jonáš for lending me his books on
LaTeX and to RNDr. Marie Trt́ılková for showing me the right way.

I affirm that I wrote my bachelor thesis by myself and that I only used cited
sources. I agree with distribution and publication of my work.

In Prague on the date Michal Ferov

2

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Preliminaries . 5
1.3 Conditions for irreducibility 8

2 Probability bounds 11
2.1 Möbius function and inverse formula 11
2.2 Upper and lower bounds for Nq(n) 14
2.3 Probability . 15

3 Test 18
3.1 Fast exponentiation . 18
3.2 Test . 21
3.3 Notes on complexity . 22

4 Conclusion 23

Bibliography 24

3

Title: Irreducible polynomials modulo p
Autor: Michal Ferov
Department: Department of Algebra
Bachelor thesis advisor: Mgr. Štěpán Holub, Ph.D.
Advisors e-mail: holub@karlin.mff.cuni.cz

Abstract: In the presented work we study a probabilistic algorithm for find-
ing an irreducible polynomial over Fq of specified degree n with expected
number O(n3 log(n) log(q) + n3 log(n) log(ω(n)) + n3ω(n)) of operations in
Fq. In the first chapter we show some basic properties of Fq[x] and derive
necessary and sufficient conditions of irreducibility. In the second chapter
we use Möbius inverse formula to show that probability of random monic
polynomial of degree n being irreducible is at least 1

2n
. In the third chapter

we show polynomial deterministic algorithm which decides whether given
polynomial is irreducible or not.

Keywords: finite field, irreducible polynomial, Möbius inverse formula, fast
exponentiation of polynomials

Název práce: Irreducibilńı polynomy modulo p
Autor: Michal Ferov
Katedra: Katedra Algebry
Vedoućıbakalářské práce: Mgr. Štěpán Holub, Ph.D.
E-mail vedoućıho bakalářské práce: holub@karlin.mff.cuni.cz

Abstrakt: V předložené práci studujeme probabilistický algoritmus pro kon-
strukci ireducibilńıch polynomů zadaného stupně n nad Fq s očekávaným
počtem O(n3 log(n) log(q) + n3 log(n) log(ω(n)) + n3ω(n)) provedených op-
eraćı v Fq. V prvńı kapitole ukážeme některé základńı vlastnosti Fq[x] a
odvod́ıme nutné a postačuj́ıćı podmı́nky ireducibility pro polynomy. V druhé
kapitole ukážeme, že pravděpodobnost pq(n), že náhodný polynom stupně
n je ireducibilni nad Fq, je alespoň 1

2n
. Ve třet́ı kapitole předvedeme deter-

ministický algoritmus, který v polynomiálńım čase rozhoduje, zda je vstupńı
polynom irreducibilńı či nikoliv.

Kĺıčová slova: konečné těleso, ireducibilńı polynom, Möbiova inverzńı for-
mule, rychlé umocňováńı polynomů

4

Chapter 1

Introduction

The aim of this work is to present an algorithm for obtaining irreducible
polynomial over field Zp.

1.1 Motivation

Irreducible polynomials are used to build field extensions, which have many
applications in coding theory, cryptography and many more. The fastest al-
gorithm for constructing irreducible polynomials was presented by V. Shoup
in 1994. It is a probabilistic algorithm that performs expected number of
O(n2+o(1)+n1+o(1) log(q)) operations in Fq, however it uses different approach
than ”generate and test” paradigm. All known deterministic algorithms work
efficiently only for fields of small characteristics and rely on generalized Rie-
mann hypothesis. It was proven by Shoup in 1990 that problem of determin-
istic construction of irreducible polynomials can be polynomial-time reduced
to problem of factoring polynomials over Fq. Contrary to that, our algorithm
follows ”generate and test” paradigm.

1.2 Preliminaries

In following section we will introduce some basic definitions and facts that
will be used throughout the whole work.

Definition 1.1. A field is a set F with two operations +, · satisfying fol-
lowing axioms:

5

(ag1) ∀ a, b, c ∈ F : a+ (b+ c) = (a+ b) + c

(ag2) ∀ a, b ∈ F : a+ b = b+ a

(ag3) ∃ 0 ∈ F ∀ a ∈ F : a+ 0 = 0 + a = a

(ag3) ∀ a ∈ F ∃(−a) ∈ F : a+ (−a) = (−a) + a = 0

(mg1) ∀ a, b, c ∈ F : a · (b · c) = (a · b) · c

(mg2) ∀ a, b ∈ F : a · b = b · a

(mg3) ∃ 1 ∈ F ∀ a ∈ F : a · 1 = 1 · a = a

(mg4) ∀ a ∈ F \ {0} ∃ a−1 ∈ F : a · a−1 = a−1 · a = 1

(d) ∀ a, b, c ∈ F : a · (b+ c) = a · b+ a · c

(n) 0 6= 1

If F is finite, then (F,+, ·) is a finite field. We refer to field E as to subfield
of F, if E is a subset of F and operations +, · are identical in E. We denote
E ≤ F. We also say, that F is an extension of E.

Note 1.1. • Axioms (ag1)-(ag4) say that (F,+) is abelian group, we
will refer to it as to additive group of the field F.

• Axioms (mg1)-(mg4) say that (F\{0}, ·) is abelian group. We will refer
to it as to multiplicative group of the field F and we will use notation
F∗.

Definition 1.2. A polynomial over a field F is a formal term f =
∑n

i=1 aix
i

where a0, . . . , an ∈ F and an 6= 0. The number n is the degree of the polyno-
mial and we use notation deg(f) = n. We use F[x] to denote the set of all
polynomials over field F. It is straightforward, that F[x] with operations +
and · form commutative ring.

Let F[x] be ring of polynomials with operations + and ·. Then function

ν : F[x] 7→ N

,

ν(f) =

{
0 if f = 0

deg(f) + 1 otherwise

6

is Euclidian norm, therefore F[x] is Euclidian domain. That gives us some
good properties we can work with. First of all, because every Euclidian
domain is also unique factorization domain, every nonzero element of F[x]
can be uniquely factorized to its irreducible factors. Other thing is that we
can use extended Euclidean algorithm to compute greatest common divisor
which implies following lemma.

Lemma 1.1. Let F be a field, and let f ∈ F[x] be irreducible polynomial.
Then set E = {g ∈ F[x]|deg(g) < deg(f)} with addition and multiplication
modulo f is a field.

Proof. It is straightforward that all axioms from definition 1.1 are satisfied
except for (mg4). Let g ∈ E nonzero, then we can use extended Euclidian
algorithm to compute gcd(f, g). Therefore we have gained gcd(f, g) = 1 =
af + bg.

af + bg ≡ bg ≡ 1 mod f

Therefore g−1 = b mod g.

We have just shown, that every irreducible polynomial over F somehow
defines extension of F. In fact, any polynomial somehow defines an extension.
Further on, we will work with extensions called splitting fields.

Definition 1.3. Let F be a field and f ∈ F[x]. We call extension E of field
F a splitting field of f over F if

• F ≤ E,

• f ∈ E[x] can be factorized into linear factors, in other words:
f = (x− θ1) . . . (x− θm), where m = deg(f) and , θ1, . . . , θm ∈ E

• E is the smallest possible.

This extension defined by polynomial f is given uniquely, as is given in
following theorem.

Theorem 1.2. For every field F and every polynomial f ∈ F[x] having
degree at least 1 exist splitting field of f over F. Every two splitting fields of
f over F are F-isomorphic.

Proof. Proof can be found in [1] on page 9.

7

Lemma 1.3. Let F be a field of cardinality q, then for every a ∈ F we have
aq = a.

Proof. If a = 0 then the equation holds trivially, therefore we can suppose
a ∈ F∗. The order of F∗ is q so aq−1 = 1, therefore aq = a.

Lemma 1.4. Let F be a field of cardinality q, then the two following poly-
nomials are equal:

xq − x =
∏
a∈F

(x− a).

Proof. According to the lemma mentioned before, aq = a for every a ∈ F,
therefore x − a divides xq − x, furthermore polynomials x − a and x − b
are relatively prime whenever a and b are distinct, so

∏
a∈F (x− a) divides

xq − x. Both polynomial have the same degree q and are monic therefore
they are equal.

1.3 Conditions for irreducibility

In this section we will derive necessary conditions that polynomial has to
satisfy to be irreducible.

Theorem 1.5. Let f ∈ Fq[x] be irreducible polynomial of degree n. Then
f |(xqm − x) if and only if n|m.

Proof. (⇒) Let f |(xqn−x). Polynomial xqn−x can be factorized into linear
factors in field Fqn and therefore f also factorizes to linear factors. In
other words there is a root of F in Fqn , let us denote it α. Now we
got sequence of fields Fq ≤ Fq(α) ≤ Fqn . Field Fq(α) is an algebraic
extension of Fq given by polynomial f and therefore it is isomorphic
to Fqm . Therefore n|m.

(⇐) Let n|m. Then Fqm ≤ Fqn . Field Fqm is extension of Fq given by f ,
therefore it contains root α of polynomial f . Because α is also root of
xqn−x and f is minimal polynomial (after being divided by its leading
coefficient) of α over Fq, then f |(xqn − x).

Corollary 1.6. Polynomial xqn −x is a product of all the monic irreducible
polynomials over Fq[x] whose degrees divide n.

8

Proof. Theorem 1.5 tells us that all the monic irreducible polynomials over
Fq of degree dividing n divide xqn − x. In other words there are no other
irreducible factors than those. Because xqn − x has no multiple root in its
splitting field Fqn , none of its irreducible factors appears in factorization of
xqn − x twice.

This allows us to construct a simple deterministic algorithm which de-
cides, whether given polynomial is irreducible or not. If f is irreducible, then
it divides xqn−x but does not divide xqd−x, where d is a non-trivial divisor
of n. In fact, it does not divide xqk − x for any 1 ≤ k < n.

IrredTest1(f)
1 h← x
2 for i← 1 to

⌊
deg(f)

2

⌋
3 do h← hq

4 if gcd(h− x, f) 6= 1
5 then return FALSE
6 return TRUE

It is obvious that this algorithm will need to compute greatest common
divisor Θ(deg(f)) times, but it is not necessary because we need to compute

it only if i| deg(f). In fact, we only need to compute it when i = deg(f)
p

where p is a prime divisor of deg(f). We present our solution to exercise
20.2 proposed in [2] to prove it.

Lemma 1.7. Let f ∈ Fq[x] monic and deg f = n > 0. Then f is irreducible
if and only if following the conditions are satisfied for all p prime divisors
of n.

(i) f |(xqn − x)

(ii) gcd
(
xq

n
p − x, f

)
= 1

Proof. (⇒) Let f be a monic irreducible polynomial of degree n. Then (i)
holds, because theorem 1.5 implies, that f |(xqn−x). Second condition
holds trivially.

(⇐) The condition (i) tells us that f is product of one or more monic
irreducible polynomials whose degrees divide n. Condition (ii) holds

9

too, therefore f is not divisible only by any polynomial of degree d
where d|n. Therefore f is irreducible.

Note 1.2. One might ask whether it is really necessary to test the condition
(i). It is. We show that by simple example. Let n = deg(f) be a prime and
let f = ab where 1 < deg(a), deg(b). Then it is obvious that f 6 |(xqn−x) and
gcd(xq − x, f) = 1, therefore if we did not test the condition (i) we would
get the result that f is irreducible, but it is not.

This result gives a way to decrease the number of gcd computations to
Θ(ω(deg(f)) where ω(n) is number of distinct prime divisors of n. We will
use this notation further in our work.

IrredTest2(f)
1 n← deg(f), n = pe1

1 . . . pek
k

2 if f |(xqn − x)
3 then for i← 1 to k
4 do ni ← n

pi

5 if gcd(xni − x, f) 6= 1
6 then return FALSE
7 return TRUE
8 else return FALSE

10

Chapter 2

Probability bounds

In this chapter we will set bounds for probability for random polynomial
over Fq to be irreducible by using Möbius inverse formula.

2.1 Möbius function and inverse formula

In this section we will derive formula for number of irreducible polynomials
over Fq

Definition 2.1. Möbius function µ : N 7→ {−1, 0, 1} is defined as follows:

µ(n) =

1 if n = 1
(−1)k n is a product of k distinct primes
0 if p2|n for some p ∈ P

Lemma 2.1. For any n ∈ N the Möbius function satisfies:∑
d|n

µ(d) =

{
1 if n = 1
0 if n > 1

Proof. It is straightforward that equality holds for n = 1. Now let’s suppose
that n > 1 and n = pk1

1 . . . pkl
l is it’s prime factorization. We need to take into

account only those divisors d of n that are product of i distinct primes where

11

1 ≤ i ≤ l because the others are zero from definition of Möbius function.

∑
d|n

µ(d) = µ(1) +
l∑

i=1

µ(pi) +
∑

1≤i1<i2≤l

µ(pi1p12) + · · ·+ µ(p1 . . . pl)

=
l∑

i=0

(−1)i

(
l

i

)
= (1− 1)l = 0

Theorem 2.2. Möbius inverse formula. Let G = (G,+) be an abelian group
and let H, h : N 7→ G are functions. Then

H(n) =
∑
d|n

h(d)

if and only if

h(n) =
∑
d|n

µ(d)H
(n
d

)
=
∑
d|n

µ
(n
d

)
H(d)

Proof. Note that µ(d)H
(

n
d

)
=
∑

d|n µ
(

n
d

)
H(d) holds trivially. First, let’s

prove (⇒):

∑
d|n

µ(d)H
(n
d

)
=
∑
d|n

µ(d)
∑
c|n

d

h(c)

 =
∑
d|n

∑
c|n

d

µ(d)h(c)

=
∑
c|n

∑
d|n

c

µ(d)h(c) =
∑
c|n

h(c)
∑
d|n

c

µ(d)

= h(n)µ(1) +

∑
c|n,c6=n

h(c)
∑
d|n

c

µ(d)

 = h(n)

Where the last equality was obtained by using lemma 2.1.
Now, lets prove (⇐):

12

∑
d|n

h(d) =
∑
d|n

h
(n
d

)
=
∑
d|n

∑
c|n

d

µ
(n
cd

)
H(c)

=
∑
c|n

∑
d|n

c

µ
(n
cd

)
H(c) =

∑
c|n

H(c)
∑
d|n

c

µ
(n
cd

)
= H(n)µ(1) +

∑
c|n,c 6=n

H(c)
∑
d|n

c

µ
(n
cd

) = H(n)

Again, the last equality was obtained by using lemma 2.1

Now, our goal is to specify the number of monic irreducible polynomials
of degree n over Fq, let’s denote it Nq(d). We already know that xqn − x is
a product of all monic polynomials whose degree divides n. By comparing
qn with degrees of canonical factorization of xqn − x we get the following
formula

Nq(n) =
∑
d|n

dNq(d)

, which we will use in following theorem.

Theorem 2.3. The number Nq(n) of monic irreducible polynomials of degree
n over Fq is given by:

Nq(n) =
1

n

∑
d|n

µ
(n
d

)
qd =

1

n

∑
d|n

µ(d)q
n
d .

Proof. We apply Möbius inverse formula to the group G = (Z,+) and func-
tions h(n) = nNq(n) and H(n) = qn. H(n) =

∑
d|n h(d) is satisfied because

of the formula derived above, therefore we get

nNq(n) =
∑
d|n

µ
(n
d

)
qd =

∑
d|n

µ(d)q
n
d .

13

2.2 Upper and lower bounds for Nq(n)

We already know the number of irreducible polynomials of specified degree,
but the formula is not easy to compute and especially for great n it would
take some time to get the exact value. However, we don’t really need to be
precise. In fact, we need lower and upper bounds, which behave asymptoti-
cally like Nq(n). We present our solution to exercises 5.4.(7) and 5.4.(8) from
[1], page 9.

Lemma 2.4.
1

n

(
qn − q

n
2 − 1

q − 1

)
≤ Nq(n)

Proof. It is important to notice, that every non-trivial divisor of n is no
greater than n

2
, therefore

1

n

(
qn − q

n
2 − 1

q − 1

)
≤ 1

n

(
qn − qb

n
2 c − 1

q − 1

)
=

1

n

qn −
bn

2 c∑
i=0

qi

≤ 1

n

∑
d|n

µ
(n
d

)
qd = Nq(n)

This lemma can be also used to prove existence of a irreducible polyno-

mial of arbitrary degree. Nq(n) ≥ 1
n

(
qn − q

n
2 −1
q−1

)
≥ 1, therefore there has to

exist at least one irreducible monic polynomial of degree n, therefore there
is at least q − 1 irreducible polynomials of degree n.

Lemma 2.5.

Nq(n) ≤ 1

n
(qn − q)

Where both sides are equal if n is a prime number.

Proof. Let n = pe1
1 . . . p

eω(n)
ω(n) be the prime factorization of n.

Nq(n) =
1

n

∑
d|n

µ(d)q
n
d

=
1

n

qn −
ω(n)∑
i=1

q
n
pi +

∑
1≤i1<i2≤ω(n)

q
n

pi1
pi2 − · · ·+ (−1)ω(n)q

n
p1...pω(n)

14

We can suppose that 2 ≤ n. It is obvious that ω(n) ≤ log(n). Since for all
primes p we have 2 ≤ p. We can use that to obtain following inequality:

ω(n)∑
i=1

q
n
pi ≤ ω(n)

√
qn ≤ log(n)

√
qn < qn.

If we substitute n by any of its divisors the inequality still holds. By using
this we get:

ω(n)∑
i=1

q
n
pi >

∑
1≤i1<i2≤ω(n)

q
n

pi1
pi2 > · · · > q

n
p1...pω(n) ≥ q.

Therefore we get:

1

n

qn −
ω(n)∑
i=1

q
n
pi +

∑
1≤i1<i2≤ω(n)

q
n

pi1
pi2 − · · ·+ (−1)ω(n)q

n
p1...pω(n)

 ≤ 1

n
(qn−q)

So we have lower and upper bound:

1

n

(
qn − q

n
2 − 1

q − 1

)
≤ Nq(n) ≤ 1

n
(qn − q)

In fact, we have proved that Nq(n) ∈ Θ
(

1
n
qn
)
.

2.3 Probability

Now we want to determine the probability pq(n) for random monic polyno-
mial of degree n being irreducible. Since there are qn monic polynomials, the
probability is pq(n) = Nq(n)

qn . By using lemmas 2.4 and 2.5 we get:

1

n

(
1− q

n
2 − 1

qn(q − 1)

)
≤ pq(n) ≤ 1

n

(
1− 1

qn−1

)
We use following modifications to obtain different lower bound:

1

n

(
1− 1√

qn

)
≤ 1

n

(
1− 1

q
n
2
+

+
1

qn

)
≤ 1

n

(
1− q

n
2 − 1

qn(q − 1)

)
.

15

This bound is a little less precise, but it gives us nice insight about the
probability pq(n).

1

n

(
1− 1√

qn

)
< pq(n) <

1

n

(
1− 1

qn−1

)
Because every polynomial of dergee n = 1 is irreducible, we can assume

that n ≥ 2. We also know, that q ≥ 2, therefore 1√
qn < 1

2
, which we use to

get upper and lower bounds independent to q:

1

2n
< pq(n) <

1

n

In fact, we have showed that pq(n) ∈ Θ(1
n
). We will use the lower bound for

pq(n) further in this work. Consider this trial-error algorithm:

IrredGen(n)
1 a0 ← R, . . . , an−1 ← R
2 f ←

∑n−1
i=1 aix

i + xn

3 if f is irreducible
4 then return f
5 else go to 1

Lemma 2.6. The algorithm will perform expected number O(n) of tests.

Proof. Expected value is given by:

E(X) =
∑
xi∈X

xipxi
.

Event xi is that the algorithm has to generate i − th polynomial, in other
words that all the polynomial generated before were reducible. Value of xi

is 1 because the algorithm generates just one i-th polynomial. Probability
pxi

is equal to (1 − pq(n))i−1 therefore the expected number of trials is∑∞
i=0 (1− pq(n))i. If we use 1

2n
as the probability then we get:

∞∑
i=0

(
1− 1

2n

)k

=
1

1−
(
1− 1

2n

) = 2n.

So the expected number is in O(n).

16

What is the probability that we will need more than n trials? That means
that all of those n polynomials the algorithm has generated were reducible
so: (

1− 1

2n

)n

→ e−
1
2 = 0.6065306...

which is still greater than 1
2
, but if we double the number of trials, we get

e−1 = 0.36787... which is much better. In fact, if we generate cn polynomials,
then the probability that none of them is irreducible is approximately e−

c
2 .

17

Chapter 3

Test

In this chapter we will present a polynomial deterministic algorithm, which
decides whether input polynomial is irreducible or not. First idea could be
just to simply factorize the input using Berlekamp algorithm or Cantor-
Zassenhaus algorithm, but this idea has few drawbacks. Cantor-Zassenhaus
uses expected number of O(n3 log(q)) operations in Fq, so it can get pretty
slow for fields of big characteristics, whereas Berlekamp uses expected num-
ber O(n3 + n2 log n log q) operations in Fq so it is faster for big fields, but it
uses O(n2) memory, which can be quite demanding.

3.1 Fast exponentiation

In section 1.3 we have shown that it is not necessary to compute gcd(xq
n
d −

x, f) for every d divisor of n, but only when d is a prime number. Computing
gcd(f, g) takesO(n2 log(n)) operations in Fq where n = max(deg(f), deg(g)),
therefore it is highly desirable to keep the degrees as low as possible, but
degrees of polynomials xqni − x grow exponentially with n. We can prevent
this from happening by computing gcd(hi − x, f) where hi = xqni mod f ,
because gcd(hi − x, f) and xqni − x are equal. This is straightforward from
definition of Euclid’s algorithm.

But now we face different problem: how to efficiently compute hi? By
using classic repeated-squaring method we get that if g is a polynomial of
degree smaller than n we can obtain gq mod f with using O(log(q)) multi-
plications mod f which gives us O(n2 log(q)) operations Fq if we use the
standard polynomial multiplication. Following algorithm takes as input two
polynomials α and f where deg(α) ≤ deg(f) = n and positive integer m.

18

Pow(α, f,m)
1 m = a0 + a1q + · · ·+ alog(m)q

log(m)

2 h0 ← α
3 for i← 1 to log(m)
4 do hi ← hq

i−1 mod f
5 for i← 0 to log(m)
6 do hi ← hai

i mod f
7 h← h0 . . . hlog(m) mod f
8 return h

Lemma 3.1. Algorithm Pow(α,f,m) returns αqm
mod f after computing

O(n2 log(m) log(q))

operations in Fq.

Proof. The first for cycle repeats O(log(m)) times and in every loop there
are O(n2 log(q)) operations in Fq performed. the second for cycle also re-
peats O(log(m)) and in every single loop there are O(n2 log(q)) operations
performed, because ai < q for every i ∈ {0, 1, . . . , logm}. And on the line 7
we multiply O(log(m)) polynomial of degree less than n mod f . Altogether
there are O(n2 log(m) log(q)) operations in Fq performed.

However, we need to compute ω(n) polynomials. We could exponentiate
every one of them separately, which would lead us to O(n2 log(q) log(n)ω(n))
operations in Fq, but it can be done better. We present our solution to ex-
ercise 3.39 from [2]. Following algorithm gets as input two polynomials α, f
where deg(a) ≤ deg(f) = n and a list of positive integers (m1, . . . ,mk),
where mi > 1 for i ∈ {1, ..., r}.Let m = m1 . . .mk Output of the algorithm
is (αm∗

1 mod f, . . . , αm∗
k mod f) where m∗i = m

mi
.

MExp(α, f, (m1, . . . ,mk))
1 if k = 2
2 then return αm2 , αm1 mod f
3 else e1 ← m k

2
+1 . . .mk

4 e2 ← m1 . . .m k
2

5 α1 ← αe1 mod f
6 α2 ← αe2 mod f

19

7 return

{
MExp (α1, f, (m1, . . . ,m k

2
))

MExp (α2, f, (m k
2
+1, . . . ,mk))

Lemma 3.2. The algorithm MExp(α, f, (m1, . . . ,mk)) will perform

O(n2 log(k) log(m))

operations in Fq to compute (αm∗
1 mod f, . . . , αm∗

k mod f)

Proof. One could object, that k does not necessarily have to be even, which
is of course true. However, we can without loss of generality assume that k
is a power of 2 because we can simply define mk+1 = 1,mk+2 = 1, ...,m2l

where l = dlog2 ke so 2l < 2k.
Let k = 2l. It is obvious that run of the algorithm will look like complete
binary tree with l levels. On the i-th level the algorithm computes 2i expo-
nentiations mod f , but if we sum their complexities, we get

O(n2(log(m1 . . .m2l−1) + · · ·+ log(m2l−2l−i+1 . . .m2l))) = O(n2 log(m)).

There are l levels and l ∈ O(len(m)), therefore complete number of opera-
tions in Fq is O(n2 log(m) log(k)).

We also need to factorize n in order to find its prime divisors. We present
our own algorithm which takes n as input and returns its prime factorization.

Factor(n)
1 k ← 1, p← 2
2 while 1 < n
3 do if p|n
4 then j ← 0
5 while p|n
6 do n← n

p

7 j ← j + 1
8 pk ← p
9 ek ← j

10 k ← k + 1
11 p← p+ 1
12 return (p1, . . . , pk), (e1, . . . , ek)

In algorithm Factor(n) there are no operations in Fq performed, there-
fore we don’t have to take it’s complexity in account.

20

3.2 Test

In this section we present our deterministic algorithm that decides whether
the input polynomial is irreducible.

IrredTest(f)
1 n← deg(f)
2 h← Pow (x, f, n)
3 if h = x
4 then Factor (n)

5 e← pe1−1
1 . . . p

eω(n)−1

ω(n)

6 α← Pow (x, f, e)
7 h1, . . . , hω(n) ← MExp (α, (p1, ..., pω(n)))
8 for i = 1 to k
9 do if gcd(hi − x, f) 6= 1

10 then return FALSE
11 return TRUE
12 else return FALSE

Lemma 3.3. The algorithm TEST (f) performs

O(n2 log(n) log(q) + n2 log(n) log(ω(n)) + n2ω(n) log(n))

operations in Fq to give the correct answer.

Proof. First operations come on line 2 and line 6 is almost the same. Be-
cause e is smaller than n we get from lemma 3.1 that Pow(x, f, e) requires
O(n2 log(n) log(q)) operations. Then lemma 3.2 implies that the algorithm
MExp(α, (p1, ..., pω(n))) performs O(n2 log(n) log(ω(n))). If we use standard
Euclid’s algorithm to compute gcd which performs O(n2 log(n)) then the
complexity of the last loop is O(n2ω(n) log(n)), because we have to ω(n)
times compute greatest common divisor. When we sum it up we get

O(n2 log(n) log(q) + n2 log(n) log(ω(n)) + n2ω(n) log(n)).

Now we can construct a probabilistic algorithm that takes n ∈ N as input
and outputs irreducible polynomial of degree n:

21

IrredGen(n)
1 a0← R, . . . , an−1 ← R
2 f ← a0 + a1x+ · · ·+ an−1x

n−1 + xn

3 if IrredTest(f)
4 then return f
5 else go to 1

Lemma 3.4. The algorithm IrredGen(n) will perform expected number

O(n3 log(n) log(q) + n3 log(n) log(ω(n)) + n3ω(n))

of operations in Fq

Proof. Straightforward from lemma 3.3 and lemma 2.6.

3.3 Notes on complexity

Lemma 3.3 can be rewritten in a more generalizing way. Let us denote com-
plexity of multiplication of two polynomials whose degrees are less or equal
n M(n) and complexity of computing gcd of two polynomials whose degrees
are less or equal G(n), then lemmas 3.3 and 3.4 can be rewritten as:

Lemma 3.5. The algorithm IrredTest(f) performs

O(M(n) log(n) log(q) +M(n) log(n) log(ω(n)) +G(n)ω(n))

operations in Fq to give the correct answer and the algorithm IrredGen(n)
performs expected number of

O(nM(n) log(n) log(q) + nM(n) log(n) log(ω(n)) + nG(n)ω(n))

operations in Fq

Proof. Straightforward.

For example if we use fast polynomial arithmetics(FFT), then M(n) =
n log(n). I we also use Euclid’s algorithm together with fast polynomial
arithmetics, then G(n) = M(n) log(n) = n log2(n). Then the algorithm
IrredGen(n) will perform expected number

O(n2 log2(n) log(q) + n2 log2(n) log(ω(n)) + n2 log2(n)ω(n))

of operations in Fq

22

Chapter 4

Conclusion

We have presented a probabilistic algorithm for generating irreducible poly-
nomials of degree n over Fq that performs expected number of

O(n3 log(n) log(q) + n3 log(n) log(ω(n)) + n3ω(n))

and we have also shown that it can be reduced to

O(n2 log2(n) log(q) + n2 log2(n) log(ω(n)) + n2 log2(n)ω(n))

if we use fast polynomial arithmetics instead of standard ”high-school-like”
methods. We have proven that the problem of finding a irreducible polyno-
mial can be solved probabilistically in polynomial time and it was proven by
Shoup that there is a deterministic polynomial algorithm, but it works only
for fields of small characteristics. There are still at least two open problems:

• Can the problem of finding irreducible polynomial of degree n over
fields F of big characteristics solved deterministically with performing
O(nk) operations in F where k is fixed?

• Can the problem of finding irreducible polynomial of degree n solved
probabilistically with performing expected number O(nc) operations
in F where c < 2?

23

Bibliography

[1] Tůma J., Barto L.: Konečná tělesa, preprint, 2008.

[2] Shoup V.: A Computational Introduction to Number Theory and Alge-
bra, second version, Cambridge University Press, 2008.

[3] Lidl R., Niederreiter H.: Finite Fields, Cambridge University Press,
1997.

24

