
BACHELOR THESIS

Viktória Hurtǐsová

Representing Images by Weighted
Finite Automata

Department of Algebra

Supervisor of the bachelor thesis: doc. Mgr. Štěpán Holub, Ph.D.
Study programme: Mathematics

Study branch: Mathematics for Information
Technologies

Prague 2022



I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In . . . . . . . . . . . . . date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature

i



Title: Representing Images by Weighted Finite Automata

Author: Viktória Hurtǐsová

Department: Department of Algebra

Supervisor: doc. Mgr. Štěpán Holub, Ph.D., Department of Algebra

Abstract: The goal of this thesis is to introduce weighted finite automata (WFA)
as a means of representing multi-resolution raster images. We explain the basic
concepts of weighted finite automata. Then we describe an encoding algorithm
that converts an image into a WFA and a decoding algorithm that can generate
back the original image. We then provide our implementation of the encoding
and decoding algorithms.

Keywords: automaton WFA image

ii



Contents

Introduction 2

1 Image Types and Their Representation 3
1.1 Finite Resolution Images . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Addressing Pixels . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Multi-resolution Images . . . . . . . . . . . . . . . . . . . . . . . 5

2 Weighted Finite Automata 8
2.1 Multiplying Two WFA . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Representing Images With WFA . . . . . . . . . . . . . . . . . . . 14

3 Image Generation And the Encoding Algorithm 18
3.1 Image Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Encoding Images Into WFA . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Smallest WFA . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Encoding of Colour Images . . . . . . . . . . . . . . . . . . 25

4 Implementation 26
4.1 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Decoding Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Encoding Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 27

Conclusion 28

Bibliography 29

List of Figures 30

A Attachments 31
A.1 User Documentation . . . . . . . . . . . . . . . . . . . . . . . . . 31

A.1.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A.1.2 Encoding Image . . . . . . . . . . . . . . . . . . . . . . . . 31
A.1.3 Decoding Image . . . . . . . . . . . . . . . . . . . . . . . . 32

A.2 Software and Electronic Attachments . . . . . . . . . . . . . . . . 32

1



Introduction
The idea of representing images with weighted finite automata (WFA) was first
introduced by Culik II, Karhumäki and Kari in the 1990s [1, 2], who have also
shown that this representation has many applications in image manipulation and
compression. We were mainly interested in representing multi-resolution images
by WFA. The main advantage of this representation is that images in different
resolutions can be generated from a single automaton. Simple inference algo-
rithms exist for constructing WFA representing given images. These algorithms
are given a finite-resolution raster image as an input and produce a relatively
small WFA as an output. The original image can be then efficiently generated
from the WFA.

The goal of this thesis is to introduce the basic concepts of weighted finite
automata and then present some of the algorithms for encoding images into WFA
and for decoding those automata back into images. Moreover, we present our
implementation of the encoding and decoding algorithms.

We start in chapter 1 by introducing an addressing scheme of pixels using
words over a four-letter alphabet together with the concept of multi-resolution
images. In chapter 2 we introduce weighted finite automata with their proper-
ties. In this chapter we also explain how we can represent images with WFA. In
chapter 3 we describe an algorithm for generating images from WFA and then we
describe an algorithm for encoding a raster image into a WFA. In chapter 4 we
will cover technical problems we encountered when implementing the encoding
and decoding algorithms, and propose solutions for those problems.

2



1. Image Types and Their
Representation
In this chapter, we give a formal definition of images with finite-resolution and
multi-resolution images, as well as an addressing scheme of pixels using words
over a four-letter alphabet. The addressing scheme will be used in all subsequent
chapters.

Most of the definitions are taken from [3], [4] and [5]. Also, the overall struc-
ture of this chapter is inspired by these articles.

1.1 Finite Resolution Images
Definition 1. A semiring R is a non-empty set on which are defined operations
of addition and multiplication and two constants 0 and 1 such that:

1. (R,+, 0) is a commutative monoid with an identity element 0,

2. (R, ·, 1) is a monoid with identity element 1 ̸= 0,

3. a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all a, b, c ∈ R,

4. 0a = 0 = a0 for all a ∈ R.
The semiring R is commutative if the monoid (R, ·, 1) is commutative.
Definition 2. A finite-resolution image is a digitalized picture that consists
of a rectangular array of w × h pixels, where each pixel contains a colour from a
semiring C of possible colours. The image can be written as a function

{0, 1, 2, . . . , w − 1} × {0, 1, 2, . . . , h− 1} → C.
In practice, the range is normally some predetermined interval such as [0, 1] or

a set {0, 1} where 0 is interpreted as black and 1 as white, while the intermediate
numbers represent the shades of grey. Images with C = {0, 1} are called bilevel
images and images with C = [0, 1] are greyscale. For coloured images, the colour
set is typically [0, 1]3, where the colour is represented as a vector with three
numbers representing the intensities of three colour components, for example,
red, green and blue for the RGB1 representation. The images with different
colour sets are shown in figure 1.1.

Because we use digital images, the colour is commonly quantized to 8 bits per
pixel (3 ·8 bits for colour images), which gives us 255 possible values for intensity.
In this thesis, to make the theory simpler, we set C = R for greyscale images and
C = R3 for colour images. Also, in the context of this thesis, we will only be
referring to the images whose dimensions are

w = h = 2k for some k ∈ Z+.

This simplification serves as a more straightforward way to explain how weighted
automata work with images.

At the end of this section, we talk about what changes we have to implement
to be able to work with images of different resolutions.

1RGB colour representation [6]

3



Figure 1.1: Bilevel, greyscale and colour images.

1.1.1 Addressing Pixels
Definition 3. Let Σ be a non-empty set of letters. Then

• a word w is a finite (or empty) sequence of letters s ∈ Σ, empty word is
denoted as ϵ,

• the set of all words over Σ is denoted as Σ∗,

• the set of all non-empty words is denoted as Σ+,

• the set of all words of length n is denoted as Σn,

• |w| is the length of the word w.
Typically, pixels in an image are addressed by their x- and y-coordinates. If

we translated those coordinates into words using the definition 3, we will get an
addressing scheme where each word would be of length 2, with the first letter being
the x coordinate and the second the y coordinate. Unfortunately, the alphabet
of those words would depend on the size of the image. However, to be able to
use automata on images, the alphabet needs to have a fixed size. Therefore, we
present a different addressing scheme.

The basic idea is to represent the pixels using words over the four-letter al-
phabet Σ = {0, 1, 2, 3}, where each pixel of a 2k × 2k image is addressed by a
word of length k. The addressing works as follows: First, the image is divided
into four quadrants. Each quadrant gets assigned an address using the letters of
our alphabet Σ , as shown in figure 1.2. Each of those quadrants is viewed as an
image of size 2k−1× 2k−1. They are subsequently divided into smaller quadrants,
whose addresses are now two-letter words. This process is repeated until we reach
depth k, where each image is of size 1× 1, i.e. they are single pixels.

In another words, the four quadrants of a sub-square with address w are
addressed by words w0, w1, w2 and w3, where wa for a ∈ Σ is a concatenation
of word w and the letter a. The whole picture is addressed by the empty word ϵ.
Example 1. Figure 1.3 shows an image of size 23 × 23 where each pixel is ad-
dressed by a word of length 3. The second illustration highlights a pixels with
address 0312.

Now we can define a 2k × 2k image as a function

fk : Σk → C

that assigns a colour c ∈ C to a pixel addressed by a word of length k.

4



0 1

2 3

Figure 1.2: The addresses of quadrants.

000 001

002 003

020

023022

021

201200

012

010 011

013

032

030 031

033

202 203

300 301

302 303

320

323322

321

312

310 311

313

332

330 331

333

100 101

102 103

120

123122

121

112

110 111

113

132

130 131

133

220

223222

221

212

210 211

213

232

230 231

233

2 3

1

00 01

02

032 033

030

Figure 1.3: The addresses of pixels in resolution 23 × 23 and the pixel with
address 0312, respectively.

Images of different sizes

As we have shown, the division of an image of size 2k×2k into four equal quadrants
works quite naturally. However, most real-world images are rectangular and do
not have dimensions aligned to the powers of 2. Working with images of arbitrary
dimensions would entail working with sub-rectangles rather than sub-squares,
which would be very complicated. Instead, for other resolution sizes, the picture
can be enclosed with auxiliary black pixels to form a picture with resolution
2k × 2k for some k ≥ 0.

Another option would be using a different alphabet. [7] shows an addressing
scheme with Σ = {0, 1}, which is able to deal with arbitrary picture sizes.

1.2 Multi-resolution Images
Definition 4. A multi-resolution image is a function

f : Σ∗ → C

that assigns a colour to each pixel in resolution 2k × 2k for all k ≥ 0.

5



If we restrict f to words of length k, such as fk = f|Σk
, then we get a 2k×2k im-

age. Therefore, we can view the multi-resolution image as a sequence f0, f1, f2, . . .
of finite-resolution images.

Another way to represent a multi-resolution image f with our addressing
scheme is by a quad-tree (a tree data structure where each node has four chil-
dren). The quad-tree representing a multi-resolution image is constructed as
follows: The root of the quad-tree is labelled as f(ϵ) and its four sons are labelled
left to right by the letters from Σ as f(0), f(1), f(2) and f(3) for each quadrant
(see figure 1.4). Every word w ∈ Σ is then an address of a unique node of the
quad-tree at depth |w|. The children of the node addressed by w are f(w0),
f(w1),f(w2) and f(w3). Therefore, each level k of the quad-tree represents the
finite-resolution image of size 2k × 2k.

f(ϵ)

f(0)

f(01) f(01) f(02) f(03)

f(1) f(2) f(3)

Figure 1.4: A quad-tree representing a multi-resolution image f .

We would like to point out that the definition 4 of a multi-resolution image
does not require any similarities between the finite-resolution images it contains.
But for our purposes, we define an average preserving multi-resolution image so
that each finite-resolution image fk is an approximation of the same infinitely
sharp image.

Definition 5. We say that the multi-resolution image f is average preserving,
or ap, if for all w ∈ Σ∗ holds

f(w) = 1
4 (f(w0) + f(w1) + f(w2) + f(w3)) .

The ap characteristic of the image means that for a given image, f(w) is the
average colour of its children. In this case, one can easily move from higher to
lower resolution by simply computing the averages of the intensities inside each
sub-square.

From another point of view, fk−1 is an interpolation of the next sharper im-
age fk and therefore, the sequence of finite-resolution images f0, f1, f2, . . . is a
sequence of sharper and sharper approximations of some multi-resolution image
f . Figure 1.5 shows finite-resolution approximations f2, f3, f4, f5, f6, f7 of an ap
multi-resolution image f .

6



f_2f_1 f_3

f_4 f_5 f_6

Figure 1.5: Finite resolution images f2, f3, f4, f5, f6, f7.

The set
F = {f | f : Σ∗ → R}

of all multi-resolution images is a linear space where the operation of addition
and multiplication by real numbers are defined pixel-wise as follows:

(f + g)(w) = f(w) + g(w) ∀w ∈ Σ∗

(r · f)(w) = r · f(w) ∀w ∈ Σ∗, r ∈ C

The set of the average preserving multi-resolution images is a linear subspace of
F .

The images with 2k×2k resolution also form a linear space that is isomorphic
to C4k . Thanks to this, we can use standard algorithms of linear algebra. For
example, we can express a finite-resolution image fk as a linear combination of
finite-resolution images ψ1, . . . , ψn as

fk = c1 · ψ1 + c2 · ψ2 + . . .+ cn · ψn

if such c1, . . . cn ∈ C exist.
These algebraic properties of our addressing scheme will be used in the en-

coding and decoding algorithms described in chapter 3.

7



2. Weighted Finite Automata
In this section, we will introduce weighted finite automata (WFA) as a generaliza-
tion of non-deterministic finite automata and mention some of their elementary
properties. Then we will show how we can apply the WFA in image represen-
tation. For this, we will use the addressing scheme with Σ as the four-letter
alphabet Σ = {0, 1, 2, 3} we introduced in the chapter 1.

Definition 6. A non-deterministic finite automaton (NFA) is specified by

• a finite set of states Q,

• a finite alphabet Σ,

• a transition function δ : Q× Σ ×Q→ {0, 1},

• a set of initial states I ⊆ Q,

• a set of final states F ⊆ Q.

Note, that in most literature, the transition function is defined as

δ′ : Q× Σ → P(Q),

where P(Q) denotes the power set ofQ. We changed that definition because it will
then be easier to generalize it to WFA. The relationship between our definition
and the common definition is as follows:

δ′(q, a) = {p | δ(q, a, p) = 1}.
The weighted finite automata, as we already mentioned, are generalized NFA.

Namely, NFA is only a special case of WFA over the boolean semiring. The gen-
eralization lies in the transition function. Whereas the transition function of NFA
returns only 0 or 1, which indicates whether the transition is in the automaton
or not, the transition function of WFA returns an element of a semiring, which
is called the weight of a transition.
Remark. In this chapter, R will denote an arbitrary semiring.

Definition 7. A weighted finite automaton over a semiring R is specified
by:

• a finite set of states Q, where |Q| = n,

• a finite alphabet Σ,

• a weight function δ : Q× Σ ×Q→ R,

• an initial distribution α : Q→ R,

• a final distribution β : Q→ R.

8



The WFA then defines a function f : Σ∗ → R as follows:

f(a1, a2, . . . , ak) =
∑︂

q0,...qk∈Q

α(q0) ·δ(q0, a1, q1) ·δ(q1, a2, q2) · . . . ·δ(qk−1, ak, qk) ·β(qk)

for all a1a2 . . . ak ∈ Σ∗.

If α(q) ̸= 0, we say that the state q is an initial state; if β(q) ̸= 0 we say that
q is a final state.

Definition 8. Let A be a WFA. We say that (q0, a1, q1, a2, . . . ak, qk) is a path of
length k in A for q0, . . . qk ∈ Q over a word a1, a2, . . . , ak ∈ Σk.

The weight of the path (q0, a1, q1, a2, . . . ak, qk) in A is the product of

• the initial distribution of q0,

• the weights of transitions from qi to qi+1 with label ak+1 for i = 0 . . . k − 1,

• the final distribution of qk.

Let word w = a1, a2, . . . , ak ∈ Σ∗. The function f defined by a WFA can be
read as follows: f(w) is obtained by taking all paths in the automaton, whose
labels form the word w. Then, f(w) is the sum of the weights of all such paths.

A more convenient representation of weight function δ can be written as

∀a ∈ Σ , ∀p, q ∈ Q : (Aa)p,q = δ(p, a, q)

where Aa ∈ Rn×n is a weight matrix of letter a. If the element (Aa)p,q = 0,
we say that there is no transition from state p to state q with label a. The
initial distribution can be described by a row vector I ∈ R1×n, where Iq = α(q)
for q ∈ Q; for simplicity of notation, we assume that Q = {0, 1, . . . , n − 1}.
Analogically we can describe the final distribution as a column vector F ∈ Rn×1

where Fq = β(q) for q ∈ Q.
We are aware that the notation of initial and final distribution vectors re-

sembles matrix notation, where capital letters denote matrices. Nevertheless, we
used this notation to maintain consistency with other articles about this topic.

Let w = a1, a2, . . . , ak ∈ Σ∗. Then we denote matrix Aw as

Aw = Aa1 · Aa2 · . . . · Aak
.

Lemma 1. Let be Aw for word w ∈ Σ∗. Then for all paths starting at state
qi ∈ Q and ending in qj ∈ Q over a word w is∑︂

q0,...qk∈Q
q0=qi,qk=qj

δ(q0, a1, q1)δ(q1, a2, q2) . . . δ(qk−1, ak, qk) = (Aw)qi,qj
.

Proof. For word v with length 1 the lemma holds. Now, let us assume, that
lemma holds for words with length k − 1.

9



Then for word w = a1, a2, . . . , ak of length k:

(Aw)qi,qj
= (Aa1 · Aa2 · . . . · Aak

)qi,qj

=
∑︂

ql∈Q

(Aa1)qi,ql
·

∑︂
q1,...qk∈Q

q1=ql,qk=qj

(Aa2 · . . . · Aak
)ql,qj

=
∑︂

ql∈Q

(Aa1)qi,ql
·

∑︂
q1,...qk∈Q

q1=ql,qk=qj

δ(q1, a2, q2) . . . δ(qk−1, ak, qk)

=
∑︂

ql∈Q

∑︂
q1,...qk∈Q

q1=ql,qk=qj

(Aa1)qi,ql
· δ(q1, a2, q2) . . . δ(qk−1, ak, qk)

=
∑︂

ql∈Q

∑︂
q1,...qk∈Q

q1=ql,qk=qj

δ(qi, a1, q1) · δ(q1, a2, q2) . . . δ(qk−1, ak, qk)

=
∑︂

q0,...qk∈Q
q0=qi,qk=qj

δ(q0, a1, q1) · δ(q1, a2, q2) . . . δ(qk−1, ak, qk)

In the third equality, we used the induction hypothesis.

Theorem 2. WFA A with transition matrices Aa for all a ∈ Σ, initial distribu-
tion I ∈ R1×n and final distribution F ∈ Rn×1, defines function f : Σ∗ → R as
follows:

f(w) = IAwF

for all w = a1, a2, . . . , ak ∈ Σ∗.

Proof. Let a1, a2, . . . , ak ∈ Σ∗. Then

f(w) =
∑︂

q0,...qk∈Q

α(q0)δ(q0, a1, q1)δ(q1, a2, q2) . . . δ(qk−1, ak, qk)β(qk)

=
∑︂

qi,qj∈Q

α(qi)(Aw)qi,qj
β(qj)

=
∑︂

qi,qj∈Q

Iqi
(Aw)qi,qj

Fqj

=
∑︂

qi∈Q

∑︂
qj∈Q

Iqi
(Aw)qi,qj

Fqj

= IAwF

In the second equality, we used the lemma 1.

Definition 9. A WFA A is average preserving (ap-WFA) if the following
applies:

(A0 + A1 + A2 + A3) · F = 4F

Note, that if the WFA is average preserving, then the final distribution F is
an eigenvector of matrix A0 + A1 + A2 + A3 corresponding to eigenvalue 4.

Definition 10. Let f be a function defined by a WFA A. We say f is average
preserving if for all w ∈ Σ∗ holds

f(w) = 1
4 (f(w0) + f(w1) + f(w2) + f(w3)) .

10



Theorem 3. Let A be a WFA. If A is average preserving, then the function f
defined by the WFA A is average preserving.
Proof. Let w ∈ Σ∗ be arbitrary. From theorem 2 of the function computed by
WFA we get

f(w) = IAwF = I · Aa1Aa2 . . . Aak
· F

Then ∑︂
a∈Σ

f(wa) =
∑︂
a∈Σ

IAwAaF

= IAw

⎛⎝∑︂
a∈Σ

Aa

⎞⎠F

= 4 · IAwF

= 4 · f(w)

In the third equality, we used the definition of average preserving WFA. This
proves, that f satisfies the definition of average preserving function for every
word w ∈ Σ∗, which means that f is average preserving.

Commonly, the WFA is drawn as a labelled, weighted directed graph, where
the initial and final distribution values are marked inside the nodes. The transi-
tion weights are drawn in parentheses after the label of the transition. Transitions
with weight 0 are usually omitted.
Example 2. Consider the WFA A over R = R below

1, 0 0, 1
2 0, 1

0, 1, 2, 3
(︂

1
4

)︂
1, 2, 3

(︂
1
4

)︂

3
(︂

1
4

)︂

0, 1, 2, 3
(︂

1
2

)︂

1, 2, 3
(︂

1
2

)︂ 0, 1, 2, 3 (1)

For example, the value f(03) is the sum of all twenty-seven paths whose label
reads 03, however, for clarity we will only write weights of paths starting in q0,
because it is the only initial state:

f(03) = 1 · 14 ·
1
4 · 0 + 1 · 14 ·

1
4 ·

1
2 + 1 · 14 ·

1
4 · 1 = 0 + 1

32 + 1
16 = 3

32
The matrix representation of A is:

I =
(︂
1 0 0

)︂
A0 =

⎛⎜⎜⎜⎝
1
4 0 0
0 1

2 0
0 0 1

⎞⎟⎟⎟⎠ A1 =

⎛⎜⎜⎜⎝
1
4

1
4 0

0 1
2

1
2

0 0 1

⎞⎟⎟⎟⎠

F =

⎛⎜⎜⎜⎝
0
1
2

1

⎞⎟⎟⎟⎠ A2 =

⎛⎜⎜⎜⎝
1
4

1
4 0

0 1
2

1
2

0 0 1

⎞⎟⎟⎟⎠ A3 =

⎛⎜⎜⎜⎝
1
4

1
4

1
4

0 1
2

1
2

0 0 1

⎞⎟⎟⎟⎠

11



The value of f(03) is calculated, using matrix representation, as follows:

f(03) = IA0A3F = 3
32 .

2.1 Multiplying Two WFA
Given an n-state WFA A and an m-state WFA B that define multi-resolution
functions f and g respectively, it is trivial to get fA(w) · fB(w) for some w ∈ Σ∗.
First, we will compute the value for f(w), then for g(w), and then we multiply
the those values.

However, what do we do if we want to use only one automaton to compute
fA(w) · fB(w)? For this, we will define the multiplication of two WFA because
combining two WFA by multiplication is a powerful tool used in a variety of
applications to create complex WFA from simpler ones. Also, we will use it in
our encoding algorithm in section 3.2.1.

The process of the multiplication of weighted automata is a generalization of
the standard multiplication algorithm for finite automata.

First, let us introduce a notation for this section:

• Let A be an n-state WFA A with set of states QA, alphabet ΣA, transition
matrices Aa for all a ∈ ΣA, initial distribution IA and final distribution FA

that defines multi-resolution function fA.

• Then let B an m-state WFA with set of states QB, alphabet ΣB, transition
matrices Ba for all a ∈ ΣB, initial distribution IB and final distribution FB

that defines multi-resolution function fB.

Then we create an nm-state WFA C as follows:

• a set of states Q = QA ×QB = {(pi, qj) | i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}},

• an alphabet Σ = ΣA ∩ ΣB,

• the transition matrices Ca ∈ Rnm×nm for all a ∈ Σ , where

(Ca)(pi,qj),(pk,ql) = (Aa)pi,pk
· (Ba)qj ,ql

for all pi, pk ∈ QA and qj, ql ∈ QB,

• an initial distribution I ∈ R1×nm where

I(pi,qj) = (IA)pi
· (IB)qj

for all (pi, qj) ∈ Q,

• an final distribution F ∈ Rnm×1 where

F(pi,qj) = (FA)pi
· (FB)qj

for all (pi, qj) ∈ Q.

12



Then the WFA C defines a function fC : Σ∗ → R as follows:

fC(w) = (fg)(w),

and from the theorem 2 we get that

fC(w) = ICwF

for every word w ∈ Σ∗.
Theorem 4. The WFA C created above defines a function fC as follows:

fC(w) = fA(w) · fB(w)

for every word w ∈ Σ∗.
Proof. Let w = a1 . . . ak ∈ Σ∗. Then
fA(w) · fB(w) =

=
⎛⎝ ∑︂

p0,...pk∈QA

(IA)p0(Aa1)p0,p1 · · · · · (Aak
)pk−1,pk

(FA)pk

⎞⎠ ·
·

⎛⎝ ∑︂
q0,...qk∈QB

(IB)q0(Ba1)q0,q1 · · · · · (Bak
)qk−1,qk

(FB)qk

⎞⎠
=

∑︂
p0,...pk∈QA

∑︂
q0,...qk∈QB

(IA)p0(Aa1)p0,p1 · · · · · (Aak
)pk−1,pk

(FA)pk
·

· (IB)q0(Ba1)q0,q1 · · · · · (Bak
)qk−1,qk

(FB)qk

=
∑︂

p0,...pk∈QA

∑︂
q0,...qk∈QB

(IA)p0(IB)q0(Aa1)p0,p1(Ba1)q0,q1 · . . .

· · · · (Aak
)pk−1,pk

(Bak
)qk−1,qk

(FA)pk
(FB)qk

=
∑︂

(p0,q0)...(pk,qk)∈Q

I(p0,q0)(Ca1)(p0,q0),(p1,q1) . . . (Cak
)(pk−1,qk−1),(pk,qk)F(pk,qk)

=
∑︂

(p0,q0),(pk,qk)∈Q

I(p0,q0)(Cw)(p0,q0),(pk,qk)F(pk,qk)

= ICwF = fC(w)

We used lemma 1 in the second last equality.

Note that the construction of initial and final distribution is analogous to the
construction of initial and final states when multiplying finite automata. When
we multiply two finite automata, the initial state of the resulting automaton is the
state that combines both initial states of the original automata. In other words,
the resulting finite automaton has the initial state where the multiplication of the
initial distribution of the original states is non-zero. Analogously, this applies to
the final distribution of WFA multiplication.

Another motivation behind describing the WFA multiplication was to be able
to create WFA calculating polynomials of several variables. It was shown in [8]
that each real polynomial P (x) with non-negative coefficients of degree d defined
in [0, 1] can be computed by a d + 1 state WFA and with defined multiplica-
tion there exists a WFA for every polynomial P (x1, . . . , xn) with non-negative
coefficient and defined in [0, 1].

The polynomials will be used in the encoding algorithm in section 3.2.1.

13



Example 3. In the figure 2.1 we can see automata generating the linear poly-
nomials constructed by algorithm from [8]. On the right, we see automaton xy
built by the two automata using the multiplication operation.

1, 1
2 0, 1

0, 1, 2, 3
(︂

1
2

)︂

1, 3
(︂

1
2

)︂ 0, 1, 2, 3 (1)

1, 1
2 0, 1

0, 1, 2, 3
(︂

1
2

)︂

2, 3
(︂

1
2

)︂ 0, 1, 2, 3 (1)

1, 1
4 0, 1

2

0, 1
2 0, 1

0, 1, 2, 3
(︂

1
4

)︂

2, 3
(︂

1
4

)︂

1, 3
(︂

1
4

)︂ 3
(︂

1
4

)︂

0, 1, 2, 3
(︂

1
2

)︂

1, 3
(︂

1
2

)︂

0, 1, 2, 3
(︂

1
2

)︂

2, 3
(︂

1
2

)︂

0, 1, 2, 3 (1)

Figure 2.1: WFA defining poylnomial functions x (above), y (below) and xy
(right).

2.2 Representing Images With WFA
In this section, we will use the addressing scheme from chapter 1 to represent
images with WFA.

A function f : Σ∗ → R defined by a WFA defines a multi-resolution image
from section 1.2, such that the colour of the pixel with address w ∈ Σ∗ is f(w).
From theorem 3 it holds, that if the WFA is ap than also the multi-resolution
image is ap.

As we mentioned in the section 1.1, the colours in digital images are typically
quantized to 8 bits per pixel. Therefore, in this section, we will be using the
weighted automata over an interval [0, 1] or [0, 1]3 instead the semiring R because
they can be easily mapped to the quantized 8 bits per pixel for greyscale and 24
bits for coloured images respectively.

Example 4. If we take the WFA from example 2, then the multi-resolution image
computed by the WFA is shown in figure 2.2.

Coloured images are composed from three different greyscale colour layers.
For example, the most widely used RGB format uses red, green, and blue colour
components. By using different initial distributions IR, IG, IB for each colour
layer, we can define colour images with only one WFA.

Example 5. Consider the following WFA:

14



Figure 2.2: An image generated by the WFA from example 2.

q1 q2

q3 q4

0, 1, 2, 3
(︂

1
4

)︂ 2, 3
(︂

1
4

)︂

1, 3
(︂

1
4

)︂ 3
(︂

1
4

)︂
0, 1, 2, 3

(︂
1
2

)︂

1, 3
(︂

1
2

)︂

0, 1, 2, 3
(︂

1
2

)︂ 2, 3
(︂

1
2

)︂
0, 1, 2, 3 (1)

with three initial distributions

IR =
(︂
0 1 0 0

)︂
IG =

(︂
0 0 1 0

)︂
IB =

(︂
−1

2 −
1
2 −

1
2 1

)︂
and final distribution F T =

(︂
1
2

1
2

1
2 1

)︂
.

With each initial distribution, the WFA defines a different greyscale image.
If we assign the individual greyscale images to the colour components (first dis-
tribution to the red, second to green and third to blue), we get the colour image
shown in figure 2.3.

If we change the initial distribution to:

IR =
(︂
0 1 0 0

)︂
IG =

(︂
0 0 1 0

)︂
IB =

(︂
1
2 0 0 1

)︂
We get the colour image shown in figure 2.4.

In the section 2.1 we discussed multiplication of WFA as well as using WFA
to represent polynomial functions with multiple variables. In figure 2.5 you can
see the images defined by the WFA from example 3.

As we mentioned in section 2.1, multiplication of two automata can be used
when creating complex WFA from simpler automata. In figure 2.7 you can see

15



+ + =

Figure 2.3: Three colour components defined by different initial distributions
and their resulting colour image (defined by WFA from example 5).

Figure 2.4: Coloured image defined by WFA from example 5 with different
initial distributions.

the product of the 4-state automaton from example 5 and a one-state automaton
generating the Sierpinski triangle (see figure 2.6) creating a four state WFA.

xy imagex y =

Figure 2.5: Automaton computing xy.

16



q1

0, 1, 2, 3(1)

Figure 2.6: WFA generating the Sierpinki triangle.

Figure 2.7: Image generated by a four-state WFA.

17



3. Image Generation And the
Encoding Algorithm
In this chapter we describe how we can generate images from WFA. Also, we
explain how an image can be encoded into a WFA.

3.1 Image Generation
Assume we are given a WFA A, and we want to generate the image it represents
with some specific finite-resolution 2k × 2k. We only give here the algorithm. If
you would like to know more, such as the time complexity, see [3].

Decoding Algorithm

1. For all non-empty words w ∈ Σ≤⌊ k
2 ⌋ compute the product IAw. For all

words v ∈ Σ≤⌈ k
2 ⌉ compute the product AvF . The calculations will proceed

gradually over the increasing length of words w and v.

2. Compute the product of all possible pairs (IAw)(AvF ) for all w ∈ Σ ⌊ k
2 ⌋ and

v ∈ Σ ⌈ k
2 ⌉.

The goal of the algorithm is to compute IAwF for all w ∈ Σk. In the first
step, we divide the computation into two halves. We need to proceed gradually
with increasing length of the words, but we are only interested in values for the
longest words. The second step only combines the intermediate results. This
approach is more efficient than computing IAwF directly.

3.2 Encoding Images Into WFA
In section 2.2 we explained how WFA can represent multi-resolution images.
We will now describe how we can create a WFA that represents a given multi-
resolution image. For simplicity, we will consider only greyscale images. This
restriction is not strict, since each colour component of a colour image can be
treated as a stand-alone greyscale image. Also, we will be working only with
ap multi-resolution images, because we need the ability to compute images with
lower resolutions from images with higher resolutions.

The algorithm will use self-similarities of the input image. Consider a multi-
resolution image f with a colour set C. If a sub-square of f is similar to some other
sub-squares of f in terms of multiplication by elements of C, then the automaton
will express this sub-square as a linear combination of the similar sub-squares.

Notation

Before we write down the algorithm, we need to introduce a notation which will
be then used in the algorithm. The notation was taken from the article [3].

Let us consider a set of images generated by a WFA A, where each image is
obtained from A by changing the initial distribution so that the initial distribution

18



value of state i is 1, and all other states have initial distribution 0. In another
words, let us denote a multi-resolution image ψi for every i ∈ QA as follows:

ψi(w) = (AwF )i, w ∈ Σ∗.

We say that a multi-resolution image ψi is an image of state i.
This notation gives us a recursive relationship between the multi-resolution

images ψi:

• ψi(ϵ) = Fi, which means that the final distribution consists of average
intensities of the state images.

• For each a ∈ Σ and w ∈ Σ∗

(ψi)a(w) = ψi(aw) = (AawF )i = (AaAwF )i

= (Aa)i,1(AwF )1 + (Aa)i,2(AwF )2 + · · ·+ (Aa)i,n(AwF )n

= r1ψ1(w) + r2ψ2(w) + . . .+ rnψn(w)

where rj = (Aa)ij is the weight of the transition from state i to state j. In
other words, the i-th row of transition matrix Aa provides the coefficients
r1, . . . , rn for the linear combination of the state images which gives us (ψi)a.
Since the coefficients rj are independent of the word w, we can write

(ψi)a = r1ψ1 + r2ψ2 + . . .+ rnψn

With this interpretation, we can express the quadrant a of the image ψi

as the linear combination of state images ψ1, . . . , ψn with coefficients of the
i-th row of the transition matrix Aa.

• The multi-resolution image f defined by the WFA A can be expressed as

f = I1ψ1 + I2ψ2 + . . .+ Inψn.

Specifically, the initial distribution I gives the coefficients to express the
multi-resolution image f as a linear combination of state images ψ1, . . . , ψn.

Example 6. Let us consider following the WFA with the images ψi shown inside
the nodes.

1, 2
(︂

1
2

)︂ 2
(︂

1
2

)︂

0 (1)

1, 2 (1)

0 (1)

0, 1, 2, 3
(︂

1
2

)︂ 2, 3
(︂

1
4

)︂
0, 1, 2, 3 (1)

19



Here we use [0, 1] as the colour set where 0 is black and 1 is white. Figure 3.1 shows
the linear expressions denoted by (ψ1)1 and (ψ1)2. Note, that the transitions in
the fourth state (down-right) of the automaton indicate that all quadrants of ψ4
are the same as the image ψ4.

= 1
2 ·

(ψ1)1 ψ1

= 1
2 · + 1

2 ·

(ψ1)2 ψ1 ψ2

Figure 3.1: Linear combination of images expressing (ψ1)1 and (ψ1)2 from ex-
ample 6.

Encoding Algorithm

We will show how we can find a WFA that represents a given multi-resolution
image. The outline of the encoding algorithm is cited from [3]:

Input: multi-resolution image ψ

Variables: n : number of states in the automaton so far
ψj : image of state j, 1 ≤ j ≤ n

i : first non-processed state

1. n← 1, i← 1, ψ1 ← ψ

2. For all quadrants a = 0, 1, 2, 3 do:

a) If ∃r1, . . . rn ∈ R such that (ψi)a = r1ψ1 + r2ψ2 + . . .+ rnψn then add
the transitions

i j
a (rj)

for all j = 1, 2, . . . n.
b) Else create a new state: Set n ← n + 1, ψn ← (ψi)a and add the

transition

20



i n
a (1)

3. i← i+ 1. If i ≤ n go to 2.

4. Initial distribution: I1 = 1, Ii = 0 for i = 2, 3 . . . , n
Final distribution Fi = ψi(ϵ) for i = 1, 2 . . . , n

For better understanding, we will demonstrate how the algorithm works in
the following example.
Example 7. The input for the algorithm will be the following multi-resolution
image:

Let us find a WFA that represents this image. We assign state q1 to the whole
image ψ, therefore ψ1 = ψ. We then process the four quadrants of ψ1 starting
in the bottom-left quadrant (ψ1)0. We can see that this quadrant contains an
image that cannot be expressed as a linear combination of previously processed
states, therefore we create a new state q2 for this quadrant. The quadrants (ψ1)1
and (ψ1)2 are the same as the input image, so we create new transitions from the
state q1 to q1 with labels 1 and 2, both weights being 1. Next, we process the
quadrant (ψ1)3. The quadrant is the same as the input image, but with only half
the intensity. Therefore, we create a new transition from q1 to q1 labelled 3 with
weight 1

2 .
Now we will process the new state q2. For quadrant (ψ2)0 we create a new

state q3. Both quadrants (ψ2)1 and (ψ2)2 are identical to the image in state q2
and the quadrant (ψ2)3 contains the zero image, which means there will be no
transition from state q2 labelled 3.

At last, all quadrants of q3 are identical to the image ψ3, so there will be four
transitions from q3 to q3 with labels 0, 1, 2, 3 all with weight 1.

The initial and final distributions are:

I =
(︂
1 0 0

)︂
F =

⎛⎜⎜⎜⎝
1
3
1
2

1

⎞⎟⎟⎟⎠
The resulting automaton is

1, 1
3 0, 1

2 0, 13
(︂

1
2

)︂
1, 2 (1)

0 (1)

1, 2 (1)

0 (1)

0, 1, 2, 3 (1)

21



According to the following theorem, the algorithm produces an ap-WFA with
the minimal number of states that precisely defines the input image, assuming
such an automaton exists. Although the theorem and its proof can be found in
article [1], we felt it was crucial to include it here because it emphasizes several
important properties of the encoding algorithm.

Theorem 5. [1]

• Multi-resolution image ψ can be generated by a WFA if and only if the
multi-resolution images

(ψ)w for all w ∈ Σ∗

generate a finite-dimensional vector space. The dimension of the vector
space is the same as the smallest number of states in any WFA that repre-
sents ψ.

• If ψ can be represented by a WFA, then the algorithm above produces a
WFA with the minimum number of states.

• If ψ is average preserving then the algorithm produces an average preserving
WFA.

Note that in practice, the algorithm will get as an input only a finite-resolution
image of size 2k × 2k. Therefore, if we go deeper than depth k in the image’s
quad-tree, we do not get any new information, i.e. we only copy a node’s value
to all its children. As a consequence, we do not care about nodes deeper than k.

We say that a sub-image ψw for some w ∈ Σ∗ has depth dw = k− |w|. When
the algorithm searches for a linear combination that expresses the sub-image
ψw (step 2.a), in practice we only need to consider quad-trees up to depth dw.
Therefore, even in images with greater depth than dw it is enough to only use
quad-tree nodes up to depth dw. We can do that due to the ap property of ψ.
Because the algorithm runs in breath-first manner, we are guaranteed that all
images available for the linear combination have depth at least dw.

3.2.1 Smallest WFA
By using the algorithm 3.2 we were guaranteed that the resulting WFA has a
minimal number of states, but on the other hand, it is not necessarily minimal
with respect to the number of edges. The resulting WFA has a high number of
transitions because the last details of the image often require a significant increase
in the number of transitions in the WFA. However, we can slightly modify the
algorithm 3.2 so that the resulting WFA will not have a minimal number of states,
but the sum of its transitions and states will be minimal. The modified algorithm
is described in [3].

During processing the image ψi in the algorithm 3.2 we have two options how
to process its quadrants:

1. try to express the current sub-image with a linear combination of the images
which are available now,

2. or create a new state with the quadrant’s image and process its quadrants.

22



In our algorithm, rather than always choosing the option 1. if such a linear com-
bination exists, we will compare the two alternatives, and choose the one that
yields a smaller automaton. The size of the automaton will be expressed as a
sum of the number of states and the number of transitions.

However, before deciding which alternative to choose, we must completely
process the new state created in 2. to do an accurate comparison between the
two options. Therefore, we go from processing the states in breath-first order to
depth-first order: the new state created by a quadrant is processed before moving
on to the next quadrant. For this reason, it only makes sense to make the new
algorithm recursive.

The next modification of the algorithm is that a new state is added only
after its quadrants are processed. Edges back to states that have not yet been
completely processed are problematic since it is not yet clear what those states’
images look like. Therefore, the image of the unprocessed state is not available
for the linear combination of its sub-quadrants. This new condition also prevents
the creation of any loops in the WFA.

Because we do not permit unprocessed states in the linear combination, we
need to have at least one processed state at the start of the algorithm so we can
calculate the linear combinations of the sub-quadrants. Therefore the WFA has
to be initiated with some fixed images ψ1, . . . , ψN , which will be called the initial
basis. We will use the same images as in [3], which are generated by the automata
representing the linearly independent quadratic polynomials 1, x, y, xy, x2 and
y2 that we talked about in section 2.1.

Recursive Encoding Algorithm

Input: multi-resolution image ψ
Global variables:

n : number of states in the automaton so far, initialized with N

N : number of images in the initial basis
ψ1, . . . ψN : images in the initial basis

ψi : image of state i, 1 ≤ i ≤ n

make wfa(ψi, max):
1. If max < 0 then

return(∞)
2. Set cost ← 0
3. For quadrants a = 0, 1, 2, 3 do:

a) If ∃ r1, . . . rn ∈ R such that (ψi)a = r1ψ1 + r2ψ2 + . . .+ rnψn then
cost1 ← number of non-zero coefficients rj

else
cost1 ←∞

b) Set n0 ← n, n← n+ 1, ψn = (ψi)a

cost2 ← 1 +make wfa(ψn,min{max− cost, cost1} − 1)
c) If cost2 ≤ cost1:

• cost← cost+ cost2

else

23



• cost← cost+ cost1
• remove all transitions from states n0 + 1, . . . , n
• remove all states n0 + 1, . . . , n
• set n← n0

• add transitions from state i to j with label a and weight rj, for
rj ̸= 0

4. If cost ≤ max then
return(cost)

else
return(∞)

The new algorithm now consists of method make wfa that is called recursively,
and a global state1 where the resulting WFA is built. The method returns the
cost of processing the four quadrants of supplied image ψi. However, if the cost
is greater than the value max, an infinite cost is returned instead to indicate that
no improvement over the target value max was obtained.

Before the first call of the method make wfa, we increment n by 1 (so that
now n = N + 1) and then create a new state N + 1 for the input image ψ. The
first call to make wfa is with the image ψN+1 and max =∞.

The most important step of the algorithm is the third step where the algorithm
is trying to express the quadrants of the input image. First, we try to express the
quadrant as a linear combination of the processed images. Second, we create a
new state for the quadrant and recursively try to approximate its quadrants. The
costs of both alternatives are stored in the two variables cost1 and cost2. cost1 is
the number of non-zero coefficients rj of the linear combination, which is equal
to the number of transitions potentially added to the WFA if the first alternative
is chosen. cost2 is the cost of creating a new state and the cost of the recursive
processing of its quadrants. In step 3.c the algorithm chooses the alternative with
a lower cost.

The max argument serves as a mechanism for stopping the recursion. It gets
propagated by the expression min{max− cost, cost1}− 1. The first argument of
the min function simply propagate the current max value while subtracting the
cost of the current recursion step. The subtracted 1 indicates the cost of creating
a new state in the automaton. The second argument is only used when a linear
combination is found in step 3.a. The recursion is stopped when the processing
of the image ψn costs more than using the linear combination.

When the recursive algorithm returns and the alternative with adding the
transitions is better, we have to remove all the transitions and states added during
the recursive call and add the transitions expressing the linear combination found
in step 3.a. When the algorithm decides that the better alternative is the creation
of the new state instead, the only thing we need to do is adding the cost of creating
and processing this state to the total cost.

The initial and final distributions are calculated the same way as in the en-
coding algorithm 3.2. However, the initial distribution will look different because
the first N states belong to the basis. Therefore, every state will have an initial
distribution of 0, except for the state representing the input image.

1We know that the word state usually refers to a state of an automaton, but here we are
referring to a state of the algorithm.

24



3.2.2 Encoding of Colour Images
We talked in section 2.2 about how we can express a colour image as three
greyscale images with different initial distributions for each colour component
(red, green and blue). However, it is possible to only build one automaton with
only one initial distribution. To encode the colour image, we concatenate all
three colour layers (the greyscale images of the colour components) to a single
greyscale image, where each colour layer occupies one quadrant (see figure 3.2).
The remaining quadrant can be left black. This composite image will be used as
an input for the encoding algorithm.

Figure 3.2: Concatenation of colour layers.

This will not change the way we generate images from the resulting WFA,
because we can assign each colour component the initial distribution IAa where
a ∈ Σ depends on the quadrant where the colour components’ image is located.
For example, we see in figure 3.2 that the greyscale image representing the red
colour component is located in a quadrant with the address 2. Therefore, when
generating, its initial distribution will be IR = IA2.

25



4. Implementation
In this chapter, we cover technical problems we encountered when implementing
the encoding algorithm (section 3.2.1) and the algorithm for generating images
from WFA (section 3.1), and propose solutions for those problems. In the pro-
gram, we refer to the algorithm of generating images as the decoding algorithm.

The program is available in the appendix A.2. The implemented algorithms
can be run using the program’s command line interface. Installation and input
parameters are described in the appendix A.1 of the thesis.

Used Technologies

The application was written in C#, because the author of this thesis has the
most experience with this programming language. We used the .Net Core 3.1
framework.

External Dependencies

We built the applicatoin using Alglib [9] and Extreme Optimalization [10]
libraries. Both these libraries are used for numerical computations. They provide
a broad set of algorithms for linear algebra that were needed in the application.

4.1 Data Structures
The most important data structure of the application is the data structure rep-
resenting the weighted finite automata. If we imagine the WFA as an oriented
graph where transitions are edges and states are the vertices, the best option is
to represent the WFA as an adjacency list of the transitions — a list of all
transitions with non-zero weight. This representation of WFA provides us with
better manipulation of the transitions and states, mainly during the encoding
algorithm. Also, the encoding algorithm we used creates WFA with very few
non-zero weights, so this representation is more memory-efficient than an adja-
cency matrix.

Unfortunately, the decoding algorithm needs the matrix representation of
WFA. For this purpose, we have to convert the adjacency list to adjacency ma-
trices.

4.2 Decoding Algorithm
As we mentioned in section 2.2, each colour component has its own initial dis-
tribution. When decoding a colour image using the decoding algorithm from
section 3.1, we need to calculate IAw for w ∈ Σ≤⌊ k

2 ⌋ for each colour component
separately. On the other hand, AvF for v ∈ Σ≤⌈ k

2 ⌉ is the same for all colour
components — they do not depend on the initial distribution.

26



4.3 Encoding Algorithm
The biggest challenge in implementing the encoding algorithm from section 3.2.1
was to implement the step 3.a, where we try to find a linear combination of the
state images.

In the first iterations of the algorithm, we are essentially trying to find a
solution for a system of linear equations with many more equations than vari-
ables. Such systems rarely have an exact solution. Therefore, we tried to use
the least-squares method [11] to get an approximate solution. However, because
of approximation errors, the least-squares method did not find exact solutions if
they existed. Moreover, the recursion stopped too early and the resulting WFA
were very imprecise representations of the input images.

We tried to solve this problem by searching for a single number rj ∈ R such
that (ψi)a = rj · ψj. If we succeeded, we would use it instead of the least-squares
result. Unfortunately, this approach was time-consuming and the program was
therefore very slow. We tried restricting this step only to images larger then or
as large as the image being processed. Unfortunately, this simplification did not
yield any significant speed-up.

After several more attempts to improve this step of the algorithm, we arrived
at the following implementation:

• we try to find rj only for a fixed number of images,

• if we do not succeed, we use the least-squares method, where we use the
result only if the error is lower than some threshold,

• otherwise, we say there is no linear combination and proceed deeper into
the recursion.

27



Conclusion
In this thesis, we started by defining an addressing scheme for finite and multi-
resolution images. Then we introduced weighted finite automata as a general-
ization of non-deterministic finite automata. Later, we have shown how WFA
can represent multi-resolution images. Finally, we described algorithms for gen-
erating images from WFA and for encoding images into WFA and provided an
implementation of those algorithms.

We have learned that WFA can have some nice mathematical properties, for
example the average preserving property. Also, they allow interesting manipu-
lations with images they represent. Their ability to represent multi-resolution
images can have practical applications, especially when we need the same image
in many different sizes.

Unfortunately, when implementing the encoding algorithm we found out that
the pure version is not computationally feasible. We tried to come up with some
optimizations, which allowed us to use the algorithm at least for small images.
However, for practical applications, even more optimizations are needed.

For full transparency, we would like to note that the program was also used
as a final project for a programming lecture at the Charles University.

28



Bibliography
[1] Karel Culik II and Jarkko Kari. Image compression using weighted finite

automata. Computers & Graphics, 17(3):305–313, 1993.

[2] Karel Culik and Jarkko Kari. Digital images and formal languages. In
Handbook of formal languages, pages 599–616. Springer, 1997.

[3] Jarkko Kari. Image processing using finite automata. Recent Advances in
Formal Languages and Applications, 25:171–208, 2006.

[4] Karel Culik II, Jarkko Kari, et al. Computational fractal geometry with wfa.
Acta Informatica, 34(2):151–166, 1997.

[5] Jürgen Albert and Jarkko Kari. Digital image compression. In Handbook of
weighted automata, pages 453–479. Springer, 2009.

[6] Wikipedia contributors. Rgb color model — Wikipedia, the free encyclope-
dia, 2022. [Online; accessed 20-July-2022].

[7] Ullrich Hafner. Asymmetric coding in (m)-wfa image compression. preprint,
1995.

[8] Karel Culik, II and Juhani Karhumäki. Finite automata computing real
functions. SIAM Journal on Computing, 23(4):789–814, 1994.

[9] ALGLIB LTD. Alglib, 1999. [Online; accessed 26-Jun-2022].

[10] Extreme Optimization. Extreme optimization numerical libraries for .net,
2003. [Online; accessed 19-July-2022].

[11] Wikipedia contributors. Least squares — Wikipedia, the free encyclopedia,
2022. [Online; accessed 21-July-2022].

29



List of Figures

1.1 Bilevel, greyscale and colour images. . . . . . . . . . . . . . . . . 4
1.2 The addresses of quadrants. . . . . . . . . . . . . . . . . . . . . . 5
1.3 The addresses of pixels in resolution 23 × 23 and the pixel with

address 0312, respectively. . . . . . . . . . . . . . . . . . . . . . . 5
1.4 A quad-tree representing a multi-resolution image f . . . . . . . . 6
1.5 Finite resolution images f2, f3, f4, f5, f6, f7. . . . . . . . . . . . . . 7

2.1 WFA defining poylnomial functions x (above), y (below) and xy
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 An image generated by the WFA from example 2. . . . . . . . . . 15
2.3 Three colour components defined by different initial distributions

and their resulting colour image (defined by WFA from example 5). 16
2.4 Coloured image defined by WFA from example 5 with different

initial distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Automaton computing xy. . . . . . . . . . . . . . . . . . . . . . . 16
2.6 WFA generating the Sierpinki triangle. . . . . . . . . . . . . . . . 17
2.7 Image generated by a four-state WFA. . . . . . . . . . . . . . . . 17

3.1 Linear combination of images expressing (ψ1)1 and (ψ1)2 from ex-
ample 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Concatenation of colour layers. . . . . . . . . . . . . . . . . . . . 25

30



A. Attachments

A.1 User Documentation
In this attachment, we will describe how to install the program and use it.

A.1.1 Installation
Run the installation package Installer.msi included in the attachment A.2,
directory to install WFA Convertor on your computer. Follow the installer’s
instructions. Run the WFA Convertor.exe to launch WFA Convertor after the
installer is finished.

After the application is installed and started the user has to enter the param-
eters for encoding and decoding. The first is for encoding images into WFA, the
letter is for generating images from WFA.

A.1.2 Encoding Image
The encoding algorithm will take an image given by the user and convert it into
WFA.

Input Parameters

The parameters for encoding an image must bein the following format:
encode <image>.

where
• the keyword encode indicates that you have chosen the encoding mode,

• <image> is a path to the image file. The path can be either absolute
or relative to the application’s location in the file system. The program
supports images in the following formats: BMP, JPG, PNG, TIFF. If the
image is in a different format, the program will either not be able to process
it and will write out an error message, or the resulting WFA may not
represent the image.

For example, a correct input for encoding is
encode C:\Users\MyName\Desktop\pictures\garden.png

Because the algorithm builds a WFA that represents the image exactly, the time
for encoding can take significant time (even tens of minutes, depending on the
image size and complexity). That is why we advise you to encode only images
with a size at most 512× 512 px.

Output

The resulting automaton will be saved in the same directory as the input image,
with the same name but with the suffix .wfa. If there already is a WFA file with
the same name, the program will ask you, if you want to overwrite the existing
file. If not, the program will ask you to enter a new name of the file. Please, just
write the name without the directory path or suffix.

31



A.1.3 Decoding Image
The decoding algorithm generates an image from an input WFA.

Input Parameters

The parameters for decoding an image must bein the following format:
decode <WFAFile> [depth ]

where

• keyword decode indicates, that you have chosen the decoding mode.

• <WFAFile>is a path to the WFA file. The path can be either absolute or
relative to the application’s location in the file system.

• [depth ] is an optional parameter. The parameter indicates how deep into
the WFA the algorithm goes. If the parameter is not supplied, the decoder
uses the native resolution of the encoded image.
The parameter must be in the format d=<value>. The <value> must be
a positive integer number determining the chosen depth. If the value has a
the wrong format or is negative, the program will write an error message.

For example, a correct input for decoding is
decode C:\Users\MyName\Desktop\pictures\garden.wfa d=8

Output

The output is a decoded PNG image. It will be saved in the same directory
as the input WFA file with the same name as the WFA. If there already is an
image with the same name, the program will ask you, if you want to overwrite
the existing image. If not, the program will ask you to enter a new name of the
image. Please, just write the name without the directory path or suffix.

A.2 Software and Electronic Attachments
This attachment is included in electronic format as an archive. Below is the
structure of the archive.

root
WFA Convertor

Installer - project for building a Windows installer
WFA Compression - C# application WFA Convertor
WFA Lib - C# library for data structures and algorithms
WFA Convertor.sln - Visual Studio solution file

WFA Convertor Installer
Installer.msi - Installer of the WFA Convertor application

README.md - basic startup instructions

32


	Introduction
	Image Types and Their Representation
	Finite Resolution Images
	Addressing Pixels

	Multi-resolution Images

	Weighted Finite Automata
	Multiplying Two WFA
	Representing Images With WFA

	Image Generation And the Encoding Algorithm
	Image Generation
	Encoding Images Into WFA
	Smallest WFA
	Encoding of Colour Images


	Implementation
	Data Structures
	Decoding Algorithm
	Encoding Algorithm

	Conclusion
	Bibliography
	List of Figures
	Attachments
	User Documentation
	Installation
	Encoding Image
	Decoding Image

	Software and Electronic Attachments


