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Abstract: Despite an immense progress in recent decades, a precise treatment
of strongly correlated molecular systems still remains a challenge as of today.
To help solve this problem, we have developed a massively parallel implemen-
tation of DMRG, called MOLMPS. For nonrelativistic systems requiring accu-
rate treatment, we have extended MOLMPS by the means of the almost linear
scaling DLPNO-TCCSD method. In relativistic domain, we are the first who
employed the 4c-CCSD to add dynamical correlation on top of DMRG, yielding
the 4c-TCCSD method. When tested on benchmarks like the m-conjugated an-
thracene tetramer with CAS(63,63) and the FeMoco cofactor with CAS(113,76).
We showed a good parallel performance on up to about 2000 CPUs. On the exam-
ple of Iron(II)-Porphyrin model, we showed that the DLPNO-TCCSD captures
99.9% of TCCSD correlation energy. Our spectroscopic study on heavy diatomics
showed that the 4c-TCCSD approach increases the precision of underlying CCSD
to the order of CCSD(T) and that it is a promising approach. The thesis dis-
cusses three different implementations of quantum chemical methods based on

QC-DMRC.
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Introduction

Defining quantum chemistry

Molecular quantum mechanics, also known as quantum chemistry, is a field of
physical chemistry focused on application of quantum mechanics to chemical
systems. The central problem of quantum chemistry is finding the electronic
structure of molecules and understanding the molecular dynamics by solving the
Schrodinger equation.

Quantum chemistry studies ground state of individual molecules, their excited
states and the transition states occurring in chemical processes. It is related to
field of spectroscopy, which measures energy spectra of molecular systems by
analyzing absorption and emission of light and other radiation. Hence, the two
fields complement each other. Theoretical results of quantum chemistry can be
compared for example with measurements from infrared spectroscopy, nuclear
magnetic resonance (NMR) spectroscopy and scanning probe microscopy, see
Engel [2006].

This work is focused on the electronic structure problem. Electronic structure
represents the states of electrons in an electrostatic field created by stationary nu-
clei. The nuclei are considered stationary within the frame of Born-Oppenheimer
approximation, which is based on the observation that electrons in molecules are
much lighter and faster than the relatively cumbersome nuclei. Hence, the wave
function of electrons can be treated separately, see Combes [1977].

Ground state of a quantum-mechanical system is defined as a state with the
lowest energy. Finding the lowest-lying states is important because electrons
naturally fill the lowest available energy levels first (aufbau principle, see Park
and Stetten [2001]). Finding the low-lying states is important, because they have
the strongest influence on the behaviour of the system, due to the elementary
principle of extremal action. It follows that at low temperatures, these are the
most frequently populated states, i.e. frequently occuring in the Nature.

Moreover, quantum effects are usually strongest at low temperatures, when
the interaction with environment is weak and the system is coherent. When the
system interacts with environment, for example due to temperature effects or
during a measurement, quantum coherence is shared with the environment and
appears to be lost with time in a process called decoherence. Consistently, with
increasing temperature, quantum behavior is apparently lost, similarly to how
energy appears to be lost by friction in classical mechanics. Notice that here
we do not assume equivalence between quantum wave function collapse during
measurement and quantum decoherence, as this is a subject of quite a heated
debate, see Nielsen and Chuang [2009], Schlosshauer [2019], Sergi and Kapral
[2004].

The ability to accurately describe quantum molecular systems is crucial. Find-
ing effective solutions to electronic structure problem allows us to accurately pre-
dict the structure of molecules, their spectroscopic properties, or model their
reactions. Considering larger systems, quantum chemistry can model properties
of nanomaterials, and reactions and processes in biological systems.

Over the time, electronic structure calculations have found numerous applica-
tions in chemistry, including the study of catalysis, magnetic systems, nanopar-



ticles, quantum dynamics, excited states, in transition metal chemistry and in
organic chemistry, see Taylor-Smith [2019], hong Lam et al. [2020]. Through
applications in the aforementioned fields, quantum chemistry also contributes
to chemical industry by deepening the understanding of underlying processes,
allowing further improvement, see Slater and Johnson [1974], Ess et al. [2019].

Electronic structure theory is used in pharmaceutical research and drug de-
sign. Considering the biological systems, for instance, through study of interac-
tions in nucleic acid bases of DNA, quantum chemistry enabled understanding of
processes occuring during genetic modifications (see Park et al. [2015]), see also
van Mourik [2004] and the debated topics Turin [1996], Higgins et al. [2021].

Moreover, quantum chemistry continues to show value for experimental spec-
troscopy itself by supporting and interpreting experimental data, see Engel [2006].
It may come as a surprise, but field of spectroscopy saw important contributions
even to theoretical physics. In cosmology, the study of observed spectral emis-
sion lines of distant galaxies led to the discovery that the universe is expanding
rapidly and isotropically (independent of direction) in 1920s, confirmed eventu-
ally by the discovery of microwave background radiation in 1965, see Hurst et al.
[2021]. Of course, in 1920s, there was no contribution of computational quantum
chemistry, we only mention this example to show the connection between physics
and spectroscopy.

Solving the electronic structure problem

The electronic structure of molecular systems is described by the time-independent
Schrodinger equation

H|¥) = E|¥) (1)

where E is the energy of eigenstate |¥) of the Hamiltonian H corresponding
to the wave function W. Note that 1 is an eigenvalue equation. Within the
Born-Oppenheimer approximation, the electronic Hamiltonian in its nonrelativis-
tic form reads

H = T+U
€ZA 1
dmeg Tia

—*ZZ

*ZZ

i J>0

(2)
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The Hamiltonian operator is composed of kinetic term of electrons followed by
a term corresponding to Coulomb attraction between electrons and nuclei and a
term for Coulomb repulsion between electrons themselves. Electrons are labelled
with indices ¢ and j, nuclei with A. Z4 represents the nuclear charge, r;4 is
the distance between electron 7 and nucleus A and r;; is the distance betweem
electrons ¢ and j. Here, h = 1.054 572 x 1073*J - 5 is the reduced plank constant,
g9 = 8.854 188 x 1072 Fm ™! the vacuum permitivity, m. = 9.109 384 x 103! kg
the rest mass of electron and e = 1.602 177 x 107 C its charge. In the rest of
this work, we work in atomic units.

The basic method for solving equation 1, upon which other, more advanced
methods build, is the Hartee-Fock method (HF), also known as the self-consistent
field method (SCF). Hartree-Fock method assumes that the wave function can

4



be approximated by a single Slater determinant. By employing the variational
method, one can derive k£ coupled equations for k spin-orbitals. Their solution
yields the HF state and HF energy of the system. For a self-contained introduction
to the HF method, see Szabo and Ostlund [1996].

The essence of the HF method is to transform the original n-electron prob-
lem to one-electron problems by means of the mean-field approximation. We
distinguish two types of one-electron wave functions, so called orbitals.

Spatial orbital, 1(r), where r is a plain location in space, determines the
distribution of an electron within a molecule, such that |¢)(r)[*dr is the probability
of finding the electron in the small volume element dr in around r. A requirement
of orthonormality is usually imposed upon the set of molecular orbitals

[ el @) = 3. (3)

Were the set {1;} complete, it would form a basis of all scalar functions f(r). In
practice, we work with a finite set of molecular orbitals (MOs), which only span
a certain region of complete space. We can, however, describe results as being
“exact” within the subspace spanned by {¢;}. In this work, when we talk about
the basis, we usually refer to a set of molecular orbitals, which form the one-
electron basis for Slater determinants spanning the Hilbert space, within which
we search for eigenstates of the electronic Hamiltonian.

In order to completely describe an electron in a molecule, we need to specify
its spin. But spatial orbitals, ¥;(r) do not include the information about spin.
Spin-orbital, x(x), whose location and spin is described by a composite spatial-
spin variable x, is a type of molecular orbital which includes this information by
incorporating one of the two orthonormal spin-functions, a(w) or f(w),

Yi(r) a(w)
X(x) = x(r,w) = or (4)
Pi(r) Blw)

Here, the unspecified variables of w serve only for defining o and 3 as functions,
e.g. to be able to use standard integral definition of orthonormality (equation 3)
of a and . Thus, each spin-orbital corresponds either to 1 or | projection of
Sspin.

Now consider a wave function W, describing a state of n electrons. Wave
functions obey the Pauli exclusion principle, which leads to a requirement:

A many-electron wave function must be antisymmetric with re-
spect to interchange of coordinates (both space and spin) of any two
electrons.

For n electrons
WXy, ooy Xy ooy Xy ooy X)) = —W(Xq, .0, Xy oo, Xy oo X)) (5)

It follows that the wave function of HF state must be antisymmetric with respect
to electron interchange.

Let use recall that the mathematical concept of a matrix determinant is totally
antisymmetric with respect to permutations of rows and columns. Hence, we may



use the notion of determinant for a formal description of many-electron wave
function in terms of states of individual electrons, if we map them to the rows
and columns of a matrix. This is precisely what Slater determinant does.

For an n-electron system, the Slater determinant is a wave function defined
in terms of a determinant of spin-orbitals x;(x;)

xi(x1) xao(x1) -0 Xa(x1)
U, (x1 %o . X)) = \/171—, Xl('XQ) X2(2X2) Xn(:XQ) ‘ (6)
X1(%n) X2(Xn) o0 Xa(Xn)

This determinant has exactly the structure that we were looking for. As
mentioned above, the HF method variationally optimizes the wave function in
the form of a single Slater determinant.

The formalism of second quantization is an efficient and in quantum the-
ory frequently used approach, which found its use also in quantum chemistry,
especially in post-HF methods (see below). It brings a description of a many-
electron problem in an occupation basis representation. With this formalism, one
can transform properties of determinants to algebraic properties of creation and
annihilation operators. Consider a state of a system with k spin-orbitals with
n' spin-1 electrons and n* spin-| electrons, then the following occupation basis
notation is adopted

{lning ... m) }  ¥n; €{0, 1}, such that n', n' is preserved, (7)

where n; is the number of electrons occupying spin-orbital j, i.e. n; determines
whether the spin-orbital is occupied or empty in the given configuration.
Imagine modifying 7 by lifting the restriction on the total number of electrons.
Such set would span the so-called Fock space, which describes scenarios with
different number of particles in the system, see Kutzelnigg [1982].
Now let us introduce the notion of creation (annihilation) operator acting on
spin-orbital j. These operators are defined by their action

al0) = [1),
ajT|1> = 0,
aj[1) = 10),
a;[0) = 0. (8)

Here, 1 denotes the Hermitian adjoint (conjugate transpose in case of matrices
and complex conjugate in the special case of scalars). The second quantization
incorporates Pauli exclusion principle by postulating the following anticommuta-
tion relations

{aéiTa agy} = 5ij5uw
{al'’, af"} =0,
{af, af} = 0, (9)

where pu, v € {1, J}, where we included spin indices to show the anticommuta-
tion relation for the case of different spin projections.



The Slater determinant of the HF state (reference) represents the Fermi vac-
uum for a given system and excited determinants are formed by action of the
second-quantized operators on this state.

Notice that in the second-quantized formalism, we can expand any operators
in terms of creation and annihilation operators. In the rest of this text, such
expansion is used for Hamiltonian.

Note that throughout this work, indices in subscript or superscript do not
denote that these are the indices of covariant or contravariant tensors. Also, in
this text, the word “tensor” may sometimes be used without the proper meaning
from physics, since this term was adopted in computer science for plain multidi-
mensional arrays, without elaborating on how they transform.

In the rest of this thesis, when we mention a molecular orbital, we mean a
pair of spin-orbitals with identical spatial part and with the combined basis of
{10y, 11, 14y, [Ty}, cf. a Kramers pair, in the relativistic case.

post-Hartee-Fock methods

Let Eyr be the Hartree-Fock energy for a system with the exact ground state
energy F. Since HF state is an approximation, part of the energy which remained,
unaccounted for, is called the correlation energy

E = EHF + Ecorr~ (]-0)

The name arises from the fact, that the HF method, a mean-field approach, does
not properly take into account the correlations in the motion of electrons with
different spin. Correlations of electrons with the same spin are to some extent
incorporated through the Pauli exclusion principle and the Slater determinant
form of the wave function.

The quantum chemical methods which calculate the correlation energy on top
of the HF energy are called the post-HF methods. One of the variational post-HF
methods, the configuration interaction (CI) method, employs the following wave
function expansion

U =cprPur+ Y @+ i@+ ad) + .., (11)
S d t

where @y is the Hartree-Fock state and ®3, ® and ®T represent all possible
Slater determinants created from HF state as single, double and triple excitations
respectively. In practice, we terminate the expansion after a finite number of
terms. The expansion coefficients can be determined in a way which minimizes
energy by solving a general matrix eigenvalue equation, whose derivation is shown
e.g. in Szabo and Ostlund [1996].

As the level of excitation increases, the description reaches higher accuracy
and it gradually approaches the limit called the full configuration interaction
(FCI) limit, where all excitations possible within a given set of orbitals are in-
cluded. However, notice that the number of determinants required in the FCI
expansion grows factorially with the number of electrons and orbitals. Alterna-
tively, we may say that the associated Hilbert space grows exponentially. In prac-
tice, this typically yields FCI calculations with more than 18 orbitals intractable.
Even though the FCI energy cannot be calculated for practical systems of mod-
erate size, it represents the “exact” energy within the given finite MO basis and
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therefore sets a target for other post-HF methods. It follows that the quantum
chemistry works almost exclusively with approximate methods. Even then, the
scaling of ab-initio methods typically represents a serious limitation. This is the
motivation behind the development of tensor-network based methods, a topic
central to this work.

An important concept developed for capturing strong correlations within a
subset of molecular orbitals is the complete active space (CAS) approach. Within
this method, the MOs are classified as:

1. core orbitals, which are always doubly occupied
2. active, partially occupied orbitals
3. virtual orbitals, which are always empty

For n electrons in k active orbitals, we use the notation CAS(n, k). In case of the
CASCI method, the configuration interaction wave function expansion contains
all Slater determinants corresponding to FCI within the active orbitals. The CI
coefficients are then variationally optimized. When also the one-electron basis is
optimized simultaneously, we talk about the complete active space self consistent
field (CASSCF) method. Notice that the selection of orbitals, which should be
included in the active space is a complex process and in practice it often relies
on chemical intuition of the researcher, see Golub et al. [2021].

As is apparent from the scaling of the number of terms of sum 11 with the
number of orbitals, the problem of post-HF methods is often the huge computa-
tional effort, which makes it difficult to apply them efficiently to larger systems,
even when employing the CAS approach.

In quantum chemistry, we differentiate between various types of correlation.
A certain amount of electron correlation is already considered within the HF
approximation, found in the electron exchange term describing the correlation
between electrons with parallel spin, i.e. the exchange correlation. The rest of
the electron correlation is commonly classified either as dynamical or static. The
dynamical correlation due to the correlated movement of electrons, as they tend to
avoid each other. Static correlation, on the other hand, arises from the proximity
of energy levels in the spectrum of allowed states. Let us quote the textbook of
Jensen [2006] on static correlation:

“The non-dynamical part is associated with electrons avoiding each
other on a more "permanent” basis, such as those occupying different
spatial orbitals. The latter is also sometimes called a near-degeneracy
effect, as it becomes important for systems where different orbitals
(configurations) have similar energies.”

Quantum chemical methods perform differently when applied on systems
whose electronic structure is dominated by different types of correlation. Let
us mention few examples from the wide class of ab-initio methods.

There are methods which typically perform well for systems dominated by
static correlation, where many Slater determinants are necessary for even a qual-
itative description. These include, for instance the methods based on CASCI,
or CASSCEF. However, these methods usually fail to correctly account for dy-
namical correlation due to the limited size of CAS and as we mentioned above,



the selection of CAS is a complex procedure, see Levine et al. [2021]. An exam-
ple of approximated CASCI method is the density matrix renormalization group
(DMRG), see Schollwock [2005].

In contrast, the methods based on Mgller—Plesset perturbation theory (see
Band and Avishai [2013]), or Green’s function theory usually perform better
when treating systems dominated by dynamical correlation. A notable example
is the coupled clusters technique, see Bartlett and Musial [2007]. Nonetheless,
these methods may struggle when multiple Slater determinants are needed for
reference, for the case of nearly degenerate problems.

There are also methods which attempt to combine the approaches from both
groups (Park et al. [2020]). For instance, the n-electron valence state perturba-
tion theory (NEVPT) is a perturbative treatment, which applies Mgller—Plesset
perturbation theory to multireference CASSCF wave functions, see Kollmar et al.
[2021].

Our focus

Despite an immense progress in recent decades due to novel methods and formi-
dable advance in computational technology, the calculation of correlation energy
still remains a challenge as of today. Moreover, there are classes of chemical
systems which are still awaiting for a reliable description.

Above, we have defined the two notable classes of electron correlation. Con-
sidering the dynamical correlation, presently available methods, like coupled clus-
ters, are able to treat this problem reasonably well. In particular the CCSD(T)
method which includes single, double and triple excitations (treated perturba-
tively), is known as a “golden-standard” of quantum chemisty, which can provide
spectroscopic accuracy for systems of a medium size, whose electronic structure is
dominated by dynamical correlation. If, for the moment, we put aside the higher
order polynomial computational cost of CCSD(T), which prevents its application
on larger systems, we can, for the purposes of this text, consider the problem
of dynamical correlation to be solved. Although several multireference general-
izations of coupled cluster methods have been introduced Lyakh et al. [2011b],
none of them is an obvious choice, they are usually applicable only to very small
CASes and their development is still an active area of research.

The situation is indeed very different for systems suffering from quasidegener-
acy. In fact, there is no “golden standard” method for static correlation except for
CASCI/CASSCEF, which are however limited by the active space size, due to their
factorial scaling mentioned above. The quasidegeneracy (or near-degeneracy)
problem appears with small energy gaps between the boundary orbitals. The
more orbitals are close in energy, the more the electronic structure is dominated
by static correlation. We call these systems strongly correlated. Such class of
systems typically require a large active space even for a qualitative description.
Notable multireference systems include transition-metal complexes, open-shell
and excited electronic states, homolytic bond breaking/formation and transition
states of chemical reactions, see Kurashige et al. [2013], Beinert et al. [1997],
Fontecave [2006]. As an example of very important molecules which require
large active spaces, much larger than CASCI/CASSCF can afford, we mention
transition-metal complexes with multiple transition metal atoms, namely the Iron
sulfur [Fe-S| clusters, e.g. [4Fe-4S]. They represent an ubiquitous motif in active
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sites of wide class of metaloenzymes which are responsible for many chemical
processes in living organisms (e.g. photosynthesis or respiration). The need for
large active spaces stems from open d-shells of multiple Fe atoms. The quantum
chemical density matrix renormalization group method (QC-DMRG, see Wouters
and Neck [2014]), as an example of tensor-network based approaches, has already
proved itself as one of the computational methods capable of an accurate elec-
tronic structure description of such systems. Sharma et al. [2014]

In this we work, we present an important step towards a treatment of sys-
tems with even larger active spaces than those treated so far, in particular the
massively parallel QC-DMRG method. As is shown below, our state-of-the-art
implementation named MOLMPS (Figure 1) in fact opens the way for treat-
ment of previously intractable systems, like the so-called “holy grail of quantum
chemisty”, the FeMoco cofactor, see Lancaster et al. [2011]. This implementation
is designed for supercomputer platforms in which it reduces the computational
time significantly by simultaneous execution on thousands of CPU cores. Also,
the distribution of memory among individual nodes allows for more accurate
treatment of large systems, because DMRG suffers from substantial requirements
on RAM memory size. To the best of our knowledge, this is the first implemen-
tation of DMRG which is truly massively parallel. On the examples of relatively
large benchmark systems (including FeMoco cluster), we show that MOLMPS
has a favourable scaling of runtime with respect to the number of CPU cores

MoL VIS

Figure 1: The logo of MOLMPS: our massively parallel DMRG program.

The DMRG wave function parametrization brings many advantages, and
among others serves as an efficient tool for calculation of useful quantities, for
instance various correlation measures, which can be used for a detailed analysis of
interactions between parts of the system (orbital clusters). We use it to describe
the chemical bonding structure, and we apply it on newly synthesized molecules
with complex electron-deficient bonds.

Despite very large active spaces which our massively parallel DMRG imple-
mentation offers, except for the smallest molecules, CAS cannot comprise all the
virtual orbitals and the missing dynamical electron correlation might play an
important role. For this reason, we have developed the tailored coupled cluster
method in our group, which combines DMRG with the coupled clusters Kinoshita
et al. [2005], Veis et al. [2016]. The former is responsible for proper description of
static correlation whereas the later captures the missing dynamical correlation.

In this work, we have extended this approach to the fully relativistic (i.e. four-
component) domain. We have developed the new implementation and showed
its performance on heavy diatomics. For compounds with heavy atoms, like
thallium, arsenic and antimony, which are studied in this work, the relativistic
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description is crucial, since the movement of their electrons reaches speeds in
tens of percents of the speed of light in vacuum. Hence, their masses and the
resulting spectra are heavily altered. Let us mention a notorious example of an
atom of gold. There, the 1s electron travels on average at 58% of the speed of
light. The influence of such speeds on spectrum is so profound, that gold would
be of silver color if our description did not include relativistic effects (see Pyykko
and Desclaux [1979]). Moreover, because of spin-orbit coupling and the splitting
of energy levels due to Zeeman effect, the relativistic systems typically exhibit
even stronger multireference behaviour than their nonrelativic counterparts, see

Schwarz [2010].

Zergy

Figure 2: Artist’s impression of the TCCSD method, featured frequently in
posters and graphical abstracts of our group. Graphical design: A. Antalik 2018.

Let us now turn back to the nonrelativistic domain. There, in real-life appli-
cations (molecules with tens to hundreds of atoms), we meet the limits of high
order polynomial scaling of coupled clusters (which we put aside in the beginning
of this subsection), e.g. O(n®), with n being the basis size for CCSD. Therefore,
we took the path of domain-based local pair natural orbital (DLPNO) approach
to the optimization of CCSD. We employ it in the CC part of the TCCSD cal-
culation. DLPNO technique employs the concept of locality and compression of
the virtual space and presents a near linear scaling approach. This leads to a new
version of tailored coupled cluster method, the DLPNO-TCC, capable of treat-
ing systems with thousands of basis functions. In this work, we limit ourselves
to showing that our implementation can capture more than 99.9% of correlation
energy relative to standard TCCSD with much smaller computational costs. Ap-
plication on previously intractable systems is beyond the scope of this work, but
represents an important outlook.
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Structure

This thesis is focused on developments of the aforementioned methods, their
implementations, and demonstration of their performance on benchmark systems.
In the following paragraphs, we specify the topics covered in this thesis.

First part of this work is concerned with the summary of the concept of MPS
and the description of the DMRG algorithm (sections 1.1 and 1.2).

In the practical part of this work, we present our “MOLPMS” program for
high performance computing (HPC) platform (section 1.3).

In section 1.4, we show how the correlation quantities obtained from matrix
product states can be used to analyze complex chemical bonds.

Then, after summarizing the equations behind the coupled cluster method
(sections 2.1), we turn to the problem of dynamical correlation and how it can
be calculated on top of DMRG by tailored coupled cluster method (section 2.2).

After that, we present the first-ever application of DMRG-TCC to relativistic
domain, by benchmarking it on heavy diatomics (section 2.3).

The last part of this work concerns an implementation of the highly optimized
version of tailored coupled cluster method, the DLPNO-TCC. (section 2.5).

My personal contribution to the aforementioned projects is disclosed below in
the section List of publications in the description under each publication. The list
of publications is followed by attached fulltext of these publications, distributed
as a separate document.
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1. Density matrix
renormalization group method

1.1 Matrix product states - MPS

Wave function of a general n-orbital state of a molecular system can be written
as

|\I/> = Z Calagag...an |a1a2a3 S an> ) (11)
{ai}

where Cy,a5as...0, 15 in general a tensor of complex coefficients. Without imposing
any symmetry restrictions (i.e. n,, ng, spin) there are in total 4™ coefficients,
since vector subspace corresponding to one molecular orbital has a dimension 4,
ie. a; € {|0),1),[4), |14} Obviously, the memory requirements for storage of
such a wave function parametrization scale exponentially.
Matrix product state (MPS) is a wave function parametrization which factor-
izes the coefficient tensor into a product of matrices
Coranaza, = APASZ . AT AN (1.2)

n—1

where A7' and A% are row, column vectors respectively and between them are
either square or rectangular matrices. The single-orbital basis index a; in A{*
means that we need to store 4 matrices for each orbital, i.e. 4n matrices in total.
These indices are called physical indices. When the individual matrix product is
carried out, the matrices are contracted over their row/column indices, termed
virtual indices, as depicted on the scheme in Figure 1.1. There are multiple
approaches to factorization of a wave function into form of contraction of tensors
or matrices, called tensor networks. The most common schemes are depicted in
Figure 1.1. These types differ by the number of virtual indices and by the topology
of virtual indices, which connect the individual tensors. The dimension of virtual
indices (bond dimension) is up to some extent arbitrary. With increasing bond
dimension, the MPS representation of a wave function converges to the exact
form of 1.1, see Schollwock [2011]. Indeed, in practical applications, we typically
seek to balance the computational requirements connected with the contraction
of virtual indices with accuracy of the wave function representation given by its
bond dimension.

Not just in quantum chemistry and solid state physics, but also in other
fields Wang et al. [2021], matrix product states (also called tensor trains) have
been used as a data structure capable of capturing various forms of correla-
tions between subsystems. Matrix product states are particularly efficient in
representation of correlations between subsystems corresponding to neighbouring
sites/orbitals Schollwock [2011]. Hence, in systems with nearest-neighbour inter-
actions, i.e. 1D structure of correlations, MPS is an optimal choice of a wave
function parametrization. Let us cite the Hubbard model and the Kondo prob-
lem as notable applications, see White [1992], Nakatani [2018]. Therefore, MPS is
an appropriate representation for quantum chemical wave functions in which the
correlation between orbitals can be localized to a certain degree, see Barcza et al.
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Figure 1.1: Different types of factorization of a wave function into form of con-
traction of tensors or matrices, called tensor networks. In this figure, the open-
ended lines correspond to the physical indices a;, while the lines which connect
two circles (tensors) represent contractions over virtual indices, whose dimension
can be chosen to reach desired accuracy of our approximation of W. The fac-
torization in form of matrix product is MPS and corresponds to the equation
1.2. The scheme including three-legged tensors (three virtual indices) is called
the tree tensor network (TTN) and the scheme with up to four-legged tensors
connected in a two-dimensional lattice is used in the projected entangled pair
states (PEPS) technique. The general trend is that the order of computational
complexity increases with the maximal number of virtual legs per tensor used in
the scheme. Scheme from Biamonte and Bergholm [2017].

[2011]. It follows that a localized basis is preferable. The manual for the MPS-
based DMRG method implementation “Block” in Orca program Neese [2017]
advises users to use split-localized orbital basis (localization around bonds): “It
is highly recommended to start the calculation with split-localized orbitals”. These
orbitals localize the basis-dependent correlation to between the “neighbours” in
the sense of atoms connected with substantial chemical bonds, see Bytautas et al.
[2003] for more about split-localized orbitals and Olivares-Amaya et al. [2015] for
their performance assessment in DMRG.

Indeed the question arises of how to find an optimal form of MPS 1.2 for a
specicif problem. For this purpose, let us introduce the numerical technique of
singular value decomposition (SVD) Golub and Reinsch [1970], which generalizes
the concept of eigenvalue decomposition. SVD decomposes matrix M into a
product form

M =UZVT, (1.3)

where U, V are complex unitary matrices and X is rectangular diagonal matrix
including only non-negative real numbers on its diagonal. If the original matrix
M is real as well, then U, V are guaranteed to be real and orthogonal. The diag-
onal elements of X are called “singular values”. The number of positive singular
values is equal to the rank of M. SVD is a powerful tool which found numerous
applications, e.g. in signal processing and image compression.
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In principle, MPS can be generated step by step by employing SVD on 1.1
|\I/> = Z Calazag...an ajasoadsg . . . an> = Z Oal;a2a3,__an |a'1a2a3 s a”l’b) -
{ai} {ai}

= Z Z (A(lll)ul v, Buisagas...an larazas . . .a,) =
fa} M YT
U

b vt
= Z Z (A?l)ul CI//l;a2a3...an ‘a1a2a3 s an> = Z CI//1a2;a3...an aijasq0as . .. Cln> =
{a;} n1 {ai}
- Z Z (Ag&)l/l (A(212)Z; Czll/g;agazp..an |a’1a2a3 e an> : (14>

{ai} V1, V2

Here, 14 is the first virtual index. In the third row, we have absorbed o,, into B
thus creating C”. If we again use SVD, this time on C’, we obtain the last row.
After repeated analogous applications of SVD, we arrive to MPS

(W) = > > (A1), (AP), (AP) .. (AR)" " awaz...an),  (1.5)
{ai} {v;}
where the virtual indices v; are fully contracted. The form of MPS obtained in
1.5 is equivalent to the MPS factorization in equation 1.2 depicted also in Figure
1.1.

Notice that alternatively to equation 1.4, SVD could be applied to the last
index on the right of tensor C, i.e. a,, and composing the remaining indices on the
left to the B tensor. This SVD would yield matrices By, ay..an_1:m_10vn 1 (A?L")V%1
and we could continue to generate the A matrices from the right.

It follows from the properties of the SVD decomposition, that it is not unique.
There is some gauge freedom in the basis of vector spaces of U and V. This can
be fixed along the MPS “matrix chain” to form a so-called left-canical form of
MPS (here shown for the A matrices generated on the left) by demanding

S (AP (AP = b, (1.6)
A4y Vi1
Analogous relation may be imposed on the A matrices generated on the right,
leading to right-canonical MPS. For the DMRG algorithm, a relevant form of
MPS is the so-called “mixed canonical” MPS (see Schollwock [2011]), which is
a combination of both left-canonical and right-canonical MPS, and in which we
generate part of the matrices from the left and part from the right

|¥) = Z APAS AP Wb AT A |aqay .. ap) . (1.7)
{ai}
The special tensor W@+1-%+2 in the middle is left with two physical indices. The
reason why this is practical will become apparent in section 1.2.

The presented method of finding the exact MPS factorization is indeed useful
only when the coefficient tensor C' is representable in memory, which typically is
not the case due to exponential character of its dimension with growing number
of orbitals n. In practical approaches we do not start with the whole Cy,4,. 4.,
but we instead fill the matrices of 1.2 with some appropriate initial guess and then
find optimal form of MPS iteratively, for instance, using the sweeping procedure
of the DMRG method, which is presented in section 1.2. Also, it is useful to use
sparse representation of tensors and matrices by exploiting various symmetries
specific for a given Hamiltonian. This can lead to a significant reduction of storage
requirements.
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1.2 DMRG algorithm

Density matrix renormalization group method is a practical way of generating
optimal matrix product state representation for lowest eigenstates of a certain
class of Hamiltonians. It was introduced by White [1992] in solid-state physics
for 1D lattice problems. For such problems, DMRG is still one of the most
efficient approaches as of today. Since 1992, DMRG has been generalized for
use on many different Hamiltonians including the quantum-chemical one, see the
extensive review of Schollwock [2005]. The method is particularly efficient for
systems with somewhat local interactions, ideally with 1D topology. However,
since its introduction in quantum chemistry by White and Martin [1999], it has
been realized that DMRG is a very robust approach also for generic (non 1D)
molecules, especially suitable for description of strong correlations in large active
spaces.

The nonrelativistic quantum chemical Hamiltonian has the following second
quantized form

1
H =3 hjala,+ 2 > (palrs) ajala.a,, (1.8)
pq

pqrs

where hf and (pq|rs) represent one and two-electron integrals in a spin-orbital
basis. Here, a, is an annihilation operator acting on spin-orbital indexed p. In
what follows, when we explicitely work with molecular orbitals (not spin-orbitals),
we for simplicity assume the restricted basis (restricted HF). One-electron and
two-electron integrals in (1.8) are defined as

1

(palrs) = [ s a0} (o) () e ()

m = [ X ) x(x), (1.9

where x;, denotes p-th spin orbital, rj represents the distance between two points
in space, and x is the composite spatial-spin variable. Here, 15 originates from
Coulomb potential term in the first-quantized form of the electronic Hamilto-
nian. h(r;) is the “core-Hamiltonian” describing kinetic energy contribution of
individual electrons and their interaction with nuclei, whose spatial coordinates
are frozen within the frame of the Born-Oppenheimer approximation, see Szabo
and Ostlund [1996].

For later reference, we introduce the notion of reduced density matrix. For a
system characterized by a pure state |¥), the state of its subsystem X is encoded
in its reduced density matrix px defined via a partial trace

px = Try | W) (T, (1.10)

where Y is the other subsystem, i.e. the rest of the system. The operation Try
means carrying out the trace over Y.

In the rest of this section, we describe the consecutive steps of the QC-DMRG
algorithm. Compared with other iterative methods, these steps are, however,
relatively involved. The extent of truly self-consistent description of DMRG up to
implementation details is beyond the scope of this work, see also the review of
Schollwéck [2005] for an alternative description of DMRG and an implementation
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oriented text Battaglia et al. [2018]. In this section, we attempt to describe the
basic workings of the method, assuming a nonrelativistic domain, for simplicity.
Let us begin by listing the four main steps of each DMRG iteration, which are
further decribed below

1. Formation of second-quantized pre-summed operators
2. Diagonalization of the superblock Hamiltonian using the Davidson method
3. Formation of renormalization matrix via SVD of wave function matrix

4. Blocking and renormalization of operators for the next iteration

Orbital ordering

At the beginning of QC-DMRG procedure, we have to map the molecular orbitals
onto a 1D lattice. Orbitals should be ordered in a way which keeps mutually
strongly interacting orbitals near each other. A sufficiently good orbital ordering
can be determined using techniques based on quantum-information theoretical
concept of mutual information as shown in Legeza and Sélyom [2003], defined
also in equation 1.30 below. Such optimizations are typically carried out using
preliminary low precision DMRG calculations preceding the production run and
modern implementations, including our implementation, perform these automat-
ically.

Basis and blocks

Even though other variants exist, in practical QC-DMRG, the Hamiltonian diag-
onalization is performed within a vector space composed as a tensor product of
four blocks (left block, left site, right site, right block).

The DMRG sweeping procedure starts with just a single orbital in the left
block. In each DMRG iteration, left block is enlarged by one orbital, as depicted
schematically in Figure 1.2 At the point when the maximal size of left block
is reached and right block size is just 1 (one orbital), the direction is reversed
and the right block is enlarged. The sweeping is then repeated until the energy
converges. Notice that the two site-blocks in the middle are always composed of
just one orbital each.
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Figure 1.2: The sweeping procedure of two-site DMRG illustrated on the example
of 10 orbitals in active space. Each black dot corresponds to a molecular orbital.
Red rectangles delimit the subsystems (blocks) L and R, with two single-orbital
blocks in the middle. The arrows represent direction of a given “sweep”. This
scheme shows only frames corresponding to configurations in 4 selected iterations
from the total of 13 possible configurations of the procedure for this number of
molecular orbitals involved. (The direction is taken into account). Image from
Szalay et al. [2015].

As we mentioned in section 1.1, a vector space of a single molecular orbital
is spanned by four basis states {|0), 1), [|{),|Tl)}. In this basis, a full matrix
representation of creation operators takes form

00 0 0 0000
1000 0000

T T

“Tloo oo MTl1o0o00 (1.11)
0010 0100

When we start in the first iteration with such operators acting on the left block
and then enlarge it via a full Kronecker product with identity a$ ® I to obtain
its representation for the enlarged block, its matrix grow from 4 x 4 to 16 x 16.
Obviously, if we keep enlarging the matrix in this fashion, we might soon run out
of storage space.

Here the elementary principle of DMRG renormalization comes into play. This
is to determine optimal left and right block many-electron basis with dimension
bounded by a threshold M, called bond dimension (corresponds to the same term
defined in section 1.1).

Consider having the left block of dimension M and of L orbitals, which is
then increased by adding one orbital (site-block). The full vector space of the
new enlarged left block is spanned by {|i;)} ® {|¢)}, where {|i;)} and {|q)} are
the bases of the former left block and the added site-block respectively. To
retain the bond dimension of M, the enlarged basis is truncated by the action of
renormalization matrix O

l) = > O 1) @1q), (1.12)

(Irq)

where (I, q) represents composite index of former basis indices {;, and ¢. For later
convenience, we denote the “input” index (column index) in subscript and the
“output” index (row index) of O in superscript. Here O is a rectangular M x 4 M
matrix, which we define further in this section.

Instead of storing the explicit form of many-electron basis determinants in
each iteration, we store the representation of second-quantized operators and the
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renormalization matrices. These operators are needed for performing the action
of Hamiltonian on the wave function, while the explicit basis determinants are
not required for the process of finding the ground state.

All the operator matrices which we need for an action of the Hamiltonian on
a block with single orbital can be generated from creation operator matrices in
equation 1.11 by the means of matrix multiplication, Hermitian conjugate and
scaling by one-electron or two-electron integrals.

When we perform the action of Hamiltonian on a block of multiple orbitals,
we need to take into account that the renormalized (truncated) basis of the block
is incomplete. Consider an operator P represented by a product of creation and
annihilation operators. As we work in truncated basis, typically, P cannot be
generated as a product of matrices of individual creation and annihilation opera-
tors. Instead, starting from a single-orbital in the first iteration and then in every
further iteration, we generate a renormalized form of P for the enlarged block and
we save it. Therefore, before moving to the next iteration, we have to prepare (by
“blocking”, explained below) and renormalize all the intermediaries necessary for
forming P and other operators required for the action of Hamiltonian in the next
iteration.

Operators and pre-summation

Projecting the Schrodinger equation onto the product space of bases
)}y @ {la)} @ {lg2)} @ {|rr)} corresponding to the left block, two site-blocks
and the right block, we obtain the effective equation

HY - EW
where |W) = Y (¥), 0 s 1) @101) ®g2) @ [rR), (1.13)
l,q1,92, TR

and where (¥), - are the expansion coefficients of the wave function.

The most computationally demanding part of the DMRG procedure is the
application of Hamiltonian on the wave function, due to numerous matrix-matrix
multiplications. To decrease the computational complexity, most DMRG imple-
mentations work with the so called presummed (or partially summed) operators,
see Xiang [1996]. These are intermediares formed by summing operator matrices
scaled by MO integrals. Consider, for instance, an operator P corresponding to
the action of any two creation operators of 1 electrons within the left block

Py = > (pglrs)alial., 1 s ¢ left. (1.14)

p,q € left

Here P, is a pre-summed operator with two free indices r, s pointing outside the
left block (i.e. {P,s} is a set of pre-summed operators).

In order to represent a Hamiltonian term (terms) with four creation /annihilation
operators, an application of operator P, on the left block has to be accompanied
by a concurrent application of two other creation/annihilation operators acting
on other blocks, in particular ai TaiT

M oot Tt Tt
Hiyolo 2 > (pq|rs) ayrapra,0aly = > Py ayraiy.  (1.15)
p,q €left, r, s ¢ left r, s &left
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Notice the correspondence of the physical indices of aITalT with the free indices

of P.;. Once a loop over all possible r, s is performed, then all the two-electron
terms with two creation operators in the left block have been applied to the wave
function. (For a given 111 spin combination.)

Notice that the use of partially summed (pre-summed) operators saves the
number of matrix-matrix multiplications needed for the H |¥) action (see below).

The whole Hamiltonian application (H |¥)) is finished once all similar loops
over free indices are performed for one, two, three, and four creation/annihilation
operators in the left block, and the action corresponding to their respective free
indices is applied to the other blocks, including all contributing combinations of
spin indices.

The pre-sumation can be also performed for the right block instead of the
left block. This option is used when right block is larger than the left block, to
contract the maximal possible number of terms in the partial sum.

Notice that the operators that build up the Hamiltonian always have at most
two free indices. This holds both for pre-summed and for standard operators.
For this to hold, when more than two creation/annihilation operators act on one
block, the pre-summation then has to be performed on this block. Otherwise the
largest block is chosen for pre-summation

H |¥) and the Davidson algorithm

When applying the Hamiltonian on the wave function, we do not form the matrix
of the Hamiltonian from equation 1.13. Instead, we employ the tensor product
form of vector space. Consider an example of the operator combination from
equation 1.15, where P, acts on the left block, and the case when operators
aiTalT act in the right block, ie. P, @1 ®1® aITaZT, with identities in the
middle. Then, the product form of the Hamiltonian matrix reads

(@@ (] (Pe@ T @ T@alaly) lin) |ar) ) Ire) =
= (4| Pusli) (gl alyaly [ra) 0% 6% (1.16)

q2’
where we have omitted “®” between the basis states for better readability. Using
the approach in equation 1.16, the application of the whole Hamiltonian term
from equation 1.15 on the wave function can be compiled by composing only
operator matrices acting in the bases of individual blocks.

Most DMRG implementations use either Davidson algorithm or Lanczos al-
gorithm to find low-lying eigenstates of the superblock Hamiltonian. These nu-
meric diagonalization methods are based on iterative application of the matrix
(Hamiltonian) on a trial vector (trial wave function), i.e. performing H |¥,). By
repeated application of Hamiltonian on the trial wave function, these iterative
methods build the so-called Krylov space

K, (H,¥,) = span{\l’t, HY,, H>V,, ..., HH%}. (1.17)

The approximations to the low-lying eigenstates are then formed by minimizing
the residual (error in the result) over KC,. Since K, spans a basis of the space
where H acts (its domain), it follows that the method converges in at most M
iterations (in exact arithmetic), where M is the bond dimension. In practice, M is
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large, but the iterative process reaches sufficient accuracy already far earlier. For
more information about iterative diagonalization methods based on matrix-vector
multiplication, see Crouzeix et al. [1994].

For instance, in QC-DMRG with chemical accuracy requirements, the David-
son algorithm typically converges to the ground state in dozens of H |W) steps.
However, as mentioned above, H |¥) is the most demanding step of the DMRG
procedure. Hence, a lot of attention turns to optimization of this step. As de-
scribed below, in our in-house implementation, we employ several optimization
techniques accompanied by parallelization to reduce the scaling. In fact, the
computational demands of H |¥) step are so large, that a QC-DMRG calculation
without the most important optimizations easily becomes intractable, see Legeza
and Sélyom [2003].

Blocking

Blocking is a term used for enlarging the basis by a tensor product with a single
orbital site-block ¢, i.e. {|lz)} ® {|¢)}. With the enlargement of the basis, we form
also the operators and operator intermediaries for the next iteration. Consider an
example of blocking of the pre-summed operator P, from equation 1.15. To build
an analogous operator P, for the enlarged block from available intermediaries,
we have to sum over following Kronecker product terms corresponding to three
possible ways of composing P, from two operators (intermediaries)

prsz Prs®I +

+  {aglrs) I @alaly +
——

=0
+ Qrs0. ® aZT, r, s ¢ enlarged, (1.18)

where o, is a fermionic phase operator described further in this section. Here
the @, intermediary is an analogy to P,, with a single creation operator, i.e. a
pre-summed operator with one aLT partially contracted over left block according

to

Qs = . {pqlrs) al.. r, s ¢ enlarged. (1.19)

p €left
q € left site

Notice that when composing P, for enlarged left block, we only need P, ),
intermediaries available from previous iteration along with the simple single-site
operators. More importantly, we have completely avoided performing sums over
any of p, ¢ indices while still attaining the advantage of having the pre-summed
operators available for the new iteration.

In blocking, the dimension of operator increases from M x M to 4M x 4M.
(Values without using any sparsity optimizations.)

Formation of renormalization matrix

Our description of DMRG algorithm would be incomplete without explaining
how the renormalization matrix O is obtained. We already mentioned it above
in equation 1.12, where we used O for basis truncation.
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In DMRG, the renormalization matrix for enlarged block can be formed using
two possible approaches, whose result is equivalent. In both cases, we start by a
reshape of the wave function coefficient tensor (¥), . from equation 1.13
into a matrix (¥ ) (1. q1), (go,r) USING twO composite indices.

Then, we choose one of the possible approaches. The first approach performs
singular value decomposition (equation 1.3) on the matrix (¥ ), .y (4. rp)- Along
with the singular values of this matrix, we obtain its left (right) singular vectors
as rows (columns) of matrix U (or V1) from equation 1.3. These singular vectors
are then used to form the renormalization matrix O, as described below.

The second approach forms the reduced density matrix of the left (right)
enlarged subsystem, which reads

pt = Wl
pt = Wi, (1.20)

We then diagonalize p” (or p). Along with the eigenvalues of the reduced density
matrix, we obtain its left (right) eigenvectors.

From this point onward, the two approaches proceed with common steps.

Now we select a set of M of the left (right) singular vectors (eigenvectors)
and from them we form the renormalization matrix O. We choose the vectors
corresponding to M largest singular values (eigenvalues). For the case of left
subsystem, O is now a M x 4M matrix.

Notice that in this step, the new bond dimension M is arbitrary. Thus, we
may e.g. gradually increase the accuracy in the course of the calculation, as we
approach convergence. Moreover, consider defining the “truncation error” as the
sum of discarded singular values (eigenvalues). Then, we may set the threshold
for maximal truncation error as an input parameter of the DMRG calculation and
in each iteration, update the bond dimension automatically, such that we meet
this error restriction. This is the most systematic approach to DMRG accuracy,
the Dynamical Block State Selection approach (DBSS) by Legeza et al. [2003].

It has been shown by White [1992] that the form of truncation matrix defined
above minimizes the norm of error of the wave function, i.e. |||Vexact) — |Ypmra) |-
The relation between the wave function error (proportional to truncation error)
and the error in energy has been studied empirically by Keller and Reiher [2014],
Hubig et al. [2018]. Figure 1.3b shows a typical empirical relation of the two
measures of error, showing a nearly straight line in a log-scale chart. Consistently
with these findings, in practical QC-DMRG calculations, we expect the exponents
of truncation error and of the acceptable energy error in hartrees to be directly
proportional. Consequently, we may extrapolate the DMRG energies towards the
zero-truncation error case representing the exact energy, see Hubig et al. [2018].

Renormalization (truncation)

Before transition to next iteration, the operators created in blocking need to be
renormalized, in order to retain the required bond dimension M. Above, we have
shown how the renormalization matrix O is formed. Now we can use this matrix
to renormalize the operators.

Without employing sparse representation of operators, after blocking, we con-
sider an operator P which acts on the enlarged left subsystem, and whose matrix
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has the dimension of 4M x4M. Now we transform P to the truncated basis using
the M x 4M renormalization matrix Oy, for the left subsystem

P = 0,PO,. (1.21)

The resulting operator P has the dimensions of M x M in its full form.
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Figure 1.3: The dependency of DMRG energy error on truncation error, which
is calculated as a sum of discarded singular values. Further error measures are
also included in the chart on the right. Such empirical dependencies can be used
to estimate the truncation error necessary for achieving the required accuracy in
energy.

Symmetry sectors

As we mentioned above, a proper handling of sparsity due to quantum symmetries
is essential for an efficient QC-DMRG implementation. Our current implementa-
tion described in section 1.3 employs U(1) symmetry, however, SU(2) symmetry
(spin-adapted version) is under development.

The aforementioned U(1) symmetry corresponds to the conservation of total
number of spin-T and spin-| electrons. All left and right block basis states are
grouped into symmetry sectors by the number of 1 (n4) and | (n;) electrons.
Then, only the nonzero symmetry blocks of operator matrices are stored, leading
to a sparse representation.
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The dense sectors of the matrix of operator are labelled by the quantum
numbers of the corresponding symmetry sectors. These matrices along with the
rules for composing the symmetry sectors together represent the operator, yet
with much smaller computational requirements for their storage and application,
compared with the full form. Our operator storage scheme is described further
in section 1.3 and in Figure 1.4.

It is important to notice that in case of the nonrelativistic QC-DMRG, n4
and n; are good quantum numbers and all the symmetry sectors of a single site
(molecular orbital) are one-dimensional. This simplifies the work with operators
and wave function considerably. For instance, a sector of (¥) can be
treated as a matrix instead of a four-index tensor.

lp,q1,92, 7R

Jordan-Wigner mapping

In the first step of QC-DMRG, we map molecular orbitals onto a 1D lattice.
The particular choice of ordering has another consequence. Aside from a huge
influence on DMRG accuracy, our choice fixes the Jordan-Wigner mapping from
fermionic creation and annihilation operators in MO basis onto their represen-
tation on 1D lattice. In principle, the Jordan-Wigner mapping effectively maps
these fermionic operators onto “bosonic” spin-operators acting on 1D lattice,
while retaining the correct anticommutation relations of the mapped operators.
By the term “bosonic” here we mean that an operator in our implementation is
“bosonic” in the sense that the C++ operator class op_class which represents it
does not automatically incorporate fermionic anticommutation rules. For more in-
formation on Jordan-Wigner mapping and its application on tensor networks, see
Jordan and Wigner [1928], Stoudenmire [2016], Hauschild and Pollmann [2020],
Nakatani and Chan [2013].

In QC-DMRG, the Jordan-Wigner mapping is implemented using phase op-
erators o,, which appeared in equation 1.18 above, in blocking. The notation
stems from the fact that the matrix of phase operators can be built from Pauli
matrices. Its action corresponds to a simple switch of signs for sectors with odd
number of electrons. For the Jordan-Wigner mapping, we adopt the convention
of numbering the lattice sites with numbers increasing from the left to the right.

When creation/annihilation operator acts on site j on the lattice, the Jordan-
Wigner mapping requires an application of a phase operator o, acting on each
orbital ¢ such that ¢ < j. Even though this brings certain non-locality, the
application of phase operators is still fully compatible with the aformentioned
concept of pre-summation and other optimizations.

Warm-up procedure

During the first sweep of QC-DMRG, the renormalized representation of basis
and operators is not yet available for the right block. Therefore, we employ a
warm-up procedure to generate an initial guess, whose quality is reflected in the
rate of convergence of the following DMRG. In our implementation, we use the so-
called CI-DEAS procedure, described in Szalay et al. [2015]. First, we describe
the basic version thereof, the DEAS procedure (Dynamically Extended Active
Space).
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For molecular systems treated by DMRG, it is typical that the state of their
subsystems are quite strongly correlated with the environment (the rest of the
system). To recreate such conditions, we need to find representation of the right
block (the environment), which maximizes the von Neumann entropy of the left
block. For a definition of von Neumann entropy, see equation 1.27 in section 1.4.
At this point it suffices to mention that for a single orbital, its correlation with
the rest of the system is proportional to its von Neumann entropy.

When composing the environment basis, we are limited by the bond dimension
M. In practice, the maximization of the left block entropy is achieved by starting
from a HF determinant and then creating an environment basis by generating
all possible excitations of such molecular orbital of the right block, whose von
Neumann entropy is the largest. Further combinations are generated by increas-
ing the set of orbitals excited from HF reference, always by the most correlated
orbital, until M states are obtained.

Here we assume that we know the von Neumann entropy for individual or-
bitals. It can be obtained e.g. by calculating it beforehand in a low-precision
preliminary DMRG calculation. This can be performed automatically before the
production run. Section 1.4 describes how the von Neumann entropy is calculated
from MPS.

The version of the DEAS warm-up improved for the use in chemistry is the
CI-DEAS, based on the CI expansion in equation 11. Here, we generate the states
in a different order. First, we use DEAS, but we retain only states corresponding
to slater determinants singly excited from the HF state. Then, we use DEAS
again while keeping only the doubly excited states. This way, we increase the
excitation level of generated states systematically until the desired amount of M
states is obtained.

A representation of both pre-summed and standard operators is then built
within this basis by employing the knowledge of how the creation/annihilation
operators act on Slater determinants.

Further properies of QC-DMRG

In the following, we cite several notable properties of DMRG method from Schollwock
[2005] and from Chan [2004].

Considering the scaling of DMRG, the dominant term in computational com-
plexity is that of H diagonalization O (k*M?), where k is the number of orbitals
in the active space. The same computational complexity holds also for renor-
malization. The pre-summation scales as O (k*M?). The scaling of total RAM
memory requirements is O (k?M?), see Chan [2004].

The QC-DMRG method is variational and size-consistent. As we mentioned,
it is capable of capturing static correlation with high accuracy. In contrast to
some other available methods like coupled clusters, DMRG is not suitable for
systems dominated by dynamical correlation. In practical calculations, DMRG is
typically useful for active space size up to &~ 60 orbitals. For larger active spaces,
the computational requirements may be too high, but this of course depends on
available hardware and multiple other factors.

Last but not least, we notice the correspondence between DMRG renormal-
ization matrices obtained from consecutive iterations and the MPS matrices. The
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MPS matrices may be obtained by a simple reshape of renormaliation matrices.

For those O matrices used for truncation of left subsystem, the reshape reads
Off%y ¥ (AM)f (1.22)

and analogous relation can be written for the right subsystem. After reshaping

matrices for both sides, we arrive to the “mixed canonical” form of matrix product
state defined above in equation 1.7 of section 1.2.

1.3 Implementation: Massively parallel program
MOLMPS

In the DMRG algorithm, there are several steps which can be performed in par-
allel to speed up the computation. In this section, we identify such steps and
present benchmarks of our massively parallel implementation called MOLMPS,
which is designed to exploit modern high performance computing (HPC) plat-
forms.

Several approaches to DMRG parallelization have been developed over the
time. Some of them use shared memory, e.g. Hager et al. [2004], and some use
distributed memory architectures, e.g. Kurashige and Yanai [2009], Chan [2004].

The distributed approach of Chan [2004] employs parallelization over different
terms of the sum in the Hamiltonian. Tasks corresponding to orbital indices of
renormalized operators from these terms are assigned to individual CPU cores.

Alternative approach of Kurashige and Yanai [2009] parallelizes over symme-
try sectors of the basis. A novel approach has been proposed by Chan et al.
[2016], which uses the concept of matrix product operators (MPO) and leads to
a different contraction scheme which is shown to minimize the communication
between computational nodes, which is often the bottleneck of parallelization
techniques.

Presently, there are several notable large DMRG codes well known to the
community, see them described in Wouters and Neck [2014]. Most of them are
open-source and each is useful for a different class of applications ranging from
solid state physics to quantum chemistry and nuclear theory. However, to the best
of our knowledge, no previous DMRG implementation is truly massively parallel,
so that it would be able to use thousands of computational CPU cores efficiently,
i.e. with reasonable scaling of computational time with respect to the number of
cores. Our C++ implementation, called MOLMPS Brabec et al. [2020], is the
first attempt to truly port the quantum chemical DMRG to the supercomputer
platform.

Our approach to DMRG parallelization is, similarly to shared memory scheme
Hager et al. [2004], based on merging of symmetry and operator sector loops. We
use the global memory model (GM) (described below), which relies on fast intern-
ode connection. Such connection is typically, at least for most supercomputers
from TOP500 list, provided by high-throughput hardware using InfiniBand stan-
dard, an alternative to the Ethernet protocol, see Gara et al. [2011].

In MOLMPS, the storage of operators is based on sector decomposition, which
we already mentioned in section 1.2. The storage scheme is depicted in Figure
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Figure 1.4: Memory representation of individual symmetry sectors for a creation
operator a; acting on orbital 2. One sector of agT is highlighted in red. On the
left, we see how the matrices corresponding to the same symmetry sector, but
to different orbital (a%) are kept in memory as slices of a 3D array (tensor_class
in our implementation). On the right, we see how these dense sector blocks
compose the full matrix form of ai, which is in fact never formed in full. Only
the nonzero sectors are saved and all the treatment thereof is realized sector-
wise. The matrices are pictured as square for convenience, but in general are
rectangular with dimensions equal to the number of basis states contributing to
input sector (number of columns) and output sector (rows). Table from our work
Brabec et al. [2020].

1.4. The wave function is also stored in sector-decomposed form, which in the
case of nonrelativistic two-site DMRG (see Figure 1.2) reads

o) = X X (), eld) el e, (129

abed l€a,red

where a, b, ¢, d are indices of symmetry sectors of the left block, two middle
sites and the right block. {|l,)} C {|I)} is the basis of left block sector a,
{Ira)} C {|r)} is the basis of sector d of the right block basis and ‘q’l’> ® |gs) is a
Kronecker product of bases of two orbitals in the middle.

Notice that since ’qll’> is a basis of single sector of single-orbital basis, in
nonrelativistic case, its dimension is equal to one. Therefore each ¥ is just a
matrix (2D array). This property simplifies the work with ¥%? in the program.

The sparsity among sectors depicted in Figure 1.4 stems from the conservation
of total number of electrons and the spin projection (or equivalently n{**, n{*") in

sectors a, b, ¢, d

n?t = n{+ n$ +ng§+ n?,
n® = nf+ ni +n{ + nil, (1.24)

but also from the way how operators act. For instance, the sector blocks of spin-
up creation operator 64 acting on sector a of left block are non-zero only when the
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equality n;out = M'impue + 1 holds, i.e. particle is added. Moreover, some slices
of 3D arrays (see Figure 1.4) corresponding to how operator acts on individual
orbitals can be zero, for example when multiplied by the corresponding integral
from the equation 1.8, which can be zero e.g. due to point group symmetry.

When two or more creation/annihilation operators act on orbitals in the same
block, we can sum over such contributions to the given block to form a so-called
pre-summed operator. This way we avoid repeated summations of the same
terms. For more information about the definition and the formation of pre-
summed operators, see equations 1.14, 1.15 section 1.2. Pre-summed operator
has a corresponding number of free indices, i.e. those which were not summed
over. The free index corresponds to the third index of the matrix of a given dense
sector of the operator, as depicted on the left side of Figure 1.4.

As we mentioned above, the parallelization in our implementation is based
on merging the loops over orbital indices with the loops over sectors and thus
creating a huge large task list over all Hamiltonian terms, when performing the
demanding "if> = H|V) in the Davidson procedure. The parallelization and
the internode communication is implemented using the Message passing interface
(MPI) library. During the Hamiltonian application, each MPI process has its
own copy of 0. Then, we use the MPI reduce feature to collect the resulting

wave function sector matrices G and perform their addition. Consider the
situation from equation 1.15, where we have a term with two free indices in left
block and two physical indices in right block. In our implementation, we merge
the loop over these indices and perform it sequentially in a single MPI process, in
order to avoid fetching of small memory chunks. Aside from decreasing internode
messaging due to small packets, here we look to a potential GPU acceleration in
future.
A single task of H |¥) can be written as

B =g, af < Lewe (RN (1.25)
where e fgh are indices of output sectors, abed are indices of input sectors and
qlf » are just scalars corresponding to operators acting on the two middle orbitals
in the given term of the sum in Hamiltonian. L¢ ¢ is a matrix corresponding to a
operator acting on a left block, with a free index « (possibly merged from two free
indices). To be more specific, L*¢ can be for instance the pre-summed operator
from equation 1.15 with two free indices, or a single-index variant thereof. Rg h
is the matrix of its counterpart acting on the right block. Here we use the +=
operator, which is a C++ notation for assignment with addition to the former
values of the LHS. In our implementation, this addition is carried out by the
means of MPI reduction.

Most of parallelization techniques listed above are useful also for the case
of parallelization within a single computational node with multiple CPU cores.
When using multiple computational nodes, one has to take into account various
other factors, particularly the overhead due to internode communication. In
order to perform its task, the node needs to access the matrices of sectors of
given operators acting on LqqR blocks (for reading). If the RAM memory of a
single node is sufficient, it is profitable to store copies of all operator matrices
on each node and update them in each DMRG iteration, so called local memory
model. However, this is not feasible for larger systems. For them, the operators
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have to be distributed among the nodes preferably in a way which minimizes
internode queries. In the global memory (GM) model, which we have developed,
the distribution is performed over all available nodes with balanced load per node.
The global model also implements internode data requests using the Message
passing interface (MPT).

In our implementation, any intermediate of the DMRG calculation may be
treated in a different data model (local or global), purely based on the amount
of free computer memory, just to maximize data locality. Moreover, our code
features allows setting a threshold for the maximal size of matrix to be stored
locally. Any matrices larger than a threshold are distributed globally. Notice
that different values of this threshold correspond to individual rows in Table 1.1
below, whose content is, nonetheless introduced only later in this section.

For the representation of matrices and tensors, we use tensor_class from our
in-house tensor library, which allows for external storage of the data. Thus we
can work with a matrix as an abstract object until its physical data are needed.
These can then be fetched from the global memory on demand, or stored locally if
this is affordable. In order to prevent multiple identical fetch requests, the matrix
data can be pre-fetched and used repeatedly, and then discarded automatically
with the last usage of the virtual matrix class in a given task.

For performing the H |¥) task list, we have developed a semi-dynamic sched-
uler, which estimates the amount of internode communication required for exe-
cuting the task for each different node based on the operator storage distribution
and then it assigns the task to the node which minimizes this cost function. The
execution of the task is then done in parallel within the given node, using the
MPI dynamical task scheduling over the local CPU cores.

For the case of blocking and renormalization we consider an example of en-
larging a left block operator by one orbital. To be specific, in this example, we
choose to block and renormalize the operator pairs from the rows of equation 1.18.
However, the form of following relation can be used for other operator pairs. Let
us write down a single task for an input sector a and output sector e of left block
operator L

£,2 e - o) (LC”"@ qf)(ef) O(ab)T (1.26)

(ab) (ef) a 10 (ab) (ab) >

where O((:f)) is the matrix of renormalization operator (composed of chosen RDM
eigenvectors) acting on sector (ef) in the basis of enlarged block L®¢;. Here (ef)
refers to index of sector in this enlarged basis composed of sectors e and f from
the bases of left block L and the orbital ¢; respectively. In the equation 1.26, «
and & correspond to the free index (or a merged pair of free indices) of the left
block operator from the equation 1.18 and its enlarged version respectively.

For the sake of readability, a simplification was done in equation 1.26 by
assuming that the sector (ef) is composed only of sectors e and f. However, in
most cases, multiple symmetry sectors contribute to specific parts of sector (ef)
and when performing the addition +=, one needs to take this into account and
add only to the corresponding subsector. Naturally, the same holds for input

sector (ab). Therefore, the addition is only to a submatrix of the matrix Lf‘al();f ),

Notice that renormalization operator O((:f};) is block diagonal in its sector-
decomposed form as it performs only the truncation of the basis. Hence, it
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maps a sector of any enlarged operator to the same sector, while reducing its
matrix dimensions. Except for the trivial case of no truncation, the matrices of
operator O are rectangular (ncols > Trows ), Since they, via matrix multiplication,
decrease the dimensions of matrix of the operator, which has just been enlarged
by blocking.

When executing the blocking and renormalization tasks, the demands for pro-
cessing power are usually lower than in case of performing H |¥) during Hamilto-
nian diagonalization, since matrix multiplication is not used as many times. On
the other hand, the amount of required internode communication is much higher,
since Kronecker product of pairs of operators is being performed, accessing many
different sectors in memory to build the composed operator. Therefore we once
again merge the free index loops in larger chunks, similarly as we did for H |¥) in
order to reduce the required internode MPI messaging. We also reorder the task
list for renormalization in the way which maximizes the reuse of the fetched dense
sector matrices in consecutive tasks. However, note that the biggest optimization
in blocking and renormalization is already intrinsic to our approach to blocking
procedure, by employing the locality of newly formed operators, i.e. when form-
ing the operators, we need only the intermediaries available from the previous
iteration. This is explained in section 1.2 in the paragraph below equation 1.18.

Let us now turn to results on benchmark systems. The major indicator of
successful parallelization is the dependency of processing time on the number of
CPU cores used in the calculation, which would ideally be linear, as when running
completely independent tasks. Of course, in DMRG, certain level of internode
communication cannot be avoided and hence we expect the curves deviate from
linear to some degree, even though our implementation, MOLMPS, attempts to
minimize this deviation.
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(a) FeMoco cluster scheme. (b) Defected m-conjugated
Figure in public domain. anthracene tetramer.

(c) FeMoco cluster. (d) Iron(II)-Porphyrin model.

Figure 1.5: Structures of the molecules used as benchmarks for the massively par-
allel MOLMPS implementation. Notice that for the sake of clariry, the FeMoco
cluster is pictured only partially, i.e. only the atoms of the ligands, which bond di-
rectly to Fe and Mo atoms. Colors of atoms: nitrogen—Dblue, sulfur—yellow, oxy-
gen—red, carbon—brown, hydrogen—white, iron—gray, molybdenum—green.
Images b), ¢) and d) from our work Brabec et al. [2020].
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The Figure 1.5 shows the systems which we chose as benchmarks. These are
the typical representatives of molecules calculated with QC-DMRG, characteristic
with a necessity of large CAS for a correct description of their ground state.

The first system, Fe(II)-porphyrin, was selected since it was shown by Manni
et al. [2019], that a description of complete 7 space, CAS(32,34), is required for
a quantitative determination of its ground state.

The second system chosen is the defected m-conjugated anthracene tetramer,
which we selected because our group recently studied its ground state with DMRG
and since this and similar molecules are produced as unwanted by-products dur-
ing on-surface synthesis of ethynylene-bridged anthracene polymers, see Sanchez-
Grande et al. [2019].

The largest and somewhat symbolic benchmark is the nitrogenase FeMo cofac-
tor (FeMoco) cluster. This molecule is responsible for nitrogen reduction during
the energetically-efficient process of nitrogen fixation under ambient conditions
in certain types of bacteria. The corresponding industrial Haber-Bosch process
to produce ammonia for fertilizers is, in contrast, very energetically demanding.
Thus, numerous efforts have been developed to understand the reaction in bac-
teria with the potential industrial application in mind. However, as shown in Li
et al. [2019], the electronic structure of FeMoco still remains poorly understood.

The dependency of processing time on the number of CPU cores, which we
obtained for Fe(II)-porphyrin, is shown in Figures 1.6a and 1.6b. We plot sepa-
rately the figures for time spent on diagonalization, where H |¥) is performed and
the figures for renormalization with blocking. For this case the bond dimension
is M = 2000, here we plot also the time spent on pre-summation of Hamiltonian
sum from equation 1.8. In this case the curve for pre-summation is slightly higher
than the curve for renormalization, but for larger systems the remormalization
is more costly (as apparent in Table 1.1) and hence in other plots we ommit the
pre-summation timings.

We see that nearly optimal scaling is achieved for up to about 512 cores, but
then the curve in Figure 1.6a takes an upturn with the growing number of cores.
This subfigure corresponds to the case when all data fit into the memory of a
single node (local memory model) and the upturn is due to the lack of tasks to
be performed.

Figures 1.6¢ and 1.6d show similar dependency for the same system of Fe(II)-
porphyrin, but this time with higher accuracy with bond dimension of M = 8000
and the global memory model. Even though not linear anymore, the curve still
shows quite favourable scaling. However, once we use 2048 or more CPU cores,
the overhead becomes so large that it is not worthy to increase the number of
CPU cores anymore. When this occurs, we say that a saturation is reached.
Notice that the curve in Figure 1.6d for renormalization has even worse scaling,
since this step is even more dependent on internode messaging. The saturation
is reached at the same level of 2048 cores. However, notice that the absolute
renormalization/pre-summation timings are generally order of magnitude lower
than those of H diagonalization, and thus the impact of renormalization costs is
comparably low.

The Figure 1.7a shows both diagonalization and renormalization costs for the
anthracene tetramer, since now we have smaller amount of data points. Notice
the increased size of active space, CAS(63,63), and the global memory model.
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The computational time is again reduced significantly with the number of core
despite overhead due to internode communication. Since the overhead can be
significant, this improvement is already a positive result.
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Iron(IT)-Porphyrin model with CAS(32,34).
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The dependency of

processing time on the number of CPU cores for Davidson diagonalization of
Hamiltonian and for the renormalization with blocking. Charts from our work

Brabec et al. [2020].
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(a) m-conjugated anthracene tetramer with (b) FemoCo cluster with CAS(113,76) and bond
CAS(63,63), M = 4096. dimension of M = 6000.

Figure 1.7: The dependency of processing time on the number of CPU cores for
Davidson diagonalization of Hamiltonian and for the renormalization with block-
ing for the m-conjugated anthracene tetramer and the FeMoco cluster. Charts
from our work Brabec et al. [2020].

The Figure 1.7b shows the timings obtained for the FemoCo cluster with a very
large active space, CAS(113,76), the bond dimension of M = 6000, and the global
memory model. Even for this demanding system, the massive parallelization
brings the timing down significantly, but this time the saturation is reached much
earlier, near 1536 CPU cores.

To analyze the slowdown due to internode communication we present the
timings in Table 1.1 for different values of threshold of maximal matrix size
stored in local memory. The rest of matrices is then automatically distributed
and stored on different nodes. We can see that for this representative example,
the local memory storage is about twice as fast for both the H diagonalization
and the renormalization steps. Thus, as we mentioned above, our code copies
matrices to local nodes when their RAM memory is sufficient. However, for large
calculations like the one with FeMoco cluster, the RAM of a single node is usually
insufficient and the matrices have to be distributed.

The slowdown due to internode messaging is the major limiting factor when we
look to use more CPU cores. The typical behaviour observed in the benchmarks is
that the scaling of time with respect to the number of CPU cores is almost linear
while local storage is used. The less favourable scaling for the larger number of
CPU cores can in such cases occur due to insufficient number of tasks for such
large number of MPI processes.

For the larger systems among our benchmarks, the program has to distribute
part of the matrices and more data are interchanged with the increasing number
of CPU cores. Then, the scaling starts again as almost linear, but then takes a
less favorable tendency and eventually approaches saturation.

The benchmark calculations were performed on the Salomon supercomputer
of the Czech national supercomputing center in Ostrava. We have used up to
2480 CPU cores simultaneously for a single DMRG calculation. The hardware
specifications of individual node is 24 cores (2 x Intel Xeon E5-2680v3, 2.5 GHz),
128 GB RAM with InfiniBand FDR56 interconnect.
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’ Max. size \ % local \ pre-summation \ diagonalization \ renormalization ‘

0.0 MB 0.00 5.26 344.85 38.36
0.8 MB 0.08 5.23 339.49 33.43
1.6 MB 0.20 5.23 305.83 27.90
3.2 MB 0.30 5.86 261.84 22.08
40.0 MB 0.56 5.27 204.84 21.59
all local 100.0 5.90 159.35 20.14

Table 1.1:  Fe(II)-Porphyrin model with CAS(32,34), M = 4096 on 196 CPU
cores. Timings (in seconds) of H diagonalization, renormalization and pre-
summation with respect to the distribution of operator matrices to computational
nodes. The percentage of matrix elements stored locally within RAM of the node
is shown in the second column, while the threshold imposed on the maximal size
of a matrix to be saved locally is listed in the first column. Charts from our work
Brabec et al. [2020].

For more results, computational details and broader discussion, see our peer-
reviewed study “Massively parallel quantum chemical density matrix renormal-
ization group method” by Jifi Brabec, Jan Brandejs, Karol Kowalski, Sotiris
Xantheas, Ors Legeza and Libor Veis included in the attachment below, Brabec
et al. [2020].

1.4 Analysis of chemical bonding

As we mentioned in section 1.1, the distribution of correlation in the system has
strong influence on the performance of DMRG method. Typically, we restrict
ourselves to a basis which is localized in a way that it respects the division of the
system to groups of mutually correlated orbitals, i.e. such basis where correlations
between these clusters is reduced. It has been shown that the more successful the
reduction of entanglement between parts of the system, the more the DMRG error
decreases, the faster the method converges and the smaller the bond dimension
is required, see Barcza et al. [2011].

Now let us look at this another way. Since DMRG is strong in capturing
static correlation and from the MPS state, we can efficiently calculate reduced
density matrices, which contain the information on correlations between parts of
the system, why not use this for an analysing of the system itself?

In the work of Szalay et al. [2017], a correlation theory of the chemical bond
has been proposed, which connects the concepts of chemical bond with correla-
tion among orbitals localized on individual atoms. As an example, consider the
case of a simple covalent bond. When we localize the bonding and antibonding
molecular orbitals into their atomic contributions, these localized orbitals will be
highly correlated. Moreover, the strength of the correlation corresponds with the
strength of the bond from the quantum information theoretical point of view.
We chose to employ this correspondence in a quantitative study of the often
counter-intuitive bonding in systems with electron-deficiency.

To work with the concept of correlation quantitatively, we employ the corre-
lation measures introduced in Szalay et al. [2017]. These measures are based on
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von Neumann entropy. Von Neumann entropy of system partition X of can be

defined as
S(X) = —Tr[ox log, ox], (1.27)

where px is the reduced density matrix of X. The choice of base 4 matrix
logarithm serves for convenient work with numerical values. 4 is given by the
dimension of single orbital basis. The resulting values are the same as of the orig-
inal measures with natural logarithm given in the units of In4. For more about
entropy in quantum information theory, see Ohya and Watanabe [2010]. In this
work, we always partition the active space of a molecular system in parts corre-
sponding to groups of localized atomic orbitals (clusters). When X is composed
of n orbitals, then it holds for S(X) that S(X) < n.

The reduced density matrix of a particular set of orbitals X within system
L (e.g. L=CAS) can be efficiently calculated by a partial contraction (partial
trace) of a matrix product state, which is, in our case, available from DMRG.
The partial trace is used to contract all indices in MPS except for physical indices
of X. For instance, when X is composed of two orbitals X = {i, j}, the reduced
density matrix of X is calculated as

/ tal
o5 = 0 AT AL AL AT, (1.28)
ag, o)
Vk#i, j

where «; is a physical index of orbital ¢ and where |L| refers to the number
of orbitals in the system L. A graphical scheme of two-orbital reduced density
matrix calculation is shown in Figure 1.8. For general subsystem X, the sum is
analogous, except for a different set of physical indices that remain uncontracted.
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Figure 1.8: Example calculation of reduced density matrix px for X composed
of two orbitals with physical indices a3 and ay, i.e. when X = {3, 7}. Since
this scheme represents a partial trace, i.e. contractions of matrix indices “with
themselves”, a matrix of each orbital is present twice in the scheme, as A; and
A; = A" In the scheme, all the virtual (m;) and physical («;) indices are con-
tracted, except for as, ay and of, of, which form the indices the reduced density
matrix oy. Therefore, px is in our case a 16 x 16 matrix. When we include multi-
ple orbitals in X, the indices of px are then formed by a composition of multiple
physical indices a; and the dimensions of ox increase considerably. Therefore,
our implementation uses a sparse, sector-decomposed representation of reduced
density matrix. Image from Szalay et al. [2015].
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Consider a partitioning of a group of orbitals, L, into k disjoint clusters of
orbitals L = X; U X5 U...U X;. The measure of correlation with respect to this
partitioning (correlation among the parts) is the &-correlation, defined as

CUX1, Xo,. ., X)) = ij(Xi) — S(L). (1.29)

i=1

Here L can again be the whole active space, or its subset. A special case is when
L is composed of just two orbitals, then we denote it as

C(ilg) = 5(0) + 5(7) = S0, 7) = 1(il7) <2, (1.30)

and it is termed mutual information between orbitals ¢ and j. This is a well-known
concept, which has been considered in chemistry previously by e.g. Boguslawski
et al. [2013], Freitag et al. [2015]. The value of C({{:},{j}}) is bounded by 0

and 2. For a general partition, the upper bound is

C(X1 Xo. .., Xi}) < 2| L] — max |X)). (1.31)

Note that C' is zero in trivial case L = Xy, k = 1 and it reaches its maximal
value when £ = n and each X, contains one orbital. In the case when cluster L is
described by a pure state, then S(L) = 0, and the correlation is entirely quantum
entanglement, see Szalay [2015].

Since the specific localization of orbitals is inherently basis-dependent, we ex-
pect these correlation measures to be basis-dependent as well, however, as we
show below, they can still provide meaningful information about the system.
Moreover, in certain cases, the discussed correlation measures represent a quanti-
tative measure of entanglement between system partitions. The measures defined
above typically account for correlation both due to entanglement and of a differ-
ent origin. Even though the entanglement itself is a basis-independent concept,
many practical entanglement measures are basis dependent, as they are typi-
cally based on von Neumann entropy. There is a whole field of study around
entanglement, the quantum information theory, which offers numerous different
definitions of measures thereof. For more about quantum information, see the
textbook of Nielsen and Chuang [2009].

Last but not least, we define a correlation measure which for a given orbital
cluster L takes into account all possible partitions to at least m parts. Its value
is given by such partition with minimal correlation. In other words, among these
partitions, this newly defined measure is equal to correlation of a cut with least
correlated parts. We call this measure m-partitionability of L and it is defined as

Crpart (L) - = ming>p, C(8), (1.32)

where ¢ labels a partition of L into orbital clusters. The minimum is among all
possible ¢ for given L. From the previous thoughts on maximal and minimal
values, we expect that minimal partition should have m parts and it should not
the finest split into individual orbitals, which takes the maximal value of corre-
lation possible in L, as we mentioned above. In general, the m-partitionability is

bounded by
Crnpart(L) < 2(m —1). (1.33)
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(b) diborane(4), BoHy

(c) central part of neutral zero-valent beryllium complex

Figure 1.9: Illustration of expected bonding structure of systems under inves-
tigation based on available literature. Figures from our work Brandejs et al.
[2019].

When using m-partitionability, in most cases, we employ Cs par, and Cs pare,
as we seek to examine three-center two-electron bonds.

We have chosen three molecular systems as objects of our analysis. The
first one, depicted in Figure 1.9a, is diborane(6) (B2Hg), a well-known textbook
example of a molecule with of three-center two-electron bonds. This was to verify
that the analysis gives expected results for a well-known system.

Then we turned to two newly synthesized systems featuring electron-deficiency
whose more complicated bonding has not yet been studied in detail. The first
one is diborane(4) (BoH,) shown in Figure 1.9b, characterized recently by Chou
et al. [2015] and the second is a neutral compound with zero-valent s-block metal,
beryllium in its center. Here CAC corresponds to cyclic amino carbene donors,
which stabilize the compound due to their m-acidity. This compound, labelled
Be(CAC),, has been synthesized for the first time by Arrowsmith et al. [2016]
and according to their theoretical and spectroscopic results, the molecule adopt
a closed-shell singlet configuration with the Be(0) metal centre, and a bonding
structure depicted in Figure 1.9c. The surprising stability of the compound has
been ascribed to a strong three-center two-electron 7w-bond in its center.

Considering our results, Figure 1.10a depicts the scheme of correlations within
diborane(6). The red circles show how the orbitals group into clusters, i.e. inde-
pendent bonds. This means that among all possible clusters, we have highlighted
those that are strongly correlated within, but weakly with the rest of the system.
Notice the two red triangles in the middle. These correspond to the expected
three-center two-electron B-H-B bonds.

The correlation plotted in the Figure 1.10a is the mutual information from
equation 1.30, a measure of correlation between two-orbitals. From the perspec-
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tive of orbital pairs, it seems that the bond is three-center. But is the correlation
within the triangle truly of inseparable, three-center nature? To answer this ques-
tion, we employ the measure of 2-partitionability to the corresponding triple of
orbitals labelled X; in the Figure 1.10a. We obtain Co pa(X1) = 1.5, which is,
as shown in Table 1.2a, 75% of the bounding value. The value is large within this
system, but without proper comparison we cannot conclude that it supports the
hypothesis of an independent three-center bond. To corroborate further, we look
at the correlation (entanglement) of X; with the remaining orbitals, C'(X; | rest).
This is is very weak, only 8.6% of the theoretical maximum, which indicates that
the bond within X; is independent. To confirm our hypothesis, we look at the
correlation of separate pairs of orbitals from X; with the rest of the system. As
we can see in Table 1.2a, the correlations of these pair with the rest of the sys-
tem are mutually similar and with values of 46% and 53%, much stronger than
C(X; | rest). This justifies existence of the three-center bond.

It appears that all these comparisons are inherently contained within a single
value, the 2-partitionability Ca part(X1). It turns out that we can use this quantity
to determine to what extent does a triple of orbitals form a three-center bond.
Note that here the correlation between the pairs in X; is only around 46%,
while the 2-partitionability is already 75%. The reason behind this is that for a
multi-center bond, the principle of entanglement monogamy implies that all the
three pairs cannot reach their theoretical maxima simultaneously. For a model
example, see how entanglement monogamy results in a similar limitation on an
entanglement of three qubits in Coffman et al. [2000].
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(b) diborane(4) with mutual information

Schematic view of diborane(6) and diborane(4) with mutual in-
Each dot represents a localized orbital, dashed blue line encircles

individual atoms, edges correspond to mutual information (plot shaded by a log-
arithmic scale depending on strength) and red circles show how the orbitals group
into clusters, i.e. independent bonds. The scale of mutual information is not plot-
ted, since the logarithmic scaling is difficult to comprehend by colour. This plot
serves only for qualitative comparison. For a quantitative description, see the
dominant correlation values listed in Table 1.2. Schemes from our work Brandejs

et al. [2019].
correlation abs. value rel. correlation abs. value rel.
C(X [ rest) 0.515  8.6%  C(Xi ] rest) 1.328 22%
C (X1 U Xy | rest) 0412  34%  C(B'sp} | H3) 0.647  32%
C(B'sp},H%s | rest) 1.852  46%  C(B'sp} | B%sp?) 0.701  35%
C(Hs, B%sp? | rest) 1.852  46%  Chpart(X1) 1.388  69%
C(B'sp3, B%sp? |rest) 2.114  53%  Cspart(X1) 2.089  52%
C(Blsp? | H%) 0.894  45%  C(Xs | rest) 1438 36%
C(H®s | B%sp?}) 0.894  45%  C(B'sp3 | B%sp3) 1.245  62%
C(B'sp} | B%sp?) 0.605  30%  C(B'sps | H3) 0.130  6.5%
Oy part(X1) 1500 75%  C(X\U XoU Xy |rest) 0.535  6.7%
Oy part (X1) 2394 60%  C(X:|Xa) 0.066  1.1%
C(X1 | Xa) 0309 52%  CO(Xi | Xs) 0.639  16%
C(H®s | HS) 0.042  2.1%

(a) diborane(6)

(b) diborane(4)

Table 1.2: Correlation measures for diborane(6) and diborane(4). Relative values
are related to the upper bounds. Labeling of orbitals corresponds to Figure 1.10.
Data from our work Brandejs et al. [2019].
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For the case of recently characterized system of diborane(4), the situation of
three-center bonds plotted in Figure 1.10b is analogous to diborane(6) and we
can reach a similar conclusion about the nature of its three-center bonds, based
on values of correlations in Table 1.2b. However, here the value of Cy_pu+(X1) is
a little lower, 69%, as it is weakend by an extra correlation of 6.5% between Blsp3
and H3s. The correlation between these two orbitals together with their symmet-
ric counterparts forms the grey rhombus in the middle of the Figure 1.2b. Had
this correlation been stronger, the description with three-center bonding would
become implausible. However, this correlation is still relatively weak compared
to other correlations within the system and therefore the description proposed by
Chou et al. [2015] is reasonable in terms of our analysis.

The last among the analysed systems is the neutral zero-valent beryllium
complex Be(CAC),, whose correlation scheme is plotted in Figure 1.11a and the
relevant correlations are listed in Table 1.3. The cluster X; here is expected
to correspond to a strong three-center C-Be-C m-bond. The bonding structure
of this system as described by Arrowsmith et al. [2016] is depicted in Figure
1.9¢c. Here the cluster X5 corresponds to o-bonding between C-Be and Be-C. To
show that there are two independent o-bonds in X5, we have rotated the orbitals
within X, subsystem and the correlation scheme obtained and shown in Figure
1.12 confirms that the o-bonds are indeed independent.

Now, let us turn to the peculiar cluster labelled X;. Since the relative value
of C(X7 | rest) is quite high with 34% of theoretical maximum, the idea of strong
independent 7-bond proposed by Arrowsmith et al. [2016] is questionable. We
see surprisingly strong values of mutual information between a orbital of nitrogen
on the Be(CAC), rings and the carbon from the opposite side of the molecule
(with respect to beryllium center). It appears that this is an unexpected direct
correlation between the rings, without the participation of Be orbitals. After
more careful analysis, we have hypothesized that instead, the two electrons in
X are spatially delocalized and reach outside X; to the nitrogen orbitals, which
then weakly participate in the pi-bond over the C-Be-C core.

To support this, we removed two electrons from the system and calculated the
mutual information for [Be(CAC),]*", shown in Figure 1.11b. As expected, in this
positively charged version of the system, the correlations in have X; disappeared,
since the electrons necessary to form the pi-bond are not present. Moreover, the
problematic N-C correlations has disappeared as well. This supports the hypoth-
esized origin of N-C correlation due to the two delocalized 7-bond electrons.

We conclude that the structures of studied beryllium complexes suggested by
our correlation analysis are those which we depicted schematically in Figure 1.13a
and that the nitrogen atoms do contribute to the bonding scheme.

For more detailed discussion of the results, see our peer-reviewed study “Quan-
tum information-based analysis of electron-deficient bonds” by Jan Brandejs, Li-
bor Veis, Szilard Szalay, Gergely Barcza, Jii{ Pittner, Ors Legeza included in the
attachment below, Brandejs et al. [2019)].
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(b) Be(CAC) 2+

Figure 1.11: Schematic view of central part of neutral zero-valent beryllium
complex Be(CAC), and a positively charged version thereof with mutual informa-
tion. Each dot represents a localized orbital, dashed blue line encircles individual
atoms, edges correspond to mutual information (plot shaded by a logarithmic
scale depending on strength for a qualitative comparison) and red circles show
how the orbitals group into clusters, i.e. independent bonds, see the selected
individual values in Table 1.3. Plot from our work Brandejs et al. [2019].
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correlation abs. value rel. correlation abs. value rel.
C(C'p,,C?p, [rest) 3424 8%  C(X] [rest) 0.209  2.6%
C(C'p,,Bep,|rest) 2.432  61%  C(N'p,, Clp,|restof X}) 1.737  43%
C(X | rest) 2.032 34% C(N'p, | C'p,) 0.560 28%
C(C'p, | C?p,) 0.194  9.7%  C(Xy | rest) 0.209  2.6%
C(C'p, | Bep,) 0.681  34%  C(C'py | Bes) 0.765  38%
Co—part(X1) 1.153 58% C(C'p, | Bepy) 0.771 39%
Cs—part(X1) 1.834 46% Copart (X2) 1.936 97%
C(X; | N'p,) 0.915  46%  C(C'p, | Besps) 1912 96%

Table 1.3: Correlation measures for the neutral zero-valent beryllium complex
Be(CAC),. Relative values are related to the upper bounds. Labeling of localized
orbitals corresponds to Figure 1.11a. Data from our work Brandejs et al. [2019].

Figure 1.12: Subspace X5 of neutral zero-valent beryllium complex Be(CAC)s,
which is composed of the four orbitals participating on o-bonding between C-Be
and Be-C. Here, the orbitals have been rotated within X5 in order to show the
independence of these bonds. Scheme with mutual information plotted. Scheme

from our work Brandejs et al. [2019].

(a) neutral

\z/

(b) positively charged 2+

Figure 1.13: Structures of studied beryllium complexes suggested by our corre-
lation analysis. The Images from our work Brandejs et al. [2019].
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2. Tailored coupled cluster
method - TCC

The coupled cluster approach was first brought to chemistry by Jifi Cizek in 1966,
thanks to his excellent multidisciplinary knowledge extending to techniques from
nuclear physics Cizek [1966]. The resulting CCSD(T) method is nowadays con-
sidered a gold standard in quantum chemistry. Coupled clusters (CC) treatment
is particularly suitable for systems dominated by dynamical electron correlation
Helgaker et al. [2000].

The central idea behind coupled clusters theory is to use a following ansatz
for the parametrization of the wave function ¥

(W) = exp (T) Do), (2.1)

where @ is the reference determinant (Fermi vacuum). The exponential of the
cluster operator T" encodes the necessary excitations and their respective ampli-

tudes t%bgjj;, which are the parameters of the wave function. 7' takes the form

T=> tlala; + - Z tf]b Falaa; + 16 >t ,ga Falalagaja; + ... (2.2)
at asz abcijk

Each sum in 7" corresponds to a certain level of excitation with respect the Fermi
vacuum. The indices of amplitudes ¢ denoted by subscript (i, jk ...) run over
occupied orbitals and correspond to excitations from these to virtuals, whose
indices are in superscript (a, be ...). A simple approximation to T is to truncate
excitations above certain level by leaving out the corresponding terms in equation
2.2. As an example of simple, but practical choice is to take into account only
the first two sums (CC with single and double excitations), which results in the
CCSD method.

The CC ansatz essentially performs an infinite summation of certain classes
of many body perturbation theory (MBPT) diagrams Shavitt and Bartlett [2009]
using the exponential in a way similar to how the infinite summations of Feynman
diagrams are handled in quantum field theory. Peskin [2018]

This approach guarantees rigorous size extensivity even for truncated 7', unlike
some other quantum chemical approximations such as truncated CI.

2.1 Coupled cluster amplitude equations

The coupled cluster equations are derived in several steps. First we employ the CC
ansatz from 2.1 and substitute it into the time-independent Schrodinger equation.
Then we can rewrite this as the same equation with Hamiltonian transformed by
the exponential operator as

Hye" |@g) = E (e |®g)),
e THye! |®g) = Eeorr |Po), (2.3)

where Hp is the normal-ordered form of the electronic Hamiltonian, see Shavitt
and Bartlett [2009]. Notice that the energy E.. in 2.3 corresponds to the cor-
relation energy defined by £ = Exp + E.r, as the difference between the total
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energy and the Hartree-Fock energy Fppr. To solve 2.3 we need to optimize
amplitudes #{% in the cluster operator T defined by 2.2.

In this work, we limit ourselves to the outline of the rest of the derivation, for
more details, we refer the reader to the textbook of Shavitt and Bartlett [2009].

We would like to obtain more explicit form of 2.3. By applying the Baker-
Campbell-Hausdorff formula to the exponential in 2.3, we expand it to a number
of commutators. As described in Shavitt and Bartlett [2009], this expansion
actually has a finite number of terms, since the electronic Hamiltonian is a two-
body operator in normal form with respect to the vacuum |®,). Hence the series
terminates with four-fold nested commutators.

We can then use the generalized Wick theorem to show that the only nonzero
terms will be those in the form of HyT", 0 < k < 4, i.e. with the Hamiltonian
on the left and with up to the fourth power of cluster operator on the right. This
allows us to replace the commutators by restricting ourselves to connected MBPT
diagrams.

We can do this since the cluster operator 7' contains only excitations with
respect to Fermi vacuum |®q), and hence, only nonzero terms HyT* are those
where each cluster operator is contracted with Hy in at least one index, i.e. the
diagram corresponding to this term is connected.

The operator on the left hand side of 2.3 can now be rewritten as

e THye!' = Hye' ) (2.4)

connected

where the whole right hand side is restricted to connected diagrams.

Now if we calculate the expectation value of operator 2.4 in the state |®y), all
the excitations from 7" higher than doubles will not contribute to energy directly,
thus we can write

<CI)0| HN6T5+TD |(1)0> = Ecorr <(I)0|(DO> = Ecorr ) (25)

connected

using equation 2.3. Here Ty, Tp correspond to the first, respectively the second
sum in 2.2. Higher excitations in 7" do not contribute since in order to yield
non-zero contribution, the Hamiltonian with one and two electron terms can only
compensate for up to double excitations from the Fermi vacuum when acting on
(Pp| from the right. However, they do contribute to the energy indirectly through
the amplitude equations.

Let us now limit 7" to singles and doubles. Similarly as with the expectation
value above, the projection onto singly and doubly excited vacuum, i.e. (®¢| and
<(I>§‘;’ can be used to extract the amplitudes ¢ and t?f’ when we realize that its
value has to be zero

(F| Hyes'P | @)

connected

= 0. (2.6)

HN€T5+TD ‘q)0>

(2

connected

The set of equations 2.6 is called the CCSD amplitude equations, and it is used to
find the coupled cluster amplitudes for T approximated by singles and doubles.
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Higher order methods (CCSDT, CCSDTQ) are generated by including further
excitations in 7', and then projecting onto all excitations of Fermi vacuum up to
the given order.

Notice that in practical calculations, perturbative corrections are common,
especially CCSD(T), where the estimate of triple excitations is calculated from
the converged Tp amplitudes from CCSD using MBPT. This is accompanied by
one order of magnutide computational cost on top of CCSD with respect to the
number of orbitals, compared with two orders in case of full CCSDT, i.e. O(n")
and O(n®).

Since the CCSD equations 2.6 are not linear in ¢ and t%‘-’ , iterative methods are
usually employed to solve them. By using some initial guess for the amplitudes,
enumerating the left hand side of 2.6 will yield some generally nonzero values o
and ijb . These are called residuals.

As illustrated in Shavitt and Bartlett [2009], we can use these residuals to
improve our initial guess for the amplitudes, in a way inspired by MBPT

O.ab

fab  — gab Yold (2.7)

%] new %] old €4 + € — € — €

where €, are HF energies of molecular orbitals. These improved amplitudes can
then again be substituted to the left hand side of 2.6 in order to find new residuals.
Hence the loop is closed and we may continue to iterate until convergence. In
practice, the rate of convergence is usually optimized using the direct inversion
in the iterative subspace (DIIS) technique, see Pulay [1980].

2.2 Wave function analysis and the TCC ansatz

The concept behind externally corrected coupled cluster method as described in
Li and Paldus [1997], is to retrieve information on static correlation from external
source, e.g. CASCI, and to use it in the subsequent CC calculation. A simple
approach is the tailored coupled cluster method (TCC) originally proposed by
Bartlett et al., see Kinoshita et al. [2005], Lyakh et al. [2011a], Melnichuk and
Bartlett [2012, 2014], which uses the split-amplitude ansatz for the wave function
introduced in Piecuch et al. [1993], Piecuch and Adamowicz [1994].

We have followed the pathway to correct CC with DMRG. In general, the
DMRG extensions efforts aiming to add dynamical correlation on top of DMRG
are in relatively early stage. Past works focused on this include for example
second order perturbation theory in Kurashige and Yanai [2011], canonical trans-
formation method in Yanai and Chan [2006], random phase approximation in
Wouters et al. [2013], and the internally contracted MRCI in Saitow et al. [2013].

The split-amplitude ansatz, on which a general tailored coupled cluster wave
function takes the form

‘\II> — eText+TCAS |®0> — eTexteTCAS ‘®0> (28)

where Tag contains just the amplitudes with all indices inside the active space
(CAS) of the method used to source the static correlation, i.e. CASCI (DMRG
in our case). The amplitudes of Tags are fully determined by its output and they
are fixed for the rest of the calculation.
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By contrast, the external part of the cluster operator, T, is composed of
amplitudes with at least one index outside the CAS space (DMRG CAS). Only
these amplitudes are optimized in the subsequent CC calculation.

Please note that the last equality in 2.8 holds since we apply the exponential
operator only to the single Slater determinant of |®y) and therefore the cluster
operators Toas, Texy commute. As noted in Veis et al. [2016], this helps to keep
the method simple.

This way of combining the two methods seeks to take the information on
static correlation from a method particularly strong in treating static correlation
(DMRG) and retain it, while using coupled cluster theory to describe the dy-
namical correlation. In other words, Tcag is used to "tailor” the external space
amplitudes Toy.

The implementation of TCC by our group is TCCSD, where only the ampli-
tudes corresponding to single (S) and double (D) excitations are extracted from
DMRG and then used in CCSD. Hence we can write the parametrization of wave
function as

‘\I}> = eTgAsJFTcDAs eTcichTc?ct ’(D0> . (2.9)

The CAS amplitudes of Tg&,g and TE,g are obtained from the coefficients of
CI expansion from the initial CASCI (DMRG) calculation as

S
TCAS = G )

1
TEs = 02—5(01)2. (2.10)

Before performing the wavefuction analysis defined in 2.10, the CI coeffients
are extracted from a converged DMRG wave function here shown in MPS form
1.7, by performing a contraction over the corresponding indices of the matrix
product chain. Considering our DMRG implementation, we have extended the
MOLMPS program to for calculation of active space Tg,g and TE,g amplitudes.

Once we have the Toas amplitudes, we continue in a way similar to single
reference CC equations explained in section 2.1. Projecting 2.9 onto excited
determinants <<I)?;" lead to an iterative method. The equation 2.6 now takes
form

<<D;l| HNeText eTCAS |(I)0>

)

where {i,j,a,b} ¢ CAS. The iterative procedure optimizes T,y while keeping
frozen Tag obtained from 2.10.

As noted in Veis et al. [2016], the TCCSD method has been used for a number
of nonrelativistic quantum chemical systems and performs well, even though in
some cases it might require either larger active spaces or the use of CASSCF
orbitals for high accuracy, see Kinoshita et al. [2005] for details on its accuracy.

One limitation of this method stems from the fact that it uses just a single
Slater determinant as a Fermi vacuum, which introduces a certain bias. This
may damage the performance of the method for exactly degenerate states, when

= 0,

connected

<(1)ng HelextgTcas = 0, (211)

connected
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TCCSD breaks the spatial symmetry of the degenerate components. Hence, while
the method behaves as size-extensive, a rigorous size-consistency is not achieved.
In the work of Veis et al. [2016], a limited analysis of size consistency is performed
on the Ny dimer. In theory, the error vanishes with the growing size of the active
space, as TCCSD approaches the FCI limit.

2.3 Four component relativistic TCCSD

All the previous DMRG-extension efforts (post-DMRG methods) have so far been
restricted to non-relativistic systems. Hence, the relativistc domain has remained
unexplored until recent study Brandejs et al. [2020] produced in close cooperation
between our group and the group of Prof. Ors Legeza from Wigner Research
Centre for Physics, Budapest.

When one employs the relativistic theory in quantum chemistry, the concept
of spin is replaced with the Kramers projection. Let us now turn to relativistic
four-component CC (4c¢-CC). The first implementation of the method was in
Dirac program in the Kramers-restricted closed shell form, see Visscher et al.
[1995], Shee et al. [2016], and this was later extended to Kramers-unrestricted
form in Visscher et al. [1996]. Another direction of development has been the
string-based general-order 4c-CC by Nataraj et al. [2010]. Moreover, a Fock-space
version of 4c-MRCC has been developed by Visscher et al. [2001]. Recently, a
relativistic implementatin of the state-specific Mukherjee’s MRCC method has
been published in Ghosh et al. [2016].

Considering the relativistic implementatins of DMRG, first attemp was at the
scalar DKH level and has been developed by Moritz et al. [2005]. Perturbative
approach to spin-orbit couplings on top of DMRG has also been presented by
Sayfutyarova and Chan [2016]. In Lan et al. [2014], the authors used DKH3
Hamiltonian in DMRG to evaluate coupling constants. The implementation used
in our work is the DMRG recently extended to the 4c relativistic version by
Knecht, Legeza, and Reiher in Knecht et al. [2014]. This has opened the way for
relativistic post-DMRG approaches, like 4c-TCCSD discussed here.

In relativistic formulations of 4c post-Hartree-Fock methods, the Dirac-Coulomb
Hamiltonian is usually expressed in its second quantized form employing the no-
pair approximation, which projects out the negative energy solutions as defined
in Almoukhalalati et al. [2016]. The QED effects are also neglected, resulting in

1
H=Y) he abag + ) > (PQJ|RS) a}agaSaR (2.12)
PQ PQRS

where the indices P, @, R, S run over the positive-energy 4-component spinors,
which span the one-electron basis. (PQ||RS) € C are the two-integral coeffi-
cients and thD the coefficients corresponding to one-electron terms in the Hamil-
tonian. These spinors form Kramers pairs related to each other by action of the
time-reversal operator K

K¢p = ¢13
Koy = —op (2.13)
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As mentioned above, this Kramers symmetry replaces the spin symmetry in the
nonrelativistic theory. Now the spin projection Mg is not a good quantum num-
ber anymore and is replaced by Kramers projection M. Its values are 1/2 for
unbarred spinors and —1/2 for spinors with barred indices. Indices P, Q, R, S in
2.12 run over both spinors of a Kramers pair and, in contrast with the nonrela-
tivistic theory, the integrals corresponding to excitation operators which change
the M projection do not necessarily vanish. Therefore, the Hamiltonian (2.12)
is not necessarily block-diagonal with respect to M. Each creation or annihi-
lation operator in (2.12) changes My by £1/2, thus states with |AMg| < 2 are
coupled in this Hamiltonian. Moreover, compared with nonrelativistic case, the
complex-valued integrals lead to a decrease in index permutation symmetry of
two-electron terms. In other aspects, the second quantized form 2.12 is analo-
gous to its nonrelativistic counterpart. The usual CC diagrams apply, similar to
2.6 and 2.11 above.

Quoting from Brandejs et al. [2020] on the implementation of “quaternion
groups”:

“The Dirac program [see Dirac18] employs a quaternion symme-
try approach which combines the Kramers and binary double group
symmetry (D35, and subgroups) Saue and Jensen [1999]. The dou-
ble groups can be sorted into three classes based on the application
of the Frobenius-Schur indicator to their irreducible representations:
“real groups” (D3, D3, and Cs,); “complex groups” (Cs,, C3, and
C¥); and “quaternion groups” (C} and Cf). Generalization of non-
relativistic methods is simplest in the “real groups” case, where the
integrals are real-valued and the ones with odd number of barred (B)
indices vanish. In practice, it means that additional “spin cases” of
integrals (AB|AB) and (AB|BA) (in Mulliken notation) have to be in-
cluded. For the complex groups, the integrals are complex-valued, but
still only integrals with even number of barred indices are mon-zero.
Finally, in the remaining case of “quaternion groups” all the integrals
have to be included and are complex-valued, see Thyssen [2001], Dyall
and Faegri [2007].”

In analogy with nonrelativistic chemistry, the single-determinantal Fermi vac-
uum guarantees that cluster operators T,y and Toas commute, leading to simpli-
fications, most importantly the factorization of exponential operator in the 2.8,
which enables us to construct the ansatz and the wave function parametrization
in analogous manner.

In order to implement relativistic TCCSD, we have modified the existing
implementations of DMRG and CC and created an interface which extracts the
CAS amplitudes from DMRG and passes them into CC in a standardized file
format.

The CC implementation in Dirac program Diracl8 has been modified to load
Tcas amplitudes for the corresponding subspace and then to keep them frozen
during the iterative optimization of Tiy.

The existing nonrelativistic DMRG Legeza et al. [2018] has been modified
to include Dirac-Coulomb Hamiltonian with terms with nonzero AMg and to
generate explicit MPS for the CC interface, sece Battaglia et al. [2018]. DMRG
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input interface has been modified to read a set of complex integrals generated from
4c-SCF calculation in Dirac program prior to the DMRG calculation. Except for
the “real groups”, the DMRG procedure has to work with complex matrices in
MPS. The generated Tcas amplitudes are also complex-valued in general.

For the calculations in our first publication Brandejs et al. [2020] described
in section 2.4, we have selected numerical examples with “real groups” symmetry
(diatomics), while the complex generalization of the DMRG code was still in
progress. Eventually, the complex generalization has been finished, but only very
recently and the preliminary results are currently being analysed and prepared
for a journal submission.

2.4 Application to heavy diatomics

This first publication with relativistic TCC is limited to diatomics, namely thal-
lium hydride, arsenic hydride and astimony hydride, consistent with the way how
our implementation was developed where the integrals remained real in the first
production version and were only generalized to complex version in the summer
of 2021.

method Eel [Eh] AEel {HlEh]
4c-CCSDTQ(14,47)* ref., higher order -20275.84024 0.00
4c-DMRG(14,47)** ref., large CAS -20275.83767 2.57
4c-MP2(14,47) -20275.85372 -13.49
4c-CCSD(14,47) -20275.82966 10.58
4¢-TCCSD, CAS(14,14) U {ext} = (14,47) | -20275.83430 5.94
4c-CCSD(T)(14,47) -20275.84056 -0.32

*From Knecht et al. [2014].
*k4c DMRG (14,47)[4500,1024,2048,10~7 |, from Knecht et al. [2014].

Table 2.1:  Excerpt from table II in Brandejs et al. [2020]. Total electronic
energy and energy differences AFE, (in mE;) for various methods with respect
to the 4c-CCSDTQ(14,47) reference energy of -20275.84024233 Ey, for T1H at the
experimental equilibrium internuclear distance 1.872 A.

In this text, we will only include most important charts from our publication
Brandejs et al. [2020] with a short commentary. First of all, we would like to
present Table 2.1, which shows that the 4c-TCCSD was able to capture more
correlation energy of 2> TIH than 4c-CCSD. However, the result of 4c-CCSD(T)
was closer to the reference energy, even though it undershoots the reference en-
ergy. Considering the spectroscopic constants listed in Table 2.2, 4c-TCCSD
with CAS(14,10) performed better than 4c-CCSD in comparison with experi-
mental values. Of course, it could not outperform 4c-DMRG on the whole space
of (14,47) without extending external space beyond this DMRG space. Notice
also that this 4c-DMRG (14,47) calculation is much more demanding in terms of
computational requirements.

As we mentioned, an optimal choice of CAS is necessary for the right opera-
tion of 4c-TCCSD. In Figure 2.1 (b), we can see the procedure which we used for
the optimization of CAS size in equilibrium internuclear distance. For larger cal-
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DMRG(14,47)Knecht et al. [2014] calculation.

Figure 2.1: Equilibrium energy of TIH calculated using the 4c-TCCSD and 4c-
DMRG methods with different sizes of DMRG active space, as given in Table 2.1.

Charts from our work Brandejs et al. [2020], reproduced with the permission of
ATP Publishing.

method e [A] | we [em™] | wewe [cm™1]
experiment’ 1.872 1391 22.7
4¢-DMRG(14,47)* 1.873 1411 26.6
4c-CCSD(14,47)* 1.871 1405 19.4
4e-TCCSD® CAS(14,10) U {ext} = (14,47) | 1.874 1403 23.4
4e-TCCSD® CAS(14,14) U {ext} = (14.47) | 1.869 1411 22.6

T GRECP spin-orbit MRD-CI from Titov et al. [2001].
*From Knecht et al. [2014].
a) Using TWOFIT module for curve fit in DIRAC, 4th order polynomial.

Table 2.2: Excerpt from table III in Brandejs et al. [2020]. Spectroscopic con-
stants of 2°°TIH obtained from 4c-TCCSD, compared with calculations and ex-
perimental work from the literature. The spectroscopic constants have been eval-
uated from potential energy curve fit using TWOFIT methodology. The number
of points have been selected according to Mean displacement in harmonic ground
state criterion. Internuclear separation axis sampling was chosen to be 0.02 A.
Here r, is the internuclear distance and w,, w.z, is the first, respectively the sec-
ond term of vibrational constant.

culations, performing such preliminary estimates is essential. Fortunately, these
estimates can be based on cheap low-bond dimension DMRG calculations only a
neglidible increase in computational requirements compared with the production
calculations.

Figure 2.1 (a) shows how the 4c-DMRG energies gradually approach the 4c-
TCCSD energies with increasing CAS size. The FCI-limit should be located near
the solid horizontal line, which represents the 4c-DMRG (14,47) energy from
Knecht et al. [2014].
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See our peer-reviewed publication “Toward DMRG-tailored coupled cluster
method in the 4c-relativistic domain” by Jan Brandejs, Jakub Visnak, Libor Veis,
Mihély Maté, Ors Legeza and Ji¥{ Pittner included in the attachment Brandejs
et al. [2020], where potential energy surfaces and spectroscopic constants for
further systems are presented, discussed and compared with results from the
literature.

2.5 Domain-based local pair natural orbital ap-
proach

Let us now turn back to non-relativistic TCC. Here the progress in our group
has already gotten much further, as our group produced its first non-relativistic
implementation of TCCSD based on Budapest DMRG already in 2016. Later
in 2020, the CC interface was also included to MOLMPS - the highly parallel
implementation, see Brabec et al. [2020]. The CC part of the method has been
implemented into Orca program (see Neese et al. [2020]) in 2016 by members of
our group.

However, the problem of CC calculations in general is the computational scal-
ing, which allows us to treat only orbital spaces of limited size (basis size). There
are approximations which efficiently reduce size of orbital space, like the frozen
core approximation which restricts the correlation treatment to valence orbitals.
Unfortunately, limiting the size of virtual space is more difficult, particularly due
to to the nature of virtual orbitals, which makes it hard to truncate the space in
a way to capture the most of dynamical correlation. Attempts to optimize the
virtual space basis turned out to be difficult as well.

We chose to pursue the approach which employs the localizability of dynamical
electron correlation, in order to limit the size of virtual space. Efforts related to
localizability of dynamical correlation date back to the work of Pulay [1983]. The
development continued by the use of projected atomic orbitals (PAO) Saebo/
and Pulay [1987], where the orbital domain-based approach allowed to devise
an efficient truncation scheme. Using these concepts, a local CC method was
formulated Hampel and Werner [1996], sparking new developments in the area.
One of the most successful approaches which we discuss in the next paragraph
is based on the concept of pair natural orbitals (PNO) introduced originally by
Edmiston and Krauss [1965]. Natural orbitals are known as a basis notable for
compact representation of correlated wave functions. In PNO, we seek to combine
this with locality to make the best of both worlds.

For some time, the development in this area plummeted, since the computa-
tional demands of the newly devised methods were still too large for the options
at the time. It wasn’t until modern integral transformation techniques and faster
hardware allowed for more relevant applications, see Vahtras et al. [1993]. Later
on, PNOs saw their revival in the local pair natural orbital method (LPNO) of
Neese et al. [2009]. In their domain-based local PNO approach, they achieved
nearly linear scaling for CCSD(T) Pinski et al. [2015] by exploiting sparse matrix
representation and detailed prescreening procedures. This allowed for treatment
of large systems with hundreds of atoms.

The domain-based local pair natural orbital approach seeks to allow for TCC
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calculations with large scale virtual space. This approach is based on careful
selection of pair natural orbitals comprising the virtual space in CCSD calcu-
lation. The CC calculation is restricted to these orbital-pair subspaces, which
are obtained by a truncation procedure at the level of pair density matrices (see
below).

In all LPNO approaches, the first step is to localize the occupied orbitals.
Then the virtual space is transformed to the PNO basis. This process is composed
of several steps described below.

We employ the fact that the correlation energy can be written as a sum of

orbital pair contributions with coefficients CU , stemming from the equation 2.5

Feorr — Z Cab <(I)ab H'Q)O> = ;Zgij = Z C abHZ] (214)

abij iJ alnj

Here, €;; is the correlation energy corresponding to a pair of occupied indices ¢, j.
This sum can be obtained by a projection of the Schrodinger equation with the
exact wave function onto Fermi vacuum [®).

The accuracy of the LPNO approach is determined by two cut-off parameters.
Firstly, the pair energies ¢;; are estimated during pre-screening. Some of the pairs
are excluded, some treated at the MP2 level

< (ijlab) [4 (ij|ab) — 2 (ij|ba)]
K _%): fi + fij —€a — &b ’ (2.15)

and only a fraction of pairs is treated at the CCSD level, based on the threshold
Teutpairs- The other cut-off parameter, T, ;pno is defined further in this section.
In equation 2.15, f; represent the Fock matrix elements and ¢, are the orbitals
energies. Notice that since (ij|ab) reach significant values only locally, only local
terms will contribute significantly.

Now the virtual space corresponding to orbital pair ij is to be localized by
a transformation to PNO basis. Since we work in virtual space, this is done
for inactive pairs ij, i.e. those outside the DMRG CAS, {ij} ¢ CAS. First we
construct MP2 amplitude matrix T¥ with elements

ij _ (ij|ab)
(T9) = e — (2.16)

then we build the pair density matrix as

D = (T9) T4 1 <T“>T,

i AT — 2"
where T ! = 1_’_—5 (217)
i

The pair density matrices D¥ are then diagonalized. Their eigenvalues cor-
respond to occupations of PNOs and their eigenvectors correspond to the coef-
ficients of PNOs in MO basis. The efficient truncation of the virtual space 7
is then done by discarding all PNOs with occupations below certain threshold,
Teutpno for a given orbital pair.
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Figure 2.2: Pair density matrix (transformation matrix) of composed active and
virtual space for orbital pair ij. The submatrix highlighted in red corresponds
to the active-active (CAS-CAS) elements, while the blue part corresponds to
virtual-virtual elements defined in equation 2.17. The mixing CAS-virtual terms
are set to zero. Scheme from Antalik et al. [2019].

To preserve the alignment with original active orbitals in MO basis, we need
to keep their coefficients untouched during PNO transformation. Therefore when
we form the pair density matrix for the whole system, we keep nonzero only the
diagonal elements of its CAS-CAS part. The CAS-virtual elements are set to
zero, and the virtual-virtual part is composed from D% matrices, as shown in
Figure 2.2. Please note that we set CAS-CAS part of the matrix to identity with
very small ¢; > ¢;41 > 0 added to the diagonal to preserve the original order of
CAS orbitals in MO basis.

The CC equation 2.11 with amplitudes corresponding to double excitations
now takes form
I eToatToa Toas =0 ; {a,bi,j} ¢ CAS, (2.18)

connected

(o

)

where barred indices refer to the PNO basis.

Now let us turn to domain based LPNO approach (DLPNO) for TCCSD.
There the procedure is similar to LPNO described above and we again take ad-
vantage of PNO basis, but this time several steps differ, in order to keep the
scaling of computational costs almost linear.

Again, we start with localized orbitals. The next step is to construct orbital
domains from Adler and Werner [2011]. First we project out the localized active
and occupied orbitals |i) from the former AO basis |u)

i) = (1= S0 1) o, (219

hence we constructed the projected atomic orbitals (PAO). PAOs span local vir-
tual space of a given orbital pair. However, they are not orthogonal. Therefore,
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PAOs can be truncated further based on their mutual differential overlap integrals
to remove redundancy in PAO basis

(D00, = [ u o 220)

when (DOI),; is below certain threshold.

Then, for each orbital pair, we continue by transforming its virtual space
in PAO basis to PNO basis by employing equations 2.17 and following steps
analogous to LPNO approach described above, including the PNO truncation.
Then, the final PAO/PNO transformation matrix is constructed as

di; = L, @ dj (2.21)

for a given pair by enlarging the diagonalized form of pair density matrix D;j,
i.e. d;;, by a unit matrix I,,.,,, with n, the number of singly occupied and virtual
active orbitals.

The CC equations now remain the same as in equation 2.18, but now the
singles cluster operator fot is barred as well, allowing the linear scaling of com-
putational costs.

Let us now turn to results from application of our DLPNO-TCCSD imple-
mentation on the simplified model of Iron(II)-Porphyrin depicted in Figure 1.5d.
Iron(II)-Porphyrin participates in processes in biology and material science and
it features close-lying spin states. It has been studied previously with large
CASSCF calculations by Manni et al. [2019], which makes it a useful benchmark
for DLPNO-TCCSD.

In Figure 2.3a, we can see retrieved percentage of correlation energy with
respect to Truipairs threshold, as compared with the results from the full canonical
version of TCCSD. The energies are near convergence at cutoff of about 1073,
with the difference of about 0.005% from the canonical version, which takes much
larger computational effort.

A similar dependency on T,,pno threshold is shown in Figure 2.3b. A dis-
crepancy between the accuracy for different spins states is apparent for larger
CAS. After an overestimate of energy, the method converges to nearly 100% for
Tewtpno of 1075,

Overall, the DLPNO-TCCSD was able retrieve more than 99.8% of the canon-
ical correlation energy with default values of the aforementioned tresholds, reach-
ing its target to allow for almost linear scaling of the CC-part of the calculation
with comparable results.

In this dissertation text, we do not reiterate all the results we obtained from
the DLPNO-TCCSD method, which we instead present in our peer-reviewed
study “Near-Linear Scaling in DMRG-Based Tailored Coupled Clusters: An Im-
plementation of DLPNO-TCCSD and DLPNO-TCCSD(T)” by Jakub Lang, An-
drej Antalik, Libor Veis, Jan Brandejs, Jif{ Brabec, Ors Legeza and Ji¥{ Pittner
included in the attachment below, Lang et al. [2020].
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Figure 2.3: DLPNO-TCCSD method applied on Iron(II)-Porphyrin model in
def2-SVP basis as compared with canonocal TCCSD energies. Chart from our

work Lang et al. [2020].
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Conclusion

In this work, I present three implementations of advanced quantum chemical
methods, to the development of which I contributed during my PhD study. The
central topic of my work has been the density matrix renormalization group
method (DMRG) and its generalizations for special tasks.

The first goal has been to push the boundaries for the active space size even
further than the current state-of-the art. We employed the high performance com-
puting (HPC) techniques to achieve this through parallelization to thousands of
CPU cores and by distributing tensors to RAM memory of hundreds of comput-
ers. This resulted in the MOLMPS program, which is currently being prepared
for a source code release for the community, as the first massively parallel DMRG
program. During the developments, MOMLPS presented a real programming
challenge, since it implements the DMRG algorithm with numerous optimiza-
tions described in the method summary above. To give some perspective, our
C++ implementation feature more than 40000 lines of code. This is because
we have written, from scratch, an implementation as efficient as the few great
DMRG codes well-known in the community.

To test the scaling of MOLMPS, we have performed benchmark calculations
of the model of Iron(IT)-Porphyrin, of m-conjugated anthracene tetramer and of
the FeMoco cofactor, using large active spaces up to CAS(113,76). We have
showed that while the local memory is used, the runtime scales linearly with the
number of CPU cores. Even when using the shared memory approach of our
global memory model the parallelization still exhibits quite favourable scaling,
but of course the effects of internode communication are significant. It may come
as a surprise that in order to reach the parallel speedup, the system has to be
sufficiently large, such that the task-list, generated for the H |¥) application,
provides enough tasks to properly saturate so many CPU cores.

The second goal has been to design a method which would address both the
problem of static and dynamical correlation. These two phenomena are of dif-
ferent character and therefore we employed two different methods to treat them.
Moreover, here, we chose to study the previously unexplored relativistic domain.
We have built upon history of our wider group of in-house DMRG implementa-
tions and we have developed a relativistic 4c-DMRG to treat the static correla-
tion. We have interfaced this method to the open-source program DIRAC and
we have modified the relativistic coupled cluster equations in DIRAC to conform
to 4c-TCCSD method. Our program has become the first ever implementation
of relativistic 4c-TCCSD.

This method has been applied to three heavy diatomics: TIH, AsH, SbH and
we successfully improved upon both CCSD and DMRG spectroscopic results for
a corresponding CAS size. However, we were unable to “outperform” CCSD(T),
which is, on the other hand, a method of higher order.

The third goal has been to push the boundaries for the basis size of the
CCSD method within the framework of nonrelativistic TCCSD. Here, for the
first time, domain-based local pair natural orbital (DLPNO) approach has been
applied in the TCCSD method, by modifying the CC implementation in the Orca
program and integrating it to its production version. A scalable behaviour has
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been demonstrated and we have shown that DLPNO-TCCSD accounts for more
than 99% of correlation energy compared with the results from the standard
TCCSD.

Last but not least, we have used the MPS state from DMRG to analyze
the bonding structure. We implemented an efficient MPS contraction scheme
to generate the von Neumann entropy and mutual information between various
subsystems. in newly synthesised systems of diborane(4), i.e. BoH, and a neutral
zero-valent beryllium complex Be(CAC),. For the former, we confirmed the hy-
pothesized structure with three-center two-electron bonds. In the later case, we
used the correlation measures to hypothesize 5-center scheme, due to a delocal-
ization of the two electrons from the electron-deficient bond stretching over the
C-Be-C core, towards the nitrogen atoms on the rings.

Even though there are several appealing “firsts” here, the real added value
for the community is the software, whose source code has been, or will be made
freely available online.

As an outlook to the future, we consider implementation of GPU, or even TPU
(dedicated tensor contraction processing unit) version of MOLMPS, promising a
huge speedup on hardware recently developed for (neural-) tensor-network tech-
niques for machine learning applications. For the case of relativistic 4c-TCCSD,
we are already preparing a manuscript with the recently implemented generaliza-
tion to “complex” groups, a domain accessible to only a handful implementations
of quantum chemical methods.
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