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Introduction
In this thesis, we study so-called minimal Taylor algebras on three elements.

These structures have been recently described in an unpublished work Brady
[2022]. There are, in total, 24 minimal Taylor algebras on three elements up
to isomorphism and term equivalence, and they are listed in the last section of
the first chapter. The goal of this thesis is to give a description of clones of
some of these algebras. Every clone can be described explicitly by characterizing
operations in that clone or by listing a generating set of compatible relations. We
provide both of these descriptions for 12 of the minimal Taylor algebras.

Minimal Taylor algebras are significant for several reasons. Taylor algebras
can be defined as those that satisfy a nontrivial idempotent Mal’cev condi-
tion Taylor [1977]. Since most of the familiar types of algebras, such as groups,
rings, or lattices, satisfy some nontrivial idempotent Mal’cev condition, the class
of Taylor algebras is rather broad Bergman [2012]. Very informally, one can
view Taylor algebras as “structured”, while the remaining algebras are “wild” or
“unstructured”. Minimal Taylor algebras are then those that are the least struc-
tured among the structured algebras. Remarkably, every finite algebra contains
(in some sense) a minimal Taylor algebra Barto et al. [2021], therefore under-
standing minimal Taylor algebras would provide useful information about finite
structured algebras in general.

Another motivation to study minimal Taylor algebras comes from theoretical
computer science. In the well developed theory of so-called fixed template con-
straint satisfaction problems (CSPs) Barto et al. [2017], one associates to a CSP
an algebra in such a way that the complexity of the CSP depends only on the as-
sociated algebra. A celebrated theorem by Bulatov [2017] and Zhuk [2020] shows
that the CSP is solvable in polynomial time if the associated algebra is a Taylor
algebra and, otherwise, the CSP in NP-complete. Minimal Taylor algebras then
correspond to the “hardest” CSPs that are solvable in polynomial time. This
viewpoint is discussed in Barto et al. [2021], in fact, minimal Taylor algebras are
introduced in that paper.

This thesis consists of six chapters. In the first chapter, we give a general
introduction to the topic. We give definitions of a clone and a relation clone
and show a connection between these two concepts, discovered in Geiger [1968],
Bodnarčuk et al. [1969]. We introduce essential operations, which will serve as
a useful tool later on. Finally, we introduce Taylor algebras and minimal Taylor
algebras, and we give a list of minimal Taylor algebras on two elements and three
elements.

In the second chapter, we describe the clones of all minimal Taylor algebras
on a two-element set. We prove two more general results, we describe all clones of
algebras Zn for n ∈ N, and we also describe clones of all finite algebras with the
structure of a semilattice. These results were already known Post [1941], Davey
[1996].

The third chapter focuses on nonconservative minimal Taylor algebras and
gives a description of two clones of such algebras. Both of these algebras are iso-
morphic to a subdirect product of two minimal Taylor algebras on two elements.

The next chapter deals with the specific case of minimal Taylor algebras on
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three elements, where there is an ”absorbing” element, i.e., an element a which,
if it is among the arguments, enforces that the result will be a. It turns out that
there are three minimal Taylor algebras satisfying these conditions. One of these
algebras is a semilattice, and the other two are quite easy to describe.

The fifth chapter deals with the minimal Taylor algebras which have a majority
operation as a single basic operation. The main tool used in this chapter is the
Baker-Pixley Theorem from Baker and Pixley [1975] which allows us to focus on
the description of binary relations.

The last chapter describes the clones of another two minimal Taylor algebras.
The operations contained in clones of these algebras rarely return one particular
element, which allows us to transform this problem into a simpler problem of
studying certain relations compatible with a two-element minimal Taylor algebra.

The main contribution of this thesis is the description of the clones of twelve
minimal Taylor algebras on three elements. The relational description of the clone
of TP

1 has been already sketched in [Brady, 2022, Example 1.6.5]. The remaining
results in Chapters 3,4,5, and 6 are original contributions.
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1. Preliminaries
The main goal of this chapter is to give definitions of a clone, an essential oper-

ation and a minimal Taylor algebra. Before we start, let us introduce some basic
notation. By the set of natural numbers we understand the set N = {1, 2, 3, . . . }.
In particular, 0 /∈ N. We denote the set {1, . . . , n} by [n].

1.1 Operations, Relations and Algebras
This section aims to give some basic definitions, like definitions of a relation, an

operation, and an algebra. At the end of this section, we define term operations.
Let us start with simpler definitions.

Definition 1.1. Let A be a set and n ∈ N. An n-ary operation on A is a mapping
from An to A. An n-ary relation on A is a subset of An.

Informally, an algebra is a set with some collection of operations. In order to
conveniently work with standard constructions, such as subalgebras, products, or
isomorphic copies, we present a standard definition via signatures.

Definition 1.2. A signature is a set Σ of symbols together with a mapping

ar : Σ → N.

The symbols in a signature should be viewed as names of operations, and
the mapping ar gives arities of operations. Usually, it is allowed for ar to map
elements of Σ into N∪{0}. However, in this thesis we disallow nullary operations
for convenience.

Definition 1.3. An algebra A of a signature Σ is a pair (A, F ) in which A is a
nonempty set and F = (fA | f ∈ Σ) is a family of operations on A, where fA is
an ar(f)-ary operation. The set A is called the universe of A, and the elements
of F are called the basic operations.

We usually denote the universe of an algebra by the same letter, for example,
the universe of an algebra A is A, the universe of an algebra B is B and so on.
Sometimes we want to speak about some substructures or products of structures.
This motivates the following two definitions.

Definition 1.4. Let A be an algebra of a signature Σ. We say that an algebra B
is a subalgebra of A if it has the same signature Σ, B ⊆ A, and, for each f ∈ Σ,
we have fA

↾Bn = fB, where n = ar(fA).
A subuniverse of A is the universe of a subalgebra of A.

Definition 1.5. Let Ai = (Ai, Fi) be algebras of the same signature Σ, where
i ∈ [n]. The product of algebras A1, . . . , An is the algebra ∏︁

i∈[n] Ai of the signa-
ture Σ with the universe ∏︁

i∈[n] Ai (the standard Cartesian product) and the basic
operations are computed coordinate-wise. For n = 2 we write A1 ×A2. If Ai = A
for each i ∈ [n] we write An.

Now when we have a product algebra, it is natural to define projections.
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Definition 1.6. Let Ai be sets, where i ∈ [n], R be a subset of ∏︁
i∈[n] Ai, and

k ∈ [n]. By the projection of R to the set of coordinates {i1, . . . , ik} ⊆ [n] we
understand the set πi1,...,ik

(R) ⊆ ∏︁
j∈{i1,...,ik} Aj defined as follows.

πi1,...,ik
(R) = {(xi1 , . . . , xik

) | (x1, x2, . . . , xn) ∈ R}

In this definition we use the letter R for a subset of ∏︁
i∈[n] Ai for the particular

reason. Usually, when we will be speaking about projections of some set, that set
will be a relation on some set A.

Now we introduce subdirect products. Informally, a subdirect product is a
subalgebra of a product which has full projections to each of the coordinates. We
give this definition only for a product of two algebras since we do not need a more
general version of this definition.
Definition 1.7. Let A and B be algebras of the same signature Σ. An algebra
C is a subdirect product of A and B if C is a subalgebra of A × B, π1(C) = A,
and π2(C) = B. We write C ≤sd A × B or C ≤sd A × B.

In the rest of this section, we give definitions of a term and a term opera-
tion. The definitions of a term operation is inductive, starting from very simple
operations called projections.
Definition 1.8. Let A be a set. The n-ary projection to the i-th coordinate,
where 1 ≤ i ≤ n, is the n-ary operation πn

i : An → A defined as follows.

πn
i : (a1, . . . , an) ↦→ ai

We say that an operation f on A is a projection, if f = πn
i for some i, n ∈ N.

We give a definition of a term. Informally, a term is a meaningful composition
of allowed symbols (variables and elements of some signature).
Definition 1.9. Let X be a set of variables and Σ a signature.

The set of terms of a signature Σ over X is the smallest set of (formal)
expressions, denoted by T, satisfying the following conditions.

1. X ⊆ T.

2. Assume t1, . . . , tn ∈ T, f ∈ Σ, and ar(f) = n. Then f(t1, . . . , tn) ∈ T.

We will further use the set of variables Xn = {x1, . . . , xn}. It remains to
give a definition of a term operation. Let Σ be a signature. Symbols from the
signature Σ are interpreted in any algebra of the signature Σ as basic operations.
Clearly, we also can interpret any term of the signature Σ in an algebra of the
same signature as a composition of basic operations. This is exactly what the
following definition says.
Definition 1.10. Let A be an algebra of a signature Σ and t be a term of the
signature Σ over Xn. We define a term operation tA : An → A recursively.

1. Assume t = xi, where i ∈ [n]. Then tA = πn
i .

2. Assume t = f(p1(x1, . . . , xn), . . . , pn(x1, . . . , xn)), where p1, . . . , pn are terms
of the signature Σ over Xn and f ∈ Σ. Then

tA : (a1, . . . , an) ↦→ fA(pA
1 (a1, . . . , an), . . . , pA

n (a1, . . . , an)).
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1.2 Clones
In this section, we give definitions of a clone and a relation clone, and we

discuss how these structures are related. This connections was established in
Geiger [1968] and Bodnarčuk et al. [1969].

We start with a definition of a clone. Informally, a clone is a collection of
operations which is closed under forming new operations by means of meaningful
expressions. Using the concept of term operations in Definition 1.10, clones can
be introduced as follows.

Definition 1.11. Let A be a set. We say that a set C of operations on A is a
clone, if for each algebra A whose basic operations are in C, each term operation
of A is in C as well. For a clone C we denote the set of all n-ary operations from
C by Cn.

Another possible way to define a clone is that a clone is a set of operations
containing all the projections and closed under so-called generalized composition,
see Bergman [2012].

We are working with clones which contain precisely all the term operations of
some particular algebra.

Definition 1.12. Let A be an algebra. A clone of A is the clone containing
exactly all the term operations of A. We denote it by Clo(A). We denote the
collection of all n-ary operations from Clo(A) by Clon(A).

Two algebras A and B on the same set A = B are called term equivalent if
Clo(A) = Clo(B).

Term equivalent algebras can be considered equal for most purposes since
they share many structural properties, e.g., they have the same subuniverses
of powers Bergman [2012]. This thesis contributes to the study of algebras up
to term-equivalence by giving two descriptions of Clo(A) for several concrete
algebras A.

One way to describe Clo(A) is to characterize operations that are members
of that clone. An alternative way is by means of relations. The crucial concept
linking operations and relations is the following.

Definition 1.13. Let f be an n-ary operation on a set A. We say that a relation
R ⊆ Am is compatible with f if for every choice of ai,j ∈ A, i ∈ [m], j ∈ [n] the
following holds.

∀i ∈ [n] (a1,i, a2,i, . . . , am,i) ∈ R =⇒ (f(a1,1, . . . , a1,n), . . . , f(am,1, . . . , am,n)) ∈ R

We say that R is compatible with an algebra A if R is compatible with every
basic operation of A. If R is compatible with f , we also say that R is invariant
under f , that f preserves R, or that f is compatible with R.

We observe that an n-ary relation R is compatible with an algebra A if and
only if R is a subuniverse of An.

We will introduce some notation related to the compatibility of relations with
operations.
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Definition 1.14. Let A be a set, C be a set of operations on A, and D be a
set of relations on A. We denote the set of all the relations on A, which are
compatible with all the operations from C, by Inv(C). Similarly, for an algebra A
with a universe A, we denote by Inv(A) the set of all the relations on A, which
are compatible with all the basic operations of A.

We denote the set of all the operations on A, which are compatible with all
the relations from D, by Pol(D).

For finitely many relations R1, . . . , Rn, we also write Inv(R1, . . . , Rn) instead
of Inv({R1, . . . , Rn}). We call the elements of Inv(C) relations invariant under C
and the elements of Pol(D) polymorphisms of D. Using this new notation we can
state the first important result about clones.
Theorem 1.1 (Geiger [1968], Bodnarčuk et al. [1969]). Let A be a finite algebra.
Then

Clo(A) = Pol(Inv(A)).
This result implies that the clone of each finite algebra can be “described”

using relations; more precisely, the clone is equal to the set of all polymorphisms
of a set of relations, namely Inv(A). Instead Inv(A), we can take an (often much
smaller) subset D ⊆ Inv(A) so that Clo(A) = Pol(D) still holds. As we shall see,
this is the case if all relations in Inv(A) are pp-definable from D, in the sense of
the following definition.
Definition 1.15. Let D be a set of relations on a set A. We say that a relation
R is primitively positively definable (pp-definable for short) from D, if R can be
defined by a first-order formula φ, which uses only the conjunction, the existential
quantification, relations from D, and the equality relation (such formula is called
a primitively positive formula). We also say that R is generated by relations in
D in this situation.

For finitely many relations R1, . . . , Rn, we say that R is pp-definable from
R1, . . . , Rn instead of {R1, . . . , Rn}.

To illustrate the definition, we give an example. Let R1 and R2 be binary
relations. An example of a pp-definable relation from {R1, R2} is the ternary
relation R defined in 1.1.

(x, y, z) ∈ R ⇐⇒ ∃w (w, y) ∈ R1 ∧ x = z ∧ (y, x) ∈ R2 (1.1)
We give a definition of a relation clone using pp-definitions. A relation clone

can be seen as an analogue of a clone in the world of relations. Instead of opera-
tions we have relations and instead of term compositions we have pp-definitions.
Definition 1.16. A set of relations D is a relation clone if D is closed under pp-
definable relations from D. A relation clone D is generated by a set of relations
F if F ⊆ D and every relation in D is generated by relations from F.

Now when relation clones are introduced, we can state another important
result which connects clones with relational clones.
Theorem 1.2 (Geiger [1968], Bodnarčuk et al. [1969]). Let A be a finite set.
Let A be an algebra (whose universe is A) and D be a set of relations on A.
Then Inv(A) is a relation clone on A and Pol(D) is a clone on A. Moreover,
Inv(Pol(D)) is the relation clone generated by D.

7



In particular, the set of relations compatible with an algebra A is closed under
pp-definitions. Another consequence of the previous theorem is the following
corollary. Both facts will be used without explicit reference.
Corollary 1.3. Let A be a set. Let D be a set of relations on A and A be
an algebra with the universe A. Then Inv(A) is generated by D if and only if
Clo(A) = Pol(D).
Proof. If Inv(A) is generated by D, by applying Pol we get Pol(Inv(A)) = Pol(D),
because pp-definitions preserve compatibility. Since we have Pol(Inv(A)) =
Clo(A) by Theorem 1.1, we get Clo(A) = Pol(D).

If Clo(A) = Pol(D) then by applying Inv we get Inv(Clo(A)) = Inv(Pol(D)).
Since Inv(Clo(A)) = Inv(A) we get Inv(A) = Inv(Pol(D)). By Theorem 1.2 this
exactly tells that D generates the relation clone Inv(A).

Before we finish this section, we define idempotent clones since all the clones
we meet in this thesis are idempotent.
Definition 1.17. Let f be an operation on a set A. We say that f is idempotent
if f(a, . . . , a) = a for all a ∈ A. A clone C is idempotent if C contains only
idempotent operations. An algebra A is idempotent if all the basic operations of
A are idempotent.

For a ∈ A we denote the unary relation Ca = {a}. We call such relations
singleton unary relations. We observe that an operation f on A is idempotent
if and only if f is compatible with all the singleton unary relations Ca for every
a ∈ A. It follows that A is idempotent if and only if Clo(A) is idempotent.

Many of the algebras we study satisfy a stronger condition, called conserva-
tivity.
Definition 1.18. Let f be an operation on a set A. We say that f is conservative
if f(a1, . . . , an) ∈ {a1, . . . , an} for all a1, . . . , an ∈ A. A clone C is conservative if
C contains only conservative operations. An algebra A is conservative if all the
basic operations of A are conservative.

Note that an operation on A is conservative if and only if it preserves all the
unary relations on A.

1.3 Essential Operations
In this section we give definitions of an essential operation and an essential part

of a clone. We start with a definition of an essential coordinate. To understand
the concept of essential coordinates, consider the operation π2

2. This operation
depends only on the second coordinate while the first coordinate is irrelevant.
The relevant coordinates are called essential, the others are called inessential.
Definition 1.19. Let A be a set and i ∈ [n]. For an n-ary operation f on A
we say that the i-th coordinate of f is essential if there exist aj, b, c ∈ A, where
j ∈ [n] \ {i}, such that

f(a1, . . . , ai−1, b, ai+1, . . . , an) ̸= f(a1, . . . , ai−1, c, ai+1, . . . , an).

We say that the i-th coordinate is inessential if the i-th coordinate is not essential.
An n-ary operation f is essential if every coordinate of f is essential.
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Sometimes, it is easier to describe essential operations in a clone rather than
all operations. We introduce the following notation.

Definition 1.20. Let A be an algebra. We define

EssClo(A) = {f ∈ Clo(A) | f is an essential operation }.

We denote the set of all n-ary operations from EssClo(A) by EssClon(A). Simi-
larly, for a clone C on a set A we define

Ess(C) = {f ∈ C | f is an essential operation }.

We denote the set of all n-ary operations from Ess(C) by Essn(C).

Imagine that we can describe all essential operations of a particular clone. The
question is, can we describe, in such a case, all the clone operations? The answer
is given below. However, before we provide the answer, we give a definition of a
minor.

Definition 1.21. Let f be an m-ary operation and α : [m] → [n] be a mapping.
The n-ary operation fα defined by

fα : (a1, . . . , an) ↦→ f(aα(1), . . . , aα(m))

is called the minor of f determined by α.

The minors can provide a permutation and merging of variables and allow
us to introduce dummy coordinates. In spite of the fact that this notion allows
many interesting uses, we only use it in the following lemma. Now we can state
how essential operations in a clone determine the whole clone.

Lemma 1.4. Let A be an arbitrary idempotent algebra (with universe A) such
that |A| ≥ 2. Then

Clon(A) = {fα | f ∈ EssClom(A); m ∈ [n]; α : [m] → [n]; α is injective}. (1.2)

Proof. Denote the right hand side of Equation 1.2 by S. The inclusion S ⊆
Clo(A) is clear since Clo(A) is closed under minors.

To show the other inclusion, fix some g ∈ Clon(A) and let Jg = {i1, . . . , im}
be the set of essential coordinates of g. We show that Jf is nonempty. Because
A is idempotent, Clo(A) is also idempotent and thus g is idempotent. Let us
pick a, b ∈ A such that a ̸= b. Then we have g(a, . . . , a) = a and g(b, . . . , b) = b.
This tells us that Jg in nonempty, otherwise we could change all the arguments
from (a, . . . , a) to (b, . . . , b), one by one, and we would get g(b, . . . , b) = a and so
a = b.

Since Jf is nonempty, we can define an operation f as follows:

f : (ai1 , . . . , aim) ↦→ g(a1, . . . , an),

where ai are chosen arbitrary from A for i /∈ Jg. The operation f is well defined,
since g(a1, . . . , an) = g(b1, . . . , bn), if ai = bi for each i ∈ Jg, where aj, bj ∈ A for
j ∈ [n]. Clearly, f ∈ EssClom(A). Define α : [m] → [n] by α : j ↦→ ij. Obviously,
such α is injective. We have fα = g, and the proof is complete.
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From the previous lemma it follows that every clone C is determined by Ess(C).
Hence, we get the following useful corollary.
Corollary 1.5. Let C, D be clones on a set A. If Ess(C) ⊆ Ess(D), we have
C ⊆ D.

We explain why we care about essential operations. Consider the algebra A
with universe A = {0, 1} and a single binary operation min2 that returns the
minimum of the two arguments with respect to the ordering 0 ≤ 1. Clearly, if
one of the arguments is 0, we get 0 as the result. With a bit of effort, it can
be shown that the same holds for any essential operation in the clone generated
by A. However, this obviously cannot hold for any inessential operation. In the
next definition, we introduce a relation which somehow witnesses this property
of essential operations in A.
Definition 1.22. Let S ⊆ A be sets. We define a ternary relation TS on A as
follows:

(x, y, z) ∈ TS ⇐⇒ x = y ∨ z ∈ S.

The next lemma says that the relation TS indeed satisfies a property similar
to the property of {0} discussed in the last paragraph.
Lemma 1.6. Let S ⊆ A be sets. Let f be an n-ary essential operation on A
compatible with the relation TS. Then for all a1, . . . , an ∈ A it holds

∃i ∈ [n] ai ∈ S =⇒ f(a1, . . . , an) ∈ S.

Proof. Let us have a1, . . . , an ∈ A and assume there is i ∈ [n] such that ai ∈ S.
Because f is an essential operation, for each i ∈ [n] there are bj, a, b, c, d, ∈ A,
where j ∈ [n] \ {i}, such that

f(b1, . . . , bi−1, c, bi+1, . . . , bn) = a, f(b1, . . . , bi−1, d, bi+1, . . . , bn) = b and a ̸= b.

Since for all j ∈ [n]\{i} it holds (bj, bj, aj) ∈ TS and also (c, d, ai) ∈ TS, it follows,
by compatibility of f with TS, that (a, b, f(a1, . . . , an)) ∈ TS. Since a ̸= b, we
have f(a1, . . . , an) ∈ S.

1.4 Minimal Taylor Algebras
In this section, we introduce Taylor algebras. We also define minimal Tay-

lor algebras and list all the minimal Taylor algebras on two elements up to an
isomorphism and term equivalence.
Definition 1.23. Let A be a set and f be an n-ary operation on A. We say
that f is a Taylor operation if for each coordinate i ∈ [n] there are variables
zi,j, wi,j, x, y (not necessary distinct), where j ∈ [n] \ {i}, such that x ̸= y and for
each mapping φ : {zi,j, wi,j, x, y | j ∈ [n] \ {i}} → A we have

f(φ(zi,1), . . . , φ(x), . . . , φ(zi,n)) = f(φ(wi,1), . . . , φ(y), . . . , φ(wi,n)).

A clone is a Taylor clone if it is idempotent and contains some Taylor opera-
tion.
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The definition above says that a Taylor operation is an operation satisfying
nontrivial identities of the form

t(. . . , ∗, x, ∗, . . . ) ≈ t(. . . , ∗, y, ∗, . . . )

for each coordinate, where ∗ stands for arbitrary variables. For equivalent for-
mulations of this definition and some context we refer to Taylor [1977], Bergman
[2012], Barto et al. [2017]. The paper Barto et al. [2021] introduces and studies
minimal Taylor algebras in the following sense.

Definition 1.24. A Taylor clone C is a minimal Taylor clone if there is no Taylor
clone D such that D ⊊ C. An algebra A is a minimal Taylor algebra if Clo(A)
is a minimal Taylor clone.

As mentioned earlier in this chapter, we give a list of minimal Taylor algebras
on a two-element set up to isomorphism and term equivalence. However, before
we do so, we give a couple of definitions to be able more effectively describe these
algebras.

Definition 1.25. Let f be a ternary idempotent operation on a set A. We say
that f is a majority operation, if for each a, b ∈ A we have

f(a, a, b) = f(a, b, a) = f(b, a, a) = a.

We say that f is a minority operation if for each a, b ∈ A we have

f(a, a, b) = f(a, b, a) = f(b, a, a) = b.

Note that on a two-element set {a, b}, there is exactly one majority and one
minority operation. We denote the majority operation on {a, b} by maja,b and the
minority operation on {a, b} by affa,b. (Here aff stands for the affine operation.
We discuss more general affine operations in the next chapter.) If there is no
danger of confusion we will write maj instead of maja,b and aff instead of affa,b.
Before we continue, we need one more definition.

Definition 1.26. Let {a, b} be a two-element set. We denote by minn
a≤b the n-ary

operation on {a, b} that returns the minimum of the arguments with respect to the
ordering a ≤ b.

Now we give the complete list of minimal Taylor algebras on a set {a, b} up
to isomorphism and term equivalence. This list, as well as the description of the
clones of these algebras, follows from the complete description of all clones on a
two-element set by Post [1941]. There are only three such algebras. Two of these
algebras have a single ternary basic operation, the third one has a single binary
operation.

They are:

1. Ma,b with the operation maja,b.

2. Za,b
2 with the operation affa,b.

3. La,b with the operation min2
a≤b.

11



In the case {a, b} = {0, 1}, we usually write M,Z2, L instead of M0,1,Z0,1
2

and L0,1. We often call these algebras the majority, affine, or semilattice algebra,
respectively. Sometimes it is also useful to work with the algebra La,b

3 with the
universe {a, b} and with the single basic operation min3

a≤b. This algebra is term
equivalent to La,b.

In the next chapter, we describe the clones of all these algebras.

1.5 List of Minimal Taylor Algebras on Three
Elements

Here we summarize the mentioned result from Brady [2022]. Altogether there
are 24 minimal Taylor algebras on the three-element set {0, 1, 2} up to an iso-
morphism and term equivalence. All of these algebras consist of a single basic
operation t, which is binary or ternary. Five of these algebras are not conservative,
the remaining ones are conservative.

1.5.1 Nonconservative Algebras
For all of these algebras, the operation t is idempotent and symmetric (i.e.,

the result does not depend on the order of the arguments). Three of them are
determined by the following table.

Algebra t↾{0,1} t↾{0,2} t(1, 1, 2) t(1, 2, 2) t(0, 1, 2)
TN

1 maj min3
0≤2 1 0 0

TN
2 aff min3

0≤2 0 1 1
TN

3 maj aff 2 0 2

The forth algebra TN
4 is the semilattice algebra with binary operation inf2

determined by the ordering 0 ≤ 1, 0 ≤ 2 (see Section 2.3 for definitions). The
fifth algebra TN

5 is the affine algebra Z3 (see Section 2.2).
The clones of algebras TN

1 and TN
2 are described in Chapter 3. The clone of

TN
4 is described in Section 2.3. The clone of TN

5 is described in Section 2.2. A
relational description of the clone of TN

3 is sketched in [Brady, 2022, Example
2.2.1], a description of the operations in this clone seems open.

1.5.2 Conservative Algebras with a Binary Symmetric Term
There are precisely two such algebras.

Algebra t↾{0,1} t↾{1,2} t↾{0,2}
TS

1 min2
0≤1 min2

1≤2 min2
2≤0

TS
2 min2

0≤1 min2
1≤2 min2

0≤2

TS
1 is the so-called Rock-Paper-Scissors algebra described in, e.g., [Brady,

2022, Section 3.1]. The clone of algebra TS
2 is described in Section 2.3.
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1.5.3 Conservative Algebras without a Symmetric Binary
or Cyclic Ternary Operation

A ternary operation t on A is cyclic if

t(x, y, z) = t(y, z, x) = t(z, x, y)

for each x, y, z ∈ A. There are two algebras with a ternary operation t such that
t(x, y, z) = x if {x, y, z} = {0, 1, 2}. It can be shown that clones of these two
algebras do not contain a symmetric binary or a cyclic ternary operation.

Algebra t↾{0,1} t↾{1,2} t↾{0,2}
TP

1 maj maj maj
TP

2 aff aff aff

The clone of TP
1 is described in Section 5.2. A relational description of clone

of TP
2 in sketched in [Brady, 2022, Example 1.7.2].

1.5.4 Conservative Algebras with a Ternary Cyclic Oper-
ation

There are sixteen conservative minimal Taylor algebras with a ternary cyclic
operation t. One of them is term equivalent to the algebra TS

2 , the others are
listed below.

Algebra t↾{0,1} t↾{1,2} t↾{0,2} t(0, 1, 2) t(0, 2, 1)
TC

1 min3
0≤1 min3

1≤2 maj 0 0
TC

2 min3
0≤1 maj min3

0≤2 0 0
TC

3 maj min3
1≤2 min3

0≤2 0 1
TC

4 min3
0≤1 maj maj 0 0

TC
5 min3

0≤1 aff min3
0≤2 0 0

TC
6 min3

0≤1 min3
1≤2 aff 0 0

TC
7 aff min3

1≤2 min3
0≤2 0 1

TC
8 min3

0≤1 aff aff 2 2
TC

9 min3
0≤1 aff maj 0 0

TC
10 min3

0≤1 maj aff 2 2
TC

11 maj aff maj 1 2
TC

12 aff maj aff 0 0
TC

13 aff aff aff 0 0
TC

14 maj maj maj 0 0
TC

15 maj maj maj 1 2

The clones of TC
2 and TC

5 are described in Chapter 4, the clones of TC
3 and

TC
7 are described in Chapter 6 and the clones of TC

14 and TC
15 are described in

Chapter 5.
A relational description of the clone of TC

13 is sketched in [Brady, 2022, Ex-
ample 1.7.3].
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2. Clones on Two Elements
This chapter describes clones and relation clones related to the minimal Taylor

algebras on a two-element set. In the first section, we describe the clone of M.
The second section gives a description of the clone of affine algebras Zn for n ∈ N,
in particular we describe the clones of Z2 and Z3 = T N

5 . In the last section,
we describe the clones of all algebras which are semilattices. In particular, we
describe the clones of L, T N

1 and T S
2 .

The results of this section are mostly folklore and follow from Post [1941],
Davey [1996].

2.1 The Majority Clone
The main goal of this section is to describe the clone of M = ({0, 1}, maj).

To do this, we use an important result which allows us to focus on the binary
relations on {0, 1}.

Theorem 2.1 (Baker and Pixley [1975]). Let C be a clone with a majority oper-
ation, R be n-ary relation in Inv(C), and n ≥ 2. Then

R =
⋀︂

i,j∈[n]
i ̸=j

πi,j(R).

In particular, every relation in Inv(C) is pp-definable from unary and binary
relations in Inv(C).

We denote Clo(Ma,b) by M{a,b}. Instead of M{0,1} we will usually write just
M. In the light of the previous theorem, it is enough to determine binary relations
on {0, 1} compatible with maj. It turns out that all the binary relations on {0, 1}
are actually compatible with maj.

Lemma 2.2. Every binary relation on {0, 1} is compatible with maj.

Proof. Let R be a binary relation on {0, 1}. Pick ai, bi, a, b ∈ {0, 1}, where i ∈ [3],
such that (ai, bi) ∈ R for all i ∈ [3], maj(a1, a2, a3) = a and maj(b1, b2, b3) = b. By
the definition of maj there are at least two indexes i, j ∈ [3] such that ai = aj = a
and there are at least two indexes k, l ∈ [3] such that bk = bl = b. Without loss
of generality we can assume that i = k. Then (ai, bi) = (a, b), hence (a, b) ∈ R.
This shows R is compatible with maj.

Because all the unary relations can be pp-defined from the binary relations (as
projections), using Theorem 2.1 and Lemma 2.2, we get that Inv(M) is generated
by all the binary relations. Our next goal is to simplify this result and show that
Inv(M) can be generated only by two particular binary relations.

Definition 2.1. On the two-element set {a, b} we define the binary relations

≤a,b = {(a, a), (a, b), (b, b)}

and
̸=a,b = {(a, b), (b, a)}.
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If there is no danger of confusion, we will write just ≤ and ̸=. We call the
operations compatible with ̸= self-dual operations and the operations compatible
with ≤ monotone operations.

We show that ≤ and ̸= allow us to pp-define every binary relation. This gives
us that M consists precisely of monotone and self-dual operations on {0,1}.

Theorem 2.3. Inv(M) is generated by the relations ≤ and ̸=.

Proof. We just need to show that we can pp-define every binary relation on {0,1}
from ≤ and ̸=.

Clearly, every binary relation on {0,1} can be pp-defined as the intersec-
tion of the three element binary relations. One of these relations is ≤. The
remaining three element relations are {(0, 0), (1, 0), (1, 1)}, {(0, 1), (1, 0), (1, 1)}
and {(0, 0), (1, 0), (0, 1)}. These relations can be pp-defined using ≤ and ̸= as
follows.

(x, y) ∈ {(0, 0), (1, 0), (1, 1)} ⇐⇒ y≤x

(x, y) ∈ {(0, 1), (1, 0), (1, 1)} ⇐⇒ ∃z z≤y ∧ z ̸= x

(x, y) ∈ {(0, 0), (1, 0), (0, 1)} ⇐⇒ ∃z x≤z ∧ z ̸= y

Therefore, every binary relation on {0,1} can be pp-defined from ≤ and ̸=, thus
Inv(M) is generated by ≤ and ̸=.

Now we know that M consists of monotone and self-dual operations on {0,1}.
This description is, in some sense, the best we can give. Although, this description
is not very explicit. The following two definitions are an attempt to understand
these operations more concretely.

Definition 2.2. Let S be a set and F ⊆ 2S. The collection F is a monotone
self-dual collection of sets (ms-collection for short) on S if:

(∀A, B ∈ S) A ∈ F ∧ A ⊆ B =⇒ B ∈ F (monotonicity)

and
(∀A ∈ S) A ∈ F ⇐⇒ S \ A /∈ F (self-duality).

The ms-collection can be seen as a weakened form of an ultrafilter (we just
do not require the closure property under finite intersections). We observe that
for an arbitrary ms-collection F on S, it holds ∅ ∈ F ∨ S ∈ F by the self-
duality. However, ∅ ∈ F would give S ∈ F by the monotonicity of F, which
would contradict the self-duality of F. Thus it holds ∅ /∈ F and S ∈ F for each
ms-collection F on S.

Definition 2.3. For an ms-collection F on [n] we define an n-ary operation hF

on A as follows.

hF(a1, . . . , an) =

⎧⎨⎩1 {i ∈ [n] | ai = 1} ∈ F

0 {i ∈ [n] | ai = 1} /∈ F
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Now we will show that each n-ary monotone and self-dual operation is equal
to hF for some ms-collection F on [n]. In fact, there is a bijective correspondence
between n-ary monotone self-dual operations on {0, 1} and ms-collections on [n].

Theorem 2.4. Clon(M) = {hF | F is ms-collection on [n]}.

Proof. To show the inclusion Clon(M) ⊇ {hF | F is an ms-collection on [n]} it is
enough to show that for each ms-collection F on [n], the operation hF is compatible
with ≤ and ̸=. Fix a ms-collection F on [n]. Let us assume that hF(a1, . . . , an) = a
and hF(b1, . . . , bn) = b for some a, b, ai, bi ∈ A, where i ∈ [n]. First we show the
compatibility with ̸= and assume ai ̸= bi for all i ∈ [n]. Denote the set

I = {i ∈ [n] | ai = 1}.

So I ∈ F iff a = 1. Because ai ̸= bi for all i ∈ [n], we have

{i ∈ [n] | bi = 1} = [n] \ I.

Thus, by the definition of a ms-collection, precisely one of the sets I, [n] \ I is in
F, which tells us a ̸= b. Hence hF is compatible with ̸=.

To show the compatibility with ≤, assume that we have hF(a1, . . . , an) = a
and hF(b1, . . . , bn) = b for some a, b, ai, bi ∈ A, where i ∈ [n], and ai ≤ bi for all
i ∈ [n]. Denote

I = {i ∈ [n] | ai = 1}, J = {i ∈ [n] | bi = 1}.

The conditions ai ≤ bi, where i ∈ [n], exactly tell us that I ⊆ J . Hence by
the monotonicity of F we have I ∈ F =⇒ J ∈ F and thus a = 1 =⇒ b = 1.
Therefore, we have a ≤ b and so hF is compatible with ≤.

To show the inclusion Clon(M) ⊆ {hF | F is an ms-collection on [n]}, we have
to show for any operation f ∈ Clon(M) that the collection of sets

Ff = {I ⊆ [n] | {i ∈ [n] | ai = 1} = I =⇒ f(a1, . . . , an) = 1}

is an ms-collection. First we check the monotonicity and assume I ∈ Ff and
J ⊇ I. Let us have f(a1, . . . , an) = a and f(b1, . . . , bn) = b for some a, b, ai, bi ∈ A,
where i ∈ [n], such that

I = {i ∈ [n] | ai = 1} and J = {i ∈ [n] | bi = 1}.

By the assumption a = 1. Because J ⊇ I we have ai ≤ bi for all i ∈ [n] thus by
the compatibility of f with ≤ we get a ≤ b. Because a = 1, we have b = 1 and
thus J ∈ Ff . This shows Ff is monotone.

Now we check the self-duality of Ff . Let us fix I ∈ [n]. Let us have
f(a1, . . . , an) = a and f(b1, . . . , bn) = b for some a, b, ai, bi ∈ A, where i ∈ [n],
such that

I = {i ∈ [n] | ai = 1} and [n] \ I = {i ∈ [n] | bi = 1}.

Because f is compatible with ̸= and we have ai ̸= bi for all i ∈ [n], we get a ̸= b.
So a = 1 ⇐⇒ b ̸= 1, which exactly means I ∈ Ff ⇐⇒ [n] \ I /∈ Ff . This shows
the self-duality of Ff .

Hence Ff is ms-collection and Clon(M) = {hF | F is ms-collection on [n]}.
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During the proof we proved that for any f ∈ Clo(Ma,b), the collection

Ff = {I ⊆ [n] | {i ∈ [n] | ai = a} = I =⇒ f(a1, . . . , an) = a}

is an ms-collection. We will use this notation in the next chapters.
Before we end this section, we state one more lemma, which will be useful

later on.

Lemma 2.5. Let A be an algebra of signature Σ such that Clo(A) contains some
majority operation m. Then for every operation f ∈ Clon(A) there is a term T
of signature Σ over Xn, such that T M = f and each one of the variables from Xn

occurs in T .

Proof. Let f ∈ Clon(A). Clearly, there is a term T of signature Σ over Xn such
that T M = f . Assume xi ∈ Xn is not presented in T . Then pick j ∈ [n] such that
xj is presented in T . Now replace one occurrence of xj in T by maj(xj, xj, xi).
Clearly, it still holds that T M = f and now there is one more variable presented
in T . The proof is finished by induction.

2.2 The Affine Clone
The main goal of this section is to describe the clone of Z2 = ({0, 1}, aff).

Instead of describing just Clo(Z2), we choose a more general approach, and we
describe clones of all affine algebras Zn.

Definition 2.4. Let us have n ∈ N. We define a ternary affine operation affn on
{0, . . . , n − 1} as follows.

affn : (x, y, z) ↦→ x − y + z mod n

We define an algebra Zn by Zn = {{0, . . . , n − 1}, affn}.

Note that this notion is a generalization of the operation aff defined in the
previous chapter. All of these algebras have the same signature, we denote this
signature by Σ0. Now we describe Clom(Zn). To do so, we use an m-ary opera-
tions ∑︁m

i=1 aixi on {0, . . . , n − 1}} defined in the obvious way as the polynomial
evaluation.

m∑︂
i=1

aixi : (b1, . . . , bm) ↦→
m∑︂

i=1
aibi

Theorem 2.6. Clom(Zn) = {∑︁m
i=1 aixi | ∑︁m

i=1 ai = 1, ai ∈ {0, . . . , n − 1}}.

Proof. Denote S = {∑︁n
i=1 aixi | ∑︁n

i=1 ai = 1, ai ∈ {0, . . . , n − 1}}. We first show
Clo(Zn) ⊆ S. It is easy show that every f ∈ Clom(Zn) is equal to ∑︁n

i=1 aixi for
some ai ∈ {0, . . . , n − 1}, because f = T Zn for some term T of signature Σ0 over
Xn (if xi is not presented in T , we set ai = 0). Also, Clo(Zn) is idempotent, thus
f(1, 1, . . . , 1) = 1, which means that ∑︁

i∈I ai = 1.
To show the inclusion Clo(Zn) ⊇ S fix an m-ary operation f = ∑︁m

i=1 aixi,
ai ∈ {0, . . . , n − 1}. Clearly x − y + x ∈ Clo(Zn). By induction we obtain
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k · x − (k − 1) · y ∈ Clo(Zn) for each k ∈ N. This tells us f ∈ Clo(Zn) for m = 2.
If m ≥ 2, we can write

f = (
m−1∑︂
i=1

aixi + amxm−1) − xm−1 + (amxm − (am − 1)xm−1).

We already know that (amxm − (am − 1)xm−1) ∈ Clo(Zn) and xm−1 ∈ Clo(Zn).
This tell us that if (∑︁m−1

i=1 aixi+amxm−1) ∈ Clo(Zn), then f ∈ Clo(Zn). Therefore,
by induction on m, we get f ∈ Clo(Zn).

We want to give a relational description of Clo(Zn). Before we do so, we
observe that every m-ary relation on {0, . . . , n − 1}, which is compatible with
affn, is in fact an affine subspace of {0, . . . , n−1}m (since being an affine subspace
can be defined by a, b, c ∈ R =⇒ a − b + c ∈ R). In the next definition, we
define a few relations which can be used to describe Inv(Zn).

Definition 2.5. On the set {0, . . . , (n − 1)} we define ternary relations Sn
0,1 and

Sn
0,1 by

(x, y, z) ∈ Sn
0,1 ⇐⇒ x − y + z = 1 mod n

and
(x, y, z) ∈ Sn

1,0 ⇐⇒ x − y + z = 0 mod n.

On the set {a, b} we define a ternary relation Sa,b by

Sa,b = {(a, a, a), (a, b, b), (b, b, a), (b, a, b)}.

Note that

(x, y, z) ∈ Sn
0,1 ⇐⇒ affn(x, y, z) = 1

(x, y, z) ∈ Sn
1,0 ⇐⇒ affn(x, y, z) = 0

and
(x, y, z) ∈ Sa,b ⇐⇒ affa,b(x, y, z) = b

The relation Sa,b is a generalization of S2
0,1 and S2

1,0 since we have S2
0,1 = S0,1 and

S2
1,0 = S1,0. In this section, we will be mostly using Sn

1,0. The relation Sa,b is used
later on, when we want to use the structure of Za,b

2 for a, b /∈ {0, 1}.

Theorem 2.7. Inv(Zn) is generated by Sn
1,0 and C1.

Proof. We show Pol(Sn
1,0, C1) = Clo(Zn). To check the inclusion Pol(Sn

1,0, C1) ⊇
Clo(Zn) we check the compatibility of Sn

1,0 and C1 with affn. Firstly, we show that
Sn

1,0 is compatible with affn. Let us have affn(a1, a2, a3) = a, affn(b1, b2, b3) = b
and affn(c1, c2, c3) = c, where ai, bi, ci, a, b, c ∈ {0, . . . , n − 1}, i ∈ [3], such that
(ai, bi, ci) ∈ Sn

1,0 for all i ∈ [3]. Because a = a1 − a2 + a3, b = b1 − b2 + b3 and
c = c1 − c2 + c3, clearly

a − b + c = a1 − b1 + c1 − a2 + b2 − c2 + a3 − b3 + c3 = 0 − 0 + 0 = 0.

This shows (a, b, c) ∈ Sn
1,0, thus Sn

1,0 is compatible with affn. The singleton unary
relations are trivially compatible with affn, because affn is an idempotent opera-
tion. This gives Pol(Sn

1,0, C1) ⊇ Clo(Zn).
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To show the inclusion Pol(Sn
1,0, C1) ⊆ Clo(Zn), we denote by ei the m-tuple

ei = (e1, . . . , en) which has 1 on the i-th coordinate and 0 on the other coordinates.
We show f(x1, . . . , xm) = ∑︁m

i=1 f(ei)xi. To verify this, it is enough to check that
for all a, b ∈ Zm

n it holds f(a) + f(b) = f(a + b). However, this follows from
compatibility with Sn

1,0, since we have

(f(a), f(a + b), f(b)) ∈ Sn
1,0 ⇐⇒ f(a) + f(b) = f(a + b) mod n.

It only remains to check ∑︁m
i=1 f(ei) = 1, which immediately follows from the

compatibility of f with C1.

The following pp-definitions show that we can pp-define Sn
0,1 from Sn

1,0 and C1
and we can pp-define Sn

1,0 from Sn
0,1 and C0.

(x, y, z) ∈ Sn
1,0 ⇐⇒ ∃w (x, y, w) ∈ Sn

0,1 ∧ (w, z, 0) ∈ Sn
0,1.

(x, y, z) ∈ Sn
0,1 ⇐⇒ ∃w (x, y, w) ∈ Sn

1,0 ∧ (w, z, 1) ∈ Sn
1,0.

Thus, we could dually prove that Inv(Zn) is generated by Sn
0,1 and C0. How-

ever, the relation Sn
1,0 is more useful for our purposes.

In this section, we described clones of affine algebras. In particular, we de-
scribed the clone of Z2, which is a minimal Taylor algebra on {0, 1}, and the clone
of Z3, which is a minimal Taylor algebra on {0, 1, 2}.

Before the end of this section, we state the following lemma, which will be
useful in the next chapters. This lemma is very similar to Lemma 2.5.

Lemma 2.8. Let A be an algebra of signature Σ, which has a minority term
operation m. For every operation f ∈ Clon(A) there is a term T of signature Σ
over Xn such that T A = f and each of the variables from Xn occurs in T .

Proof. Similarly, as in the proof of Lemma 2.5, we find term T such that T A = f
and for every missing variable xi find variable xj, which is in T and replace xj by
m(xi, xi, xj).

2.3 The Semilattice Clone
The main goal of this section is to describe the clone of the algebra L0,1 =

{{0, 1}, min2
0≤1}. This particular algebra is easily describable since it is a semi-

lattice. Recall that a finite set A with an ordering ≤ is a semilattice, if for each
a, b ∈ A there is c ∈ A, such that c is the infimum of the set {a, b}.

Definition 2.6. For an ordering ≤ on a set A we denote the n-ary operation,
which maps n elements to its infimum with respect to the ordering ≤, by infn

≤.
We say that an algebra A is a semilattice if A has a single basic operation, which
is equal to infn

≤ for some 2 ≤ n ∈ N, where ≤ is some ordering on A. We say
that A is a semilattice algebra with ordering ≤.

In case of L0,1, the operation inf2
≤ coincides with min2. In this section, we

describe the clones of all the finite algebras which are semilattices. We already
know from Davey [1996] that every such an algebra A has Inv(A) generated by
some ternary relations. We will show which relations we need to generate Inv(A).
Before we start, let us make some preparations. We start with the definition of
an upper set and a lower set.
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Definition 2.7. Let A be a set with an ordering ≤. For a ∈ A we define the fol-
lowing sets.

(↑ a) = {b ∈ A | a ≤ b}

and
(↓ a) = {b ∈ A | b ≤ a}

Lemma 2.9. Let A = (A, f) be a finite semilattice algebra with ordering ≤.
Then T(↓a) and (↑ a) are compatible with A for each a ∈ A.

Proof. Without loss of generality we assume f = inf2
≤ (since (A, infn

≤) and (A, inf2
≤)

have the same clone). Fix a ∈ A. The compatibility of (↑ a) with inf2
≤ immedi-

ately follows from the definition of inf2. We check the compatibility of T(↓a) with
inf2

≤. Let us have ai, bi, ci ∈ A, where i ∈ [2], such that (a1, b1, c1), (a2, b2, c2) ∈
T(↓a). We distinguish two cases.

1. There is i ∈ [n] such that ci ∈ T(↓a). In such a case we have inf2
≤(c1, c2) ∈ T(↓a).

2. a1 = b1 and b2 = c2. In such a case we get inf2
≤(a1, a2) = inf2

≤(b1, b2).

Thus we get T(↓a) is compatible with A, which finishes the proof.

We show that EssClon(A) does not contain any operation except the n-ary
infimum operation.

Theorem 2.10. Let A = (A, f) be a finite semilattice algebra with ordering ≤.
Then EssClon(A) = {infn

≤}.

Proof. Without loss of generality, let f = inf2
≤ and let 0 be the least element

of A with respect to ≤. Clearly, infn
≤ ∈ Clon(A) since infn

≤ is a term operation
given by the term t(x1, t(x2, . . . , t(xn−1, xn) . . . )), where tA = inf2. The operation
infn

≤ is essential since infn
≤(a, . . . , a) = a for each a ∈ A and infn

≤ returns 0, if we
change one coordinate from a to 0. Hence infn

≤ ∈ EssClon(A).
Now let us have f ∈ EssClon(A) and we show f = infn

≤. We pick an arbitrary
a = (a1, . . . , an) ∈ An. Denote a = infn

≤(a). Because f is essential and compatible
with T(↓ai) for each i ∈ [n], by Lemma 1.6 we have f(a) ∈ T(↓ai) for each i ∈ [n].
This means f(a) ≤ a. Because f is compatible with (↑ a), we get f(a) = a and
thus f = infn

≤.

Theorem 2.11. Let A = (A, f) be a finite semilattice algebra with ordering ≤.
Then Inv(A) is generated by relations T(↓a) and (↑ a), where a ∈ A.

Proof. Again, without loss of generality assume f = infn
2 . We show Clo(A) =

Pol({T(↓a), (↑ a) | a ∈ A}). From Lemma 2.9 we know {T(↓a), (↑ a) | a ∈ A} is a set
of compatible relations with A. This gives Clo(A) ⊆ Pol({T(↓a), (↑ a) | a ∈ A}).

To show the inclusion Clo(A) ⊇ Pol({T(↓a), (↑ a) | a ∈ A}), it is enough to
show that any n-ary essential operation f ∈ Pol({T(↓a), (↑ a) | a ∈ A}) has to
be equal to infn

≤. This can be in the same manner as in the proof of Theorem
2.10.

We observe that TA = A3, thus we can pp-define this relation trivially. Using
Theorem 2.11, we finally describe all three minimal Taylor algebras which are
semilattices.
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Corollary 2.12. Inv(L0,1) is generated by T0 and C1.

Corollary 2.13. Inv(TN
1 ) is generated by T{0,1}, T{0,2}, C1 and C2.

Proof. Here we just use that we can pp-define T{0} as follows.

(x, y, z) ∈ T{0} ⇐⇒ (x, y, z) ∈ T{0,1} ∧ (x, y, z) ∈ T{0,2}

Corollary 2.14. Inv(TS
2 ) is generated by T0, T{0,1}, {1, 2} and C2.

Before we finish this section, we take a look at one interesting relation, which
is related to two-element semilattices.

Definition 2.8. Let A be a set and a, b ∈ A. Define a ternary relation La,b as
follows.

(x, y, z) ∈ La,b ⇐⇒ x ∈ {a, b} ∧ (x = b =⇒ y = z)

The reason why we care about the relation La,b is that for an arbitrary algebra
A and a, b ∈ A such that {a, b} is the universe of the semilattice subalgebra of
A, La,b has to be compatible with A.

Lemma 2.15. Let A be an algebra with a, b ∈ A, such that {a, b} is the universe
of a semilattice subalgebra of A with the ordering a ≤ b. Then the ternary relation
La,b is compatible with Clo(A).

Proof. Let us have f the basic operation of A. Choose ai, bi, ci ∈ A, where i ∈ [n],
such that (ai, bi, ci) ∈ La,b for all i ∈ [n]. There are two possibilities:

1. ai = b for each i ∈ [n], in which case bi = ci for all i ∈ [n]. Thus
f(a1, . . . , an) = b and f(b1, . . . , bn) = f(c1, . . . , cn).

2. There is i ∈ [n] such that ai = a. In such a case we have f(a1, . . . , an) = a.

This shows La,b is compatible with Clo(A).

Now we can immediately say for some algebras A that they are compatible
with La,b. We can use this relation to pp-define relations T{a} and TA\{b}. To do
this, we need one more relation.

Definition 2.9. Let A be a set. For a, b ∈ A we define a binary relation Da,b as
follows.

(x, y) ∈ Da,b ⇐⇒ x ̸= a ∨ y = b

It is easy to check that we can pp-define TA\{b} and T{a} as follows.

(x, y, z) ∈ TA\{b} ⇐⇒ ∃w (z, w) ∈ Db,b ∧ (w, x, y) ∈ La,b

and
(x, y, z) ∈ T{a} ⇐⇒ ∃w (w, z) ∈ Da,a ∧ (w, x, y) ∈ La,b.

This gives us the following corollary.
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Corollary 2.16. Let A be an algebra with a, b ∈ A, such that {a, b} is the
universe of a semilattice subalgebra of A with an ordering a ≤ b. If the relation
Db,b is compatible with A then TA\{b} is compatible with A. If the relation Da,a

is compatible with A then T{a} is compatible with A.

The reason why we stated this corollary is that it is easier to check compatibil-
ity with some binary relation than checking compatibility with a ternary relation.
We use this result frequently in the following chapters.
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3. The Nonconservative Clones
In this chapter, we are dealing with nonconservative minimal Taylor algebras

on {0,1,2}. Recall that an algebra A is conservative if every nonempty subset
of A is a subuniverse of A. We already described clones of two nonconservative
minimal Taylor algebras in the previous chapter, namely the clones of TN

4 and
TN

5 . Here we aim to describe the clones of TN
1 and TN

2 . In the rest of this chapter
we denote {0, 1, 2} by A.

3.1 The Clone of the Algebra TN
1

In this section, we describe the clone of the algebra TN
1 . Recall that TN

1 has
a single ternary basic operation t defined as follows.

t(x1, x2, x3) =

⎧⎪⎪⎨⎪⎪⎩
1 (x1 = x2 = 1) ∨ (x1 = x3 = 1) ∨ (x2 = x3 = 1)
2 x1 = x2 = x3 = 2
0 otherwise

Note that TN
1 is isomorphic to the subdirect product of L3 and M with the

universe {(0, 0), (0, 1), (1, 0)} via the isomorphism 0 ↦→ (0, 0), 1 ↦→ (0, 1), 2 ↦→
(1, 0).

Throughout this section we denote TN
1 by A.

Definition 3.1. We define a unary operation σ on A as follows.

σ(x) =

⎧⎨⎩x x ̸= 2
0 x = 2

Also, we define a binary relation Rσ = {(0, 0), (1, 1), (2, 0)}.

Obviously, the relation Rσ can be defined as Rσ = {(a, σ(a)) | a ∈ A}. The
reason why we are care about the operation σ and the relation Rσ is that Rσ is
compatible with A.

Lemma 3.1. Rσ is compatible with A.

Proof. Let us have ai, bi, a, b ∈ A, where i ∈ [3], such that t(a1, a2, a3) = a,
t(b1, b2, b3) = b and (ai, bi) ∈ Rσ for each i ∈ [3]. We distinguish three cases.

1. a = 2. In such a case we have ai = 2 for all i ∈ [3]. This gives bi = 0 for all
i ∈ [3] and we get b = 0.

2. a = 1. In this case there are i, j ∈ [3] such that i ̸= j and ai = aj = 1. This
implies bi = bj = 1 and b = 1.

3. a = 0. Here we show b ̸= 2 and b ̸= 1. Clearly, b ̸= 2, because b = 2 implies
bi = 2 for all i ∈ [3] and 2 /∈ π2(Rσ). If b = 1 there are i, j ∈ [3] such that
bi = bj = 1, so ai = aj = 1, which imply a = 1. Thus we have b = 0.
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This shows the compatibility of Rσ with t.

The compatibility of Rσ with A gives us some information about the behaviour
of an operation from Clon(A) if we know how it behaves on {0, 1}n. We prove
this in a more general setting.

Lemma 3.2. Let B be a set and g be an unary operation on B. Let R be a binary
operation on B defined as R = {(a, g(a) | a ∈ B}. Let f be an n-ary operation
on B. Then g(f(a1, . . . , an)) = f(g(a1), . . . , g(an)) for all a1, . . . , an ∈ B if and
only if f is compatible with R.

Proof. We pick a1, . . . , an, a, b ∈ B, where i ∈ [n], such that f(a1, . . . , an) = a
and f(g(a1), . . . , g(an)) = b. Clearly, we have (ai, g(ai)) ∈ R for all i ∈ [n]. Now
it is easy to see that (a, b) ∈ R for an arbitrary choice of ai, for all i ∈ [n], if and
only if R is compatible with f . The condition (a, b) ∈ R means that b = g(a),
thus f(g(a1), . . . , g(an)) = g(f(a1, . . . , an)).

Since 0, 1 are the fixed points of σ, we get by Lemma 3.2 that f(a1, . . . , a2) = a
implies f(σ(a1), . . . , σ(a2)) = a for a ∈ {0, 1} whenever f is compatible with Rσ.
This motivates the following definition.

Definition 3.2. For an n-ary operation f ∈ M we define an n-ary operation f
on A as follows.

f(x1, . . . , xn) =

⎧⎨⎩2 xi = 2 for all i ∈ [n]
f(σ(x1), . . . , σ(xn)) otherwise

We show that EssClon(A) consists exactly of these operations. However,
before we prove this, we need to ensure that operations in EssClon(A) do not
map n-tuples other than (2, . . . , 2) to 2. To do so, we show the compatibility of
T{0,1} with A.

Lemma 3.3. The relation T{0,1} is compatible with A.

Proof. Because {0, 2} is the universe of a semilattice subalgebra, by Corollary
2.16 we just need need to check that t is compatible with D2,2. So assume we
have ai, bi, a, b ∈ A, where i ∈ [3], such that t(a1, a2, a3) = a, t(b1, b2, b3) = b and
(ai, bi) ∈ D2,2 for each i ∈ [3]. Without loss of generality assume a = 2. Then
we have ai = 2 for all i ∈ [3] and so bi = 2 for all i ∈ [3]. This gives b = 2 and
(a, b) ∈ D2,2. This shows that D2,2 is compatible with t and therefore T{0,1} is
compatible with t.

We can now describe EssClon(A) using the operations defined above.

Theorem 3.4. EssClon(A) = {f | f ∈ Mn}.

Proof. We denote the signature of A by Σ0 and S = {f | f ∈ Mn}. First we
show that S ⊆ EssClon(A). Pick f ∈ Mn and a term T of signature Σ0 over
Xn such that T M = f . By Lemma 2.5, we can assume that T contains all the
variables from Xn.

Now consider the operation g = T A ∈ Clo(A). The operation g is essen-
tial, since we have g(2, . . . , 2) from the idempotency of Clo(A). However, if
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we change one coordinate from 2 to 1, then we get an element of {0, 1}. This
can be shown by induction on the depth of T , because T contains all the vari-
ables from Xn. Thus g ∈ EssClon(A). By the compatibility of g with Rσ, we
get that g(σ(a1), . . . , σ(an)) = σ(g(a1, . . . , an)). As mentioned earlier, if there
is i ∈ [n] such that ai ̸= 2, we get g(a1, . . . , an) ̸= 2 and thus g(a1, . . . , an) =
σ(g(a1, . . . , an)) = g(σ(a1), . . . , σ(an)). This shows g = f and hence we have
f ∈ EssClon(A).

To show the inclusion S ⊇ EssClon(A), we pick g ∈ EssClon(A). Since {0, 1}
is a subuniverse of A, we have that g↾{0,1} is an operation on {0, 1}. Because
t↾{0,1} = maj, we have g↾{0,1} ∈ M. To show g↾{0,1} = g, we just need to check
that g(2, . . . , 2) = 2 (which holds since Clo(A) is idempotent) and g(a1, . . . , an) =
g(σ(a1), . . . , σ(an)) for each tuple a = (a1, . . . , an) ∈ An such that there is i ∈ [n]
that ai ̸= 2. Since g is essential and compatible with T{0,1} we have by Lemma
1.6 that g(a1 . . . , an) ∈ {0, 1} and by the compatibility of g with Rσ we get
g(a1, . . . , an) = g(σ(a1), . . . , σ(an)). This finishes the proof.

Using Theorem 3.4 it is rather easy to provide generaters of Inv(A).

Theorem 3.5. Inv(A) is generated by ̸=0,1, ≤0,1, Rσ, T{0,1}, and C2.

Proof. We show Pol(̸=0,1, ≤0,1, Rσ, T{0,1}, C2) = Clo(A). We check the compati-
bility of ̸=0,1, ≤0,1, Rσ, T{0,1} and C2 with t. We already checked the compatibility
of Rσ and T{0,1}. The compatibility of ̸=0,1 and ≤0,1 follows from the fact that
t↾{0,1} = maj and the compatibility with C2 is trivial since A is an idempotent
algebra. This shows the inclusion Pol(̸=0,1, ≤0,1, Rσ, T{0,1}, C2) ⊇ Clo(A).

We show the other inclusion for essential operations. Let f be an n-ary
essential operation compatible with ̸=0,1, ≤0,1, Rσ, T{0,1} and C2. First, we observe
that the unary relation {0, 1} is pp-definable from ≤0,1 as a projection. Therefore,
f is compatible with {0, 1}. This tell us that f↾{0,1} is an operation on {0, 1}.
Since f is compatible with ≤0,1 and ̸=0,1, we get f↾{0,1} ∈ M. Now, similarly as
in the proof of the previous theorem, we show by the compatibility of f with Rσ,
T{0,1}, and C2, that f = f↾{0,1} which shows f ∈ EssClon(A). This completes the
proof.

3.2 The Clone of the Algebra TN
2

In this section, we analyze the clone of the algebra TN
2 . Recall that TN

2 has
one basic ternary operation t, which can be defined as follows.

t(x1, x2, x3) =

⎧⎪⎪⎨⎪⎪⎩
1 (x1 = x2 = x2 = 1) ∨ (∃!i ∈ [3] xi = 1)
2 x1 = x2 = x3 = 2
0 otherwise

Note that TN
2 is isomorphic to the subdirect product of L3 and Z2 with the

universe {(0, 0), (0, 1), (1, 0)} via the isomorphism 0 ↦→ (0, 0), 1 ↦→ (0, 1), 2 ↦→
(1, 0).

In this section, we denote TN
2 by A. The theory used in this section is almost

the same as in the previous one. The only work which has to be done is to check
the compatibility of Rσ and T{0,1} with A.
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Lemma 3.6. The relations Rσ and T{0,1} are compatible with A.
Proof. Firstly, we check the compatibility of Rσ with t. Let us have ai, bi, a, b ∈ A,
where i ∈ [3], such that t(a1, a2, a3) = a, t(b1, b2, b3) = b and (ai, bi) ∈ Rσ for all
i ∈ [3]. We distinguish three possibilities.

1. a = 2. Then ai = 2 for all i ∈ [3], which gives bi = 0 for all i ∈ [3].
Therefore, we have b = 0.

2. a = 1. If ai = 1 for all i ∈ [3], then bi = 1 for all i ∈ [3] and b = 1. If there
is exactly one i ∈ [3] such that ai = 1, then we have bi = 1 and bj ̸= 1 for
each j ∈ [3] \ {i}, because (ai, 1) ∈ Rσ implies ai = 1. Thus we have b = 1.

3. a = 0. We show b ̸= 2 and b ̸= 1. If b = 2, then bi = 2 for all i ∈ [3].
However, this is not possible since there is no such c ∈ A that (c, 1) ∈ R. If
b = 1 it would mean bi = 1 for all i ∈ [n] or there is exactly one i ∈ [3] such
that bi = 1. In both of these cases we easily get a = 1, which contradicts
the assumption that a = 0. Therefore, we have b = 0.

This shows that Rσ is compatible with t.
Now we check the compatibility of T{0,1} with t. Since {0, 2} is the universe

of a semilattice subalgebra of A, Corollary 2.16 tells us that it is enough to show
that t is compatible with D2,2. Let us have ai, bi, a, b ∈ A, where i ∈ [3], such
that t(a1, a2, a3) = a, t(b1, b2, b3) = b and (ai, bi) ∈ D2,2 for each i ∈ [3]. Without
loss of generality, we can assume that a = 2. Then we have ai = 2 for all i ∈ [3],
thus bi = 2 for all i ∈ [3] and hence b = 2. This shows D2,2 is compatible with t
and thus T0,2 is compatible with t.

Similarly as in the previous section, we are going to extend operations on
{0, 1} to operations on {0, 1, 2}.
Definition 3.3. For an n-ary operation f ∈ Clo(Z2) we define an n-ary operation
f on A as follows.

f(x1, . . . , xn) =

⎧⎨⎩2 xi = 2 for all i ∈ [n]
f(σ(x1), . . . , σ(xn)) otherwise

Now we describe EssClo(A) and Inv(A) in the same manner as we did in the
previous section.
Theorem 3.7. EssClon(A) = {f | f ∈ Clo(Z2)}.
Proof. The proof is almost the same as the proof of Theorem 3.4. The only
differences are that we are using Lemma 2.8 instead of Lemma 2.5 and that we
have t↾{0,1} = aff instead of t↾{0,1} = maj.
Theorem 3.8. Inv(A) is generated by S1,0, Rσ, T{0,1}, C1 and C2.
Proof. Since S1,0 and C1 is compatible with aff and t↾{0,1} = aff, we get that S1,0
and C1 are compatible with A. We have that {0, 1} is pp-definable from S1,0 as
a projection. Therefore, for an arbitrary g ∈ EssClo(A), we have that g↾{0,1} is
an operation on {0, 1} and, by using the compatibility of S1,0 and C1 with g↾{0,1},
we get g↾{0,1} ∈ Clo(Z2) The rest of the proof just copies the proof of Theorem
3.5.
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4. The Clones of the Algebras TC
2

and TC
5

In this chapter, we want to describe the clones of algebras TC
2 and TC

5 . These
algebras are quite similar. Both of them have a single symmetric ternary basic
operation t such that t↾{0,1} = min3

0≤1, t↾{0,2} = min3
0≤2 and t(0, 1, 2) = 0. This

tells us that t is maps a tuple to 0 whenever one of its coordinates is 0. This is
quite a strong condition, which we will use throughout this chapter.

4.1 The Clone of the Algebra TC
2

In this section, we describe an algebra TC
2 . Recall that TC

2 has a single ternary
operation t, which is defined as follows.

t(x1, x2, x3) =

⎧⎨⎩maj1,2(x1, x2, x3) x1, x2, x3 ∈ {1, 2}
0 otherwise

Throughout this section we denote {0, 1, 2} by A and TC
2 by A. Immediately,

from the definition of t, we can guess that Clo(A) consists of monotone self-dual
operations (with respect to 1,2), which are returning 0 if they have 0 on the input.
Let us make this intuition more formal.

Definition 4.1. For f ∈ M1,2 we define an n-ary operation f on A as follows.

f(x1, . . . , xn) =

⎧⎨⎩0 there is i ∈ [n] such that xi = 0
f(x1, . . . , xn) otherwise

Now using the definition above, we directly show how EssClo(A) looks.

Theorem 4.1. EssClo(A) = {f | f ∈ M1,2}.

Proof. Let us denote S = {f | f ∈ M1,2} and Σ the signature of A. First we
check that S ⊆ EssClo(A). Let us fix f ∈ M1,2

n . We denote by T a term over Xn

of the signature Σ such that T M1,2 = f . By Lemma 2.5, we may assume that T
contains all the variables of Xn. Now we take g = T A. By the definition, we have
g ∈ Clo(A). Using the induction on the depth of T , we can easily show that g
returns 0 if there is 0 among the arguments (here, we are using that T contains
all the variables of Xn). On the arguments not containing 0 we have that g
behaves like f , thus we get g = f and so f ∈ Clo(A). Clearly, f is essential since
f(1, . . . , 1) = 1 and if change one arbitrary coordinate to 0, we get 0. Therefore,
we get f ∈ EssClo(A).

It remains to show S ⊇ EssClo(A). We fix g ∈ EssClo(A) and T a term of Σ
over Xn such that g = T A. Clearly, g↾{1,2} ∈ M1,2 since {1, 2} is a subuniverse of
A. We show that g = g↾{1,2}. To see this, it is enough to check that g returns 0
if there is 0 presented in the entry. Pick some term T over Xn of the signature Σ
such that T A = g. Since g is essential, every variable of Xn occurs in T , therefore
the induction on the depth of T gives as above that g return 0 if 0 is among the
arguments. This gives g = g↾{1,2}, and so g ∈ S and the proof is complete.
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In the the last theorem, we proved that operations in EssClo(A) are deter-
mined by two things. Their restrictions to {1, 2} are monotone self-dual opera-
tions, and they return 0 on the remaining inputs. We want to give a description
of Inv(A). The important relations are ̸=1,2, ≤1,2, which tell us that operations
in Clo(A) restricted to {1, 2} are indeed monotone and self-dual, and T0, which
ensures that essential operations applied to tuples containing 0 return 0.

Theorem 4.2. Inv(A) is generated by ≤1,2, ̸=1,2 and T{0}.

Proof. We show Pol(≤1,2, ̸=1,2, T{0}) = Clo(A). For the inclusion Pol(≤1,2, ̸=1,2,
T{0}) ⊇ Clo(A), we check the compatibility of ≤1,2, ̸=1,2 and T{0} with t. The
compatibility with of ≤1,2 and ̸=1,2 with t is obvious since t↾{1,2} = maj1,2. We
need to check the compatibility of T{0}. By Corollary 2.16, it is enough to check
that D0,0 is compatible with t (because {0, 1} is the universe of a semilattice
subalgebra with the ordering 0 ≤ 1). Assume t(a1, a2, a3) = a, t(b1, b2, b3) = b for
some ai, a, bi, b ∈ A, where i ∈ [3], and (ai, bi) ∈ D{0,0} for all i ∈ [3]. Without
loss of generality we also assume a = 0. Then there is i ∈ [3] such that ai = 0.
Therefore, we get bi = 0 and so b = 0. This shows (a, b) ∈ D0,0, hence D0,0 is
compatible with t. Thus T{0} is compatible with t and we have Pol(≤1,2, ̸=1,2,
T{0}) ⊇ Clo(A).

Without loss of generality we check the other inclusion Pol(≤1,2, ̸=1,2, T{0}) ⊆
Clo(A) only for an essential operation f . Observe that the unary relation {1, 2}
is pp-definable as a projection of ≤1,2, thus f{1,2} is an operation on {1, 2}. Since
f{1,2} is compatible with ≤1,2 and ̸=1,2, we get f↾{1,2} ∈ M1,2. We show that
f = f↾{1,2}. To do so, we just have to show that if there is 0 among the arguments,
then f returns 0. But this follows from the compatibility of f with T0 by Lemma
1.6. This shows f = f↾{1,2} and hence f ∈ Clo(A).

4.2 The Clone of the Algebra TC
5

In this section we study the algebra TC
5 . Recall that TC

5 has a single ternary
operation defined as follows.

t(x1, x2, x3) =

⎧⎨⎩aff1,2(x1, x2, x3) x1, x2, x3 ∈ {1, 2}
0 otherwise

This algebra is almost the same as TC
2 and we use the same technique to

describe its clone.

Definition 4.2. For f ∈ Clo(Z1,2
2 ) we define an n-ary operation f on A as

follows.

f(x1, . . . , xn) =

⎧⎨⎩0 there is i ∈ [n] such that xi = 0
f(x1, . . . , xn) otherwise

Theorem 4.3. EssClo(A) = {f | f ∈ Z1,2
2 }.

Proof. The proof is almost the same in the proof of Theorem 4.1. We just use
Lemma 2.8 instead of Lemma 2.5 and that g↾{1,2} ∈ Clo(Z1,2

2 ) instead of g↾{1,2} ∈
M1,2.
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Theorem 4.4. Inv(A) is generated by S1,2, T{0} and C1.

Proof. We use that S1,2 and C1 generate Inv(Z1,2
2 ) and that {1, 2} is pp-definable

as a projection of S1,2. The rest of the proof is the same as the proof of Theorem
4.2.
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5. The Majority Clones on Three
Elements

In this chapter, we give a description of clones of all minimal Taylor algebras
on three elements which are majority algebras. There are three such algebras: TP

1 ,
TC

14 and TC
15. These algebras have a single basic operation, which is a majority

operation.

5.1 Introduction to Majority Algebras
In this section, we recall Section 2.1, and we introduce some new notation

related to majority algebras. As it was already mentioned, a useful tool related to
majority algebras is Theorem 2.1, which allows us to describe invariant relations
by using only binary relations. In the following sections of this chapter, we always
first describe Inv(A) using the binary relations, and then we explicitly describe
elements of Clo(A).

There is a couple of relations we use throughout this chapter.

Definition 5.1. Let B be a set. For a, b ∈ B we define binary relations Oa,b,
Ea,b, Da,b, D−1

a,b , Na and N−1
a as

(x, y) ∈ Oa,b ⇐⇒ x = a ∨ y = b

(x, y) ∈ Ea,b ⇐⇒ x ̸= a ∨ y ̸= b,

(x, y) ∈ Da,b ⇐⇒ x ̸= a ∨ y = b,

(x, y) ∈ D−1
a,b ⇐⇒ x = a ∨ y ̸= b,

(x, y) ∈ Na ⇐⇒ y ̸= a,

and
(x, y) ∈ N−1

a ⇐⇒ x ̸= a.

Recall that we already saw relation Da,b earlier in this thesis. We can see
that the relations D−1

a,b and N−1
a can be pp-defined from Db,a and Na. Therefore,

relations D−1
a,b and N−1

a are redundant (in the sense of generating relations using
pp-definitions). Although, we keep these relations since it simplifies stating some
claims later on.

First, let us analyze the relation Oa,b.

Lemma 5.1. Let m be a majority operation on a set A and a, b ∈ A. Then the
relation Oa,b is compatible with m.

Proof. Let us have ci, di, c, d ∈ A, where i ∈ [3], such that m(c1, c2, c3) = c and
m(d1, d2, d3) = d. Assume we have (ci, di) ∈ Oa,b for all i ∈ [3]. Then there are
i, j ∈ [3] such that ci = cj = a or di = dj = b. In the first case we have (by
definition of majority operation) that c = a, in the second case we have d = b.
Anyway, we have (c, d) ∈ Oa,b. This shows Oa,b is compatible with m.
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We observe that Na can be pp-defined as follows.

(x, y) ∈ Na ⇐⇒ ∃z (y, z) ∈ Ob,1 ∧ (z, y) ∈ O2,c,

where {a, b, c} = {0, 1, 2}. This tells us that Na and N−1
a are compatible with all

the majority operations.
Although Oa,b and Na are always compatible with a majority clone, the same

not holds for Da,b and Ea,b. However, these relations are still compatible in many
cases. To understand these relations, we first give a definition of weak points of
majority operations.

Definition 5.2. Let m be a majority operation on a set A. We say a ∈ A is a
weak point of m if

m(x, y, z) = a ⇐⇒ x = y = a ∨ y = z = a ∨ x = z = a.

Lemma 5.2. Let m be a majority operation on a set A and a, b ∈ A. Then

1. If a is a weak point of m, then Da,b is compatible with m.

2. If a, b are weak points of m, then Ea,b is compatible with m.

Proof. Let a be a weak point of m and let us have ci, di, c, d ∈ A, where i ∈ [3],
such that m(c1, c2, c3) = c and m(d1, d2, d3) = d. Assume (ci, di) ∈ Da,b for all
i ∈ [3]. We want to show (c, d) ∈ Da,b. Without loss of generality we can assume
c = a. Because a is a weak point of m, there are i, j ∈ [3] such that i ̸= j and
ci = cj = a. The conditions (ci, di), (cj, dj) ∈ Da,b give di = dj = b, so by the
definition of a majority operation it follows d = b and (c, d) ∈ Da,b. Hence Da,b

is compatible with t.
Let a, b be a weak points of m and let us have ci, di, c, d ∈ A, where i ∈ [3],

such that m(c1, c2, c3) = c and m(d1, d2, d3) = d. Assume (c, d) /∈ Ea,b. We want
to show that there is i ∈ [3] such that (ci, di) /∈ Ea,b. Because (c, d) /∈ Ea,b, we
have c = a and d = b. As a, b are weak points of m, there are i, j, k, l ∈ [3] such
that i ̸= j, k ̸= l, ci = cj = a and dk = dl = b. Without loss of generality we
may assume i = k. Thus we have ci = a and di = dk = b, so (ci, di) /∈ Ea,b. This
shows that Ea,b is compatible with m.

Before we end this section, we define two more relations.

Definition 5.3. For A = {a, b, c} we define binary relations Pa,b and Pa,b,c on A
as follows.

Pa,b = {(a, b), (b, a), (c, c)}
Pa,b,c = {(a, b), (b, c), (c, a)}

By Lemma 3.2, an algebra A with universe {a, b, c} is compatible with Pa,b

(resp. Pa,b,c) if and only if the permutation, which is represented by the cycle
(a, b) (resp. (a, b, c)), is an automorphism of A. It is easy to decide whether some
permutation is an automorphism, therefore the compatibility of relations Pa,b and
Pa,b,c with some algebra is easy to check. Here we recall that any permutation
on {a, b, c} can be composed from permutations (a, b) and (a, b, c). Since we will
be dealing with algebras with universe {0, 1, 2}, we denote for the rest of this
chapter {0, 1, 2} by A.
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5.2 The Clone of the Algebra TP
1

In this section, we describe the clone of the algebra TP
1 . Recall that TP

1 has
only one ternary basic operation m, which can be defined as follows.

m(x, y, z) =

⎧⎨⎩maja,b(x, y, z) {x, y, z} ∈ {a, b}
x {x, y, z} = {0, 1, 2}

In the rest of this section, we denote TP
1 by A. We immediately see that m

is a majority operation and that every permutation on A is an automorphism of
A. Therefore A is compatible with Pa,b, Pa,b,c and Oa,b for all a, b ∈ A.

As was already mentioned in the previous section, we start by describing all
the binary relations which are compatible with A. We will use the following
lemma.

Lemma 5.3. Let B be a subalgebra of A with universe B, R ≤sd A × B, A =
{a1, a2, a3}, and b ∈ B. If (a1, b), (a2, b) ∈ R, then (a3, b) ∈ R.

Proof. Because R is a subdirect product of A and B, there is c ∈ B such that
(a3, c) ∈ R. Because m(a3, a1, a2) = a3 and m(c, b, b) = b, using the compatibility
of R with m we get (a3, b) ∈ R.

Throughout the rest of this section, we use Lemma 5.3 and its version for
R ≤sd B × A all the time. Now we take a look at binary subdirect relations
which are compatible with A.

Lemma 5.4. Let R be a nontrivial binary relation (i.e. R ̸= A2) from Inv(A)
and R ≤sd A × A. Then R = Oa,b, R = Pa,b or R = Pa,b,c for some a, b, c ∈ A.

Proof. Let us have some nontrivial binary relation R ∈ Inv(A) such that R ≤sd

A2 and (a1, b1) /∈ R for some a1, b1 ∈ A. By Lemma 5.3, there has to be a2 ∈
A \ {a1} and b2 ∈ A \ {b1} such that (a2, b1), (a1, b2) /∈ A. Set A = {a1, a2, a3} =
{b1, b2, b3}. Using Lemma 5.3 again, we get (a2, b2) /∈ R ∨ (a2, b3) /∈ R and
(a2, b2) /∈ R ∨ (a3, b2) /∈ R.

So there are two possibilities:

1. (a2, b2) /∈ R. In this case we know that R ∈ A2 \ ({a1, a2} × {b1, b2}), thus
R ⊆ Oa3,b3 . Because R is subdirect, it follows that (a1, b3), (a2, b3), (a3, b1),
(a3, b2) ∈ R. Once again using Lemma 5.3 it follows (a3, b3) ∈ R. Thus
R = Oa,b for some a, b ∈ A.

2. (a3, b2), (a2, b3) /∈ R. In this case we can use Lemma 5.3 again and we
get (a1, b3) /∈ R ∨ (a3, b3) /∈ R and (a3, b1) /∈ R ∨ (a3, b3) /∈ R. The
case (a3, b1), (a1, b3) /∈ R implies (a1, b1), (a1, b2), (a1, b3) /∈ R, thus R is
not a subdirect product. So we may assume (a3, b3) /∈ R. It follows R ⊆
{(a1, b3), (a2, b2), (a3, b1)}. Because every subdirect product of A2 has to
have at least three elements, we get R = {(a1, b3), (a2, b2), (a3, b1)} and thus
R = Pa,b or Pa,b,c for some a, b, c ∈ A.

This shows R = Oa,b, R = Pa,b or Pa,b,c for some a, b, c ∈ A.

We describe the remaining binary relations in Inv(A).

32



Lemma 5.5. Every binary relation in Inv(A) is pp-definable from the set

{Oa,b, Pa,b, Pa,b,c | a, b, c ∈ A}.

Proof. From Lemma 5.4 we already know that the statement holds for relations
which are subdirect in A2. We fist show that any binary relation in Inv(A) is
pp-definable from the set {Oa,b, Pa,b, Pa,b,c | a, b, c ∈ A} and unary relations. Let
us consider the remaining cases.

1. R ≤sd A × B, where B ⪇ A. Then there has to be b1 ∈ B and a1, a2 such
that a1 ̸= a2 and (a1, b1), (a2, b1) ∈ R. Denote A = {a1, a2, a3} = {b1, b2, b3},
and b3 ∈ A \ B. From Lemma 5.3 it follows that (a3, b1) ∈ R. Now
observe that if (a1, b2), (a2, b2) ∈ R, then Lemma 5.3 gives (a3, b2) ∈ R
and R = A × {b1, b2}. Thus we can have one of the following relations:
A × {b1, b2}, A × {b1} and (A × {b1}) ∪ {(ai, b2)} for some i ∈ [3]. The first
two relations are pp-definable using the unary relations. The third one is
pp-definable as

(x, y) ∈ (A × {b1}) ∪ {(ai, b2)} ⇐⇒ ((x, y) ∈ Oai,b1) ∧ (y ∈ {b1, b2}).

2. R ≤sd B × A, where B ⪇ A. This case is analogous to the previous one.

3. R ≤sd B1 × B2, |R| ≥ 3, B1, B2 ⪇ A, B1 = {a1, a2} and B2 = {b1, b2}. In
such a case we have R = B1 × B2 or R = (B1 × B2) \ {(ai, bj)}, for some
i, j ∈ [2]. The first relation is pp-definable from unary relations, the second
one can be pp-defined as

(x, y) ∈ (B1 × B2) \ {(ai, bj)} ⇐⇒ ((x, y) ∈ B1 × B2) ∧ ((x, y) ∈ Oak,bl
),

where k ∈ [2] \ {i} and l ∈ [2] \ {j}.

4. R = {(a1, b1), (a2, b2)} for some a1, a2, b1, b2 ∈ A. Then R can be pp-defined
as

(x, y) ∈ {(a1, b1), (a2, b2)} ⇐⇒ (x, y) ∈ Oa1,b2 ∧ (x, y) ∈ Oa2,b1 .

5. R = {a, b} for some a, b ∈ A. This relation is obviously pp-definable using
only unary relations.

Now it remains to check that we can pp-define an arbitrary unary relation
from the set {Oa,b, Pa,b, Pa,b,c | a, b, c ∈ A}. It is enough to show that any two
element unary relation can be pp-defined from such a set. Clearly, any two
element unary relation can be pp-defined as a projection of some two element
binary relation and we can pp-define all the two element binary relations only
from the set {Oa,b | a, b ∈ A}. Therefore, we can pp-define any unary relation
from the set {Oa,b | a, b ∈ A}. This completes the proof.

We can pp-define Oa,b for any a, b ∈ A just from O0,0, P0,1, and P0,1,2. Since
Inv(A) is generated by binary relations, we get the following result.

Theorem 5.6. Inv(A) is generated by O0,0, P0,1, P0,1,2.
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When we have a description of Inv(A), we describe the elements of Clo(A).
Not surprisingly, we use ms-collections.

Theorem 5.7. Clon(A) consists of such operations f which are compatible with
all the permutation relations on A (i.e the relations Pa,b, Pa,b,c, where a, b, c ∈ A)
and there is some ms-collection F on [n] such that

(∀a, a1, . . . , an ∈ A) {i ∈ [n] | ai = a} ∈ F =⇒ f(a1, . . . , an) = a. (5.1)

Proof. Denote S the set of n-ary operations which are compatible with all the
permutation relations and which satisfies Equation 5.1 for some ms-collection on
[n]. To show S ⊆ Clo(A) we only need to check that every f ∈ S is compatible
with O0,0. So let us fix f ∈ S, F ms-collection, such that Equation 5.1 holds
for f and assume we have a1, b1, . . . , an, bn ∈ A such that (ai, bi) ∈ O0,0 for
all i ∈ [n]. Fix a, b ∈ A such that f(a1, . . . , an) = a and f(b1, . . . , bn) = b.
Without loss of generality assume a ̸= 0. Then, by Equation 5.1, we know that
{i ∈ [n] | ai = 0} /∈ F so by self-duality of F we have {i ∈ [n] | ai ̸= 0} ∈ F. Using
(ai, bi) ∈ O0,0 we get {i ∈ [n] | bi = 0} ⊇ {i ∈ [n] | ai ̸= 0} and by monotonicity
of F we get {i ∈ [n] | bi = 0} ∈ F. Thus b = 0 and (a, b) ∈ O0,0. This shows that
f is compatible with O0,0, so S ⊆ Clon(A).

We show the other inclusion. Fix f ∈ Clon(A). Because {0, 1} is a subuniverse
of A and t↾{0,1} = maj0,1, it follows that f↾{0,1} ∈ M0,1 and so Ff↾{0,1} is an ms-
collection on [n]. We show

∀a1, . . . , an ∈ A {i ∈ [n] | ai = 0} ∈ Ff↾{0,1} =⇒ f(a1, . . . , an) = 0,

the rest of Equation 5.1 follows from the compatibility of f with the permutation
relations. Let us have a1, . . . , an ∈ A such that {i ∈ [n] | ai = 0} ∈ Ff↾{0,1} . We
define bi ∈ {0, 1} for all i ∈ [n] as follows.

bi =

⎧⎨⎩1 ai = 0
0 ai ̸= 0

So we have (ai, bi) ∈ O0,0 for all i ∈ [n]. We have {i ∈ [n] | bi = 1} ∈ Ff↾{0,1} , thus
by the definition of Ff↾{0,1} we have f(b1, . . . , bn) = 1. Because f is compatible
with O0,0 and (ai, bi) ∈ O0,0 for all i ∈ [n], it follows that (f(a1, . . . , an), 1) ∈ O0,0,
hence f(a1, . . . , an) = 0. Therefore S ⊇ Clo(A), which completes the proof.

5.3 The Clone of the Algebra TC
14

In this section, we describe the clone of the algebra TC
14. Recall that the

algebra TC
14 has a single ternary operation defined as follows.

m(x, y, z) =

⎧⎨⎩maja,b(x, y, z) {x, y, z} = {a, b} a, b ∈ {0, 1, 2}
0 {x, y, z} = {0, 1, 2}

For the rest of this section, denote TC
14 by A. We immediately see that m is a

majority operation with the weak points 1 and 2 and that the permutation given
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by the cycle (1, 2) is an automorphism. This tells us that A is compatible with
relations Ea,b, Da,b, Oa,b, N0, and P1,2, where a, b ∈ {1, 2}. Because every relation
in a majority algebra can be pp-defined from binary relations, we, similarly as in
the previous section, describe all the binary relations compatible with A. Before
we start, we make one observation.

Lemma 5.8. Let R be a binary relation in Inv(A). Assume (a, 0) ∈ R and
(b, 0) /∈ R (resp. (0, a) ∈ R and (0, b) /∈ R) for some a, b ∈ A. Then (1, b) /∈ R or
(2, b) /∈ R (resp. (b, 1) /∈ R or (b, 2) /∈ R).

Proof. We have m(1, 2, 0) = 0, m(b, b, a) = b, (0, a) ∈ R and (0, b) /∈ R. Since R
is the compatible with m, we get (1, b) /∈ R or (2, b) /∈ R. The rest of the claim
follows by symmetry.

Now we describe all the binary relations in Inv(A).

Lemma 5.9. Let R be a binary relation compatible with m. Then

R =
⋀︂

Ea,b⊇R
a,b∈{1,2}

Ea,b ∧
⋀︂

Dc,d⊇R
c,d∈{1,2}

Dc,d ∧
⋀︂

D−1
e,f

⊇R

e,f∈{1,2}

D−1
e,f ∧

⋀︂
Og,h⊇R

g,h∈{1,2}

Og,h ∧
⋀︂

S⊇R

S∈{N0,N−1
0 }

S. (5.2)

Proof. Denote by S the right hand side of Equation 5.2. Let x, y ∈ A. If (x, y) ∈
R, then obviously (x, y) ∈ S. Assume now that (x, y) /∈ R. In order to show that
(x, y) /∈ S, we distinguish four cases.

1. x, y ∈ {1, 2}. In this case R ⊆ Ex,y and (x, y) /∈ Ex,y, thus (x, y) /∈ S.

2. x ∈ {1, 2} and y = 0. If (a, 0) /∈ R for each a ∈ A, we get R ⊆ N0 and thus
(x, y) /∈ S. Otherwise, Lemma 5.8 gives that there is d ∈ {1, 2} such that
(x, d) /∈ R. Since (x, d), (x, 0) /∈ R, then we get Dx,c ⊇ R for c ∈ A \ {0, d}.
We get (x, 0) /∈ Dx,c, thus (x, 0) = (x, y) /∈ S.

3. y ∈ {1, 2} and x = 0. This case is analogous to the previous one.

4. x = y = 0. If (a, 0) /∈ R (resp. (0, a) /∈ R) for each a ∈ A, we get R ⊆ N0
(res. R ⊆ N−1

0 ) and thus (x, y) /∈ S. Otherwise, Lemma 5.8 gives c ∈ {1, 2}
such that (c, 0) /∈ R. By using Lemma 5.8 more times, we can derive that
(0, d), (c, e), (f, d) /∈ R for some d, e, f ∈ {1, 2}.
If c = f or d = e, then we have (c, d) /∈ R, so (0, 0), (c, 0), (0, d), (c, d) /∈ R.
Therefore, R ⊆ Og,h, where g ∈ A\{0, c} and h ∈ A\{0, d}. As (0, 0) /∈ Og,h,
it follows that (0, 0) /∈ S.
Otherwise c ̸= f and d ̸= e and we may without loss of generality as-
sume (c, d) ∈ R. In this case (0, e) /∈ R or (f, 0) /∈ R, because we
have m(0, f, c) = 0, m(e, 0, d) = 0, (0, 0) /∈ R and R is compatible with
m. Therefore we can assume without loss of generality (0, e) /∈ R, hence
(0, 0), (0, e), (c, e), (c, 0) /∈ R. So we have R ⊆ Of,d. Similarly as above we
get (0, 0) /∈ S.
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Now we simplify the result. As it was mentioned earlier, we can pp-define N0
and N−1

0 just using Ob,c, where b, c ∈ {1, 2}. We can pp-define Ea,b from Da,1 and
Db,2 as follows.

(x, y) ∈ Ea,b ⇐⇒ ∃z (x, z) ∈ Da,1 ∧ (y, z) ∈ Db,2

Using the relation P1,2 we can pp-define Da,1, Oa,b for a, b ∈ {1, 2} just from
O1,1, D1,1 and P1,2. Since Inv(A) is generated by binary relations we get the
following theorem.

Theorem 5.10. Inv(A) is generated by D1,1, O1,1 and P1,2.

Now we describe the elements of Clo(A). We will show that there is a one-to-
one correspondence between the elements of Clo(A) and the elements of M. To
see this, it is enough to show that there is a one-to-one correspondence between
elements of Clon(A) and ms-collections on [n].

Theorem 5.11. Clon(A) consists of such operations f that there is an ms-
collection F satisfying the following.

f(a1, . . . , an) =

⎧⎪⎪⎨⎪⎪⎩
1 {i ∈ [n] | ai = 1} ∈ F

2 {i ∈ [n] | ai = 2} ∈ F

0 otherwise
(5.3)

Proof. Let F be an ms-collection. Let f be an n-ary operation defined using
the formula 5.3. We show that f ∈ Clon(A). Clearly, such f is compatible
with P1,2 by Lemma 3.2. We show that f is compatible with D1,1. Let us
have f(a1, . . . , an) = a and f(b1, . . . , bn) = b for some ai, bi, a, b, where i ∈ [n].
Moreover, assume that (ai, bi) ∈ D1,1 for all i ∈ [n]. We will show that (a, b) ∈
D1,1. Without loss of generality we can assume a = 1. Then {i ∈ [n] | ai =
1} ∈ F and (ai, bi) ∈ D1,1 for all i ∈ [n], thus by the monotonicity of F we have
{i ∈ [n] | bi = 1} ∈ F. Therefore, we have b = 1, which shows the compatibility
of f with D1,1.

It remains to show that f is compatible with O1,1. Let us have, once again,
f(a1, . . . , an) = a and f(b1, . . . , bn) = b for some ai, bi, a, b, where i ∈ [n]. More-
over, assume (ai, bi) ∈ O1,1 for all i ∈ [n]. Thus {i ∈ [n] | ai = 1} ∪ {i ∈
[n] | bi = 1} = [n]. By monotonicity and self-duality of F, it follows that
{i ∈ [n] | ai = 1} ∈ F or {i ∈ [n] | bi = 1} = [n], which implies a = 1 or
b = 1. So (a, b) ∈ O1,1 and thus f is compatible with O1,1. We showed that
f ∈ Pol(P1,2, D1,1, O1,1), hence by the previous theorem, f ∈ Clon(A).

Now we show the other inclusion. Assume f ∈ Clon(A). Because {0, 1} and
{0, 2} are subuniverses of A, it follows that f↾{0,1} ∈ M0,1 and f↾{0,2} ∈ M0,2.
Here observe that Ff↾{0,1} = Ff↾{0,2} (using the compatibility with P1,2). We denote
the ms-collection Ff↾{0,1} by F. Let a1, . . . , an ∈ A and fix a ∈ A such that
f(a1, . . . , an) = a. We distinguish three cases.

1. {i ∈ [n] | ai = 1} ∈ F. For each i ∈ [n] take bi as follows.

bi =

⎧⎨⎩1 ai ̸= 1
0 ai = 1
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Now we have (ai, bi) ∈ O1,1 for all i ∈ [n]. Because {i ∈ [n] | bi = 0} ∈ F,
we have f(b1, . . . , bn) = f↾{0,1}(b1, . . . , bn) = 0 by the definition of F. By
compatibility with O1,1, we get (a, b) ∈ O1,1 and because b ̸= 0, it follows
that a = 1.

2. {i ∈ [n] | ai = 2} ∈ F. Similarly as in the previous case, we show that
a = 2.

3. {i ∈ [n] | ai = 1}, {i ∈ [n] | ai = 2} /∈ F. For each i ∈ [n], define bi and ci

as follows.

bi =

⎧⎨⎩1 ai = 1
0 ai ̸= 1

and

ci =

⎧⎨⎩2 ai = 2
0 ai ̸= 2

Now we have (ai, bi) ∈ D1,1 and (ai, ci) ∈ D2,2 for all i ∈ [n]. Because
{i ∈ [n] | bi = 1}, {i ∈ [n] | ci = 2} /∈ F, it follows that f(b1, . . . , bn) = 0
and f(c1, . . . , cn) = 0. From the compatibility with D1,1 and D2,2, we have
a ̸= 1 and a ̸= 2, thus a = 0.

This shows that f is defined by Equation 5.3, which finishes the proof.

5.4 The Clone of the Algebra TC
15

In this section, we describe the clone of the majority algebra TC
15. This algebra

has a single basic majority operation m, which is defined as follows.

m(x, y, z) =

⎧⎪⎪⎨⎪⎪⎩
maja,b(x, y, z) {x, y, z} = {a, b} a, b ∈ {0, 1, 2}
1 (x, y, z) ∈ {(0, 1, 2), (1, 2, 0), (2, 0, 1)}
2 (x, y, z) ∈ {(2, 1, 0), (1, 0, 2), (0, 2, 1)}

Obviously, A is a majority algebra with the only weak point 0. Therefore,
A is compatible with Oa,b, Na, D0,a, E0,0 for a, b ∈ A. It is easy to see that A is
compatible with P1,2. To describe the clone of this particular algebra, we need
one more relation.

Definition 5.4. For a, b, c ∈ A we define a binary relation F c
a,b as follows.

(x, y) ∈ F c
a,b ⇐⇒ (x = c ⇐⇒ y = c) ∧ (x ̸= a ∨ y ̸= b)

The relation F 0
a,b is a generalization of the relation ≤b,a. Hence it is not

surprising that this relation is compatible with A.

Lemma 5.12. Let a, b ∈ {1, 2}. Then F 0
a,b is compatible with A.
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Proof. We show the proof for a = b = 1. The rest follows from the compatibility of
P1,2 with A. Let us have ci, di, c, d ∈ A, where i ∈ [3], such that m(c1, c2, c3) = c,
m(d1, d2, d3) = d and (c, d) /∈ F 0

1,1. We show that there is i ∈ [3] such that
(ci, di) /∈ F 0

1,1.
There are two cases.

1. c = 0 and d ̸= 0 or similarly c ̸= 0 and d = 0. Without loss of generality
we assume it is the case that c = 0 and d ̸= 0. Because 0 is a weak point
of m, there is i, j ∈ [3] such that i ̸= j and ci = cj = 0. However, if
(ci, di), (cj, dj) ∈ F 0

1,1, then di = dj = 0 and d = 0. Thus (ci, di) /∈ F 0
1,1 or

(cj, dj) /∈ F 0
1,1.

2. (c, d) = (1, 1). We may assume (ci, di) ̸= (1, 1) for all i ∈ [3], so without
loss of generality assume c1 = 0, c2 = 1, c3 = 2. If (c1, d1) ∈ F 0

1,1, we
have d1 = 0. Because we have d = 1, it must hold that d2 = 1 and so
(c2, d2) = (1, 1) /∈ F 0

1,1.

This shows the compatibility of F 0
1,1 with A.

We need one more technical lemma.

Lemma 5.13. Let R be a binary relation on A, which is compatible with A, and
a, b, d ∈ A such that b ̸= 0. If (d, b) ∈ R and (a, b) /∈ R, then there is c ∈ A \ {b}
such that (a, c) /∈ R.

Proof. Assume b = 1. We have m(a, d, a) = a, m(0, 1, 2) = 1, (a, 1) /∈ R and
(d, 1) ∈ R. Because R is compatible with m, we get (a, 0) /∈ R or (a, 2) /∈ R.
This completes the proof for b = 1. The case b = 2 is analogous.

Obviously, we can state Lemma 5.13 dually, i.e. assuming a ̸= 0, (a, d) ∈ R
and (a, b) /∈ R we can derive there is c ∈ A \ {a} such that (c, b) /∈ R.

The following lemma gives a description of binary relations which are com-
patible with A.

Lemma 5.14. Let R be compatible with A. Then R is equal to
⋀︂

E0,0⊇R

E0,0 ∧
⋀︂

D0,a⊇R
a∈A

D0,a ∧
⋀︂

D−1
b,0⊇R

b∈A

D−1
b,0 ∧

⋀︂
Oc,d⊇R
c,d∈A

Oc,d ∧
⋀︂

F 0
e,f ⊇R

e,f∈{1,2}

F 0
e,f ∧

⋀︂
Ng⊇R

g∈{1,2}

Ng ∧
⋀︂

N−1
h

⊇R

h∈{1,2}

N−1
h .

(5.4)

Proof. We denote the right hand side of Equation 5.4 by S. Clearly, every (x, y) ∈
R is in S. Now assume (x, y) /∈ R and we show (x, y) /∈ S. There are four
possibilities.

1. x = y = 0. In this case E0,0 ⊇ R and (0, 0) /∈ E0,0. Therefore, (0, 0) /∈ S.

2. x = 0 and y ̸= 0. If (a, y) /∈ R for each a ∈ A, we have R ⊆ Ny and
thus (x, y) /∈ S. Otherwise, by Lemma 5.13 there is c ∈ A \ {y} such that
(0, c) /∈ R. Pick b ∈ A \ {y, c}. We have D0,b ⊇ R and (x, y) /∈ D0,b. Hence
we have (x, y) /∈ S.
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3. x ̸= 0 and y = 0. Similarly as in the previous case, we show N−1
x ⊇ R or

D−1
b,0 ⊇ R for some b ∈ A and thus (x, y) ∈ S.

4. x, y ̸= 0. If we have (d, y) /∈ R (resp. (x, d) /∈ R) for each d ∈ A, we get
R ⊆ Ny (resp. R ⊆ N−1

x ) and hence (x, y) /∈ S. Otherwise, Lemma 5.13
gives a, b ∈ R such that a ̸= x, b ̸= y and (x, b), (a, y) /∈ R. We distinguish
another four cases.

(a) a, b ̸= 0. In such a case we have (x, 0), (0, y) ∈ R. We show that
from this we can derive (a, b) /∈ R. For a contradiction, assume
(a, b) ∈ R. Then by the compatibility of R with m, we can get
from (x, 0), (0, y), (a, b) the tuples (x, y), (a, b) or (x, b), (a, y). Since
(x, y), (x, b) /∈ R, this is not possible. Therefore (a, b) /∈ R and so
R ⊆ O0,0 and (x, y) /∈ S.

(b) a = 0 and b ̸= 0. Pick c ∈ A \ {x, 0}. We have (c, y), (x, 0) ∈
R. Once again, we derive (0, b) /∈ R, otherwise we would get from
(c, y), (x, 0), (0, b) ∈ R that (c, y), (x, b) ∈ R or (c, b), (x, y) ∈ R, how-
ever this is not possible since (x, b), (x, y) /∈ R. Therefore, (a, b) /∈ R
and so R ⊆ Oc,0 and (x, y) /∈ S.

(c) a ̸= 0 and b = 0. This case is analogous to the previous one.
(d) a, b = 0. We have (x, y), (0, y), (x, 0) /∈ R. Assume x = y = 1 (other

cases are similar). Then we have (1, 2), (2, 1) ∈ R. We also have
m(0, 2, 1) = 1 and m(0, 0, 2) = 0 and because (1, 2) ∈ R and (1, 0) /∈
R and R is compatible with A, we have (0, 0) /∈ R or (2, 0) /∈ R.
Similarly, (2, 1) ∈ R and (0, 1) /∈ R, so we have (0, 0) /∈ R or (0, 2) /∈ R.
Thus, in the end, we have (0, 0) ∈ R or (0, 2), (2, 0) /∈ R. In the case
(0, 0) /∈ R we have R ⊆ O2,2, in the case (0, 2), (2, 0) /∈ R we have
R ⊆ F 0

x,y. In both cases, we have (x, y) /∈ S.

This proves R = S.

Lemma 5.14 tells us that Inv(A) is generated by E0,0, D0,a, Ob,c and F 0
e,f ,

where a, b, c, d ∈ A and e, f ∈ {1, 2}. Here we are once again using the fact that
Inv(A) is generated by binary relations. Using the relation P1,2 we can simplify
this result and say that Inv(A) is generated by E0,0, D0,0, D0,1, O0,0, O0,1, O1,1, F 0

1,1
and P1,2. The following pp-definitions tell us that we can generate Inv(A) using
even fewer relations.

(x, y) ∈ O0,0 ⇐⇒ ∃z (x, z) ∈ O0,1 ∧ (z, y) ∈ O2,0

(x, y) ∈ E0,0 ⇐⇒ ∃z (x, z) ∈ D0,1 ∧ (z, y) ∈ D−1
2,0

(x, y) ∈ D0,1 ⇐⇒ ∃z (x, z) ∈ F 0
1,1 ∧ (z, y) ∈ O2,1

(x, y) ∈ D0,0 ⇐⇒ ∃z (x, z) ∈ F 0
1,1 ∧ (z, y) ∈ O2,0

Hence we get the following theorem.

Theorem 5.15. Inv(A) is generated by O0,1, O1,1, F 0
1,1 and P1,2.

39



Our next goal is to describe the elements of Clo(A) using ms-collections. How-
ever, we find here a more complicated structure, where each set in ms-collection
has attached another ms-collection on that set and these ms-collections depend
on each other. We call these structures bms-collections.

Definition 5.5. Let B be a set. By a big monotone self-dual collection on B
(bms-collection on B for short) we mean an ms-collection F on B with ms-
collections FS on S, for each S ∈ F, such that for all S, V ∈ F satisfying
S ∩ V = ∅, we have V ∈ FS.

Theorem 5.16. An operation f is in Clo(A) if and only if there exists a bms-
collection F on [n] such that we have the following.

f(a1, . . . , an) =

⎧⎪⎪⎨⎪⎪⎩
0 {i ∈ [n] | ai = 0} ∈ F

1 S ∈ F ∧ {i ∈ [n] | ai = 1} ∈ FS

2 S ∈ F ∧ {i ∈ [n] | ai = 2} ∈ FS

, (5.5)

where S = {i ∈ [n] | ai ̸= 0}.

Proof. Let f ∈ Clo(A). Then f↾{0,1} ∈ M0,1, since {0, 1} is a subuniverse of A.
Denote by F the ms-collection Ff↾{0,1} . For each S ∈ F we define an operation
fS : AmS → A by fS(a1, . . . , a|S|) = f(b1, . . . , bn), where

bi =

⎧⎨⎩0 i /∈ S

aj if i is the j-th index in S

Because f is compatible with P1,2 and F 0
2,1, we have for each S ∈ F that fS is

compatible with ̸=1,2 and ≤1,2, thus f ∈ M1,2. Therefore, FfS is a ms-collection
for each S ∈ F. By the definition of FfS , if V ∈ F and V ∩S = ∅, we have V ∈ FfS .
For each S ∈ F, set FS = FfS . To check that F is an ms-collection, it is enough
to show f(a1, . . . , an) = 1 if {i | ai = 1} ∈ F. Assume {i ∈ [n] | ai = a} ∈ F for
some a ∈ A. Define ci for all i ∈ [n] as follows.

ci =

⎧⎨⎩1 ai = a

0 ai ̸= a

We have (ai, ci) ∈ Oa,0, thus by the compatibility of Oa,0 with A we have

(f(a1, . . . , an), f(c1, . . . , cn)) ∈ Oa,0.

We have f(c1, . . . , cn) = 1, because {i ∈ [n] | ai = a} ⊆ {i ∈ [n] | ci = 1} ∈ F.
Hence we get f(a1, . . . , an) = a. This shows that F is an ms-collection.

Now we have to show that Equation 5.5 holds for f . Pick a1, . . . , an ∈ A.
We already showed {i ∈ [n] | ai = 0} ∈ F implies f(a1, . . . , an) = 0. So assume
S ∈ F and {i ∈ [n] | ai = b} ∈ FS, where b ∈ {1, 2}. By the definition of FS,
we immediately get f(a1, . . . , an) = b. This shows that every f ∈ Clo(A) can be
expressed using Equation 5.5 and some bms-collection.

Now assume that we have a bms-collection F and f defined as in Equation 5.5.
We want to show f ∈ Clo(A). We check the compatibility of f with O0,1, O1,1, P1,2
and F 0

1,1. The compatibility with P1,2 is clear. To check the compatibility with
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Oa,b for a, b ∈ A, we take ci, di, c, d ∈ A, where i ∈ [n], such that f(c1, . . . , cn) = c,
f(d1, . . . , dn) = d and (ci, di) ∈ Oa,b for all i ∈ [n]. We have {i | ci = a} ∪ {j |
dj = b} = [n]. By monotonicity and self-duality, we have {i | ci = a} ∈ F or
{j | dj = b} ∈ F. This gives c = a or d = b, hence (c, d) ∈ Oa,b.

It remains to check the compatibility with F 0
1,1. Take ai, bi, a, b ∈ A, where

i ∈ [n], f(a1, . . . , an), f(b1, . . . , bn) = b, and (ai, bi) ∈ F 0
1,1 for all i ∈ [n]. We

distinguish two cases.

1. a = 1. Denote S = {i | ai ̸= 0}. We show b ̸= 1. If {i | ai = 1} ∈ F,
then we have {i | bi = 2} ∈ F and b = 2. So, we can assume S ∈ F
and {i | ai = 1} ∈ FS. Therefore, we have {i | bi ̸= 0} = S ∈ F and
{i | bi = 2} ∈ FS. So b = 2.

2. a = 0. Thus {i | ai = 0} = {i | bi = 0} ∈ F and b = 0.

This shows that f is compatible with F 0
1,1. Thus f ∈ Clo(A).
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6. The Clones of the Algebras TC
3

and TC
7

In this chapter, we focus on describing the clones of the algebras TC
3 and

TC
7 . These algebras are similar in one aspect, both of them have a single basic

ternary operation t such that t(a1, a2, a3) = 2 if and only if ai = 2 for all i ∈ [3].
We take an advantage of this property. Because we are still working with the
three-element algebras, we write A instead of {0, 1, 2} for the rest of this chapter.

6.1 The Clone of the Algebra TC
3

In this section, we describe the clone of the algebra TC
3 . Recall that TC

3 has
a single basic ternary operation defined as follows.

t(x1, x2, x3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

maj0,1(x1, x2, x3) x1, x2, x3 ∈ {0, 1}
min0,2(x1, x2, x3) x1, x2, x3 ∈ {0, 2}
min1,2(x1, x2, x3) x1, x2, x3 ∈ {1, 2}
0 (x1, x2, x3) ∈ {(0, 1, 2), (1, 2, 0), (2, 0, 1)}
1 (x1, x2, x3) ∈ {(2, 1, 0), (0, 2, 1), (1, 0, 2)}

For the rest of this section, we denote TC
3 by A. As in the previous chapter,

we immediately see that A is compatible with P0,1. Since t(a1, a2, a3) = 2 iff
ai = 2 for all i ∈ [3], we should expect that T{0,1} is compatible with A.

Lemma 6.1. The relation T{0,1} is compatible with A.

Proof. Since {0, 2} is the universe of a semilattice subalgebra, by Corollary 2.16
it is enough to check that D2,2 is compatible with A. To do so, let us have
ai, bi, a, b ∈ A, where i ∈ [3], such that t(a1, a2, a3) = a, t(b1, b2, b3) = b and
(ai, bi) ∈ D2,2 for all i ∈ [3]. Without loss of generality, we assume a = 2. Then
ai = 2 for all i ∈ [n], thus bi = 2 for all i ∈ [n] and b = 2. This shows that D2,2
is compatible with A, so T{0,1} is compatible with A as well.

To successfully describe this algebra, we need to define one more relation.

Definition 6.1. We define a binary relation Ga for a ∈ A as follows.

(x, y) ∈ Ga ⇐⇒ x = y ∨ y = a

Similarly as the relation F c
a,b, the relation Ga is a generalization of ≤b,a. Since

t↾{0,1} = maj, it is not surprising that these relations for a, b ∈ {0, 1} and c = 2
are compatible with A.

Lemma 6.2. Relations F 2
a,b and Ga are compatible with A for every a, b ∈ {0, 1}.

Proof. First we show that F 2
a,b is compatible with A for every a, b ∈ {0, 1}. Let

us pick ci, di, c, d ∈ A, where i ∈ [3], such that t(c1, c2, c3) = c, t(d1, d2, d3) = d
and (ci, di) ∈ F 2

a,b, i ∈ [3]. First assume c = 2 and we show d = 2. This is easy,
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because c = 2 gives ci = 2 for all i ∈ [3], thus di = 2 for all i ∈ [3] and d = 2.
Similarly, we can show that d = 2 implies c = 2. Now assume c = a. There is
some i ∈ [3] such that ci = a and di ∈ A \ {0, a}. Without loss of generality
assume i = 1.

We distinguish four cases.

1. c2, c3 ∈ {0, 1}. Then we have {d1, d2, d3} ∈ {0, 1}. In such a case, we get
d ̸= b because t↾{0,1} = maj0,1 and maj0,1 is compatible with every binary
relation on {0, 1}.

2. {c1, c2, c3} = {0, 1, 2}. If a = 0, we have (c1, c2, c3) = (0, 1, 2), so d1 ∈
A \ {b, 2}. If b = 0, we have d1 = 1 and d3 = 2, so d = 1. If b = 1, we have
d1 = 0 and d3 = 2, which gives d = 2. In any case, d ̸= b and d ∈ {0, 1},
thus (c, d) ∈ F 2

a,b. The case a = 1 is similar.

3. There is j ∈ {2, 3} such that cj = c1 = a. In such a case, we have dj = d1 ∈
A \ {b, 2} and so d ∈ {b, 2}, which gives (c, d) ∈ F 2

a,b.

4. c2 = c3 = 2. In such a case d2 = d3 = 2 and d = d1 ∈ {b, 2}, so (c, d) ∈ F 2
a,b.

This shows that F 2
a,b is compatible with A for every a, b ∈ {0, 1}.

Now we show that Ga is compatible with A for every a ∈ {0, 1}. Pick
ci, di, c, d ∈ A, where i ∈ [3], such that t(c1, c2, c3) = c, t(d1, d2, d3) = d and
(ci, di) ∈ Ga for all i ∈ [3]. We again distinguish three cases.

1. ci = di for all i ∈ [3]. In such a case c = d, so (c, d) ∈ Ga.

2. {d1, d2, d3} = {0, 1, 2}. Without loss of generality assume d1 = a, so c2 = d2
and c3 = d3. If t(d1, d2, d3) = a, we have (c, d) ∈ Da. If t(d1, d2, d3) ∈
A \ {a, 2}, we have t(c1, c2, c3) ∈ A \ {a, 2} and so c = d and (c, d) ∈ Ga.

3. There are i, j ∈ [3] such that i ̸= j and ci = di = cj = dj. In such a case,
we have c = d and so (c, d) ∈ Ga

4. There are i, j ∈ [3] such that i ̸= j and di = dj = a. In such a case, we have
d = a and so (c, d) ∈ Ga.

This shows that Ga is compatible with A for a ∈ {0, 1}.

The following lemma is crucial, although technical. Here we take advantage of
three facts. Firstly, we use that the n-ary part of a clone can be seen as |An|-ary
relation. Secondly, we observe that if we forbid the entry (2, . . . , 2) then Clon(A)
can be seen as the |An \ {(2, . . . , 2)}|-ary relation on {0, 1}. The third essential
component is realizing that we obtain a relation compatible with M, thus using
2.1 we can restrict our attention to the binary projections.
Lemma 6.3. An n-ary operation f on A is in EssClon(A) if and only if f(2, . . . , 2) =
2 and for all ai, bi ∈ A, where i ∈ [n], such that (a1, . . . , an), (b1, . . . , bn) ̸=
(2, . . . , 2), we have

(f(a1, . . . , an), f(b1, . . . , bn)) ∈ S,

where

S = {(ai, bi) | ai, bi ∈ {0, 1}; i ∈ [n]}
∪ {(ai, bj) | ai, bj ∈ {0, 1}; aj = 2 ∨ bi = 2} (6.1)
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Proof. Observe that for each f ∈ EssClon(A) and for each a1, . . . , an ∈ A we
have f(a1, . . . , an) = 2 iff ai = 2 for all i ∈ [n]. This is easy to show using
the compatibility of f with C2, T{0,1} and using Lemma 1.6 (compatibility with
C2 follows from the idempotency of A). Thus we only need to describe how
f ∈ EssClon(A) behaves on the other entries than (2, . . . , 2). For f ∈ EssClon(A)
we denote

f : An \ {(2, . . . , 2)} → {0, 1}
f : (a1, . . . , an) ↦→ f(a1, . . . , an).

Denote R = {f | f ∈ EssClon(A)}. Observe that R ⊆ {0, 1}An\{(2,...,2)}. Here
we should formally identify the elements of R with the elements of {0, 1}|An\{(2,...,2)}|.
After this identification, R can be seen as a relation on {0, 1}. Moreover, R is
actually a subuniverse of M|An\{(2,...,2)}|

0,1 (this is easy to check using the fact that
m↾{0,1} = maj). Therefore R ∈ Inv(M). Here Theorem 2.1 says that

R =
⋀︂

a,b∈An\{(2,...,2)}
a ̸=b

πa,b(R).

Here, again, we are identifying the elements of An \ {(2, . . . , 2)} with the
elements from |An \ {(2, . . . , 2)}|. To check f ∈ R for f ∈ An \ {(2, . . . , 2)}, it is
enough to verify (f(a), f(b)) ∈ πa,b(R) for all a, b ∈ An \ {(2, . . . , 2)}.

Now it only remains to describe πa,b(R) for fixed a, b ∈ An \ {(2, . . . , 2)}.
Fix a = (a1, . . . , an) and b = (b1, . . . , bn), where a, b ∈ An \ {(2, . . . , 2)}. We fix
g ∈ EssClon(A) (g can be an arbitrary term operation, given by a term, in which
all the variables from Xn occur, thus such g surely exists). For i, j ∈ [n] take
fi,j ∈ EssClon(A) defined as follows.

fi,j = t(πn
i , πn

i , t(πn
j , πn

j , g))

Clearly, fi,j(a) = ai if ai ̸= 2, and fi,j(a) = aj if ai = 2 and aj ̸= 2. From
this, it follows that πa,b(R) ⊇ S, where S is defined by Equation 6.1.

We show that πa,b(R) ⊆ S. For a contradiction, assume f(a1, . . . , an) = a,
f(b1, . . . , bn) = b and (a, b) /∈ S for some f ∈ EssClon(A), a, b ∈ {0, 1} and
ai, bi ∈ A, where i ∈ [n]. Because (a, b) /∈ S, we have {i | ai = a}∩{i | bi = b} = ∅
and (2, b), (a, 2) ̸= (ai, bi) for any i ∈ [n] (here we are implicitly using that A is
conservative and so there is i, j ∈ [n] such that ai = a and bj = b). We define
ai ∈ {0, 1} for every i ∈ [n] as follows.

ai =

⎧⎨⎩ai ai ̸= 2 ∨ bi = 2
a ai = 2 ∧ bi ̸= 2

From the compatibility of f with Ga it follows that f(a1, . . . , an) = a. Simi-
larly, define bi ∈ {0, 1} for every i ∈ [n] as follows.

bi =

⎧⎨⎩bi bi ̸= 2 ∨ ai = 2
b bi = 2 ∧ ai ̸= 2

From the compatibility with Gb, we get f(b1, . . . , bn) = b. We still have
{i | ai = a} ∩ {i | bi = b} = ∅, since we have (2, b), (a, 2) ̸= (ai, bi) for all i ∈ [n].
Define ci for all i ∈ [n] as follows.
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ci =

⎧⎪⎪⎨⎪⎪⎩
2 ai, bi = 2
1 ai = a

0 otherwise

Now we have (ai, ci) ∈ F 2
a,0 for all i ∈ [n], thus f(c1, . . . , cn) = 1. However, we

have (bi, ci) ∈ F 2
b,1 for all i ∈ [n], hence f(c1, . . . , cn) = 0. This gives the desired

contradiction and shows S = πa,b(R).

If we analyze the proof of Lemma 6.3 more closely, we realize that we proved
the following.

Corollary 6.4. Let f be an n-ary operation on A compatible with F 2
a,b and Ga

for all a, b ∈ {0, 1}, and f(a1, . . . , an) = 2 iff ai = 2 for all i ∈ [n]. Then
f ∈ EssClon(A).

This corollary gives us enough information to describe Inv(A).

Theorem 6.5. Inv(A) is generated by F 2
1,1, P0,1, G1, C2, and T{0,1}.

Proof. We prove Pol(F 2
1,1, P0,1, G1, C2, T{0,1}) = Clo(A). Let us start with the

inclusion Pol(F 2
1,1, P0,1, G1, C2, T{0,1}) ⊇ Clo(A) by checking the compatibility of

F 2
1,1, P0,1, G1, C2, and T{0,1} with A. We already checked the compatibility of

P0,1, T{0,1}, F 2
1,1, and G1 with A. The compatibility of C2 is obvious, since t is an

idempotent operation.
Now we show Pol(F 2

1,1, P0,1, G1, C2, T{0,1}) ⊆ Clo(A) for essential operations.
Let us have an n-ary essential operation f ∈ Pol(F 2

1,1, P0,1, G1, C2, T{0,1}). By the
compatibility with C2, we have f(2, . . . , 2) = 2. By the compatibility with T{0,1}
and Lemma 1.6, we have f(a1, . . . , an) = 2 iff ai = 2 for all i ∈ [n]. Because we can
pp-define F 2

a,b and Ga for all a, b ∈ {0, 1} just from P0,1, F 2
1,1, G1, we can use Corol-

lary 6.4 and we get f ∈ EssClon(A). This proves Pol(F 2
1,1, P0,1, G1, C2, T{0,1}) =

Clo(A).

Now we can finally describe the elements of EssClo(A).

Theorem 6.6. EssClon(A) consist of n-ary operations f on A such that there is
a family of ms-collections {FI}∅≠I⊆[n] satisfying

V ∈ FI =⇒ V ∪ (J \ I) ∈ FJ (6.2)

for each ∅ ≠ I ⊆ J ⊆ [n], and f is given by f(2, . . . , 2) = 2 and

f(a1, . . . , an) = a ⇐⇒ {i | ai = a} ∈ FI for I = {i | ai ̸= 2} (6.3)

for each a1, . . . , an ∈ A, a ∈ {0, 1}.

Proof. First let us have an n-ary operation f with a family of ms-collections
{FI}∅≠I⊆[n] satisfying Equations 6.3, 6.2 and f(2, . . . , 2) = 2. Clearly, such an
operation is compatible with C2. We show that f is compatible with F 2

1,1, G1,
T{0,1} and P0,1. Since FI is an ms-collection for each ∅ ̸= I ⊆ [n], we have the
compatibility of f with F 2

1,2 and P0,1 (because F 2
1,2 is equal to ≤0,1 ∪{(2, 2)} and
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P0,1 is equal to ̸=0,1 ∪{(2, 2)}). Since F 2
1,1 can be pp-defined from P0,1 and F 2

1,2,
we get that F 2

1,1 is compatible with f .
We show the compatibility with G1. Let us have ai, bi, a, b ∈ A, where i ∈ [n],

such that f(a1, . . . , an) = a, f(b1, . . . , bn) = b, and (ai, bi) ∈ G1 for all i ∈ [n].
Denote I = {i | ai ̸= 2} and J = {i | bi ̸= 2}. We have I ⊆ J . We assume
I ̸= ∅ (otherwise clearly b = 2 or b = 1). In such a case {i | ai = a} ∈ FI , so
{i | ai = a} ∪ J \ I ∈ FJ . We clearly have {i | bi = a} ∪ J \ I ∈ FJ . Here we
distinguish two cases. If {i | bi = a} /∈ FJ , we have a ̸= 1 and so {i | bi = 1} ∈ FJ

and b = 1. If {i | bi = a} ∈ FJ , we trivially get b = a. This shows that f is
compatible with Ga.

It is remains to check the compatibility with T{0,1}. Let us have ai, bi, ci, a, b, c ∈
A, where i ∈ [n], such that f(a1, . . . , an) = a, f(b1, . . . , bn) = b, f(c1, . . . , cn) = c,
and (ai, bi, ci) ∈ T{0,1} for all i ∈ [n]. Assume c = 2. So we have ci = 2 for all
i ∈ [n]. Because (ai, bi, ci) ∈ T{0,1} for all i ∈ [n], we get ai = bi for all i ∈ [n],
thus a = b and (a, b, c) ∈ T{0,1}. This shows that f is compatible with T{0,1}, so
f ∈ Clon(A). The operation f is essential, since f(2, . . . , 2) = 2 and if we change
one coordinate to a ∈ {0, 1}, then the result is a instead of 2. So f ∈ EssClon(A).

Now let us have f ∈ EssClon(A). Using the compatibility with C2, we get
f(2, . . . , 2) = 2, and, by the compatibility with T{0,1} and Lemma 1.6, we have
f(a1, . . . , an) ∈ {0, 1} if there is i ∈ [n] such that ai ∈ {0, 1}. For each S ∈ [n],
we define an operation fS : A|S| → A by fS(a1, . . . , a|S|) = f(b1, . . . , bn), where

bi =

⎧⎨⎩2 i /∈ S

aj if i is the j-th index in S

Because f is compatible with P0,1 and F 2
1,1, we get fS ∈ M0,1 for any ∅ ≠ S ∈

[n]. Because every operation in M0,1 is determined by an ms-collection, for each
S ∈ [n], we can fix an ms-collection FS on S defined as follows.

FS = {V ⊆ S | (ai = 1 ⇐⇒ i ∈ V ) ∧ (ai = 2 ⇐⇒ i /∈ S) =⇒ f(a1, . . . , an) = 1}.

For this family {FI}∅≠I⊆[n], Equation 6.3 holds.
It remains to check that Equation 6.2 also holds. Let us have ∅ ≠ I ⊆ J ⊆ [n]

and V ∈ FI . Let us have f(a1, . . . , an) = 1 for ai ∈ A, where i ∈ [n] and
I = {i | ai ̸= 2} and V = {i | ai = 1}. For all i ∈ [n], we define bi as follows.

bi =

⎧⎨⎩1 i ∈ J \ I

ai otherwise

Now we have (ai, bi) ∈ G1 for all i ∈ [n], thus (1, b) ∈ G1, which means
f(b1, . . . , bn) = 1. This implies V ∪ (J \ I) ∈ FJ . Thus we checked Equation 6.2,
which finishes the proof.
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6.2 The Clone of the Algebra TC
7

In this section we describe the clone of the algebra TC
7 . This algebra has a

single basic ternary operation t, defined as follows.

t(x1, x2, x3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

aff0,1(x1, x2, x3) x1, x2, x3 ∈ {0, 1}
min0,2(x1, x2, x3) x1, x2, x3 ∈ {0, 2}
min1,2(x1, x2, x3) x1, x2, x3 ∈ {1, 2}
0 (x1, x2, x3) ∈ {(0, 1, 2), (1, 2, 0), (2, 0, 1)}
1 (x1, x2, x3) ∈ {(2, 1, 0), (0, 2, 1), (1, 0, 2)}

For the rest of this section, we write A instead of TC
7 . We start, as in the

previous section, by checking the compatibility of T{0,1} with A.

Lemma 6.7. The relation T{0,1} is compatible with A.

Proof. Because {0, 2} is a universe of a semilattice subalgebra, by Corollary 2.16
we only have to check that t is compatible with D2,2. So let us have ai, bi, a, b ∈ A,
where i ∈ [3], such that t(a1, a2, a3) = a, t(b1, b2, b3) = b, and (ai, bi) ∈ D2,2 for
all i ∈ [3]. Without loss of generality assume a = 2. Then ai = 2 for all i ∈ [3],
thus bi = 2 for all i ∈ [3], and b = 2. Thus (a, b) ∈ D2,2, which shows that t is
compatible with D2,2. This shows that T{0,1} is compatible with A.

In the previous section, we used generalizations of ≤a,b and ̸=a,b. Here we use
a generalization of Sa,b, which is defined below.

Definition 6.2. Let a, b, c ∈ A. We define a ternary relation Hc
a,b as follows.

(x, y, z) ∈ Hc
a,b ⇐⇒ ((x, y, z) = (c, c, c)) ∨ ((x, y, z) ∈ Sa,b)

Indeed, Hc
a,b is a generalization of Sa,b. In particular we have that

(x, y, z) ∈ H2
1,0 ⇐⇒ x, y, z = 2 ∨ (x, y, z ∈ {0, 1} ∧ x + y + z = 0 mod 2).

Now we show the compatibility of H2
1,0 with A.

Lemma 6.8. The relation H2
1,0 is compatible with A.

Proof. We show that H2
1,0 is compatible with t. Let us have ai, bi, ci, a, b, c ∈ A,

where i ∈ [3], such that t(a1, a2, a3) = a, t(b1, b2, b3) = b, t(c1, c2, c3) = c, and
(ai, bi, ci) ∈ H2

1,0 for all i ∈ [3]. We distinguish four cases.

1. ai = 2 for each i ∈ [3]. In this case, we trivially get a = b = c = 2 since
bi = ci = 2 for each i ∈ [3].

2. ai ̸= 2 for each i ∈ [3]. In such a case, we have (ai, bi, ci) ∈ S1,0 for all i ∈ [3]
and thus (a, b, c) ∈ S1,0. Hence (a, b, c) ∈ H2

1,0.

3. There is exactly one j ∈ [3] such that aj = 2. Without loss of generality
assume j = 1. If a2 = a3, b2 = b3 and c2 = c3, we easily get (a, b, c) =
(a2, b2, c2) ∈ H2

1,0. Without loss of generality assume a2 ̸= a3. Then by the
definition of H2

1,0, we have b2 ̸= b3 or c2 ̸= c3. Without loss of generality
assume b2 ̸= b3. We distinguish two cases.
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(a) a2 = b2 and a3 = b3. Then we have c2 = c3 = 0 and thus a = b ∈ {0, 1}
and c = 0. This gives (a, b, c) ∈ H2

1,0.
(b) a2 ̸= b2. In such a case, we have a2 = b3, a3 = b2 and c1 = c2 = 1.

Thus we get a, b ∈ {0, 1}, a ̸= b and c = 1. This gives (a, b, c) ∈ H2
1,0.

4. There is exactly one j ∈ [3] such that aj ̸= 2. In such a case we have
(a, b, c) = (aj, bj, cj) ∈ H2

1,0.

Hence we proved H2
1,0 is compatible with t.

In the rest of this section, we will be mostly working with n-tuples. Before
we start, we need some more effective notation.

Definition 6.3. Let a = (a1 . . . , an) ∈ An and k ∈ A. Denote V k
a = {i | ai = k}.

The definition above allows us to quickly recognize where is some element
a ∈ A presented in a particular n-tuple.

Definition 6.4. Let a = (a1 . . . , an), b = (b1, . . . , bn) ∈ An and V 2
a = V 2

b . Denote
V = V 2

a . By the sum of a and b we understand the element of An denoted by

a ⊕V b = (a1 ⊕V b1, . . . , an ⊕V bn) ∈ An,

where V 2
a⊕V b = V 2

a and for all i /∈ V 2
a we have ai ⊕V bi = ai + bi mod 2. For a

set I = {i1, . . . , in} we write just ⨁︁
V,i∈I ai instead of ai1 ⊕V ai2 ⊕V · · · ⊕V ain.

We should observe that the last part of this definition makes sense since ⊕
is commutative and associative. Although this definition seems technical, it is
simple. The collection of all n-tuples from An with a fixed set V 2

a is actually a
vector space over {0, 1}. In this representation, we ignore coordinates where 2
appears. The addition in this vector space is exactly ⊕V 2

a . It is easy to see that
a ⊕ b = c ⇐⇒ (ai, bi, ci) ∈ H2

1,0 for each i ∈ [n] (here by ai we mean the i-th
coordinate of a and similarly for bi, ci).

The following definition introduces notation for vectors in the “canonical ba-
sis” of these vector spaces.

Definition 6.5. Let V ⊆ [n] and i ∈ [n] \ V . Denote by eV,i the n-tuple e =
(e1, . . . , en), where ej ∈ A for all j ∈ [n], V 2

e = V , and V 1
e = {j}.

As we discussed earlier, every a ∈ An can be seen as an element of a vector
space with basis {eV,i1 , . . . , eV,ik

}, where addition is ⊕V for some V ⊆ [n]. Thus
a can be written as the sum of eV,i.

We need one more technical definition. This definition is hard to motivate; in
essence, it will allow us to describe some particular elements of Clo(A).

Definition 6.6. For two n-ary operations f, g on A we define an operation f ∗ g
as t(f, g, g). For V ⊆ [n] and i, j ∈ [n] \ V we define an n-ary operation fV,i,j as

πn
i1 ∗ (πn

i2∗, . . . , (πn
in−1 ∗ πn

in
)),

such that there is l ∈ [n] satisfying πn
il+1

= πn
i , πin

l+2
= πn

j , (i1, . . . , il) is the
sequence of naturally ordered indices from V , and (il+3, . . . , in) is the sequence of
naturally ordered indexes from [n] \ (V ∪ {i, j}).
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The operations fV,i,j have a special property. They allow us to distinguish ba-
sis elements, since for fixed V ⊆ [n] and for all i, j ∈ [n]\V , we have fV,i,j(eV,j) = 1
if and only if i = j. We observe that this operation is clearly essential and so
fV,i,j ∈ EssClon(A). Now we have everything we need to describe EssClo(A).

Theorem 6.9. f ∈ EssClon(A) if and only if

f(a1, . . . , an) = 2 ⇐⇒ ai = 2 for all i ∈ [n], (6.4)

f(a) =
∑︂

i∈V 1
a

f(eV 2
a ,i) mod 2 for each a ∈ An \ {(2, . . . , 2)} (6.5)

and ∑︂
j∈[n]\V

f(eV,j) = 1 mod 2 for each V ⊆ [n]. (6.6)

Before we start with the proof, let us describe the main idea behind the proof
of the harder implication. We use a similar trick as in the proof of Lemma 6.3
from the previous section. We realize that operations in EssClon(A), if we forbid
the input (2, . . . , 2), are elements of {0, 1}An\{(2,...,2)}, thus EssClon(A) can be
somehow regarded as a relation on {0, 1}. This relation is compatible with Z2
and thus we may use the description of the compatible relations with Z2 given in
the second chapter. In the proof, we actually forbid also some inputs other than
(2, . . . , 2). However, the idea of the proof is similar.

Proof. First we show that f ∈ EssClon(A) satisfies Equations 6.4, 6.5 and 6.6.
Clearly, f satisfies Equation 6.4 since, by Lemma 6.7, f is compatible with C2
and T{0,1} (and using Lemma 1.6). We check f satisfies Equation 6.5 as well.
First, denote a = (a1, . . . , an), b = (b1, . . . , bn), and eV,i = (e1, . . . , en) for some
V ⊆ [n], and assume a ⊕ eV,i = b. This means (ai, ei, bi) ∈ H2

1,0 for all i ∈ [n].
Because H2

1,0 is compatible with A, we have (f(a), f(eV,i), f(b)) ∈ H2
1,0. From

f(eV,i) ̸= 2, we get
f(a) + f(eV,i) = f(b) mod 2.

Because every a ∈ An \ {(2, . . . , 2)} can be written as a sum of eV,i, induction
gives Equation 6.5. It remains to check Equation 6.6 for f . Fix V ⊊ [n]. Because
{1, 2} is a compatible unary relation with A (since {1, 2} is a subuniverse of A),
we have, by using Equation 6.4, that f(⨁︁

V,i∈[n]\V eV,i) = 1. By using Equation
6.5m we get Equation 6.6. This shows f ∈ EssClon(A) satisfies equations 6.4, 6.5
and 6.6.

Now we show the other (harder) implication. Denote

S = {eV,i | V ⊊ [n], i is not the last index in [n] \ V }.

Then each operation f ∈ EssClon(A) is clearly determined by its values on S
(this is exactly what we get from Equations 6.4, 6.5 and 6.6). For each f ∈
EssClon(A), denote the operation f restricted to S by f . We denote W =
{f | f ∈ EssClon(A)}. Clearly, W ⊆ AS and using the Equation 6.4 we get
W ⊆ (Z2)S. Here we should identify S with |S| and the elements of W with the
elements of A|S|. After this identification we get that W is |S|-ary relation on A.
Moreover, W is a subuniverse of (Z2)S, this is easy to check. So W is actually

49



compatible with Z2 and so W has to be an affine subspace of (Z2)S. If we show
W = (Z2)S, the proof will be complete.

Because W is an affine subspace of (Z2)S, elements of W can be described
as elements of (Z2)S satisfying some set of nontrivial linear equations. Pick one
such an equation

∑︂
v∈S

av · f(v) = b,

which holds for some coefficients av, b ∈ {0, 1} and for each f ∈ EssClon(A).
We show av = 0 for all v ∈ S. For a contradiction, pick the largest set V ⊆ [n]

such that there is i ∈ [n] satisfying v = eV,i ∈ S and av ̸= 0. Denote by j the last
index in [n] \ V . We know∑︂

v∈S

av · fV,i,j(v) −
∑︂
v∈S

av · fV,j,i(v) = 0.

Clearly, fV,i,j(w) = fV,j,i(w) for each w with V 2
w ⊉ V . By the assumption, we

have av = 0 for v = eU,i, where U ⊋ V . Thus we may write∑︂
k∈[n]\(V ∪{j})

aeV,k
· fV,i,j(eV,k) −

∑︂
k∈[n]\(V ∪{j})

aeV,k
· fV,j,i(eV,k) = 0.

Since fV,j,i(eV,k) = 0 for all k ∈ [n] \ (V ∪ {j}), and fV,i,j(eV,k) = 0 for all
k ∈ [n] \ (V ∪ {j, i}), we get

aeV,i
fV,i,j(eV,i) = aeV,i

= 0.

This gives the desired contradiction. Thus elements of W do not satisfy any
nontrivial equation. This shows W = (Z2)S, and the proof is finally complete.

The following theorem is just a simple consequence of the previous one.

Theorem 6.10. Inv(A) is generated by T{0,1}, H2
1,0, {1, 2}.

Proof. We check that Pol(T{0,1}, H2
1,0, {1, 2}) = Clo(A). The inclusion

Pol(T{0,1}, H2
1,0, {1, 2}) ⊇ Clo(A)

follows from the compatibility of T{0,1}, H2
1,0, and {1, 2} with t.

We already checked the compatibility of T{0,1} and H2
1,0 with t in Lemma 6.7

and 6.8. The compatibility of {1, 2} with t follows from the fact that {1, 2} is a
subuniverse of A.

For the other inclusion, assume that we have an essential n-ary operation f
compatible with T{0,1}, H2

1,0, and {1, 2}. We show that f satisfies the equations
in Theorem 6.9.

Since f is an essential operation compatible with T{0,1}, by Lemma 1.6 f
satisfies Equation 6.4.

We derive the other two equations similarly as in the proof of Theorem 6.9.
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Conclusion
In this thesis, we gave a description of 12 clones of minimal Taylor algebras

on three elements. A natural continuation of the thesis would be to describe
the remaining clones. The clone of the rock-paper-scissors algebra is already
described, e.g., in [Brady, 2022, Section 3.1]. A description of the clones of some
other algebras have been also sketched in that work. Namely, Inv(TN

3 ) in [Brady,
2022, Example 2.2.1], Inv(TP

2 ) in [Brady, 2022, Example 1.7.2], and Inv(TC
13) in

[Brady, 2022, Example 1.7.3].
The following basic question remains open: Does every minimal Taylor algebra

on three elements have finitely generated Inv(A)? We provided a positive answer
for 12 clones. The clone of the rock-paper-scissors algebra described in [Brady,
2022, Section 3.1] is also finitely generated. From Aichinger et al. [2014] and Barto
et al. [2021] it follows that every minimal Taylor algebra on three elements, which
does not have a semilattice subalgebra, has finitely generated Inv(A). Thus it
only remains to consider the clones of TC

1 , TC
4 , TC

6 , TC
8 , TC

9 , and TC
10.
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List of Used Relations
Let S ⊆ A and a, b, c ∈ A and n ∈ N.

(x) ∈ Ca ⇐⇒ x = a

(x, y, z) ∈ TS ⇐⇒ x = y ∨ z ∈ S

≤a,b = {(a, a), (a, b), (b, b)}

̸=a,b = {(a, b), (b, a)}

(x, y, z) ∈ Sn
0,1 ⇐⇒ x − y + z = 1 mod n

(x, y, z) ∈ Sn
1,0 ⇐⇒ x − y + z = 0 mod n

Sa,b = {(a, a, a), (a, b, b), (b, b, a), (b, a, b)}

(x, y, z) ∈ La,b ⇐⇒ x ∈ {a, b} ∧ (x = b =⇒ y = z)

Rσ = {(0, 0), (1, 1), (2, 0)}

Pa,b = {(a, b), (b, a), (c, c)}

Pa,b,c = {(a, b), (b, c), (c, a)}

(x, y) ∈ Oa,b ⇐⇒ x = a ∨ y = b

(x, y) ∈ Da,b ⇐⇒ x ̸= a ∨ y = b

(x, y) ∈ D−1
a,b ⇐⇒ x = a ∨ y ̸= b

(x, y) ∈ Ea,b ⇐⇒ x ̸= a ∨ y ̸= b

(x, y) ∈ Na ⇐⇒ y ̸= a

(x, y) ∈ N−1
a ⇐⇒ x ̸= a

(x, y) ∈ F c
a,b ⇐⇒ (x = c ⇐⇒ y = c) ∧ (x ̸= a ∨ y ̸= b)

(x, y) ∈ Ga ⇐⇒ x = y ∨ y = a

(x, y, z) ∈ Hc
a,b ⇐⇒ ((x, y, z) = (c, c, c)) ∨ ((x, y, z) ∈ Sa,b)
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