
MASTER THESIS

Václav Ryšlink

Methods of Input Segmentation for
Simultaneous Speech Translation

Institute of Formal and Applied Linguistics

Supervisor of the master thesis: doc. RNDr. Ondřej Bojar, Ph.D.
Consultant: Mgr. Aleš Tamchyna, Ph.D.

Study programme: Computer Science
Study branch: Artificial Intelligence

Prague 2022

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

Na vzniku této práce se př́ımo pod́ılelo mnoho lid́ı, kterým bych rád touto cestou
srdečně poděkoval. Mým oběma školitel̊um, pán̊um Ondřeji Bojarovi a Aleši
Tamchynovi, za opravdu nespočet setkáńı a diskuźı, za komentáře k finálńımu
textu a obecně za skvělý př́ıstup a vedeńı. Dominikovi Macháčkovi za vytvořeńı
ESIC datatasetu a rozuzleńı několika témat. Pańı Věře Klaudové za poskytnut́ı
lingvistického pohledu na věc a za pomoc při organizaci anotace. A nakonec
i všem anotátor̊um, bez jejichž pomoci by v této podobě tato práce nemohla
vzniknout.

Kromě výše zmı́něných mělo na vznik této práce také, ač nepř́ımý, tak velmi
podstatný vliv i moje nejbližš́ı okoĺı. Kamarádi ze školy a všelijakých jiných
kout̊u, nebo kolegové z práce, kteř́ı se mnou měli po celou dobu trpělivost.

Ze všeho nejv́ıc bych chtěl nakonec ale vyslovit to největš́ı možné d́ıky svým
nejbližš́ım – své rodině, která mě až do tohoto okamžiku dokázala dovést, a to
od úplného začátku.

ii

Title: Methods of Input Segmentation for Simultaneous Speech Translation

Author: Václav Ryšlink

Institute: Institute of Formal and Applied Linguistics

Supervisor: doc. RNDr. Ondřej Bojar, Ph.D., Institute of Formal and Applied
Linguistics

Consultant: Mgr. Aleš Tamchyna, Ph.D.

Abstract: Segmentation methods are an essential part of the simultaneous ma-
chine translation process because, in the ideal case, they split the input into
chunks whose translation is independent of any forthcoming context. Further-
more, the optimal splitting should also ensure that the segments with the previ-
ous characterization have minimal lengths. However, there is still no agreement
about the rules that should produce such an optimal splitting. Therefore, we
started with the annotation of the ESIC dataset by simulating a perfect human
interpreter with an infinite amount of time and resources. Then we proposed
multiple segmentation methods that we compared to each other in terms of seg-
ments’ lengths, counts, and statistics of the most frequently split types of words.
Apart from the segmentation methods, we also implemented and analyzed two
variants of neural machine translation models – one trained solely on complete
sentences and the other finetuned with partial translations. Finally, we evaluated
the translation quality and delay of segments produced by splitting methods with
the SLTev evaluation toolkit and discussed the effect of both machine translation
models on the results.

Keywords: NLP, Simultaneous machine translation, Segmentation methods

iii

Contents

Introduction 3

1 Linguistic theory 5
1.1 Simultaneous interpretation . 5

1.1.1 Comparing interpretation with translation 5
1.1.2 Interpretation effort model 6

1.2 Translation units . 7
1.2.1 Cognitive translation units 8
1.2.2 Lexical translation units 8
1.2.3 Translation units in machine translation 10

2 Simultaneous machine translation 11
2.1 Machine speech translation . 11
2.2 Simultaneous machine translation 11
2.3 Evaluation of SiMT . 12

2.3.1 Translation quality . 12
2.3.2 Latency . 13
2.3.3 Flicker . 14
2.3.4 Visualisation . 15

2.4 Evaluation toolkit . 16
2.4.1 SLTev . 16

2.5 Sentence segmentation . 17
2.5.1 Cascade and direct SiMT architectures 17
2.5.2 Segmentation methods . 18
2.5.3 Categories of segmentation methods 19

3 Annotation process 21
3.1 ESIC dataset . 21
3.2 Annotation methodology . 22
3.3 Technical details of the annotation 23
3.4 Feedback from annotators . 25

4 Splitting methods 27
4.1 Control segmentation strategies 27
4.2 Splitting after punctuation characters 27
4.3 Segmentation based on silence . 28

4.3.1 Tool for visualization of interpretation 28
4.3.2 Splitting method . 31
4.3.3 Possible intonation extension 32

4.4 Word alignment splitting . 32
4.4.1 Splitting method . 33
4.4.2 Word alignment tools . 34

4.5 Segmentation based on phrase chunking 34
4.5.1 Splitting method . 35
4.5.2 Sequential approach . 35

1

4.5.3 Problems with different tokenizers 36
4.6 Segmentation based on POS tags 37
4.7 Splitting with machine translation 37

4.7.1 Machine translation theory 38
4.7.2 NMT training . 39

4.8 Segmentation from the annotation 40
4.9 From offline to online segmentation 40

4.9.1 Training of statistical splitting models 41

5 Results 43
5.1 Analysis of the golden dataset . 43

5.1.1 Rules for phrase chunk and POS splitting methods 45
5.1.2 Differences between individual annotators 46

5.2 Analysis of splitting methods . 50
5.2.1 Comparison of splitting method in pairs 51
5.2.2 More detailed view on the alignment splitting 55

5.3 From offline to online methods . 57
5.3.1 Phrase chunking and POS splitting 58
5.3.2 Training machine learning models 59

5.4 SLTev results . 62
5.4.1 SLTev requirements . 62
5.4.2 SLTev evaluation . 64

6 Discussion 69
6.1 Translation units . 69
6.2 Dataset annotation . 69
6.3 Splitting methods . 70
6.4 Analysis of the results . 72

Conclusion 74

Bibliography 75

List of Figures 81

List of Tables 82

List of Abbreviations 83

A Appendix 84
A.1 Phrase chunk and POS splitting 84
A.2 Further analysis of splitting methods 87
A.3 Differences among splitting methods and MT models 90

2

Introduction
During simultaneous interpretation, interpreters face several challenges. At the
same time, they need to pay attention to the speaker, think about the best way
to express the translation and translate. Therefore, it is no wonder that they
can reach their cognitive capacities during the process and, as a result, stop
interpreting optimally.

On the other hand, if we consider various parallel computing techniques, ma-
chines should not suffer from bounded processing capabilities, and thus we should
be able to find a way to teach them to interpret with high quality while keeping
the delay as short as possible.

One of the most crucial aspects of simultaneous machine translation (SiMT)
is to figure out the optimal way to segment the input. For simplicity, we assume
that during the process of SiMT, a more or less standard translation model is
going to be applied repeatedly to the growing input. The points in time when
this translation happens will then correspond to a certain splitting of the input.

To this day, however, there is no agreement about what rules produce the
most optimal splitting – i.e., producing segments of minimal lengths whose trans-
lations are independent of any forthcoming context. That is the reason why our
thesis focused on the characterization and comparison of several segmentation
strategies and the evaluation of their performance in the real interpretation set-
ting. Furthermore, we also developed a strategy for producing optimal splitting
by simulating a perfect interpreter with unlimited time and resources, which we
then used to annotate the ESIC dataset.

Firstly, in Chapter 1, we surveyed available linguistic literature about inter-
pretation and translation units that are very closely connected to the topic of
optimal segmentation. Then, we continued by explaining key concepts for the
process of SiMT, mainly covering the evaluation methodology and several seg-
mentation strategies that have been applied in recent research (see Chapter 2).

To find out how a perfect human interpreter without time restrictions would
interpret, we annotated the ESIC dataset with optimal splits and even provided
Czech reference translations (see Figure 1). We described the annotation instruc-
tions and annotators’ observations in Chapter 3.

In Chapter 4, we introduced several splitting methods with the description
of their algorithms and ways how to utilize them both in offline and online set-
tings. We consequently evaluated all mentioned splitting methods with the SLTev
evaluation toolkit, measuring the delay and translation stability of the segments.

We also trained a neural machine translation model and tested whether we
could improve the interpretation by incorporating partial translations into the
training data. The results of the evaluation and the analysis of splitting methods
behavior can be found in Chapter 5

Finally, in Chapter 6, we summarized all our observations from our literature
survey, dataset annotation, and experiments while suggesting potential improve-
ments and additional topics for future research.

3

Figure 1: Example of an English sentence segmentation with the Czech transla-
tion used as a reference.

4

1. Linguistic theory
Before diving deeper into more technical topics, we would like to start by sum-
marizing materials about interpretation from the linguistic perspective because
it will help us to reveal important concepts for developing new segmenting algo-
rithms.

1.1 Simultaneous interpretation
The discipline of simultaneous interpretation is highly complex and exposes inter-
preters to a cognitive load that can easily overwhelm human capabilities. How-
ever, before explaining what exact factors make the interpretation that difficult,
we would like to first start by emphasizing the difference between the acts of
translation and interpretation.

1.1.1 Comparing interpretation with translation
From an engineering point of view, the interpretation might seem like an imperfect
oral translation. However, the difference is more significant in the eyes of linguistic
theory. By definition, simultaneous speech interpretation is an oral conversion of a
message from the source language to the target language [Barik, 1969]. Therefore,
let us dissect what converting a message means.

Omitting the bidirectional influence of thoughts and language [Zlatev and
Blomberg, 2015], we can use the theory of the Vauquois triangle for our explana-
tion (see Figure 1.1). According to this theory, a pair of sentences in two different
languages, stemming from the common interlingua, can be translated on three
levels – on the semantic and syntactic level, or directly on words.

During standard written translation, the transfer takes place on all mentioned
levels because by carefully translating word-by-word or phrase-by-phrase, we are
preserving the general meaning of the sentences (semantic level), but on top of
that, we also pay attention to syntactic and grammar rules to keep the target
sentence as close to the source as possible. We can afford such precision because
we are not pressured by any time limitations and can always work with complete
information – i.e., we have the complete source text at our disposal.

Looking at simultaneous interpretation, the process and the settings are en-
tirely different:

• Interpretation is conducted solely via speech.

• Interpreters do not have unlimited time and need to efficiently manage their
limited cognitive resources for the task.

• Apart from translating comprehensibly, interpreters must interpret as fre-
quently as possible to keep the audience engaged.

Due to the previous points, it should be clear that it is not within the human
capabilities to interpret word-by-word. For those reasons, interpreters instead
focus on conveying the correct meaning while figuring out the best way how to
rephrase it.

5

Figure 1.1: Visualization of Vauquois triangle denoting different levels of possible
transfers [Albadr et al., 2018].

1.1.2 Interpretation effort model
Only a few theoretical models for simultaneous interpretation (SI) incorporate
the cognitive load into their formulae – one of them is the Effort Model of SI
by Daniel Gile [1992]. He built the model upon a principle of mental processing
capabilities required for SI. He defines the task of SI with the following equation
as:

SI = L + M + P + C (1.1)
where variables on the right side of the equation represent different non-

automatic tasks/efforts that interpreters encounter. Listening effort (L) is the
process of listening to a speaker. Memory effort (M) is the short-term memory
requirement to temporarily save information. P stands for the production phase
– the effort to produce the interpretation; and coordination effort (C) covers the
management and focus needed for orchestrating listening, memorizing, process-
ing, and speaking.

We can similarly represent the effort’s cognitive requirements by adding (R)
to their abbreviations. Therefore, to interpret smoothly and successfully, we need
the interpreter’s total available capacity (TA) to be greater or equal to the sum
of the requirements throughout the entire process.

TA >= LR + MR + PR + CR (1.2)
To increase the available capacity, interpreters learn different techniques and

tactics. Apart from using convenient interpretation techniques, here are the as-
pects that may significantly affect the interpreters’ performance as well:

6

• Interpreters’ knowledge of the discussed subject

• Speakers’ dialect and speaking skills

• Noise in the room

• Interpreters’ mental state

We would also like to emphasize that while a human interpretation is usually
conducted via the speech-to-speech manner. Machine interpretation is more fre-
quently used to describe the process of converting speech to text – it is typical to
produce the output in the form of subtitles for conferences or lectures.

Thus, when mentioning machine interpretation, it is better to imagine a
speech-to-text process if not explicitly mentioned otherwise. The extension to
speech-to-speech is only a matter of a speech synthesis module [Baumann and
Schlangen, 2012] that does not directly affect the quality and correctness of the
interpretation.1

1.2 Translation units
Let us introduce this section with a thought experiment. If we wanted to create
a simple translation system, we could download the translations of every word
into a machine’s memory. Then, we would let the machine process sentences
word-by-word, locate the words in their internal dictionary, and replace them
with corresponding translations. Such an approach can work to some extent
for similar languages and simple sentences. However, when translating some
non-trivial sentences, we can imagine the result would be most likely not very
comprehensible, and even native speakers could struggle to understand it.

If we enhance our algorithm by not translating single words but pairs of
words (2-grams) instead, we would probably not get a perfect translation, but the
translation should have more clarity than in the previous case because two words
provide an additional context that can make the translation more accurate.

We can repeat this process with 3-grams, 4-grams, ..., n-grams until n is equal
to the longest sentence in our dataset, and we translate all source sentences as a
whole. That way, we will always have complete information and should be able
to return a perfect translation every time. So in other words, to get the best
quality translation, we need to have the information about the writer’s/speaker’s
intentions that we can only get by having similar common knowledge and a good
notion of how the text/speech will continue in the nearest future.

With this idea of translating sentences by a fixed number of words, we fluently
moved toward the main topic of this thesis – the translation units (TUs). Un-
fortunately, there is no single definition or description of what TUs are. Instead,
there are several ways how one can grasp the topic – namely, we will look at the
cognitive view, lexical view, and the view of machine translation [Thunes, 2017].

1Speech-to-speech approach may be still more beneficial for some application because we
can preserve the original prosody and not limit ourselves only to languages with written data.

7

1.2.1 Cognitive translation units
Firstly, we will look at TUs as cognitive units during the process of the translators’
activity. With that respect, TUs are viewed as units of analysis and represent
chunks of sentences that translators are paying attention to.

The typical studies are conducted using Think-Aloud-Protocols (TAP), in
which translators are asked to report everything that goes through their minds.
In this TAP study, Malmkjær [1998] report how much translators’ experience
affects TUs’ lengths. They discovered that language learners have TUs much
shorter (primarily single words) than experience translators who perceive the text
in chunks of phrases, clauses, or sentences. However, the translators themselves
are almost unaware of it.

1.2.2 Lexical translation units
The second branch of TUs, called lexical translation units, is regarded as product-
oriented. Researchers in this area are interested in translation units from the
lexical point of view and do not focus on the cognitive aspect. The typical topics
of interest here are the relationship between the original text and its transla-
tion, the characteristics of several different translations, and how correlated the
translations are within different target languages.

However, even within this field, there is no one standard definition. Moreover,
there is no agreement upon whether the translation units are within the source
or target sentences. One of the earliest mentions of the term lexical TU came
from Barkhudarov [1969], who defined TU as “the smallest unit of source text
which has an equivalent in target text”. Shuttleworth and Cowie [1997] further
developed this definition as “a term used to refer to the linguistic level at which
source text is recodified in the target language”. Finally, Vinay et al. [1995]
characterized TUs similarly as lexicological units of words that should not be
translated individually.

On the other hand, for example, Malmkjær [1998] thinks about TUs as the
target text parts that can be mapped onto a source text. And furthermore,
some definitions refer to TUs even as a pair of source and target text segments
([Danielsson, 2001], [Malmkjaer, 2006]).

From this perspective, it is clear that there is no single correct definition of
lexical TUs, but all of them are concerned with the relationship between source
and target texts which is essential for TUs allocation. The observation about the
importance of the source and target sentence relationship was even enhanced by
Koller [1992] arguing that the TUs’ size is inversely correlated with the similarity
of the source and target language – i.e., the more related the languages are, the
smaller TUs we should be able to make. For a very simple example, if we compare
English and German, the most visible difference in sentences is that German puts
verbs at the end of sentences while English tends to place them at the beginning.
Because of this difference, when translating German to English, we may need to
wait for the verb at the end of a German sentence to be able to start translating
to English.

When referring to lexical TUs, we can also distinguish their several subtypes
– depending on the strength of bonds among the words inside them. We have
three different kinds in mind:

8

• Idioms – usually fixed expressions that is common to translate together.

• Known phrases that are bonded with weaker bonds.

• And units that are held together only because of the need to wait for addi-
tional information (e.g., when we are not sure whether we speak about her
or him) or because the grammar constructs of the target language require
us to wait for a particular sentence element (e.g. mentioned German to
English example).

Minimal translation units

To avoid confusion, we should also introduce the term minimal translation units
(MTUs) which can be used interchangeably with standard TUs.

Generally, when speaking about TUs, people mean the shortest possible units
that are reasonable to translate. But sometimes, even a composition of several
TUs can be regarded as a TU – especially when mixing up definitions of cognitive
and lexical units. Therefore, by using the term MTUs, we want to signify that
we mean the lexical TUs of the shortest possible length.2

As for the appropriate length of MTUs, there are many discussions. In this
thesis, we take the view of Bennett [1994] and believe that the length of MTUs
can range from individual words to much larger text chunks. Firstly, because
otherwise, the task would be trivial, and secondly, the professional interpreters
are able to keep pace with the speaker very precisely – even within the same
sentences. Thus, the machines should be able to achieve it as well. However,
some authors argue that the most appropriate translation units are clauses [Bell
and Candlin, 1991], clause complexes [Barkhudarov, 1969], or sentences [Zhu,
1999].

When comparing the lengths of cognitive and lexical TUs, researchers agree
that lexical TUs tend to be shorter than their cognitive counterparts [Bennett,
1994]. According to some authors, cognitive TUs may even span over whole
paragraphs [Bennett, 1994], whereas lexical TUs are usually considered within
sentences.

Factors influencing lengths of MTUs

As we discussed previously, one aspect that can noticeably affect the size of MTUs
is the choice of source and target languages. If we take a pair of similar languages
(e.g., Czech and Slovak), we will get shorter MTUs because the languages share
similar sentence structures and expressions.

Because of that, one may expect the correlation that the more historically-
related languages are, the shorter MTUs they will have. Nonetheless, although
the previous rule holds for some cases, it does not apply to all language pairs.
We can observe that, for example, with two closely related languages from the
germanic language family – English and German. Despite their similar historical
development, the differences in their sentence structure are causing comparably
more extended TUs [Kiraly, 1992].

2Process-oriented linguists looking at TUs from a cognitive perspective do not use the term
MTUs at all.

9

Another two important factors contributing to different MTUs lengths are
then the experience of the translator (or interpreter) and the nature of the text.
Translators with less experience reportedly translate in shorter units than their
more professional colleagues [Moser-Mercer, 1997]. Similarly, more complex tech-
nical articles will have more prolonged units than news articles because of different
intentions and expectations from the target audience [Lambert and Moser-Mercer,
1994].

On top of that, the interpretation can also be affected by the speech rate of
the source speakers (e.g., heated debates will have a faster pace than monologue
presentations). It was proven by Pio [2003], that the speed of the source speech
notably affects the interpretation – especially for novices who tend to perceive
it as an additional source of stress. But it can also be the opposite case. As
Schlesinger [2003] reported, a higher presentation rate can reduce the strain on the
professional interpreter’s working memory and enhance the quality. Nevertheless,
it is important to emphasize that it may apply only to professional interpreters
who use different interpreting strategies and retain larger amounts of information
in accessible form [Schlesinger, 2003].

1.2.3 Translation units in machine translation
Finally, the last view on TUs is from the perspective of natural language pro-
cessing (NLP). Compared to the previous definitions, where the attention was
usually on the source or target texts, here we consider both of them equally
[Bowker, 2002].

However, we need to be aware of the fact that the topic of TUs in NLP was
popular mainly because of the older rule-based MT systems, which compared to
more recent statistical (SMT) and neural (NMT) machine translation systems,
relied more on the linguistic theory and suffered from the problem of lexical
coverage.

The closest analogy to TUs in modern statistical approaches would be the
phrases in phrase-based MT systems [Koehn et al., 2003] and probably also the
concept of n-grams – word sequences for which systems learn the probabilities
of their occurrences. But because no linguistic analysis is involved within the
n-grams, they should be rather regarded as units of processing than TUs.

For simultaneous translation, however, TU’s role regains importance by en-
abling us to split sentences into smaller chunks that can be translated even before
a speaker finishes a sentence. Therefore, in this thesis, we look at TUs as minimal
translation units that we try to locate in the source texts to produce the most
optimal interpretation – as short as possible but preserving a good understand-
ability.

10

2. Simultaneous machine
translation
In this chapter, we will continue explaining concepts and terms connected with
MTUs and sentence segmentation; but with more focus on the perspective of
NLP.

2.1 Machine speech translation
The first attempts to construct speech translation (ST) pipelines date to the end
of the 20th century and were naturally accompanied and enabled by advances in
automatic speech recognition (ASR) and machine translation (MT) research.

We will regard ST as the process of translating the source speech signal into
the text of the target language. This task differs from speech-to-speech transla-
tion, where the translation is delivered via automatically synthesized speech.

2.2 Simultaneous machine translation
Simultaneous machine translation (SiMT) was initially seen as a complex task
consisting of several subtasks mimicking the process of human interpreters. How-
ever, machines should have the advantage of larger memory, more computational
resources, and more extended attention spans than humans. While humans need
to perceive the original speech, think about the speaker’s intent, and speak si-
multaneously, machines can have a dedicated processing unit for each task and
so have the cognitive load evenly spread out. For those reasons, people may often
use the term simultaneous machine translation interchangeably with simultaneous
machine interpretation.

Generally speaking, the pipeline of a SiMT model consists of three main parts:
ASR, segmentation and MT module. In the beginning, the sound signal enters
the ASR module that transforms the sound waves into a text which is sent into
the segmentation module. The segmentation module then processes the text,
decides at which point the text should be split, and lets the MT system translate
it into a target language.

Compared to speech translation, which is evaluated solely on the quality of
produced translation, SiMT has one additional requirement. SiMT needs to trans-
late with high quality but also with as little latency as possible so the users can
track the events in real-time.

The demand for a short delay, however, causes that SiMT models no longer
work with complete information because they need to be able to translate even
incomplete sentences without knowing how they will finish.1 This aspect makes
out of the SiMT a multi-objective optimization problem.

1The uncertainty sometimes occurs even when working with complete sentences because of
extra-sentential phenomena, such as coreference. In our thesis, however, we will work with an
assumption that sentences provide full information about their content.

11

2.3 Evaluation of SiMT
As we already stated, the two most important metrics for SiMT evaluation are
the translation quality and latency – we maximize the translation quality and
minimize the latency. Nevertheless, optimization of both metrics at the same
time is tricky. The reason is that in order to increase the translation quality, the
system generally needs more information about the speaker’s intent which means
waiting for more context and thus increasing the latency.

To clarify the evaluation, we will explain methods for measuring translation
quality and latency, outline two additional metrics influencing SiMT quality, and
describe a toolkit we will use to evaluate our experiments.

2.3.1 Translation quality
The closer the machine translation is to the professional human translation, the
better score it should get. That is the main idea behind measuring the trans-
lation quality. Humans are generally very capable of assessing the translation
quality, but manual evaluations tend to be slow, expensive, and for some pur-
poses, can even be regarded as subjective. Therefore, to assess the improvement
of the machine translation models, researchers needed a standard metric that
would reliably measure the quality of produced translations automatically and
objectively for all inputs.

Nowadays, the translation quality metric of choice is the BLEU score [Papineni
et al., 2002]. The most important reasons for adopting the BLEU score as a
dominant MT metric were its low computational demands, easy adoption for
different languages, and repeatedly reported agreement with human assessment.

The bilingual evaluation understudy (BLEU) compares the candidate’s trans-
lation to ground truth references and consists of two main components – brevity
and n-gram overlap. The first component penalizes translation candidates for
short sentence lengths, and the latter checks for common 1, 2, ..., n-grams between
candidate translation and references (usually n = 4).

When evaluating and comparing BLEU with other results, it is important to
pay attention to the BLEU parametrization and tokenization strategies, which
may significantly affect the resulting values. Therefore, it is recommended to use
an improved sacreBLEU score [Post, 2018] that normalizes the score by tokenizing
raw inputs and own equation parameters.

On the contrary, even BLEU score is not an ideal metric for all. Espe-
cially with machines slowly approaching the human-level quality translations,
researchers noticed that such a simplistic metric might be insufficient and even
lead to adopting worse systems [Ma et al., 2019b]. Therefore, it has also been
suggested to use other, more complex metrics such as BERTScore [Zhang et al.,
2019], BLEURT [Sellam et al., 2020] or COMET [Rei et al., 2020] that are using
pre-trained multilingual models to improve the evaluation.

Because in our experiments, we did not exactly use translation quality as the
key metric to evaluate quality of the segments (see Section 2.3.3), we will not dive
into discussing the principles behind other machine translation quality metrics.
However, we believe that their adoption in the future will be another important
step towards improving the performance of SiMT models.

12

2.3.2 Latency
Although high translation quality is considered as a key metric among all trans-
lation tasks, latency may affect the perception of interpretation to the same or
even bigger extent.

As one of the first attempts to quantify latency, Cho and Esipova [2016]
proposed a metric called Average Proportion (AP). AP measures the average
number of source text tokens processed when generating partial target prediction.
Nevertheless, while the metric expresses latency simply and understandably, it
is not length-invariant. This means its value changes depending on the length
of the source text, even with the preserved static segmenting strategy, which
should score the same. Furthermore, it is not evenly distributed on the [0, 1]
interval since the optimal 0-wait policy generating target words right after the
corresponding source words were spoken would gain a score close to 0.5 and not
below that.

A general equation for measuring latency between a source sentence x and
target sentence y has the following form:

L(x, y) = 1
Z(x, y)

∑︂
i

Ci(x, y) (2.1)

where Z is a normalization constant and Ci a cost function for each target
position i. For AP, Ci(x, y) directly correspond to g(i) representing the number
of source tokens read when generating a target word i and Z(x, y) to the product
of sentence lengths |x| × |y|.

To compensate the discussed flaws of AP, another metric called Average Lag-
ging (AL) was proposed by Ma et al. [2019a]. Its core principle is based on
quantifying the lag behind the ideal policy and thus the speaker. By ideal policy,
we denote the system that interprets simultaneously as the words are being said.
Such a policy can be denoted as wait-0 and will have AL equal to 0. With such a
definition, we can derive that, for the wait-1 policy that is only one word behind
the speaker, AL will be 1. And we can even generalize for all k-wait policies for
which AL will be equal to k. We can reuse the general latency Equation (2.1)
and define AL as the same L(x, y) with

Ci(x, y) = g(i) − i − 1
τ

(2.2)

Z(x, y) = argmin
i:g(i)=|x|

(i) (2.3)

where τ = |y|/|x| represents a normalization variable penalizing long target
sentences.

Although AL was an improvement over AP, it missed one key component to
be utilized for optimization – it is not differentiable. The problem is with the
variable τ corresponding to an argmin operator that determines at what target
token the summation should stop. Therefore Cherry and Foster [2019] also came
up with the differentiable average lagging.

We will describe the exact form of a latency metric that we used in our
experiments in Section 2.4.1.

13

2.3.3 Flicker
Apart from the short latency, good interpreters are also distinguished by the
consistency of their translations. They always wait for enough context or can
start sentences in such a way so they can smoothly continue to several potential
scenarios without the need to start over.

When evaluating SiMT, we can observe similar behavior. Sound systems will
generate the translation segment after segment without correcting already stated
previous partial translations. We will call these output adjustments as flickering
– reflecting the number of words needed to be updated between two consecutive
partial translation outputs.

To define the flicker more precisely, we will describe it as an average revision
count per segment. The most complicated term in the definition is revision count
RC, which is defined as

RCk =
nk∑︂
i=2

(|si−1| − |LCP (si−1, si)|) (2.4)

where si denotes i-th partial segment preceding the current segment k and
nk denotes the number of partial segments between complete segments k − 1 and
k (the complete segment is equivalent to a full sentence translation and partial
segments to partial translations). And LCP is the abbreviation of the longest
common prefix. Put simply, for each two consecutive segments in a sentence, it
counts the number of words after their longest common prefix – thus, heavily
penalizing if the partial segments differ from each other at the beginning.

The average is then computed in a standard way as

1
K

K∑︂
k=1

RCk (2.5)

Now, it is important to emphasize that flicker can be measured only if the
system retranslates. It means that every time a new chunk of input is added,
the system retranslates the whole partial sentence from the beginning. With this
approach, the system can reevaluate previous translation mistakes caused by the
lack of context and guarantee a perfect translation quality once it reaches the end
of the sentence. Consequently, the BLEU score for completed sentences with the
same translation model will be the same regardless of the segmentation method
used. Therefore, for retranslation, flicker takes over the position of a translation
quality metric [Arivazhagan et al., 2020]. On the contrary, if sentence translations
are built progressively by concatenating the translation of individual segments,
the flicker is constantly zero.

In our experiments, we chose to use the retranslation approach. This way,
we can evaluate the flickering of partial translations, which appears to be a more
reliable metric when comparing the splitting methods than the BLEU score. Re-
translation additionally guarantees better translations once the end of the sen-
tences is reached, which is something that does not apply to the other case. The
only drawback of retranslation could be comparatively longer translation times.

It is also important to mention that we could afford to use retranslation be-
cause we are working in the speech-to-text mode, where it is much easier to
potentially change some of the previous partial translations (e.g., transcribing

14

a live event). With speech-to-speech machine interpretation, it would be very
complicated to change something already said. Therefore, retranslation can be
applied only in text-producing settings, and the same applies to flicker measuring.

2.3.4 Visualisation
Translation quality, latency, and flicker are known metrics navigating the im-
provement of the SiMT field. However, recent research articles have pointed to
another aspect that should be considered when optimizing SiMT. And that is the
comfort of the user reading the partial outputs on the screen – covered under the
term visualization.

They claim that even translation with good quality and short latency does
not have to be perceived well if not displayed in a readable fashion. This metric
naturally focuses on tasks where the final output form is text, e.g., subtitling
live conferences, lectures, or political debates. Nevertheless, the theory is not
restricted to only simultaneous translation and can be naturally adapted to the
offline setting – most typically for subtitling movies or YouTube videos.

Ma et al. [2019a] introduced straightforward word-for-word visualization in
which words appear sequentially as the machine generates them. However, it was
proven that such visualization is far from ideal for humans. When people read
subtitles with this technique, they encounter several problems:

• First, the emission rate of words was noticeably inconsistent since, in some
passages, the tempo was too fast and, in others, too slow. Because of that,
people’s eyes were forced to move more frequently, which made the reading
tiring.

• Secondly, people are used to perceiving text in meaningful chunks, so single-
word updates require more cognitive effort.

• And lastly, there was also a problem with the unpredictable subtitle disap-
pearance caused by reaching the width limit of the screen. Because after
the limit is reached, the whole previous passage is deleted, which might be
incredibly distracting in some situations.

For all those reasons, Karakanta et al. [2021] suggested a novel block visual-
ization overcoming the flaws of the previous method. Their first attempt was to
display subtitles in bigger blocks (one or two lines) which should prevent viewers
from unwanted rereading [Rajendran et al., 2013] and excessive eye movement
[Romero-Fresco, 2010]. This approach lowered the cognitive demands for reading
the subtitles, but they discovered that it, on the other hand, increased the latency
to an unbearable extent.

As a solution, Karakanta’s team proposed a scrolling line visualization. In
this setting, there are always two lines of subtitles displayed on the screen, and
the new text appears line-by-line – moving up the previous row to the upper line.
According to experiments, scrolling line visualization lowers the cognitive load
when reading the subtitles while keeping bearable latency.

15

2.4 Evaluation toolkit
When choosing the evaluation toolkit for our experiments, we narrowed our
choices to the current two most popular evaluation tools – SLTev [Ansari et al.,
2021] and SimulEval [Ma et al., 2020a].

There were two critical differences between these toolkits for our use case.
First, SimulEval does not support flicker evaluation, and secondly, SimulEval’s
architecture is designed in a client-server manner which requires users to design
the code in a specific way. For those reasons, we chose SLTev as our primary
evaluation tool.

2.4.1 SLTev
SLTev uses sacreBLEU [Post, 2018] for scoring the translation quality and average
revision count metric for assessing interpretation flickering, as described in the
above chapters (see Section 2.3.1, Section 2.3.3).

For latency calculation, SLTev proposes two different approaches similar to the
average lagging principle, described in Section 2.3.2. The authors proposed that
latency corresponds to the delay with which the recipient receives the message –
having assigned times for all words in the reference and the proposed candidate
translation, they compute the total delay as a sum of individual delays for each
word.

With this common idea, they then proposed two possible approaches how to
assign times to words in the reference translation.

Proportional delay

The first approach, called proportional delay, assigns the times to words in the
reference translation using a simple heuristic.

Let us denote the original sentence S and the reference translation R and
assume that we know a display time t(wi) for each word wi of S. Finally, let s
and r be a number of words of S and R, respectively. Then we will compute a
display time t(wR

j) of each word wR
j of R as

t(wR
j) = t(w0) + j × sr (2.6)

When we have assigned times to all words in the reference translation, we
can finally compute the delay by summing up the time differences between corre-
sponding words in the candidate translation C whose words wC

k have the display
time t(wC

k) precomputed from the provided data.
To explain the calculation on a real example (see Table 2.1), let us have an

English source sentence with display times assigned to each word in centiseconds.
Following the Equation (2.6), we computed the word display times for the German
reference translation and added a candidate translation with word times recorded
from the progressive translation.2

2The words “unser” and “Unternehmen” have assigned later times than the last word
“vorstellen” because they did appear in the partial translations laters.

16

Original English sentence
We would like to introduce our company
782 805 827 846 919 961 1062

Reference German Translation
Wir würden gern unser Unternehmen vorstellen
786 812 836 895 954 1062

Candidate German translation
Wir möchten unser Unternehmen vorstellen
800 870 1200 1200 910

Table 2.1: Examples of input sentences for delay calculation with times assigned
to each words in centiseconds.

Now, we have everything we need and can proceed to calculate the propor-
tional delay of the reference and candidate translations as

(800 − 786) + (1200 − 895) + (1200 − 954) + 0 = 565 (2.7)
In the summation, the words “würden” and “gern” are not included be-

cause they did not appear in the candidate translation. The delay of the word
“vorstellen” is then clipped to 0 because it appeared earlier in the candidate
translation than in the reference.

Delay calculation with alignments

The second approach does not use such an evenly distributed assignment of times
for their reference translation but utilizes automatic word alignment (SLTev uses
MGIZA) that will assign the reference words the times of source words they are
aligned to.

In our experiments, we decided to use the first approach – not risking the
possibility of flaws in the word alignment.

2.5 Sentence segmentation
Now, it is the time to describe more rigorously what segmentation methods really
are and show some examples of methods that are frequently used these days. But
even before that, let us explain the type of the SiMT pipeline architecture we used
for our experiments because it also affected the types of segmentation methods
we were able to try.

2.5.1 Cascade and direct SiMT architectures
SiMT models can be divided into two main categories. Historically, the standard
way to create a SiMT system was by creating a pipeline connecting an ASR with
a MT module and placing a sentence segmentation logic between them. This
type of architecture is called a cascade model.

17

https://github.com/moses-smt/mgiza

Despite its known drawbacks, namely the error propagation and slower ex-
ecution, this kind of pipeline enables practitioners to utilize high-quality audio
transcriptions and parallel corpora to train working MT systems that are easy to
run and maintain.

On the contrary, direct or end-to-end SiMT systems may benefit from single
neural network-like architecture that takes audio signals of a source speech as an
input and directly outputs written or spoken translation in a target language.
With this approach, errors made by ASR do no longer propagate to the MT
module, and there is no additional delay caused by handling the data across two
modules. Moreover, training one system as a whole should be theoretically more
robust than training two separate ones. There is, however, still not enough data
for end-to-end systems because aligning audio in the source language with the
text data in the target language is significantly more complex than obtaining
simple transcripts and parallel translations.

Comparing both types of models in terms of quality, there have been several
studies proclaiming cascade [Inaguma et al., 2020] or end-to-end ([Indurthi et al.,
2020], [Pino et al., 2019]) systems as superior. However, without unified bench-
marking data, it is impossible to answer the question confidently. This claim
is also supported by a recent study by Bentivogli et al. [2021] – revealing that
results obtained from the best candidates of both categories are, to this date, on
par, and the subtle difference observed in their behavior is beyond the scope of
human distinction.

Primarily, we are mentioning this distinction because, for our purposes, we
needed to be able to effortlessly switch between the splitting methods and there-
fore needed to use the cascade architecture.

2.5.2 Segmentation methods
When using the terms from the previous chapter (see Section 1.2.2), searching
for the optimal segmentation method corresponds to searching for MTUs. To
rephrase it, each segmentation method defines translation units according to dif-
ferent rules, and we are looking for such a set of rules that will produce MTUs
and yield comprehensible interpretation with a minimal possible delay.

In reinforcement learning, we can describe segmentation strategies as a learned
policy performing two distinct actions – read and write [Gu et al., 2017]. The
input data can be either in a text format as a stream of words or a raw audio
signal cut into passages of the same size. The system should then select the read
action whenever its inner state has low confidence about the speaker’s intent and
needs additional context – thus, requesting the following word (or audio segment).
And in the opposite situation, when there is a high probability that the following
tokens will not affect the translation of the current segment, the system should
select the write action and output the current partial translation.

The general goal when learning the policy is always to maximize the trans-
lation quality and minimize the delay. Nevertheless, because optimizing quality
leads to increased delay and vice versa, it depends on particular requirements of
how long delay can be tolerated. This statement, however, does not contradict
the fact that for each choice of acceptable delay, there exists an optimal solution
that preserves the demanded latency while still translating with high quality.

18

2.5.3 Categories of segmentation methods
The segmentation strategies can fall into two main categories of decision policies.
The first one, denoted as fixed, is more widely used and characterized by simple
rules focusing only on the number of processed tokens. Because of the ease
of its implementation, fixed policies gained popularity, especially in the end-
to-end interpretation models. On the other hand, adaptive policies are more
complex, and the actual context and preceding words influence their segmentation
decisions.

Fixed policies

Starting with fixed policies, the widest usage seizes a simple but very effective
strategy called wait-k policy [Ma et al., 2019a]. It is based on the simple assump-
tion that most translation units do not exceed size k. Therefore it is sufficient
to wait for the first k words at the beginning of the speech and then alternate
between reading one source word and writing one translation word.

With little adjustments, the same techniques could also be applied to audio
signals that can be segmented into constant chunks [Ma et al., 2020b] or by word
boundaries [Ren et al., 2020]. Despite all advantages of the wait-k strategy, peo-
ple, however, argue that human-like interpreting machines must deploy adaptive
segmentation strategies that can produce chunks of different lengths depending
on the available context.

Adaptive policies

An interesting intermediate step from wait-k strategies is combining different
values of k. It can be implemented so that the system decides an optimal k
depending on the translation confidence or by training an NMT system while
sampling from several values of k [Elbayad et al., 2020].

Kano et al. [2021] segment input sentences utilizing the part of speech pre-
diction of oncoming sentence constituents. They work on the English-Japan lan-
guage pair where interpreters face the problem of two different language struc-
tures. While English puts verbs right after the subject (SVO), in Japanese, verbs
come right at the end of a sentence (SOV). Thus, they created simple rules to
keep the object-verb parts in the same chunks.

Another interesting approach is training a predictive model based on a dataset
with optimal segmentation. But the critical question is how to define and where to
obtain the golden data. In their paper, Zhang et al. [2020], split source sentences
into meaningful units (corresponding to MTUs from our previous definitions)
using the NMT system and proclaimed them as the golden data. They first
translated the source sentences as a whole and then proceeded monotonically
word by word while checking when the partial translation made up for a prefix
of the complete translation. And at these points, they place the boundaries of
meaningful units. To enhance the quality of meaningful units, they retrained
their NMT model on translations generated with a new prefix-attention method.

Source segmentation can also be directly predicted from word embeddings and
complemented with the acoustic information [Iranzo-Sánchez et al., 2021]. More
specifically, they created the acoustic word vectors from three values: duration

19

of the previous silence, duration of the current word, and duration of the ensuing
silence.

Because in our experiments, we wanted to compare as many different methods
as possible, we utilized less complex splitting strategies, which, however, can be
very easily explained and understood in terms of the type of splits they do.

20

3. Annotation process
Apart from standard parallel corpora with professional translations, the commu-
nity has also gathered transcripts from live interpretation. However, this kind of
data is still not ideal for deducing ideal speech segmentation for interpretation
– either by mapping the corresponding sentence parts manually or, for example,
using the alignment method (see Section 4.4). The reason is that the interpreters
might have the partial interpretation prepared in mind and ready to present, but
because of other external factors, they needed to postpone the speaking. Thus,
the ideal segmentation might occur in their head but not in transcripts.

Another problem lies within the nature of interpretation itself. Because it
is not based on the word-for-word translation, the only thing that interpreters
transfer reliably is the meaning and speakers’ intentions. Therefore, the corre-
spondence between words or sentences of the original speech and the interpreta-
tion is harder to find than with direct translations.

Despite these obstacles, we proceeded to the task and tried to create a manu-
ally annotated dataset with optimal sentence segmentation for interpretation. To
our knowledge, all research papers so far have been using BLEU score, latency
and potentially flicker as metrics of how good the splitting in simultaneous trans-
lation is. However, no dataset could explain what the optimal values of each of the
metrics are. Is it better to favor BLEU or latency? To what extent? Or is it de-
pendent on the situation and type of the conversation? We asked ourselves those
questions but did not know the answers. Therefore, we decided to construct a
dataset with an optimal splitting that could reveal what an optimal segmentation
strategy would look like if there were a perfect interpreter with an infinite amount
of time for thinking and complete information about the sentences, including the
not yet uttered parts.

3.1 ESIC dataset
For the annotation and also other experiments in this thesis, we used the Europarl
Simultaneous Interpreting Corpus (ESIC) dataset [Macháček et al., 2021] that
contains 10 hours of recordings and manually-checked transcripts of European
Parliament speeches in English with Czech and German interpretations.

The dataset is divided into 370 speech folders, each containing data for a
particular interpretation of an English speaker. In each speech folder, there are
several files corresponding to different formats of transcripts – with different mark-
ers, timestamps, or level of quality. There are audio and video recordings from
the European Parliament as well.

In this thesis, we were actively working with files called en.OSt.man.orto.txt
that contain the orthographical form of the English speech without special tags,
disfluencies, and with sentences separated on individual lines. For the time infor-
mation, we used en.OSt.man.orto+ts.txt files that copy the previous files’ format
but also display a start and end time for each word.

21

3.2 Annotation methodology
When thinking about an annotation methodology, we had two main ideas. The
first idea was to take the original English sentences and Czech interpretations
from the dataset and let annotators find the word-to-word or rather phrase-to-
phrase correspondence. Although this approach would definitely make sense and
would not be that time-demanding, it has one severe drawback we have already
discussed – human interpreters may have the right partial translations in their
minds much earlier than they say them aloud because they need to listen and
interpret simultaneously. Machines do not suffer from the lack of memory or
processing power, so we would not be able to get the optimal splitting strategy
from those annotations.

Keeping this fact in mind, we decided that we needed to be more precise and
have a better way of how to get the splitting resulting in ideal partial translations.
As a result, we completely omitted the available Czech and German interpreta-
tions from the ESIC and focused only on the original English sentences. We
formulated our goal for the annotators in the following way:

Insert a special splitting symbol (“@”) into the English sentences so that when-
ever the translators will reach the splitting symbol, they can translate the partial
sentence leading up to that symbol without worrying that some further information
hidden in the forthcoming text will alter their partial translation.

More specifically, we let annotators read full transcripts of each English sen-
tence and find the optimal splits inside them. By optimal, we mean the shortest
possible text chunks that will be translated the same with or without knowing
how the sentence will continue.

With this approach, an interesting question arises that an arbitrary sentence
part can potentially have an unlimited number of possible continuations. There-
fore, it would be difficult to iterate over all possibilities, and the annotation would
be hard to make. So we prompted annotators to use their judgment and willing-
ness to risk when deciding about splits. As a result, each annotator might have
a slightly different splitting strategy. Nevertheless, it should always be optimal
from their point of view – splitting as soon as meaningful partial translations
arise.

Lastly, we needed to emphasize to annotators the language that should be used
as the reference translation – because, as we mentioned in Section 1.2.2, optimal
splits depend on the target language. Based on the availability of Czech native
speakers, we naturally opted for Czech as our target language. Ideally, we would
also want to use German and even other target languages, so we would be able
to compare how much the splits varied. However, due to the time and resource
restrictions, we could annotate each sentence only with the Czech target reference
and only once. The same applies for having the same sentences split by multiple
people with the same target language to get an inter-annotator agreement.

After a few initial iterations, we asked annotators to additionally supply the
splitting with the reference translations that are split into the same number of

22

chunks as their English counterparts. This requirement made the annotation
more time-consuming but provided valuable data we could use in our experiments.

3.3 Technical details of the annotation
When creating the annotations, we used Google Drive with Google Documents as
our default environment (see Figure 3.1). We chose Google environment mainly
because of its simple user interface and general familiarity. Since our task re-
quired only the insertion of splitting marks into prepared texts and providing
corresponding translations, a simple text editor served our purpose very well.
As for the splitting marks, we used the character “@” for its good visibility and
because it was not contained in the ESIC dataset.

Figure 3.1: Screenshot of a Google Document with an annotated speech folder
from the ESIC dataset by one of our annotators. We included some additional
examples from the annotation in Figure A.4.

For convenience, we randomly split the whole ESIC datasets into 25 packages
– each containing 14 or 15 text files with English transcripts divided into sentences
on each line.

In total, we managed to work with six annotators – all studying translation
or interpretation in the bachelor’s or master’s programmes at Charles University,
Faculty of Arts. We initially had a 30-minute introductory call with each of them
explaining the work’s purpose and discussing the annotators’ manual we sent
beforehand.

Annotators successively reserved packages one at a time so that only one per-
son could work on one package. They worked depending on their time availability,
and thus, each of them managed to complete different amounts of packages (see
Table 3.1). We needed to annotate the last two remaining packages ourselves to
finish the annotation in time.

23

https://docs.google.com/document/d/1eApqAaGjfFIGwF9MZyZ0uWJ5LgbeypPgT2pfEku6lBQ/edit?usp=sharing

of annotated speech folders # of annotated sentences
Annotator 1 45 684
Annotator 2 89 1334
Annotator 3 73 1106
Annotator 4 73 1077
Annotator 5 45 577
Annotator 6 30 459
Annotator 7 15 249

Table 3.1: Table showing number of folders and sentences that annotators man-
aged to complete.

There were between 178 and 275 sentences in each annotation package, and it
took approximately 5 to 7 hours to finish one. A significant portion of that time
caused the need to write down the reference translations – splitting alone would
take less time but may not be that precise.

During annotating, annotators were allowed to use publicly available auto-
matic translation tools (e.g., Google Translator or LINDAT) to look up unknown
words and the Internet to search for abbreviations or complicated technical terms.
Therefore, we expect some reference translations might be adopted from a trans-
lation tool and then only manually modified. The annotators should, however,
always check that such translations yield the optimal splitting conditions.

To simulate the real settings as closely as possible, annotators were also al-
lowed to use interpreting techniques if they knew any. As a result, the reference
translations do not need to be exact translations of the original English sentences
– for example, “Government of Côte d’Ivoire” can be translated as “tamńı vláda”
(the local government) if the meaning is clear from the preceding context.

After the annotation was finished, we checked whether the annotation format
was preserved and corrected any undesired errors. Very frequently, we encoun-
tered two types of mistakes. Firstly, we needed to separate the splitting symbol
from the neighboring words, and secondly, we had to frequently double-check if
the number of splits in the original English sentences corresponded to the number
of splits in the target Czech translations.

Missing spaces before and after the splitting symbols could be corrected very
quickly in an automated way by checking the first and last characters of words
and potentially separating them if they were equal to the splitting symbol. On the
other hand, fixing a different number of splitting symbols in original and target
sentences was more challenging because there is no simple way to correct that
automatically. Therefore, every time we detected sentence pairs with a different
number of splits, we needed to manually search the sentences and add or remove
splitting symbols to even out the splits. From our experience, these mistakes were
not caused by the inability to find the correct splitting but by lack of attention
because it is very easy to get distracted when doing such uniform tasks, especially
for an extended period of time.

Apart from annotations, we also took notes about various typing errors in
the dataset that will be corrected and incorporated into the version of the ESIC
dataset.

The manual annotation of optimal segments and reference translations has

24

received funding from the grant 19-26934X (NEUREM3) of the Czech Science
Foundation and took four months to complete, starting in February 2022 and
ending by the end of May 2022.1

3.4 Feedback from annotators
During the whole time of the dataset creation, we collected feedback from our
annotators and got our own experience when annotating as well. Here are the
most interesting points we uncovered when creating optimal splits using the Czech
translations as a reference:

• Splitting sentences into meaningful stand-alone chunks feels challenging, but
one can get better and faster at the task with the increasing experience.
Especially when dealing with texts from the same source (e.g., political
debates), one can quickly learn the similar patterns

• When working on the sentence level, one can sometimes get confused with
the pronouns that can refer to nouns occurring in the previous sentences
or will become evident only after reading the future sentences. We did
not consider this as a problem since the annotators always had the whole
text at their disposal, and the number of situations when a pronoun was
referencing, for example, a commonly known person or a person in the room,
was insignificant.

• The longer chunks were often caused by the need to wait for a noun located
at the end of the sentence. Because otherwise, it would be necessary to
guess some endings of previous words, such as adjectives which in the Czech
language have different endings based on the gender of an associated noun.

• Some prepositions (e.g., “for”, “at”) and conjunctions (e.g., “and”, “or”)
can be, in some cases split into individual segments, but at the same time,
in other sentences, the very same prepositions/conjunctions need to be put
in more extended segments to find out how they should be translated.
We noticed it as well, especially with conjunctions. When, for example,
conjunction “and” appeared between two clauses, we always put it into a
stand-alone segment. However, when it was connecting two adjectives, we
waited for a noun to figure out their endings.

• The length of segments depends not only on the used words but also on the
length of sentences. Longer sentences with more complex structures usually
lead to longer segments. Similarly, the speaker’s level of English knowledge
might have the same effect.
Among the recordings in the dataset, there were both native and non-native
English speakers. The annotators noticed that non-native speakers use less
predictable sentence constructs that lead to longer segments.

1Link to the annotation is included within the attachment to this thesis.

25

• In the Czech language, there is a tendency to put essential pieces of informa-
tion at the end of the sentence. In English, there is not so much emphasis
on that. In technical terms, this aspect is connected to the topic-focus
articulation, which also impacts the segmentation.
Let us look at the following English sentence:

“They speak French in Quebec as well.”

In broken Czech, we could translate it in the same order as:

“Oni mluv́ı francouzky v Quebecu také.”

which would allow us to make the shortest possible segments. However, the
translation sounds robotic, and a good translator would never translate it
that way. With an intention to emphasize the word “french”2, the proper
translation would probably be:

“V Quebecu také mluv́ı francouzky.”

So firstly, we did not translate the word “They” at all because, in Czech,
people usually omit pronouns at the beginning of the sentence and express
them only with the suitable form of the verb. And secondly, we completely
changed the order of the sentence, which sounds correct but requires us to
wait until the end of the sentence to start translating – therefore, the whole
sentence would be one long segment.
When splitting up sentences into segments, one will, therefore, encounter
situations like this very often, and it is up to the annotator to find the right
balance, whether to wait for the end of the sentence and translate it in the
correct order or start translating earlier but risk that the final translation
will sound robotic.

• Lastly, there are many ways to translate a sentence, but only some lead to
optimal splitting. That is a bit different from the previous point because
all translations may be correct and fluent, but only some of them produce
the shortest (i.e., optimal) segmentation.
Put differently, even an ideal interpreter would be facing the issue whether
to focus more on simultaneity (more frequent splitting), or on fluency which
is an aspect of the target language.

2Depending on the context, the aim may also be to emphasize the word “Quebec”. In that
case, the right translation would rather be “Francouzsky se mluv́ı i v Quebecu”.

26

4. Splitting methods
In this section, we would like to describe and explain the algorithms that we used
for the segmentation. We will also provide their different variants and possible
enhancements alongside the description. To each method’s description, we will
also include in bold the abbreviation that we will use in the subsequent parts
of the thesis. For example, instead of writing about a segmenting method that
splits after each word, we will denote it as every word splitting.

For most methods, we also included a pseudo-algorithm that takes a sentence
divided into words as an input and returns a list of words’ indices, after which a
segmentation method will put the splitting symbol.

4.1 Control segmentation strategies
To put extreme values into perspective, we needed to cover in our analysis the
two control methods:

• Splitting after every word (every word splitting)

• And splitting only at the end of sentences (full sentence splitting)

The description should be self-explanatory. With every word splitting, we
attempt to create a new partial translation after each new word of the sentence.
And on the opposite side, with full sentence splitting, we split only when the
sentences are finished.

4.2 Splitting after punctuation characters
Apart from control splits, another straightforward segmentation method is split-
ting based on the currently processed word. Since human language is complex
and each word can have a different meaning depending on the context, it is not
obvious that there is a method that could spot the right moments for splitting
only based on the current word without an additional context.

However, there is a category of words that could yield reliable results – punc-
tuation (e.g., dots, commas, or question marks). Because the function of punc-
tuation in the text is to split sentences into clauses and other standalone parts,
it is only natural to use them as indicators for interpreting (punctuation split-
ting). They cannot be heard and are visible only in a text format. Therefore,
we need an ASR with reliable punctuation prediction for this method to work
in real interpretation settings. Nevertheless, having the speech preprocessed into
a text, the algorithm is very straightforward and does not need any lookahead.
After analyzing punctuation marks in the ESIC dataset, we decided to set the
rule to split whenever the current word ends with “.”, “,”, “;”, “?”, “!” or “:”.

27

Algorithm 1: Punctuation splitting
Input: sentence words, punctuation chars
Output: splits

1 splits = []
2 for (i,word) in enumerate(sentence words) do
3 for punctuation in punctuation chars do
4 if word.endswith(punctuation) then
5 splits.append(i)
6 break

Naturally, one could extend this method to conjunctions as well. Because,
similarly to commas, they split sentences into clauses. However, we decided
not to include them in our analysis since coordination is a complex topic, and
the conjunctions can, for example, connect two adjectives describing a noun that
follows right after. Therefore, when splitting only based on the information about
the currently processed word, it would not be able to distinguish among those
several subcases. This is a particular case for translating English to Czech and
might be irrelevant for other language pairs.

4.3 Segmentation based on silence
Before explaining the silence splitting, we would like to describe a new visual-
ization tool that helped us formulate it.

4.3.1 Tool for visualization of interpretation
When we first started working on the topic of speech segmentation, we did not
have a clear way how to represent interpretation with both the text and time
information. That is why we developed a visualization tool that helped us un-
derstand how professional interpreters work with the language and how well they
can follow the speaker.

When analyzing the start and end times of words in the dataset, we noticed
two groups of neighboring words – the ones that follow each other without a break
and those that do not. In other words, the end time of the previous word may
be equal to the start time of the following word, or there might be a moment of
silence.

Now is a good moment to remind ourselves about how the times of words
were obtained in the first place. In the ESIC dataset, words’ start and end times
were generated automatically with the forced alignment [Kisler et al., 2017] –
not manually. Thus, they might not always be reliable and correct all the time
(see Figure 4.1). We verified that assumption by analyzing the audio signals of
recordings with the pydub library. We first converted the original ogg files to the
mp3 format and then extracted the magnitudes of audio waves. After that, we
detected silent audio ranges by comparing their magnitudes to a silence-threshold
value.

28

https://github.com/jiaaro/pydub

Figure 4.1: Screenshot from Audacity displaying an audio recording from the
ESIC dataset in the bottom track with two sets of intervals of silence above it.
In the first row, the silent ranges were detected using the word times from ESIC
data, and in the other one, the silent ranges were detected by our silence threshold
algorithm.

Nevertheless, let us return to the visualization tool. The initial thought was
to place sentences word by word on a plot where the x-axis would represent a
time when the words were said (choosing between start or end times).

To enhance the previous idea, we also needed to utilize the y-axis. First, we
turned around the plot and repositioned the time to the y-axis, going from top to
bottom. Then, we used the information about the silent parts between words so
that every time the following word did not have the same start time as the end
time of the previous word; we shifted it for +δ to the right. This way, we can see
in what parts of the sentence the speaker made pauses or the interpreter waited
for additional context. The words can be shifted to the right multiple times, but
when a word has the same start time as the previous word’s end time, it is shifted
back to the left by −δ. So it can gradually get back to the initial x-position but
not beyond that (see Figure 4.2).

29

https://www.audacityteam.org/

Figure 4.2: Image of our visualization tool displaying how well the Czech inter-
preter could follow the English speaker. The y-axis is running top-to-bottom with
the words, the x-axis left-to-right indicates when there was a pause between the
words.

We believe that this representation can help linguists to visualize the flow
of interpretation better and, with some modifications, can be potentially even
used as a basis for a metric of the interpreter’s performance – such as maximum
deviation from the initial x-position, most extended sequence without a pause,
the total number of pauses and more.

The visualization can additionally be enhanced with automatic word align-
ment when displaying both original speeches and their interpretation in one plot
(see Figure 4.3). This way, we can see the correspondence between words in both
utterances, which might help to quickly get oriented during the analysis.

30

Figure 4.3: Graphical visualization of the Czech (left) and German (right) inter-
pretation supplemented with the word alignment from the awesome-align tool in
green, see Section 4.4.2 below.

4.3.2 Splitting method
After creating the visualization tool, we knew we should also try to utilize the
information about intervals of silence between words for segmentation in the
following way – split in the silent moments.

31

Algorithm 2: Silence splitting
Input: sentence words with times
Output: splits

1 splits = []
2 for (i,word) in enumerate(sentence words with times) do
3 if i == 0 then
4 previous word = word
5 continue
6 if previous word.end time != word.start time then
7 splits.append(i-1)
8 previous word = word

To validate whether our idea is promising, we verified that after 86.99% of sen-
tences from ESIC, there is a silent moment before the start of another one. This
observation assures us about the possibility of our hypothesis that many speakers
make pauses after finishing meaningful pieces of information, even though they
usually read their speeches. Out of 91133 pairs of words in the dataset, the silent
spaces were detected between 21932 of them.

4.3.3 Possible intonation extension
When experimenting, we were also looking at the possibility of splitting sentences
based on the speaker’s intonation using, e.g., the crepe library [Kim et al., 2018].
Eventually, we did not include it in our final experiments because it was very
complicated to set the correct values and thresholds for splitting. However, we
believe this approach could also effectively reveal the right places for splitting
since the information is available straight from the audio and does not require
reaching the end of sentences.

4.4 Word alignment splitting
Word alignment is a well-known task that is part of several NLP applications.
It found meaningful applications mainly in the past when it was an essential
component of statistical machine translation models. However, even today, word
alignment is sometimes used in more advanced NMT models (e.g., for gener-
ating attention priors or decoding) and many other machine translation-related
disciplines.

Generally, word alignment is usually performed on the sentence level to find
the matching between two groups of words, typically from two different languages,
that have a common semantical meaning. In the ideal case, each word would have
only one counterpart, but because languages can follow different grammar rules
and have a distinct vocabulary, the pairing may be one-to-many, many-to-many,
or some words can even be left without a pairing.

For sentence segmentation, we will use the word alignment to construct an
algorithm that will separate words into standalone chunks so that no pairing from
the word alignment will cross the borders of those chunks. This technique has
already been used, for example, by Xu et al. [2005].

32

4.4.1 Splitting method
The algorithm works with two parallel texts – from the source and target lan-
guage, that are firstly aligned with an arbitrary word alignment tool.

Some tools may return two sets of alignments – sure and possible alignments.
The sure set contains alignments of words that are each other’s counterparts,
whereas possible alignments cover those connections that are more ambiguous.
For example, when aligning the sentence

“I have been living in Czechia for 10 years.”

with the Czech translation

“V Česku jǐz žiji 10 let.”

The pair (“living”, “žiji”) would be categorized as a sure alignment, while
pairs (“has”, “žiji”) and (“been”, “žiji”) as possible alignments.

For segmentation, we recommend using the union of sure and possible align-
ments because covering all possible alignments can reveal those less apparent
connections that can prevent the algorithm from splitting too early with an in-
sufficient amount of information.

When we have the alignments, we can start splitting. The main idea is to use
the word alignments to split the sentences into such parts whose word alignments
do not cross. At the same time, these segmented parts need to be minimal.
Therefore, we need to find for each source word the maximal index of a word
from the target sentence to which the current word or any preceding word is
aligned. Then we iterate through the list of maximally aligned indices, and when
we find a word whose maximal alignment is equal to or higher than for any other
preceding word after the last splitting, we make a new split. We summarized the
process in the following pseudo-algorithm (alignment splitting).

Algorithm 3: Alignment splitting
Input: word alignments, sentence words
Output: splits

1 max aligned is= find maximal alignment indices(word alignments)
2 current i = 0
3 splits = []
4 while True do
5 current max alignment = max aligned is[current i]
6 split after = current i
7 for (j, max alignment) in enumerate(max aligned is[current i+1:]) do
8 if max alignment ≤ current max alignment and

max aligned is[current i+1: j] ≤ current max alignment then
9 split after = j

10 break

11 splits.append(split after)
12 current i = split after + 1
13 if current i ≥ len(sentence words) then
14 break

33

4.4.2 Word alignment tools
For our main analysis, we used two different word alignment tools to see how
much they would differ in their segmentation performance.

The first tool we used was a statistical aligner based on the famous IBM
models – fast-align [Dyer et al., 2013]. It is an unsupervised aligner that needs
to be trained for every language pair separately (the choice of source and target
language matters). Thus, we first trained the model on English-Czech sentence
pairs of the EUROPARL dataset [Koehn, 2005] and then aligned English sen-
tences from the ESIC with the Czech translations that annotators prepared as
part of our annotation process.1

Similarly, we also extracted alignments from the awesome-align [Dou and Neu-
big, 2021], which extracts word alignments from multilingual BERT embeddings.
We used its default model without any additional finetuning.

4.5 Segmentation based on phrase chunking
According to Karakanta et al. [2021], another critical aspect of segmentation
during machine interpretation is how much standalone the segments are. In
other words, it is better to wait a bit longer but output segments that make sense
on their own. When thinking about these criteria, we started to work with the
idea that we should also try to do splits based on phrase chunking.

Because of the similar names, phrase chunking can get confused with the
sentence segmentation that this thesis is focused on. Thus, when speaking about
segmentation or chunking in general, we mean segmentation for interpretation
purposes. And on the other hand, when we mean the process of extracting
sentence constituents such as noun or verb phrases, we will always denote it as
phrase chunking.

Phrase chunking is a process of splitting sentence into meaningful units. We
can look at this task as a sequence tagging problem where we assign each token
with a label of a chunk to which it belongs.2

It is also worth mentioning that phrase chunking originates in sentence parse
trees that consecutively divide sentences into smaller parts until only individual
words remain. Therefore, the process of labeling a sentence with phrase chunks
is similar to finding the right level of depth for each group of words in a syntactic
tree to label them in a disjunctive manner. Naturally, this can be a source of
some ambiguity in the labels, especially when, e.g., deciding whether the group
of neighboring words belongs to one or several chunks of the same type – from
our experience, this is very typical for noun phrases. Therefore, different models
can predict particular phrase chunks differently.

For our experiments, we chose an NLP framework called flair [Akbik et al.,
2019] – gathering several state-of-the-art sequence labeling models for tasks such

1We did not use the original Czech sentences from the ESIC because they came from the
interpretation, and as a result, the number of sentences was different from the English texts. If
we really needed to use the ESIC interpretation data, we could perform the word alignment on
the document level. That, however, would be less precise.

2Concrete implementation of tagging such as Inside-Outside-Beginning notation or other
types of labeling is always dependent on the particular tool.

34

as named entity recognition, part-of-speech tagging, or phrase chunking. Con-
cretely, their phrase chunking model is based on flair embeddings using the bidi-
rectional LSTM-CRF layer. We included a list of all phrase chunks tags in the
Appendix (see Table A.2)

4.5.1 Splitting method
Compared to the alignment splitting, where one needs to have complete sentences
of both the source and target texts to split up the sentence, with phrase chunk
splitting, we can work directly with both complete and partial sentences.

With complete sentences, the splitting algorithm is reasonably simple. We let
the model tag words with phrase chunk labels and then, according to our own
rules, make a split between certain types of chunks. The splitting rules might be
in three different forms:

• Split between two types of phrase chunks

• Split after a certain type of a phrase chunk

• Split before a certain type of a phrase chunk

The only problem might be the words assigned with no phrase chunk label.
Nevertheless, since these are usually single words between regularly labeled phrase
chunks, connecting them to the preceding phrase chunk is the best solution. If
they would be connected to the following phrase chunk, there might be a risk that
those seemingly unimportant words may change the translation of the preceding
chunk. So prolonging the preceding chunk is a safer option.

Algorithm 4: Phrase chunk splitting
Input: sentence words, split rules
Output: splits

1 sentence phrase chunks = predict phrase chunks(sentence words)
2 for (i,phrase chunk) in enumerate(sentence phrase chunks) do
3 if i == 0 then
4 previous phrase chunk = phrase chunk
5 continue
6 if (previous phrase chunk.label, phrase chunk.label) in split rules then
7 splits.append(phrase chunk.last word i)
8 previous phrase chunk = phrase chunk

4.5.2 Sequential approach
In the real interpretation setting, methods need to be able to predict segments
also with partial sentences. Therefore, we proceeded very similarly when working
with progressively growing partial sentences.

While the phrase chunking model has no problem predicting tags for unfin-
ished sentences, the tags may change depending on how big context we provide.
The only requirement is to have at least one-word lookahead. That means predict-
ing the split before the last known word. With the very same principle, however,

35

we can have a two, three, or n-word lookahead which may make the tags more
stable.

In the algorithm, we first predict the chunks inside the partial sentence and
then check whether the last word is in the same chunk as the word before it. If the
last word is in a different phrase chunk and the pair of phrase chunks corresponds
to some of our splitting criteria, we make a split. This way, we can iterate through
the whole sentence and predict the splits for all words while always working with
only a partial sentence.

Algorithm 5: Sequential phrase chunk splitting
Input: sentence words, lookahead, split rules
Output: splits

1 assert lookahead > 0
2 partial sentence = []
3 current word i = lookahead
4 for (i,word) in enumerate(sentence words) do
5 partial sentence.append(word)
6 if i < lookahead then
7 continue
8 partial p chs = predict phrase chunks(sentence words)
9 current word p ch = get word p ch(partial p chs, current word i)

10 next word p ch = get word p ch(partial p chs, current word i + 1)
11 if current word p ch.index != next word p ch.index then
12 if (current word p ch.label, next word p ch.label) in split rules

then
13 splits.append(current word i)

14 current word i += 1

4.5.3 Problems with different tokenizers
Here, we would also like to mention a generally important issue that arises when
using different NLP tools for segmenting methods. Commonly, most of the NLP
tools come with their own tokenization preprocessing – a way how to split sen-
tences into elementary units. The most basic example of tokenization is to divide
sentences into words split by spaces, but other types of tokenization are usually
more granular, for example, regarding a verb “doesn’t” as two tokens “does” and
“n’t”.

In those cases, we must allow all our segmentation methods to make splits
at the very same places because otherwise, it would be hard to compare them.
In our case, we decided that splitting can occur only between two words divided
by space because we instructed our annotators to do it that way. Therefore, for
every segmentation method, we have to check whether some splits are not present
in the middle of words. And if they are, always shift them to the first space after
a particular word.

36

4.6 Segmentation based on POS tags
Similar principles described for phrase chunking also apply to splitting sentences
based on the part-of-speech (POS) tags (POS splitting). The only difference is
that during the process of POS tagging, we assign POS labels to each token in a
sentence, not to groups of words as phrase chunking does.

With the same approach as with phrase chunks, we can split up both complete
and partial sentences by defining the same three types of rules:

• Split between certain two types of POS tags

• Split after a certain type of POS tag

• Split before a certain type of POS tag

Additionally, and this is again very similar to phrase chunking, we need to
pay close attention to what type of tokenization the POS tagger uses. Because in
this case, one word can be split into more tokens and so have multiple POS tags.
Therefore, when splitting according to our rules, we did not check for equality
of POS tags but whether a word contains at least one of the POS tags from a
splitting rule.

As a POS tagging tool, we chose to use Stanza [Qi et al., 2020], which covered
the POS tags with reasonable granularity (see the whole list of tags in Table A.1).
The logic behind the algorithm is very similar to phrase chunk splitting. For the
reference, see Section 4.5.1.

4.7 Splitting with machine translation
When we instructed annotators about how to make golden splits in the data, we
told them to split the sentences at such places so that no additional information
in the sentence would affect the partial translation. In other words, we looked for
sentence prefixes whose translation is a prefix of the translation of the complete
sentence. The good thing is that a very similar process can also be simulated
with a machine translation model (translation splitting).

It is sufficient to translate the whole sentence at first and then consequently
translate all its prefixes while checking whether their translation is a prefix of
the complete translation. If it is, then the split sign is placed after the last word
of the original prefix. Similarly to the alignment splitting, this method requires
access to a complete sentence to be able to split.

Algorithm 6: Translation splitting
Input: sentence words
Output: splits

1 sentence translation = translate(sentence words)
2 partial sentence = []
3 for (i,word) in enumerate(sentence words) do
4 partial sentence.append(word)
5 partial translation = translate(partial sentence)
6 if sentence translation.starts with(partial translation) then
7 splits.append(i)

37

4.7.1 Machine translation theory
Since translation is an essential topic for sentence segmentation evaluation and
also for the previous method, we provide a short introduction to the topic of
neural machine translation (NMT). In the past, state-of-the-art models for ma-
chine translation were statistical models. However, with increasing data and
computational resources, the Transformer-based neural models has now become
the number one choice for translation.

The basic principle of generating a sentence in a target language from an
original sentence X can be described with the following equation:

p(Y | X) =
|Y |∏︂
t=1

P (yt | X, y<t) (4.1)

where X = x1x2x3...xn represents the original sentence with n input tokens
and Y = y1y2y3...ym stands for the target sentence with m tokens.

Nowadays, almost all NMT models utilize the encoder-decoder framework
[Cho et al., 2014] – consisting of four main components:

• Embedding layer

• Encoder

• Decoder

• Classification layer

The input text is first tokenized into a list of tokens which are mapped via the
embedding layer into a continuous space of vectors x ∈ Rd. After that, the vectors
are sent to the encoder and decoder layers, whose outputs are then projected back
to the space of words with the classification layer (see Figure 4.4).

Figure 4.4: Overview of a general NMT architecture with the embedding, encoder,
decoder and classification layer [Tan et al., 2020].

As we wrote in the beginning, the number one choice for the encoder and
decoder is the Transformer architecture [Vaswani et al., 2017] which formerly
replaced the recurrent neural networks by achieving state-of-the-results on various
language pairs as well as other NLP tasks.

38

4.7.2 NMT training
Typically, the NMT models are trained on whole sentences, and thus, their per-
formance on the unfinished sentences might be impaired – the translations make
less sense, or the model tries to translate them as finished sentences by forcing
the punctuation marks at the end. We wanted to explore this topic more, and
therefore apart from the standard NMT model trained on complete sentences, we
also incorporated into our experiments one additional model finetuned on partial
sentences.

Baseline NMT

To train the NMT models, we used the HuggingFace library [Wolf et al., 2019]. As
the original speeches in the ESIC dataset are in English and because we managed
to annotate our dataset only with Czech reference translations, we needed to
train our models in only one direction – from English to Czech.

We trained our baseline translation model by finetuning the Marian-based
[Junczys-Dowmunt et al., 2018] opus-mt-en-cs model from Helsinki-NLP group
with data from the English-to-Czech subset of the WMT16 dataset containing
997240 training parallel sentence pairs.

We run the finetuning for one epoch with a learning-rate set to 2e-5 and the
weight-decay of 0.01 using the Huggingface’s Seq2SeqTrainer.

Finetuned NMT

We created the second model by repeating the finetuning with the same settings
but this time with partial sentences. However, before proceeding to training, we
first needed to obtain the training data. We reused the same WMT16 dataset and
randomly sampled 30000 sentence pairs. Using our baseline translation model,
we then split each English sentence using the translation splitting method (see
Section 4.7).

When we collected splitted English and Czech sentences, we had to decide
what kind of splits to use. Because in a sentence split into n chunks, n−1 possible
partial sentences can be used. Selecting only one split would not sufficiently utilize
the data, but on the other hand, using all splits in every sentence could lead to
overfitting for longer sentences with more splits.

Therefore, we randomly sampled at most three partial sentences from each
sentence. This means that we selected all partial prefixes for all sentences with
four or fewer segments, and for sentences with more segments, we randomly picked
three. Through this process, we generated 76787 training sentence split pairs.

Finally, we complemented the partial sentence pairs with the same number
of complete sentences sampled randomly from the rest of the WMT16 dataset to
avoid catastrophic forgetting [Kirkpatrick et al., 2017]. However, we are aware
this topic is really complex, and many different strategies for training an NMT
system to handle prefixes could potentially be explored.

When applied to the same sentence, the concrete behavior of both translation
models can be seen in Figure A.5.

39

https://huggingface.co/docs/transformers/model_doc/marian
https://www.statmt.org/wmt16/

4.8 Segmentation from the annotation
The last type of segmentation we used in the experiments is the one manually
created by annotators (golden splitting). As mentioned before (see Section 3.2),
their instruction was to create as many splits as possible so that nothing that
comes after a split would alter the way how they would translate the partial
sentence leading up to the splitting sign.

4.9 From offline to online segmentation
As mentioned in sections above, some methods require information that is not
generally available during the inference time (e.g., reference translations or word
alignments). Therefore, in order to also present realistic results, we needed to
adapt those methods to the online setting.

By an offline environment, we mean the situation where we have complete
sentences and potentially even their translations with the word alignment. Con-
versely, an online environment should simulate the real interpretation conditions
where the methods process the sentences word-by-word and need to decide about
splitting even before a sentence ends. In this regard, we can divide our splitting
methods into three groups:

• Methods working in offline and online environments with consistent perfor-
mance.

• Methods that can work online, but the quality of splitting is determined by
how many words ahead they can see.

• And lastly, methods that can work only in offline settings and therefore can
do splits only when the whole sentences are available.

In the first group, there are four of our splitting methods – splitting based
on silence, punctuation, and the two control methods. These methods process
sentences word-by-word and and at any given moment can decide whether there
should be a split after the last word or not. With control methods, the splitting
conditions are trivial. In the case of punctuation, it is only necessary to check
whether the current word ends with an appropriate character. And when we
split depending on silence, though it may change based on the inner working of
different ASR models, the information on whether a silent part follows a current
word or not should be provided with very little latency.

In the second group, there is the splitting based on phrase chunks and POS
tags. For both of these methods, there is a need to have at least one-word looka-
head to decide the split – because the algorithms need to know the classification
of the one word ahead to check their splitting criteria.3 It is, however, important
to notice that the more lookahead the algorithms have, the more precise their
chunk and POS classifications should be because of the additional context (see
Figure 4.5).

3Omitting the possibility that the POS splitting would contain only rules in the form “split
after” a particular POS tag

40

Figure 4.5: Changes of phrase chunk prediction with a progressively growing
sentence.

The remaining group (alignment, translation, and golden data splitting) dif-
fers from all the previous methods because there is no way how they can be
deployed in online settings. They will always require to see at least the end of the
current sentence to make some reasonable split predictions. Therefore, for those
methods, we needed to train a statistical model that learns to predict the splits
even for partial sentences.

4.9.1 Training of statistical splitting models
To train the models, we again decided to utilize the flair library [Akbik et al.,
2019] that also contains pre-trained word embeddings and pipelines for different
machine learning tasks.

For our purpose, we chose to use binary classification models that will predict
whether there should be a splitting sign after the n-th word from the end of the
current partial sentence or not. In this case, different values of n correspond
to different lookaheads. But before actual training, we needed to conveniently
create train, dev, and test datasets. For this purpose, we use the ESIC dataset
in which we first split sentences using all three methods with the knowledge of
complete sentences.

Datasets creation process

Totally, there are 5486 sentences in the ESIC dataset, which are divided into 370
speech folders. By default, the speech folders are already divided into train, dev,
and test folders, but the test folder was too big for our experiments. Thus, we
needed to redistribute the speech folders to keep only some of the speech folders
in dev and test sets and let the rest be transferred to the training set.

We randomly iterated through the speech folders in the original dev set and
cumulatively counted the sentences in them. After reaching more than 400 sen-
tences, we stopped and transferred the rest of the speech folders to the training
set. We repeated the same procedures also with the test set, where we kept at
least 1000 sentences. Following this process, we ended up with 4069 sentences in
the training set, 407 in the dev set, and 1010 sentences for testing.

When training binary classification models, one would ideally like to have the
same number of positive and negative examples so that the model does not learn
to predict only based on the data distribution. Therefore, we needed to make
sure we have a very close number of partial sentences marked for splitting and
those that should not be split. We approached this problem similarly to training

41

the finetuned NMT model. We took at most three positive and three negative
samples from each sentence with particular lookahead.

With positive samples, the algorithm was more straightforward. If a sentence
had more than four splits, then we randomly chose three of them. If less than
four, we use all their segments except the last one. Then we took all those partial
sentences and added a particular number of lookahead words — if there were
enough additional words. If not, we would throw the sample away.

For negative samples, we also took at most three random segments, but ad-
ditionally, we needed to select one random position inside of them to represent
the negative sample – except for the last word that would represent a positive
sample. And again, we would skip any partial sentences that would not have
enough words for a particular lookahead. Moreover, we would also skip a sample
if the randomly chosen segment had only one word.

This way, we totally obtained 16157 sentences for the train set, 1616 sentences
for the dev set, and 3928 sentences for the test set.

Classifiers architecture

We opted for the default Transformer-based flair model TextClassifier for binary
classification using distilbert-base-uncased embeddings [Sanh et al., 2019]. We
used the same architecture and settings for all split types and lookaheads. The
learning rate was set to 5.0e-5, mini-batch size to 4, and the training took at most
ten epochs.

The binary classifiers and NMT models were trained within the Google Co-
lab environment using the Tesla P100-PCIE-16GB graphics card. Links to all
training logs are part of the source code attached to the thesis.

42

5. Results
Finally, in this chapter, we will show our experiments’ results. We will start with
observations from the analysis of our annotated dataset, continue with charac-
teristics of our splitting methods and end with the comparison of SLTev results.

5.1 Analysis of the golden dataset
Having collected data from all annotators, we first analyzed how long and how
often annotators split sentences, what kind of words were usually split up, and
how these numbers differ among individual annotators. Based on those findings,
we then concretely described how we constructed the splitting methods based on
phrase chunking and POS tags.

From 86017 possible places where the split symbols could be placed, annota-
tors decided to split sentences in 20692 cases. The following two histograms show
the distributions of segment lengths and segment counts in the annotations.1

Figure 5.1: Distribution of segment lengths and counts for golden splitting
method applied to the whole ESIC dataset.

From Figure 5.1, we can see that annotators split sentences the most frequently
into two segments, while the segments have the most frequently only one word.
At first, these statistics may seem not legitimate because one would expect that
with so many segments of one-word length, more sentences should be split into a
higher number of segments. Therefore we plot the distribution of the number of
words in sentences for potential clarification (see Figure 5.2).

Nevertheless, the sentence length distribution looked according to our expec-
tations. The only interesting aspect was the two peaks in two-word and four-
word sentences, mainly caused by the frequent usage of phrases “Thank you.”
and “Thank you so much.” in our dataset.

1In our experiments, we may switch from working with segments to working with splitting
symbols. When working with splitting symbols, we excluded the implicit splitting symbols at
the end of every sentence from our statstics

43

Figure 5.2: Distribution of sentence lengths in the ESIC dataset.

And so, a skewed sentence length distribution was not the cause. The expla-
nation is different. Although there is a lower number of sentences split into, e.g.,
two segments than six segments, the total contribution to the length distribution
is more significant for the six-segment sentences. Because when multiplying the
number of segments with the number of sentences they are part of, one gets a
more significant number for sentences segmented into multiple splits. And these
are exactly the sentences that contribute to the length distribution with many
segments of small lengths. Now we will describe our analysis of the possible
criteria that annotators may have used for splitting.

Looking at single words was insufficient because the further context might be
at least as important as the words right next to the splitting symbol. Therefore,
to get a better perspective on annotators’ splitting behavior, we analyzed whether
the splits were made inside or outside of the phrase chunks and what were the
POS tags of words on the beginnings and ends of segments (see Figure 5.3).

Figure 5.3: Ten most frequently split phrase chunk and POS pairs for the golden
splitting.

We especially consider phrase chunks as an essential factor for splitting as
they naturally divide sentences into meaningful chunks that bear meaning on
their own and thus are easy to read at once – fulfilling the condition for promising
interpretation segments [Karakanta et al., 2021].

Out of 20692 splitting marks that the annotators made, only 5504 were placed
inside phrase chunks. And from those, more than 4000 were placed inside noun
phrases – we suspect that many of those splits inside NPs can be attributed to

44

coordination which might or might not be split by the phrase chunking model.
Should we consider annotators as a reliable source of perfect segmentation, this
observation significantly reduces the possibilities of where the segmentation for
frequent and reliable interpretation can occur.

When looking at individual ratios of pairs that were split and their total counts
(pair split ratio),2 we can see that apart from NP-NP pair, no other pair of phrase
chunks with a higher number of splits has the ratio particularly high. This means
that even though phrase chunks might be good indicators for potential places to
split, there is not a set of phrase chunk pairs that would guarantee the split
occurrence. Nevertheless, among the most ten frequent phrase chunks, there are
only two of them that do not involve noun phrases.

Graph of POS tag pairs confirmed the previously stated observation about
nouns’ importance for splitting when five out of ten most often split POS pairs
contained nouns. Needless to say, nouns are by far the most frequent POS, so
their high counts are not really unexpected. Nevertheless, we still believe that
spaces around certain nouns might be a good potential place for splitting since,
for example, obviously inconvenient pair ADP-NOUN was not covered among
the most frequent ones.

5.1.1 Rules for phrase chunk and POS splitting methods
After the previous observations, we wanted to try to formulate splitting methods
that would always split between certain pairs of phrase chunks or POS tags.
Therefore, to obtain the right phrase chunk/POS pairs for splitting, we sorted
the pairs according to the pair split ratio (see Figure 5.4) and incorporated into
the splitting rules for those pairs with at least 100 splits and whose ratio surpassed
50 %. We then summarized the rules in 5.1.

Figure 5.4: Graphs of phrase chunk and POS pairs with the highest pair split
ratio.

To get better notion about exactly what types of words the rules are making
splits, we put together examples of representatives sentences for most of the rules
in Table A.3 and Table A.4.

2We did not show the ratio for inside splits because it would be too misleading to present
all spaces inside a particular phrase chunk as the total count.

45

Chunk phrase rules

Between (NP, SBAR), (NP, NP), (VP,VP), (ADVP, NP),
(ADJP,SBAR), (VP,SBAR), (NP,PP)

POS rules

Between

(NOUN,CCONJ), (ADJ,SCONJ), (PROPN,CCONJ),
(NOUN,PRON), (NOUN,SCONJ), (CCONJ,DET),

(CCONJ,PRON), (CCONJ,NOUN-PUNCT),
(VERB,SCONJ), (CCONJ,VERB), (VERB,CCONJ),
(CCONJ,ADP), (CCONJ,ADV), (CCONJ,NOUN),
(PROPN,VERB), (NOUN,PART), (NOUN,VERB),

(PROPN,AUX), (NOUN,AUX), (PROPN,ADP),
(NOUN,ADP)

After PUNCT

Table 5.1: Table showing segmentation rules for the phrase chunk and POS split-
ting that we derived from the annotation data.

5.1.2 Differences between individual annotators
With seven different annotators working on the dataset, we also wanted to de-
termine whether there were some differences among their splitting strategies – in
terms of segment lengths, counts, chunk phrases, and POS tags.

This time, we started with the analysis of phrase chunk and POS tags, and
generally, we did not observe any significant differences. All annotators had very
similar distributions of the most frequent split pairs (both phrase chunks and
POS tags); even the inside/between ratio stayed very close to 75%. To keep
the subgraphs visibile, we needed to divide them into two following figures (see
Figures 5.5, 5.6).

As for segment lengths and counts (see Figure 5.7), the most visible difference
was between Annotators 4, 5, and the rest. Annotators 4 and 5 were the only ones
that did not have a typical descending trend in the segment length distribution.
This fact also affected their segment count distributions with a relatively small
number of sentences split into more than six segments. Annotator 4 was also the
one that has the lowest ratio of made splits and the total number of annotated
sentences – 2338 split symbols in 1077 sentences.

Despite these small differences, we can still assume that all annotators under-
stood the instructions and annotated with similar rules in mind. Moreover, some
slight differences might even be caused by the distribution of sentences assigned
to a particular annotator.

46

Figure 5.5: Ten most frequent phrase chunk and POS pairs split by individual
annotators (1/2).

47

Figure 5.6: Ten most frequent phrase chunk and POS pairs split by individual
annotators (2/2).

48

Figure 5.7: Distributions of segment lengths and counts for different annotators.

49

5.2 Analysis of splitting methods
Similarly to golden splits, we analyzed the other splitting methods as well. As for
the total number of splits (see Table 5.2), annotators totally placed 20692 splitting
symbols. Considering their splitting as optimal, splitting methods with more
splits should generally be regarded as more aggressive – trading lower latency
for worse translation quality. And on the other hand, methods with a lower
number of splits should be characterized as more patient for a reasonable amount
of context.

From all splitting methods, only the alignment-based splitting made more
splits than annotators. On the contrary, the punctuation splitting had the lowest
number of placed splitting symbols. Looking at the two translation splitting
methods, the higher number of splits was made by the NMT model finetuned
on the partial sentences. This observation supports the assumption that the
finetuning had a positive effect on the model because there were more partial
translations that constituted a prefix of the complete sentence translation.

Splitting method # of splitting symbols
Punctuation 4 269
Phrase chunk 12 654
Baseline translation 16 061
Silence 17 485
POS 20 300
Finetuned translation 20 384
Golden 20 692
Alignment fast-align 45 707
Alignment awesome-align 48 604
Every word 86 017

Table 5.2: Table summarizing numbers of splitting symbols placed by each seg-
mentation method.

We also checked the ratio of splits inside or between phrase chunks (see Ta-
ble 5.3). In the dataset, there were 86017 possible places to place the splitting
character, out of which 40663 were inside phrase chunks and 45354 between them.
Naturally, the chunk splitting method had the highest share of splits on the edges
of phrase chunks, followed by punctuation and POS segmentation. Both align-
ment methods apparently did not respect the phrase chunks when splitting and
split more in favor of ”inside splits” than even the every word splitting.

50

Splitting method # of inside splits # of between splits
Punctuation 980 3 289
Phrase chunk 0 12 654
Baseline translation 5 797 10 264
Silence 7 246 10 239
POS 5 336 14 964
Finetuned translation 7618 12 766
Golden 5 504 15 188
Alignment fast-align 22 529 23 178
Alignment awesome-align 25 651 22 953
Every word 40 663 45 354

Table 5.3: Table showing counts of splits by each segmentation method that were
placed inside a phrase chunk or between two different phrase chunks.

When analyzing splitting methods’ results based on phrase chunk pairs, we
noticed that all methods split very frequently inside or after noun phrases, very
similarly to our golden data. However, the order of the ten most frequent phrase
chunk pairs differed for each splitting method. Looking at the same graphs but
for POS tags similarly revealed high numbers of splits for nouns and generally
different distributions.

As for segment lengths and counts analysis, the graphs followed the expected
trend. The more segments of lower lengths, the more evenly distributed segment
counts. Furthermore, we also noticed that splitting based on phrase chunks, in
particular, had the lowest number of one-word segments to two-word and three-
word segments.

The detailed graphs can be viewed in the Appendix (see Figure A.1, Fig-
ure A.2, Figure A.3) – as well as an example of splitting differences when all
splitting methods were applied to the same sentence (see Table A.5).

5.2.1 Comparison of splitting method in pairs
So far, we have seen how splitting methods compare to each other in terms of
segment lengths, counts and how they respect or ignore different phrase chunks
and POS pairs. From these pieces of information, we understood how the methods
behave, but still, it did not really reveal whether the methods split at the same
or different places.

To find out, we compared the methods to each other, counted the number of
splits they shared, and converted it to percentages as a ratio of common split-
ting symbols to the union of all their placed splitting symbols. The results are
presented in the following graph (see Figure 5.8).

Each cell in the heatmap represents the ratio of splits of a method on the
y-axis that are shared with the method on the x-axis. Because this relationship
is not symmetrical, the value of the cell in the coordinates (x, y) is not generally
equal to the value of a cell (y, x). We also ordered the methods according to the
number of splits they made, so the methods that split the least are on top and
left, respectively.

Apart from the diagonal, the only cell with 100% agreement is at the intersec-
tion of punctuation and POS splitting methods. A very high agreement is also

51

Figure 5.8: Heatmap displaying common splitting symbols for all pairs of splitting
methods used on the whole ESIC dataset.

between the punctuation method and golden data – approving that punctuation
characters are good indicators for sound splits. The only time splitting after
punctuation might cause trouble is when the commas connect several adjectives,
and the noun that the adjectives are bounded to is still not known – because oth-
erwise, one would need to guess the correct adjectives’ ending. That, however,
is a special case for interpreting from English to Czech that other language pairs
do not need to share.

Splitting based on our phrase chunk rules had the most common splits with
the POS splitting but not vice versa. That agrees with our assumption that the
POS splitting is more granular – allowing splitting in more subcases.

Moving on to the translation splitting methods, we can see that the baseline
version had the most common splits with the finetuned one. But still, the base-
line version is not a real subset of the finetuned version because the finetuned
translation model did not register almost a third of all the baseline translation
splits.

The last methods we wanted to mention in this regard are the alignment
methods. Because their frequency of splitting was significantly the highest, it is
no surprise that other methods always share at least half of the splits with them.

52

Theory of granular and true unique splits

If we flipped the values in the previous Figure 5.8 – taking the remainder to 100%,
we would get the percentages of splits that are unique to one of the methods.
However, having that number does not give us any additional information, so we
came up with two categories of unique splits that could reveal something more.
We called them the granular unique splits and true unique splits. Let us define
them more rigorously.

Let two splitting methods A and B split a sentence S with splitting symbols
AS = {ai, aj, ...} and BS = {bx, by, ...} where ai denotes a split after the i-th word
of S made by the splitting method A – the same notion applies for the method
B as well.

Then, we will call a splitting symbol ai ∈ AS a granular unique symbol of the
method A if bi ̸∈ BS and there exist two splitting symbols after p-th and q-th
word of S such that ap, aq ∈ AS and bp, bq ∈ BS, while p < i < q and there is no
splitting symbol bm ∈ B such that p < m < q.

If ai is a unique splitting symbol of the method A, that means bi ̸∈ BS, and
the previous definition does not apply, we will call the splitting symbol ai a true
unique symbol of the method A.

Explained more simply, a splitting symbol ai of the method A is called gran-
ular unique if it is located inside two “border” splitting symbols that are shared
between both splitting methods (ap, aq ∈ As; bp, bq ∈ Bs), and additionally, there
is no splitting symbol bm ∈ Bs that is also located inside the same pair of “bor-
der” splitting symbols. To clarify the concept even more, an example of the
classification of unique symbols can be seen in Figure 5.9.

Figure 5.9: Examples of two sentences, split by two different splitting methods,
with true unique splitting symbols in red, granular unique splitting symbols in
green and common splitting symbols in grey color.

To correctly classify the splitting symbols at the beginnings and ends of the
sentences, it is necessary to place implicit splitting symbols before the first word
and after the last word of every sentence. These implicit symbols, however, should
never be covered in statistics. The relation of unique granular symbols is again
not symmetric and can only be defined when comparing two splitting methods
against each other.

Unique split analysis

Having unique symbols split into those two categories, we can more easily find
out if one splitting method is a subset of another – that means they share the
splits, but one method is more aggressive and splits even those segments that the
other method kept as a whole.

53

For the visualization, we used the same approach as we did with the common
splits. We counted the granular unique splits across the whole ESIC dataset for
each pair of splitting methods and then displayed it within a heatmap as a ratio
of granular unique splits to all unique splits (see Figure 5.10).

The value in the coordinates (x, y) then expresses the percentual share of
granular unique splits of the splitting method y when compared with the method
x.

Figure 5.10: Heatmap displaying granular unique splits for all pairs of splitting
methods used on the whole ESIC dataset.

The methods were once again ordered by the total number of splits. Therefore,
there is generally a bigger potential to see a more significant ratio of granular
splits in the left lower triangle under the diagonal. Because if a method splits less
frequently, then there is a smaller chance that a particular sentence will have a
unique split and share the necessary border splits with a more frequently splitting
method. That was proved by the fact that there is only one cell with above 50%
value on the right side.

According to our expectations, the most significant proportion of granular
unique splits has the punctuation method column. Furthermore, punctuation
splits achieve a 100% score with the POS method since the POS method covers
all of its splits (see Figure 5.8). Golden data have a very high proportion with
the punctuation method as well.

Other than that, a higher proportion of granular unique splits is present with
the pair of POS and phrase chunking methods; and between the translation

54

splittings. That is a good showcase that the more similar methods, the more
granular unique splits there should be. The other method pairs did not score that
high, including even the alignment splitting, where the probability of granular
unique splits is much higher since they split significantly more often.

5.2.2 More detailed view on the alignment splitting
Since alignment splitting methods have been quite popular among other re-
searchers, we decided to look at how much the splitting will change depending
on the chosen alignment tool, translation, and language.

For our analysis, we added two additional popular alignment tools: eflomal
[Östling and Tiedemann, 2016] and sim-align [Jalili Sabet et al., 2020]. Similarly
to fast-align, we first trained eflomal on the EUROPARL dataset [Koehn, 2005]
and symmetrized its result with the same grow-diag-final heuristic. For sim-
align, we used the default settings and gathered results from the mwmf matching
method.3

For additional translations, we used API for the LINDAT translation model
[Popel et al., 2020] and translated our original English version of ESIC into Czech
and German. We opted for an existing MT model to make the conditions for both
Czech and German equal – not risking training one model better than the other.
Let us first use these different translations for the comparison of the alignment
splitting in terms of split counts.

LINDAT
Czech

Annotation
Czech

LINDAT
German

eflomal 51 169 49 010 41 127
awesome-align 50 245 48 504 37 209
fast-align 47 789 45 707 40 360
sim-align 34 928 31 654 25 803

Table 5.4: Table showing number of splits made by the alignment splitting meth-
ods with different translation tools and target languages.

Only by looking at Table 5.4, we can notice differences among the alignment
tools. Even for the same reference translation, the two alignment methods can
differ up to 17356 splits in the case of eflomal and sim-align.

With English-Czech alignments, we would expect our golden translations to
produce more splits because the annotators were instructed to write down optimal
translations that will produce the most optimal splits – i.e., no other translations
should produce more granular splits. However, according to this data, it is the
other way around. On average, alignment methods working with LINDAT trans-
lations made 2389 more splits than the same methods using our translations from
the annotation. We assume this fact is mainly caused by the imperfection of the
alignment splitting method and because MT models may output more mono-
tone and literal translations, that can be aligned more easily. Thus, we are still
convinced our golden translations should be better suited for faster interpreting.

Comparing the split counts for Czech and German translations, the alignment
methods aligning the German translations made on average 9908 splits less than

3We summarized the exact procedures within the README.txt in the attached source code.

55

the same alignment methods working with Czech translations – suggesting that
German sentences may contain more longer-distance relations among the words
than their Czech equivalents. Although we do not consider alignment splitting
methods very reliable, we regard this difference as significant enough to confirm
the hypothesis that a target language influences the size of the optimal sentence
splits for interpretation.

The last thing we noticed while comparing alignment methods’ split counts
was that the alignment methods kept the same order in terms of the number of
splits across different target translations. We spotted the only exception for the
German translations, where awesome-align and fast-align flipped their positions.

Figure 5.11: Heatmap showing percentual ratio of common splits among align-
ment methods with different Czech reference translations – automatically trans-
lated by LINDAT and manually by annotators.

Displaying common splits of alignment methods for golden annotators’ and
LINDAT translations (see Figure 5.11) divided our heatmap into four smaller
squares. The most interesting sections of the heatmap are in the upper-right
and lower-left corners because there are the intersections of the same alignment
tools for different reference translations. Except for the sim-align, the highest
agreement in both of these squares are between the same alignment methods on
the diagonal. From those results, sim-align splitting appears as the most different
from the other.

56

Figure 5.12: Heatmap showing percentual ratio of common splits among align-
ment methods with different reference languages – Czech and German.

On the other hand, when comparing Czech and German reference translations
(see Figure 5.12), we did not observe previously mentioned high numbers on the
diagonals. Nevertheless, we can see here that there are more common splits among
alignment methods applied to the same target language than when comparing
across languages.

With this section, we conclude our comparison of splitting methods. Even
though it is rather complicated to get a better understanding of splitting when
looking at larger data, we tried to visualize it in more views to deeply understand
how the splitting methods work and differ from each other.

5.3 From offline to online methods
As mentioned in Section 4.9, some segmentation methods can work very well with
complete sentences, but at the same time, they cannot be applied to partial sen-
tences. Therefore in this section, we will explain how we adjusted those methods
to work in the online setting as well.

57

5.3.1 Phrase chunking and POS splitting
We start with the two methods that did not need bigger changes – phrase chunk
and POS splitting. Let us work with the assumption that a sentence split accord-
ing to our rules with phrase chunks or POS tags predicted with the knowledge of
a complete sentence can be regarded as golden data. Then, we want to determine
how accurate the splitting will be when working only with partial sentences.

From this point, we will call the methods processing sentences word-by-word
with a lookahead as sequential methods and the methods predicting splits with
the whole sentences as oracle methods.

Sequential versions of phrase chunk and POS splitting need at least one-word
lookahead (see Section 4.9). Because of that, we analyzed the sequential methods
starting with the lookahead of one word up to five words which seemed to us as
a still reasonable delay for real-time interpreting.

During the segmentation, when processing sentences with lookaheads, we as-
sumed we could know if we reached the end of a sentence. Therefore for a looka-
head of n words, the last segment of each sentence will contain at least n+1 words.
Because when the end of a sentence is reached with a lookahead, it is faster to
output the rest of the sentence at once than trying to split it into more segments.
That is why we did not compare our sequential methods with the oracle versions
with implicit lookahead of zero words but with their adjusted lookahead versions
that copy the same behavior when reaching the end of sentences. Otherwise, the
sequential methods might appear less accurate than they really are.

Prescision Recall Precision(0) Recall(0)
Phrase chunk

Seq 1 96.03 74.17 96.03 73.19
Seq 2 97.36 96.08 97.36 88.48
Seq 3 97.54 97.25 97.54 82.18
Seq 4 98.15 97.78 98.15 76.79
Seq 5 98.58 98.3 98.58 71.69

POS
Seq 1 98.66 84.97 98.66 83.59
Seq 2 99.34 96.72 99.34 90.16
Seq 3 99.65 98.84 99.65 85.4
Seq 4 99.8 99.22 99.8 79.56
Seq 5 99.89 99.42 99.89 73.78

Table 5.5: Table showing values of precision and recall for sequential versions of
phrase chunk and POS methods. The first two columns contain scores obtained
by comparing the sequential methods with their oracle counterparts with the
same lookahead; the last two columns have the values of precision and recall
coming from the comparison of the sequential methods with a corresponding
oracle method with zero lookahead.

Finally, we want to emphasize that when evaluating phrase chunk/POS split-
ting, we do not measure how precise their tagging is but how accurate the splits
arising from the tagging are. When a tagger works with incomplete sentences,
it can predict a different tag than when knowing the whole sentence. But if the

58

wrong tag splits or does not split the partial sentence the same way as the correct
tag would, then it makes no difference for our purposes, and we even cannot spot
that.

In Table 5.5, we can see that even though for phrase chunk one-word lookahead
the recall is 74, 17%, starting from two-word lookahead, the recall jumped over
96%. With the precision, the sequential methods got above 96% even for one
word lookahead. With POS splittings, the data are very similar. Achieving
almost perfect precision with all sequential methods and again from two-word
lookahead, getting the recall over 96%.

We are aware, that the choice of particular splitting criteria may cause these
results, but generally, with a lookahead of two words, there is very little difference
between sequential and oracle methods. Thus, we can conclude that the sequen-
tial methods of phrase chunk and POS splitting can be very effectively used in
online settings, almost copying their oracle counterparts.

5.3.2 Training machine learning models
For the other methods that cannot be directly used for sequential processing, we
needed to train binary classifiers that learned to split the partial sentences from
the oracle splits. We used the same range of lookaheads as in the previous sec-
tion, and trained a separate classifier for each splitting method with a particular
lookahead.

Let us first look at the statistics we collected from the model training to see
how the models performed. For each model, we got the F-score for both classes
– SPLIT and NO-SPLIT.4 F-score is a harmonic mean of precision and recall
computed as

F = 2 × precision × recall

precision + recall
(5.1)

Näıve evaluation

Figure 5.13 shows that the most accurate classifiers were trained when predicting
golden splits from our annotators. Translation and alignment models performed
a bit worse, with alignment models slightly better at classifying SPLIT classes
and translation models at NO-SPLIT classes.

When looking at the particular models from one method, we can observe a
trend that models with lower lookahead scored better than models looking further
into a sentence. We expected this correlation to be the other way around because
the more lookahead and context a model has, the easier it should be to decide
about the split. In our opinion, the main cause of the problem was the small
amount of data. Because with bigger lookaheads, the end of partial sentences
can cover even multiple new segments that can potentially confuse the classifier
about what it should really predict. Furthermore, the prediction might be difficult
because, despite the constant lookahead across the whole datasets, the intended
breaking points were not marked explicitly.

4To get the F-score for the whole dataset, we would only need to take an average of F-scores
for individual classes.

59

We are not sure why the baseline translation with the four-word lookahead
happened to be an outlier. However, it is very plausible that it was caused by
the mentioned combination of insufficient data and a larger lookahead.

Figure 5.13: Summary of F-scores for SPLIT and NO-SPLIT classes of all of our
trained binary classifiers trained with different lookaheads.

Realistic evaluation

A constructed test set from 1000 split sentences gave us a rough estimation of
how the trained models perform. Nevertheless, the reality might be different. To
not overfit, we used only up to three samples of each sentence in all sets (train,
dev, test). But when interpreting, a classifier needs to decide about a particular
partial sentence after every word in the sentence (subtracting the lookahead). So
even though the results from training looked very promising, we rather split all
test sentences with the sequential methods and compared the splits with their
oracle versions. This is the only way to see how accurate our sequential splitting
will be in real interpretation settings.

With this adjustment, the results are very different (see Table 5.6). While
keeping the recall relatively high, the precision dropped very significantly – es-
pecially for the translation methods, where the precision fell below 50%. That
means that the sequential methods made far more splits than they were expected
to make. We believe this problem could be fixed with more data because, as we
wrote previously, we took only up to three samples from each sentence, which
might very easily not cover all partial sentence lengths and contexts sufficiently.
Therefore, there is definitely still a need for further exploration that we will dis-
cuss in Section 6.3.

60

Precision Recall Precision(0) Recall(0)
Golden splitting

Seq 1 51.06 85.02 51.06 83.66
Seq 2 51.98 86.21 51.98 81.08
Seq 3 51.17 86.54 51.17 76.05
Seq 4 50.95 85.52 50.95 69.53
Seq 5 48.42 82.56 48.42 61.66

Baseline translation
Seq 1 31.44 70.16 31.44 66.68
Seq 2 30.84 70.16 30.84 63.19
Seq 3 25.68 60.91 25.68 51.48
Seq 4 19.08 94.49 19.08 74.77
Seq 5 23.4 58.4 23.4 42.93

Finetuned translation
Seq 1 36.48 75.09 36.48 71.37
Seq 2 36.97 75.73 36.97 68.19
Seq 3 32.01 67.38 32.01 57.19
Seq 4 29.18 63.1 29.18 50.16
Seq 5 29.26 66.86 29.26 49.62

Alignment fast-align
Seq 1 57.49 77.02 57.49 70.05
Seq 2 57.12 76.65 57.12 64.85
Seq 3 52.98 76.96 52.98 60.65
Seq 4 52.26 75.3 52.26 54.86
Seq 5 50.82 75.18 50.82 50.38

Alignment awesome-align
Seq 1 66.1 87.68 66.1 81.46
Seq 2 67.65 85.29 67.65 74.2
Seq 3 65.18 86.54 65.18 70.54
Seq 4 61.39 84.32 61.39 63.83
Seq 5 57.66 75.32 57.66 52.67

Table 5.6: Table showing values of precision and recall for sequential versions
of splitting methods to which we needed to train a binary classifier in order to
use them in online settings. First two columns contain scores that were obtained
by comparing the sequential methods with their oracle counterparts with the
same lookahead; and the last two columns have the values of precision and recall
coming from the comparison of the sequential methods with a corresponding
oracle method with zero lookahead.

61

The last question is why the translation splits had a worse recall than the
rest. We assume that they are hard to predict based on their inner principle.
Because for translation splitting, we are trying to teach classifiers to predict
when our manually trained and finetuned translation models will output a partial
translation that would be a prefix of a complete translation. So it is definitely
possible that the rules for splitting under such conditions seemed to a classifier
more random than when trying to learn the splitting criteria for golden data and
alignment splitting based on less complicated rules.

5.4 SLTev results
Finally, we can gather everything we have built so far and evaluate all splitting
methods with SLTev to see the results for both the baseline translation model and
its finetuned version when applied on partial sentences. For the SLTev evaluation,
we used the same 1000 sentences that we already used as a test set during the
evaluation of sequential splitting methods.

As we mentioned in Section 2.4.1, although SLTev does output all three met-
rics for evaluation of machine interpretation – BLEU score, delay, and flicker,
we could not use the BLEU score in our settings. The main issue is that SLTev
evaluates the BLEU score only with complete sentences, which means that all our
methods scored the same. To use the BLEU score, we would need to abandon
our retranslation process and grow the partial translations by segments. Then,
in the end, the complete sentences would be different for each method, but the
flicker would be zero.

However, we argue that for the evaluation of splitting methods, flicker with
the retranslation approach may be an even more representative measure of splits’
quality than BLEU when growing translations by segments. Because if the seg-
ments are short, then the translation module starts to translate earlier and is
more prone to changing the partial translations, thus increasing the flicker. That
is why flicker reflects the quality of segments and is a supplementary metric to
the delay score that, on the other hand, favors shorter segments over the longer
ones.

For completeness, when evaluating BLEU on complete sentences concatenated
to two documents, methods with the baseline MT model scored 40.011 and with
the finetuned one 40.219. Such a small difference means that even though the
finetuned MT model behaved differently than the baseline version when working
with partial sentences (see Figure A.5), they do not differ much with complete
sentences. Thus, the finetuning had the intended effect.

5.4.1 SLTev requirements
For simultaneous translation evaluation, SLTev needs three files:

• A text file containing golden translations.

• A text file with progressively growing speaker’s sentences with a particular
display time for each new segment (or rather word).

62

• And lastly, a text file with the progressively growing interpretation of the
original speaker with particular display times.

Preparing the control file with golden translations was straightforward. We
only needed to extract golden translations from annotators and concatenate them.
With the other two files, we needed to provide also the time information, so it
was more complicated.

Because there is information about when each word appears in the ESIC
dataset, we could grow the original sentences word by word using data straight
from the dataset (see Figure 5.14). Given SLTev’s requirements, however, we
needed to adjust the times so that all test sentences appear as one long speech
(and not several speeches, always starting from the time 0). So whenever we
reached the end of one speech, we added the end time of its last word to the start
time of the first word of the following sentence.5 This way, we ensured that each
speech’s relative shifts were preserved.

Figure 5.14: Example of a progressively growing English sentence from a text
file used for SLTev evaluation. The first letter marks whether a certain text is
a partial (P) or a complete (C) sentence and the following two timestamps in
centiseconds represent the start time of the whole sentence and the end time of
the last word.

With the third file, we were required to concatenate the times as well, but we
also needed to decide how to set the display time for translations in the first place.
Because we did not optimize the splitting methods’ running times and efficiency,
we did not include the time spent deciding and splitting to the translation times.
Thus, we set the display time of each partial translation equal to the end time of
the last English word processed before deciding to split, including the potential
lookahead (see Figure 5.15).

5We also tried to evaluate the splitting methods without this additional process of concate-
nating the times. And the results of all methods were completely the same in terms of flicker.
For the delay, there was a shift for all values. So that the individual values of delay changed,
but the relative positions of all the methods stayed the same.

63

Figure 5.15: Example of a progressively growing Czech candidate translation from
a text file used for SLTev evaluation. The first letter at each lines denotes whether
it is a partial (P) or a complete (C) sentence. The first number is then the display
timestamp of the last processed English word (including the lookahead). The last
two numbers correspond to start and end times of the partial/complete English
sentence that was processed when deciding about the split.

5.4.2 SLTev evaluation
We started the SLTev evaluation with the oracle methods with one-word looka-
head. We did not use the zero-word lookahead because this way, we could com-
pare the oracle methods with the sequential ones that need to start with at least
one-word lookahead because of the phrase chunk and POS splitting methods.

SLTev results for oracle methods

The first thing that caught our attention in Figure 5.16) was that apart from
the whole sentence segmentation, the translation splits also achieved zero flicker
when using a particular MT model. That was a good check of the correctness of
our implementations.

Except for these two methods, complete sentence and translation splitting, all
other methods achieved lower flicker with the finetuned MT model than with the
baseline version trained only on complete sentences.

We found it very interesting that doing more splits generally does not guar-
antee lower delay. For example, both translation methods made more splits than
the phrase chunk splitting and still had a more significant delay. The explanation
with high probability lies within the type of splits the translation methods make
– if we look closely at the data (see Figure A.3) we can see that the translation
splitting made many splits of length one. Therefore, we examined the split sen-
tences in a more detailed way and discovered that for translation splitting, it is
very common to not do any splits in the first half of the sentence and then do the
splits after each word towards the end. Thus, the delay is very small for words
towards the end of sentences, but the waiting period is extended for the words at
the beginning. We speculate that this phenomenon of initial long chunks is caused
by the nature of MT systems that can at the beginning be very unsure about the
exact wording, but when a sentence reaches its end, the translations might get
more stable. However, it does not necessarily mean that the semantic meaning
of initial partial translations is wrong; it can only be expressed differently.

64

Figure 5.16: SLTev results for all oracle splitting methods with baseline and
finetuned translation models.

Looking at the graph from a multi-objective optimization perspective, all
points except the silence splitting and particular translation methods make up
a Pareto front. This means that no method is better at both delay and flicker
than all the other methods (with the same translation model). We consider this
finding surprising because we did not try to construct the methods in any special
way.

Nevertheless, when evaluating splitting methods with SLTev, the methods
may seem more similar to each other than when comparing their common and
unique splits (see Figure 5.8, Figure 5.10). That obviously raises an immediate
question, what metric should be taken more into account. Does that mean that
despite the differences in split positions, the methods tend to have more similar
scores of delay and flicker? Or the metrics of delay and flicker are not that precise
to pinpoint important differences?

We believe that the methodology of splitting comparison is far from ideal,
and adopting more comparison aspects may be one of the solutions. The other
one would be enhancing the existing metrics of delay and translation quality
scores because, as we, for example, saw in our example of delay calculation (see
Section 2.4.1), excluding words that did not appear in the reference from the
summation is not ideal. Therefore, developing new SiMT evaluation tools with
more advanced delay and translation quality metrics might also significantly help
to measure models’ performance in a better way.

65

SLTev results for sequential methods

Continuing the narrative from the previous section, we will now briefly comment
on the results of the sequential methods as well – shown in Figures 5.17 and 5.18.

Figure 5.17: SLTev results for all sequential splitting methods used with our
baseline translation model.

First of all, it is important to remind ourselves that the sequential versions of
control methods, punctuation, and silence splitting are entirely identical to their
oracle counterparts, and the difference among their scores for different lookaheads
was caused only by the different behavior towards the end of sentences.

Meanwhile, other methods, especially those with trained binary classifiers,
can have more irregular score patterns with different lookaheads. For them, we
can observe generally higher flicker and lower latency compared to their oracle
versions because the sequential versions split more often. We noted the most
significant score change with the translation splitting methods, which recorded
more than two times higher flicker than their oracle counterparts. Except for the
translation splitting, all other methods remained positioned relative to each other
in the same way.

66

Figure 5.18: SLTev results for all sequential splitting methods used with with our
finetuned translation model.

And finally, when comparing the scores from the baseline and finetuned trans-
lation, we observed the same shift as with the oracle methods that the methods
with finetuned MT model achieved smaller flicker while keeping almost the same
delay. The delay theoretically should not change at all. But because the delay
is computed for only the words that are present in the candidate and reference
translation, it is possible to record some minor changes.

The increased lookahead caused the best flicker improvement for every word
splitting and both alignment methods – these were the methods that split the
most frequently, and prohibiting the segmentation by the end of sentences did not
allow them to place more excessive splitting marks. For other methods, the flicker
improvement was not that significant, and we generally can observe that the less
splits a method makes, the less flicker improvement the increased lookahead will
have.

All methods (except the full sentence splitting) with increased lookahead also
recorded increased delay. And again, the biggest change is visible with more
aggressively splitting methods.

Generally, when comparing different values of lookahead, it is complicated
to determine what values would work the best in the real interpretation setting
because, especially with trained binary classifiers, we did not achieve great results
in terms of precision and recall. However, we can see that, for example, for phrase
chunk and POS splitting, which were able to mimic the oracle versions reliably,
some lookaheads appear as really suboptimal (e.g., POS 2 and Phrase chunk 3).

67

Nevertheless, we can speculate from our results that higher lookaheads might
not be that effective in enhancing the translation stability because, especially for
less-frequent splitting methods, the flicker improvement is exchanged for a more
significant delay increase.

As a result, the Pareto front for sequential methods is made out of versions
with one-word lookahead; this would suggest that even though the increased
lookahead may stabilize the translation, it would still be a suboptimal solution
to some different splitting methods with smaller lookahead.

68

6. Discussion
To conclude the thesis, in this section, we will summarize our thoughts about
simultaneous machine interpretation, list our findings, and suggest ideas for im-
provements and future work.

6.1 Translation units
Although there is already a good amount of research dealing with the topic of
simultaneous machine interpretation, we did not find any article discussing the
relationship between human and machine interpreting.

So despite the progress with sophisticated end-to-end architectures, we still
do not know whether humans and machines interpret similarly or whether they
work with completely different MTUs. In order to find out, we had to define
the concept of (minimal) translation units. However, that proved difficult due to
still ongoing discussions about what the translation units really are and because
everybody defines them according to their needs. Therefore, in Chapter 1, we
firstly covered all possible views on TUs to understand the topic better.

From the research, it is clear that for different requirements, there really
needs to be multiple definitions of TUs. But despite small variations, such as
whether the TUs should be on the speaker’s side, interpreter’s side, or even
both; all TUs’ definitions described a similar topic but emphasized its different
aspects. We also noticed a visible difference between how research communities
of linguists and NLP engineers view the topic of interpretation. For interpreters,
interpreting means something completely different than translation because of all
the necessary strategies to stay synchronized with a speaker. On the other hand,
NLP practitioners often perceive interpretation more as an imperfect translation;
therefore, there is no real need to distinguish between simultaneous machine
translation and interpretation from their point of view.

Getting back to TUs, the only NLP article elaborating more on their definition
we found, was by Zhang et al. [2020], where they defined TUs as meaningful units
by characterizing their two important properties:

• Meaningful units need to be short to reduce latency.

• The translation of meaningful units should not be affected by the forthcom-
ing words.

These two characteristics agree with our instructions to the annotators that
they should split sentences as often as possible (to preserve short lengths and
reduce latency) but only when their partial translation will not change based on
the following information.

6.2 Dataset annotation
Our aim with the annotated dataset was thus clear: to connect the two worlds of
NLP engineers and linguist theorists and try to teach machines to interpret the
same way that an ideal human interpreter would.

69

Since related work on this topic is limited, we first needed to think about
what information we wanted to acquire and how to define the task properly. We
finally ended up asking annotators to provide both the splitting annotation and
the reference translation to show that the presented splitting is really possible.
With this approach, we managed to gather unique data that can serve for further
research both to linguists and engineers. At the same time, we hope our instruc-
tions will be improved in the future as some of the open questions still need to
be resolved.

Most importantly, we would like to see a better clarification of how the an-
notators should solve the situations when there is a clear space for splitting (the
following information does not change the partial translation), but there is a
high possibility that in the real settings, when not knowing how a sentence will
continue, an interpreter cannot be sure about the translation (e.g., whether the
English verb will be positive or negative).

We also did not manage to properly check whether all annotators approached
the task the same way. We did evaluate their splitting using our analysis of
segment counts, lengths, and phrase chunk/POS pairs, but because we managed
to annotate each sentence only once, we could not truly measure the annotators’
agreement in terms of splitting and reference translations.

Lastly, it would be beneficial to make a questionnaire for annotators to find out
how they felt about the task and their strategies. We tried to collect the feedback
along the way but did not make it formal. For example, asking directly how
frequently annotators used a machine translation to get the reference translations.

Despite all of the mentioned drawbacks, we believe that we set a good starting
position for future research that can not only continue applying the annotation
to other datasets but also improve our own annotations by including more anno-
tators or creating the same annotations with different target languages.

6.3 Splitting methods
When we needed to choose the splitting methods for our analysis, we were influ-
enced by the following criteria:

• Because we wanted to test several methods and compare them against each
other, we could not choose methods that would take too much time to
implement.

• We did not want to choose such methods that would not reveal much about
their inner working because of the black-box nature.

• We needed to be able to incorporate the splitting method into our working
pipeline.

• We wanted to make the methods as diverse as possible.

For those reasons, we opted rather for less complex but more explanatory
methods that can be relatively quickly implemented and reveal how much com-
plexity the optimal segmentation really needs. Nevertheless, we ended up with
11 different methods that we can divide into following categories.

70

• Control methods: splitting after each word and at the end of sentences
served to view the extremes

• Alignment methods: because alignment segmentation is quite popular in
the research, we decided to analyze them to see how good and precise they
really are, even in terms of different word alignment tools

• Golden annotation: splitting based on our annotation, regarded as the op-
timal one

• Translation methods: splitting methods copying the process of our annota-
tion but with trained NMT systems on complete and partial sentences

• Punctuation splitting: a relatively simple method that could bring good
results with very little effort

• Silence splitting: the only splitting method not working directly with the
text but the acoustic information

• Phrase chunk and POS splitting: methods based on known concepts of
phrase chunking and part-of-speech tagging with rules derived from the
analysis of our annotation

Additionally, when implementing the splitting methods, we also designed a
new way to visualize simultaneous translation by combining the word alignment
with the acoustic and time information from the dataset. In the future, we would
like to release this visualization tool as a standalone Python package that could
be easily deployed and used for interpretation analysis.

At the same time, we are aware that there is potentially a lot of space for
improvement and additional research that we, unfortunately, due to the time and
resource limitations, did not manage to complete.

First of all, during our analysis, we were working with the assumption that
our data came from the real settings. However, although we were displaying the
partial sentences word by word, the text was manually corrected and did not
come straight from an ASR module. That means we did not have to handle the
various mistakes that the ASR may make. Therefore, we are not really sure how
our methods’ performance would change if the input text was not preprocessed.

Secondly, due to the number of methods, we were not able to spend more
time on improving the models for sequential versions of splitting methods that
needed to train a binary classifier. We are sure that choosing different architecture
or emphasizing the place of splitting with a unique character would noticeably
improve the performance when comparing the methods with different lookaheads.
The same also applies to the construction of the train and test datasets, where we
put only up to three positive and negative samples from each sentence. It would
be definitely worth exploring the effect of presenting the training algorithm with
more samples of each sentence and observing at what point it would overfit.

And thirdly, it would also be interesting to see whether binary classification
is the best option for the task in the first place. In our opinion, it should be the
most straightforward and fastest variant, but we can also imagine that for the
same task, one could use a sequence tagger as well – each time, labeling words or

71

partial sentences with tags denoting whether a split should or should not follow.
In the end, we would probably use only the tag of the currently processed word,
but we could potentially reveal more about the types of words causing the changes
of tags by reexamining the tags of previous words.

6.4 Analysis of the results
Creating the most advanced splitting method was never a real goal of this thesis.
Our main aim was to summarize available knowledge about TUs from linguists,
try to apply it when constructing and analyzing our automated splitting methods,
and reveal what might be the important aspects affecting the splitting. Further-
more, comparing our results with other research is rather complicated as it is not
only the type of dataset affecting the final delay and translation quality score but
also the used translation model and the strategy of interpreting (retranslation vs.
growing partial translations by segments).

As one of the most important aspects of this thesis, we consider our ap-
proach for analysis and visualization of splitting methods’ behavior. Reporting
the statistics about segment counts and lengths, supplemented with the most
frequent phrase chunk/POS tags at both sides of the splits, should provide good
information about what kinds of splits the methods make. In this regard, we
consider our observation about the between and inside phrase chunk split ratio
for our golden annotations as crucial. Because it clearly shows that meaningful
splits almost all the time find themselves at the borders of the phrase chunks.
This observation could be used when developing more advanced splitting methods
by effectively reducing the number of possible spaces where the split can occur.

In addition to the splitting analysis, we also came up with a new approach for
comparing splitting methods among each other by introducing the definition of
granular unique splits. A notion that can be very helpful when exploring whether
one splitting method is a subset of another method. As the opposite of granular
unique splits, we defined true unique splits whose higher number represents the
state when two methods split according to different criteria.

We also wanted to analyze more thoroughly how much will the alignment split-
ting methods change depending on the used alignment tool, different translations,
and different languages. We were very surprised to find out that even though the
alignment algorithm approaches the sentence splitting in a similar manner as hu-
mans do, the alignment splitting algorithms made significantly more splits than
the annotators. Moreover, when comparing the alignment methods working with
translations from our annotators and from LINDAT, more splits were placed with
the general LINDAT translations. That theoretically should not be possible be-
cause the annotators were instructed to produce translations achieving the most
optimal splitting, which also means the shortest splits possible. But as we noted,
the machine translation may favor shorter splitting because of its monotone and
word-by-word translations. For those reasons, we do not recommend using align-
ment splitting for machine interpretation systems because it may split excessively
and unreliably.

Before concluding, we need to discuss our trained NMT models as well. In the
beginning, we were not sure whether a finetuning on partial sentences would have
a good or bad effect on the translation performance for interpretation. Therefore,

72

we were glad to see that not only the finetuned MT model produced more splits
when used for splitting – i.e., it was more consistent with the progressive trans-
lations, but also achieved smaller flicker when used within the SLTev evaluation.

Similarly, as for the training of binary classifiers, there is also big space left for
exploring optimal architecture and data preparation that can improve translation
splitting and flickering. It would also be beneficial to, for example, explore what
effect the lookahead has not only for splitting but also for translation. Because
in our experiments, we provided the lookahead-extended partial sentences only
to the splitting module, and the translation got the partial sentence without the
additional words. Therefore, there is room for training NMT models with addi-
tional words – similarly as they are trained when implementing wait-k splitting
methods.

But not only that, we could even include in our translations some previous
sentences that could potentially bear an important context for translating partial
sentences. To move one step closer to the level of human interpretation, we
should, however, completely omit training NMTs on parallel translations and use
the real interpretation data instead. As Zhao et al. [2021] suggests, there could be
a big difference between those approaches since interpretation requires not only
correct translation but sometimes also a clever way how to express the intents of
the speaker with an indirect description.

Regarding the results of the SLTev evaluation, we were not able to replicate
the behavior of some oracle methods with their sequential ones – namely the
methods trained binary classifiers. Despite that, we can get a very good idea of
how the sequential methods will perform when improving the models by looking
at the scores of their oracle variants.

Because we used retranslation, we could not properly measure the BLEU
score of our splitting methods. Since SLTev measures BLEU only for complete
sentences, all our methods scored the same. The only difference appeared when we
were using the baseline or finetuned MT model. Therefore, it would be definitely
a good check to evaluate our splitting methods while translating only the new
segments and see how correlated the BLEU and flicker scores are.

73

Conclusion
This thesis studied the output quality, latency, and flicker when a translation
system is translating a growing input step by step. Even though there are still
many potential ways how we could improve our experiments or supplement them
with additional data, we believe that we lay a solid foundation for future research
in the field of SiMT.

We would especially highlight our contribution to formulating a definition of
optimal human interpreting and putting together a set of instructions for the
annotation process according to the definition (see Chapter 3). With our golden
data, we were then able to analyze between what kinds of words annotators tend
to split most often and formulate two new splitting methods based on that (see
Section 5.1.1)

Furthermore, although these two methods did not perfectly mimic the human
splitting, we were able to make an important observation about the golden data
– more than 75% of all golden splits were placed between two phrase chunks (not
inside one) which significantly reduces the search space for any other splitting
method (see Section 5.1).

When comparing the splitting methods to each other, in Section 5.2.1, we also
introduced a new way to express a relation that one splitting method is a subset
of another. We achieved that by defining two classes of splits made only by one
of the two splitting methods in the comparison.

Additionally, in Section 5.2.2, we analyzed the behavior of splitting meth-
ods based on the word alignment – using different word alignment tools, target
translations, and languages. Because of the excessive splitting and noticeable dif-
ference among the variants, we regard alignment splitting methods as unreliable
and do not recommend their use in practice.

Aside from splitting, we found a good use case for word alignment in combina-
tion with acoustic and time information for the visualization of interpretation that
can help professional interpreters analyze their performance (see Section 4.3.1).

In the end, we prepared two NMT systems that we incorporated into our
evaluation. The baseline model trained solely on complete sentences, and its
finetuned version retrained on partial sentences. For all splitting methods, using
the finetuned MT model led to better translation stability – thus, showing a
promise to be a key component to optimize when deploying the SiMT systems.

Finally, we compared all the splitting methods in terms of translation stability
and latency; and suggested a more thorough analysis of different segmentation
methods’ behavior (see Section 5.4).

74

Bibliography
Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif Rasul, Stefan Schweter,

and Roland Vollgraf. FLAIR: An easy-to-use framework for state-of-the-art
NLP. pages 54–59, 2019.

Musatafa Albadr, Sabrina Tiun, and Fahad Al-Dhief. Evaluation of machine
translation systems and related procedures. Journal of Engineering and Applied
Sciences, 13:3961–3972, 06 2018.

Ebrahim Ansari, Ondřej Bojar, Barry Haddow, and Mohammad Mahmoudi.
SLTEV: Comprehensive evaluation of spoken language translation. pages
71–79, April 2021. doi: 10.18653/v1/2021.eacl-demos.9. URL https://
aclanthology.org/2021.eacl-demos.9.

Naveen Arivazhagan, Colin Cherry, Wolfgang Macherey, and George Foster. Re-
translation versus streaming for simultaneous translation. pages 220–227, July
2020. doi: 10.18653/v1/2020.iwslt-1.27. URL https://aclanthology.org/
2020.iwslt-1.27.

Henri Charles Barik. A study of simultaneous interpretation, pages 1–25. The
University of North Carolina at Chapel Hill, 1969.

Leonid Barkhudarov. Urovni yazykovoy iyerarkhii i perevod [Levels of language
hierarchy and translation], pages 3–12. 1969.

Timo Baumann and David Schlangen. INPRO iSS: A component for just-in-
time incremental speech synthesis. pages 103–108, July 2012. URL https:
//aclanthology.org/P12-3018.

Roger T Bell and Christopher Candlin. Translation and translating: Theory and
practice, volume 298. Longman London, 1991.

Paul Bennett. The translation unit in human and machine. Babel, 40(1):12–
20, 1994. ISSN 0521-9744. doi: https://doi.org/10.1075/babel.40.1.03ben.
URL https://www.jbe-platform.com/content/journals/10.1075/babel.
40.1.03ben.

Luisa Bentivogli, Mauro Cettolo, Marco Gaido, Alina Karakanta, Alberto Mar-
tinelli, Matteo Negri, and Marco Turchi. Cascade versus direct speech trans-
lation: Do the differences still make a difference? pages 2873–2887, 01 2021.
doi: 10.18653/v1/2021.acl-long.224.

Lynne Bowker. Computer-aided translation technology: A practical introduction.
University of Ottawa Press, 2002.

Colin Cherry and George Foster. Thinking slow about latency evaluation for
simultaneous machine translation. 2019. doi: 10.48550/ARXIV.1906.00048.
URL https://arxiv.org/abs/1906.00048.

75

https://aclanthology.org/2021.eacl-demos.9
https://aclanthology.org/2021.eacl-demos.9
https://aclanthology.org/2020.iwslt-1.27
https://aclanthology.org/2020.iwslt-1.27
https://aclanthology.org/P12-3018
https://aclanthology.org/P12-3018
https://www.jbe-platform.com/content/journals/10.1075/babel.40.1.03ben
https://www.jbe-platform.com/content/journals/10.1075/babel.40.1.03ben
https://arxiv.org/abs/1906.00048

Kyunghyun Cho and Masha Esipova. Can neural machine translation do si-
multaneous translation? 2016. doi: 10.48550/ARXIV.1606.02012. URL
https://arxiv.org/abs/1606.02012.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using rnn encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078, 2014.

Pernilla Danielsson. The automatic identification of meaningful units in language.
2001.

Zi-Yi Dou and Graham Neubig. Word alignment by fine-tuning embeddings
on parallel corpora. 2021. doi: 10.48550/ARXIV.2101.08231. URL https:
//arxiv.org/abs/2101.08231.

Chris Dyer, Victor Chahuneau, and Noah A. Smith. A simple, fast, and effective
reparameterization of ibm model 2. 2013.

Maha Elbayad, Laurent Besacier, and Jakob Verbeek. Efficient wait-k models for
simultaneous machine translation. 2020. doi: 10.48550/ARXIV.2005.08595.
URL https://arxiv.org/abs/2005.08595.

Daniel Gile. Basic theoretical components in interpreter and translator training,
pages 185–194. John Benjamins, 1992. URL https://www.jbe-platform.
com/content/books/9789027285898-z.56.29gil.

Jiatao Gu, Graham Neubig, Kyunghyun Cho, and Victor O.K. Li. Learning to
translate in real-time with neural machine translation. pages 1053–1062, April
2017. URL https://aclanthology.org/E17-1099.

Hirofumi Inaguma, Shun Kiyono, Kevin Duh, Shigeki Karita, Nelson Yalta,
Tomoki Hayashi, and Shinji Watanabe. ESPnet-ST: All-in-one speech transla-
tion toolkit. pages 302–311, July 2020. doi: 10.18653/v1/2020.acl-demos.34.
URL https://aclanthology.org/2020.acl-demos.34.

Sathish Indurthi, Houjeung Han, Nikhil Kumar Lakumarapu, Beomseok Lee,
Insoo Chung, Sangha Kim, and Chanwoo Kim. End-end speech-to-text trans-
lation with modality agnostic meta-learning. pages 7904–7908, 2020. doi:
10.1109/ICASSP40776.2020.9054759.

Javier Iranzo-Sánchez, Javier Jorge, Pau Baquero-Arnal, Joan Albert Silvestre-
Cerdà, Adrià Giménez, Jorge Civera, Albert Sanchis, and Alfons Juan. Stream-
ing cascade-based speech translation leveraged by a direct segmentation model.
Neural Networks, 142:303–315, 2021. ISSN 0893-6080. doi: https://doi.
org/10.1016/j.neunet.2021.05.013. URL https://www.sciencedirect.com/
science/article/pii/S0893608021002057.

Masoud Jalili Sabet, Philipp Dufter, François Yvon, and Hinrich Schütze. SimA-
lign: High quality word alignments without parallel training data using static
and contextualized embeddings. pages 1627–1643, November 2020. URL
https://www.aclweb.org/anthology/2020.findings-emnlp.147.

76

https://arxiv.org/abs/1606.02012
https://arxiv.org/abs/2101.08231
https://arxiv.org/abs/2101.08231
https://arxiv.org/abs/2005.08595
https://www.jbe-platform.com/content/books/9789027285898-z.56.29gil
https://www.jbe-platform.com/content/books/9789027285898-z.56.29gil
https://aclanthology.org/E17-1099
https://aclanthology.org/2020.acl-demos.34
https://www.sciencedirect.com/science/article/pii/S0893608021002057
https://www.sciencedirect.com/science/article/pii/S0893608021002057
https://www.aclweb.org/anthology/2020.findings-emnlp.147

Marcin Junczys-Dowmunt, Roman Grundkiewicz, Tomasz Dwojak, Hieu Hoang,
Kenneth Heafield, Tom Neckermann, Frank Seide, Ulrich Germann, Al-
ham Fikri Aji, Nikolay Bogoychev, André F. T. Martins, and Alexandra Birch.
Marian: Fast neural machine translation in C++. pages 116–121, July 2018.
doi: 10.18653/v1/P18-4020. URL https://aclanthology.org/P18-4020.

Yasumasa Kano, Katsuhito Sudoh, and Satoshi Nakamura. Simultaneous neu-
ral machine translation with constituent label prediction. pages 1124–1134,
November 2021. URL https://aclanthology.org/2021.wmt-1.120.

Alina Karakanta, Sara Papi, Matteo Negri, and Marco Turchi. Simultaneous
speech translation for live subtitling: from delay to display. 2021. doi: 10.
48550/ARXIV.2107.08807. URL https://arxiv.org/abs/2107.08807.

Jong Wook Kim, Justin Salamon, Peter Li, and Juan Pablo Bello. Crepe: A
convolutional representation for pitch estimation. 2018. doi: 10.48550/ARXIV.
1802.06182. URL https://arxiv.org/abs/1802.06182.

Don Kiraly. Lörscher, wolfgang. 1991. translation performance, translation
process, and translation strategies: A psycholinguistic investigation. Tar-
get. International Journal of Translation Studies, 4(1):126–129, 1992. ISSN
0924-1884. doi: https://doi.org/10.1075/target.4.1.15kir. URL https://www.
jbe-platform.com/content/journals/10.1075/target.4.1.15kir.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural
networks. Proceedings of the national academy of sciences, 114(13):3521–3526,
2017.

Thomas Kisler, Uwe Reichel, and Florian Schiel. Multilingual processing of
speech via web services. Computer Speech Language, 45:326–347, 2017.
ISSN 0885-2308. doi: https://doi.org/10.1016/j.csl.2017.01.005. URL https:
//www.sciencedirect.com/science/article/pii/S0885230816302418.

Philipp Koehn. Europarl: A parallel corpus for statistical machine translation.
pages 79–86, September 13-15 2005. URL https://aclanthology.org/2005.
mtsummit-papers.11.

Philipp Koehn, Franz J. Och, and Daniel Marcu. Statistical phrase-based trans-
lation. pages 127–133, 2003. URL https://aclanthology.org/N03-1017.

Werner Koller. Einführung in die Übersetzungswissenschaft, page 343 S. UTB für
Wissenschaft : Uni-Taschenbücher ; 819 : Linguistik. Quelle Meyer, Heidelberg
[u.a.], 4., völlig neu bearb. aufl. edition, 1992. ISBN 3-8252-0819-2 and 3-494-
02192-9 and 978-3-8252-0819-6 and 978-3-494-02192-8. Literaturverz. S. 301 -
328.

Sylvie Lambert and Barbara Moser-Mercer. Bridging the gap: Empirical research
in simultaneous interpretation, volume 3, page 255. John Benjamins Publish-
ing, 1994.

77

https://aclanthology.org/P18-4020
https://aclanthology.org/2021.wmt-1.120
https://arxiv.org/abs/2107.08807
https://arxiv.org/abs/1802.06182
https://www.jbe-platform.com/content/journals/10.1075/target.4.1.15kir
https://www.jbe-platform.com/content/journals/10.1075/target.4.1.15kir
https://www.sciencedirect.com/science/article/pii/S0885230816302418
https://www.sciencedirect.com/science/article/pii/S0885230816302418
https://aclanthology.org/2005.mtsummit-papers.11
https://aclanthology.org/2005.mtsummit-papers.11
https://aclanthology.org/N03-1017

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng, Kaibo Liu, Baigong Zheng,
Chuanqiang Zhang, Zhongjun He, Hairong Liu, Xing Li, Hua Wu, and Haifeng
Wang. Stacl: Simultaneous translation with implicit anticipation and control-
lable latency using prefix-to-prefix framework. pages 3025–3036, 01 2019a. doi:
10.18653/v1/P19-1289.

Qingsong Ma, Johnny Wei, Ondřej Bojar, and Yvette Graham. Results of the
WMT19 metrics shared task: Segment-level and strong MT systems pose big
challenges. pages 62–90, August 2019b. doi: 10.18653/v1/W19-5302. URL
https://aclanthology.org/W19-5302.

Xutai Ma, Mohammad Javad Dousti, Changhan Wang, Jiatao Gu, and Juan
Pino. SIMULEVAL: An evaluation toolkit for simultaneous translation. pages
144–150, October 2020a. doi: 10.18653/v1/2020.emnlp-demos.19. URL https:
//aclanthology.org/2020.emnlp-demos.19.

Xutai Ma, Juan Pino, and Philipp Koehn. Simulmt to simulst: Adapting si-
multaneous text translation to end-to-end simultaneous speech translation.
2020b. doi: 10.48550/ARXIV.2011.02048. URL https://arxiv.org/abs/
2011.02048.

Dominik Macháček, Matúš Žilinec, and Ondřej Bojar. Lost in interpreting:
Speech translation from source or interpreter? 2021. doi: 10.48550/ARXIV.
2106.09343. URL https://arxiv.org/abs/2106.09343.

Kirsten Malmkjaer. Translation Units, pages 92–93. 12 2006. ISBN
9780080448541. doi: 10.1016/B0-08-044854-2/00491-0.

Kirsten Malmkjær. Unit of translation, pages 286–287. Routledge, 1998.

Barbara Moser-Mercer. The expert-novice paradigm in interpreting research.
Translationsdidaktik: Grundfragen der Übersetzungswissenschaft, pages 255–
261, 1997.

Robert Östling and Jörg Tiedemann. Efficient word alignment with
Markov Chain Monte Carlo. Prague Bulletin of Mathematical Linguistics,
106:125–146, October 2016. URL http://ufal.mff.cuni.cz/pbml/106/
art-ostling-tiedemann.pdf.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method
for automatic evaluation of machine translation. pages 311–318, July 2002.
doi: 10.3115/1073083.1073135. URL https://aclanthology.org/P02-1040.

Juan Pino, Liezl Puzon, Jiatao Gu, Xutai Ma, Arya D. McCarthy, and Deepak
Gopinath. Harnessing indirect training data for end-to-end automatic speech
translation: Tricks of the trade. 2019. doi: 10.48550/ARXIV.1909.06515. URL
https://arxiv.org/abs/1909.06515.

Sonia Pio. The relation between st delivery rate and quality in simultaneous
interpretation. 2003.

78

https://aclanthology.org/W19-5302
https://aclanthology.org/2020.emnlp-demos.19
https://aclanthology.org/2020.emnlp-demos.19
https://arxiv.org/abs/2011.02048
https://arxiv.org/abs/2011.02048
https://arxiv.org/abs/2106.09343
http://ufal.mff.cuni.cz/pbml/106/art-ostling-tiedemann.pdf
http://ufal.mff.cuni.cz/pbml/106/art-ostling-tiedemann.pdf
https://aclanthology.org/P02-1040
https://arxiv.org/abs/1909.06515

Martin Popel, Markéta Tomková, Jakub Tomek, Lukasz Kaiser, Jakob Uszkor-
eit, Ondrej Bojar, and Z. Žabokrtský. Transforming machine translation: a
deep learning system reaches news translation quality comparable to human
professionals. Nature Communications, 11, 2020.

Matt Post. A call for clarity in reporting bleu scores. pages 186–191, 01 2018.
doi: 10.18653/v1/W18-6319.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and Christopher D. Man-
ning. Stanza: A Python natural language processing toolkit for many human
languages. 2020. URL https://nlp.stanford.edu/pubs/qi2020stanza.pdf.

Dhevi J. Rajendran, Andrew T. Duchowski, Pilar Orero, Juan Mart́ınez, and
Pablo Romero-Fresco. Effects of text chunking on subtitling: A quanti-
tative and qualitative examination. Perspectives, 21(1):5–21, 2013. doi:
10.1080/0907676X.2012.722651. URL https://doi.org/10.1080/0907676X.
2012.722651.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon Lavie. COMET: A neu-
ral framework for MT evaluation. pages 2685–2702, November 2020. doi:
10.18653/v1/2020.emnlp-main.213. URL https://aclanthology.org/2020.
emnlp-main.213.

Yi Ren, Jinglin Liu, Xu Tan, Chen Zhang, Tao Qin, Zhou Zhao, and Tie-Yan
Liu. SimulSpeech: End-to-end simultaneous speech to text translation. pages
3787–3796, July 2020. doi: 10.18653/v1/2020.acl-main.350. URL https://
aclanthology.org/2020.acl-main.350.

Pablo Romero-Fresco. Standing on quicksand: Hearing viewers’ comprehension
and reading patterns of respoken subtitles for the news, pages 175–195. 01 2010.
ISBN 978-90-420-3180-7. doi: 10.1163/9789042031814 014.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distil-
bert, a distilled version of bert: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108, 2019.

Miriam Schlesinger. Effects of presentation rate on working memory in simulta-
neous interpreting. 2003.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. BLEURT: Learning robust
metrics for text generation. pages 7881–7892, July 2020. doi: 10.18653/v1/
2020.acl-main.704. URL https://aclanthology.org/2020.acl-main.704.

M. Shuttleworth and M. Cowie. Dictionary of Translation Studies. St. Jerome
Pub., 1997. ISBN 9781900650038. URL https://books.google.cz/books?
id=hEtiAAAAMAAJ.

Zhixing Tan, Shuo Wang, Zonghan Yang, Gang Chen, Xuancheng Huang,
Maosong Sun, and Yang Liu. Neural machine translation: A review of meth-
ods, resources, and tools. AI Open, 1:5–21, 2020. ISSN 2666-6510. doi: https:
//doi.org/10.1016/j.aiopen.2020.11.001. URL https://www.sciencedirect.
com/science/article/pii/S2666651020300024.

79

https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://doi.org/10.1080/0907676X.2012.722651
https://doi.org/10.1080/0907676X.2012.722651
https://aclanthology.org/2020.emnlp-main.213
https://aclanthology.org/2020.emnlp-main.213
https://aclanthology.org/2020.acl-main.350
https://aclanthology.org/2020.acl-main.350
https://aclanthology.org/2020.acl-main.704
https://books.google.cz/books?id=hEtiAAAAMAAJ
https://books.google.cz/books?id=hEtiAAAAMAAJ
https://www.sciencedirect.com/science/article/pii/S2666651020300024
https://www.sciencedirect.com/science/article/pii/S2666651020300024

Martha Thunes. The concept of ‘translation unit’ revisited. Bergen Language
and Linguistics Studies, 8, 11 2017. doi: 10.15845/bells.v8i1.1331.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. 2017. doi: 10.48550/ARXIV.1706.03762. URL https://arxiv.org/
abs/1706.03762.

J.P. Vinay, J. Darbelnet, J.C. Sager, and M.J. Hamel. Comparative Stylistics
of French and English: A Methodology for Translation. Benjamins translation
library. John Benjamins Publishing Company, 1995. ISBN 9789027216106.
URL https://books.google.cz/books?id=I06D-6gU45sC.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jer-
nite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-of-
the-art natural language processing. 2019. doi: 10.48550/ARXIV.1910.03771.
URL https://arxiv.org/abs/1910.03771.

Jia Xu, Richard Zens, and Hermann Ney. Sentence segmentation using ibm word
alignment model 1. 2005.

Ruiqing Zhang, Chuanqiang Zhang, Zhongjun He, Hua Wu, and Haifeng Wang.
Learning adaptive segmentation policy for simultaneous translation. pages
2280–2289, November 2020. doi: 10.18653/v1/2020.emnlp-main.178. URL
https://aclanthology.org/2020.emnlp-main.178.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi.
Bertscore: Evaluating text generation with bert. 2019. doi: 10.48550/ARXIV.
1904.09675. URL https://arxiv.org/abs/1904.09675.

Jinming Zhao, Philip Arthur, Gholamreza Haffari, Trevor Cohn, and Ehsan
Shareghi. It is not as good as you think! evaluating simultaneous machine
translation on interpretation data. pages 6707–6715, November 2021. doi:
10.18653/v1/2021.emnlp-main.537. URL https://aclanthology.org/2021.
emnlp-main.537.

Chunshen Zhu. Ut once more: the sentence as the key functional unit of trans-
lation: the sentence as the key functional unit of translation. 1999.

Jordan Zlatev and Johan Blomberg. Language may indeed influence thought.
Frontiers in Psychology, 6, 2015. ISSN 1664-1078. doi: 10.3389/fpsyg.2015.
01631. URL https://www.frontiersin.org/articles/10.3389/fpsyg.
2015.01631.

80

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://books.google.cz/books?id=I06D-6gU45sC
https://arxiv.org/abs/1910.03771
https://aclanthology.org/2020.emnlp-main.178
https://arxiv.org/abs/1904.09675
https://aclanthology.org/2021.emnlp-main.537
https://aclanthology.org/2021.emnlp-main.537
https://www.frontiersin.org/articles/10.3389/fpsyg.2015.01631
https://www.frontiersin.org/articles/10.3389/fpsyg.2015.01631

List of Figures
1 Example of segmentation . 4

1.1 Vauquois triangle . 6

3.1 Google Drive annotation environment 23

4.1 Silence detection differences . 29
4.2 Visualization of Czech interpretation 30
4.3 Visualization of Czech and German interpretation 31
4.4 General NMT architecture . 38
4.5 Progressive phrase chunk changes 41

5.1 Distribution of golden segment lengths and counts 43
5.2 Distributions of number of words in sentences 44
5.3 Most frequent phrase chunk and POS pairs for golden splitting . . 44
5.4 Most frequent phrase chunk and POS pairs for golden splitting . . 45
5.5 Phrase chunk and POS pairs for annotators (1/2) 47
5.6 Phrase chunk and POS pairs for annotators (2/2) 48
5.7 Distributions of segment lengths and counts for annotators 49
5.8 Heatmap of common splits for all methods 52
5.9 Example of unique splits . 53
5.10 Heatmap of granular unique splits for all methods 54
5.11 Common splits for alignment splitting with different translations . 56
5.12 Common splits for alignment splitting with different language . . 57
5.13 F-scores for binary classifiers . 60
5.14 Growing English partial sentences 63
5.15 Growing Czech interpretation . 64
5.16 SLTev results for oracle methods 65
5.17 SLTev results for sequential methods with baseline NMT 66
5.18 SLTev results for sequential methods with finetuned NMT 67

A.1 Phrase chunk and POS pairs for splitting methods (1/2) 87
A.2 Phrase chunk and POS pairs for splitting methods (2/2) 88
A.3 Segment lengths and counts for all splitting methods 89
A.4 Examples of annotations . 90
A.5 Baseline and finetuned partial translations 92

81

List of Tables

2.1 Example of input sentences for SLTev 17

3.1 Annotators’ completed folders and sentences 24

5.1 Phrase chunk and POS segmentation rules 46
5.2 Split counts of all segmentation methods 50
5.3 Segmention methods’ between/inside split ratio 51
5.4 Split counts for alignment splitting 55
5.5 Precision and recall for sequential phrase chunk and POS splitting 58
5.6 Precision and recall for binary classifiers 61

A.1 POS tags . 84
A.2 Phrase chunk tags . 84
A.3 Typical phrase chunk splits . 85
A.4 Typical POS splits . 86
A.5 Example of different splits . 91

82

List of Abbreviations
AL Average lagging

AP Average proportion

ASR Automatic speech recognition

BLEU Bilingual evaluation understudy

ESIC Europarl Simultaneous Interpreting Corpus

MT Machine translation

NLP Natural language processing

NMT Neural machine translation

POS Part of speech

SI Simultaneous interpretation

SiMT Simultaneous machine translation

SMT Statistical machine translation

SOV Subject-object-verb

ST Speech translation

SVO Subject-verb-object

TAP Think aloud protocol

TU Translation unit

83

A. Appendix
In this section, we included some figures that may help readers to clarify better
the topics we wrote about but, at the same time, were not that crucial for the
main ideas of the thesis.

A.1 Phrase chunk and POS splitting

Tag Meaning
ADJ adjective
ADP adposition
ADV adverb
AUX auxiliary
CCONJ coordinating conjunction
DET determiner
INTJ interjection
NOUN noun
PART particle
PRON pronoun
PROPN proper noun
PUNCT punctuation
SCONJ subordinating conjunction
SYM symbol
VERB verb
X other

Table A.1: Table showing all POS tags that can be predicted by the Stanza
model.

Tag Meaning
ADJP adjectival
ADVP adverbial
CONJP conjunction
INTJ interjection
LST list maker
NP noun phrase
PP prepositional
PRT particle
SBAR subordinate clause
VP verb phrase

Table A.2: Table showing all phrase chunk tags that can be predicted by the flair
model.

84

NP-NP

And secondly, (ADVP | NP) Europe was outfoxed by China
and India, (NP |) and (NP | NP) the US joined in.
ADVP-NP

Thank you very much (ADVP | NP) Mr President.
NP-PP

Thank you (NP | NP) Mr President, (NP | VP) thank
you (NP | PP) for your patience (NP |) and (NP |) indulgence.
ADJP-SBAR

We (NP | PP) as members of the
Parliament (NP | VP) have a duty (NP | VP) to
make sure (ADJP | SBAR) that Europe’s policies
reflect the will (NP |) of citizens.
VP-VP

The European dream (NP | VP) is (VP | VP) to
retire (VP | PP) at the French Riviera (NP | ADVP) as
soon as possible.
NP-SBAR

And (PP |) given the fact (NP | SBAR) that we are
now looking at (PP | NP) climate change
legislation, (NP | NP) that is very serious.
VP-SBAR

And (NP |) I think (VP | SBAR) that (SBAR | NP) more
should be done in this area.

Table A.3: Table showing a typical split for each phrase chunk pair that we used
as a rule in the phrase chunk splitting method. By a typical split, we mean a
sentence containing the phrase chunk pair and a pair of words that were most
commonly seen when the particular phrase chunks happened to be next to each
other.

85

NOUN-ADP

I would like (VERB | PART) to
underline (VERB | SCONJ) that (SCONJ | DET) the
implementation (NOUN | ADP) of
the regulation (NOUN | AUX) is (AUX | ADV) crucially important.
ADJ-SCONJ

We (PRON | SCONJ) as members
of the Parliament (PROPN | VERB) have a duty (NOUN | PART) to
make sure (ADJ | SCONJ) that Europe’s policies
reflect the will (NOUN | ADP) of citizens.
NOUN-PRON

This is the gist of the report (NOUN | PRON) that
we are debating tonight.
PROPN-VERB

And (CCONJ | PRON) we believe (VERB | SCONJ) that
the EU (PROPN | VERB) has to be
also honest (ADJ | ADP) on its own side.
NOUN-AUX

This report (NOUN | AUX) is part (NOUN | ADP) of the
simplification package (NOUN | ADP) of the company law.
PROPN-ADP

Anyhow, the Commission (PROPN | VERB) leaves
flexibility for Member States (PROPN | ADP) in
terms of (ADP | DET) this additional publication requirements.
CCONJ-DET

And secondly, (ADV-PUNCT | PROPN) Europe was outfoxed by China
and India, (PROPN-PUNCT | CCONJ) and (CCONJ | DET) the US
joined in.

Table A.4: Table showing a typical split for some POS pairs that we used as
a rule in the POS splitting method. By a typical split, we mean a sentence
containing the POS pair and a pair of words that were most commonly seen
when the particular POS tags happened to be next to each other.

86

A.2 Further analysis of splitting methods

Figure A.1: Ten most frequent phrase chunk and POS pairs split by different
segmentation methods (1/2).

87

Figure A.2: Ten most frequent phrase chunk and POS pairs split by different
segmentation methods (2/2).

88

Figure A.3: Distributions of segment lengths and counts for different splitting
methods.

89

A.3 Differences among splitting methods and
MT models

Figure A.4: Few examples of sentences split by annotators and their reference
translations split into the same number of chunks.

90

Punctuation

Second, | the way to eliminate tax fraud is not a reduction of
the competition but strict elimination of tax exemptions.
Phrase chunks

Second, | the way to eliminate tax fraud is not a reduction | of
the competition but | strict elimination | of tax exemptions.
Baseline translation

Second, | the way to eliminate tax fraud is not a reduction of
the competition but strict elimination of tax exemptions.
Silence

Second, | the way to eliminate | tax fraud | is not a reduction | of
the competition | but | strict | elimination | of | tax | exemptions.
POS

Second, | the way | to eliminate tax fraud | is not a reduction | of
the competition | but strict elimination | of tax exemptions.
Finetuned translation

Second, | the way to eliminate | tax fraud is not | a reduction | of
the competition but | strict | elimination | of tax exemptions.
Golden

Second, | the way to eliminate tax fraud | is not a reduction of
the competition | but | strict elimination | of tax exemptions.
Alignment fast-align

Second, | the way to | eliminate | tax | fraud | is not | a reduction | of
the competition | but | strict | elimination of | tax | exemptions.
Alignment awesome-align

Second, the | way | to | eliminate | tax | fraud | is not | a | reduction of
the | competition | but | strict | elimination of | tax | exemptions.

Table A.5: Table summarizing different behavior of all splitting methods when
applied to the same sentence.

91

Figure A.5: Partial translations of an English sentence with results from our
baseline (B) and finetuned (F) NMT models.

92

	Introduction
	Linguistic theory
	Simultaneous interpretation
	Comparing interpretation with translation
	Interpretation effort model

	Translation units
	Cognitive translation units
	Lexical translation units
	Translation units in machine translation

	Simultaneous machine translation
	Machine speech translation
	Simultaneous machine translation
	Evaluation of SiMT
	Translation quality
	Latency
	Flicker
	Visualisation

	Evaluation toolkit
	SLTev

	Sentence segmentation
	Cascade and direct SiMT architectures
	Segmentation methods
	Categories of segmentation methods

	Annotation process
	ESIC dataset
	Annotation methodology
	Technical details of the annotation
	Feedback from annotators

	Splitting methods
	Control segmentation strategies
	Splitting after punctuation characters
	Segmentation based on silence
	Tool for visualization of interpretation
	Splitting method
	Possible intonation extension

	Word alignment splitting
	Splitting method
	Word alignment tools

	Segmentation based on phrase chunking
	Splitting method
	Sequential approach
	Problems with different tokenizers

	Segmentation based on POS tags
	Splitting with machine translation
	Machine translation theory
	NMT training

	Segmentation from the annotation
	From offline to online segmentation
	Training of statistical splitting models

	Results
	Analysis of the golden dataset
	Rules for phrase chunk and POS splitting methods
	Differences between individual annotators

	Analysis of splitting methods
	Comparison of splitting method in pairs
	More detailed view on the alignment splitting

	From offline to online methods
	Phrase chunking and POS splitting
	Training machine learning models

	SLTev results
	SLTev requirements
	SLTev evaluation

	Discussion
	Translation units
	Dataset annotation
	Splitting methods
	Analysis of the results

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Appendix
	Phrase chunk and POS splitting
	Further analysis of splitting methods
	Differences among splitting methods and MT models

