
DOCTORAL THESIS

Radek Hušek

Structure of Flow-continuous Mappings
in Algebraic Context

Computer Science Institute

Supervisor of the doctoral thesis: doc. Mgr. Robert Šámal Ph.D.
Study programme: Computer Science

Study branch: Theory of Computing, Discrete
Models and Optimization

Prague 2022

I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In Prague date .
Author’s signature

i

ii

First I thank to my supervisor Robert Šámal for his guidance and patience. I also
thank to my family – and foremost to my girlfriend Anička – for their support.

iii

iv

Title: Structure of Flow-continuous Mappings in Algebraic Context

Author: Radek Hušek

Institute: Computer Science Institute

Supervisor: doc. Mgr. Robert Šámal Ph.D., Computer Science Institute

Abstract: We explore the structure of the cycle space of the graphs – most notably
questions about nowhere-zero flows and cycle double covers. We touch several
facets of this field. First we show that there are edge 2-connected graphs which
distinguish Z2

2- and Z4-connectivity (group connectivity which is a strengthening
of nowhere-zero flows).

Then we examine a conjecture of Matt DeVos which asserts existence of group
flows given existence of a graph homomorphism between suitable Cayley graphs.
We introduce a strengthening of this conjecture called strong homomorphism
property (SHP for short) which allows splitting vertices (and hence a reduction
to cubic graphs). We conjecture that SHP holds for every graph and the smallest
group in which the graph has a nowhere-zero flow and we prove that both SHP
and the original conjecture imply existence of cycle double covers with few cycles.

The question we discuss the most is counting objects on graphs – especially count-
ing circuit double covers. We shows an almost exponential lower bound for graphs
on surfaces with nice embeddings and we also show that this bound does not ap-
ply to Flower snarks. Then we shows quite precise bound for flower snarks and
we also improve the lower bound for planar graphs to an exponential one. Along
the way we build a framework for counting objects called linear representations
which might be of independent interest. We conclude with description of voltage
graphs and how to use them to find a new infinite family of snarks.

Keywords: graph, cycle double cover, group flow

v

vi

Contents

Introduction 3

1 Preliminaries and History 5
1.1 Basic Definitions . 5
1.2 Snarks . 7
1.3 Flows . 11
1.4 Double Covers . 15

2 Group Connectivity 21
2.1 The Conjecture and Results . 23
2.2 Group Connectivity Testing . 24
2.3 Implementation Notes . 28
2.4 Conclusions and Open Problems 29
2.5 Recent Development . 30

3 Graph Homomorphisms and Cayley Graphs 31
3.1 New Framework . 32
3.2 Universal Objects . 36
3.3 Partial Results . 36
3.4 Connection to CDC . 38

4 Counting Double Covers 39
4.1 Circuit vs. Cycle . 39
4.2 Representation of Circuit Double Covers 41
4.3 The Flower Construction . 42
4.4 Lower Bounds . 45

5 Representations 49
5.1 Gadgets and Gadget Algebra . 49
5.2 Decomposable Representations . 51
5.3 Linear Representations . 54
5.4 Graph Sequences . 60
5.5 Linear Representations and Edge Coloring Models 62
5.6 Examples of Linear Representations 66

6 Counting Double Covers II 71
6.1 The Linear Representation . 71
6.2 Reducing Cycles . 79
6.3 Implementation . 84

7 Voltage Graphs 91
7.1 Definitions and Properties . 91
7.2 The Program . 92
7.3 A New Family of Snarks . 96

Conclusion 99

1

Bibliography 101

List of Figures and Other Floats 109

List of Publications 111

2

Introduction
The main topic of this thesis is the structure of the cycle space of the graphs –
most notably questions about nowhere-zero flows and cycle double covers. We
explore structural questions about graphs and they have a strong ties to algebra.

In the first chapter we present the basic notions together with a brief overview
of the area. Chapter 2 explores group connectivity which is a strengthening of
nowhere-zero flows. It is based on paper Hušek et al. [2019]. Its main result is
Theorem 2.2 which states that there are edge 2-connected graphs which distin-
guish Z2

2- and Z4-connectivity. This work was later extended by Han et al. [2020]
to edge 3-connected graphs (Theorem 2.13).

Chapter 3 is based on paper Hušek and Šámal [2020] and it examines a con-
jecture of Matt DeVos which asserts existence of group flows given existence of a
graph homomorphism between suitable Cayley graphs (Conjecture 3.4). We in-
troduce a strengthening of this conjecture called strong homomorphism property
(SHP for short) which allows splitting vertices (and hence a reduction to cubic
graphs). We show that SHP holds for groups of size at most four (Theorem 3.17)
and we show a graph for which it does not hold for Z5 (Figure 3.1). But this
graph is not a snark so we conjecture that SHP holds for every graph and the
smallest group in which the graph has a nowhere-zero flow (Conjecture 3.12).
We conclude the chapter with a proof that both SHP and the original conjecture
imply existence of cycle double covers with few cycles (Corollary 3.19).

The next three chapters dive into the topic of counting objects on graphs – in
particular counting circuit double covers. A very brief summary of these chapters
was presented at EuroComb 2021 as Hušek and Šámal [2021]; the full paper is
being prepared. Chapter 4 provides an introduction into the topic and shows
an almost exponential lower bound for graphs on surfaces with nice embeddings
(Corollary 4.14). Chapter 6 dives deeper and shows quite precise bound for flower
snarks (Theorem 6.8) for which the lower bound from the previous chapter does
not apply. We also improve the lower bound for planar graphs to an exponential
one (Theorem 6.14).

Chapter 5 builds a formal framework for counting objects on graphs using
linear algebra which we call linear representations. Aside from the necessary def-
initions it presents a notion of the best representation (Theorem 5.18). We prove
that the best representation is unique up to isomorphism (Observation 5.23).
Corollary 5.28 shows a way to test whether a representation is the best one. This
framework is used throughout Chapter 6 and also in Chapter 7.

The last chapter (Chapter 7) describes an interesting way to find new graphs.
The method is called voltage graphs. We describe the method, our implementa-
tion of it and present a new infinite family of snarks obtained by it. Our research
presented in this chapter is not finished yet although the preliminary results look
very promising. Because of that it was not published yet.

3

4

1. Preliminaries and History
We start with a short review of the field of group flows and circuit double covers.
This chapter is mostly based on the folklore knowledge and Zhang’s books [1997,
2012]. We assume a basic knowledge of the graph theory – if needed see, e.g.,
Diestel [2017] or any other textbook on this topic. Presented observation are
usually a folklore knowledge with simple proofs and as such they are not cited.

1.1 Basic Definitions
Let us start with some basic definitions as some of them use different names
then it is common in the other areas of the graph theory and some need slight
modifications to work reasonably in the context of counting objects. The probably
most notable difference is using the word “cycle” for graphs with degrees of all
vertices even and “circuit” for a graph isomorphic to some Ck which has roots in
matroid theory.1

Definition 1.1 (Circuit and Cycle). Let G be a graph. A subgraph H of G is
a circuit if it is isomorphic to Ck for some k. A cycle is union of edge-disjoint
circuits.

Equivalently a circuit is a 2-regular connected graphs and a cycle is a graph
with degrees of all vertices even. We also need some measure of connectedness
of a graph. The usual measure is vertex or edge connectivity. It is not good
enough for us because a cubic graph cannot have connectivity more than three
and we are mainly interested in cubic graphs. We can require that the only cuts
of size three are the ones around vertices. This leads to a refinement of the edge
connectivity called cyclic edge connectivity.

Definition 1.2 (Cyclic Connectivity). A graph is cyclically k-edge-connected if
every edge cut such that at least two of the resulting components contain a circuit
has size at least k.

We sometimes omit the word “edge” as we do not use vertex connectivity.
Obviously k-connectivity implies cyclic k-connectivity. On the other hand there
are cubic graphs with arbitrarily large cyclic connectivity. A simple upper bound
on the cyclic connectivity is the girth of the graph (i.e., the length of its shortest
circuit).2 It is easy to see that if G is cubic and cyclically 4-edge-connected
then the only 3-cuts it contains are the trivial ones (i.e., around vertices). The
following observation shows that the cyclic connectivity behaves almost like the
normal connectivity:

Observation 1.3. Let G be a cyclically 4-edge-connected cubic graph. Let G′ be
a graph created from G by removing two non-adjacent edges. Then G′ is 2-edge-
connected.

1A circuit in a matroid is a minimal dependent set and in the case of graphical matroid it
corresponds to a subgraph isomorphic to Ck for some k. For more details see, e.g., Oxley [2006].

2We just take the cut around the given circuit. This works always except a few small
exceptions – namely K4, K3,3 and three parallel edges for cubic graphs – which do not have
two disjoint circuits and hence they do not have a well defined cyclic connectivity.

5

Proof. Because G is cyclically 4-edge-connected it is also 3-edge-connected (any
cut smaller than three in a cubic graph is non-trivial). Hence G′ is connected. It
remains to show that it is bridgeless.

We proceed by contradiction. Let b be a bridge of G′ and e and f the two edges
removed from G. Because b is a cut in G′, the set C = {b, e, f} is a 3-cut in G.
The graph G is cyclically 4-edge-connected so C must be a trivial cut (i.e., edges
around one vertex). This is a contradiction with e and f being non-adjacent.

The first objects we want to study are double covers:

Definition 1.4 (Double Cover). Let G be a graph. A multiset of circuts (cycles,
respectively) C is a circuit (cycle, respectively) double cover if every edge of G is
contained in exactly two elements of C. It is a k-cycle double cover if |C| ≤ k.
We forbid double covers to contain the empty cycles. We denote ν(G) the number
of circuit double covers of the graph G.

This definition also deserves a little bit of explanation. Double cover is usually
defined as a family {Ci}i∈I not a multiset. This is equivalent for the existential
questions but not for counting. Even if we fix I to be integers one up to some
suitable k – i.e., make the family a k-tuple – we can still create new double covers
by permuting the elements of this tuple.

The difference is not too big (at most the multiplicative factor k!) for k-cycle
double covers if k is fixed but it is crucial for circuit double covers as the number of
circuits usually grows with the size of the graph. The exclusion of empty cycles is
required to prevent generation infinitely many double covers by repeatedly adding
the empty cycle again and again.

The other structure we are interested in are group flows. They are similar to
the well-known flows in networks but there is no source and sink and instead of
real numbers we use a general abelian3 group.

Definition 1.5 (Group Flow). Let G = (V,E) be a directed graph and let Γ be
an abelian group. A flow in G is a function φ : E → Γ such that∑︂

e∈δ+(v)
φ(e) =

∑︂
e∈δ−(v)

φ(e)

for every vertex v ∈ V where δ−(v) (δ+(v), respectively) is set of all edges going
out of (into, respectively) vertex v. We say a flow is nowhere-zero if it does not
use value 0 at any edge.

Although this definition is usually used with finite groups, there is one inter-
esting case of an infinite group:

Definition 1.6 (Integer Flow). Let G = (V,E) be a directed graph. A Z-flow φ
is a k-flow if |φ(e)| < k for all edges e ∈ E.

The inequality in the definition is strict so that Theorem 1.30 of Tutte can
be stated without annoying ±1. We also recall a useful theorem about disjoint
spanning trees. It is a trivial consequence of Nash-Williams theorem which was
independently proven by Tutte [1961] and Nash-Williams [1961].

3We require the group to be abelian because there is no predefined order of the edges around
each vertex. There exists a non-abelian version which works with graphs on orientable surfaces.
For details see, e.g., DeVos [2000] or Goodall et al. [2018].

6

Theorem 1.7. Let G be a 2k-edge-connected graph. Then G has k disjoint
spanning trees.

Corollary 1.8. Let G be a 3-edge-connected graph. Then G has three spanning
trees such that every edge is in at most two of them.

1.2 Snarks
As we will see in the following sections, most of the conjectures about double
covers and group flows can be reduced to cubic graphs. Moreover they do not
hold for graphs with bridges for trivial reasons and they usually do hold for
cubic graphs which are 3-edge-colorable for reasons only slightly less trivial. This
motivates the definition of snarks as the hard cases:

Definition 1.9 (Snark). A bridgeless cubic graph is a snark if it is not 3-edge-
colorable.

Figure 1.1: The Petersen graph

Also in many cases, it can be shown that the hypothetical minimal counterex-
ample does not contain an edge cut of size two nor three. Hence some authors
also require cyclic 4-edge-connectivity or girth at least five to exclude more trivial
cases. Both of these requirements prevent generating new snarks by expanding
vertices into triangles. The name “snarks” was first used by Gardner [1976] and
it is a reference to the poem “The Hunting of the Snark” by Lewis Carroll.

Figure 1.2: Blanuša snarks

The smallest snark is the famous Petersen graph (Figure 1.1, constructed by
Petersen [1898] as the smallest not 3-edge-colorable graph) which has 10 vertices.
It is cyclically 4-edge-connected and it has girth five. There is also a conjecture
due to Tutte that every snark contains a subdivision of the Petersen graph (note

7

Table 1.3: The number of snarks of given sizes

Vertices Girth ≥ 4 Girth ≥ 5
10 1 1
18 2 2
20 6 6
22 31 20
24 155 38
26 1,297 280
28 12,517 2,900
30 139,854 28,399
32 1,764,950 293,059
34 25,286,953 3,833,587
36 404,899,916 60,167,732

that for cubic graphs subdivisions and minors are the same). This conjecture is
resolved positively by Theorem 1.41 but its proof is still not fully published.

Conjecture 1.10 (Tutte [1967]). Every snark contains a subdivision of the Pe-
tersen graph.

The next snarks with girth at least four are two Blanuša snarks both on 18
vertices (Figure 1.2, Blanuša [1946]). They can be obtained as a dot product
(Definition 1.16 below) of two copies of the Petersen graph. There are two of
them because up to isomorphism there are only two ways how to choose non-
adjacent edges in the Petersen graph.

Then there are cyclically 4-connected snarks of every even size starting with
20 (Corollary 1.18). All the small snarks with girth at least four were enumerated
by Brinkmann et al. [2013]. Their numbers are shown in Table 1.3 and they are
available at https://hog.grinvin.org. A family of snarks which will be of
particular interest are Flower snarks (defined by Isaacs [1975], for small examples
see Figure 1.4):

Definition 1.11 (Flower Snarks). Flower snark Jk can be constructed in the
following way:

1. Start with cycle Ck.

2. To each vertex of the cycle attach a copy of K1,3 by identifying the vertex of
the cycle and one of the degree-one vertices of K1,3. Denote the remaining
degree-one vertices of K1,3 vi and wi.

3. Add 2k edges to create cycle v1, v2, . . . , vk, w1, w2, . . . , wk.

Obviously Jk is a bridgeless cubic graph with 4k vertices and 6k edges. It is
easy to see that J3 is the Petersen graph with one vertex replaced by a triangle.
Because it contains a triangle it is not considered to be a snark by the most
definitions (but it is for us). It is also known as Tietze’s graph due to Tietze
[1910] who constructed it to show that a graph embedded into Möbius strip may
require six colors to color its faces. Flower “snarks” Jk for even k are 3-edge-
colorable hence not snarks. For odd k ≥ 5 they are indeed snarks:

8

https://hog.grinvin.org

Figure 1.4: Flower snarks J3, J5 and J7

Figure 1.5: 2-sum

Theorem 1.12 (Isaacs [1975]). Flower snarks Jk for odd k ≥ 5 are snarks, J5
has cyclic connectivity 5 and the others have cyclic connectivity 6.

We present a few ways to construct snarks from smaller snarks. The simplest
constructions are a 2-sum (this operation was first described by Kochol [2002]
and he used it reduce 3-flow conjecture to 5-edge-connected case) and a 3-sum
but they create small cuts.

Definition 1.13 (2-sum, Kochol [2002]). Let G and H be bridgeless cubic graphs.
Let uv ∈ E(G) and xy ∈ E(H) be two of their edges. Then the 2-sum of G and
H is the following graph (see Figure 1.5):

(G− uv) ⊎ (H − xy) + {ux, vy} .

Definition 1.14 (3-sum). Let G and H be bridgeless cubic graphs. Let u ∈ V (G)
and v ∈ V (H) be two of their vertices. Let u1, u2, u3 be the neighbors of u and
v1, v2, v3 be the neighbors of v. Then the 3-sum of G and H is the following graph
(see Figure 1.6):

(G− u) ⊎ (H − v) + {u1v1, u2v2, u3v3} .

Figure 1.6: 3-sum

9

Figure 1.7: Dot product

Observation 1.15. Let G1 and G2 be bridgeless cubic graphs and G their 2-sum
or 3-sum. If at least one of G1 and G2 is a snark then G is a snark.

Proof. Using Observation 1.37, we can work with nowhere-zero Z2
2-flows instead

of 3-edge-colorings. Hence we can just contract the other part of G (and suppress
the new vertex of degree two in the case of 2-cut) and get nowhere-zero Z2

2-flow
on the remaining part which is a contradiction with it being a snark.

A better construction which can create cyclically 4-connected graphs is the
dot product. The dot product was introduced independently by Adelson-Velskij
and Titov [1974] and Isaacs [1975]:

Definition 1.16 (Dot Product). Let G and H be cubic graphs. Let e be an edge
of G, u, v the neighbours of one end of e and x, y the neighbours of the other end
of e. Let ab and cd be edges of H. The graph G ·H is created from the disjoint
union of G and H by deleting edges ab, cd, deleting edge e with its endpoints and
adding edges au, bv, cx and dy (see Figure 1.7).

Theorem 1.17 (Isaacs [1975]). Let G and H be snarks. Then G · H is also a
snark. If both G and H are cyclically 4-edge-connected and if the vertices a, b, c, d
are all different, then G ·H is also cyclically 4-edge-connected.

By taking a few small snarks (e.g., found by Brinkmann et al. [2013]) and doing
dot product with the Petersen graph repeatedly, we get the following corollary:

Corollary 1.18. For every even n ≥ 20 there exists a cyclically 4-connected
snark with n vertices.

The last construction we describe was introduced by Kochol [1996a,b] and it is
called a superposition. Its advantage is that it can be used to construct cyclically
5 or 6-connected snarks. The basic idea is to take a snark and replace each vertex
and edge with some other graph. For this we need a definition of a pole.

Definition 1.19 (Supervertex and Superedge). A (k1, k2, . . . , kt)-pole, denoted
M(V,E, S1, . . . , Sk), is a graph with degrees 3 and 1 such that S1, . . . , Sk is a
partition of the edges incident with the degree 1 vertices and |Si| = ki for all i.
Each Si is called a connector.

A (k1, k2, k3)-pole is called a supervertex and a (k1, k2)-pole is called a su-
peredge. A superedge M(V,E, S1, S2) is proper if ∑︁e∈S1 φ(e) ̸= 0 for every 3-
edge-coloring φ : E → Z2

2 \ {0}.

10

Figure 1.8: An example of a superposition

Definition 1.20 (Superposition). Let G be a cubic graph, V = {Xv : v ∈ V (G)}
be a set of supervertices, E = {Fe : e ∈ E(G)} be a set of superedges and ω :
V (G) × E(G) → {1, 2, 3} and ε : V (G) × E(G) → {1, 2} be maps which map
vertex-edge incidences to connectors. Then their superposition is a graph H ob-
tained by replacing vertices of G by Xv, edges of G by Fe, identifying the degree 1
vertices of the connector ω(v, e) with vertices of ε(v, e) and suppressing the created
vertices of degree 2 (for an example see Figure 1.8).

Theorem 1.21 (Kochol [1996b]). Let G be a graph created by a superposition
from graph H. If H is a snark and all the used superedges are proper then G is
a snark.

We also note that it is possible to construct snarks by a technique called
voltage graphs. But this technique by itself does not guarantee that the result
is a snark. More details about voltage graphs can be found in Chapter 7. We
conclude this section with a few results about snarks with high cyclic connectivity.

Theorem 1.22 (Kochol [1996a]). There is an infinite family of cyclically 6-edge-
connected snarks.

Theorem 1.23 (Kochol [1996b]). For every fixed k ∈ N there is an infinite family
of cyclically 5-edge-connected snarks with girth ≥ k.

On the other hand every cubic graph with a Hamiltonian cycle is 3-edge-
colorable and there is a conjecture that every sufficiently connected cubic graph
is Hamiltonian. The Coxeter graph [Coxeter, 1983] shows that k must be at least
8 and there is no known graph showing that k > 8.

Conjecture 1.24 (Thomassen [1996]). There exists k ∈ N such that every cycli-
cally k-connected cubic graph is Hamiltonian.

1.3 Flows
Throughout this section G is a directed graph (but the edge orientation does
not matter) and Γ is an abelian group unless noted otherwise. We start with
an equivalent alternative definition of the group flows which uses surpluses at
vertices:

11

Definition 1.25 (Surplus). Let φ : E(G) → Γ be any mapping. We define
surplus of φ for all vertices v ∈ V (G):

∂φ(v) =
∑︂

e∈δ+(v)
φ(e)−

∑︂
e∈δ−(v)

φ(e).

Observation 1.26 (Equivalent Definition of Γ-flow). A mapping φ : E(G)→ Γ
is a Γ-flow if and only if ∂φ ≡ 0.

Proof. Obvious.

Observation 1.27. For every mapping φ : E(G)→ Γ it holds∑︂
v∈V (G)

∂φ(v) = 0.

Proof. Every edge e contributes φ(e) to surplus of one of its endpoints and −φ(e)
to the other one. Hence its overall contribution is zero.

Observation 1.28. Let T be a spanning tree of G. Then every mapping φ :
E(G) \ E(T)→ Γ can be extended into a flow E(G)→ Γ.

Proof. Choose an arbitrary root of the spanning tree. Work from the leaves up
to the root and always assign the edge such a value to make surplus of its lower
vertex zero. This makes it a flow in all vertices but the root. But the surplus of
the root is also zero as the sum of all surpluses is zero.

Tutte [1954] started the study of nowhere-zero flows by observing, that a
plane digraph G has a nowhere-zero flow in Zk if and only if its plane dual G∗ is
k-vertex-colorable (we do not consider orientation of the edges for the coloring).
He also showed several nice properties of the group flows – namely their existence
depends only on the size of the group and not on its structure and also their
existence is monotone in the size of the group.

Theorem 1.29 (Tutte [1954]). Let Γ be an abelian group with k elements. Then
a directed graph has a nowhere-zero Γ-flow if and only if it has a nowhere-zero
Zk-flow.

Theorem 1.30 (Tutte [1954]). Then a directed graph has a nowhere-zero Zk-flow
if and only if it has a nowhere-zero k-flow.

Now we start examining the group flows for small groups. Obviously a graph
has nowhere-zero 1-flow only if it does not have any edges. To have a nowhere-
zero 2-flow, all degrees of the vertices must be even so the graph must be a cycle.
The situation is much more interesting for 3-flows:

Observation 1.31. A cubic graph has a nowhere-zero Z3-flow if and only if it is
bipartite.

Proof. The if part first. We orient the edges from one partition to the other and
assign one to all of them. This is a valid nowhere-zero Z3-flow. For the only-if
part see that we can change directions of the edge so the flow on all of them is
one. But then each vertex is either a source or a sink (i.e., all the incident edges
are oriented out of the given vertex or all the edges are oriented into it). So
sources are one partition and sinks the other one.

12

Conjecture 1.32 (Tutte [1954]). Every 4-edge-connected graph has a nowhere-
zero 3-flow.

The 3-flow conjecture is a strengthening of Grötzsch’s theorem which is by
duality equivalent to an assertion that every 4-edge-connected planar graph has
a nowhere-zero 3-flow.

Theorem 1.33 (Grötzsch [1959]). Every planar triangle-free graph is 3-vertex-
colorable.

A weaker version which asked if k-connectivity for some fixed k is enough to
ensure existence of a nowhere-zero 3-flow was proposed by Jaeger [1979]. This
version was solved by Thomassen and further improved by Lovász, Thomassen,
Wu and Zhang.

Theorem 1.34 (Thomassen [2012]). Every 8-edge-connected graph has a no-
where-zero 3-flow.

Theorem 1.35 (Lovász et al. [2013]). Every 6-edge-connected graph has a
nowhere-zero 3-flow.

It is also known that the conjecture is true if we replace 3-flow with a 4-flow:

Observation 1.36. Every 4-edge-connected graph has a nowhere-zero 4-flow.

Proof. Because G is 4-edge-connected, it has two disjoint spanning trees T1 and T2
due to Theorem 1.7. Hence we can construct a nowhere-zero Z2

2-flow φ by setting
φ to 1 in the first coordinate for all edges except T1 and to 1 in second coordinate
out of T2. Due to Observation 1.28 this partial mapping can be extended to a
flow.

One of important properties of 4-flows is that for cubic graphs their existence
is equivalent to 3-colorings:

Observation 1.37. A cubic graph has nowhere-zero Z2
2-flow if and only if it is

3-edge-colorable.

Proof. There are three non-zero values in Z2
2 – namely (1, 0), (0, 1) and (1, 1). The

equation a+b+c = 0 is satisfied in Z2
2 if and only if {a, b, c} = {(1, 0), (0, 1), (1, 1)}.

Hence we can use any bijection from colors to {(1, 0), (0, 1), (1, 1)} to obtain a
nowhere-zero Z2

2-flow from a 3-coloring and vice versa a nowhere-zero Z2
2-flow is

a 3-coloring.

This immediately gives very simple proofs of the known facts that a cubic
graph with a bridge is not 3-colorable and that edges of a 2-cut must have the
same color. Both due to the fact that flow on every cut is zero. So a large class
of cubic graphs has nowhere-zero 4-flow but other do not. Specially the Petersen
graph does not as it is not 3-colorable.

Corollary 1.38. The Petersen graph has no nowhere-zero Z4-flow.

This motivates the next Tutte’s conjecture:

13

Conjecture 1.39 (Tutte [1954]). Every bridgeless graph without the Petersen
minor has nowhere-zero 4-flow.

The 4-flow conjecture cannot be reduced to cubic graphs. At least not by the
usual vertex splitting lemma because it can introduce new minors:

Observation 1.40 (Vertex Splitting Lemma, Fleischner [1992]). Let G be a 2-
edge-connected graph and let v be its vertex of degree at least 4. Let uv, w1v and
w2v be three edges incident with v. Then at least one of graphs G−uv−w1v+uw1
and G− uv − w2v + uw2 is 2-edge-connected.

But it can be viewed as a generalization of the Four color theorem [Appel
and Haken, 1977, Appel et al., 1977]. The Four color theorem is equivalent
to a statement that every bridgeless cubic planar graph has nowhere-zero 4-flow
(shown by Tait [1880]). Hence even the restriction of the 4-flow conjecture to cubic
graphs is a strengthening of the Four color theorem. Thomas [1999] announced
that he together with Neil Robertson, Daniel P. Sanders and Paul Seymour solved
this restricted version but the proof is still not fully published today (2021).

Theorem 1.41 (Thomas [1999], proof not yet fully published). Every bridgeless
cubic graph without the Petersen minor has nowhere-zero 4-flow.

We finish with 5-flows. The existence of a nowhere zero 5-flow is probably the
biggest open question in this area:

Conjecture 1.42 (Tutte [1954]). Every bridgeless graph has a nowhere-zero 5-
flow.

This conjecture can easily be reduced to cubic graphs and hence to snarks.
There first step towards this conjecture was made by Jaeger:

Theorem 1.43 (Jaeger [1979]). Every bridgeless graph has a nowhere-zero 8-
flow.

The proof constructs a Z3
2-flow using the fact that every 3-connected graph has

three spanning trees such that every edge is in at most two of them (Corollary 1.8).
Seymour improved the bound to 6 by constructing a Z3 ×Z2-flow. To do this he
found a family of circuits whose contraction makes the graph “connected” enough
to have a 3-flow.

Theorem 1.44 (Seymour [1981]). Every bridgeless graph has a nowhere-zero
6-flow.

Note that there is no direct proof of existence of a nowhere-zero 7-flow as
all the proofs depend on constructing the final flow from several flows in smaller
groups. This is also one of the reasons why the 5-flow conjecture still resists
solving. But there are some facts we know about the hypothetical minimal coun-
terexample to the 5-flow conjecture:

1. It is a snark.

2. It is cyclically 6-edge-connected [Kochol, 2004].

14

3. It has girth at least 12.4

There is also a strengthening of nowhere-zero flows called group connectivity.
It was introduced by Jaeger et al. [1992] and we explore more it in Chapter 2.

1.4 Double Covers
The main open question in this area is the following conjecture due to Szekeres
[1973], independently Seymour [1979] and in slightly modified but equivalent
version by Itai and Rodeh [1978]:

Conjecture 1.45 (Circuit Double Conjecture, Szekeres [1973]). Every bridgeless
graph has a circuit double cover.

Like the 5-flow conjecture, this and other conjectures about double covers can
easily be reduced to cubic graphs and snarks. We say that a double cover is
orientable if it is possible to assign a direction to each of its circuits such that
every edge is covered once with the same direction and once with the opposite
direction. This leads to a natural strengthening of the CDC5 conjecture:

Conjecture 1.46 (Oriented CDC). Every graph has an orientable cycle double
cover.

There is a tight relationship between double covers with a few cycles and
group flows. Note that being a cycle is equivalent to having a 2-cycle double
cover.

Observation 1.47. A graph has a nowhere-zero 2-flow if and only if it is a cycle.

Proof. Obvious.

Theorem 1.48 (Tutte [1949]). A graph has a nowhere-zero 3-flow if and only if
it has an orientable 3-cycle double cover.

Observation 1.49. A graph has an (orientable) k-cycle double cover if and only
if it has a Zk-flow φ such that for every edge e the value φ(e) contains exactly
one 1, one −1 and the rest are zeros, resp. two are non-zeros from the set {±1}
and rest are zeros in the non-orientable case.

Proof. Obvious.

The next observation was originally published in pieces in multiple papers. In
this form it was formulated in Chapter 3.1 of Zhang [1997]. But its proof is simple
and nicely illustrates working with double covers so we present it here anyway.

Observation 1.50. The following statements are equivalent for a graph G:
4Kochol [2010] proved 11. This was improved by Hušek et al. [2016] which was presented at

Bordeaux Graph Workshop but it still remains unpublished although the proof uses the same
computer aided technique as Kochol. It is also worth noting that Kochol’s approach fails when
trying to exclude C12 as subgraph.

5We say CDC instead of cycle double cover or circuit double cover. It should be obvious
from context which one we mean (usually cycle up to Chapter 4 and circuit from there on).

15

1. Graph G has a nowhere-zero 4-flow.

2. Graph G has a 3-cycle double cover.

3. Graph G has a 4-cycle double cover.

4. Graph G has an orientable 4-cycle double cover.

Proof. We use a Z2
2-flow instead of a 4-flow. We extend the Z2

2-flow φ into Z3
2-

flow φ′ via formula (x, y) ↦→ (x, y, x+ y) and use Observation 1.49 to obtain the
equivalence of (1) and (2). Both item (2) and (4) trivially imply (3). It remains
to show (3)⇒ (2) and (2)⇒ (4).

(3)⇒ (2): Let C1 up to C4 be the cycles of the 4-CDC. Then C1△C2, C1△C3,
C1△ C4 is also a CDC (where △ is the symmetric difference).

(2) ⇒ (4): Let C1, C2, C3 be the cycles of the 3-CDC. Define three 2-flows
fi such that fi is non-zero along the cycle Ci and zero elsewhere. Then we use
Observation 1.49 on the flow φ:

φ =
(︄
f1 + f2 + f3

2 ,
f1 − f2 − f3

2 ,
−f1 + f2 − f3

2 ,
−f1 − f2 + f3

2

)︄
.

A direct consequence is that the Petersen graph does not have a 4-cycle double
cover.

Corollary 1.51. The Petersen graph has no 4-cycle double cover.

On the other hand it has an orientable 5-cycle double cover and there is no
known graph for which 5 cycles does not suffice:

Conjecture 1.52 (5-CDC). Every bridgeless graph has 5-cycle double cover.

Conjecture 1.53 (5-OCDC). Every graph has an orientable 5-cycle double cover.

The relationship between flows and double covers also exists for larger k:

Observation 1.54. Every graph with an orientable k-cycle double cover has a
nowhere-zero k-flow.

Proof. Let fi : E(G) → {±1} be the cycles of the double cover. Define flow
φ = ∑︁k

i=1 ifi. Then φ is a nowhere zero k-flow.

Corollary 1.55. Orientable 5-cycle double conjecture implies 5-flow conjecture.

The opposite implication is known for k ≤ 4 as shown above but it is still
an open problem for 5 and 6. We study a possible direction for proving this in
Chapter 3. For a non-orientable CDC we can use the same construction but the
result will be a 2k-flow.

There are also strengthenings of CDC conjecture going in other directions.
For example it is still open whether any circuit of a graph can be extended into
a circuit double cover. On the other hand it is known to be false if we replace
circuits with cycles.

Conjecture 1.56 (Strong CDC). Let G be a bridgeless cubic graph and let C be
a circuit of G. Then there exists a circuit double cover of G containing C.

16

1.4.1 Generalized Cycle Covers
It is natural to ask why to cover each edge twice and not some other number of
times. A summary of known results is in Table 1.9 but to examine this we need
the following technical definition:

Definition 1.57 (General Cycle Cover). Let M ⊆ Z+ be a non-empty set. An
(n,M)-cover of graph G is a system of at most n cycles such that each edge of G
is covered m times for some m ∈M .

We write (n,m)-cover instead of (n, {m})-cover. Hence double covers are
(ω, 2)-covers. It is easy to see that any (n, {1, 2})-cover can be extended into a
double cover. More generally every cover can be modified so all the edges are
covered the same number of times:

Observation 1.58. Let C be a (n,M)-cover of G. Then there exists a (2n −
1, 2n−1)-cover C ′ of G.

Proof. Let C = (C1, . . . , Cn), treat Ci as Z2-flows and define

C ′ =
(︄∑︂
i∈S

Ci : ∅ ≠ S ⊆ {1, 2, . . . , n}
)︄
.

Obviously C ′ has 2n−1 cycles. It covers each edge 2n−1 times because every fixed
set Y has 2|X|−1 intersections of odd size with all the subsets of any other fixed
set X given X ∩ Y ̸= ∅.

Table 1.9: Overview of (n,m)-covers

n m = 2 m = 4 m = 6
2 Eulerian – –
3 4-flow – –
4 4-flow Eulerian –
5 open (5-CDC) 5-postman set –
6 open open (Berge-Fulkerson) Eulerian
7 open yes 7-postman set
8 open yes open
9 open yes open
10 open yes yes [Fan, 1992]

Using 8-flow theorem (Theorem 1.43) we obtain a (3, {1, 2, 3})-cover and by
the previous observation a (7, 4)-cover. This was first proved by Bermond, Jack-
son and Jaeger:

Theorem 1.59 (Bermond et al. [1983]). Every bridgeless graph has a (7, 4)-cover.

The complement of a spanning cycle in a cubic graph is a perfect matching.
This lead from cycle covers to Berge-Fulkerson conjecture about perfect match-
ings:

Conjecture 1.60 (Berge-Fulkerson, Fulkerson [1971]). Every cubic bridgeless
graphs has six perfect matchings such that every edge is in exactly two of them.

17

Conjecture 1.61 (Reformulation of Berge-Fulkerson Conjecture, Jaeger [1979]).
Every bridgeless graph has a (6, 4)-cover.

Definition 1.62 (Postman Set). A set of edges J ⊂ E(G) is a postman set if
E(G)\J is a cycle. A k-postman set is a partition of edges of a graph into exactly
k postman sets.6

Observation 1.63. A graph has k-postman set if and only if it has (k, k − 1)-
cover.

1.4.2 Double Covers and Surfaces
There is also a connection between double covers and embeddings of graphs
into surfaces. For more details about graph embeddings see, e.g., Mohar and
Thomassen [2001].

For us a surface is a compact 2-manifold (i.e., it is locally homeomorphic to
R2) without boundary – i.e., sphere, projective plane, torus, etc. It is easy to
see that every graph can be embedded without crossing edges into some surface
– just start with a plane and add a handle (also known as ear) every time you
need to avoid crossing edges.

For our purposes we need a stronger notion of embedding which ensures that
every face is an disk and a walk around the face is a circuit in the graph. Such
embeddings are called circular. When we say just embedding we always mean a
circular one unless noted otherwise.

Definition 1.64 (2-cell Embedding). Let Σ be a 2-manifold and let G be a graph.
The embedding of G into Σ is a 2-cell embedding if the interior of every face is
an open disc.

Definition 1.65 (Circular Embedding). A 2-cell embedding a circular embedding
if the boundary of each face is a circuit.

Obviously given a circular embedding the collection of its facial walks is a
circuit double cover. Moreover it is an orientable CDC if and only if the surface
was orientable. Vice versa given a circuit double cover we can use the graph as a
skeleton and glue a disk along every circuit of the CDC. The caveat is that this
might not be a surface.

Consider a vertex of degree four covered in such a way that two of its edges
are covered by cycles a and b and the other two edges by c and d. Then the
created “surface” at the vertex looks like two planes with a single point identified
– such objects are usually called pseudo-surfaces. But for such a thing to happen
a vertex of degree four or more is required. If the graph is cubic, the result is
always a surface.

Hence the following conjecture restricted to cubic graphs is equivalent to the
circuit double cover conjecture:

Conjecture 1.66 (Haggard [1977], Little and Ringeisen [1978]). Every 2-vertex-
connected graph has circular 2-cell embedding.

6The empty set might be repeated.

18

When embedding in a sphere (or equivalently in a plane), any closed curve
on the surface which does not pass through vertices and intersects each edge in
at most one point is either disjoint with the embedded graph or corresponds to
an edge cut. The situation is more complicated for other surfaces. On all the
other surfaces there are closed curves which do not split the surface into two
parts. Such curves are called noncontractible. It is an important property of
an embedding how many edges must every noncontractible curve intersect. This
number is called representativity or face-width.

Definition 1.67 (Representativity). Let Γ be an embedding of graph G in a sur-
face which is not a sphere. The representativity of this embedding is the minimal
number of edges the embedding any closed noncotractible curve must intersect
given it does not intersect vertices.

We again conclude this section with the known facts about the hypothetical
minimal counterexample G to circuit double cover conjecture (Chapter 7.2 of
Zhang [1997]):

1. G is a snark.

2. G is cyclically 4-edge-connected.

3. G contains a subdivision of the Petersen graph.

4. G has girth at least 10.

5. If G′ is created from G by either addition or removal of a single edge then
G′ does not have 4-flow.

19

20

2. Group Connectivity
This chapter is based on work which was published as journal paper Hušek et al.
[2019]. Han et al. [2020] extended our results to 3-edge-connected graphs. We
summarize their contribution in Section 2.5.

Jaeger introduced a variant of nowhere-zero flows called group connectivity:

Definition 2.1 (Jaeger et al. [1992]). A directed graph G = (V,E) is Γ-connected
if for every mapping h : E → Γ there is a Γ-flow φ on G that satisfies φ(e) ̸= h(e)
for every edge e ∈ E.

As we may choose the “forbidden values” h ≡ 0, every Γ-connected digraph
has a nowhere-zero Γ-flow; the converse is false, however. While the notion of
group connectivity is stronger than the existence of nowhere-zero flows, it is
also more versatile, in particular the notion lends itself more easily to proofs by
induction. This is a consequence of an alternative definition of group connectivity:
instead of looking for a flow, we may check existence of a mapping E → Γ that
has prespecified surplus at each vertex.

It is easy to see that both the existence of a nowhere-zero Γ-flow and Γ-
connectivity do not change when we reverse the orientation of an edge of the
digraph (we only need to change the corresponding flow value from x to −x).
Thus, we will say that an undirected graph G has a nowhere-zero Γ-flow (is Γ-
connected) if some (equivalently every) orientation of G has a nowhere-zero Γ-flow
(is Γ-connected). Also, using the definition of group connectivity working with
vertex surpluses, we observe that group connectivity is monotone with respect to
edge addition – if G is Γ-connected then G+ e is Γ-connected for any edge e.

Some results on nowhere-zero flows extend to the stronger notion of group
connectivity. A celebrated recent example of this is the solution to the Jaeger’s
conjecture by Lovász et al. [2013], but there are many more. Thus, it is worthwhile
to understand the properties of group connectivity in more detail.

Figure 2.1: A graph which is Z5 but not Z6-connected

However, some nice properties of group-valued flows are not shared by group
connectivity. In particular Jaeger et al. [1992] showed that there is a graph
(Figure 2.1) that is Z5-connected, but not Z6-connected. On the other hand,
Theorem 1.30 indicates that a graph G admitting a nowhere zero flow in Z5 also
has a nowhere zero flow in Z6.

An analogy of Theorem 1.29 is more subtle. Indeed, in Section 3.1 of Jaeger
et al. [1992] the authors mention: “. . . we do not know of any Z4-connected graph
which is not Z2 × Z2-connected, or vice versa. Neither can we prove that such
graphs do not exist.” Our main result is the resolution to this natural question.

21

Z4: NO Z2
2: YES

Graph H1

Z4: YES Z2
2: NO

Graph H2

Figure 2.2: Graphs proving Theorem 2.2. Note that they are the same except
the blue square vertices u.

Theorem 2.2. Let H1 and H2 be the graphs shown in Figure 2.2.

1. Graph H1 is Z2
2-connected but not Z4-connected.

2. Graph H2 is Z4-connected but not Z2
2-connected.

Because our result is computer aided, we do not present the proof in a clas-
sical sense. Instead we present an overview of our approach and examples of
graphs proving Theorem 2.2 in the next section. In Section 2.2 we describe two
algorithms we used to test group connectivity, and we add some implementation
notes in Section 2.3.

The presented examples can be turned into infinite families with the same Z4
and Z2

2 group connectivity by repetitive application of the following observation:

Observation 2.3. Let Γ1, Γ2 be groups of size at least 4, let G be a graph which is
Γ1-connected but not Γ2-connected, and let v be its vertex of degree 3. Then graph
G△ obtained by replacing v with a triangle (with each of the original edges of v
incident to one vertex of the triangle) is also Γ1-connected but is not Γ2-connected.

Proof. Suppose G△ is Γ2-connected and consider any mapping h : E(G) → Γ2.
We extend it to h′ : E(G△) → Γ2 (say, by zeros). As G△ is Γ2-connected, there
is a flow ϕ′ on G△ satisfying ϕ′(e) ̸= h′(e) for every edge e. By contracting the
new triangle we obtain a flow on G avoiding the values of h, a contradiction. On
the other hand G is Γ1-connected so for any forbidden mapping on G△ we can
find a flow satisfying all the edges except the triangle. But the triangle has only
3 edges and |Γ1| ≥ 4 so we can modify the flow (by adding an appropriate flow
supported on the triangle) to avoid all of the forbidden values.

22

Also Li [2018] suggested to us that it is possible to make presented examples
either cubic (but with a nontrivial 2-cut) or 3-edge-connected (but with a few
vertices of degree 4) using the 2-sum operation (Definition 1.13).

2.1 The Conjecture and Results
When looking for graphs certifying Theorem 2.2, we only need to consider graphs
that do have nowhere-zero Z2

2-flow (equivalently, by Theorem 1.29, nowhere-zero
Z4-flow). It is natural to examine cubic graphs (and their subdivisions) due to
the following theorem:

Theorem 2.4 (Jaeger et al. [1992]). Let G be an 4-edge-connected graph. Then
G is both Z2

2- and Z4-connected.

Contrary to the usual case, however, we are not interested in snarks (cubic
graphs that are not to be edge 3-colorable), as those do not have nowhere-zero
Z2

2-flow.
We note that subdividing an edge has no effect on the existence of a nowhere-

zero flow (the new edge can have the same flow value as before). It makes the
group connectivity stronger – in effect, we are forbidding one more value on an
edge. This suggests the following strategy:

1. pick an arbitrary / random 3-regular graph and

2. repeatedly subdivide an edge and check Z2
2- and Z4-connectivity.

(0, 0)

(1, 0)

(1, 0) (0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 1)

(0, 0)

(0, 0)

(1, 1)

(0, 0)

(1, 0)

α

β

γ

δ

ω1

ω2

µ1µ4

µ3 µ2

(0, 0)

(0, 0)
ω3

ω4

Figure 2.3: A subdivision of the cube which is Z4-connected but not Z2
2-connected

with forbidden assignment for which no satisfying Z2
2-flow exists and names for

hypothetical flow values.

This procedure yielded the graph in Figure 2.3, which appeared in the master
thesis Mohelńıková [2014]. This graph is Z4- but not Z2

2-connected. Later, with
more effective implementation (see the next section) by Hušek, we found graphs
that are Z2

2- but not Z4-connected. The smallest Z2
2- but not Z4-connected graphs

we are aware of are (threefold) subdivisions of cubic graphs on 12 vertices (for an

23

(1, x)

γ = (0, x+ y)

(1, y)

(0, 0)

(0, 1)

(0, 1)

µ4

(1, 1 + x)

(x+ 1, x)

γ = (x, x+ y) (1, y)

(0, 0)

(1, 1)

(1, 1)

(x, x+ 1)

µ4 = (1 + x, 1 + x+ y)

(u
,u

+
1)

(u, u+ 1)

ω1

ω2

Figure 2.4: Cases α = (0, 1) and α = (1, 1) with fragments of hypothetical flows

example see Figure 2.2).1 We also include a proof that graph in Figure 2.3 is not
Z2

2-connected which is not computer-aided:

Theorem 2.5. The subdivision of the cube in Figure 2.3 is not Z2
2-connected.

Proof. We will show that for the assignment of the forbidden values in Figure 2.3
there exists no satisfying Z2

2-flow. First observe that values α and β are of the
form (., 1) which implies µ3 = (., 0). So µ3 is always (0, 0) and α = β. Also
µ1 = (1, .).

Propagation of values of flow in the case α = (0, 1) is shown in Figure 2.4,
on the left. As µ2 ̸= (0, 0), we have δ = (1, .). The value x + y is 1 because γ
is forbidden to be (0, 0) but this forces µ4 = (0, 0) which is also forbidden. In
the case α = (1, 1) (Figure 2.4, on the right), we again combine the forbidden
values to give possible form for µ2 and δ, and also ω3, ω4. In particular ω3 = ω4 ̸∈
{(0, 0), (1, 1)}, so we may write ω3 = (u, u + 1). The edge γ forbids x = y = 0
and the edge µ4 forbids x = 1, y = 0, so y = 1 and µ4 = (x + 1, x). So either
ω1 = (u+ x+ 1, u+ x+ 1) or ω2 = (u+ x, u+ x) are (0, 0). Hence no satisfying
flow exists.

A proof that our example in the other direction is not Z4-connected is similarly
easy, we omit it. We have been unable to find a proof of the positive statements:
that the graphs we have found are connected with respect to the appropriate
group.

2.2 Group Connectivity Testing
We fix a digraph G = (V,E). We let n be the number of vertices and m the
number of edges of G.

1We found more examples than we present here. An incomplete list of them
is located at https://gitlab.kam.mff.cuni.cz/radek/group-connectivity-pub/blob/
master/graph_list.py.

24

https://gitlab.kam.mff.cuni.cz/radek/group-connectivity-pub/blob/master/graph_list.py
https://gitlab.kam.mff.cuni.cz/radek/group-connectivity-pub/blob/master/graph_list.py

Notation 2.6. We say that a flow φ : E → Γ satisfies a mapping of forbidden
values h : E → Γ if for every e ∈ E it holds h(e) ̸= φ(e).

The most straightforward way of testing whether a graph is Γ-connected, is
using the definition: We can enumerate all h : E → Γ assignments of forbidden
values and for each of them (try to) find a satisfying flow. Finding a satisfying flow
by itself is a hard problem: A cubic graph has nowhere-zero Z4-flow (equivalently,
Z2

2-flow) if and only if it has an edge 3-coloring. Testing the edge 3-colorability
of cubic graphs was shown to be NP-complete by Holyer [1981].

An easy observation about the structure of forbidden assignments is:

Observation 2.7. Let h, h′ : E → Γ be assignments of the forbidden values such
that h′ − h = ∆ is a flow. Then h is satisfied by a flow φ if and only if h′ is
satisfied by φ+ ∆.

Definition 2.8. We say that assignments of forbidden values h, h′ : E → Γ are
flow-equivalent, denoted h ∼f h′, if and only if h′ − h is a flow.

Hence we can split all assignments of the forbidden values into equivalence
classes of ∼f and test the existence of a satisfying flow only for one member of
each class. This improves the algorithm from finding |Γ|m flows to finding |Γ|n−1

flows (because every equivalence class is uniquely determined by an assignment
of forbidden values which is 0 outside of some fixed spanning tree).

A slightly smarter algorithm – used to find Z2
2-connected graphs which are

not Z4-connected – can be obtained by looking at Observation 2.7 the other
way around. It follows that each equivalence class of ∼f is exactly the coset
{h0 + φ : φ a flow} for any h0 in the class. Therefore if an equivalence class [x]∼f

is satisfied then for every flow φ there is h ∈ [x]∼f
such that φ satisfies h.

Theorem 2.9. Fix a digraph G and an abelian group Γ. Let x : E → Γ be a
forbidden mapping. The following statements are equivalent:

1. Forbidden mapping x is satisfied.

2. Every y ∈ [x]∼f
is satisfied.

3. For every flow φ, there exists y ∈ [x]∼f
satisfied by φ.

Proof. Equivalence of first two follows from Observation 2.7. For item three we
fix a flow φx satisfying x. Then flow φ satisfies forbidden mapping x − φx + φ.
And vice versa if φ satisfies y then x is satisfied by φ− y + x.

So we can fix a flow – constant-zero flow being the obvious candidate – and
for each equivalence class we test whether some of its members are satisfied by
it. This increases the number of tests back to |Γ|m but now each test is just a
simple comparison instead of an NP-complete problem.

We can also trade some space for time: We keep a table of all equivalence
classes, and instead of enumerating members of all equivalence classes, we enu-
merate all assignments of forbidden values that are satisfied by the given flow.
For each of them we determine its equivalence class and mark that class as sat-
isfied. After enumerating them all we just check whether every equivalence class

25

is satisfied. This decreases the number of enumerated elements to (|Γ| − 1)m but
consumes additional 2n−1 bits of memory.

Because we were testing subdivisions of cubic graphs we would like to optimize
cases of once and twice subdivided edges. Without any additional optimization
each subdivision of an edge increases the number of edges by one and hence slows
down the described method by a factor of |Γ| − 1. But a subdivision creates an
edge 2-cut.

Without loss of generality we may assume that edges of a 2-cut – denote them
e1 and e2 – are oriented in opposite directions. The value of any flow must be
the same on both of them. Hence swapping the forbidden values for edges e1
and e2 does not change the set of satisfying flows. Moreover, we may assume
that the forbidden values for e1 and e2 are different because it is more restrictive
than the case when they are the same. This reduces the number of cases from
|Γ|2 to

(︂
|Γ|
2

)︂
(i.e., from 16 to 6 for groups of order four). Double subdivision is in

our case even simpler because we have three forbidden values and again the most
restrictive case is when they all are distinct. So such double-subdivided edge has
only one possible value (in our case, where |Γ| = 4).

Now we need to plug this observations into above-described algorithm. Ob-
serve that the equivalence classes used in the algorithm do not have to be equiva-
lence classes of ∼f but we can use classes of any equivalence ∼ which is a congru-
ence with respect to satisfiability and which is coarser than ∼f . Being congruence
with respect to satisfiability means that either all elements of an equivalence class
are satisfiable or none of them is. Being coarser than ∼f ensures that [x]∼f

⊆ [x]∼
and so if class [x]∼ is satisfiable that for every flow φ there is some y ∈ [x]∼ sat-
isfied by φ. Moreover, we can throw away equivalence classes that are satisfied if
some other class is satisfied (of course without creating cycles). E.g. if we have
a 2-cut with both forbidden values being 1, then this case is implied by the case
with value 1 and any other value.

Notation 2.10. We let [A → B] denote the set of all functions from A to B.
We use ⊎ to denote disjoint union.

We summarize our approach in Algorithm 2.5 and Theorem 2.12. We also need
to work with equivalence classes in the algorithm, so we represent the equivalence
with throw-away class as a function

C : [E → Γ]→ X ⊎ {NULL}

which assigns to each forbidden mapping an object representing its class (in the
practical implementation elements ofX are just small integers), NULL representing
the throw-away class.

The function C we used is obtained from ∼f by the following modifications:
For each 2-cut we remove all classes (i.e., we set the values of their elements to
NULL) that forbid the same value on both edges of the cut and merge classes which
differ only by swapping values on the edges of the cut. For double-subdivided
edges we remove all classes that do not forbid three different values on each
double-subdivided edge and than merge all classes that differ only by the order
of forbidden values on given subdivided edge. We note that the optimization for
double-subdivided edges is essentially equivalent to removing a given subdivided
edge:

26

Observation 2.11. If graph G contains an edge subdivided |Γ| times, it cannot
be Γ-connected. If it contains an edge e subdivided |Γ|−1 times, it is Γ-connected
if and only if G− e is Γ-connected.

Input: Graph G, function C : [E → Γ]→ X ⊎ {NULL}
Output: YES if G is Γ-connected, and NO otherwise

1 Pick a flow φ0
2 Create array a indexed by elements of X
3 a[∗]← false

4 for ∀h satisfied by φ0 such that C(h) ̸= NULL do
5 a[C(h)]← true
6 end for
7 for ∀x ∈ X do
8 if a[x] = false then return NO
9 end for

10 return YES

Algorithm 2.5: Group connectivity testing

Theorem 2.12. Fix an abelian group Γ, a digraph G, and a function C : [E →
Γ]→ X ⊎ {NULL} such that:

1. for all x ∈ X there exists h ∈ [E → Γ] such that x = C(h),

2. for all h : E → Γ if C(h) = NULL then there exits h′ : E → Γ such that if h′

is satisfied then h is also satisfied and C(h′) ̸= NULL,

3. for all h, h′ : E → Γ if C(h) = C(h′) then either both are satisfied or none
of them is, and

4. for all h : E → Γ and for all Γ-flows φ holds C(h) = C(h+ φ).

Then Algorithm 2.5 correctly decides whether G is Γ-connected.

Proof. Obviously, Algorithm 2.5 terminates.
First we prove that if the graph is Γ-connected, then the algorithm outputs

YES. By contradiction, let x ∈ X be the element that forced the algorithm to
output NO. Let P = C−1(x) be a set of preimages of x. It is nonempty due to
Assumption 1, so we can fix some p ∈ P . The mapping p is satisfied by some
flow φp because G is Γ-connected. The mapping p′ = p− φp + φ0 is satisfied by
flow φ0 (Observation 2.7). Also C(p′) = C(p) = x (Assumption 4), so mapping p′

was enumerated by the algorithm and set a[x] to true. Contradiction.
Now we prove that if the algorithm outputs YES, the graph G is Γ-connected.

By contradiction, let p : E → Γ be a mapping witnessing that G is not Γ-
connected. If C(p) = NULL, Assumption 2 gives us p′ which is also unsatisfied
and C(p′) ̸= NULL, otherwise we take p′ = p. Because C(p′) ̸= NULL, none of the
mappings in the set C−1(C(p′)) is satisfied (Assumption 3). Hence a[C(p′)] was
never set to true, and the algorithm must have returned NO. Contradiction.

27

Table 2.6: Time required to test cube subdivided on 2 edges (all 9 possibilities)

Algorithm Time [s]
Simple (in Python) 48.8
Smart (in C++) 3.65
Smart with subdivision optimization 0.229

Measured on Intel i5 5257U.

2.3 Implementation Notes
Because large part of our work consisted of creating programs for testing group
connectivity, we would like to add some implementation notes. Readers interested
only in theoretical results may safely skip this section.

Our first implementation of straightforward algorithm was written by the
second author during her master thesis work. It was a C++ implementation
which was very specialized for the graphs tested (subdivisions of a cube), and a
CSP implementation in Sicstus Prolog to double-check the results. Both of these
implementations required preprocessed input which made them less than ideal to
work with, and also was not fast enough for searching through larger graphs.

Hence we have written a new implementation based on Algorithm 2.5 in
Python version 2 [van Rossum and Drake, 1995] built on Sage libraries [The
Sage Developers, 2021] which already contain a lot of tools to work with general
graphs.2 Because Python is an interpreted language and as such is slower, we
chose to implement performance critical parts of the code in C++ binding them
into Python using Cython [Behnel et al., 2011].3

At the end of the previous section we have described the function C that we
are using, but we did not specify how to calculate it. The main idea is to fix a
spanning tree and transform any forbidden mapping to an equivalent one which
is zero outside this tree. To do so we keep a precalculated list of elementary flows.
We also need to take care of merged classes created by (doubly-)subdivided edges.
For doubly subdivided edges we always assign them the only interesting forbidden
values (and remove them from generation of forbidden mappings). For single
subdivisions we keep a list of six interesting assignments and assign subdivided
edges only values from this list. The effect of these optimizations is shown in
Table 2.6.

To double-check our results we also implemented the straightforward algo-
rithm in pure Python. It is called Simple algorithm in Table 2.6. It does just
check the definition – for every forbidden assignment (fixed outside of a spanning
tree) it finds a satisfying flow (from precomputed list of flows). A repository with
both implementations may be found at our department’s GitLab

https://gitlab.kam.mff.cuni.cz/radek/group-connectivity-pub.

2We used version 2 of Python because Sage was not yet ported to Python 3 at that time.
3Do not mistake with CPython – CPython is the reference implementation of Python inter-

preter, whereas Cython is an optimizing compiler of Python which compiles Python into C (or
C++) and then into the native code using a standard compiler like gcc.

28

https://gitlab.kam.mff.cuni.cz/radek/group-connectivity-pub

Figure 2.7: A cubic 3-edge-connected graph that is Z2
2- but not Z4-connected (for

graph H1 see Figure 2.2)

2.4 Conclusions and Open Problems
Cubic Graphs We have found graphs that show that Z2

2- and Z4-connectivity
are independent notions. All of the graphs that we have found to certify this do
have vertices of degree 2, and Li [2018] can make them 3-edge-connected but only
using vertices of degree 4. Therefore, it is natural to ask, whether such graphs
exist that are cubic and 3-edge-connected.4 Moreover Robinson and Wormald
[1992] proved that asymptotically almost every cubic graph is Hamitonian so it
also has a nowhere-zero Z4- and Z2

2-flow which motivates the following question:
Is asymptotically almost every cubic graph Z4- and Z2

2-connected?

Avoiding Computers Another challenging task is to find a proof that does
not use computers. The main obstacle is to find efficient techniques to show
that a particular graph is Γ-connected. To prove the converse is much easier:
we guess forbidden values h : E → Γ and then show non-existence of a flow (see
Theorem 2.5).

Complexity Our final question is the complexity of testing group connectivity.
The algorithm we have developed is fast enough for our purposes; the required
time is exponential, however. To test for group connectivity seems harder than to
test for existence of a nowhere-zero flow, which suggests the problem is NP-hard.
In fact, we believe it is Πp

2-complete.
Circumstantial evidence which suggests Πp

2-completeness of the group con-
nectivity testing are the somewhat dual notions of choosability and group list-
colorings. Both of these problems are known to be Πp

2-complete – proved by Erdős
et al. [1980] for choosability, and by Král’ and Nejedlý [2004] and Král’ [2005] for
group list-colorings. Of those two, group list-colorings are a closer match to the
dual of group connectivity, but the graphs used in Král’’s proofs are non-planar,
and we found no way to work around it. So for testing group connectivity we do
not know any hardness results.

4After the publication of the paper, this question was resolved as described in the next
section. The other questions remain open.

29

Figure 2.8: A cubic 3-edge-connected graph that is Z4- but not Z2
2-connected (for

graph H2 see Figure 2.2)

2.5 Recent Development
Han et al. [2020] used our results (namely graphs H1 and H2 shown in Figure 2.2)
to construct cubic 3-edge-connected graphs which are Z4- and not Z2

2-connected
and vice versa. For the sake of completeness we include their results here.

Theorem 2.13 (Han et al. [2020]).

• The cubic 3-edge-connected graph in Figure 2.7 is Z2
2- but not Z4 connected.

• The cubic 3-edge-connected graph in Figure 2.8 is Z4- but not Z2
2 connected.

Combining this result with the result of Jaeger et al. [1992], the question of
Lai et al. [2011] is solved.

Theorem 2.14 (Jaeger et al. [1992]). Let Γ be an abelian group. Then

• every 3-edge-connected graph is Γ-connected if |Γ| ≥ 6, and

• every 4-edge-connected graph is Γ-connected if |Γ| ≥ 4.

Problem 2.15 (Lai et al. [2011]). Let F(Γ) be the family of all 3-edge-connected
Γ-connected graphs. Is it true that for two abelian groups Γ1 and Γ2 if |Γ1| = |Γ2|
then F(Γ1) = F(Γ2)?

Corollary 2.16 (Han et al. [2020]). Let Γ1 and Γ2 be abelian groups such that
|Γ1| = |Γ2|. Then every 3-edge-connected Γ1-connected graph is Γ2-connected if
and only if {Γ1,Γ2} ≠ {Z4,Z2

2}.

We conclude this chapter with another question. The case of 3-edge-connected
graphs is fully solved now but it is not obvious what about 2-edge-connected
graphs. Is it true that every two abelian groups can be distinguished by some
graph? We are not sure about the answer but we are slightly inclined to the
positive one:

Conjecture 2.17. Let Γ1 and Γ2 be abelian groups. Then there exists a graph
which is Γ1-connected but not Γ2-connected.

30

3. Graph Homomorphisms and
Cayley Graphs
This chapter is based on work which was first presented at Eurocomb 2017 [Hušek
and Šámal, 2017] and later extended and published as journal paper Hušek and
Šámal [2020].

Definition 3.1. Let B ⊆ M be symmetric, i.e., B = −B. We say that M-flow
φ is an (M,B)-flow if φ(e) ∈ B for all e ∈ E.

We require B to be symmetric so that reversing an edge e and changing the
sign of φ(e) preserves the property of being an (M,B)-flow. Thus, the existence
of such a flow depends only on the underlying undirected graph.

The main example is B = M \ {0}; in this case we call an (M,B)-flow a
nowhere-zero M-flow. The study of nowhere-zero flows was started by Tutte
[1954, 1949], main motivation was the fact, that a planar graph has a proper
face k-coloring if and only if it has a nowhere-zero Zk-flow. For a more thorough
introduction to the theory that came out of this we refer the reader to Diestel
[2017, Chapter 6] or Zhang [1997]. Here we just present the results and notions
crucial for our exposition.

Theorem 3.2 (Tutte [1949]). Let k ≥ 2 be an integer and let f be a Zk-flow on
a graph G. Then there is a Z-flow g on the same graph such that for every edge e
we have f(e) ≡ g(e) (mod k) and |g(e)| < k. Conversely, for each Z-flow g, the
flow f := g mod k is a Zk-flow.

An M-tension τ on a digraph G is again a mapping E →M but the condition
is that the oriented sum along every cycle C is zero, explicitly∑︂

e∈C+

τ(e)−
∑︂
e∈C−

τ(e) = 0

where C+ are edges of C with one orientation along the cycle and C− the edges
with the opposite orientation. We define (M,B)-tension to be an M -tension
which uses only values from a symmetric set B ⊆M .

Before stating our next observation, we need to define the notion of Cayley
graph. Given an abelian group M and its symmetric subset B ⊆ M we let
Cay(M,B) denote the graph with vertex set M and with edges {uv : u, v ∈
M, v − u ∈ B}. The notion of a tension defined in the previous paragraph can
be equivalently described by its relation to vertex colorings. Consider a mapping
p : V → M (usually called a group coloring or in this context a potential). If
we define τ(uv) as p(v) − p(u) for every edge uv (we write τ = δp), then τ is a
tension. On the other hand, it is easy to show that every tension can be written
as δp for some potential p. If τ is an (M,B)-tension, then p only uses values in
B ⊆M , thus p is a homomorphism into Cay(M,B).

For planar graphs, flows and tensions are dual notions – every flow in the
primal graph corresponds to a tension in its dual and vice versa. Because a com-
position of homomorphisms is a homomorphism, the following statement holds:

31

Observation 3.3. Let M , M ′ be abelian groups and B ⊆ M , B′ ⊆ M ′ their
symmetric subsets. If there is a graph homomorphism from Cay(M,B) into
Cay(M ′, B′), then every graph with an (M,B)-tension has an (M ′, B′)-tension.

Many fruitful questions about flows on graphs were motivated by mimicking
the properties of coloring in the dual setting Tutte [1954]. In the same spirit, we
ask for the dual version of Observation 3.3:

Conjecture 3.4 (DeVos [2007]). Let M , M ′ be abelian groups and B ⊆M , B′ ⊆
M ′ their symmetric subsets. If there is a graph homomorphism from Cay(M,B)
into Cay(M ′, B′), then every graph with an (M,B)-flow has an (M ′, B′)-flow.

This is still an open problem but it holds in some special cases. We start with
a few immediate observations that appear in DeVos [2007]. The Conjecture 3.4
holds

• if G is planar (because of duality and Observation 3.3) or

• if 0 ∈ B′ (every graph has an (M ′, {0})-flow) or

• ifB = M\{0} andB′ = M ′\{0}: Here an (M,B)-flow is just a nowhere-zero
M -flow. It is known that the existence of a nowhere-zero flow is monotone
in the size of the group [Tutte, 1954].

A generalization of the last example is based on the monotonicity of circular
flows. A circular k/d-flow is a Z-flow φ such that d ≤ |φ(e)| ≤ k − d for every
edge e. It was proved in Goddyn et al. [1998] that every graph with a circular
k/d-flow has a circular k′/d′-flow (assuming k/d ≤ k′/d′).

Let M = Zk, B = ±{d, d+1, . . . , k−d}, M ′ = Zk′ , B′ = ±{d′, d′ +1, . . . , k′−
d′}. Note that by Theorem 3.2 we may equivalently define circular k/d-flow to
be a Zk-flow with values in {d, d + 1, . . . , k − d}, that is an (M,B)-flow. Thus
the result of Goddyn et al. implies that every graph with (M,B)-flow has an
(M ′, B′)-flow if and only if k/d ≤ k′/d′.

The Cayley graph Cay(M,B) ∼= Kk/d is frequently denoted as the circular
clique (also as circular complete graph); similarly, Cay(M ′, B′) ∼= Kk′/d′ . This
graph is important in the study of circular coloring, the dual concept of circular
flows. It is known that there is a homomorphism from Kk/d to Kk′/d′ if and only
if k/d ≤ k′/d′ (see, for example, Zhu [2001] or its references). Thus, both sides
of the conjectured implication are in this setting equivalent to k/d ≤ k′/d′, hence
the conjecture holds for these combinations of groups and their subsets.

We thank the anonymous referee who kindly suggested that our example using
circular (2k + 1)/k-flows extends to any two circular flows.

3.1 New Framework
The structure of homomorphisms from Cay(M,B) to Cay(M ′, B′) is hard to
describe. Instead we take any mapping m : M → M ′ (not necessarily a group
homomorphism) and let B′ be determined by m (so B′ is the minimal set for
which m is a graph homomorphism). This is achieved by the following technical
definition:

32

Definition 3.5. Let M,M ′ be abelian groups and m : M → M ′ any mapping.
For x ∈M we define its homomorphic image

Hm(x) := {m(a+ x)−m(a) : a ∈M} .

We omit the index m whenever possible. Observe that in the case of tensions
H(x) is exactly the set of possible images of value x on some edge after composing
original tension represented by a group coloring with m:

Observation 3.6. Let p : V → M be a group coloring and let m : M → M ′ be
any mapping between abelian groups M and M ′. Define p′ = m ◦ p, τ = δp, and
τ ′ = δp′. Then

• τ is a M-tension,

• τ ′ is a M ′-tension, and

• ∀e ∈ E : τ ′(e) ∈ H(τ(e)).

Property 3.7 (Homomorphism property). Let G be a (directed) graph and let
m : M → M ′ be an arbitrary mapping between abelian groups. We say that G
has homomorphism property (HP) for m if for every (M,B)-flow there exists
an (M ′,

⋃︁
x∈BH(x))-flow. We say that G has HP for group M if it has HP for

all mappings m with domain M , and that G has HP if it has HP for all abelian
groups.

The name of the property is due to the fact that m is a graph homomorphism
from Cay(M,

⋃︁
e∈E φ(e)) to Cay(M ′,

⋃︁
e∈EH(φ(e))).

Conjecture 3.8 (Reformulation of Conjecture 3.4). All graphs have homomor-
phism property.

Proof of equivalence of Conjectures 3.4 and 3.8. For any mapping m : M →M ′,
we put B′′ = ⋃︁

x∈BH(x). As m is a homomorphism of Cay(M,B) to Cay(M ′, B′′),
Conjecture 3.4 implies Conjecture 3.8. On the other hand, if m is any homo-
morphism of Cay(M,B) to Cay(M ′, B′) (note the different target graph), then
B′′ ⊆ B′. Consequently, every (M ′, B′′)-flow is also an (M ′, B′)-flow and thus
Conjecture 3.8 implies Conjecture 3.4.

The traditional approach to solving flow-related conjectures is to study prop-
erties of a hypothetical minimal counterexample. Usually the problem is reduced
to cubic graphs by splitting / decontracting vertices. This, however, is not possi-
ble with Conjecture 3.4 because decontracting a vertex may create an edge with
a new value found nowhere else, modifying B. To overcome this we formulated
the following property which is a strengthening of the homomorphism property:

Property 3.9 (Strong homomorphism property). Let G be a (directed) graph
and m : M → M ′ an arbitrary mapping between abelian groups. We say that G
has strong homomorphism property (SHP) for m if for every M-flow φ there
exists an M ′-flow φ′ such that φ′(e) ∈ H(φ(e)) for all edges e. We say that G
has SHP for group M if it has SHP for all mappings m with domain M , and that
G has SHP if it has SHP for all abelian groups.

33

Note that SHP allows the flow to be zero on some edges but such edges are
not interesting because H(0) is always {0}. The SHP allows us to study only
cubic graphs – we can make any graph (sub)cubic by decontracting its vertices of
high degree and if SHP holds for such decontracted graphs then it holds for the
original graph too. To state this in a formal way, we need the following technical
definition:

Definition 3.10. We say that a digraph H is a cubification of digraph G if H
can be obtained from G using following operations:

1. decontraction of vertex of degree at least 4 (such that both new vertices have
degree at least 3),

2. suppression of a vertex of degree 2,

3. deletion of a bridge,

4. deletion of a loop, and

5. deletion of an isolated vertex.

With this definition we want to show that every non-cubic graph can be
reduced to a smaller cubic one. To get this we need to use a slightly non-standard
definition of the size of the graph which considers graphs with larger degrees
bigger. Suitable definition for us is

Φ :=
∑︂
v∈V

3deg v.

Observation 3.11 (Reducibility of SHP to cubic graphs). Let m : M → M ′

an arbitrary mapping between abelian groups and let G be a digraph. If some
cubification of G has SHP for m, then also G has SHP for m. Moreover for
every flow φ : E → M there exists a non-strictly smaller (possibly empty) cubic
graph G′ = (V ′, E ′) and a nowhere-zero flow φ′ : E ′ → M such that if SHP does
not hold for φ on G then SHP also does not hold for φ′ on G′.

Proof. To prove the first part, we only need to show that inverse of each operation
used in Definition 3.10 does not break SHP:

1. Suppose G = G1/e and G1 has SHP for m. Let φ be an M -flow on G.
There is a unique extension of φ to G1, we use φ for this extension as well.
(Note that the value of φ(e) may be 0.) As G1 has SHP for M , there is
an M ′-flow φ′ on G1 such that φ′(e) ∈ Hm(φ(e)). The restriction of φ′

to G = G1/e is the desired M ′-flow on G.

2. Subdivision of an edge is obvious when the new vertex of degree 2 has
both in-degree and out-degree 1. In the other case SHP still holds because
H(−x) = −H(x).

3. Addition of a bridge does not break SHP because flow on a bridge is always
0 and H(0) = {0}.

4. Addition of a loop is also simple because H(x) is always non-empty and we
can assign any value on a loop without affecting the rest of the flow.

34

5. Addition of an isolated vertex does not change the flow at all.

The moreover part: Note that Φ = ∑︁
v∈V 3deg v for every cubification is strictly

smaller than Φ of the original graph. To obtain G′ we set G′ = G, φ′ = φ, and
apply the following operations as long as possible:

1. Remove an edge e′ ∈ E ′ such that φ′(e′) = 0.

2. Apply some cubification operation on G′.

Because each of the operations decreases Φ(G′), the process terminates. If the
resulting φ′ was not nowhere-zero, we still could remove an edge with 0 flow, and
if G′ was not cubic, we could get a non-trivial cubification.

The SHP is a natural strengthening of HP – we just fix a particular (M,B)-
flow φ and try to find an (M ′, B′)-flow φ′ with an extra requirement φ′(e) ∈
H(φ(e)). Observation 3.6 shows that a variation of SHP for tensions holds in
general, so also all planar graphs have SHP due to duality.

With computer aid we found out that not all graphs have a SHP. The smallest
graphs without SHP that we found are K5 and K3,3 with a particular Z5-flow
and the universal mapping; see Figure 3.1 and Definition 3.14 below. Due to the
universal mapping concept, and given the problematic Z5-flow, it is actually easy
to see by hand that K3,3 does not have SHP.

1 1 12 2

2 21 3

Figure 3.1: A graph with a Z5-flow for which SHP does not hold

Although SHP does not hold for K5 and K3,3 in general it still holds for groups
Z3 and Z4 because SHP always holds for groups of size at most 4 (Theorem 3.17).
We also tested that SHP holds for Petersen graph and Z5 (we did not try larger
snarks due to computational complexity). This motivates our next conjecture:

Conjecture 3.12 (SHP for minimal groups). For every graph G the strong ho-
momorphism property holds for group Zk where k is minimal such that G admits
a nowhere-zero Zk-flow.

It is easy to observe that SHP holds for m which are (induced by) a group
homomorphism but a more general statement is true:

Observation 3.13. Let G be a graph and let m : M → M ′ be some mapping of
abelian groups. Let h : M ′ → M ′′ be a group homomorphism. If SHP (resp. HP)
holds for G and m then it also holds for G and h ◦m.

Proof. Let φ′ be an M ′-flow guaranteed by SHP. For a group homomorphism h it
holds Hh(x) = {h(x)}. Then φ′′ = h ◦φ′ is also an M ′′-flow and its values satisfy

φ′′(e) ∈ Hh[Hm(φ(e))] = {h(m(a+ φ(e))−m(a)) : a ∈M} =
= {h(m(a+ φ(e)))− h(m(a)) : a ∈M} = Hh◦m(φ(e)).

35

3.2 Universal Objects
Observation 3.13 leads us to the definition of a universal mapping such that if
HP or SHP holds for this mapping, it also holds for every other mapping.

Definition 3.14 (Universal mapping). Let M be an abelian group. We define its
universal group GM = ZM and its universal mapping MM : M → GM :

x ↦−→ gx

where gx is a vector with 1 on position x and 0 elsewhere.

The group ZM\{0} (with 0 mapped to 0 instead of g0) would be sufficient but
we choose the definition with ZM to simplify the proofs. Note that with this
definition GM is just a free group generated by elements of M .

Observation 3.15. The universal mapping is universal for both HP and SHP,
i. e., if for a given graph (and flow) HP (resp. SHP) holds for the universal map-
ping MM then it holds for M .

Proof. Let m : M → M ′ be any mapping. We can also interpret m as a ho-
momorphism mext : GM → M ′ – mapping m defines values of generators ex and
hence it can be uniquely extended into mapping on the whole group which is a
homomorphism (here we are using the fact that kgx = 0 ⇒ k = 0 for x ̸= 0).
Moreover m = mext ◦MM so Observation 3.13 finishes the proof.

There also exists a universal object on the left-hand side – a universal flow F
(which is just the flow into a free group generated by edges outside of some fixed
spanning tree) – but GF has infinitely many generators so we have not found any
reasonable way to work with it. Also note that although the universal group is
infinite, (S)HP holds for the universal group ZM if and only if it holds for ZMk for
any k > ∆(G).

3.3 Partial Results
In this section we prove SHP for some special cases of the mapping or the group.

Theorem 3.16 (Mappings with one “hole”). Strong homomorphism property
holds for mappings m : Zk → Zl defined by m(x) = ax mod l where a ∈ Z. (Here
we interpret elements of Zk as integers 0, 1, 2, . . . , k − 1.)

Proof. Note that mapping m is a composition of mappings m1 : Zk → Z defined
by m1(x) = x and m2 : Z → Zl defined by m2(x) = ax mod l, and that m2 is a
group homomorphism. Hence we only need to show that SHP holds for m1, the
rest follows from Observation 3.13.

So we need to show that for every Zk-flow φ there exists a Z-flow φ′ such that
φ′(e) ∈ Hm1(φ(e)) = {φ(e), φ(e)− k}. This, however, is a well-known result of
Tutte [1949].

Theorem 3.17. Strong homomorphism property holds for groups Z2, Z3, Z2
2, and

Z4.

36

Proof. Due to Observation 3.11 we know that minimal counter-example is a cubic
graph G and nowhere-zero flow φ. We denote the generators of the right-hand
side free group a, b, c, . . .

• Z2: The only graph cubic with nowhere-zero Z2-flow is the empty graph,
for which the claim holds.

• Z3: Let the mapping m be 0 ↦→ a, 1 ↦→ b, and 2 ↦→ c. So H(1) =
{b− a, c− b, a− c}. A cubic graph has a nowhere-zero Z3-flow if and only
if it is bipartite. (To see this, notice that by changing the orientation of
the edges we may assume all flow-values are equal to 1, thus the vertices
are either sources or sinks and no two sinks (neither two sources) can be
connected by an arc.) So we make all edges directed from one partition
to the other and split them into 3 perfect matchings. Observe that either
φ ≡ 1 or φ ≡ 2 in which case we flip the orientation of edges to get the
φ ≡ 1. We assign one of the following flow values to each matching: b− a,
c− b, a− c.

• Z2
2: Let the mapping m be 00 ↦→ a, 01 ↦→ b, 10 ↦→ c, and 11 ↦→ d. Then

H(01) = {±(a− b),±(c− d)} ,
H(10) = {±(a− c),±(b− d)} ,
H(11) = {±(a− d),±(b− c)} .

Let C1, C2, C3 : E → {0,±1} be integer flows on G satisfying the following
relations.

C1(e) = 0⇔ φ(e) = 01,
C2(e) = 0⇔ φ(e) = 10,
C3(e) = 0⇔ φ(e) = 11.

That is, the support of C1 is the collection of circuits formed by edges e
with φ(e) ∈ {10, 11}; the signs are chosen arbitrary but consistently around
each of the circuits. (Similarly for C2, C3.) We define ψ : E → Z4 (recall
that a = (1, 0, 0, 0) ∈ Z4, and b, c, d are defined similarly):

ψ = C1+ C2+ C3

2 a+ C1− C2− C3

2 b+ −C1+ C2− C3

2 c+ −C1− C2+ C3

2 d.

It is easy to check that ψ is a Z4-flow and ψ(e) ∈ H(φ(e)).

• Z4: We observe that every vertex (with all incident edges in the same
direction) has either values 2, 1, 1 or 2, 3, 3. Hence edges with value 2 are
a perfect matching. When we remove them we obtain disjoint union of
circuits and we modify orientation of remaining edges so they are directed
along circuits. With this orientation values around every vertex are 1, 2, 3
so both edges with value 1 and edges with value 3 are a perfect matching.
Let m be 0 ↦→ a, 1 ↦→ b, 2 ↦→ c, and 3 ↦→ d. Then

H(1) = {b− a, c− b, d− c, a− d} ,

37

H(2) = {±(c− a),±(d− b)} ,
H(3) = {d− a, a− b, b− c, c− d} .

Let C1, C2, C3 : E → {0,±1} be a 3-CDC of G defined:

e ∈ C1 ⇔ φ(e) ̸= 1,
e ∈ C2 ⇔ φ(e) ̸= 2,
e ∈ C3 ⇔ φ(e) ̸= 3.

Observe that we can choose orientation of C2 such that no edge has value
−1 in C2. And we define ψ : E → Z4 (recall that a = (1, 0, 0, 0) ∈ Z4, and
b, c, d are defined similarly):

ψ = −C1+ C2− C3

2 a+ C1− C2− C3

2 b+ C1+ C2+ C3

2 c+ −C1− C2+ C3

2 d.

It is easy to check that ψ is a Z4-flow and ψ(e) ∈ H(φ(e)).

3.4 Connection to CDC
As we show below, flows obtained from HP or SHP can be easily transformed into
an oriented cycle double cover. This is one of the major open questions in the
study of cycle spaces in graphs. Moreover if G has SHP for M and a nowhere-
zero M -flow then the obtained CDC is orientable and has only |M | cycles. This
increases importance of Conjecture 3.8 and of determining for which graphs and
groups does SHP hold.

Theorem 3.18 (Universal group and CDC). Let M be any abelian group. If
a graph G has a flow in GM using only values ⋃︁x∈M\{0}HMM

(x) then it has an
orientable cycle double cover using |M | cycles.

Proof. Denote H = ⋃︁
x∈M\{0}H(x). Observe that all elements of H are of form

ga − gb for some a, b ∈M and those a, b are unique. Fix an H-flow φ. We define
directed cycles (as mappings E → {−1, 0, 1}) Cx(e) := (φ(e))x and claim that
C = {Cx}x∈M is an orientable cycle double cover. From definition C covers each
edge twice, once in each direction, and every Cx is a flow with values {−1, 0, 1}
because it is a composition of a flow and group homomorphism so it is a cycle.

Corollary 3.19. If a graph has HP with respect to Zk and nowhere-zero Zk-flow,
then it has an orientable cycle double cover with at most k cycles.

Seymour [1981] proved that every graph without a bridge admits a nowhere-
zero Z6-flow which combined with the previous corollary for Z6 gives us the
following corollary.

Corollary 3.20. Conjecture 3.4 (and equivalently Conjecture 3.8) implies that
every bridgeless graph has an orientable cycle double cover with at most 6 cycles.

38

4. Counting Double Covers
Parts of this and the following two chapters were presented at EuroComb 2021 as
Hušek and Šámal [2021]. Several recent results and conjectures study counting
versions of classical existence statements. Esperet et al. [2011] proved Lovász–
Plummer conjecture:
Theorem 4.1 (Esperet et al. [2011]). Every bridgeless cubic graph has exponen-
tially many perfect matchings.

A similar result for colorings of planar graphs was proven by Thomassen
[2007b]:
Theorem 4.2 (Thomassen [2007b]). Every planar graph has exponentially many
(list) 5-vertex-colorings.

Thomassen [2007a] also conjectured existence of exponentially many 3-vertex-
colorings of triangle-free planar graphs. He gave a subexponential bound that was
later improved by Asadi et al. [2013]. However, the conjecture stays open. By
duality, these results and conjecture can be equivalently stated for the number of
nowhere-zero Z5-flows (or Z3-flows) of planar (4-edge-connected) graphs. Dvořák
et al. [2017] extended this to non-planar graphs:
Theorem 4.3 (Dvořák et al. [2017]). Every 3-edge-connected graph has exponen-
tially many Z3-flows and exponentially many Z2 × Z2-flows.

We ask the same question for cycle double covers of cubic graphs. We show
that counting cycle double covers usually allows “cheating” by splitting a cycle
consisting of more circuits into many cycles, and for this reason we count circuit
double covers instead. We give an exponential bound for planar graphs (Theo-
rem 6.14) and almost exponential bound for graphs on any other fixed surface
(Corollary 4.14).

The structure of this and the following two chapters is the following: We first
discuss why we chose circuit double covers (or CDC for short) over cycle double
covers. Then we show a construction which turns a CDC given by an embedding
into a surface into many CDCs. This gives the almost exponential bound but
we observe that this technique cannot be applied to all graph sequences – in
particular it cannot be applied to Flower snarks.

In the next chapter we formulate a general framework to calculate graphs
parameters using linear algebra. Using this framework and a computer we show
in Chapter 6 that Flower snarks have exponentially many CDCs and we also
prove that planar graphs have exponentially many CDCs. The Chapter 6 also
contains a description of the implementation of the framework we used as its
correctness is essential for the presented results.

4.1 Circuit vs. Cycle
The existential questions usually ask for a cycle double cover. The purpose of
this section is to overview the differences between cycle and circuit double covers
(Definition 1.4) and explain why we choose to count circuit double covers. Before
that we overview the options:

39

1. circuit double covers,
2. cycle double covers as (multi)sets of cycles (Definition 1.1),
3. cycle double covers as colorings of circuits or
4. k-cycle double covers for either definition of cycle double cover.
An advantage of defining a cycle double cover to be a coloring of its circuits

would probably be simpler calculations as it is easier to count colorings than
partitions. But as we noted already in Chapter 1, this definition allows creation
of new cycle double covers by just permuting colors. This might be acceptable for
a fixed number of colors but leads to the infinite number of cycle double covers
when the number of colors is not bounded.

Hence we would be forced to fix the number of colors c. Then the counting is
quite straightforward – such cycle double covers can be modeled by Zc2 flows with
exactly two ones in every used value and those can be counted by, e.g., vertex
models (Section 5.5). On the other hand if we tried to apply the framework from
Chapter 5 the number of boundaries would be exponential (which is better than
for circuit double covers as shown in Observations 6.2 and 6.3) but the base of
the exponential is

(︂
c
2

)︂
which is too large for practical purposes.

Hence “cycle double covers as coloring of circuits” is not a viable option and
we stick with our original definition of cycle double cover. Counting general cycle
double covers also seems as a very hard problem. Note that the usual trick –
treating a cycle double cover as special flows over Zk2 – does not work here for
two reasons: Firstly it leads to the abandoned definition of cycle double covers
as colorings of circuits and secondly without an upper bound on k we would
need to work with ZN

2 . General cycle double covers also cannot be counted by
vertex models (Section 5.5) because Observation 4.4 shows that their number can
be superexponential even for cubic planar graphs. And a straightforward linear
representation (Definition 5.13) of it would not be finite and it would be build on
the top of the linear representation for circuit double covers (Section 6.1).

Also cycle double covers still kind of overcount. This can also be considered
a feature because it counts “simplier” (composed from shorter circuits) circuit
double covers more times so it gives us some extra information. Another option
is counting k-cycle double covers for some fixed k. This is obviously simpler
problem than general cycle double covers. The problem is setting the right k.
As shown below on the example of planar graphs (Observation 4.4) if the graph
has a (k − 1)-cycle double cover then the number of its k-cycle double covers
is exponentially larger than the number of its (k − 1)-cycle double covers. So
choosing k = 5 would heavily favor edge 3-colorable graphs.

Counting circuit double covers does not suffer from any overcounting due to
coloring or grouping things in a different ways. It also does not seem any harder
than the previous two options. Hence we choose to count circuit double covers.

Observation 4.4. The circuit double cover given by an embedding of a graph
into the plane can be made into 2Ω(n3) many 5-cycle double covers and 2Ω(n3 logn3)

cycle double covers just by grouping circuits into cycles in different ways where
n3 is number of vertices of degree at least 3.

Proof. Any graph with a vertex of degree 1 does not have any CDC and subdi-
viding an edge (i.e., addition of vertex of degree 2) does not change number of

40

Figure 4.1: CDC around a vertex of degree 3

Figure 4.2: Two possible CDCs of a triangle gadget

CDC so we may assume that the graph has minimum degree at least 3. Hence
the number of faces is Ω(n).

Faces of bridgeless planar graph can be 4-colored (due to famous Four color
theorem Appel and Haken [1977], Appel et al. [1977]). Some color contains at
least 1/4 of the faces which is Ω(n). For 5-CDC we split this color class into
two cycles and for each circuit (except some fixed one to be able to distinguish
the cycles) we have a binary choice, hence there is 2Ω(n) such 5-CDCs. For a
general CDC we split this color class into any number cycles which leads to the
Bell number1 Bk where k = Ω(n) is the size of the color class. As a simple lower
bound we can take half of the color class to create cycles and divide the rest of
the color class among them in an arbitrary fashion leading to Ω(n)Ω(n) = 2Ω(n logn)

CDCs.

4.2 Representation of Circuit Double Covers
Circuit double covers are usually represented as (multi)sets of circuits. Although
this is a natural representation, it has several downsides. The most important
is that there is no simple way to do local modifications in this representation.
For an alternative representation we use the fact that for cubic graphs any CDC
around any vertex looks the same (Figure 4.1). Because all the vertices look the
same, the only thing that can change is how are the walks connected to each
other at the edges.

There are two ways to join the walks at each edge. To be able to distinguish
these two ways we assume that the graph is drawn into a plane, and then the

1The Bell number Bk is the number of possible partitions of a set of size k. The name was
introduced by Becker and Riordan [1948]. It is known that Bk = 2Θ(k log k).

41

Figure 4.3: A drawing of K4

two ways correspond to crossing or not crossing the walks at the edge. This is
shown in Figure 4.3. We require that all the vertices are distinct points, edges do
not pass through the vertices and do not touch but of course they can cross each
other. This drawing serves us as a way to fix the rotation system (the order of
edges around each vertex). (Alternatively we can view each such a configuration
as a ribbon graph – see, e.g., Ellis-Monaghan and Moffatt [2013] section 1.1.4.)
Every CDC of a cubic graph can be represented this way which leads to the
following simple but important observation:

Observation 4.5. A cubic graph with n vertices has at most 23n/2 circuit double
covers.

Proof. A cubic graphs has 3n/2 edges, there are two ways how to join the walks
at every edge and every CDC can be described this way.

4.3 The Flower Construction
First we present a construction which starts with a graph embedded into some
surface and creates almost exponentially many circuit double covers by doing local
changes to the CDC given by the embedding. Despite its name, this construction
is not related to Flower snarks in any way. The basic idea is to choose a face f
and modify the CDC on f and its neighbours (let nf denote the number of its
neighbour faces) so we get 2Ω(nf) CDC.

This is shown in Figure 4.4 – every small circle there denotes a choice whether
to cross the walks or not, leading to exponentially many CDCs (most of the choices
lead to 3 circuits but some lead to one or two self-touching walks and we deal with
them below). Note that when we redo the CDC on the flower, we cover the outer
edges only once as they are once covered from the outside and we do not want to
modify that part of the CDC. We model this by taking the flower as a standalone
planar graph embedded in such a way that the rest of the original graph would
be in the outer face and counting all CDCs which fix the walk corresponding to
the outer face. We call such objects outer-fixed CDCs (but we will sometimes
omit “outer-fixed” as for the flowers we consider only the outer-fixed CDCs).

42

Definition 4.6 (Flower). Let G be an embedding of a graph into some surface.
We say that a face f of size k together with its neighbour faces are a k-flower
with center f if the following is satisfied:

1. k ≥ 3,
2. f shares exactly one edge with each of its neighbour faces,
3. consecutive neighbour faces also share exactly one edge, and
4. non-consecutive neighbour faces do not share any edge.

To ensure that the result is indeed a CDC with 3 circuits we cannot do arbi-
trary choices everywhere but the case analyzes in the Figure 4.5 shows that the
last 3 choices are enough to ensure a correct CDC. We number the walks on the
right side 1, 2, 3. All the choices outside of the Figure 4.5 are already made, so
the walks appear on the left side in some order. The upper case in the Figure 4.5
shows what happens if the walk 1 is on top on the left – it will go down so in the
middle we must not cross. At the left we still have arbitrary choice but the right
choice is forced – there is exactly one correct solution (denoted by full circle in
the figure). The bottom case is similar but with walk 1 being on the lower edge.

So given 3 consecutive choice-points we can always make the walks into a
CDC. We also still have the original CDC which is important for the flowers
of size 3 because we will need to have at least 2 CDCs on every flower. The
exact number of outer-fixed CDCs of a flower is determined in Theorem 6.4 but
it requires additional definitions so for now we state a lower bound good enough
for the construction:

Observation 4.7. The flower of size k has at least 2k−3 + 1 outer-fixed circuit
double covers.

Proof. The “+1” is the original CDC given by the embedding. Other CDCs are
consisting of 3 circuits following the idea in the Figure 4.4 which has k binary
choice-points. The case analysis in the Figure 4.5 and its description above show
that up to 3 choice-points are required to ensure that result is a CDC and hence
they cannot be chosen arbitrarily which leads to “−3” in the exponent.

Before choosing the flowers we need to ensure that every face defines a flower.
It is easy to see that if a k-face is not the center of a flower then either the graph

Figure 4.4: The basic idea of the flower construction. Circles denote the possible
choices.

43

Figure 4.5: Finishing the flower. Full circles denote forced choices.

can be reduced to smaller graph or there must be a closed curve cutting only a
few edges:

• If k = 1, then the boundary of f is a loop which in a cubic graph implies
existence of a bridge and as such it is not interesting for us. If k = 2
then f is bounded by two parallel edges which leads to a 2-cut (except
the trivial case of three parallel edges on two vertices) and we can apply
Observation 4.8 before proceeding further.

• If f shares two or more edges with some face p then there is a closed curve
cutting only two of the edges shared by them.

• We also find a similar curve if two consecutive neighbor faces of f share
more than one edge.

• If two nonconsecutive neighbor faces of f – denote them p1 and p2 – share
an edge then there is a closed curve passing through faces f , p1 and p2 and
cutting only the three edges that the faces share.

In the planar case this means a small cut in the graph – either cut of size 2 or
non-trivial cut of size 3. On general surface such a curve does not need to be a
cut but it might prove small representativity (Definition 1.67) of the embedding
instead. We do not know how to work around the small representativity but we
can deal with the small cuts. We denote ν(G) the number of circuit double covers
of the graph G.

Observation 4.8 (2-cut). Let G be a cubic graph with a cut of size 2 and denote
G1 and G2 graphs obtained by contracting one side of the cut and suppressing the
new vertex of degree 2. Then ν(G) = 2ν(G1)ν(G2).

Proof. There is only one possibility how any CDC looks on a 2-cut. Denote the
walks on G1 ending in the cut-edges w11 and w12 and the walks on G2 w21 and
w22. There are two ways to join them together: either w11 with w21 and w12 with
w22 or w11 with w22 and w12 with w21. But for these way to really be distict,
we need to ensure that we can distinguish both w11 from w12 and w21 from w22.

44

But we for sure can do that because the cut edges are incident to vertices of
degree 3.

Observation 4.9 (3-cut). Let G be a graph with cut of size 3 and denote G1 and
G2 graphs obtained by contracting one side of the cut. Then ν(G) = ν(G1)ν(G2).

Proof. There is only one possibility how any CDC looks on a 3-cut and it also
uniquely determines whether walks on each of the cut edges cross or not. Hence
we choose some CDC on G1 and some CDC on G2 and together they are a CDC
on G.

4.4 Lower Bounds
Now we use the flower construction to obtain almost exponential lower bounds
for graphs on surfaces. To choose a suitable set of flowers we need their centers
to be at distance 3 or more. This is well modeled by the vertex coloring of the
square of the dual graph. For general surfaces we approximate χ(G2) ≤ ∆2 + 1
but for the plane there is much better bound:

Theorem 4.10 (Molloy and Salavatipour [2005]). The chromatic number of the
square of a planar graph G with maximum degree ∆ is χ(G2) ≤

⌈︂
5
3∆
⌉︂

+ 78.

Theorem 4.11. Every bridgeless cubic planar graph with n vertices has 2Ω(
√
n)

circuit double covers.

Proof. We proceed by induction by n. If the graph is not cyclically 4-edge-
connected we apply Observation 4.8 or 4.9.

If it is, we distinguish two cases depending on ∆, the maximum size of a face:
If ∆ ≥

√
n, we choose the largest face to be the center of a flower and this flower

itself gives us 2Ω(
√
n) CDCs. Or ∆ <

√
n and by Theorem 4.10 applied to the dual

we can choose flowers in such a way that there is at least n/O(
√
n) = Ω(

√
n) of

them. Every flower has at least two CDCs so in total we have 2Ω(
√
n) CDCs.

For general surfaces we have to also consider that Euler characteristic χ in-
fluences the number of faces (note that χ is negative except for plane, projective
plane, torus and Klein bottle) but otherwise the proof is similar:

Theorem 4.12. Every bridgeless cubic graph with embedding into a surface of
Euler characteristic χ with representativity at least 4 has 2Ω(3√n+2χ) circuit double
covers.

Proof. The number of the faces is f = 1
2(n + 2χ) due to Euler’s formula. If the

graph is not cyclically 4-edge-connected we apply Observation 4.8 or 4.9. A closed
curve on the surface which crosses the graph only in the cut edges is a separating
curve (otherwise there is a face which is not a disk) so we obtain embeddings of
the smaller graphs and we can proceed. For the number of the faces f1, f2 of the
smaller graphs it holds f1 + f2 = f + 2 in the case of a 2-cut resp. f + 3 for a
3-cut. So we can proceed by induction.

Now lets assume G is 4-edge-connected. We proceed by induction by the
number of faces.

45

Because we ensured that there are no small cuts and excluded the embeddings
with small representativity, every face is a center of a flower. Again we distinguish
two cases depending on the maximum size of a face ∆: If ∆ ≥ 3

√
n+ 2χ, we choose

the largest face to be a center of a flower and we are done. Otherwise we color
the square of the dual with Θ((3

√
n+ 2χ)2) colors so the largest color class has

size Ω(3
√
n+ 2χ) and we choose it as centers of the flowers.

There also exists an analogue of Theorem 4.10 for every fixed surface so for a
fixed surface we can improve the exponent:

Theorem 4.13 (Amini et al. [2013]). Let σ be a fixed surface. Then there exists
c ∈ R such that the chromatic number of the square of a graph G with embedding
into σ with maximum degree ∆ is χ(G2) ≤ c∆.

Corollary 4.14. Let σ be a fixed surface. Every bridgeless cubic graph with
embedding into the surface σ and with representativity at least 4 has 2Ω(

√
n) circuit

double covers.

This theorem has two potential weaknesses: It might happen that the Euler
characteristic of the embeddings will decrease too fast leading to a constant num-
ber of faces. We are currently not aware of any graph sequence for which this
happens for all the possible embeddings.

The second weakness is that all the embeddings might have small representa-
tivity. Mohar and Vodopivec [2006] proved that this is the case for Flower snarks
(Definition 1.11):

Theorem 4.15 (Mohar and Vodopivec [2006]). All embeddings of a Flower
snark Jk for k ≥ 5 have representativity at most 2.

It is therefore natural to ask how many CDCs do Flower snarks have. We
answer this question in the following sections. Also the theorems give better
bounds if the graph either has a face of a linear size or has the sizes of the faces
bounded by a constant. This leads to a question whether we do not loose too
much by just changing the strategy in the middle and whether there is some
better way.

We answer this question negatively at least for the planar case. The coun-
terexample is an antiflower. We construct an antiflower of size k the following
way:

• Take a flower of size k,

• add another layer of faces (we call them green faces) around the flower so
every non-central face (the purple faces) of the flower touches k new faces,

• contract the outer face into a single vertex, and

• expand this vertex into a path so the graph is cubic and each of the green
faces touches at most 4 other green faces.

Figure 4.6 shows an antiflower of size 4, the outer face in the figure is the central
face of the flower used in the construction. Generally an antiflower of size k has
k purple faces and k2− k green faces so each purple face is incident with k green
faces.

46

Figure 4.6: Antiflower of size four

Observation 4.16. Using the flower construction, no matter how we choose
centers of the flowers, we obtain at most 2O(

√
n) CDCs for the antiflower with n

vertices (the size of the antiflower is Θ(
√
n)).

Proof. Note that the antiflowers are 3-edge-connected so the presented embedding
into the plane is the only possible (modulo changing which face is the outer one,
proved by Whitney [1932]). We analyse the possible choices of flowers. If we
choose outer face as the center of the flower then there is no other flower disjoint
with it and it has size

√
n. If we choose a purple face then the outer face is part

of the flower so we can choose at most one purple face and the flower has size
√
n

again.
Only the green faces remain. But every flower with center in the green face

has size at most 6 as it neighbours with at most 4 other green faces and at most
2 purple faces. And when we select a green face, we cannot select another green
face which neighbours with the same purple face. So we can select at most

√
n

green faces at once.

We did not prove any lower bound specially for antiflowers but they are planar
graphs so the general exponential bound proved below (Theorem 6.14) applies.

47

48

5. Representations
We want to study a way to effectively calculate number of CDCs of graphs be-
longing to a graph sequence. The original motivation is examination of the flower
snarks for which Theorem 4.12 does not apply but this study also leads to other
interesting results like exponential lower-bound on number of CDCs of planar
graphs. In this chapter we prepare the general framework for this.

The presented framework is more detailed than it is necessary to formulate the
mentioned results. We do this to get a notion of the best possible representation
of some graph parameter (Theorem 5.18). This representation is unique up to
isomorphism (Observation 5.23). We can also verify that a given representation
is the best one if we allow free edges (Corollary 5.28).

We formulate our definitions in the framework of universal algebras. The basic
idea is to construct graphs by joining gadgets, and to extend the definition of a
graph parameter so it can be effectively computed along this construction.

5.1 Gadgets and Gadget Algebra
It is important to note that all vertices and edges have identity – i.e., given a
graph with two vertices and three parallel edges, we can tell which edge is which.

A gadget is a graph with some half-edges – a half-edge is an edge which is
incident to only one vertex in the gadget and its other end is “floating” so it can
be connected to other half-edge. This notion is similar to “graphs with outgoing
edges” of Szegedy [2007], k-fragments of Schrijver [2015], networks of Kochol
[2006] and probably many others.1

We define the size of the gadget to be the number of half-edges it has and
denote it |g| for a gadget g. We also allow so called free edges – a free edge is an
edge whose both ends are half-edges (such an edge contributes 2 to the size of
the gadget). The half-edges of the gadget are always labeled by numbers 1, . . . , s
(each half-edge has a different number). We say k-gadget instead of gadget of
size k.

Definition 5.1 (Gadget). A k-gadget is a graph with k half-edges which are
labeled with numbers 1 to k (each used once). Size of the gadget is the number
of its half-edges. Two gadgets are isomorphic (denoted ∼=) if there exists an
isomorphism of the underlying graphs which maps each half-edge to a half-edge
with the same label.

At this point we could define the class of all gadgets, of all k-gadgets etc. But
we often need to restrict ourselves to a subclass of graphs like cubic graphs. Hence
we use G∗ for any class of gadgets which is closed on all elementary joins (defined
below) and define Gk to be all the k-gadgets in class G∗. Note that graphs G are
exactly G0, the gadgets of size zero. We create gadgets from other gadgets by the
following three types of elementary operations defined for all k, k′ ∈ N, we call
them elementary joins:

1It seems – similarly to Ackerman’s function – that every author defines their own version
of it, very similar yet not the same, and we feel obliged to uphold this tradition.

49

1. Disjoint union ⊎k,k′ : Gk × Gk′ → Gk+k′ which result is a gadget whose ver-
tices, edges and half-edges are disjoint unions of those of the input gadgets,
only the labels of the half-edges of the second gadget are shifted by the size
of the first one. The size of the result is the sum of the sizes of the operands.

2. Join of two half-edges, denoted J k
i,j : Gk → Gk−2 for all k ≥ 2 joining half-

edges i and j which replaces the two half-edges by an edge joining their
endpoints. This decreases the size by two and shifts the labels so there are
no gaps.

3. Permutation of half-edge labels, denoted πk[.] : Gk → Gk. For example
π3[2, 3, 1](g) means replacing label 1 with 2, label 2 with 3 and label 3 with
1 and requires g to be a gadget of size three.

We usually omit the k and k′ as they can be inferred from context when needed.
The usual way to describe G∗ is to choose a set of gadgets and take the smallest

G∗ which contains them all. If we do not specify G∗ we work with, then the claims
hold for any choice of G∗.

The base gadgets we usually use are a k-vertex Vk (|Vk| = k, a vertex with k
half-edges) and a free edge F (|F| = 2). For technical reasons we allow an empty
gadget and also J1,2(F) which is a vertexless loop. For example we can write a
triangle as

J1,2J2,4J4,6(V2 ⊎ V2 ⊎ V2)
or equivalently

J1,2J1,3(V2 ⊎ J1,3(V2 ⊎ V2)).
These gadgets are isomorphic but they are not identical. We consider gadgets
identical only when they are created by exactly the same sequence of elementary
joins from the same base gadgets.

The elementary joins as defined above are defined only on gadgets of some
size. This would lead to a partial algebra. To avoid this we extend the gadget
algebra by a special object None and extend the elementary joins to all gadgets but
returning None on the new elements of their domains. To simplify the notation,
we denote G ′ = G∗ ⊎ {None}. More precisely:

Definition 5.2 (Extension of elementary joins). We extend any elementary join
J : ∏︁i∈[n] Gki → Gr to a mapping J : ∏︁i∈[n] G ′ → G ′ such that J (x) = None for
all x ∈ ∏︁i∈[n](G ′ \ Gki).

This yields the same results as using the partial algebras with the strong
homomorphisms as described in Grätzer [2008]. We also use Grätzer [2008] as
our main reference for algebraic notions and theorems.

Definition 5.3 (Gadget Algebra). The gadget algebra G is an algebra whose
objects are G ′ = G∗ ⊎ {None} and operations are the constant None and all the
elementary joins J : G ′n → G ′.

To simplify the notation, we define a join (denoted J : ∏︁i∈[n] Gki → Gr where n
is the number of input gadgets, ki their sizes and r size of the resulting gadget) to
be a function created by composing elementary joins such that each input gadget
appears in the result exactly once (e.g., J : G5 → G10 defined by g ↦→ g⊎5,5 g and

50

J ′ : G3×G4 → G3 defined by (g1, g2) ↦→ g1 are not joins). Note that we explicitly
allow the empty gadget so we can reduce any join (even unary one) to a binary
join. Also conversely we can replace any sequence of joins by a single join. One
class of joins of special interest are gluings

J k
g : Gk × Gk → G

which join the half-edges with the same labels creating a graph.

Observation 5.4. Let J be a join. Then for all i ∈ [n] there exist joins J ′ and
J ′′ such that

J (g1, . . . , gi, . . . , gn) ∼= J ′(gi,J ′′(g1, . . . , gi−1, gi+1, . . . , gn)).

Let J1,J2 be joins then there exists join J such that

J1(g1,J2(g2, . . . , gn)) ∼= J (g1, g2, . . . , gn).

Moreover if we allow free edges then for any binary join J with range G0⊎{None}
and any gadget g2 there exists a gadget g′

2 such that for all gadgets g1:

J (g1, g2) ∼= Jg(g1, g
′
2).

Proof. The first two parts are obvious. The moreover part: If J joins half-edges
of g2 together, we just join them. If J joins a half-edge of g1 with a half-edge of
g2, we permute half-edges of g2 accordingly. Finally if J joins a half-edge of g1
with another half-edge of g1, we add a free edge into g2.

With the definitions of gadgets and joins, we can move to graph parameters.
The graph parameter is a function on graphs which gives the same values for
isomorphic graphs:

Definition 5.5. A function P : G → R such that G1 ∼= G2 ⇒ P(G1) = P(G2) is
called a graph parameter. The set R is the range of this parameter.

The range of a graph parameter is usually (real) numbers but we do not require
it. Note that if needed – like in the case of the parameter which calculates the core
of the graph2 – we can make the theoretical parameter return an isomorphism
class (element of G/∼= in this case) instead of a graph and let the implementation
return any member of the class as its representative.

5.2 Decomposable Representations
We want to enrich the descriptions of graph parameters so they capture how the
parameters are computed along the gadget decomposition. We will model this
as algebras: We first define the gadget algebra where operations are joins and
then describe the parameters using homomorphisms from the gadget algebra. The
relation of a decomposable representation to its parameter is shown in Figure 5.1.

2The core of a graph G is the smallest graph C such that there exists a homomorphism from
G into C. The core is determined uniquely up to isomorphism. For more details see, e.g., Hell
and Nešetřil [1992].

51

G P

R ∪ {None}

hP

P fP

Figure 5.1: Commutative diagram of a decomposable representation

Definition 5.6 (Decomposable Representation). The decomposable representa-
tion P consists of

• the representation algebra P of the same type as the gadget algebra G, we
denote JP the operation corresponding to the join J and NoneP the opera-
tion corresponding to None,

• an algebra homomorphism hP : G→ P, and

• a mapping fP : P→ R ∪ {None}

such that None is a poison value,3 i.e., any operation which has None as any
argument returns None and fP(x) = None for all x ∈ G ′ \ G0.

We say that P is the decomposable representation of the graph parameter with
range R defined by g ↦→ fP(hP(g)) and we use P to denote this graph parameter.

Obviously any parameter can be made into a decomposable representation
by setting P = G, hP to identity and fP = P . We call this decomposable
representation the naive representation for given graph parameter P .

On the other hand some representations are better than others – the intuition
is that the homomorphism of algebras hP is a way to forget the details about
the gadgets not important for given graph parameter and the more it forgets the
better representation it gives. To determine which representation is better we
introduce a notion of homomorphisms of the representations:

Definition 5.7 (Homomorphism). Let P and P ′ be decomposable representations
of the same graph parameter. A mapping h : P → P ′ is a homomorphism from
P to P ′ if the following holds:

1. h is a homomorphism P→ P′, and

2. fP(x) = fP ′(h(x)) for every x ∈ P.

Observe that the mapping hP can be viewed as a homomorphism from the
naive representation. Also the intuition that h : P → P ′ witnesses that P ′ is the
(non-strictly) better representation is not entirely correct. The homomorphism
ensures that h[P] is better than P but if h is not onto, P ′ contains other objects
which might make it more complicated than P . The theoretical solution obviously
is to take P ′ as small as possible but it might not be simple to do in practice.

Like any other homomorphism of algebras, every homomorphism of decompos-
able representations h defines a congruence relation ∼h on objects of its domain

3The homomorphism hP ensures that None is a poison value in the image hP [G].

52

via formula x ∼h y ⇔ h(x) = h(y). Vice versa, given a congruence ∼ on a
decomposable algebra of representation P which respects fP , we can construct a
quotient representation P/∼ and a homomorphism h : P → P/∼.

Definition 5.8 (Congruence). Let P be a decomposable representation. We say
that a congruence ∼ on P is a congruence on P if for all x, y ∈ P it holds
x ∼ y ⇒ fP(x) = fP(y).

Observation 5.9. Let P be a decomposable representation, ∼ a congruence on
it and g1 and g2 two gadgets of different size. If g1 ∼ g2 then an equivalence ∼′

created from ∼ by joining [g1]∼ and [None]∼ is also a congruence.

Proof. It holds that fP([g1]∼) = None (at least one of g1 and g2 is not a graph) so
by joining [g1]∼ and [None]∼ the condition on fP is preserved. The other condition
is

J (x1, . . . , xk, [g1]∼, y1, . . . , yl) = J (x1, . . . , xk, [None]∼, y1, . . . , yl).
The right hand side is always None. Observe that, due to Definition 5.2,

J (. . . , [g1]∼, . . .) = None for all the joins and all the choices of other parameters
because always either g1 or g2 have the wrong size for the given join. So the
second condition is also satisfied.

Definition 5.10 (Quotient Representation). Let P be a decomposable represen-
tation and ∼ a congruence on it. The quotient representation is defined in the
following way:

1. The algebra is the quotient algebra P/∼.

2. The gadget function is hP/∼(g) = [hP(g)]∼.

3. The final function is fP/∼([x]∼) = fP(x).

The function h : P → P/∼ defined h(x) = [x]∼ is a homomorphism of
decomposable representations. We show that the congruences of a decomposable
representation are a complete sublattice4 of the congruences of its algebra:

Observation 5.11. Let ∼i for i ∈ I be a nonempty system of congruence rela-
tions on decomposable representation P. Then both a common coarsening ⋁︁i∈I ∼i
and a common refinement ⋀︁i∈I ∼i exist and they are congruences on P.

Proof. Both ⋁︁i∈I ∼i and ⋀︁i∈I ∼i exist as congruences on P because all congruences
on an algebra are a complete lattice. It remains to show that they are also
congruences on P . It is trivial for ⋀︁i∈I ∼i because it is a refinement of each of
the ∼i. For ∼ = ⋁︁

i∈I ∼i we use the fact that x ∼ y if and only if there exists a
sequence of objects o0, . . . , ok and a sequence of indices i1, . . . , ik ∈ I such that

x = o0 ∼i1 o1 ∼i2 · · · ∼ik ok = y.

Hence if x ∼ y but fP(x) ̸= fP(y) then fP(oi) ̸= fP(oi+1) for some i as well.

4A lattice L is complete if
⋁︁
X and

⋀︁
X exist for every set X ⊆ L. For the details see, e.g.,

Grätzer [2008].

53

Restricting ourselves to the quotient representations, the natural question is
whether there exists the best possible representation. The answer is positive and
it is a direct consequence of Observation 5.11.

Observation 5.12 (The Best Representation). For every graph parameter P
there exists a unique maximal congruence ∼ on its naive representation N . We
call N /∼ the best decomposable representation of P.

Proof. Consider the set of all congruencies on N and apply Observation 5.11.

5.3 Linear Representations
So the best decomposable representation exists but it is rarely useful in practice.
The main reason is that it does not have any additional structure which would
enable us to do computations in it efficiently and it usually is still infinite. To
remedy this, we will require representations to have some additional structure
and require that the homomorphisms preserve it.

The structure we choose is a vector space and linear functions. We choose
vector spaces because they are very easy to work with and yet they are expressive
enough with a lot of tools to use during the analysis. We usually work over real
numbers but the theory works for any other field of characteristic zero.

So we define a linear representation, a naive linear representation, etc., and
finish by showing that there exists the best linear representation. The main
difference is that there usually exists a linear representation such that the sub-
space generated by gadgets of size k has finite dimension for all k. We call such
representations finite.

Definition 5.13 (Linear Representation). A decomposable representation P with
range R together with sets BP and {eb : b ∈ BP} is a linear representation over
a field F if

1. F has characteristic zero,5
2. R is a vector space over F ,
3. elements of P form a vector space over F ,
4. hP(None) is the zero vector,
5. all the functions JP are linear in all their arguments,
6. fP is also a linear function, and
7. the set {eb : b ∈ BP} is a basis of P indexed by BP so that we can define

support supp(v) ⊂ BP . We call elements of the set

Bk
P =

⋃︂
{supp(hP(g)) : g ∈ Gk}

the k-boundaries and we call the elements of Ok
P = FBk (as a subspace

of P) k-multiplicity vectors. We choose the basis eb such that it satisfies
supp(hP(g1)) ∩ supp(hP(g2)) = ∅ for all gadgets g1, g2 of different sizes. If
such basis does not exist, we call the representation improper, otherwise it
is proper.6

5This is not strictly required for this definition but all our theorems assume this.
6We show in Observation 5.15 that we can restrict ourselves to proper representations.

54

We say that the representation is finite if all the sets Bk are finite. We omit
the subscript P whenever possible.

We define homomorphisms and congruences of linear representations the same
way as for the decomposable representations (Definitions 5.7 and 5.8) but more-
over we require that they respect the structure of the vector space (formally, we
extend the parameter algebra with the vector space operations).

We want to show that we can ignore improper representations – i.e., that
there is always a better representation which is proper. It is a generalization of
Observation 5.9. But to do that we need to observe that congruences on linear
representations form a complete lattice.

Observation 5.14. Let P be a linear representation. Then the set C of all
congruences on P is a complete lattice – i.e., for any C ⊆ C there exists both a
congruence which is common refinement and a congruence which is a common
coarsening of the congruences in C.

Proof. We apply the proof of the Observation 5.11. (We cannot apply the obser-
vation directly because our algebra is extended by operation + on its elements
and by multiplication by a scalar value.)

Observation 5.15. Let P be an improper linear representation. Then there exists
a congruence ∼ on P such that P ′ = P/∼ is a proper linear representation.

Proof. For each k ∈ N consider Ik = ⟨hP(g) : g ∈ Gk⟩ and define

N ′ =
⋃︂

i ̸=j∈N
(Ii ∩ Ij), N = ⟨N ′⟩.

Note that if N = {0}, the representation is proper. We define ∼ via formula
x ∼ y ⇔ x − y ∈ N . We need to prove that ∼ is a congruence. If it is, the
representation P ′ is proper from the definition of ∼. Obviously ∼ is a congruence
in the sense of vector spaces because N is a linear subspace of P. It remains to
show that it respects fP and all the (images of) joins JP .

Consider any z ∈ N ′. By definition z ∈ Ii ∩ Ij (where i ̸= j). At least one
of i, j is not zero, hence fP(z) = 0 (fP can be non zero only for graphs due to
Definition 5.6). Now consider v = JP(g1, . . . , gk, z, gk+2, . . . , gk′) for any join J
and gadgets gi. Again at least one of i and j is the wrong size of the gadget for
(k + 1)-th argument of the join J , so v = 0 due to Definition 5.2. Because N is
the span of N ′, the same holds for all elements of N . Hence ∼ respects fP and
all JP .

Hence from now on we consider only proper linear representations unless ex-
plicitly noted otherwise. The definition of k-boundaries as non-zero indices of the
vector space may seem unnatural at first with the better definition being (the
span of) the image of Gk. We choose the former definition because in general we
are not able to calculate ⟨hP [Gk]⟩. If ⟨hP [Gk]⟩ ⊊ ⟨eb : b ∈ Bk⟩, we can replace
⟨eb : b ∈ Bk⟩ with ⟨hP [Gk]⟩ obtaining a better representation. Note that given a
homomorphism m : P → P ′ the formula m[Ok

P] ⊆ Ok
P ′ does not hold in general

but only m[⟨fP(g) : g ∈ Gk⟩] ⊆ Ok
P ′ does.

Definition 5.16 (Naive Linear Representation). The naive linear representation
SP of a graph parameter P : G → R is defined:

55

1. F = R, R = R,

2. hSP (g) = eg for all g ∈ G∗ (to simplify the notation we will treat g as eg),

3. SP is a space generated by hSP [G∗] ⊆ RG∗ (note that this is a strict subset
of RG∗ as we allow only finitely many non-zero coordinates),

4. JSP is the linear extension of J for all joins J (using the simplification
mentioned in Item 2), and

5. fSP is the linear extension of P.

Observation 5.17. Let P be any linear representation. Then hP can be uniquely
extended into a homomorphism from SP into P.

Proof. Obvious.

We call this extension also hP . Note that hP (as a homomorphism from SP)
might not be onto unless we constructed P as a quotient of SP .

Theorem 5.18 (The Best Linear Representation). For every graph parameter
P there exists a unique maximal congruence ∼ on its naive linear representation
S. We call S/∼ the best linear representation of P, we denote it LP , and it is a
proper representation.

Proof. We consider all congruences on S and we apply Observation 5.14 to get
a common coarsening ∼. Due to Observation 5.15, S/∼ is a proper linear repre-
sentation.

Note that we did not specify the basis of the best representation. This is
because any choice will work equally well.

Observation 5.19. Let P be a proper representation which is also a quotient of
its naive linear representation S. Then |Bk

P | = dim hP [Ok
S] for every choice of

the fixed basis in P.

Proof. The naive representation has a basis consisting of images of gadgets (so
Ok

P ⊇ hP [Ok
S]) and the whole P is a direct product of {hP [Ok

S]}k (soOk
P ⊆ hP [Ok

S]).
Hence Ok

P = hP [Ok
S] and |Bk

P | = dimOk
P = dim hP [Ok

S].

There also exists a homomorphism from the best decomposable representation
into the best linear representation. To prove this we need the following well known
fact about algebras:

Fact 5.20. Let h : A1 → A2 be a homomorphism of algebras which is also a
bijection. Then h is an isomorphism.

Observation 5.21. There exists a homomorphism (in the decomposable repre-
sentation sense) from the best decomposable representation B into the best linear
representation L.

56

Proof. By definition there exists an onto homomorphism j : hL[G∗] → B. We
show that j is injective. For contradiction assume that there exist gadgets g1, g2
such that hL(g1) ̸= hL(g2) but hB(g1) = hB(g2). We can take B and turn it
into a linear representation B′ the same way we turned the naive decomposable
representation into the naive linear representation. It holds hB′(g1) = hB′(g2)
which is a contradiction with L being the best linear representation.

So j is an bijective homomorphism and by Fact 5.20 it is a isomorphism.
Hence there exists a homomorphism h : B → hL[G∗] ⊂ L defined h = j−1.

In practice it is not enough that the representation is finite but we are very
interested how fast |Bk| grows. We show that the best linear representation is
also the one with |Bk| growing as slow as possible.

Observation 5.22. The best linear representation has the smallest number of
k-boundaries among all linear representations of the given parameter.

Proof. By contradiction. Assume that some other representation P has less k-
boundaries. The function hP defines congruence ∼P on the naive linear represen-
tation S. The congruence ∼ used to construct the best representation is coarser
than all other congruences on S, specially ∼P . Hence the best linear representa-
tion must have at most as many k-boundaries as P . Contradiction.

The important property of the best representation is that there exists a ho-
momorphism into it from any other quotient of the naive representation. So we
can take a quotient representation and either prove that it is best or improve it
and get closer to the best one. We can never do a “wrong” move which would
leave us with non-optimal representation and no way to improve it. To prove
that a given representation is best, it is enough to show that the size of each Bk

is as small as possible.

Observation 5.23. Let P be a linear representation and let L be the best linear
representation of the same parameter. If |Bk

P | = |Bk
L| < ∞ for all k then P is

isomorphic to L.

Proof. Because the |Bk
P | are as small as possible, hP as a homomorphism from

the naive representation is onto. By definition of L there is a homomorphism
m : hP [S] → L from image of the naive representation (i.e., the whole P in this
case) into L which is also onto. Homomorphism m must be injective because
P and L have the same number of k-boundaries – i.e., the corresponding vector
spaces have the same finite dimension. Hence m is a bijective homomorphism,
and by Fact 5.20 it is an isomorphism.

A way to show this equality is to construct for every k a matrix Ak indexed
by k-gadgets defined

Akg1,g2 = P(Jg(g1, g2))

and show that is has rank |Bk|.

Observation 5.24. Let P be a linear representation and let S be some set of
k-gadgets. Define matrix Ak by Akg1,g2 = P(J k

g (g1, g2)) where g1, g2 ∈ S. Then
rank(Ak) ≤ |Bk

P ′| for every linear representation P ′ of the same graph parameter.

57

Proof. The matrix Ak can also be written as Ak = MT
k GMk where G is the

matrix of the bilinear map fP((J k
g)P(., .)) and Mk is a matrix whose columns

are multiplicity vectors (i.e., hP(.)) of the k-gadgets in S treated as elements
of FBk . Because the rank of the result of matrix multiplication is at most the
minimum of the ranks of the involved matrices, this gives a lower bound on the
rank of the matrix Mk (and also G) for any representation of this parameter.
Hence it bounds the number of its rows from below and each row corresponds to
a k-boundary.

We want to observe that if two gadgets can be distinguished by a parameter
then they are distinguished by gluing. This will allow us to examine only gluing
and not all possible joins involving gadgets of the given size. This is unfortunately
true only if we allow free edges. Note that by Observation 5.4 any sequence of
joins can be reduced to a single join.
Observation 5.25. Let P be a linear representation allowing free edges and let
g1, g2 be k-gadgets. If there exists any join J and gadgets f1, . . . , fn such that

P(J (g1, f1, . . . , fn)) ̸= P(J (g2, f1, . . . , fn))

then there exists a k-gadget f such that P(Jg(g1, f)) ̸= P(Jg(g2, f)).
Proof. Obvious. Just join all the other gadgets first by Observation 5.4.

This immediately gives us that any such linear representation can be improved
by decreasing the number of k-boundaries to the rank of matrix G from the proof
of Observation 5.24.
Observation 5.26. Let P be a linear representation allowing free edges and
let n ∈ N. Then there exists a linear representation P ′ which has the same k-
boundaries as P for all k ̸= n and has rank(An) of n-boundaries where An is a
matrix with entries Ani,j = P(Jg(ei, ej)) and {ei : i ∈ I} is any basis of On

P .
Proof. Let I ′ ⊂ I be maximal such that the corresponding columns (or equiva-
lently rows because An is symmetric) of An are independent. (So |I ′| = rank(An).)
Let D = I \ I ′ and for d ∈ D let cdi ∈ R be such that

A∗,d =
∑︂
i∈I′

cdiA∗,i.

Define vectors yd such that ydi = cdi for i ∈ I ′, ydd = −1 and ydd′ = 0 for all other
d′ ∈ D. Obviously yd ∈ ker(An). Hence we can transform any multiplicity vector
v ∈ On to

v′ = v +
∑︂
d∈D

vd y
d.

Then it holds (Jg)P(v, w) = (Jg)P(v′, w) for all w ∈ On and (v′)d = 0 for all
d ∈ D. So we can just drop the coordinates D which gives us the representation
P ′.

Hence the rank of matrix Ak is an upper bound on the number of k-boundaries
of the best representation. For an example of a representation with a full-rank
matrix Ak which is not the best representation see the representation of k-edge
colorings described in Section 5.6. On the other hand we show that our bounds
meet for the best representation. To do this we need to observe that the best
representation has a basis consisting of images of gadgets.

58

Observation 5.27. Let P be a linear representation which is a quotient of the
corresponding naive linear representation S. Then there exist k-gadgets {gi}i such
that {hP(gi)}i is a basis of Ok

P .

Proof. The naive representation has basis consisting of images of gadgets, hence
so does any its quotient.

Corollary 5.28. Let L be the best linear representation which is also finite and
allows free edges. Let {gi}i be set of k-gadgets such that {hL(gi)}i is a basis of
Ok

L. Then |Bk
L| = rank(Ak) where Ak is a matrix defined Aki,j = L(J k

g (gi, gj)).

In the examples we present below, it is usually the case that the gadgets are
mapped to non-negative vectors. We show that this is not a coincidence but a
natural property of a linear representation of a non-negative graph parameter.
First we need to generalize the notion of non-negative vectors to account for
different rotations:

Definition 5.29 (Cone). A cone is a subset of a linear space over R which is
closed under linear combinations with non-negative coefficients. A cone is proper
if it does not contain any line (i.e., a set of form {αv : α ∈ R} for a fixed non-
zero vector v). A cone generated by set X is the set of all non-negative linear
combinations of the elements of X.

Observation 5.30. Let P be a linear representation over R such that the values
of graphs {P(G) : ∀G ∈ G} generate a proper cone V . Consider cone C gener-
ated by the images of gadgets {hP(g) : ∀g ∈ G∗}. If {αx : ∀α ∈ R} ⊂ C, then
fP(JP(x, hP(g))) = 0 for all gadgets g and all binary joins J .

Proof. For contradiction let us assume that fP(JP(x, hP(g))) ̸= 0 for some join
J , some gadget g and some x such that {αx : ∀α ∈ R} ⊂ C. Fix β ∈ R such
that

fP(JP(βx, hP(g))) ̸∈ V.
Such β exists because V is a proper cone. We can write βx as a non-negative
linear combination of images of gadgets and then use linearity:

βx =
∑︂
i

αihP(gi)

fP(JP(βx, hP(g))) = fP(JP(
∑︂
i

αihP(gi), hP(g)))

=
∑︂
i

αifP(JP(hP(gi), hP(g)))

Note that if the result of the join J (gi, g) is not a graph, we have

fP(JP(hP(gi), hP(g))) = 0.

So we have ∑︂
i

αiP(J (gi, g)) ̸∈ V

but all αi ≥ 0 and P(J (gi, g)) ∈ V by definition. Contradiction.

Using this observation and applying a suitable linear transformation we get:

59

Corollary 5.31. Let P be a non-negative real-valued graph parameter. Then is
has a best representation over R in which all gadgets are mapped to non-negative
vectors.

An interesting question is the characterization of the graphs parameters which
do have a finite linear representation. We leave it as an open problem for further
research.

Problem 5.32. Characterize graph parameters which have a finite linear repre-
sentation over Q, R or C. What if we restrict growth of |Bk|?

5.4 Graph Sequences
We conclude this section with definition of graph sequences created by repeatedly
joining with the same gadget which will help us analyze asymptotic behavior of
the linear representations.

Definition 5.33 (Graph Sequence). A graph sequence (Gi)i≥z is defined by its
initial index z, initial gadget ginit, step gadget gstep, step join Jstep and final join
Jfin by the following formulas:

gz = ginit, gi+1 = Jstep(gstep, gi), Gi = Jfin(gi).

Note that sizes of the initial gadget and the result of the step join must be the
same and we call this value size of the sequence, denoted s. For example cyclic
ladders (also know as prizm graphs) are a graph sequence of size 2 with

gstep = π[1, 3, 4, 2](J3,4(V3 ⊎ V3)), Jstep(ga, gb) = J3,4J3,5(ga ⊎ gb),
z = 2, ginit = Jstep(gstep, gstep), Jfin = J1,2 · J2,3.

We can also obtain Möbius ladder by changing the final join to Jfin = J1,2 · J1,3.
For illustration see Figure 5.2.

The following observation shows that asymptotic behavior of a linear repre-
sentation of a graph sequence can be determined by analyzing a single matrix.
Moreover this matrix has finite size if the representation is finite.

Observation 5.34. Let P be a linear representation over F with range F and
let (Gi)i≥z be a graph sequence of size s. Then value P(Gi) can be expressed as
mT

finA
i−zminit, where minit = hP(ginit) ∈ FBs is the multiplicity vector of the base

gadget, A = (Jstep)P(hP(gstep), .) ∈ FBs×Bs is the matrix describing addition of
the step gadget and mfin = fP · (Jfin)P ∈ FBs is the vector describing the final
join.

Proof. Obvious.

We can also obtain an explicit formula for P(Gi) by using Jordan normal form
(see, e.g., Horn and Johnson [2012]). Note that we have to work over complex
numbers as real matrices can have complex eigenvalues.

60

Figure 5.2: Cyclic ladders

Observation 5.35. Let u, v ∈ Cn be vectors and J ∈ Cn×n be a matrix such
that diagonal entries are λ ∈ C, entries right above the diagonal are ones and all
other entries are zeros (i.e., the matrix is a single Jordan block). Then

uTJkv =
n∑︂
j=1

uj

n−j∑︂
i=0

(︄
k

i

)︄
vj+iλ

k−i ∀k ≥ n.

Proof. We will prove that (Jkv)j = ∑︁n−j
i=0

(︂
k
i

)︂
vj+iλ

k−i for k ≥ n. We proceed by
the induction on j from n to 1 and k from 1 to ∞. The base case is j = n for
any k:

(Jkv)n =
0∑︂
i=0

(︄
k

i

)︄
vn+iλ

k−i = vnλ
k

which holds. Induction step from j + 1 to j for k ≥ n− j:

(Jkv)j = (J(Jk−1v))j = λ(Jk−1v)j + (Jk−1v)j+1

= λ
n−j∑︂
i=0

(︄
k − 1
i

)︄
vj+iλ

k−1−i +
n−j−1∑︂
i=0

(︄
k − 1
i

)︄
vj+i+1λ

k−1−i

=
n−j∑︂
i=0

(︄
k − 1
i

)︄
vj+iλ

k−i +
n−j−1∑︂
i=0

(︄
k − 1
i

)︄
vj+i+1λ

k−1−i

= vjλ
k +

n−j−1∑︂
i=0

(︄
k − 1
i+ 1

)︄
vj+i+1λ

k−i−1 +
n−j−1∑︂
i=0

(︄
k − 1
i

)︄
vj+i+1λ

k−1−i

= vjλ
k +

n−j−1∑︂
i=0

(︄(︄
k − 1
i+ 1

)︄
+
(︄
k − 1
i

)︄)︄
vj+i+1λ

k−i−1

= vjλ
k +

n−j−1∑︂
i=0

(︄
k

i+ 1

)︄
vj+i+1λ

k−(i+1)

61

= vjλ
k +

n−j∑︂
i=1

(︄
k

i

)︄
vj+iλ

k−i

=
n−j∑︂
i=0

(︄
k

i

)︄
vj+iλ

k−i

Corollary 5.36. Let u, v ∈ Cn be vectors and M ∈ Cn×n be a matrix. Then

uTMkv =
l∑︂

i=1
λkiPi(k) ∀k ≥ n

where λ1, λ2, . . . , λl are all the distinct eigenvalues of M and Pi is a polynomial
of degree at most ai − gi where ai is the algebraic multiplicity of λi and gi its
geometric multiplicity.

Proof. We choose P and J such that M = PJP−1 and J is a matrix in the Jordan
normal form. Then we apply Observation 5.35 to each block of uTP , J and P−1v.
For the l-th block corresponding to λi we obtain a formula λkiQi,l(k) where Qi,l is
a polynomial of degree at most the size of the block minus one. The size of the
block cannot be larger than ai− gi + 1 (Section 3.1 of Horn and Johnson [2012]).
So Pi = ∑︁

lQi,l.

5.5 Linear Representations and Edge Coloring
Models

There is a connection between finite linear representations and edge coloring
models. We first shortly review edge coloring models using mostly terminology of
Szegedy [2007]. Then we prove that we can derive a finite linear representation
from every edge coloring model but not vice versa. In praticular, we show that
circuit double covers cannot be counted by neither a real valued nor a complex
valued edge coloring model.

Szegedy [2007] proved the characterization of the edge coloring models with
values in R. Later Draisma et al. [2012] and Schrijver [2015] proved a charac-
terization of complex valued edge coloring models but we will not explore this
further. Lets start with definition of the real valued edge coloring model (the
complex valued one differs only by replacing R with C):

Definition 5.37 (Edge Coloring Model). An R-valued edge coloring model is a
graph parameter t : G → R given by a function t : Nd → R (where d is the number
of colors) and formula

t(G) =
∑︂

ψ:E(G)→[d]

∏︂
v∈V (G)

t(vψ)

where vψ ∈ Nd is a vector such that (vψ)i is the number of edges of color i incident
to vertex v in coloring ψ (note that loops are counted twice).

We say that a graph parameter f : G → R is multiplicative if f(G1 ⊎ G2) =
f(G1)f(G2) for all graphs G1, G2 ∈ G and f(E) = 1 where E is the empty graph.
The next property we need is edge reflection positivity and it is easiest to define
in terms of quantum graphs:

62

Definition 5.38 (Quantum Graph and Gadget). A quantum graph is a formal
linear combination of graphs. A quantum gadget is a formal linear combination
of gadgets of the same size.

Note that gadget joins and any linear representation can be linearly extended
to quantum graphs. We remind that J k

g : Gk × Gk → G (called gluing, defined
for all k) is a binary join which joins the half-edges with the same labels. A
quantum graph Q is called edge reflection symmetric if there exists a quantum
gadget H such that Q = J |H|

g (H,H). We say that a graph parameter f : G → R
is edge reflection positive if f(Q) ≥ 0 for all edge reflection symmetric quantum
graphs Q. The characterization of the real valued edge coloring models is:

Theorem 5.39 (Szegedy [2007]). A function f : G → R can be realized by a real
valued edge coloring model if and only if f is multiplicative and edge reflection
positive graph parameter.

As noted above, every real or complex valued edge coloring model gives us a
finite linear representation:

Theorem 5.40. Let t : Nd → F be an F -valued edge coloring model (F ∈
{R,C}). Then there exists a finite linear representation P over F defined (again
we define all the functions on the basis only):7

1. range is F ,

2. Bk = [d]k (colorings of the half-edges with d colors),

3. hP(g) = ∑︁
b∈B|g| 1b

∑︁
ψ>b

∏︁
v∈V (g) t(vψ),

4. (Ji,j)P(1b) = 0 if bi ̸= bj and 1b′ otherwise where b′ is b without the i-th
and the j-th component,

5. ⊎P(1b,1b′) = 1b.b′ where . means concatenation,

6. π[σ]P(1b) = 1σ(b),

7. fP(m) = m,

such that t(G) = P(G) for all graphs G. It holds that |Bk| = dk.

Proof. Obviously t = P . Also all the required functions are linear. It remains
to show that P is a decomposable representation, i.e., that for all joins J :∏︁
i∈[n] Gki → Gr and for all gadgets of correct sizes g1, g2, . . . , gn the equation

hP(J (g1, g2, . . . , gn)) = JP(hP(g1), hP(g2), . . . , hP(gn)) holds.
It is enough to prove it for elementary joins. For J1,2 and a k-gadget g we

need to show hP(J k
1,2(g)) = (J k

1,2)P(hP(g)). The proof of it is not complicated
but it is somewhat technical. We need to distinguish to which gadget we apply
vψ (from the definition of an edge coloring model) so we denote vψ,g the value of

7We denote ψ > b the non-proper edge-coloring ψ extending b which is interpreted as coloring
of the half-edges.

63

vψ in gadget g. We start by expanding the left-hand side (the final step is from
J1,2(g) to g):

hP(J k
1,2(g)) =

∑︂
b∈[d]k−2

1b
∑︂
ψ>b

∏︂
v∈V (J k

1,2(g))
t(vψ,J1,2(g))

=
∑︂

b∈[d]k−2

1b
∑︂
c∈[d]

∑︂
ψ>(c,c).b

∏︂
v∈V (g)

t(vψ,g)

Now we expand the right-hand side (in the last step we split out the colors of the
first two half-edges). Expression b′ denotes b without the first two coordinates.

(J k
1,2)P(hP(g)) =

∑︂
b∈Bk

b1=b2

(hP(g))b1b′

=
∑︂
b∈[d]k
b1=b2

1b′
∑︂
ψ>b

∏︂
v∈V (g)

t(vψ,g)

=
∑︂

b∈[d]k−2

∑︂
c∈[d]

1b
∑︂

ψ>(c,c).b

∏︂
v∈V (g)

t(vψ,g)

We obtained the same formula so the equality holds. The proof is similar and
even more trivial for ⊎ and π[σ] so we omit it.

The representation from Theorem 5.40 is a slight generalization of the rep-
resentation of edge colorings shown below (Section 5.6.2). Also whether this
representation is optimal or not depends on the properties of t. Usually it is not
– e.g., for the edge colorings we get exactly the representation described in the
example section below which is not optimal because boundaries which differ only
by renaming colors always have the same coefficients.

But there are finite linear representations which cannot be modeled by real
valued edge coloring models. For example counting colorings (both edge and
vertex ones) if we treat them not as colorings but as partitions (i.e., the colors
do not have identity):

Observation 5.41. The number of k-partitions of vertices (resp. edges) which
are a coloring cannot be calculated by a real valued edge coloring model for any
k > 1.

Proof. A graph with single vertex (resp. edge) has only one such coloring but
disjoint union of two copies of this graph has 2 coloring – either the vertices (resp.
edges) have the same color or not. Hence this parameter is not multiplicative and
by Theorem 5.39 it cannot be calculated by a real valued edge coloring model.

Also circuit double covers cannot be counted by a real valued edge coloring
model:

Observation 5.42. The number of circuit double covers is not edge reflection
positive.

Proof. We construct a quantum graph for which the number of CDCs is negative.
Consider gadget g1 of size 6 created from Petersen graph by removing two inner
vertices not connected by an edge and gadget g2 consisting of two disjoint cubic

64

Figure 5.3: Petersen graph split into two 6-gadgets

vertices such that Jg(g1, g2) = Jg(g2, g1) is Petersen graph (see Figure 5.3). Define
quantum gadget H = 3g2− g1. The number of CDCs of Jg(H,H) is less that −2
(computed by the program described in Section 6.3) so the number of CDCs is
not edge reflection positive.

Corollary 5.43. Circuit double covers cannot be counted by a real valued edge
coloring model.

In general complex valued models are stronger than real valued ones. For
example a real valued graph parameter (−1)|E(G)| cannot be represented by a real
valued model but can be by a complex valued one as noted by Schrijver [2015].
So it is natural to ask whether we cannot use a complex model instead. The
answer is negative:

Theorem 5.44. Circuit double covers cannot be counted by a complexed valued
edge coloring model.

Proof. Theorem 5.40 shows that a linear representation derived from an edge
coloring model has dk boundaries. But we show below (Observation 6.3) that
any linear representation of the number of circuit double covers has 2Ω(k log k)

boundaries.

It is also worth noting that, despite the presented examples, an edge coloring
model (and hence the derived linear representation) does not need to have a
combinatorial interpretation. Szegedy [2007] showed that the value of the edge
coloring model is invariant under action of an orthogonal group on a suitable
polynomial ring. He also provided an example that the usual edge coloring model
of the number of perfect matchings:

t(a, b) =
⎧⎨⎩1 if a = 1,

0 otherwise

can be transformed into

t′(a, b) = 2−(a+b)/2(a− b)

and this transformed model still calculates the number of perfect matchings.

65

5.6 Examples of Linear Representations
In this section we list a few examples of linear representations for common graph
problems. We defer the linear representation of the number of CDCs to the
next chapter (Chapter 6) as it is slightly more complicated and we also want to
cover it in more detail. Note that we designed the framework to count objects.
So although it might also be used for optimisation problems it usually leads to
infinite representations.

For minimization problems it might be better to build analogous theory but
with addition instead of multiplication and minimum instead of addition. In
such a framework each coordinate would describe the best object with a given
boundary. On the other hand it will no longer be a linear space so an extra care
is needed. Because we are interested in counting, we do not pursue this direction
any further.

5.6.1 Counting Vertices and Edges
The simplest example is probably counting the vertices of a graph. The most
straightforward way is to define8 Ok = Q for all k, let hP map a gadget to the
number of its vertices, let ⊎P be addition and fP and all other JP be identity.
This is obviously a decomposable representation but not a linear one – we require
linearity in all arguments JP(a1x2, a2x2) = a1a2JP(x2, x2) which does not hold
for addition. To fix this we change Ok to Q×Q and redefine

• hP(g) = (|V (g)| , 1),

• ⊎P((n1, u1), (n2, u2)) = (n1u2 + n2u1, u1u2), and

• fP((n, u)) = n.

The addition of the second coordinate which is always 1 may seem artificial at
first but it is quite natural if you treat each coordinate as the number of partial
objects of some type. In this case the objects we are interested in are (partial)
vertices which might be modeled by partial functions {∅} → V (g). So there are
naturally two types of these objects on gadgets:

• Objects which selected a vertex in a given gadget (partial functions {∅} →
V (g) defined at ∅) – and there is always |V (g)| of them.

• And objects which have not selected a vertex so it can be selected in other
gadget (partial functions {∅} → V (g) which are not defined at ∅) – and
there is always exactly one object of this type.

The linear representation counting edges is exactly the same except hP(g) :=
(|E(g)| − |g|/2, 1) (i.e., normal edges count for one but half-edges only for 1/2).
These representations are optimal as can be seen using Observation 5.24 and two
gadgets with different number of vertices (resp. edges) for each k.

8Note that formally we treat each Ok as independent copy of Q so they are disjoint from
each other in all points except 0.

66

5.6.2 Colorings as Mappings
There are two natural ways to treat d-colorings (both edge and vertex ones):
Either as functions into a set of colors [d] or as partitions with at most d parts. For
existential questions, both of these representations behave the same and mappings
are usually a bit easier to work with. For counting, they differ – colorings as
mappings which differ only by renaming colors are the same coloring when treated
as partitions. We first look at colorings as mappings.

We define the representation counting edge d-colorings in the following way
(we denote 1x the vector with 1 at position x and zeros elsewhere; we define the
join functions on the basis of the linear space only):

• R := Q, Bk := [d]k where [d]k is the set of all k-tuples of the numbers 1 to
d denoting all the possible d-colorings of k half-edges,

• (hP(g))c for c ∈ B|g| is the number of edge d-colorings of g with colors c on
the half-edges,

• (Ji,j)P(1c) = 1c′ if ci = cj and 0 otherwise where c′ is c without the i-th
and the j-th component,

• ⊎P(1c,1c′) = 1c.c′ where . means concatenation,

• π[σ]P(1c) = 1σ(c), and

• fP((n)) = n (note that |B0| = 1).

Note that this is exactly the same representation we would get by taking the
natural vertex model for the number of d-colorings and converting it into a linear
representation by Theorem 5.40. Also this representation is not the optimal one
because every gadget has the same coefficients for the boundaries which differ
only by permuting the colors (e.g., (1, 2, 1) and (2, 1, 2)). Using this observation
we can keep only one boundary from each such group. This reduces the number
of boundaries by the factor of almost d!.

The linear representation for vertex d-colorings is the same except for the
following:

• we color every half-edge with the color of its only incident vertex,

• (hP(g))c for c ∈ B|g| = [d]|g| is the number of vertex d-colorings of g with
colors c on the half-edges, and

• (Ji,j)P(1c) = 1c′ if ci ̸= cj and 0 otherwise where c′ is c without the i-th
and the j-th component.

Note that there exists a vertex model for vertex coloring due to Freedman et al.
[2004] which proves the characterization of the parameters that can be counted
by weighted homomorphisms (every vertex d-coloring is a homomorphism into
Kd) and this characterization is the same as for the real-valued vertex models
(which was proved by Szegedy [2007]).

67

5.6.3 Group Flows
Note that a general (M,B)-flow (Definition 3.1) can be represented just like an
edge coloring with |B| colors. The only difference is the multiplicity vectors
assigned to the base gadgets.

5.6.4 Colorings as Partitions
Colorings as partitions are more complicated. Even the edge colorings cannot be
represented by a real valued vertex model as shown in Observation 5.41. We will
again use integers to denote the colors on the half-edges. Because the colors do
not have identity now, we will consider descriptions which differ only by renam-
ing colors to be the same – i.e., the boundary of size three (1, 2, 1) is the same
as boundary (3, 1, 3). To remove ambiguity, we will always choose lexicographi-
cally minimal representation of the given boundary (e.g., (1, 2, 1) in the previous
example).

When joining gadgets together we have to try all the possible identifications
between colors of each gadget. There is up to d! such identifications but it might
be less if one of the gadgets does not use all d colors. Given gadgets g1 and g2
each of them with a coloring using l1 resp. l2 colors, the possible identifications
are in one-to-one correspondence with matchings M of complete bipartite graph
([l1], [l2], E) such that graph ([l1], [l2],M) has at most d components (i.e., edges
denote identification of two colors and there is at most d colors in the end). This
is the hard part – if all the colorings use d colors then9 cdm(g) = d!cdp(g) but if
there is an unused color the relation is not that simple.

We denote Id(l1, l2) the set of all the identifications for colorings with l1 and
l2 colors where the resulting coloring has at most d colors. For i ∈ Id(l, l′) and
colorings c, c′ we denote i(c, c′) the coloring obtained by identifying colors of c
and c′ according to i and followed by concatenation, and |i| the number of colors
existing after the identification.

Note that knowing the colors on half-edges might not be enough – if some
color is not used on the half-edges, we need to know whether it is used inside the
gadget or not. So k-boundaries for vertex d-colorings will be

(c1, c2, . . . , ck | l}

where (c1, . . . , ck) describes the colors on half-edges and among such colorings
it is the lexicographically minimal one under renaming colors and l is the total
number of colors used either on the half-edges or inside the gadget. Obviously the
number of k-boundaries is at most dk+1. We define the rest of the representation
in the following way (all the linear functions are defined on the basis of the space):

• R = Q, Bk are defined above,

• (hP(g))(c1,...,ck | l} for (c1, . . . , ck | l} ∈ B|g| is the number of edge d-colorings
of g with colors c1, . . . , ck on the half-edges using l colors in total,

• (Ji,j)P(1(c | l}) = 1(c′ | l} if ci = cj and 0 otherwise where c′ is c without i-th
and j-th component,

9We denote the number of the edge colorings as mappings cd
m(g) and the number of the edge

coloring as partitions cd
p(g) for a gadget g and d colors.

68

• ⊎P(1(c | l},1(c′ | l′}) = ∑︁
i∈Id(l,l′) 1(i(c,c′) | |i|},

• π[σ]P(1(c | l}) = 1(σ′(c) | l} where σ′(.) denotes permuting according to σ fol-
lowed by choosing lexicographically minimal equivalent representation, and

• fP(1(| l}) = 1.

To count the vertex colorings we can use the same trick as for the colorings-
as-mappings.

69

70

6. Counting Double Covers II
In this chapter we continue the effort started in Chapter 4 and we show both
an exponential lower bound for Flower snarks (Theorem 6.8) and an exponential
lower bound for planar graphs (Theorem 6.14). We remind that the number of
CDCs is denoted ν.

6.1 The Linear Representation
With the general framework in place, we can get back to the circuit double
covers. We will model the number of CDCs as a finite linear representation over
the field R. We describe the model for cubic graphs and it might be possible to
extend it to general graphs but we do not explore it further as cubic graphs are
our main interest.

Because we describe CDCs by crossings on edges (see Section 4.2), it is natural
to extend this definition to gadgets. The CDC on a gadget is a (multi)set of
circuits and walks which covers every edge of the gadget twice (including the
half-edges). Both ends of each walk must be half-edges and no edge or vertex can
appear twice in one walk. The crossings on regular edges are already determined
but the crossings on half-edges will be determined when the half-edge is joined
with another half-edge creating a regular edge.

How do the gadget joins act on the CDCs? The disjoint union of the under-
lying gadgets is just a union of the CDCs and it always succeeds. Permuting
half-edges does nothing, the only interesting operation is joining two half-edges
together. When we are joining two half-edges, there are two walks on each of
them and we must determine in which of the two possible ways can we join them.

Here comes the difference between cubic and general graphs: In cubic graphs
constructed from V3 without free edges no two walks (or circuits) in a CDC can
span the same set of edges so there are always two ways to do the join. But if
we allow free edges or vertices of degree distinct from three, two walks in CDC
might span exactly the same set of the edges. Then there is only one way to do
the join because walks in a CDC do not have an identity on their own. As we
are interested in cubic graphs, we will assume that no two walks in a CDC of a
graph are identical.

What determines whether we can join two walks? We can always join a walk
to itself, creating a circuit. If the walks are different, we only need them to not
share an edge (otherwise we would create a self-touching walk which could not
be completed into a circuit). Note that circuits do not participate in the joins in
any way.

So to be able to join the two half-edges we need to remember for every walk
which half-edges are its end points and which other walks it shares an edge
with. We will record this in the following way: The walks will be numbered
consecutively, starting at 1. For each half-edge we record the numbers of the two
walks incident with it, e.g., the only possible configuration on boundary of size
3 can be written ((1, 2), (1, 3), (2, 3) | }. Then for every two walks that share an
edge and it is not yet known from the description of the half-edges, we record a
tuple containing the numbers of these two walks, e.g., if walks 5 and 6 are incident

71

only inside the gadget, we would write (| (6, 5)}. If we were to allow CDCs which
might include the same walk two times (i.e., non-cubic graphs) we also need to
add which walks are the same otherwise we would overcount.

The same boundary can obviously written in many ways – the operations that
preserve the same structure are renaming the walks, swapping the order of the
numbers in each tuple, and permuting the tuples describing incidences inside the
gadget. To get rid of this non-uniqueness we just take the equivalence classes
under all this operations. In the implementation we represent each class by its
lexicographically minimal element. In theoretical results, to simplify the notation,
we use any element of the class to represent the whole class. So we might write

((1, 2), (1, 3), (2, 3) | } = ((1, 2), (2, 3), (3, 1) | }

instead of
[((1, 2), (1, 3), (2, 3) | }] = [((1, 2), (2, 3), (3, 1) | }]

as the boundaries are always the whole equivalence classes so there is no danger
of confusion. Note that gadgets of size 0 – i.e., graphs – have only one boundary.

Multiplicity vector of a gadget (the value hν(g) for gadget g) describes how
many CDCs with each boundary there are. The multiplicity vectors we get for
gadgets are always non-negative in all coordinates. It should be obvious that such
multiplicity vectors fully describe the gadgets in the terms of CDCs. The linearity
follows from the formal definitions of the elementary joins below (Definition 6.1).
We omit a formal proof that joins and hν commute, it would be trivial but even
more technical than similar proof of Theorem 5.40.

As we observed above (Corollary 5.28), we want to allow free edges. We
noted above that free edges break our assumption that two walks never span
exactly the same set of edges. On the other hand we want to avoid extending our
representation just because of them. Hence we just try to add them, modifying
what the number of CDCs means for some edge cases if needed.

A free edge has two walks spanning the same half-edge. Hence there is only
one option when joining to free edge but our representation would count two. To
compensate for this we define a free edge to have the multiplicity vector (1/2).
It is easy to see that this works out well in all the cases except when a graph
contains a vertex-less loop (note that a loop with a vertex can never have a CDC
in a cubic graph). In this case the number of CDCs is divided by two for each
vertex-less loop. We still call this parameter the number of circuit double covers
even though it differs from ν as defined in Chapter 4 because they differ only for
graphs with vertex-less loops and we care only about simple (cubic) graphs.

We denote ∂c the boundary of a CDC c and we denote γ(g) the number of
components of g which consist of free edges only. By applying a permutation σ on
an n-tuple t we mean a tuple obtained by permuting the elements of t according to
permutation σ. For tuples s and t, the expression s; t denotes the concatenation
of them such that the numbers (recursively) contained in t are shifted so they do
not collide with numbers in s. The expression t[w → v] denotes the replacement
of all occurrences of w in t by v. Finally ξb(u → v) is an indicator function
whether b[u→ v] is a correct boundary or not.

Definition 6.1. We define a linear representation ν of the number of CDCs in
the following way: The boundaries are the equivalence classes described above.

72

The operations are (the notation is described above):

hν(g) = (1/2)γ(g) ∑︂
c a CDC of g

1∂c

fν(m) = m(| }

⊎k,k′

ν (m,m′) =
∑︂

(a | j}∈Bk

∑︂
(a′ | j′}∈Bk′

1(a;a′ | j;j′}m(a | j}m
′
(a′ | j′}

πk[σ]ν(m) =
∑︂

(a | j}∈Bk

1(σ(a) | j}m(a | j}

ξb(u→ w) =
⎧⎨⎩1b[u→w] if b[u→ w] is a correct boundary of a CDC

0 otherwise
(J k

1,2)ν(m) =
∑︂
b∈Bk

b=(((u1,u2),(w1,w2)).a | j}

(ξb(u1 → w1, u2 → w2) + ξb(u1 → w2, u2 → w1))mb

Note that due to the way hν is defined, the described linear parameter correctly
counts the number of CDCs even if given CDC can be described by multiple
boundaries (and we did not prove that there is a unique choice of the function
∂). In this case ∂ chooses an arbitrary boundary from those which describe the
given CDC but a single CDC is still mapped to only one boundary so we do not
overcount.

It is natural to ask whether this representation is the optimal one and how
many boundaries of size k exist. We show that the described representation has
2Θ(k2) boundaries of size k. We also show that any linear representation must have
at least 2Ω(k log k) boundaries so our representation is not that far from the optimal
one. We do not expect this lower bound to be even asymptotically tight because
the chosen gadgets are not the best possible. Below we show better bounds for
small values of k. They prove that the described representation is not the best
one but also they show that the optimal number of boundaries seems to be closer
to the representation than the lower bound. But of course they are only a few
datapoints so they might be the exceptional ones.
Observation 6.2. The described linear representation has 2Θ(k2) boundaries of
size k.
Proof. We show that the dominant part of the boundary description is whether
the walks share an edge inside the gadget (the second part of the boundary
description): Every two circuits might meet and there is

(︂
k
2

)︂
of pairs of them. Up

to k meets might be already forced by the part describing half-edges but it is still(︂
k
2

)︂
−O(k) = k2/2−O(k) = Θ(k2) binary choices.
The number of possible half-edge descriptions (the first part of the boundary

description) is at most
(︂
k
2

)︂k
≤ k2k = 22k log k = 2o(k2) but still at least 1. Together

this gives 2Θ(k2) · 2o(k2) = 2O(k2) from above and 2Ω(k2) · 1 from below.
Observation 6.3. Any linear representation counting the number of circuit dou-
ble covers must have at least 2Ω(k log k) boundaries of size k.
Proof. We show that the matrix1 Akg1,g2 = ν(Jg(g1, g2)) has rank at least 2Ω(k log k)

which, combined with Observation 5.24, gives the lower bound.
1We remind that Jg is the gluing which joins the half-edges with the same labels.

73

Consider a matrix Ck
g1,g2 defined the same way as Ak but the columns and

rows are not spanning all the k-gadgets but only a chosen subset of them Sk.
Obviously Ck is a submatrix of Ak and rank(Ck) ≤ rank(Ak). The hard part is
to choose the right Sk as we must be able to precisely calculate the number of
CDCs of each graph created by joining elements of Sk.

We choose Sk to be the set of all so called diamond matchings. A diamond
gadget is a 2-gadget created by cutting an edge of K4. A diamond matching
of size k is created by a disjoint union of k/2 diamond gadgets (so k must be
even) and then permuting their half-edges. Now we show that there is 2Ω(k log k)

of diamond matchings of size k and that the corresponding matrix Ck has full
rank.

We prove the first part by induction. There is one diamond matching of size 2.
Now for even k ≥ 4 we have k− 1 possibilities where is the other half-edge of the
diamond gadget who has the last half-edge. Now if we remove this gadget we have
a diamond matching of size k−2. This leads to formula (k−1)(k−3)(k−5) . . . 1
which is 2Θ(k log k).

To show that Ck has full rank, it is enough to show det(Ck) ̸= 0. The key
observation that ν(Jg(g1, g2)) = 22k−c where c is the number of connected com-
ponents of Jg(g1, g2). This is because we have two ways how to cover a diamond
gadget and we have two ways how to join two diamond gadgets together but
when we close the cycle we have only one possibility. The number of components
is maximized when g1 = g2 – then there are k/2 components, each of them a
necklace of length two. Whenever g1 ̸= g2 the number of components is strictly
smaller.

So the matrix Ck has some values 2x on diagonal and all other values are also
powers of two but strictly larger. Considering the definition of the determinant
the sum contains element 2xl for the diagonal (where l is the size of the matrix)
and all other elements of the sum are multiples of 2xl+1. Hence det(Ck) ≡ 2xl
mod 2xl+1 so det(Ck) ̸= 0.

On the other hand for small k the asymptotic behaviour is not important and
the values itself are more interesting. We summarize our findings in Table 6.1.
For k up to eight it contains the following:

• The number of k-boundaries of our representation (|Bk|). This determines
the speed of our implementation.

• The rank of the matrix J k
g which is an upper bound for the number of k-

boundaries of the best representation |Bk
L| (due to Observation 5.26). This

gives an upper bound on the speed of the hypothetical optimal implemen-
tation.

• The rank of matrix Lk which is the matrix constructed by Observation 5.24
of the highest rank we found and gives lower bound for |Bk

L|. This gives a
lower bound on the speed of any implementation of a linear representation
counting CDCs.

• The number of diamond matchings of the given size – i.e., the lower bound
proved by Observation 6.3. Note that diamond matchings are defined only
for even k. This shows the best lower bound for |Bk

L| we currently know
without using computer.

74

Table 6.1: Number of CDC boundaries of given size

k 0 1 2 3 4 5 6 7 8
|Bk| 1 0 1 1 33 744 69,920 13,710,912 ?

rank(J k
g) 1 0 1 1 21 202 ? ? ?

rank(Lk) – – – – 21 161 ? ? ?
|Sk| 1 – 1 – 3 – 15 – 105

For trivial reasons our representation is optimal for k ≤ 3. The question
marks in the table stand for what we do not know because the computation took
too long to finish. The set of gadgets used to construct matrix L4 are cyclic ladder
gadgets of size 2 up to 7 with all the permutations of all the half-edges except
one. This gives 36 gadgets and matrix B of rank 21. For details see experiment
cdc_4_boundaries.py. For L5 we used cyclic ladders with one half-edge joined
to a cubic vertex, again of sizes 2 up to 7. Increasing size of the ladders further
did not help. For details see experiment cdc_5_boundaries.py.

As a toy example to get used to working with this framework we will determine
the exact number of outer-fixed CDCs of a flower (Definition 4.6, do not confuse
with Flower snarks). We show that the lower-bound in Observation 4.7 is quite
tight. Note that this example slightly deviates from the description shown above
because we are covering two edges of the boundary only once not twice. On the
other hand it demonstrates that it is easy to modify the framework and it is also
one of a few examples small enough to be done by hand (although we used a
computer to find the formula first, see experiment flowers.py).

Theorem 6.4. The number of outer-fixed circuit double covers Fk of flower of
size k is

Fk = 2k−1 + (−1)k
3 + 1.

Proof. The flower gadget is a gadget obtained from flower by cutting it along a
ray coming out of its central face (see an example in Figure 6.3). Flower gadget
of size k is obtained by joining k step gadgets (Figure 6.2) in the obvious manner.
We choose the flower gadget of size 2 as the initial gadget.

The only boundaries with non-zero coefficients for any flower gadget of size
at least 2 are:

1. ((1), (1, 2), (2, 3), (3) | },

2. ((1), (2, 3), (1, 2), (3) | (1, 3)} and

3. ((1), (2, 3), (2, 3), (1) | (1, 2), (1, 3)}.

Those boundaries were determined by a computer but they can be also found
by hand by starting with the base gadget, repeatedly joining the step gadget and
stopping when the set of the boundaries stabilizes. The multiplicity vector of the
step gadget is:

Boundary Coefficient
((1), (1, 2), (2, 3), (3) | (1, 3)} 1
((1), (2, 3), (1, 2), (3) | (1, 3)} 1

75

https://gitlab.kam.mff.cuni.cz/radek/cdc-counting/-/blob/master/experiments/cdc_4_boundaries.py
https://gitlab.kam.mff.cuni.cz/radek/cdc-counting/-/blob/master/experiments/cdc_5_boundaries.py
https://gitlab.kam.mff.cuni.cz/radek/cdc-counting/-/blob/master/experiments/flowers.py

Figure 6.2: The step
gadget of a flower

Figure 6.3: The flower gadget of size 3

Combining all the boundaries of a flower gadget and the support of the mul-
tiplicity vector of the step gadget, we obtain the step matrix and the following
formula for the number of CDCs of a k-flower:

Fk = (1, 0, 1)

⎛⎜⎝ 1 0 0
0 1 2
0 1 0

⎞⎟⎠
k−2⎛⎜⎝ 1

1
1

⎞⎟⎠ .
We transform the matrix into its Jordan normal form

Fk = (1/2, 1,−1)

⎛⎜⎝ 2 0 0
0 1 0
0 0 −1

⎞⎟⎠
k−2⎛⎜⎝ 4/3

1
−1/3

⎞⎟⎠
and obtain the formula (using Corollary 5.36):

Fk = 2k−1 + (−1)k
3 + 1.

Another simple exercise is to show that replacing a cubic vertex with a triangle
doubles the number of CDCs.

Observation 6.5. Replacing a 3-vertex with a triangle doubles number of circuit
double covers.

Proof. There is only one boundary of size 3, vertex of degree 3 has multiplicity
vector (1) and triangle has multiplicity vector (2). (See Figures 4.1 and 4.2.)

Although a very simple observation, it gives us an infinite class of graphs with
exactly 2n/2−1 CDCs.

Corollary 6.6. An n-vertex graph created from three parallel edges by repeatedly
expanding vertices to triangles has exactly 2n/2−1 circuit double covers.

Using our implementation of the described linear representation we calculated
the number of circuit double covers of the three smallest snarks.

Lemma 6.7. Petersen graph has 52 circuit double covers, first Blanusa snark
6966 and second Blanusa snark 6389.

Proof. Calculated by a computer using the framework described above. See the
small-snarks.py experiment.

76

https://gitlab.kam.mff.cuni.cz/radek/cdc-counting/-/blob/master/experiments/small-snarks.py

Table 6.4: The eigenvector for the eigenvalue 16 of the ν(Jk)

Boundary Coefficient
((1, 2), (1, 2), (3, 4), (3, 4), (5, 6), (5, 6) | a} 1
((1, 2), (1, 2), (3, 4), (3, 5), (5, 6), (4, 6) | a} 4
((1, 2), (1, 2), (3, 4), (5, 6), (5, 6), (3, 4) | a} 1
((1, 2), (1, 3), (3, 4), (2, 4), (5, 6), (5, 6) | a} 4
((1, 2), (1, 3), (3, 4), (2, 5), (5, 6), (4, 6) | a} 8
((1, 2), (1, 3), (3, 4), (4, 5), (5, 6), (2, 6) | a} 8
((1, 2), (1, 3), (3, 4), (5, 6), (5, 6), (2, 4) | a} 4
((1, 2), (1, 3), (4, 5), (2, 4), (3, 6), (5, 6) | a} 8
((1, 2), (1, 3), (4, 5), (2, 6), (3, 6), (4, 5) | a} 4
((1, 2), (1, 3), (4, 5), (4, 5), (3, 6), (2, 6) | a} 4
((1, 2), (1, 3), (4, 5), (4, 6), (3, 6), (2, 5) | a} 8
((1, 2), (3, 4), (3, 4), (1, 2), (5, 6), (5, 6) | a} 1
((1, 2), (3, 4), (3, 4), (1, 5), (5, 6), (2, 6) | a} 4
((1, 2), (3, 4), (3, 4), (5, 6), (5, 6), (1, 2) | a} 1
((1, 2), (3, 4), (3, 5), (1, 2), (4, 6), (5, 6) | a} 4
((1, 2), (3, 4), (3, 5), (1, 5), (4, 6), (2, 6) | a} 8
((1, 2), (3, 4), (3, 5), (1, 6), (4, 6), (2, 5) | a} 8
((1, 2), (3, 4), (3, 5), (5, 6), (4, 6), (1, 2) | a} 4
((1, 2), (3, 4), (5, 6), (1, 2), (3, 4), (5, 6) | a} 1
((1, 2), (3, 4), (5, 6), (1, 5), (3, 4), (2, 6) | a} 4
((1, 2), (3, 4), (5, 6), (5, 6), (3, 4), (1, 2) | a} 1
Where a = ((i, j) : i, j ∈ [6], i < j) are all the possible
touches so every walk touches all the other walks.

We also calclulated the asymptotic number of CDCs of Flower snarks. The
calculations suggest that the right constant should be around 1/720. We can
prove (utilizing a computer comuptation) that c ≥ 1/(720 + 10−100) but we omit
the proof.

Theorem 6.8. Flower snark2 Jk has c16k±O(15k) circuit double covers for some
constant c > 0.

Proof. We look at Flower snarks as a graph sequence. Hence we can write the
numbers of CDCs they have as

ν(Jk) = mfinA
k−2minit

for suitable vectors minit and mfin and a matrix A. The matrix A is too large
(10148 × 10148) to obtain its Jordan normal form. Instead we calculated that
its largest eigenvalue is 16, found its eigenvector, verified that 16 has algebraic
multiplicity one and all other eigenvalues have absolute value strictly smaller than
15 (for details see below and also experiment flower-snarks.py).

Using this knowledge we can see that the Jordan normal form of A will have
a block of size one corresponding to the eigenvalue 16 and all the other blocks

2To be precise, only Jk with odd k ≥ 3 are snarks (some definitions exclude even J3 as
it contains a triangle), Jk with even k are edge 3-colorable graphs. Anyway we calculate the
number of CDCs for both odd and even k.

77

https://gitlab.kam.mff.cuni.cz/radek/cdc-counting/-/blob/master/experiments/flower-snarks.py

correspond to eigenvalues with absolute value less than 15. Applying the Corol-
lary 5.36 we obtain the bound because xkpoly(k) ∈ O(15k) for all |x| < 15.

Description of the experiment: We calculated the vectors mfin and minit and
the matrix A. We guessed the largest eigenvalue using the ratios of ν(Jk+1)/ν(Jk)
which seem to converge to 16 quickly. We verified that 16 is an eigenvalue by
checking that nullity (i.e., size minus rank) of the matrix B = A − 16E (where
E is the identity matrix) is not zero. The nullity – which is also the geometric
multiplicity of the given eigenvalue – of B is one.

To find the eigenvector we considered the ratios ri = (A8minit)i/(A7minit)i and
selected the set I of all the coordinates i for which this ratio was at least 15 (and
in particular it existed). We took s = mini∈I(A8minit)i and calculated the vector

u′
i =

{︄
(A8minit)i

s
if i ∈ I,

0 otherwise.

The resulting vector u is obtained by rounding each coordinate of u′ to the nearest
integer and it shown in Table 6.4. We verified that it is an eigenvector and we
also checked that there exists a coordinate which is non-zero in both u and mfin.

Then we calculated matrix C – a deflation of A using the vector u. The
deflation changes the eigenvalue corresponding to the used eigenvector to zero
but keeps all the other eigenvalues (but it might change their eigenvectors). The
deflation algorithm used is due to Wielandt [1944] and it calculates

C = A− 1
up
uAp,∗

where Ap,∗ is the p-th row of A and p is such an integer that up ̸= 0. We bound
the 1-norm

∥X∥1 = max
c

∑︂
r

|Xr,c|

of the matrix C by ∥C32∥1 < 1532. Hence the spectral radius ρ(C) (the largest
absolute value of its eigenvalues) is less then 15 because ρ(C)k ≤ ∥Ck∥ for every
matrix norm ∥.∥ (for details see, e.g., Section 5.6 of Horn and Johnson [2012]).
This proves that the algebraic multiplicity of the eigenvalue 16 of A is one and
that all the other eigenvalues of A are in the absolute value less then 15.

We also calculated exact formulas for the number of CDCs of cyclic ladders
(also called prisms) and crossed cyclic ladders:

Theorem 6.9. Cyclic ladder of length k has Lk circuit double covers and crossed
cyclic ladder has Lck circuit double covers (for k ≥ 3) where:

Lk = 4k−1 + 9 · 2k − (−2)k−1 − 15k + 3(−1)k(k − 1)− 9
6

Lck = 4k−1 + 9 · 2k − (−2)k−1 − 15k − 3(−1)kk
6

Proof. Calculated by a computer using the framework described above. See the
ladders.py experiment.

The results we obtained so far motivate our following conjecture:

78

https://gitlab.kam.mff.cuni.cz/radek/cdc-counting/-/blob/master/experiments/ladders.py

Conjecture 6.10. Every bridgeless cubic graphs with n vertices has at least
2n/2−1 circuit double covers.

Note that Corollary 6.6 shows that this conjecture cannot be any stronger
as there is an infinite family of graphs for which this conjecture is tight. On
the other hand a stronger wersion might hold for triangle-free or more cyclically
connected graphs. In our search of all {C3, C4}-free cubic biconnected graphs on
20 or less vertices, the one closest to the bound is Petersen graph with ratio 3.25.
Two more tested graphs had the ratio ν(G)/2|V (G)|/2−1 less than 10, all other
had higher ratios. For details see Figure 6.5. The blue points represent tested
graphs and the purple line is the lower bound of Conjecture 6.10. The data were
obtained by experiment test_exp_cdc.sh.

10 12 14 16 18 20
101

102

103

104

105

The number of vertices

T
he

nu
m

be
r

of
C

D
C

s
(lo

g
sc

al
e) Tested graphs

Conjecture 6.10

Figure 6.5: The number of CDCs of {C3, C4}-free cubic biconnected graphs

6.2 Reducing Cycles
In this section we combine the framework with linear programming to obtain a
better bound on the number of CDCs of planar graphs. First we describe the
method in general and then we apply it to the number of CDCs of planar graphs.
It is also straightforward to use this method for other linear representations.

6.2.1 General Method
We want to show that graphs in some class C have many CDCs and we know
that there is a small set of gadgets S such that every graph in C either has some
gadget of S as an induced subgraph or it is trivial in some sense. We denote the
class of the trivial cases B ⊂ C. The usual reasons for a graph to be considered
trivial are a small number of vertices and existence of small cuts.

We can for every gadget s ∈ S choose a set of gadgets with fewer vertices
Rs and try to prove that the number of CDCs of a graph G containing s can be
bounded from below by the number of CDCs of G with s replaced by elements of

79

https://gitlab.kam.mff.cuni.cz/radek/cdc-counting/-/blob/master/experiments/test_exp_cdc.sh

Rs and that these graphs also belong to C. This allows us to proceed by induction
on the number of vertices.

A bit more formally (for an application see the proof of Theorem 6.14): Sup-
pose we are proving a lower bound of a form cn(G)−d where c > 1, d ∈ R. Then
we want to show the inequality

ν(Jg(g, s)) ≥ min
r∈Rs

cn(s)−n(r)ν(Jg(g, r))

where n(g) is the number of vertices3 of a gadget g. Suppose this is true for all
Jg(g, s) ∈ C, all the graphs Jg(g, r) also belong to C and we have other means
to prove the bound for graphs in B. Then we can prove the desired lower bound
cn(G)−d for every G ∈ C by induction on the number of vertices using this formula
as the induction step for the non-trivial graphs.

Proving this formula for each s is where the linear programming comes into
play. We saw a special case of this approach before in Observation 6.5. But in
that case there was only one boundary and one substitution gadget, so no linear
program was needed. The idea of the program is to fix the value of the right-hand
side and search for as small left-hand side as possible. Because we cannot search
all gadgets, we search all possible multiplicity vectors instead.

Theorem 6.11. Let c > 1, s, Rs and n(.) be defined as above and to simplify the
notation4 put J = Jg. If the objective value of the linear program P (described
below) is at least one then the following holds for all gadgets g:

ν(J (g, s)) ≥ min
r∈Rs

cn(s)−n(r)ν(J (g, r))

where n(g) is the number of vertices of gadget g and the linear program P is:

min
m∈RB|s|

Jν(m,hν(s))

∀r ∈ Rs : 1 ≤ cn(s)−n(r)Jν(m,hν(r))
0 ≤ m

Proof. We remind that all the images of joins Jν are linear in each of their
arguments and that hν(g) for a fixed gadget g is a constant vector. We show the
more general inequality for every multiplicity vector m:

Jν(m,hν(s)) ≥ min
r∈Rs

cn(s)−n(r)Jν(m,hν(r)).

Fix any α > 0 and consider the linear program:

min
m∈RB|s|

Jν(m,hν(s))

∀r ∈ Rs : α ≤ cn(s)−n(r)Jν(m,hν(r))
0 ≤ m

3Do not confuse with |g| which denotes the size of the gadget, i.e., the number of its half-
edges.

4This theorem holds with an unchanged proof for any other binary join but Jg is the only
join we need due to Observation 5.4.

80

Note that for the optimal solution of this linear program the condition

∀r ∈ Rs : α ≤ cn(s)−n(r)Jν(m,hν(r))

is tight (i.e., its right-hand side is α) for at least one r. (Otherwise m = 0 but
then also Jν(m, .) = 0.) If its objective value is at least α, then the desired
inequality holds. But the choice of α does not matter because we can scale m
accordingly. Hence we choose α = 1 obtaining the linear program P .

Note that if the objective value of the linear program is less than one but still
more than zero then exponential bound for a smaller c might hold. This theorem
also holds for any other linear representation which maps gadgets to non-negative
vectors.

The downside of a linear program is that it is usually solved by a numerical
method which is not suitable for a theoretical proof. We circumvent this by
solving the dual problem. Note that any solution of the dual gives us a lower
bound but of course suboptimal solutions will give weaker bounds. So for a given
solution of the dual we only need to certify that it is indeed a solution which is
easy and we do not need to prove optimality.

6.2.2 Application to Planar Graphs
We are interested in bridgeless cubic planar graphs. We know that every such
graph contains a cycle of size at most five because its dual is also a planar graph
and so it contains a vertex of degree at most five (due to Euler’s formula). More-
over, for c ≤

√
2 and d ≤ 2 we may reduce the cuts of size two and three due to

Observations 4.8 and 4.9. So we take all bridgeless planar cubic graphs as the class
C and we define B to be all graphs in C which are not cyclically 4-edge-connected.

We need to be able to replace 4-cycles and 5-cycles. The important observation
is that if the graph is 3-edge-connected then all the 4-cycles and 5-cycles are
faces. What can we replace them with? We need the replacements to be smaller.
Ignoring the labeling of the half-edges we have the following options: one tree
and one free edge for the 4-cycle and one possible tree and a combination of a
cubic vertex and a free edge for the 5-cycle.

We tested all of them and the trees were never required to get the best results.
Hence we will replace the 4-cycles with the two possible non-crossing choices of
two free edges and the 5-cycles with a cubic vertex and free edge (again drawn in
a non-crossing way) in all the 5 possible rotations. The following theorems show
the results of this replacements:
Theorem 6.12. Let G be a cyclically 4-edge-connected cubic graph with a 4-
cycle. Let G1 and G2 be the two possible graphs obtained from G by deleting
two opposite edges of the 4-cycle and suppressing vertices of degree 2. Then
ν(G) ≥ 4 min {ν(G1), ν(G2)}.
Proof. Because the graph is cyclically 4-edge-connected and we are deleting non-
adjacent edges, the resulting graph is still 2-edge-connected due to Observa-
tion 1.3. We apply Theorem 6.11 with c =

√
2, 4-cycle as s and the two non-

crossing choices of two free edges Rs. We obtain the following linear program:

max
33∑︂
i=1

oimi

81

1 ≤
√

24 33∑︂
i=1

aimi

1 ≤
√

24 33∑︂
i=1

bimi

where mi are the variables and oi, ai and bi are constants computed by experiment
reduce-cycle.py (although they might be computed by hand in this case). Each
variable corresponds to a boundary and |B4| = 33 hence there is 33 variables.
Each inequality corresponds to an elements of Rs. Plugging in the values, taking
dual and removing conditions obviously implied by other conditions, we get:

max 1
4x0 + 1

4x1

2 ≥ x0

2 ≥ x1

The objective value of this linear program is 1. This satisfies the conditions of
the theorem so we obtain:

ν(G) = ν(J (g, s)) ≥ min
r∈Rs

√
24
ν(J (g, r)) = 4 min {ν(G1), ν(G2)} .

Theorem 6.13. Let G be a cyclically 4-edge-connected cubic graph with a 5-cycle
and no 4-cycle. Let G1, G2, . . . , G5 be the 5 possible graphs obtained from G by
replacing the 5-cycle by a cubic vertex and an edge in non-crossing way (assuming
the 5-cycle is a face). Then ν(G) ≥ 5/2 mini ν(Gi). If we replace the 5-cycle by
a cubic vertex and an edge in all possible ways (i.e., breaking planarity) we get
ν(G) ≥ 3.75 mini ν(Gi).
Proof. We can simulate this replacement by removal of the two edges adjacent
with the 5-cycle and the two vertices which should be connected by an edge in
the result, contracting 5-cycle into a vertex and adding an edge to join the two
vertices of degree two. These two vertices are distinct otherwise there would be
a 4-cycle in the graph. So the deleted edges were not adjacent and the resulting
graph is 2-edge-connected due to Observation 1.3.

The rest of the proof is analogous to the proof of the previous theorem and
the computer aided part is also a part of experiment reduce-cycle.py. The
non-crossing case with c = 4

√︂
5/2:

max 0.4x0 + 0.4x1 + 0.4x2 + 0.4x3 + 0.4x4

∀i : 1 ≥ xi

1 ≥ x2 + x4

1 ≥ x1 + x4

1 ≥ x1 + x3

1 ≥ x0 + x3

1 ≥ x0 + x2

The solutions is xi = 0.5 and the objective value is 1. The crossing case with
c = 4

√
3.75 and all the 10 possible replacement gadgets (5 non-crossing plus 5

crossing) leads to a larger linear program so we omit it. But again the objective
value is one, so we can apply the Theorem 6.11.

82

https://gitlab.kam.mff.cuni.cz/radek/cdc-counting/-/blob/master/experiments/reduce-cycle.py
https://gitlab.kam.mff.cuni.cz/radek/cdc-counting/-/blob/master/experiments/reduce-cycle.py

In both theorems the modified graphs have four vertices less than the original
ones so the best we can prove is that the number of CDCs increases by the factor
2.5 (due to 5-cycles) with addition of four vertices. So we obtain:

Theorem 6.14. Every bridgeless cubic planar graph has at least (5/2)n/4−1/2

circuit double covers.

Proof. By induction on n, the number of vertices of the graph G. The base cases
are three parallel edges and K4 because these are the only planar cubic graphs
without a non-trivial cut. The three parallel edges graph has only one CDC which
exactly matches the bound. The K4 has two CDCs and the bound requires only
approximately 1.58.

Suppose n ≥ 6. If G has non-trivial cut of size two, we apply Observation 4.8
and we obtain

ν(G) ≥ 2ν(G1)ν(G2) ≥ 2(5/2)|V (G1)|/4−1/2(5/2)|V (G2)|/4−1/2

= 2(5/2)n/4−1/2
√︂

2/5 ≥ (5/2)n/4−1/2

which we needed. Similarly for a non-trivial 3-cut we use Observation 4.9:

ν(G) ≥ ν(G1)ν(G2) ≥ (5/2)|V (G1)|/4−1/2(5/2)|V (G2)|/4−1/2

= (5/2)(n+2)/4−1 = (5/2)n/4−1/2.

So G is cyclically 4-edge-connected. It is 3-edge-connected so each facial walk
in its planar embedding is a circuit. Due to Euler’s formula, the planar dual of G
must have a vertex of degree at most five. Hence G has a face of size at most five.
We already excluded 3-faces because the cut around a triangle is a non-trivial cut
of size three. If G has a 4-face, we apply Theorem 6.12:

ν(G) ≥ 4(5/2)(n−4)/4−1/2 = 4 · 2
5 (5/2)n/4−1/2 ≥ (5/2)n/4−1/2.

Otherwise G has a 5-face and we apply Theorem 6.13:

ν(G) ≥ (5/2)(5/2)(n−4)/4−1/2 = (5/2)n/4−1/2.

To compare this with Conjecture 6.10, (5/2)n/4 = 2cn for c approximately 0.33
so this is still a weaker bound than Conjecture 6.10 asks for. We conclude this
section with a summary of what we know about hypothetical counterexample to
Conjecture 6.10:

Corollary 6.15. A minimal counterexample (the one with the smallest number
of vertices) to Conjecture 6.10:

1. does not have 2-edge-cut,

2. does not have non-trivial 3-edge-cut,

3. does not contain triangle,

4. does not contain 4-cycle, and

5. has at least 22 vertices.

83

The first three points are due to Observations 4.8 and 4.9, the fourth one due
to Theorem 6.12 and the last one was verified by a computation on all 3-edge-
connected cubic graphs up to 20 vertices (see test_exp_cdc.sh experiment).
Note that we cannot exclude 5-cycles as the bound provided by the second part
of Theorem 6.13 is too weak.

6.3 Implementation
In this section we discuss the implementation of the proposed framework. We
used this implementation to obtain all the computer aided results in this chapter.
Readers interested only in the theoretical results may skip this section. We start
by some general notes then we describe the core of the implementation and we
conclude this section with some notes on implemented representations and graph
sequences. For more details consult the implementation which is available at our
department GitLab:

https://gitlab.kam.mff.cuni.cz/radek/cdc-counting.

6.3.1 General Notes
The main difference of the implementation from the theoretical approach is that
the multiplicity vectors are represented sparsely as lists of named tuples and only
indices with non-zero value are present. Also the joins are not explicit matrices
but Python functions.

The advantages of this approach are mainly that the program consumes much
less memory as usual multiplicity vectors contain many zeros and the matrices
of the join functions even more. Another advantage is that this representation
does not need to enumerate all the boundaries of given size which might not be
easy for some representations and it is impossible for linear representations which
are not finite. Note that to be able to do the computations we do not need the
representation to be finite but only that the support of every multiplicity vector
we get is finite which is much weaker condition. This representation also allows
implementation of some representations which are not linear.

The implementation is written in Python 3 [van Rossum and Drake, 2009] –
it was tested with CPython 3.85 – and uses Sage [The Sage Developers, 2021]
whenever standard functionality like graphs or matrices are needed. We chose
Python mainly because it is a high level language with no direct access to pointers
which by itself prevents a lot of annoying bugs related to memory management
when compared with C [Kernighan and Ritchie, 1988] or C++ [Stroustrup, 2013].
Another reasons for choosing Python are built-in long integers and Sage which
contains (among other) graph and linear algebra algorithms.

6.3.2 Base Data Types
File base.py contains the base data types on which the rest of the library is
built on. The high-level structure is following: Every graph parameter (or more
precisely its decomposable representation) is modeled by an object of a class

5https://github.com/python/cpython/tree/3.8

84

https://gitlab.kam.mff.cuni.cz/radek/cdc-counting/-/blob/master/experiments/test_exp_cdc.sh
https://gitlab.kam.mff.cuni.cz/radek/cdc-counting
https://gitlab.kam.mff.cuni.cz/radek/cdc-counting/-/blob/master/graph_tools/base.py
https://github.com/python/cpython/tree/3.8

deriving from GraphParameterBase. Gadgets are modeled as objects of classes
deriving from Gadget. The most important methods for the users are listed below;
p is an object of class GraphParameterBase corresponding to representation P
and g is an object of class Gadget corresponding to gadget g.

• Gadget.join which joins gadgets (described below).

• g.eval gadget(p) which corresponds to hP(g).

• p.finalize which corresponds to fP .

• g.eval(p) which is a shortcut for p.finalize(g.eval gadget(p)) (i.e.,
P(g) – it calculates the value of the parameter for gadget g given g is a
graph).

A short descriptions of the defined types follows (for a more detailed exposition
consult the source code):

BoundaryValue is a named tuple (boundary, value, origins) representing
a (non-zero) coefficient of a multiplicity vector. Member boundary contains the
boundary in the sense of linear representations (see Definition 5.13, i.e., (the
representation of) some element of BP) and value is its coefficient. Member
origins allows tracking how the value was created during gadget joins. It can
be used to enumerate the objects which we are counting.

Gadget is an abstract class representing a gadget. It has three subclasses:
BaseGadget representing base gadgets (currently only a cubic vertex and a free
edge) and JoinGadget for gadgets created by joining other gadgets – these are
enough to calculate the value of the parameters on any graph. The last subclass –
FakeGadget – is used when a creation of specific multiplicity vector is needed (al-
though it might not correspond to any gadget) – most notably when constructing
matrix A from Observation 5.34.

The cubic vertex and the free-edge are defined as constants CUBIC VERTEX and
FREE EDGE. The most important method of Gadget is a static method

join(gadgets, joins, outs)

for joining gadgets together. Its parameters are a list of gadgets to join, descrip-
tion which half-edges should be joined together and a list of the half-edges of the
resulting gadget to allow permuting them easily. The parameter joins is a list
where each its element is a tuple of half-edges which will be joined together.

The half-edges are described as tuples (gadget index, edge index) where
both indices start at one. Each half-edge must appear exactly once in parameter
list. For example a triangle can be created the following way (see also Figure 6.6):

Gadget.join([CUBIC_VERTEX]*3,
[((1, 2), (2, 1)), ((2, 2), (3, 1)), ((3, 2), (1, 1))],
[(1, 3), (2, 3), (3, 3)])

85

Figure 6.6: An example of Gadget.join. Black part are the original gadgets.
Green parts are the new connections.

FakeGadget is a subclass of Gadget. It does not represent any real gadget
but instead is used to inject given multiplicity vector into the computation. Its
constructor takes two parameters, the size of the gadget it should represent and
the desired multiplicity vector (as list of BoundaryValue).

GraphParameterBase is the abstract base class for all the graph parameter
representations. All objects of this class and its subclasses are required to be
immutable and hashable. Its main method of the interest is

eval join(self, multiplicity vectors, joins, outs, offsets)

which evaluates the parameter on the join of given multiplicity vectors. It is
called by the implementation of JoinGadget.eval gadget. Its implementation
is sketched in Algorithm 6.7. It starts with a Cartesian product of the non-
zero coordinates of all input multiplicity vectors, applying join boundaries to
each tuple (note that it returns list of the BoundaryValues). Then it applies
all the required edge joins and continues with the canonization of the generated
boundaries. At the end it collects all the values with the same boundary together.

Every subclass of GraphParameterBase must have an instance attribute CU-
BIC VERTEX and optionally also FREE EDGE with the multiplicity vectors of these
base gadgets and it must implement the following methods (the self parameter
is omitted):

• join boundaries(tuple of boundaries, lengths): Join given tuple of
boundaries into one boundary. The parameter lengths gives the sizes of
the boundaries as a speed optimization.

• join edges(boundary, edge1, edge2): Join given half-edges in the given
boundary.

• project and canonize(selector, boundary): Transform given bound-
ary into the canonical form keeping only half-edges present in selector in
the given order.

• finalize(multiplicity vector): Calculate the value fP of the given mul-
tiplicity vector.

86

Input: self, list of multiplicity vectors of the subgadgets M , list of the
half-edges to join J , list of output half-edges O

Output: Multiplicity vector of the described join gadget
1 l← []
2 for p ∈ cartesian product(M) do
3 l← l + self.join boundaries(p)
4 end for
5 for (e1, e2) ∈ J do
6 l′ ← []
7 for b ∈ l do
8 l′ ← l′ + self.join edges(b, e1, e2)
9 end for

10 l← l′

11 end for
12 pc← self.project and canonize
13 l← [BoundaryValue(pc(O, b.boundary), b.value) : b ∈ l]
14 B ← {b.boundary : b ∈ l}
15 return [BoundaryValue(b,

∑︁
b′∈l, b′.boundary=b b

′.value) : b ∈ B]

Algorithm 6.7: Method GraphParameterBase.eval join

SimpleParameterBase As a convenience we implement class SimpleParame-
terBase which can be used to implement linear parameters which can be de-
scribed by coloring edges. It requires only implementation of method

is compatible(boundary, edge1, edge2)

and the attribute CUBIC VERTEX. This method should return True if given half-
edges can be joined together. For example parameter EdgeThreeColoring might
be implemented by setting CUBIC VERTEX to all six 3-coloring of edges around it
and defining:

def is compatible(self, b, e1, e2): return b[e1] == b[e2].

GraphSequenceBase is the abstract base class of all the graph sequences de-
scribed in Definition 5.33. It is not exported from the module but instead it is
utilized through the class decorators ParametrizedGraphSequence and Graph-
Sequence. The following properties must be defined for each sequence either as
class properties or instance properties. They are listed with the corresponding
parts of Definition 5.33.

• sequence start – z, the index offset of the sequence.

• base gadget – ginit, the initial gadget.

• step gadget – gstep, the step gadget.

87

• step join and step out – Jstep, the description of the step join. The next
gadget in the sequence is obtained by

Gadget.join([g, step gadget], step join, step out)

where g is the previous gadget of the sequence.

• final join – Jfin, the final join as the second parameter to Gadget.join.
Note that there is not final out because the result should be a graph.

The important methods of GraphSequenceBase are:

• gadget(k) which returns k-th gadget.

• graph(k) which returns k-th graph Gk.

• stabilize(parameter) which explicitly calculates vectors u, v and a ma-
trix M such that P(Gk) = uMk−zv for the parameter P represented by
parameter. It can also obtain a formula for this value using function
matrix to formula described below. It is called stabilize because it
does not enumerate all boundaries of the given size but it instead computes
the step gadgets until their support stabilizes.

6.3.3 Parameters
We have implemented the following graph parameters: VertexCount, EdgeColo-
ring, GroupFlow, VertexColoring, UnderlyingGraph, CycleDoubleCover and
CircuitDoubleCover. Parameter CircuitDoubleCover implements the linear
representation described in Section 6.1. UnderlyingGraph constructs given graph
as an object of Sage’s Graph class. This is useful because Gadget is internally a
tree of joins with base gadgets as leaves.

EdgeColoring is implemented using SimpleParameterBase by defining the
value of a cubic vertex and method is compatible to be b[e1] == b[e2]. The
representation of VertexCount is defined similarly by b[e1] != b[e2] and the
representation of GroupFlow by b[e1] == -b[e2]. CycleDoubleCover is treated
as a special case of group flows over Zk2 for suitable k.

6.3.4 Graph Sequences
The implemented graph sequences are:

• Necklace – A necklace gadget is obtained by cutting an edge of K4 and a
necklace of size k is obtained by joining k necklace gadgets into a cycle.

• CyclicLadder also called a prism. This sequence is parametrized by a
boolean value determining whether the result is crossed or not. A non-
crossed cyclic ladder of size k is obtained by taking two Ck and joining
their corresponding vertices by edges. See Figure 5.2. A crossed cyclic
ladder is obtained from non-crossed one by cutting the last edges of both
cycles and joining the two cycles together.

88

• GeneralizedPetersen The generalized Petersen graph with parameters s, k
is constructed the following way: Take Ck, append a vertex to every vertex
of this cycle. We call the new vertices outer. Now join i-th outer vertex with
(i+ s)-th outer vertex (calculating modulo k). This gives a cubic graph.
The sequence is parametrized by s. So the usual Petersen graph can be
obtained by GeneralizedPetersen(2).graph(5). The graphs with s = 1
are non-crossed cyclic ladders.

• Two implementations of Flower snarks (Definition 1.11) – FlowerSnark
and FlowerSnarkAlt. FlowerSnark implements the construction from the
definition which crosses the outer edges only once in the base gadget.
FlowerSnarkAlt was implemented to double check our results and it con-
struct Flower snarks by crossing edges at every gadget. The constructions
create isomorphic graphs for odd k but different ones for even k.

• Flower implements gadgets from the flower construction (Definition 4.6).
It uses FakeGadget to cover the outer edges only once. Hence it works only
with the CircuitDoubleCover parameter and it depends on its implemen-
tation.

6.3.5 Miscellaneous & Utils
Below we note a few of miscellaneous and utility functions which are either gen-
erally useful or implement some interesting algorithms.

• graph to gadget converts a Sage Graph into a gadget so parameters can be
evaluated on it. It takes an optional parameter describing how the graph
should be decomposed into gadgets. If none is given it tries to guess some
which does not create too large cuts in the process. Although we try to be
a bit smart we do not give any guarantees about the quality of the guessed
decomposition. An interesting option would be to use, e.g., path-width
decomposition to construct the decomposition.

• edge model join implements gluing Jg – the join which joins the half-edges
with the same labels.

• parameter matrix given a parameter P and a list of k-gadgets g1, . . . , gn,
it calculates an n × n matrix A such that Ai,j = P(Jg(gi, gj)). Note that
the rank of A gives a lower bound on the number of k-boundaries of any
representation of the same parameter as shown in Observation 5.24.

• enumerate diamond matchings enumerates all diamond matchings of given
size. The diamond matchings are used in the proof of Observation 6.3
although the proof does not use computer.

• matrix to formula(u, M, v) implements Corollary 5.36 using Sage’s sym-
bolic calculation facilities.

89

90

7. Voltage Graphs
This chapter is a report on a work-in-progress which was started during Robert
Šámal’s stay at Simon Fraser University (SFU), Canada in 2019/20. It is a join
work with Matt DeVos and Bojan Mohar from SFU. Although it is a kind of
generalization of Berman et al. [2017], it was discovered independently. Berman
et al. [2017] rephrased the snark construction of Loupekine into the language of
voltage graphs and then used the list of known small snarks to construct a few
new infinite families of snarks with interesting properties.

Their general approach was to select a suitable snark, turn it into a voltage
graph over Zk and then to prove some properties about graphs sequence obtained
by increasing k. Our approach is similar but instead of starting with small snarks,
we start with voltage graphs. We conducted extensive search on small template
graphs and small groups, tested their derived graphs and if the derived graph was
interesting, examined the whole sequence.

For now we only processed some of the voltage graphs over Zk and we created
the graph sequences by increasing k. We use the framework built in the previous
chapters to examine whether a sequence contains infinitely many snarks. The
computational complexity of this approach strongly depends on sum of the abso-
lute values of the assignment (interpreted as integers). Hence there still remains
a lot of sequences we did not test yet. On the other hand a big advantage of our
method is that when the computation finishes we know exactly which graphs in
the sequence are snarks and which are not, there are no open cases left. In the
future we also want to test graphs obtained from a non-cyclic or even non-abelian
groups.

In the next section we describe the basics of voltage graphs, then we describe
the used construction of a graph sequence from a single voltage graph and, very
briefly, the implementation of the computer programs we used. We conclude this
chapter with an interesting graph sequence we found.

7.1 Definitions and Properties
Voltage graphs are an elegant way for describing large graphs using smaller ones.
We start with a formal definition. Note that even though we allow the group to
be non-abelian, we use additive notation because we will mostly work with groups
Zk. Also similarly to group flows we need an oriented graph but the orientation
does not matter because when we flip an orientation of an edge we can just take
inverse of its label and obtain the same derived graph.

Definition 7.1 (Voltage Graph). Let Γ be a group. A directed graph G = (V,E)
(we allow loops and parallel edges) together with a function φ : E → Γ is a voltage
graph. We call G the template and φ the assignment. We define Γ(φ) = Γ.

If the group is Zk, we can also label edges with integers and interpret them
modulo k. This representation gives us ability to change k and hence obtain a
graph sequence. The derived graph is a graph on vertices V (G)× Γ where edges
are determined by labels on edges of G. Because voltage graphs might contain
parallel edges and loops, we need to be a little careful with the notation. We use

91

ue and ve to denote the head and tail of an edge e (to match the usual notation
uv ∈ E).

Definition 7.2 (Derived Graph). Let (G,φ) be a voltage graph. Its derived
graph, denoted D(G,φ), is an undirected graph with vertex set V (G)× Γ(φ) and
edges {︂

{(ue, γ), (ve, γ + φ(e))} : e ∈ E(G), γ ∈ Γ(φ)
}︂
.

A derived graph might contain loops or parallel edges but we do not care about
such cases. Hence we assume that a derived graph is simple and loopless. As we
already noted, the orientation of the voltage graph does not matter. Moreover,
derived graphs are also invariant under more complex operations on the voltage
graphs. For abelian groups this operation is best imagined as (a series of) adding
a fixed value ρ to all edges in some edge cut which just shifts one side of the cut
in the derived graph by ρ.

Observation 7.3. Let (G,φ) be a voltage graph and let ρ : V (G)→ Γ(φ) be any
function. Define φ′(e) = ρ(ue) + φ(e)− ρ(ve). Then D(G,φ) ∼= D(G,φ′).

Proof. We prove that mapping m defined by m((u, γ)) = (u, γ − ρ(u)) is an
isomorphism from D(G,φ) to D(G,φ′). Edges of D(G,φ) are{︂

{(ue, γ), (ve, γ + φ(e))} : e ∈ E(G), γ ∈ Γ(φ)
}︂
,

m maps them to{︂
{(ue, γ − ρ(ue)), (ve, γ + φ(e)− ρ(ve))} : e ∈ E(G), γ ∈ Γ(φ)

}︂
and by shifting γ from right by ρ(ue) we get{︂

{(ue, γ), (ve, γ + ρ(ue) + φ(e)− ρ(ve))} : e ∈ E(G), γ + ρ(ue) ∈ Γ(φ)
}︂

which are exactly the edges of D(G,φ′).

A straightforward application of this is to fix a spanning tree in the template
graph and assume that all its edges are labeled zero (the identity in Γ). This will
greatly speed up the search through all the possible assignments.

Corollary 7.4. Let G be a template and T its spanning tree. If D is a derived
graph of (G,φ) for some φ then there exists φ′ : E(G) → Γ(φ) such that D ∼=
D(G,φ′) and φ′ is zero on all edges of T .

7.2 The Program
We give a high-level overview of the program used to find the interesting snarks.
We omit the implementation details as the code is not published yet. We will
make it publicly available when we consider it mature enough and publish some
results. It will be available at our gitlab

https://gitlab.kam.mff.cuni.cz/radek/voltage-graphs.

92

https://gitlab.kam.mff.cuni.cz/radek/voltage-graphs

We are mainly interested in the cubic graphs. Hence although the core of our
program can work with general simple graphs, certain parts – most notably some
filters (described below) – work only with cubic graphs. As noted above, the core
of our program is an enumeration of all possible voltage graphs and their derived
graphs given a fixed template graph and a group.

The implementation of the enumeration is recursive: It assigns a value to the
given edge e and recursively calls itself on the next edge without a value. After
returning from the recursion, it assigns another value to e, recurses again and
so on until all the possible values of e are enumerated. The complete high-level
description is in Algorithm 7.1.

Input: Template graph T , group Γ, mapping s : E(T)→ 2Γ,
invariants and filters

Output: Derived graphs
1 expand edge(0)

2 function expand edge(e) begin
3 if e ≥ |E(T)| then
4 if G has loops or parallel edges then return
5 for f ∈ filters do
6 if not f.eval(G) then return
7 end for
8 print G
9 return

10 end if
11 for v ∈ s(e) do
12 Construct edges in the derived graph G corresponding to e labeled

with v overwriting the ones previously created.
13 for i ∈ invariants do
14 if not i.eval(G) then continue
15 end for
16 expand edge(e+ 1)
17 end for
18 Remove the edges we constructed.
19 end function

Algorithm 7.1: The enumeration of the derived graphs

This approach has two main weaknesses: It generates a lot of graphs which
are not interesting for some trivial reason (they might not be connected, contain
loops or parallel edge, etc.) and it generates many graphs which are isomorphic.
We provide a few ways to overcome these problems. They differ in expressive
power, computational cost and the phase of the graph generation in which they
are applied.

The simplest tool is the restriction of edges in the template to only some
members of the group Γ. We call this restriction value sets. Corollary 7.4 shows
that we can set edges of a spanning tree to zero and not lose any derived graph
but dramatically decrease the number of generated graphs (i.e., the number of

93

Figure 7.2: Two loops connected by an edge

repetitions). Value sets are applied during the enumeration of the edge and as
such provides a great speed up by pruning the whole subtrees of the tree of the
recursion. But value sets are applied to every edge separately and it might be
beneficial to restrict the values of an edge depending on other edges.

For example consider the graph shown in Figure 7.2. We fix the value zero
on the non-loop edge. But we also want to prevent generating the graphs which
differ only by swapping the values on the loops. We call the tool to help here
invariants. Invariants are equations about values assigned to the edges which
must be true. Currently we support two types of invariants.

First one asserts that the sum of some edges must be zero or non-zero (we allow
specifying that edge should be reversed before summing). The second one that
the representation of the value on one edge is either strictly or non-strictly smaller
than the representation of the value on the other edge. The group elements are
represented by integers from 0 to |Γ| − 1. The implementation does not promise
anything about the mapping from the group elements to integers except that the
identity element of the group is represented by the integer zero. However, the
cyclic groups are mapped in the natural way by identity.

Hence to fix our example we add the invariant l1 ≤r l2 where l1 and l2 are the
values of the two loops and ≤r is the implementation defined order on the group
elements. The invariant is tested immediately after all its edges are assigned
values. The last tool is filters.

Filters
Filters are applied after the whole graph is generated and they are given both
the assignment and the derived graph. They are also able to store a state during
processing of one template. There are currently the following filters:

• Sort: Sort neighbours of every vertex and check if we have already seen
this graph. It removes obviously isomorphic graphs and it is very fast.

• Connected: Check whether the graph is connected. Note that bridges are
not an issue as usually, depending on the assignment, the derived graph is
either 3-connected or not connected at all.

• Traces: Use Traces1 [McKay and Piperno, 2014] to transform the graphs
into a canonical form under (a subset of) their automorphism group and
remove duplicities. It takes parameter orbits which limits the considered
(potential) automorphisms. It weakens the filter but might significantly
speed up its evaluation. Sometimes it might be beneficial to use this filter
several times with larger and larger orbits as a speed optimization.

1Of nauty and Traces, https://pallini.di.uniroma1.it/.

94

https://pallini.di.uniroma1.it/

• CyclicConnectivity: Remove graphs with girth (the length of the short-
est circuit), local girth or cyclic connectivity (Definition 1.2) lower than
given thresholds. The girth and local girth calculation uses breadth first
search run from each vertex until a circuit is found. We color vertices by the
edges of the starting vertex to avoid reporting lollipops (a path connected
to a circuit) as circuits which would mess up local girth calculation.
Local girth is maxv∈V minC∋v |C|, i.e., for every vertex v we consider the
shortest circuit passing through v and we take the maximal length of those
over all vertices. A large difference between girth and local girth hints that
the graph is far from being highly symmetric.
We use the quadratic algorithm (O(n2 log2 n) to be precise) of Dvořák et al.
[2004] to calculate cyclic connectivity. The paper states that this algorithm
works for graphs on at least 243 vertices. The inspection of the algorithm
shows that it is enough to find k disjoint trees such that each of them is
adjacent to at least k + 1 edges where k is the cyclic connectivity we want
to test (hence O(log n) by Dvořák et al. [2004]) and 243 vertices assures
this. We instead try to always apply the quadratic algorithm and if we fail
to find the disjoint trees (which we select greedily), we stop and use their
O(n3 log n) algorithm instead. Both algorithms and hence also this filter
work only on cubic graphs.

• CanonicalAssignment: This filter attempts to remove isomorphic graphs
from output but unlike Sort and Traces it does not work with the derived
graph but with the assignment. The high-level idea is that we want to use
automorphisms A of the template graph to remove assignments leading to
isomorphic derived graphs. This filter is obviously weaker than Traces but
it might be faster (and hence it can used to do partial filtering before using
Traces).
We already use the normalization of the assignment due to Corollary 7.4.
We denote N(.) the function which does this normalization assuming we
have some fixed spanning-tree.2 Permuting the edge labels of an assignment
a by σ ∈ A leads to an isomorphic voltage graph and thus to an isomorphic
derived graph. However, σ(a) is most likely non-normalized yielding no
improvement. But the assignment N(σ(a)) might be generated so removing
it might help.
We define Ca = {N(σ(a)) : σ ∈ A}. Let P be the set of assignments which
we passed for further processing and let x be a newly generated assignment.
We keep the set S = ⋃︁

a∈P Ca. We discard x if x ∈ S, otherwise we pass
x for further processing and we add x into P . To reduce the memory
consumption, we map all possible normalized assignments to integers and
store S as a bit set.
We would like to think about Ca as an equivalence class but note that
this might not be the case, i.e., there might exist an assignment a and
permutations σ, π ∈ A such that N(π(N(σ(a)))) ̸∈ Ca. If Ca are not

2This is a bit of simplification. The actual implementation also normalizes values on loops
(if we replace x with −x on a loop, the derived graph stays the same) and some fixed non-tree
edge.

95

equivalence classes, the filter is weaker than it might be but it is still correct
– it removes only isomorphic graphs. Also if Ca are not equivalence classes,
it might help to add Cx to S even if we discarded x. But we currently do
not do this as our intuition is that the gain is not worth the extra time
consumed.

7.3 A New Family of Snarks
As noted before, we used the described program on small templates with all
possible assignments in several selected small cyclic groups. When we found an
interesting snark (mainly cyclically 5-connected) we transformed its voltage graph
into a graph sequence by converting the assignment from Zk by interpreting it as
integers in range (−k/2, k/2] and then increasing k. The choice of (−k/2, k/2] is
arbitrary from the theoretical point of view. Other choices might lead to different
sequences which may or may not contain snarks. We use this range because it
minimizes the size of the sequence and thus the running time of our algorithm –
the size of the sequence is 2∑︁i |ai| where a is the assignment vector. Then we
tested whether elements of this sequence are at least cyclically 4- or 5-connected
and which elements are snarks – i.e., not 4-edge-colorable. This is easy to check
by hand because all we need to check is one element of the sequence:

Observation 7.5. Let Gn be the derived graph of some fixed voltage graph over
Zn. Let m = maxi |ai| where ai are the assigned values as integers. If the girth
of Gn is k and mk < n then the girth of Gj is k for all j ≥ n. Similarly if the
cyclic connectivity of Gn is k and mk < n then the cyclic connectivity of Gj is k
for all j ≥ n.

Proof. Obvious. Both the shortest cycle and the smallest nontrivial cut might
either go around the whole cycle of gadgets (see Figure 7.3) or not. If mk < n,
then k edges are too few for the cycle to go around. We prove the claim for the
cyclic connectivity by contradiction.

For contradiction let j > n be the smallest integer such that Gj has cyclic
connectivity k′ < k. Let C ⊂ E(Gj) be a non-trivial cut of the size k′ in Gj. Then
by pigeonhole principle there exists i such that if we remove the i-th step gadget3

(obtaining a graph isomorphic to Gj−1) we do not remove any edge belonging to
C. Hence C is a non-trivial cut in Gj−1. Contradiction.

To check whether a graph is a snark, we count its 3-edge-colorings using
the representation described in Section 5.6.2 – its boundaries are all possible 3-
colorings of the half-edges. We start calculating the multiplicity vectors mi of the
gadgets in the sequence gi and continue doing so until we find two multiplicity
vectors with the same support. This will happen as there are only 3s possible
supports (where s = 2∑︁i |ai|). Note that the support is all we care about as this
representation always maps non-negative vectors to non-negative vectors. Hence
if supp(mi) = supp(mj) for i < j then supp(mi+l) = supp(mi+(l mod (j−i))) for all
l > 0.

3We consider edges joining i-th gadget with (i+ 1)-th up to (i+m)-th gadgets to belong to
the i-th gadget.

96

Figure 7.3: An example of a cycle “going around” in a graph G6

We started testing the small sequences first as the running time is exponential
in the size of the sequence. Hence a lot of sequences we found were covered by
results of Berman et al. [2017]. The first one which is obviously not covered
by them (because it has three non-loop edges with non-zero labels) is shown in
Figure 7.4. We summarize its properties in the following observation. We do not
include a bound on the number of CDCs because the graph sequence was too
large to be processed by our hardware.

Figure 7.4: Voltage graphs without 4-cycles. The unlabeled edges have labels 0.

Theorem 7.6. Let Gi be the derived graph of the voltage graph in Figure 7.4 over
Zi for i ≥ 3. Then the girth of Gi is min {i, 5} and Gi is cyclically 5-connected
with exceptions of i = 8 which is cyclically 4-connected, i = 3 or 6 which are
cyclically 3-connected and i = 2 which is cyclically 2-connected. Moreover Gi is
not 3-edge-colorable (and hence it is a snark) if and only if i mod 4 ̸= 0.

Proof. The girth and the cyclical connectivity were calculated for G3 up to G11
which is enough by Observation 7.5. For 3-edge-colorability we calculated the
supports of the multiplicity vectors and discovered that suppG7 = suppG3 and
among G3, . . . , G6 only G4 has 3-edge-coloring. For technical details see experi-
ment nice-voltage.py.

97

https://gitlab.kam.mff.cuni.cz/radek/cdc-counting/-/blob/master/experiments/nice-voltage.py

98

Conclusion
We conclude this thesis with a summary of the open questions. Our main ques-
tion from Chapter 2 was already positively resolved by Han et al. [2020]. This
completed the last piece about group connectivity for 3-connected graphs. On
the other hand the same question for 2-connected graphs is still open:
Conjecture 2.17. Let Γ1 and Γ2 be abelian groups. Then there exists a graph
which is Γ1-connected but not Γ2-connected.

In Chapter 3 we increased the importance of the original conjecture of Matt
DeVos (Conjecture 3.4) by observing that it implies existence of cycle double
covers with a small number of cycles. We also conjecture that our strengthening
holds for every graph and the smallest group in which it has nowhere-zero flow:
Conjecture 3.12. For every graph G the strong homomorphism property holds
for group Zk where k is minimal such that G admits a nowhere-zero Zk-flow.

The main open question about finite linear representations in general is char-
acterization of the parameters for which they exist:
Problem 5.32. Characterize graph parameters which have a finite linear repre-
sentation over Q, R or C. What if we restrict growth of |Bk|?

In the Chapter 6 we present a conjecture which is a natural strengthening of
the Cycle Double Cover conjecture to counting:
Conjecture 6.10. Every bridgeless cubic graphs with n vertices has at least
2n/2 − 1 circuit double covers.

We also show that if our version holds, it is tight for infinitely many graphs.
On the other hand we do not know any graph for which the bound is tight and
the graph does not contain a triangle. So there might be a room for improvement
if we restrict ourselves to triangle-free graphs (or {C3, C4}-free or if we require
higher cyclic connectivity).

99

100

Bibliography
Georgij M. Adelson-Velskij and A. Titov. On 4-chromatic cubic graphs. Vopr.

Kibernet, 1974. in Russian.

Omid Amini, Louis Esperet, and Jan Van Den Heuvel. A unified approach to
distance-two colouring of graphs on surfaces. Combinatorica, 33(3):253–296,
2013. doi: 10.1007/s00493-013-2573-2.

Kenneth I. Appel and Wolfgang Haken. Every planar map is four colorable. Part
I: Discharging. Illinois Journal of Mathematics, 21(3):429 – 490, 1977. doi:
10.1215/ijm/1256049011.

Kenneth I. Appel, Wolfgang Haken, and John A. Koch. Every planar map is four
colorable. Part II: Reducibility. Illinois Journal of Mathematics, 21(3):491 –
567, 1977. doi: 10.1215/ijm/1256049012.

Arash Asadi, Zdeněk Dvořák, Luke Postle, and Robin Thomas. Sub-exponentially
many 3-colorings of triangle-free planar graphs. J. Combin. Theory Ser. B, 103
(6):706–712, 2013. doi: 10.1016/j.jctb.2013.09.001.

H. W. Becker and John Riordan. The arithmetic of bell and stirling num-
bers. American Journal of Mathematics, 70(2):385–394, 1948. doi: 10.2307/
2372336.

Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Sel-
jebotn, and Kurt Smith. Cython: The best of both worlds. Computing in
Science & Engineering, 13(2):31–39, 2011.

Leah W. Berman, Déborah Oliveros, and Gordon I. Williams. Cyclic pseudo-
Loupekine snarks, 2017. https://arxiv.org/abs/1707.05294.

Jean C. Bermond, Bill Jackson, and François Jaeger. Shortest coverings of graphs
with cycles. Journal of Combinatorial Theory, Series B, 35(3):297–308, 1983.
doi: 10.1016/0095-8956(83)90056-4.

Danilo Blanuša. Problem četiriju boja. Glasnik Mat. Fiz. Astr., 1946.

Gunnar Brinkmann, Kris Coolsaet, Jan Goedgebeur, and Hadrien Mélot. House
of graphs: a database of interesting graphs. Discrete Applied Mathematics,
2013. doi: 10.1016/j.dam.2012.07.018. URL http://hog.grinvin.org.

Harold S. M. Coxeter. My graph. Proceedings of the London Mathematical Society,
s3-46(1):117–136, 1983. doi: 10.1112/plms/s3-46.1.117.

Matthew J. DeVos. Flows on graphs. Princeton University, 2000. PhD thesis.

Matthew J. DeVos. A homomorphism problem for flows. Open Problem Garden,
2007. http://www.openproblemgarden.org/op/a_homomorphism_problem_
for_flows, [retrieved 2020-02-28].

Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics.
Springer, Berlin, fifth edition, 2017. doi: 10.1007/978-3-662-53622-3.

101

http://dx.doi.org/10.1007/s00493-013-2573-2
http://dx.doi.org/10.1215/ijm/1256049011
http://dx.doi.org/10.1215/ijm/1256049012
http://dx.doi.org/10.1016/j.jctb.2013.09.001
http://dx.doi.org/10.2307/2372336
http://dx.doi.org/10.2307/2372336
https://arxiv.org/abs/1707.05294
http://dx.doi.org/10.1016/0095-8956(83)90056-4
http://dx.doi.org/10.1016/j.dam.2012.07.018
http://hog.grinvin.org
http://dx.doi.org/10.1112/plms/s3-46.1.117
http://www.openproblemgarden.org/op/a_homomorphism_problem_for_flows
http://www.openproblemgarden.org/op/a_homomorphism_problem_for_flows
http://dx.doi.org/10.1007/978-3-662-53622-3

Jan Draisma, Dion C. Gijswijt, László Lovász, Guus Regts, and Alexander Schri-
jver. Characterizing partition functions of the vertex model. Journal of Algebra,
350(1):197 – 206, 2012. doi: 10.1016/j.jalgebra.2011.10.030.

Zdeněk Dvořák, Jan Kára, Daniel Král’, and Ondřej Pangrác. An algorithm
for cyclic edge connectivity of cubic graphs. In Torben Hagerup and Jyrki
Katajainen, editors, Algorithm Theory - SWAT 2004, pages 236–247, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

Zdeněk Dvořák, Bojan Mohar, and Robert Šámal. Exponentially many nowhere-
zero Z3-, Z4-, and Z6-flows. arXiv e-prints, art. arXiv:1708.09579, Aug 2017.

Joanna A. Ellis-Monaghan and Iain Moffatt. Graphs on Surfaces: Dualities,
Polynomials, and Knots. Springer New York, 2013.

Paul Erdős, Arthur L. Rubin, and Herbert Taylor. Choosability in graphs. In Pro-
ceedings of the West Coast Conference on Combinatorics, Graph Theory and
Computing (Humboldt State Univ., Arcata, Calif., 1979), Congress. Numer.,
XXVI, pages 125–157. Utilitas Math., Winnipeg, Man., 1980.

Louis Esperet, Frantǐsek Kardoš, Andrew D. King, Daniel Král’, and Serguei
Norine. Exponentially many perfect matchings in cubic graphs. Adv. Math.,
227(4):1646–1664, 2011. doi: 10.1016/j.aim.2011.03.015.

Genghua Fan. Integer flows and cycle covers. Journal of Combinatorial Theory,
Series B, 54(1):113–122, 1992. doi: 10.1016/0095-8956(92)90069-A.

Herbert Fleischner. Spanning eularian subgraphs, the splitting lemma, and pe-
tersen’s theorem. Discrete Mathematics, 101(1):33–37, 1992. doi: 10.1016/
0012-365X(92)90587-6.

Michael Freedman, Lovász László, and Alexander Schrijver. Reflection positivity,
rank connectivity, and homomorphism of graphs. Journal of the American
Mathematical Society, 20, 05 2004. doi: 10.1090/S0894-0347-06-00529-7.

Delbert R. Fulkerson. Blocking and anti-blocking pairs of polyhedra. Mathemat-
ical Programming, 1971. doi: 10.1007/BF01584085.

Martin Gardner. Mathematical games. Scientific American, 234(4):126–130,
1976.

Luis A. Goddyn, Michael Tarsi, and Cun-Quan Zhang. On (k, d)-colorings and
fractional nowhere-zero flows. J. Graph Theory, 28(3):155–161, 1998. doi:
10.1002/(SICI)1097-0118(199807)28:3<155::AID-JGT5>3.0.CO;2-J.

Andrew Goodall, Thomas Krajewski, Guus Regts, and Llúıs Vena. A tutte poly-
nomial for maps. Combinatorics, Probability and Computing, 27(6):913–945,
2018. doi: 10.1017/S0963548318000081.

George Grätzer. Universal Algebra. 2008. doi: 10.1007/978-0-387-77487-9.

Herbert Grötzsch. Zur Theorie der diskreten Gebilde, VII: Ein Dreifarbensatz
für dreikreisfreie Netze auf der Kugel. Wiss. Z. Martin-Luther-U., Halle-
Wittenberg, Math.-Nat. Reihe, 1959.

102

http://dx.doi.org/10.1016/j.jalgebra.2011.10.030
http://dx.doi.org/10.1016/j.aim.2011.03.015
http://dx.doi.org/10.1016/0095-8956(92)90069-A
http://dx.doi.org/10.1016/0012-365X(92)90587-6
http://dx.doi.org/10.1016/0012-365X(92)90587-6
http://dx.doi.org/10.1090/S0894-0347-06-00529-7
http://dx.doi.org/10.1007/BF01584085
http://dx.doi.org/10.1002/(SICI)1097-0118(199807)28:3<155::AID-JGT5>3.0.CO;2-J
http://dx.doi.org/10.1017/S0963548318000081
http://dx.doi.org/10.1007/978-0-387-77487-9

G. Haggard. Edmonds characterization of disc embedding. In Proceeding of the
8th Southeastern Conference of Combinatorics, Graph Theory and Computing,
pages 291–302, Winnipeg, 1977.

Miaomiao Han, Jiaao Li, Xueliang Li, and Meiling Wang. Group connectivity
under 3-edge-connectivity. Journal of Graph Theory, 96, 09 2020. doi: 10.
1002/jgt.22623.

Pavol Hell and Jaroslav Nešetřil. The core of a graph. Discrete Mathematics, 109
(1):117–126, 1992. doi: 10.1016/0012-365X(92)90282-K.

Ian Holyer. The NP-completeness of edge-coloring. SIAM Journal on Computing,
10(4):718–720, 1981. doi: 10.1137/0210055.

Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University
Press, USA, 2nd edition, 2012.

Radek Hušek, Peter Korcsok, and Robert Šámal. On girth of minimal counterex-
ample to 5-flow conjecture. In Bordeaux Graph Workshop, 2016.

Radek Hušek, Lucie Mohelńıková, and Robert Šámal. Group connectivity: Z4 vs
Z2

2. Journal of Graph Theory, 93, 08 2019. doi: 10.1002/jgt.22488.

Radek Hušek and Robert Šámal. Homomorphisms of cayley graphs and cycle dou-
ble covers. Electronic Notes in Discrete Mathematics, 61:639 – 645, 2017. doi:
10.1016/j.endm.2017.07.018. The European Conference on Combinatorics,
Graph Theory and Applications (Eurocomb’17).

Radek Hušek and Robert Šámal. Homomorphisms of cayley graphs and cycle
double covers. The Electronic Journal of Combinatorics, 27, 04 2020. doi:
10.37236/8456.

Radek Hušek and Robert Šámal. Counting circuit double covers. In European
conference on combinatorics, graph theory and applications 2021 (EuroComb
2021), 2021.

Rufus Isaacs. Infinite families of nontrivial trivalent graphs which are not tait
colorable. The American Mathematical Monthly, 82(3):221–239, 1975. doi:
10.1080/00029890.1975.11993805.

Alon Itai and Michael Rodeh. Covering a graph by circuits. In Lecture Notes
in Computer Science, volume 62, pages 289–299, 07 1978. doi: 10.1007/
3-540-08860-1_21.

François Jaeger. Flows and generalized coloring theorems in graphs. Jour-
nal of Combinatorial Theory, Series B, 26(2):205–216, 1979. doi: 10.1016/
0095-8956(79)90057-1.

François Jaeger, Nathan Linial, Charles Payan, and Michael Tarsi. Group con-
nectivity of graphs—a nonhomogeneous analogue of nowhere-zero flow prop-
erties. Journal of Combinatorial Theory, Series B, 56(2):165–182, 1992. doi:
10.1016/0095-8956(92)90016-Q.

103

http://dx.doi.org/10.1002/jgt.22623
http://dx.doi.org/10.1002/jgt.22623
http://dx.doi.org/10.1016/0012-365X(92)90282-K
http://dx.doi.org/10.1137/0210055
http://dx.doi.org/10.1002/jgt.22488
http://dx.doi.org/10.1016/j.endm.2017.07.018
http://dx.doi.org/10.37236/8456
http://dx.doi.org/10.1080/00029890.1975.11993805
http://dx.doi.org/10.1007/3-540-08860-1_21
http://dx.doi.org/10.1007/3-540-08860-1_21
http://dx.doi.org/10.1016/0095-8956(79)90057-1
http://dx.doi.org/10.1016/0095-8956(79)90057-1
http://dx.doi.org/10.1016/0095-8956(92)90016-Q

Brian W. Kernighan and Dennis M. Ritchie. The C programming language. 1988.

Martin Kochol. A cyclically 6-edge-connected snark of order 118. Discret. Math.,
161:297–300, 1996a.

Martin Kochol. Snarks without small cycles. J. Comb. Theory, Ser. B, 67:34–47,
1996b.

Martin Kochol. Superposition and constructions of graphs without nowhere-
zero k-flows. European Journal of Combinatorics, 23(3):281 – 306, 2002. doi:
10.1006/eujc.2001.0563.

Martin Kochol. Reduction of the 5-flow conjecture to cyclically 6-edge-connected
snarks. Journal of Combinatorial Theory, Series B, 90(1):139–145, 2004. doi:
10.1016/S0095-8956(03)00080-7.

Martin Kochol. Restrictions on smallest counterexamples to the 5-flow conjecture.
Comb., 26(1):83–89, 2006. doi: 10.1007/s00493-006-0006-1.

Martin Kochol. Smallest counterexample to the 5-flow conjecture has girth at
least eleven. Journal of Combinatorial Theory, Series B, 100(4):381–389, 2010.
doi: 10.1016/j.jctb.2009.12.001.

Daniel Král’. Group coloring is ΠP
2 -complete. Theor. Comput. Sci., 349(1):99–111,

December 2005. doi: 10.1016/j.tcs.2005.09.033.

Daniel Král’ and Pavel Nejedlý. Group Coloring and List Group Coloring Are
ΠP

2 -Complete, pages 274–286. Springer Berlin Heidelberg, Berlin, Heidelberg,
2004. doi: 10.1007/978-3-540-28629-5_19.

Hong-Jian Lai, Xiangwen Li, Yehong Shao, and Mingquan Zhan. Group con-
nectivity and group colorings of graphs - a survey. Acta Mathematica Sinica,
English Series, 27:405–434, 03 2011. doi: 10.1007/s10114-010-9746-3.

Jiaao Li, 2018. Personal communication.

C. H. C. Little and R. D. Ringeisen. On the strong graph embedding conjecture. In
Proceeding of the 9th Southeastern Conferenceo Combinatorics, Graph Theory
arid Computing, pages 479–487, Winnipeg, 1978.

László M. Lovász, Carsten Thomassen, Yezhou Wu, and Cun-Quan Zhang.
Nowhere-zero 3-flows and modulo k-orientations. J. Combin. Theory Ser. B,
103(5):587–598, 2013. doi: 10.1016/j.jctb.2013.06.003.

Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. Journal
of Symbolic Computation, 60:94–112, 2014. doi: 10.1016/j.jsc.2013.09.003.

Bojan Mohar and Carsten Thomassen. Graphs on Surfaces. Johns Hopkins series
in the mathematical sciences. Johns Hopkins University Press, 2001.

Bojan Mohar and Andrej Vodopivec. On polyhedral embeddings of cubic graphs.
Combinatorics, Probability and Computing, 15(6):877–893, 2006.

104

http://dx.doi.org/10.1006/eujc.2001.0563
http://dx.doi.org/10.1016/S0095-8956(03)00080-7
http://dx.doi.org/10.1007/s00493-006-0006-1
http://dx.doi.org/10.1016/j.jctb.2009.12.001
http://dx.doi.org/10.1016/j.tcs.2005.09.033
http://dx.doi.org/10.1007/978-3-540-28629-5_19
http://dx.doi.org/10.1007/s10114-010-9746-3
http://dx.doi.org/10.1016/j.jctb.2013.06.003
http://dx.doi.org/10.1016/j.jsc.2013.09.003

Lucie Mohelńıková. Group connectivity of graphs. Master’s thesis, Charles
University in Prague, Faculty of Mathematics and Physics, 2014. URL
https://is.cuni.cz/webapps/zzp/detail/148945/?lang=en. [in Czech].

Michael Molloy and Mohammad R. Salavatipour. A bound on the chromatic
number of the square of a planar graph. Journal of Combinatorial Theory,
Series B, 94(2):189–213, 2005. doi: 10.1016/j.jctb.2004.12.005.

Crispin A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. Journal
of the London Mathematical Society, s1-36(1):445–450, 1961. doi: 10.1112/
jlms/s1-36.1.445.

James G. Oxley. Matroid Theory (Oxford Graduate Texts in Mathematics). Ox-
ford University Press, Inc., USA, 2006. doi: 10.5555/1197093.

Julius Petersen. Sur le théorème de tait. L’Intermédiaire des Mathématiciens,
1898.

Robert W. Robinson and Nicholas C. Wormald. Almost all cubic graphs are
hamiltonian. Random Struct. Algorithms, 3(2):117–125, March 1992. doi: 10.
1002/rsa.3240030202.

Alexander Schrijver. Characterizing partition functions of the edge-coloring
model by rank growth. Journal of Combinatorial Theory, Series A, 136:164–
173, 2015. doi: 10.1016/j.jcta.2015.06.007.

Paul D. Seymour. Sums of circuits. In Graph Theory and Related Topics, page
342–355, 1979.

Paul D. Seymour. Nowhere-zero 6-flows. Journal of Combinatorial Theory, Series
B, 30(2):130 – 135, 1981. doi: 10.1016/0095-8956(81)90058-7.

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Profes-
sional, 4th edition, 2013.

Balázs Szegedy. Edge coloring models and reflection positivity. Journal of
the American mathematical Society, 20(4):969–988, 2007. doi: 10.1090/
S0894-0347-07-00568-1.

George Szekeres. Polyhedral decompositions of cubic graphs. Bulletin of
the Australian Mathematical Society, 8(3):367–387, 1973. doi: 10.1017/
S0004972700042660.

Peter G. Tait. Note on a Theorem in Geometry of Position. Royal Society of
Edinburgh, 1880.

The Sage Developers. SageMath, the Sage Mathematics Software System (Version
9.2), 2021. https://www.sagemath.org.

Robin Thomas. Recent excluded minor theorems for graphs. In Surveys in Com-
binatorics, pages 201–222. Univ. Press, 1999.

105

https://is.cuni.cz/webapps/zzp/detail/148945/?lang=en
http://dx.doi.org/10.1016/j.jctb.2004.12.005
http://dx.doi.org/10.1112/jlms/s1-36.1.445
http://dx.doi.org/10.1112/jlms/s1-36.1.445
http://dx.doi.org/10.5555/1197093
http://dx.doi.org/10.1002/rsa.3240030202
http://dx.doi.org/10.1002/rsa.3240030202
http://dx.doi.org/10.1016/j.jcta.2015.06.007
http://dx.doi.org/10.1016/0095-8956(81)90058-7
http://dx.doi.org/10.1090/S0894-0347-07-00568-1
http://dx.doi.org/10.1090/S0894-0347-07-00568-1
http://dx.doi.org/10.1017/S0004972700042660
http://dx.doi.org/10.1017/S0004972700042660

Carsten Thomassen. On the number of hamiltonian cycles in bipartite graphs.
Combinatorics, Probability and Computing, 5(4):437–442, 1996. doi: 10.1017/
S0963548300002182.

Carsten Thomassen. Many 3-colorings of triangle-free planar graphs. J. Combin.
Theory Ser. B, 97(3):334–349, 2007a. doi: 10.1016/j.jctb.2006.06.005.

Carsten Thomassen. Exponentially many 5-list-colorings of planar graphs. Jour-
nal of Combinatorial Theory, Series B, 97(4):571–583, 2007b. doi: 10.1016/
j.jctb.2006.09.002.

Carsten Thomassen. The weak 3-flow conjecture and the weak circular flow
conjecture. Journal of Combinatorial Theory, Series B, 102(2):521–529, 2012.
doi: 10.1016/j.jctb.2011.09.003.

Heinrich Tietze. Einige bemerkungen zum problem des kartenfärbens auf einseit-
igen flächen. Jahresbericht der Deutschen Mathematiker-Vereinigung, 1910.

William T. Tutte. On the imbedding of linear graphs in surfaces. Proceedings
of the London Mathematical Society, s2-51(1):474–483, 1949. doi: 10.1112/
plms/s2-51.6.474.

William T. Tutte. A contribution to the theory of chromatic polynomials. Cana-
dian J. Math., 6:80–91, 1954.

William T. Tutte. On the problem of decomposing a graph into n connected
factors. Journal of the London Mathematical Society, s1-36(1):221–230, 1961.
doi: 10.1112/jlms/s1-36.1.221.

William T. Tutte. A geometrical version of the four color problem. Combinatorial
Mathematics and its Applications, 1967.

Guido van Rossum and Fred L. Drake. Python reference manual. Centrum voor
Wiskunde en Informatica Amsterdam, 1995.

Guido van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace,
Scotts Valley, CA, 2009.

Hassler Whitney. Congruent graphs and the connectivity of graphs. American
Journal of Mathematics, 54(1):150–168, 1932. URL http://www.jstor.org/
stable/2371086.

Helmut Wielandt. Das iterationsverfahren bei nicht selbstadjungierten linearen
eigenwertaufgaben. Mathematische Zeitschrift, 50(1):93–143, Dec 1944. doi:
10.1007/BF01312438.

Cun-Quan Zhang. Integer flows and cycle covers of graphs, volume 205 of Mono-
graphs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc.,
New York, 1997.

Cun-Quan Zhang. Circuit Double Cover of Graphs. London Mathematical Society
Lecture Note Series. Cambridge University Press, 2012. URL https://books.
google.cz/books?id=0cM0AAAAQBAJ.

106

http://dx.doi.org/10.1017/S0963548300002182
http://dx.doi.org/10.1017/S0963548300002182
http://dx.doi.org/10.1016/j.jctb.2006.06.005
http://dx.doi.org/10.1016/j.jctb.2006.09.002
http://dx.doi.org/10.1016/j.jctb.2006.09.002
http://dx.doi.org/10.1016/j.jctb.2011.09.003
http://dx.doi.org/10.1112/plms/s2-51.6.474
http://dx.doi.org/10.1112/plms/s2-51.6.474
http://dx.doi.org/10.1112/jlms/s1-36.1.221
http://www.jstor.org/stable/2371086
http://www.jstor.org/stable/2371086
http://dx.doi.org/10.1007/BF01312438
https://books.google.cz/books?id=0cM0AAAAQBAJ
https://books.google.cz/books?id=0cM0AAAAQBAJ

Xuding Zhu. Circular chromatic number: a survey. Discrete Mathematics, 229
(1-3):371–410, 2001. doi: 10.1016/S0012-365X(00)00217-X.

107

http://dx.doi.org/10.1016/S0012-365X(00)00217-X

108

List of Figures and Other Floats

Fig. 1.1 The Petersen graph . 7
Fig. 1.2 Blanuša snarks . 7
Tab. 1.3 The number of snarks of given sizes 8
Fig. 1.4 Flower snarks J3, J5 and J7 . 9
Fig. 1.5 2-sum . 9
Fig. 1.6 3-sum . 9
Fig. 1.7 Dot product . 10
Fig. 1.8 An example of a superposition 11
Tab. 1.9 Overview of (n,m)-covers . 17

Fig. 2.1 A graph which is Z5 but not Z6-connected 21
Fig. 2.2 Graphs proving Theorem 2.2 . 22
Fig. 2.3 A subdivison of the cube which is Z4- but not Z2

2-connected . . . 23
Fig. 2.4 Cases α = (0, 1) and α = (1, 1) 24
Alg. 2.5 Group connectivity testing . 27
Tab. 2.6 Time required to test cube subdivided on 2 edges 28
Fig. 2.7 A cubic 3-edge-connected graph that is Z2

2- but not Z4-connected 29
Fig. 2.8 A cubic 3-edge-connected graph that is Z4- but not Z2

2-connected 30

Fig. 3.1 A graph with a Z5-flow for which SHP does not hold 35

Fig. 4.1 CDC around a vertex of degree 3 41
Fig. 4.2 Two possible CDCs of a triangle gadget 41
Fig. 4.3 A drawing of K4 . 42
Fig. 4.4 The basic idea of the flower construction 43
Fig. 4.5 Finishing the flower . 44
Fig. 4.6 Antiflower of size four . 47

Fig. 5.1 Commutative diagram of a decomposable representation 52
Fig. 5.2 Cyclic ladders . 61
Fig. 5.3 Petersen graph split into two 6-gadgets 65

Tab. 6.1 Number of CDC boundaries of given size 75
Fig. 6.2 The step gadget of a flower . 76
Fig. 6.3 The flower gadget of size 3 . 76
Tab. 6.4 The eigenvector for the eigenvalue 16 of the ν(Jk) 77
Fig. 6.5 The number of CDCs of {C3, C4}-free cubic biconnected graphs . 79
Fig. 6.6 An example of Gadget.join . 86
Alg. 6.7 Method GraphParameterBase.eval join 87

Alg. 7.1 The enumeration of the derived graphs 93
Fig. 7.2 Two loops connected by an edge 94
Fig. 7.3 An example of a cycle “going around” in a graph G6 97
Fig. 7.4 Voltage graphs without 4-cycles 97

109

110

List of Publications
1. Ondřej Čepek and Radek Hušek. Recognition of tractable DNFs repre-

sentable by a constant number of intervals. Discrete Optimization, 2016.
doi: 10.1016/j.disopt.2016.11.002.

2. Radek Hušek, Peter Korcsok and Robert Šámal. On girth of minimal
counterexample to 5-flow conjecture. In Bordeaux Graph Workshop, 2016.

3. Radek Hušek, Lucie Mohelńıková, and Robert Šámal. Group connectivity:
Z4 vs Z2

2. Journal of Graph Theory, 2019. doi: 10.1002/jgt.22488.
Also in Bordeaux Graph Workshop, 2016.

4. Radek Hušek, Dušan Knop, and Tomáš Masař́ık. Approximation algo-
rithms for Steiner tree based on star contractions: A unified view. In 15th
International Symposium on Parameterized and Exact Computation (IPEC
2020), 2020. ISBN 978-3-95977-172-6. doi: 10.4230/LIPIcs.IPEC.2020.
16.

5. Radek Hušek and Robert Šámal. Homomorphisms of Cayley graphs and
cycle double covers. The Electronic Journal of Combinatorics, 2020. doi:
10.37236/8456.
A partial version also in European conference on combinatorics, graph theory
and applications 2017 (EuroComb 2017).

6. Radek Hušek and Robert Šámal. Counting Circuit Double Covers. In
European conference on combinatorics, graph theory and applications 2021
(EuroComb 2021), 2021.

111

http://dx.doi.org/10.1016/j.disopt.2016.11.002
http://dx.doi.org/10.1002/jgt.22488
http://dx.doi.org/10.4230/LIPIcs.IPEC.2020.16
http://dx.doi.org/10.4230/LIPIcs.IPEC.2020.16
http://dx.doi.org/10.37236/8456

112

	Introduction
	Preliminaries and History
	Basic Definitions
	Snarks
	Flows
	Double Covers

	Group Connectivity
	The Conjecture and Results
	Group Connectivity Testing
	Implementation Notes
	Conclusions and Open Problems
	Recent Development

	Graph Homomorphisms and Cayley Graphs
	New Framework
	Universal Objects
	Partial Results
	Connection to CDC

	Counting Double Covers
	Circuit vs. Cycle
	Representation of Circuit Double Covers
	The Flower Construction
	Lower Bounds

	Representations
	Gadgets and Gadget Algebra
	Decomposable Representations
	Linear Representations
	Graph Sequences
	Linear Representations and Edge Coloring Models
	Examples of Linear Representations

	Counting Double Covers II
	The Linear Representation
	Reducing Cycles
	Implementation

	Voltage Graphs
	Definitions and Properties
	The Program
	A New Family of Snarks

	Conclusion
	Bibliography
	List of Figures and Other Floats
	List of Publications

