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1. Introduction
The development of automatic detection and segmentation methods for cells and
nuclei in microscope images plays a significant role in biological and medical
applications. Performing such tasks manually is usually rather time-consuming,
tedious, error-prone and slow. These methods allow researchers in the biomedical
field to concentrate primarily on the mentally stimulating, creative and exciting
part of any research. Nevertheless, the time of experts in medicine and biology
fields is usually precious; having these automatic methods would help them make
their work more efficient.

Recently, there has been a massive advance in computer vision approaches in
biomedical fields. Most likely, two things have mainly influenced this situation:
The introduction of Convolutional Neural Networks and especially the U-Net
architecture that turned out to have very convincing results in image analysis.
The increasing willingness of hospitals and clinics to provide X-ray radiogra-
phy, computed tomography (CT), and magnetic resonance imaging (MRI) data.
Open-source medical datasets are still rare since patient records usually remain
private.1 In order to gain access to any patient’s data, the patient must give their
approval for their medical or any other personal records to be used for research
purposes. The data are scattered among different clinics and produced under
specific protocols and different conditions.

The analysis of biomedical image data remains one of the most challenging
tasks in computer vision. The reason is mainly due to various sources of ambigu-
ity such as cellular and structural diversity, heterogenous staining conditions and
challenging image acquisition processes. Griebel et al. [2021a] In Ronneberger
et al. [2015] presented U-Net architecture that rapidly outperformed other meth-
ods for biomedical image segmentation tasks. U-Net’s advantage is that the model
is quite fast and does not necessarily require large amounts of data samples to
produce satisfactory results. In the last decade, several other variants of U-Net
have been proposed. For instance, in Oktay et al. [2018b] designed the attention
U-Net that is able to learn to focus only on important regions and suppress areas
that are irrelevant. Despite the fact that U-Net and Attention U-Net achieve
great results in many cases, more complex architectures and deeper neural net-
works begun to be designed. Although, one problem arisen that is referred to as
the vanishing gradient. As the gradients are propagated through the network,
they tend to get smaller and smaller. Due to the decreasing size of the gradients,
the weight change is insignificant, and the network fails in further training. To
address this problem, the concept that is called residual learning is usually em-
ployed in networks. In Zhang et al. [2017] designed the U-Net model with residual
learning called ResUNet. In Jha et al. [2021] introduced a modified version of
ResUNet called ResUNet++ that also uses the squeeze and excitation block, the
attention block and Atrous Spatial Pyramidal Pooling.

For our work, we received a dataset from the Laboratory of Neurochemistry,
1Patient records as well as any and all personal information in general cannot be made

available just to anyone due to doctor patient confidentiality and also GDPR in the case of
Europe. The situation is slightly different in Asia and the Americas as they have not ratified
anything even remotely similar to the GDPR.
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Institute of Physiology of the Czech Academy of Sciences, Prague. The dataset
contains fluorescent microscopy images of mice brains, where we can see neural
cells in great detail. Our task is to study and evaluate current image segmentation
methods especially used for biomedical purposes and to report the results achieved
with each algorithm to identify the most accurate method. The methods will
also be evaluated on other two datasets - Deepflash2 and DataScienceBowl2018.
Deepflash2 dataset contains c-Fos mRNA images that are very similar to the
images we received from the Academy. DataScienceBowl2018 dataset contains not
just c-Fos mRNA images but also other images from the biomedicine field. We will
first discuss the traditional image segmentation methods based on thresholding,
edge detection and light distribution. Then, we will present machine learning
models such as Random forests, Support vector machines, and Perceptron or
Logistic regression. Finally, we will mention the latest deep learning architectures
used for medical image segmentation. In the theoretical section, we will describe
methods and algorithms used in our experimentla
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2. Theoretical background

2.1 Traditional techniques
Traditional image segmentation methods were mainly backed by the theoretical
foundation of Digital Image Processing. The methods were based on concepts
such as thresholding, region-growing, edge-based, watershed, or clustering meth-
ods. In this section, we will cover primarily techniques that employ thresholding,
clustering and watershed segmentation.

2.1.1 Thresholding
Thresholding is one of the most elementary methods for image segmentation. It
is time efficient and also not very computationally demanding. Thresholding is
a transformation that maps the input image f(i, j) into the output image g(i, j)
such that:

g(x, y) =
⎧⎨⎩1, if f(x, y) ≥ T

0, if f(x, y) ≤ T
(2.1)

Essentially, thresholding is a technique that partitions images directly into
regions based on intensity values and/or properties of these values. Gonzalez and
Woods [2018] Let us imagine that we have an image composed of light objects on
dark background in such a way that both the object and background pixels have
intensity values grouped into two dominant modes. We can select such a threshold
T that its value can be located between these two modes. There are three different
strategies: Global, Local and Adaptive thresholding. Global thresholding selects
just one threshold and applies it to all the pixels of an image. The problem is that
the images usually do not have a bimodal histogram. A bimodal histogram is a
histogram where the object of interest and background pixels have intensity levels
grouped into two dominant modes. While global thresholding is fast and accurate
for images with bimodal histograms, we need an algorithm that estimates the
threshold also for images with more diverse histograms. The following iterative
algorithm can be used for this purpose:

1. Select an initial estimate for the global threshold, T .

2. Segment the image using T . This will create two groups of pixels: G1
consisting of pixels with intensity values ≥ T ; and G2, consisting of pixels
with values ≤ T .

3. Compute the average (mean) intensity values m1 and m2 for the pixels in
G1 and G2, respectively.

4. Compute a new threshold value midway between m1 and m2:

T = 1
2(m1 +m2) (2.2)
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5. Repeat Steps 2 through 4 until the difference between values of T in suc-
cessive iterations is smaller than a predefined value ∆T

Local thresholding partitions an image into separate regions and chooses a
threshold for each segment. This approach partially addresses the problem of
images where the background and foreground have similar intensity levels, and
we cannot choose one threshold to separate them from each other. Thus, this
method suffers from unexpected behavior on the borders between the regions.
In contrast, in adaptive thresholding, we have an algorithm that automatically
determines the threshold for a pixel in a small region around it. The algorithm
usually derives the threshold from the lighting distribution of different image
parts. Thresholding is usually not very sufficient for biomedical image data.
This is mainly because biomedical images usually capture non-trivial biological
material such as cells, vessels or organs that easily blend into the background or
have similar intensities. Thus, there does not exist any suitable threshold that can
segment the regions of interest. Although the thresholding is not much efficient
in biomedical segmentation, better results can be achieved if we design a pipeline
that employs morphological operators, edge detectors, noise reduction filters and
other techniques. In the experimental part, we will show examples of how these
pipelines can be designed to get some satisfactory results.

2.1.2 Clustering
Clustering algorithms aim to find groupings in data clusters that share a com-
mon property. Essentially, data in the same group share a common property,
or they have multiple similar attributes. We can divide clustering algorithms
into two groups: Partitioning and Hierarchical. In Hierarchical methods, clus-
ters are formed from previous clusters in a bottom-up or top-down manner. In
the bottom-up approach, each data point starts within its cluster, whereas in
the top-down direction, all data begins in one cluster. One of the most popular
clustering algorithms is a s algorithm. In k-means clustering, each data point is
assigned to the cluster with the nearest mean, and each mean is referred to as
a prototype of its cluster. The k-means algorithm is an iterative method that
recomputes centroids of clusters until the convergence criterion is met.

Let us consider a set of observations {x1, x2, ..., xQ} where each observation
is a d-dimensional vector. In image segmentation, these observations are repre-
sented by numerical values of pixels. For instance, if we have a RGB image, each
observation is a 3-D vector, where each component is the intensity value of one
of the three primary colors. In the case of grayscale images, the segmentation is
based on just one intensity value. The goal of k-means clustering is to partition
the set Q of observations into k disjoint cluster sets C = {C1, C2, ..., Ck} in order
to satisfy the following criterion of optimality:

arg min
C

(
k∑︂

i=1

∑︂
z∈Ci

||z −mi||2) (2.3)

where mi is the centroid of the samples in set Ci and || · || is the vector norm.
Usually, the Euclidean norm is used and then the term ||z − mi|| is a distance
between a data point and a centroid. Unfortunately, k-means clustering is an
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NP-hard optimization problem. Although, there are number of heuristics that
improve the algorithm by finding approximations to the minimum. The algorithm
is described in the following steps:

1. Initialize the set of centroids mi, i = 1, 2, ..., k

2. Assign data samples to clusters: Each sample is assigned to the cluster
whose centroid is the closest:

xq → Ci if ||xq −mi||2 ≤ ||xq −mj||2 j = 1, 2, ..., k (j ̸= i); q = 1, 2, ..., Q

3. Update the cluster centroids:

mi = 1
|Ci|

∑︂
z∈Ci

z i = 1, 2, ..., k

where |Ci| us the number of data points in cluster set Ci

4. Test whether the reassignment of centroids happened or not.

The algorithm’s application will be further discussed in the experimental sec-
tion. We will present the results of the algorithm and also describe the algorithm
run details.

2.1.3 Watershed segmentation
Image segmentation techniques are usually based on three principal concepts:
edge detection, thresholding or region growing. Each of these methods has its
advantages, for instance, the execution speed in the case of global thresholding
and disadvantages include the need for post-processing, such as edge linking, in
edge-based segmentation. Watershed segmentation utilizes all of these concepts,
and it is thus able to produce more stable results. The idea of a watershed is
based on visualizing an image as a topographic surface. Each point of a surface
has two spatial coordinates. The spatial coordinates corresponding to the pixel’s
coordinates in the image. Additionally, the pixel’s intensity value embodies the
surface’s elevation. Usually, the highest intensities represent peaks, whereas the
lowest intensity values embody regional minima. The watershed transformation
creates dams and deconstructs an image into catchment basins. The resulting
segmentation is created by the water that springs in valleys, and as it continues
to rise, it floods the surrounding landscape. Another dam is built if water begins
to overflow into another basin. The computation terminates when the whole
surface is flooded. The final dams correspond to the desired segmentation result.
In the experimental section, we go more into the implementation details of such
a method.

2.1.4 Gabor Filter
The machine learning algorithms are usually hard to be trained solely on image
intensity values. Meaningful features need to be derived from images to make
these algorithms more efficient. Suitable image features can be global information
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of the image, such as the average, standard deviation of image intensity values
or the output from edge-based filters. One of the suitable feature extractors is
the Gabor filter. The Gabor filter is obtained by modulating a sinusoid with a
Gaussian. It is used for texture analysis, which means that it analyzes whether
there is any specific frequency content in the image in particular directions in a
localized region around the point or area of analysis. To better understand the
Gabor filter, we can look at the following image with the white circle. We can
see that each Gabor filter, each with a different setting, detects the edges of the
circle from a different angle.

Figure 2.1: Gabor filter

Source: Shah [2018]

The filter has a real and an imaginary component representing orthogonal
directions. Henriksen [2007] Both components together may be formed into a
complex number or used separately. The individual components are defined be-
low:

1. Complex
g(x, y, λ, θ, ψ, σ, γ) = exp(−x′2+γ2y′2

2σ2 ) exp(i(2π x′

λ
+ ψ))

2. Real
g(x, y, λ, θ, ψ, σ, γ) = exp(−x′2+γ2y′2

2σ2 ) cos(2π x′

λ
+ ψ)

3. Imaginary
g(x, y, λ, θ, ψ, σ, γ) = exp(−x′2+γ2y′2

2σ2 ) sin(2π x′

λ
+ ψ)

We have described how is the Gabor filter derived and applied to the images.
In the experimental section, we will show how is the filter used on our datasets
and which parameter settings are employed.
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2.2 Machine learning methods
Machine learning (ML) is the sub-discipline of Artificial intelligence (AI) which
studies the properties of self-learning algorithms. The self-learning algorithms
learn patterns in data and make decisions based on the knowledge they have
gained. The ML models have various applications in computer vision, speech
synthesis, robotics and etc. Usually, the data are split into three groups: training,
validation and test samples. The training samples are used for fitting a model,
which means the model parameters tuning to make accurate predictions. The
validation samples are utilized to evaluate a model fit on the training samples.
The test samples are used for the final evaluation of the trained model. In this
section, we will describe several machine learning algorithms.

2.2.1 Perceptron
The perceptron is a linear model for binary classification problems. The idea of
the Perceptron is to find a separating hyperplane by minimizing the distance of
misclassified points to the decision boundary. Hastie et al. [2001] Let us define
the target value t ∈ {−1,+1}, our objective is to find weights w such that for all
train data the following condition holds:

tiy(xi;w) = tix
T
i w ≥ 0 (2.4)

The algorithm is defined in the following steps (Assuming that the train sam-
ples are linearly separable):

1: Initialize all weights w to 0
2: Repeat, until all examples are classified correctly, continue with a next sam-

ple:
3: y = xT

i w
4: if tiy ≤ 0 (sample si incorrectly classified) then
5: w = w + tixi

6: end if

2.2.2 Logistic regression
The logistic regression models the probability that a sample x is classified into the
class C1 with respect to the weights w of the model. The probability is defined
as:

p(C1|x) = σ(xTw + b)
p(C0|x) = 1 − p(C1|x) (2.5)

where σ is a sigmoid function s

σ(x) = 1
1 + e−x

(2.6)

The sigmoid function is employed in order to map any real predicted value
into the range from 0 to 1. The logistic regression is fit by maximum likelihood
estimation (MLE). The likelihood is defined as:
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L(w) = pmodel(X;w) =
N∏︂

i=1
pmodel(xi;w) (2.7)

The Likelihood represents how likely the given random variable X will have
value x with respect to the parameters w. MLE attempts to find such parameters
w that maximise the likelihood function.

2.2.3 Support vector machines
The idea of Support Vector Machines (SVM) is to find such a hyperplane that
separates two or n groups of data from each other and also has the largest margin
from all of these groups. Let’s assume we have a dataset X ∈ RN×D, t ∈ {−1, 1},
a feature φ and a model

y(x) = φ(x)Tw + b (2.8)
where X is our dataset, t are our classes and b is the bias. If the output from

the model is 1, we identify it with one class, whereas the output is -1, we identify
the output as the second class. The distance between the decision boundary and
a data point is tiy(xi)

||w|| . Thus, the maximization of margin is formulated as:

arg max
w,b

1
||w||

min
i

[ti(φ(xi)Tw + b)] (2.9)

To find the maximum distance between the data groups and the decision
boundary, we need to find the closest point from each data group to our decision
boundary. We can reformulate the above equation by the fact that the model
is invariant to multiplying w and b by a constant. We know that the distance
of a point from the decision boundary is equal to the model’s prediction tiy(xi)
which is normalized by ||w||. Then, if we multiply w by a constant then even the
predictions are multiplied by this constant. Then, we can decide that all points
will have the distance tiy(x) ≥ 1, which help us to redefine the maximization
problem as:

arg min
w,b

1
2 ||w||2 given that tiy(xi) ≥ 1 (2.10)

When we were talking about Perceptron, we mentioned that Perceptron is not
able to classify data which are not linearly separable. SVM is another linear model
but it can address this problem with two approaches. Either we can transform
the data with a method that is called the kernel trick, which maps the data
into higher dimensional space, where the data are linearly separable, or we can
introduce soft margin SVM. We will not talk more about kernel tricks because
they will not be used in the experimental section and we will rather describe more
in details the soft margin SVM. The soft margin SVM allows misclassifications.
Therefore, we introduce the cost function that penalizes the misclassified samples.
The cost function is called Hinge loss that is defined as:

Lhinge(t, y) = max(0, 1 − ty) (2.11)
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Using the Hinge loss function, we need to incorporate the function into the
optimization problem that SVM is solving. The problem is then reformulated as:

arg min
w,b

C
∑︂

i

Lhinge(ti, y(xi)) + 1
2 ||w||2 (2.12)

The loss function has a regularizing effect on the model. The model also
introduces the parameter C that controls this regularization. The C constant
represents how much do we want to tolerate the misclassifications.

2.2.4 Random forests
Another machine learning algorithm is Random Forest, which is a part of the so-
called Ensemble methods. Ensemble learning aims to build a prediction model by
combining the strengths of a collection of simpler base models. Hastie et al. [2001]
The essence of the method is to build multiple trees in randomly selected sub-
spaces of feature space. Trees in different subspaces generalize their classification
in complementary ways, and their combined classification can be monotonically
improved. Ho [1995] Randomly selected subspaces are created with a method
called bootstrapping. We have N data samples, and we select N samples with
replacement, namely, samples are selected more than once or some of them are
not picked at all. The regression is performed by averaging the predictions from
all trees, while the classification is made by majority voting. The majority voting
means that the model predicts the class which received the majority of votes from
all estimators.

2.3 Deep learning methods

2.3.1 Convolutional neural networks
An image is stored in a computer as a matrix of numbers. However, these num-
bers do not tell us anything about an object of interest drawn in an image. These
values also do not provide information about a shape of an object, its charac-
teristics or any context about an image. In previous sections, we have described
elementary techniques that distinguish the object of interest and the background
by the intensity levels of the image. We want to come up with a more sophisti-
cated approach. What if we had a self-learning algorithm that could derive the
segmentation mask by looking at features that lie in the image? This is where the
neural networks come in. The essential type of neural network is a feed-forward
network (FFN). In image processing, each pixel value of an image is passed into
the network. The network is trying to learn the intensity values of each pixel in
the image. This approach has a significant disadvantage. With larger images, we
have to train more robust networks. Another problem of FFN is that they react
differently to input and its shifted version. This implies that FFN is not transla-
tion invariant. A more advanced approach to visual processing is Convolutional
Neural Networks (CNN). CNN can extract features by applying image filters to
the input. In such a manner, we can capture the intrinsic structure of features
because kernels that go through images can calculate local dependencies between
pixels.
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2.3.2 U-Net
The U-Net architecture was designed mainly for the biomedicine field. It can
achieve good results even with a small portion of training data. The architecture
consists of two paths. The first one is called the Encoder, also called the contrac-
tion path, whose role is to capture the context of the image. The context is taken
by image downsampling. The downsampling is done by consequently applying
convolutional filters on the image. The second part is the Decoder, whose role
is the image reconstruction into original resolution. The image reconstruction is
achieved by consequent image upsampling. The Encoder contains convolutional
and max pooling layers, whereas the Decoder consists of transposed convolutional
layers and max pooling layers. One of the most significant distinctions from other
CNN networks is that U-Net is a fully convolutional neural network. It does not
contain any dense layers.
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Figure 2.2: U-Net architecture

Source: Ronneberger et al. [2015]

2.3.3 Anatomically constraint neural networks
Another substantial deep learning architecture in biomedicine is the Anatomi-
cally Constrained Neural Network. ACNN was proposed by Ronneberger et al.
[2015] and it is a generic method that improves the accuracy of convolutional
networks by incorporating prior knowledge about organ shape and location to
improve the performance of image analysis approaches. Most classification and
regression models utilise a pixel-level loss function (e.g. cross-entropy or mean
square error) that does not fully account for the underlying semantic information
and dependencies in the output space.
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Figure 2.3: ACNN

Source: Oktay et al. [2018a]

The concept of ACNN is that we take an arbitrary convolutional neural net-
work, but in addition, we encode the output of the network and the ground-truth
mask using the so-called Encoder, which is nothing more than the first part of
the U-Net, that we described more in details in the U-Net section. Finally, we
compute the so-called shape regularisation loss, which is nothing more than the
Euclidean distance between the encoded prediction and the ground-truth mask.
The shape regularisation loss is defined below:

Lhe = ||f(ϕ(x); θf ) − f(y; θf )||22

= minθs

(︂
Lx(ϕ(x, θs), y) + λ1 · Lhe + λ2

2 ||w||22
)︂ (2.13)

where Lx is cross-entropy loss, ϕ(x) is the U-Net prediction, θs correspond to
training parameters of U-Net network, f is the Encoder, θf denotes the param-
eters of the Encoder, y is the ground-truth mask, λ1, λ2 determines the weights
of shape regularisation loss and weight decay terms used in the training. Ron-
neberger et al. [2015]

2.3.4 Attention U-Net
One of the U-Net weaknesses is a relatively imprecise image reconstruction dur-
ing upsampling. To address this problem, skip connections combine information
from the downsampling path with the upsampling path. However, this brings
many redundant low-level feature extractions, as feature representation is poor
in the initial layers. Soft attention implemented at the skip connections will
actively suppress activations in irrelevant regions, reducing the number of redun-
dant features brought across. Attention, as its name suggests, is a method for
emphasizing only the important regions in the image.

Hard attention

Hard attention emphasizes relevant regions by cropping the image or iterative
region proposal. Since hard attention can only choose one region of an image at
a time, it has two implications, it is non-differentiable and requires reinforcement
learning. Since it is non-differentiable, the network can either pay attention or
not to a given region in an image. Therefore, standard backpropagation cannot
be used, and Monte Carlo sampling is needed to calculate the accuracy across
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various stages of backpropagation. Considering the accuracy is subject to how
well the sampling is done. Oktay et al. [2018b]

Soft attention

Soft attention assigns weights to distinct parts of the image. Areas that are more
relevant have larger weights and areas of low relevance have low weights. As the
model is trained, more focus is given to the regions with larger weights. Due to
the deterministic nature of soft attention, it remains differentiable and can be
trained with standard backpropagation. Oktay et al. [2018b]

 

 

Attention Gate
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Figure 2.4: Attention gate

Source: Oktay et al. [2018b]

2.3.5 Residual U-Net
Neural networks with many layers trained with backpropagation algorithm tend
to suffer from the vanishing gradient problem. Vanishing gradient occurs due
to low value of gradient which causes very slight or negligible improvement in
weights. Additionally, if we use sigmoid as the activation function for a hidden
layer, gradients start to vanish even more rapidly due to the small derivative
of the sigmoid function. In the backpropagation algorithm, the gradients tend
to get smaller as we get closer to the input layer because small derivatives are
multiplied with each other. There are two possible solutions how to address this
issue. The first one is the ReLU function, which does not have small derivatives.
The second solution are Residual networks. Residual networks implement the
identity connection or skip connection that adds the original input value to the
value that went through the activation function. He et al. [2015]

identity

weight layer

weight layer

relu

relu

F(x) + x

x

F(x)
x

Figure 2.5: Residual learning: a building block

Source: He et al. [2015]
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Zhang et al. [2017] address the problem of vanishing gradient in U-Net archi-
tecture by combining it with residual learning.

2.3.6 ResUNet++
In 2019 ResUNet++ was proposed by Jha et al. [2019] which is an improved Re-
sUnet architecture for colonoscopic image segmentation. It implements residual
connections such as the ResNet model but also introduces squeeze and excitation
blocks, Atrous Spatial Pyramidal Pooling and attention blocks, which we talked
about in the Attention U-Net section.

Atrous spatial pyramidal pooling

ASPP is based on the idea of spatial pyramidal pooling that enables deep net-
works to accept an image of any size. Moreover, it uses atrous convolution. Atrous
convolution enables to control at which resolution are the feature responses com-
puted within the deep convolutional neural networks. Chen et al. [2018] It also
allows for the extension of the field of view of filters without increasing the num-
ber of parameters. It introduces a new parameter for the convolution operation
called the dilation rate. It defines the distance between the elements in a ker-
nel. ASPP addresses the fact that an object can exists in multiple scales. This
can be simply solved by presenting rescaled versions of the same image to the
CNN and then aggregating the feature or score maps. Papandreou et al. [2015],
Chen et al. [2015], Kokkinos [2016] In Chen et al. [2018] shows that this approach
definitely increases the performance of the network, but the feature responses
need to be computed in each CNN layer for multiple scaled versions of the input
image. Instead of subsequent resampling features, ASPP consists of multiple par-
allel atrous convolutional layers with different sampling rates that implement this
mapping. Parallel branches produce the final result by bilinearly interpolating all
feature maps from the layers together by taking the maximum responses across
the different scales.

rate = 6 rate = 12 rate = 18
rate = 24

Atrous Spatial Pyramid Pooling

Input Feature Map

Conv
kernel: 3x3
rate: 6

Conv
kernel: 3x3
rate: 12

Conv
kernel: 3x3
rate: 18

Conv
kernel: 3x3
rate: 24

Figure 2.6: ASPP - Atrous spatial pyramidal pooling

Source: Jha et al. [2019]
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Squeeze and Excitation block

Squeeze and excitation block emphasize informative channels and suppress less
useful ones in order to learn to use global information. Hu et al. [2017b] The
input is first passed through a squeeze operation that returns the average of
every channel. The squeeze operation is followed by the excitation block that
computes a weight for every channel using a sigmoid activation function, and
each channel is then multiplied with its corresponding weight. An additional
small hidden layer with C/16 neurons prevents the increase of parameters too
much.

Figure 2.7: Squeeze and excitation block

Source: Hu et al. [2017a]
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3. Experiments
The Laboratory of Neurochemistry from the Institute of Physiology of the Czech
Academy of Sciences conducts experiments on mice to observe their cognitive
functions during several behavioral tests such as nest building, locomotion in the
open field, evaluation of food anticipation and etc. The tests are described more
in detail in Abbondanza et al. [2022]. As part of standart testing procedure, the
mice are also injected with specific stimulants, such as amphetamine (AMPH) or
saline, in order to monitor any related behavioral changes, increase or decrease in
brain activity or any potential motor impairments. Upon the completion of the
testing phase, the mice are terminated and their brains extracted to be disected
for further study. Each slice is processed with double-probe FISH procedure.
FISH stands for Fluorescent in situ hybridization, a cytogenetic technique that
uses fluorescent DNA probes to target specific chromosomal locations within the
nucleus, resulting in coloured signals that can be detected using a confocal mi-
croscope. To study the neuronal activity of mice brains, the researchers observe
c-Fos mRNA that is visualized by the FISH technique.

The Laboratory provided data that contains c-Fos mRNA expression images.
Our task is to design an automative method that can segment neural cells in im-
ages as efficiently as possible. Unfortunately, the data, provided by the research
team, lacked the standard relevant annotations which are necessary for the devel-
opment of such a method, and also for the comparison between the results and
the annotations. The only option that we had, was to create ground-truth labels
by ourselves. The annotations were created in the application called ImageJ Fiji
- Schindelin et al. [2012]. Using the application, we can label one of the areas
that are significant for us and the application is then able to find and segment
similar regions. It is a semi-automatic segmentation tool to create ground-truth
masks. In order to evaluate the performance of our methods, we found datasets
that also contain c-Fos mRNA expression images or other data used in biology or
medicine research, and also the annotation made by experts from the biomedicine
fields. Thus, the first dataset is DataScienceBowl2018 - HubMAP [2018] which
was provided publicly at the Data Science Bowl 2018 contest. The goal of the
contest was to develop an algorithm to automate nucleus detection. The dataset
contains 670 images with annotations. The images were acquired under a vari-
ety of conditions and vary in the cell type, magnification, and imaging modality.
The Deepflash2 dataset contains only c-Fos mRNA images, which were acquired
from Griebel et al. [2021b]. Unfortunately, the dataset contains only 36 images,
but the images are the most similar to the images that are in CAS dataset. In
the following experiments, we are going to evaluate our methods on CAS dataset
and datasets with expert annotations. In order to reproduce our experiments,
we will include Python implementations of our methods, models and scripts for
evaluation.

Since the training of machine learning and deep learning models usually re-
quires to use high-performance hardware with a good GPU, we used the MetaCen-
trum servers. MetaCentrum is a virtual organization that manages distributed
computing infrastructure consisting of computing and storage resources owned
by CESNET as well as resources of co-operative academic centres within the
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Czech Republic. MetaVO For our experiments we requested the cluster Adan
that has the following technical specs: 32 CPUs Intel Xeon Gold 5218 2.3 GHz,
2 GPUs nVidia Tesla T4 16GB. In order to evaluate our methods, we use three
widely adopted segmentation metrics, i.e, the precision, Intersection over Union,
Mean Absolute Error and Dice score. We also introduce a metric that is not so
frequently used and this is Enhanced-alignment measure.

The precision is nothing more than the ratio of the number of pixels that
correspond to the correct pixel value in the ground truth mask and the total
number of pixels in an image. The Intersection over Union (IoU) metric, also
referred to as the Jaccard index, is the percentage of overlapping pixels between
the ground-truth mask and the prediction output. The metric ranges from 0 to
1, where 1 signifies perfectly overlapping segmentation. IoU is defined as the
intersection between the prediction result and the mask divided by the total
number across both masks:

IoU = X ∩ Y

X ∪ Y
(3.1)

The Mean Absolute Error measures the pixel-wise error between the ground-
truth mask and the prediction output, which is defined as:

MAE = 1
w × h

w∑︂
x

h∑︂
y

|P (x, y) −G(x, y)|, (3.2)

where P denotes the prediction result, G the ground-truth mask (x, y) denotes
the coordinate of each pixel in G. Symbol ϕ is the enhanced alignment matrix.

The dice score measures the similarity between two samples. It was developed
by Thorvald Sorensen. Sorenson [1948] It is defined as:

Dice = 2|X ∩ Y |
|X| + |Y |

(3.3)

The Dice score is very similar to IoU, and it also ranges from 0 to 1, where 1
means the greatest similarity between two samples. Also, IoU and the Dice score
are positively correlated with each other. This means that if one formula says
that one algorithm is better than the other one, the other formula will say the
same.

The enhanced-alignment measure (EAM) or E-measure has been recently pro-
posed metric by Fan et al. [2018] for evaluating the local and global similarity
between two binary maps. It is defined as:

Eϕ = 1
w × h

w∑︂
x

h∑︂
y

ϕ(P (x, y), G(x, y)), (3.4)

where ϕ is the enhanced alignment matrix. Cognitive studies have proven
that human vision is highly sensitive to both global information and local details
in a scene. Fan et al. [2018] EAM incorporates global image statistics such as
image-level mean into the metric but also uses local pixel values. The enhanced
alignment matrix ϕ is defined as

ϕ = f(ξ), (3.5)
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where f was selected in Fan et al. [2018] as:

f = 1
4(1 + x)2, (3.6)

because the function worked best in their experiments. The alignment matrix
ξ is defined as:

ξ = 2φP ◦ φG

φG ◦ φG + φP ◦ φP

, (3.7)

where ◦ denotes the Hadamard product (element-wise multiplication), φG is
the bias matrix for the ground-truth mask, φP is the bias matrix for the prediction
result. The bias matrix is defined as:

φI = I − µI · A, (3.8)
where I is the input image, µI is the image-level mean, A is a matrix where

all the element values are 1, and the size of A is the same as the size of I. The
E-measure ranges from 0 to 1. The higher the score, the more accurate result
was predicted.

3.1 Traditional techniques

3.1.1 Thresholding
In this part, we are going to present how is the thresholding efficient on biological
images. One of the example images of the dataset can be found below in figure
3.1a

(a) CAS Image (b) Median filter

Figure 3.1: Median filtering

A lot of the images from the dataset contain noise in the form of sparsely
occurring white pixels. This type of noise is referred to as Salt-and-pepper noise.
Usually, this type of noise can be eliminated by Median filter. We have applied a
Median filter with the kernel size equal to 3. You can see the result in figure 3.1b
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After applying median blurring we used two thresholding strategies: manual
threshold set to 70 and Otsu’s algorithm. We can notice in figure 3.2 that au-
tomative approach does not seem to be efficient in this case. Otsu’s algorithm
struggle to omit noise that is in the background. This causes that the noise is
linked with cells.

(a) Manual threshold set to 70 (b) Otsu’s algorithm

Figure 3.2: Thresholding algorithms

3.1.2 Clustering
k-means clustering was performed on the image mentioned in the previous section.
You can see the results in figure 3.3. We ran the algorithm with threshold equal to
0.001, 0.5 and 100. We can see that with a larger threshold, there are fewer pixels
in the background misclassified as foreground. The algorithm was able to finish
approximately after 15 epochs. As you can notice, the result contains again a lot
of sparsely occurring white pixels. The disadvantage of the k-means clustering
is that it always produces different results, and it is relatively slow compared to
other algorithms, for instance, thresholding.
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(a) Threshold: 0.001 (b) Threshold: 0.5

(c) Threshold: 100

Figure 3.3: k-mean segmentation

3.1.3 Watershed segmentation
In this section, we are going to cover our experiment where we performed the
watershed algorithm on our data. In order to improve the result of our algorithm,
we made a few preprocessing steps. In our dataset, we struggle to select an
appropriate threshold value that would distinguish objects of interest and the
background. Several strategies can increase the intensity values of the foreground
and lower the intensity values of the background. For instance, we could transform
the histogram of the image to such a distribution that would satisfy these criteria.
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(a) Input image (b) Histogram result

(c) Histograms (d) Logarithmic histograms

Figure 3.4: Histogram matching

By transforming the image’s histogram into exponential distribution, we can
yield to our image such properties. We can notice in figure 3.4. that dark tones
got even darker, and the neural cells got lighter. If we look at the image that is
the result of histogram matching, we can see that the image still contains white
dots that are not part of the neural cells. In order to remove these dots, we
use the non-local means algorithm. Non-local mean filtering takes a mean of all
pixels in the image, weighted by how similar these pixels are to the target pixel.
Buades et al. [2005] The result of the non-local means algorithm can be seen in
figure 3.5.
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Figure 3.5: Non-local means

Now, we have our image denoised. We need to get somehow the segmentation
mask and build barriers to the neural cells. We will use Otsu’s algorithm again
to get our mask. In order to get our barriers, we will apply erosion, dilation
and, lastly, we will subtract the results of these two operations. Erosion removes
boundary pixels. This way, we can get an area that is part of the foreground.
If we dilate an image, we will also get the area that is not part of neural cells.
When we subtract the results of erosion and dilation, we will get the boundaries
of our cells. Finally, we can apply watershed. The results of Otsu’s algorithm,
Erosion, Dilation and Subtraction, can be found in figure 3.6. The final result of
Watershed segmentation is in 3.7
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(a) Otsu’s segmentation (b) Erosion

(c) Dilation (d) Subtraction

Figure 3.6: Watershed preprocessing

We can notice that watershed algorithm is not well addressing the problem of
overlapping cells. If there are multiple cells, the algorithm tends to merge local
cells together.

Figure 3.7: Watershed’s result
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3.2 Machine learning
In this section, we will describe the experiments that were conducted with ma-
chine learning models. For CAS and Deepflash2 datasets we decided to choose
Random Forests and Support Vector Machines. Both of these models are quite
different from each other, since each of them uses very distinct approach for
training. We chose them because they are quite popular and frequently used for
various image segmentation applications. Random Forests were set with 50 trees
and SVM were using linear kernels.

For the DataScienceBowl2018 dataset we selected a slightly different approach
and different type of models. The dataset is significantly bigger than the other
two previously mentioned datasets, and it does not fit into our memory, which is
in our case 16GB of RAM. To address this problem, our model needs to be trained
on small portion of data that is able to fit into our memory. The partial fitting
for linear models is usually done by Stochastic Gradient Descent (SGD). SGD is
an iterative or incremental search for the model weights. It is either used when
there is too much data, or the direct optimization is not feasible. SGD is a special
type of Gradient Descent method, where we estimate gradients of our model
weights using just a single random sample from the training data. Unfortunately,
Random Forests cannot be trained incrementally by the SGD algorithm. There
are variants of Random Forests that does not have to have all data in the memory.
For instance, it is possible to train Random Forests in a distributed manner, where
more computers are utilized. This seemed to us complicated so we decided that
we will not use Random Forests on this dataset. For SGD training we used models
such as Logistic regression, Perceptron, Support Vector Machines (SVM) using
Hinge loss and Squared Hinge loss. Also, SVM were employed with linear kernels
and l2 regularization.

Initially, the models were trained solely on pixel values of the images; however,
the results were not sufficient. To achieve better precision, we prepared features
that more easily explain the image’s foreground and background and yield more
information than pixel values. We generated 32 variants of the Gabor filter maps
with different parameter settings. Then, we also created edge maps produced by
various edge filters: Canny, Sobel, Robert, Prewitt and Scharr.

Lastly, each image was convolved with a Gaussian filter with sigma equal to 3
and 7, a Median and Variance filter with kernel size equal to 3. The filters extract
essential information about neural cells, i.e. shape, structure, boundaries, etc.
Respectively, we need all the elementary features to get these cells’ segmentation
masks.

24



Table 3.1: Machine learning models metrics

Dataset Method Mean Dice Mean IoU MAE

CAS SVM - Squared Hinge l. 0.544 0.411 0.071
RF 0.585 0.396 0.091

DSB2018

Log. r. 0.581 0.454 0.066
Perceptron 0.389 0.268 0.121

SVM - Hinge l. 0.338 0.235 0.121
SVM - Squared Hinge l. 0.05 0.053 0.137

Deepflash2 SVM - Squared Hinge l. 0.375 0.249 0.004
RF 0.512 0.352 0.004

It can be seen from table 3.1 that Random Forests and SVM using Squared
Hinge loss achieve both of them almost similar results. Although SVM has slightly
higher accuracy, overall, it has better results than Random Forests. The other
notable difference between these two models is their size. The SVM model takes
approximately 2 KB of memory, whereas the size of the Random Forests model
is 4 Gb. Lastly, the SVM prediction time is in the matter of hundreds of mil-
liseconds, while the prediction of Random Forests runs around 14 seconds. The
Perceptron model has probably the worst results. Even though the model returns
considerably good accuracy, it has the smallest dice score and IoU value of all
models.

Table 3.2: Machine learning models metrics

Dataset Method Accuracy Eϕ

CAS SVM - Squared Hinge l. 83.7% 0.031
RF 78.84% 0.045

DSB2018

Log. r. 75.4% 0.743
Perceptron 80.09% 0.389

SVM - Hinge l. 81.9% 0.5
SVM - Squared Hinge l. 83.4% 0.313

Deepflash2 SVM - Squared Hinge l. 99.5% 0.667
RF 99.4% 0.8

In table 3.2 we can see that SVM accuracy is better than the accuracy of
Random Forests. If we also look at the prediction in figure 3.8 and 3.9, we
can see that in general, Random Forests tends to predict more foreground pixels
incorrectly than the SVM algorithm.
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(a) Input (b) SVM - Squared
Hinge loss (c) Random Forests

Figure 3.8: ML CAS results

(a) Input (b) SVM - Squared
Hinge loss (c) Random Forests

Figure 3.9: ML deepflash2 results

(a) Input (b) Perceptron (c) SVM - Sq. Hinge

(d) Log r. (e) SVM - Hinge

Figure 3.10: ML DataScienceBowl2018 results

If we look in figure 3.10, there are no significant differences between the pre-
dictions that each model produced. Only in the image 3.10c we can notice that
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SVM using Squared Hinge loss tends to emit white dots in the dark background
which are not part of the neural cells.

(a) SVM - Hinge loss (b) Logistic regres-
sion loss

(c) Perceptron’s loss (d) SVM - Squared
Hinge loss

Figure 3.11: The losses of models trained on DataScienceBowl2018

If we look at the loss functions of individual models in figure 3.11, we can
notice that all of them follow the same progress. At the beginning the loss
function rapidly decreases and then it either stays the same, or it progresses
down slowly.

3.3 Deep learning
This section will cover our experiments with deep learning models such as U-
Net, U-Net with EfficientNetB0 as the backbone, Attention U-Net, Attention
ResUNet, ResUNet++ and ACNN.

In order to improve the performance of our models and the ability to gener-
alize, we performed data augmentation. Data augmentation is a technique that
expands the size of a dataset by creating modified versions of images. The modi-
fied versions of the images are created by various transformations, such as shifts,
flips, zooms, and etc. This way, a model can learn how the same object on an im-
age looks from different angles, positions and under different lighting conditions.
This technique also generally helps us when we lack sufficient data.

In our deep learning experiment, we used a data generator that generates
images that are randomly rotated in the range of 0 to 90 degrees, are randomly
horizontally shifted in the range of 0.3 fraction of their total width and vertically
shifted in the range of 0.3 fraction of their total height, randomly distorted in the
counter-clockwise direction in the range of 0.5 degrees, randomly zoomed in the
range of 0.3 of total image size, randomly horizontally and vertically flipped and
the rest of the image filled with the reflection of the image. Additionally, all the
image pixels are scaled on the scale from 0 to 1.

We conducted the following experiments. We trained each model for 50 and
then for 100 epochs. The batch size was set to 8 samples, and we tried to set
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the learning rate to 1e − 4 and 1e − 2. The simple U-Net model used Adam as
the optimizer and Binary Crossentropy as the loss function. The same settings
were applied for U-Net with EfficientNet as the backbone. On the other hand,
the Attention U-Net and ResUNet utilize Binary Focal Loss with gamma set to 2
as the loss function. ResUNet++ uses Nadam as the optimizer and the dice loss.
Nadam is the Adam optimizer with Nesterov momentum. ACNN employs the
Binary CrossEntropy for U-Net parameter tuning and the Euclidean loss between
encoded prediction and encoded ground-truth mask. The number of steps for each
epoch is the training data sample count divided by the batch size.

Dataset Method Mean Dice Mean IoU MAE Eϕ

CAS

U-Net 0.187 0.105 0.296 0.628
U-Net+Eff.Net 0.045 0.023 0.204 0.363

Att. U-Net 0.005 0.002 0.194 0.261
Att. ResUNet 0.029 0.014 0.2 0.342
ResUnet++ 0.0002 7.646e-05 0.192 0.25

ACNN 0.186 0.104 0.403 0.496

DSB2018

U-Net 0.849 0.772 0.032 0.929
U-Net+Eff.Net 0.716 0.609 0.079 0.879

Att. U-Net 0.147 0.082 0.227 0.525
Att. ResUNet 0.059 0.031 0.124 0.632
ResUNet++ 0.78 0.666 0.051 0.886

ACNN 0.055 0.029 0.568 0.236

Deepflash2

U-Net 0.352 0.221 0.016 0.648
U-Net+Eff.Net 0.003 0.0 0.006 0.25

Att. U-Net 0.003 0.0 0.006 0.25
Att. ResUNet 0.003 0.0 0.006 0.25
ResUNet++ 0.01 0.006 0.993 0.25

ACNN 0.001 0.0005 0.055 0.439

Table 3.3: Deep learning models metrics

Table 3.3 shows that U-Net has the best results in almost all metrics than
the other architectures. Although from table 3.4 it can be seen that it does not
have the highest precision. Despite this, accuracy is not the most decisive factor.
We came across situations where the model returned an utterly black image, and
during the comparison between the prediction and ground-truth mask we still got
an accuracy of at least 90%. This is because the neural cells occupy only a small
part of the overall image in some cases. U-Net achieves slightly worse results with
EfficientNetB0 as the backbone. EfficientNetB0 was pre-trained on the ImageNet
dataset, and the backbone architecture weights were set as non-trainable. This is
probably because images in ImageNet are significantly different from those in our
dataset, so the pre-trained weights in EfficientB0 will not help us. Unfortunately,
more complex architectures on all datasets performed rapidly worse than the
standard U-Net network. This may mean that either we chose the wrong settings
for the models, e.g. optimizer, loss function etc., we lack a sufficient amount of
data in CAS and Deepflash2 dataset, or we selected the wrong data augmentation.
Moreover, the other models have more trainable weights, so it is possible that if
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we changed the batch size or the number of epochs, the models would be more
accurate.

Table 3.4: Deep learning models accuracies

Dataset Method Accuracy

CAS

U-Net 69.1%
U-Net+EfficientNet 78.2%

Attention U-Net 79.3%
Attention ResUNet 78.7%

ResUnet++ 79.5%
ACNN 59.9%

DSB2018

U-Net 84%
U-Net+EfficientNet 81.1%

Attention U-Net 75.7%
Attention ResUNet 87.2%

ResUnet++ 82.5%
ACNN 46.1%

Deepflash2

U-Net 97.9%
U-Net+EfficientNet 99.7%
Attention ResUNet 99.7%

Attention U-Net 99.7%
ResUnet++ 0.2%

ACNN 94.7%

In table 3.4 you can see the average accuracy that we achieved with each
model on the validation dataset. The precision in this case is not the best metric
for the model comparison. In some cases the neural cells cover very small part
of the image. It can happen that a model predicts a mask with all pixels set to
zero, and our tests will report around 80% to 95% for the model.
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(a) CAS image (b) U-Net result (c) U-Net + Efficient-
Net result

(d) Attention U-Net
result

(e) ResUNet++ re-
sult (f) ACNN result

Figure 3.12: CAS deep learning results

In figure 3.12 we can see that most of the neural cells were recognized by the
U-Net model, whereas the ACNN’s result is probably the worst. As a result,
it does not contain anything resembling neural cells. This is not the standard
output from ACNN. We were able to achieve better results with ACNN, but
during the final evaluation, we were unable to reproduce these results again.
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(a) CAS image (b) U-Net result (c) U-Net + Efficient-
Net result

(d) Attention Re-
sUNet result

(e) ResUNet++ re-
sult (f) ACNN result

Figure 3.13: DataScienceBowl2018 deep learning results

In figure 3.13 the most convincing results seem to be from U-Net but also
from ResUNet++. For some reason U-Net with EfficientNetB0 tends to create
black holes in neural cells. ACNN again performs very poorly.
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Conclusion
Our task was to study image segmentation methods for biomedical research and
discover the most accurate approach for neural cell segmentation from c-Fos
mRNA expression images. We described and compared traditional approaches
based on thresholding, edge detection and pixel-intensity distribution with the
state-of-the-art methods based on machine learning and deep learning. We in-
troduced various image segmentation metrics such as Dice score, Mean Absolute
Error, Enhanced-alignment measure, Intersection over Union and precision in or-
der to evaluate these methods. Each method was tested on three datasets: the
CAS, Deepflash2, and DataScienceBowl2018. The CAS dataset was provided on
request from the Laboratory of Neurochemistry of the Czech Academy of Sci-
ences. Due to the incompleteness of the data provided we had to use extra sets of
publicly available data to verify the results produced by the methods mentioned
in our work.

Our assumption that more advanced architectures such as ResUNet++ or
Attention U-Net will produce more accurate results than their standard U-Net
predecessor was found as false. We attempted to train the models with various
parameter settings but in every case, U-Net exceeded other models in terms of
accuracy or prediction time. The most likely reason is that usually more complex
architectures have more trainable parameters and it is often more difficult to train
them with small datasets.

There are a few possible ways how the experimental part could be improved.
During our study of evaluation metrics for segmentation methods, we found a
metric that we were not able to implement due to lack of time. The metric is
referred to as structure similarity measure (SSIM) that has been recently proposed
in Fan et al. [2017]. SSIM is used for shape similarity comparison between an
object that is in the prediction and an object that is in the ground-truth mask.
With this test, we are able to tell more precisely whether a model returns a correct
result or not.
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A. Attachments

A.1 Source Codes
The source code attachments were written in Python. They were compiled with
Python 3.8.13 on MacOS and Ubuntu machines. The following implementations
are included:

• The source code of ML and DL models.

• The scripts that run the training of models

• The scripts that evaluates segmentation methods

• The implementation of evaluation metrics and other algorithms

38


	Introduction
	Theoretical background
	Traditional techniques
	Thresholding
	Clustering
	Watershed segmentation
	Gabor Filter

	Machine learning methods
	Perceptron
	Logistic regression
	Support vector machines
	Random forests

	Deep learning methods
	Convolutional neural networks
	U-Net
	Anatomically constraint neural networks
	Attention U-Net
	Residual U-Net
	ResUNet++


	Experiments
	Traditional techniques
	Thresholding
	Clustering
	Watershed segmentation

	Machine learning
	Deep learning

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Attachments
	Source Codes


