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1 Boosting Phase Contrast MRI Performance in iNPH Diagnostics by Means of Machine Learning 

2 Approach 
 

3 

 

4 Abstract 

5 Background: Phase contrast MRI allows detailed measurement of various parameters of CSF 

6 motion. This examination is technically demanding and machine dependent. Machine learning 

7 (ML) approaches have already been successfully utilized in medical research, but none was 

8 applied to enhance the results of CSF flowmetry yet. 
 

9 Objective: The aim of this study was to evaluate the possible contribution of ML algorithms in 

10 enhancing results of MRI flowmetry in NPH diagnostics. 

11 Methods: The study cohort consists of 30 iNPH patients and 15 healthy controls examined on one 

12 MRI machine. All major phase contrast parameters were inspected: peak positive and 
negative 

13 velocity, peak amplitude, average velocity, positive, negative and average flow and aqueductal 

14 area. We applied ML algorithms on 85 complex features calculated from phase contrast study. 
 

15 Results:   The most distinctive parameters with p˂0.005 were peak negative velocity, peak 

16 amplitude and negative flow. From the machine learning algorithms, the Adaptive Boosting 

17 classifier showed the highest specificity and best discrimination potential overall, with 80.4 ± 

18 2.9% accuracy, 72.0 ± 5.6% sensitivity, 84.7 ± 3.8% specificity, and 0.812 ± 0.047 AUC. The 

19 highest sensitivity was 85.7 ± 5.6%, reached by the Gaussian Naive Bayes model, and the best 

20 AUC was 0.854 ± 0.028 by Extra Trees classifier. 
 

21 Conclusions: Machine learning approaches simplify the utilization of phase contrast MRI and 

22 significantly increase its predictive value. The highest performing algorithm in our study was 

23 Adaptive Boosting, which showed a good calibration and discrimination on the testing data, with 

24 80.4% accuracy, 72.0% sensitivity, 84.7% specificity, and 0.812 AUC. 
 

25 
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29 Short Title 
 

30 Phase Contrast MRI Performance in NPH Diagnostics 
 

31 



 

32 INTRODUCTION 

 

33 

 

34 Despite being first described more than 55 years ago 1, normal pressure hydrocephalus (NPH) is 

35 still without a sufficiently sensitive and specific diagnostic test. The need for such a test is 

36 accentuated by the fact that iNPH is the only curable neurological degenerative disease, 
with 

37 reported improvement of 60-80% after shunt insertion 2. In current practice the diagnosis 
consists 

38 of clinical examination (typically characterized by the triad of gait disturbance, mental 

39 deterioration and urinary incontinence) and functional testing. Functional tests include the 
spinal 

40 tap test, external lumbar drainage, or lumbar infusion test. Although these tests can 
accurately 

41 predict response to treatment 3, they are painful and associated with rare, but potentially 
serious 

42 complications 4. For these reasons, numerous studies in the past few decades have focused 
on 

43 finding a simple imaging biomarker. Enlarged ventricles are mandatory for iNPH diagnosis, but 

44 ventriculomegaly has numerous causes, so the specificity of this sign is naturally very low. 

45 Unfortunately, more detailed tests have not resulted in the unambiguous confirmation 
or 

46 exclusion of an iNPH diagnosis. Basic MRI sequences are the source of several significant signs, 

47 such as high Evan´s index, dilated Sylvian fissures, tight high convexity, acute callosal angle and 

48 focal sulcal dilatation. All these measurements are components of the DESH score, introduced by 

49 the Japanese group 5. Our recent study showed that the DESH score lacks sufficient sensitivity 

50 and specificity to be used as a stand-alone diagnostic or prognostic marker for iNPH [6]. Our lab 

51 has also tested the hypothesis that structural volume analysis can reveal specific patterns 
unique 

52 to iNPH patients6. Despite identifying several interesting differences in structural volumes in 

53 iNPH patients, this method did not reveal any signs that differentiate shunt responsive 
patients. 

54 Diffusion tensor imaging repeatedly showed changes in white matter 7,8, but again the 
sensitivity 

55 and specificity was not sufficient for this to be used as a standalone test. 

56 The CSF flow void phenomenon observed in the cerebral aqueduct of iNPH patients has led to 

57 interest in this region. Phase contrast MRI allows detailed measurement of various parameters 
of 

58 CSF motion 9. These include aqueductal stroke volume and peak velocity measurements, with 

59 several studies showing promising results 10-12. However, some authors have pointed out that 



 

the 

60 examination is technically demanding and machine dependent 13. 

61 The aim of this study was to evaluate the possible contribution of machine learning algorithms in 

62 enhancing results of MRI flowmetry in NPH diagnostics. In contrast to the previous published 

63 studies, we have looked at the method from a wider perspective of all the available features. 
 

64 

 

65 

 

66 

 

67 

68 METHODS 

 

69 

 

70 Patients 

71 In the period between September 2016 and March 2020 109 patients were referred to 
the 

72 

73 with suspected NPH. Before being referred to our department, all patients 
had 

74 undergone a standard MRI and showed ventriculomegaly (Evans´ index greater than 0.3). All 

75 patients suffered gait disturbance and at least one of the other two typical symptoms - 
mental 

76 deterioration or urinary incontinence. The gait was recorded on camera and the disturbance 
was 

77 evaluated using the Dutch Gait Scale 14,15. All patients underwent thorough neuropsychological 

78 examination including Wechsler memory scale III, Montreal Cognitive Assessment, Verbal 

79 Fluency tests, Trail Making Test, Rey-Osterrieth Complex Figure Drawing Test and Geriatric 

80 Depression Scale 16. After completing all of the above tests, 86 remaining patients 
underwent 

81 lumbar infusion (modified Katzmann´s) test 17. All of the patients had normal cerebral spinal 

82 fluid (CSF) opening pressure (<20cm H2O), normal CSF composition; biochemistry and cell 

83 count. At the end of the test, lumbar drainage was performed using the same needle and CSF 
was 



 

84 drained for 120 hours. Shunt insertion was indicated to all patients with a positive 
lumbar 

85 infusion test (resistance to outflow above 9mmHg/ml/min) and at least 15% improvement 
in 

86 Dutch Gait Scale after lumbar drainage. After completing all the tests, we identified 40 iNPH 

87 patients. All of them were indicated for VP shunt surgery. 
 

88 From this cohort, 30 patients completed the study protocol on the same MRI machine. The 
same 

89 protocol was performed on 15 healthy controls. An algorithm of data acquisition and processing 

90 is shown in Figure 1. 
 

91 

 

92 MRI acquisition 
 

93 MRI images were acquired on 3T GE MR 750w, located in The Military University Hospital 

94 Prague. A standard 32-channel head coil was used. MRI imaging protocol included a 3D T1 

95 BRAVO, 3D T2 Cube, GRE-EPI task-based fMRI, and SE-EPI DTI sequences. In addition a 

96 phase contrast CSF flow study was performed with the following parameters: a single oblique 

97 axial section perpendicular to the aqueduct with slice thickness 7mm, FOV 16cm, matrix size 

98 256x224, TR/TE 33/7.4ms, flip angle 30°. Cardiac gating was applied using an MR-compatible 

99 peripheral pulse transducer attached to the subject’s finger, producing 32 frames evenly 
spread 

100 throughout the cardiac cycle. Location of the acquisition section was determined by a 
senior 

101 neuroradiologist to the middle of the aqueduct. Default velocity encoding gradient was 20cm/s. 
 

102  102 



 
 

103 Image interpretation 
 

104 Phase contrast images were reconstructed and reviewed using commercial
software 

105 (FlowAnalysis, GE). ROI was drawn manually by a senior neuroradiologist and included all 

106 voxels with CSF flow signal. Software then extracted velocity and flow-time curves for each 

107 subject. Results were transferred to an offline workstation for statistical analysis. 
 

108 108 
 

109 Statistical Analysis 

110 Comparisons of continuous variables were made using t-tests for independent 
samples. 

111 Comparisons of categorical variables were done using the chi-square test. In all cases, a p-
value 

112 of less than 0.05 was considered significant. Basic computations were performed 
using 

113 STATISTICA 13.5 software. 
 

114 114 
 

115 Feature calculations 
 

116 For each patient seven CSF flowmetry vectors have been obtained directly from MRI: 
aqueduct 

117 area, peak positive velocity, peak negative velocity, average velocity, positive flow rate, 
negative 

118 flow rate, and average flow rate. Each vector is composed of 32 points evenly distributed 
along 

119 one cardiac cycle. To calculate CSF flow features 32 points of each vector were interpolated by 
a 

120 cubic spline. Spline interpolation is often preferred over polynomial interpolation because 
the 

121 interpolation error is minimal even when using low-degree polynomials for the spline. 
The 

122 features of a given vector were calculated using the piecewise smooth interpolating function, 
and 

123 these features characterise the spline behavior. For example: amplitude, 
maximum/minimum 

124 position, area under the curve, first time derivative maximum/minimum, kurtosis, skewness, 
etc. 

125 Altogether 85 features were identified. 
 

126 126 
 



 
 

127 Machine learning approach 
 

128 A set of selected 87 complex features were calculated for each patient (85+age+sex). The 
whole 

129 patient dataset was divided into training and testing parts by the k-fold (k=5) cross-
validation 

130 (CV). We improve k-fold CV by using stratified resampling, which ensures that the relative class 

131 frequencies (NPH and control) are approximately preserved in each fold according to the 
original 

132 class frequencies in the full dataset. Stratified k-fold CV is useful for small and/or 
imbalanced 

133 datasets (30 NPH and 15 control patients in our case)18. Another improvement was the 
repetition 

134 of the k-fold stratified CV process N times (N=10), enabling an estimate of the mean 
and 

135 standard deviation in a performance. 

136 The following 8 different state-of-the-art ML models were deployed by using the 
aforementioned 

137 robust CV design: Multilayer perceptron (MLP), Gaussian Naive Bayes (GaussNB), Gradient 

138 Boosting Decision Tree (GBDT), Logistic Regression (LogReg), Extra Trees (ExtraTrees), 

139 Random Forest (RF), XGBoost (XGB) and Adaptive Boosting (AdaBoost). The listed algorithms 

140 are implemented and described in the Scikit-Learn Python library 19 and were run in Python 
3.8. 

141 Due to better repeatability of the proposed solution, default settings of all algorithms 
were 

142 used. Accuracy, sensitivity, specificity, receiver operating characteristic (ROC) and area under 

143 the ROC curve (AUC) were used to compare performance of all ML methods. 
 

144 144 
 

145 RESULTS 
 

146 146 
 

147 The study cohort consists of 30 iNPH patients consecutively examined on one MRI machine. The 

148 average age in the group was 72.8±5.2 years and there were 11 women and 19 men. In the 
control 

149 group there were 9 men and 6 women with an average age of 71.4±6.4 years. The groups 
were 

150 similar in the scope of basic demographic information. 
 

151 Within the scope of phase contrast MRI all major parameters were inspected: peak positive 
and 

152 negative velocity, peak amplitude, average velocity, positive, negative and average flow 
and 



 
 

153 aqueductal area. Using the t-test for a direct comparison we found significant differences, with 
p- 

154 values of less than 0.05 in 47 of 85 tested features. Results of the major parameters are listed 
in 

155 Table 1. 

156 The most distinctive parameters with p-value less than 0.005 were peak negative velocity, 
peak 

157 amplitude and negative flow. Mean peak negative velocity was -3.0787±1.9189 cm/s in 
NPH 

158 patients and -1.3570±0.5868 cm/s in healthy controls with p-value 0.002. Mean peak 
amplitude 

159 was 6.4252±3.8139 in NPH patients and 3.1535±1.1811 in healthy controls with p-value 
0.003. 

160 Mean negative flow was -0.1996±0.1561 ml/min in NPH patients and -0.0597±0.0358 ml/min 
in 

161 healthy controls with p-value 0.002. A fourth important feature with a p-value of 0.007 was 
mean 

162 peak positive velocity- 3.3465±2.0426  cm/s in NPH patients  and 1.7965±0.7232  in  healthy 

163 controls. The results of these 4 features are presented in Figure 2. 
 

164 We continued with further computations using 8 different state-of-the-art machine 
learning 

165 models. The results in terms of accuracy classification of respective ML models are presented 
in 

166 Table 2. 

167 Table 3 compares accuracies, sensitivities, specificities and AUCs for all ML algorithms 

168 developed. From these algorithms, the AdaBoost classifier showed the highest specificity 
and 

169 best discrimination potential overall, with 80.4 ± 2.9% accuracy, 72.0 ± 5.6% sensitivity, 84.7 ± 

170 3.8% specificity, and 0.812 ± 0.047 AUC. The highest sensitivity was 85.7 ± 5.6%, reached by 

171 GaussNB model, and the best AUC was 0.854 ± 0.028 by ExtraTrees classifier. The final ROCs 

172 and calibration curves for all ML models are presented in Figure 3. 

173 The importance of a feature by AdaBoost was computed as the normalized total reduction of 
the 

174 criterion brought by that feature (the higher, the more important the feature.). It is also 
known as 

175 the Gini importance 19. Feature importance differs a lot from the significance counted with 
the 

176 chi-square test. No “major” feature had any importance for the AdaBoost classifier and the 
most 

177 significant parameters regardless of importance played only a minor role in its 



 
 

computations 

178 Table 3). 
 

179 179 
 

180 DISCUSSION 
 

181 181 
 

182 According to the most accepted theory, the development of the major symptoms of iNPH 
is 

183 caused by ventricular dilatation leading to mechanical stress on the periventricular white 
matter. 

184 This causes ischemia and hypoxia of axons 20. The severed ependymal layer progressively 
loses 

185 plasticity, and pulsatility is significantly reduced as a consequence 21. This process leads to 
an 

186 impairment of bulk flow through the outlets of the CSF compartments 22. Compressed 
adjacent 

187 white matter loses integrity and becomes stiff, leading to reduced transmission of pulsatile 
waves 

188 23. This process causes dilatation of ventricles, which further slows down the CSF flow 24. The 

189 exact pathophysiological mechanism of iNPH remains unclear, but the above theory still 
remains 

190 one of the most widely accepted 25. Since MRI has become more broadly available, 
many 

191 scientists have had great hopes  in phase contrast MRI, which seemed to  promise the 
long 

192 anticipated biomarker for selecting shunt responsive iNPH patients 26. Unfortunately, it 
has 

193 become clear that phase contrast MRI is not easy to interpret as its results vary according to 
the 

194 MRI machine used 13. Some works even question the most studied parameter of phase 
contrast 

195 MRI: aqueductal stroke volume 27,28. Conversely, several studies advocate using 
aqueductal 

196 stroke volume in NPH diagnostics as noninvasive complimentary test 10,29 and some find it 
more 

197 accurate than other basic phase contrast MRI parameters 11. Another widely studied parameter 
of 

198 phase contrast MRI is peak velocity. However the results are again controversial, ranging 
from 

199 favorable 10,11 to no significant difference between the iNPH group and healthy controls 30. 

200 The flow curve is defined by seven vectors: aqueduct area, peak positive velocity, peak 



 
 

negative 

201 velocity, average velocity, positive flow rate, negative flow rate, and average flow rate. 
Direct 

202 comparison using t-test identified the three most distinct parameters with a p-value less 
than 

203 0.005 - peak negative velocity, peak amplitude and negative flow. These findings may be 
related 

204 to the increased ICP pulsatility in iNPH patients observed from invasive ICP monitoring 31,32, 

205 while the altered negative flow and higher peak amplitude observed on phase contrast MRI 
in 

206 normal conditions could represent increased ICP pulsatility observed in overnight ICP 
monitoring 

207 33. The results of ICP monitoring on shunt response prediction in the literature vary 33-35, but 
the 

208 role of altered wave characteristics observed in our study with regards to prediction of 
shunt 

209 response has yet to be clarified. 

210 Machine learning approaches have already been successfully utilized in medical research 
36. 

211 Regarding iNPH, a few models have used this technique, for example in gait  37 or MRI 38 

212 analysis. To our knowledge, no machine learning approach has been applied to enhance 
the 

213 results of CSF flowmetry. We have considered this method beneficial, because some 
of 

214 flowmetry features are difficult to interpret as they lack a clear clinical correlation, and 
their 

215 physiological explanation is rather speculative and under further investigation. Second, 
the 

216 importance of individual features do not necessarily correlate with the p-values. Features 
that 

217 would have been ignored in standard statistical testing as insignificant in iNPH 
patients 

218 discrimination may turn out to be influental in the scope of machine learning and vice 
versa. 

219 Using this method we achieved a sensitivity of up to 85% and specificity of 84%. The best 

220 accuracy was 80%. The highest-performing ML algorithm was the Adaptive Boosting. This 

221 model showed a good calibration and discrimination on the testing data, with 80.4% 
accuracy, 

222 72.0% sensitivity, 84.7% specificity, and 0.812 AUC. 
 

223 The developed ML models were optimized for highly accurate prediction rather than 
explanation, 

224 and model parameters thus cannot be simply deployed for the purpose of explaining the effect 



 
 

of 

225 individual features on the differentiation of iNPH and healthy patients. Some of the 
frequently 

226 used ML models (especially ensemble-based algorithms) allow the use of the so-
called 

227 optimization of hyperparameters. This could further improve the performance of the ML 
models. 

228 This approach could be used in the future if the dataset were enlarged. Further 
external 

229 validations on data from multiple neurosurgical centers would be appropriate before using 
these 

230 approaches in clinical practice. 
 

231 231 
 

232 Study Limitations 
 

233 233 
 

234 We are aware of several limitations of the present study. Firstly, due to a change of 
MRI 

235 machines during the selected study period, 10 out of 40 iNPH patients had to be removed 
from 

236 the study. It has been well documented that phase contrast MRI can vary considerably 
according 

237 to the equipment 13. The method is also operator dependent. The Region of interest is 
manually 

238 drawn, which emphasizes the importance of an experienced neuroradiologst. Secondly, 
several 

239 patients may be misfiled to or erroneously excluded from the NPH group due to the 
specificity 

240 and sensitivity limitations of the lumbar infusion test and external lumbar drainage test. As 
these 

241 functional tests are current best practice, this problem limits all studies concerning iNPH. 
Third, 

242 despite using an effective 10-times repeated stratified 5-fold CV to validate the ML 
approaches, 

243 the credibility of this methodology could be increased by using a larger dataset with various 
types 

244 of CVs. 

245 CONCLUSION 
 

246 246 
 

247 Machine learning approaches simplify the utilization of phase contrast MRI and 



 
 

significantly 

248 increase its predictive value. The highest performing algorithm in our study was Adaptive 

249 Boosting, which showed a good calibration and discrimination on the testing data, with 
80.4% 

250 accuracy, 72.0% sensitivity, 84.7% specificity, and 0.812 AUC. 
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362 Figure 1. Diagram summarizing methodology of presenting study. 
 

363 363 
 

364 Figure 2. Boxplots with mean values for the four most significant parameters differentiating 
the 

365 NPH group from the healthy controls: Peak Positive Velocity (A), Peak Negative Velocity (B), 

366 Peak Amplitude (C) and Negative Flow (D). 
 

367 367 
 

368 Figure 3. ROC (A) and calibration curves (B) for all individual ML models. The dashed diagonal 

369 line represents the performance of an ideal model, where the predicted outcome 
would 

370 correspond perfectly with the actual outcome. 
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Table 1 
 
 
 
 
 

 Group p-value 

 NPH CONTROL NPH vs. CONTROL 

Aqueductal area → mean 17.2693 ± 9.0799 20.4736 ± 10.0155 0.297 

Peak positive velocity → mean (cm/s) 3.3465 ± 2.0426 1.7965 ± 0.7232 0.007 

Peak negative velocity → mean (cm/s) -3.0787 ± 1.9189 -1.3570 ± 0.5868 0.002 

Peak amplitude → mean 6.4252 ± 3.8139 3.1535 ± 1.1811 0.003 

Average velocity → mean (cm/s) 5.0215 ± 4.2601 5.0106 ± 4.8031 0.994 

Average velocity → skewness 2.7707 ± 1.0497 1.8253 ± 1.1654 0.010 

Average velocity → kurtosis 11.2075 ± 6.0085 7.1157 ± 5.1639 0.032 

Positive flow → mean (ml/min) 0.2561 ± 0.2242 0.1140 ± 0.0707 0.022 

Negative flow → mean (ml/min) -0.1996 ± 0.1561 -0.0597 ± 0.0358 0.002 

Average flow → mean (ml/min) 0.0564 ± 0.0944 0.0537 ± 0.0605 0.919 

Highest peak positive velocity (cm/s) 8.5090 ± 6.1965 4.4040 ± 2.7988 0.019 

Flow (ml/beat) 0.0419 ± 0.0806 0.0403 ± 0.0578 0.947 
 
 

Table 1. Results of major phase contrast MRI parameters and their significance 

according to t- test. 

 

  



 
 

Table 2 
 
 
 
 
 

ML approach Accuracy Sensitivity Specificity AUC 

Multilayer perceptron 72.0 ± 3.4 54.7 ± 5.6 80.7 ± 5.5 0.750 ± 0.048 

Gaussian Naive Bayes 73.8 ± 2.4 85.7 ± 5.6 73.3 ± 2.4 0.770 ± 0.009 

Gradient Boosting Decision Tree 73.8 ± 4.3 64.0 ±3.7 78.7 ± 6.5 0.747 ± 0.064 

Logistic Regression 76.9 ± 4.0 65.3 ± 5.6 82.7 ± 4.9 0.808 ± 0.029 

Extra Trees 77.3 ± 1.9 73.3 ± 4.7 79.3 ± 4.9 0.854 ± 0.028 

Random Forest 78.2 ± 4.0 74.7 ± 5.6 80.0 ± 4.1 0.813 ± 0.027 

XGBoost 79.6 ± 1.9 72.0 ± 5.6 83.3 ± 2.4 0.840 ± 0.037 

Adaptive Boosting 80.4 ± 2.9 72.0 ± 5.6 84.7 ± 3.8 0.812 ± 0.047 

 
 

Table 2. Mean value and standard deviation of the accuracy, sensitivity, specificity 

and AUC computed over 10 CV repetitions. Individual models are sorted 

according to the resulting accuracy (from lowest to highest). The best value for 

each of the parameters is highlighted. 

 

  



 
 

Table 3 
 
 
 
 
 

 
Feature description p- 

value 

Feature importance by 

AdaBoost 

Best 4 features according to 

phase contrast MRI 

NegFlow → mean 0.002 0 

PeakNegVel → mean 0.002 0 

PeakAmp → mean 0.003 0 

PeakPosVel → mean 0.007 0 

Best 4 features according to t- 

test 

PeakNegVel → minimum 0.0001 0 

PeakNegVel → amplitude 0.0002 0.002 

NegFlow → derivation → 

maximum 

0.0002 0.014 

PeakNegVel → standard 

deviation 

0.0002 0.006 

Best 4 features according to ML 

(AdaBoost) 

AvgVel → derivation → position of 
maximum value 

0.012 0.016 

NegFlow → derivation → 
maximum value 

0.0002 0.014 

NegFlow → derivation → position 
of minimum value 

0.027 0.013 

NegFlow → maximum value 0.271 0.008 

 
 

Table 3. Feature importance for the Adaboost classifier. Four most significant 

parameters according to phase contrast MRI, four most significant parameters from 

the whole dataset and four most important features for machine learning. 

 


