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Abstract: Jigsaw puzzle is a well-known puzzle game that has been around for
centuries. However, in addition to entertainment purposes, an ability to reassem-
ble images from pieces has practical applications and can be useful, for example,
in restoring torn or cut documents or broken objects in archaeology. Most of
the proposed solutions reconstruct the images divided into square pieces. In this
work, we propose our solutions for the new types of puzzles with more interesting
shapes of pieces, such as rectangles of equal and different sizes, and triangles.
The accuracy of our solvers is at the same level as that of the solutions for recon-
struction of images from square pieces. Moreover, our solvers, unlike the others,
have been tested on images with text as well as on color and black and white
photographs.
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Introduction
Jigsaw puzzle is a famous puzzle game that has been around for centuries. It is
thought to have been invented by John Spilsbury in the 18th century (Williams,
1990). Originally, puzzle pieces were made in the shape of countries on a map,
and such puzzles were suggested for use in studying geography. The earliest of
them were not more than 50 pieces, but later on puzzles of different shapes and
content became a popular entertainment, and today the biggest of them are up
to 50,000 pieces1. A system that could solve such puzzles automatically would be
very interesting by itself, however it has also practical applications, like repairing
torn or cut documents or broken archeological objects.

A typical jigsaw puzzle is a picture divided into n pieces of equal or different
shapes, and the goal of the puzzle is to put the picture back together. The
complexity of puzzles is determined by the image depicted on them, as well as
by the shape and number of pieces. The more similar the pieces are to each
other and the more there are, the harder the puzzle is to solve. In addition to the
well-known classic puzzles, there are also the so-called edge-matching puzzles, the
pieces in which have the same, usually square, shape and size. The main feature
of such puzzles is that the shape of their pieces does not help to solve them, and
the main source of information in this case is the image itself. Erik D. Demaine
and Martin L. Demaine examined several types of puzzles, including classic and
edge-matching puzzles. They proved that both types of puzzles are NP-complete
(Demaine and Demaine, 2007).

Recently, Sholomon et al. proposed a successful solution to square-piece puz-
zles using a genetic algorithm (Dror Sholomon and Netanyahu, 2014). Their
solution is capable of solving puzzles with 22,755 pieces without knowing the
dimensions of the puzzle. The goal of our work is to analyze their and other
proposed solvers, and to propose our own solutions for puzzles with a more in-
teresting shape of pieces. In this work, we propose solutions for puzzles with
rectangular and triangular shaped pieces because in our opinion they have more
applications in real life. Next, we propose a solution to a new type of puzzles
where the pictures are divided recursively into rectangular pieces, and where the
pieces are mostly of different shapes and sizes and are not connected to each other
by a whole edge.

Our work is divided into four chapters. In chapter 1, we describe in detail
what types of puzzles have been solved by other researchers and what results they
have achieved. In chapter 2, we describe in more detail the square-piece puzzles
solver proposed by Sholomon et al. because our work is largely based on theirs.
In chapter 3, we describe our solutions for each type of puzzle. In chapter 4, we
show the results of experiments that were performed on available data as well as
on our own data with printed text. In the end, we conclude our work and also
suggest how our work can be continued and improved.

1https://web.archive.org/web/20220128074200/https://www.amazon.com/
Kodak-Premium-Puzzle-Presents-Largest/dp/B07L8LZRCT
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1. Related work
Many studies have been devoted to the topic of collecting pictures from pieces of
various shapes and sizes, but most of them have focused on the reconstruction
of color pictures or photographs. No less interesting is the reconstruction of
black and white images, more specifically printed texts, which has also been the
subject of many studies. In this chapter, we will take a separate look at the
studies devoted to these two problems.

1.1 Image reassembling
In their work, Harel et al. point out that all the types of puzzles that have been
solved in various studies can be divided into four types based on the geometrical
properties of the pieces from which they are composed (Harel and Ben-Shahar,
2021).

1.1.1 Commercial toy puzzles
In the first category are the commercial toy puzzles that everyone is familiar with.
The shape of the pieces in such puzzles is often unique, and some researchers use it
as the main source of information in their reconstruction (Goldberg et al., 2004).
Although some studies also use pictorial data to improve the results. For example,
Chung et al. tried to reassemble several toy puzzles of up to 54 pieces using both
the shape of the pieces and the pictorial data (Chung et al., 1998). They showed
that the pictorial information on the boundaries of the pieces greatly helps in
finding a solution. Kosiba, D.A. et al. also used both the shape of the pieces and
the pictorial data in their solution (Kosiba et al., 1994). They described each edge
of a piece with a set of its features, and used these features to determine whether
the pieces would overlap when they are joined. Other studies are similar to these,
but all the proposed solutions were only able to reconstruct puzzles with, at best,
about 300 pieces (Bunke and Kaufmann, 1993, Nielsen et al., 2008).

1.1.2 Puzzles with square pieces
In the second category are puzzles with square pieces of the same size, which
have been studied the most. The peculiarity of such puzzles is that the shape of
their pieces does not help to solve them, and the main source of information in
solving them is the image depicted on them. Some studies consider a simpler kind
of square puzzles when their dimensions and/or orientation are known. A more
complex variant is a puzzle with unknown size, double-sided puzzle, or different
puzzles mixed into one pile (Dror Sholomon and Netanyahu, 2014, Sholomon
et al., 2014).

Most of the proposed solutions are greedy, based on some measure of similarity
of the edges of the pieces, but some solutions use other methods as well. Yu et
al. proposed a solution based on linear programming, but it relies on knowing
the dimensions of the puzzle (Yu et al., 2016). Cho et al. have proposed a
probabilistic solver of square puzzles (Cho et al., 2010). In their work, they use
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a graphical model of a puzzle where each node corresponds to a patch location.
Then they maximize a probability function using loopy belief propagation to find
the most likely configuration of patches in the graph. They have also proposed a
measure of the edges’ dissimilarity of the pieces, which we will use in this paper.
The difference of edges according to their idea is measured as the root of the
sum of the squared pixel differences at the edges of the pieces. The images in
this case should be in the normalized L*a*b* color space because the differences
between the two colors are easily detected there. Pomeranz et al. have improved
the results of the previous work, and proposed their own greedy solver, capable
of successfully reassembling large puzzles of up to 3,300 pieces (Pomeranz et al.,
2011).

Gallagher et al. proposed an even more successful greedy solver, which looks
for minimal spanning tree in a graph whose vertices are pieces and whose edges are
the dissimilarities of their edges (Gallagher, 2012). They were able to reconstruct
puzzles with 9600 pieces and different puzzles mixed in the same pile, but their
solution requires knowledge of the dimensions of the puzzle. They have also
proposed another measure of the dissimilarity between the edges of the pieces,
which they called Mahalanobis Gradient Compatibility. Its goal is to penalize
changes in intensity gradients, rather than penalizing changes in intensity, which
means that if there is a gradient at the neighbor’s edge, then the piece should
continue this gradient.

Some researchers also propose successful solutions using evolutionary algo-
rithms. Toyama et al. proposed a solution based on a genetic algorithm, where
they used a partial arrangement of pieces as an individual and performed piece
exchange and rotation operations on them. Their solver successfully reconstructs
small puzzles of 64 pieces (Toyama et al., 2002). Other works propose a solution
for puzzles with known dimensions in advance (Sholomon et al., 2017, Guo et al.,
2020). They represent the individual as a table of the same size as the puzzle
itself, and look for the correct ordering of the pieces in that table. The main
operation then is crossover, in which the pieces are gradually connected to each
other based on the similarity of their edges, forming clusters. Such solvers are
capable of reconstructing puzzles of up to 30,745 pieces.

Senhua Zhao et al. propose a solution using a multi-strategy evolution al-
gorithm (Zhao et al., 2020). They also represent the individual as a table and
rely on knowing the size of the puzzle. They then use an elite-based crossover
that uses genetic material from both the offspring’s parents and the elite, and
mutation for both individual pieces and whole lines of pieces, moving them in
different directions.

Sholomon et al. proposed a genetic algorithm based solution that can solve
puzzles with 22,755 pieces without knowing the size of the puzzle (Dror Sholomon
and Netanyahu, 2014). We will discuss their solution in more detail in the next
chapter.

1.1.3 Partially constrained modelled puzzles
In the next category are puzzles that have a shape with some limited properties,
but not as limited as puzzles with square pieces. We have found 2 studies devoted
to this type of puzzles. Shir Gur and Ohad Ben-Shahar focused on solving brick
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wall puzzles where the rectangular shaped pieces have the same width but differ-
ent heights, and are connected to each other with a possible shift, which greatly
increases the number of possible places where 2 pieces can be connected (Gur
and Ben-Shahar, 2017). An example of such a puzzle is shown in Figure 1.1. The
authors proposed a greedy algorithm, using previous greedy methods for square
pieces, and adding the possibility to shift pieces based on their compatibility.

In the second study, Peleg Harel and Ohad Ben-Shahar proposed a solution
for puzzles created by cutting a convex polygon with several straight lines (Harel
and Ben-Shahar, 2021). An example of such a puzzle is shown in Figure 1.2. The
pieces of such puzzles are also convex polygons, and each edge of a piece has only
1 neighbor of the same length. The complexity of such a puzzle is added by many
possible positions of pieces in space. They can be rotated and moved as desired.
However, the shape of the pieces and the length of their edges greatly reduces the
possible number of connections and helps in solving the problem. To complicate
the problem and make it more applicable in real life, the authors added noise to
the edges of the pieces by shifting their vertices slightly by a random amount.
In their work, the authors proposed a layered reconstruction process based on
the pictorial content of the pieces. They divided the problem into two stages.
First, they solved the smaller problem of how to arrange the pieces in space while
knowing the correct connections. To do this, the puzzle is presented as a system
of mass-springs evolving over time. The springs are between the vertices of the
edges and if the pieces are far apart, the springs attract them to each other. Then,
when the pieces intersect each other, the springs pull them apart. Such a system
eventually converges to a minimum of the total potential energy of the spring.
In the second stage, the authors propose to connect the pieces to each other in
cycles, assessing the correctness of each cycle of connections using the method
from the previous stage. The authors considered both pictorial and apictorial
puzzles, and evaluated their solutions on puzzles of different sizes. The largest
puzzles in their work averaged about 400 pieces.

Figure 1.1: Brick wall puzzles Figure 1.2: Crossing cuts polygonal puz-
zles

1.1.4 Unrestricted puzzles
In the last category are puzzles with pieces with no shape restrictions. They are
usually assembled based on the shape of the pieces and sometimes on the pictorial
data. Weixin Kong Benjamin and B. Kimia proposed a solution for 2D and 3D
puzzles using curve matching (Kong and Kimia, 2001). Canyu Le and Xin Li
proposed a solution for shredded images up to 400 pieces based on convolutional
networks (Le and Li, 2018). Michael Makridis and Nikos Papamarkos proposed a
solution for even more complex piece shapes based on shape similarity, but tested
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their solution on smaller puzzles with 173 pieces (Makridis and Papamarkos,
2009). Shengjiao Cao and others proposed a solver for several torn photos, which
are mixed together, but they also tested their solution on only a small number of
pieces (Cao et al., 2010).

1.2 Reconstruction of shredded documents
Many works have also been devoted to the topic of recovering printed documents.
Varad Deshpande et al. have described such works in their review paper (Desh-
pande et al., 2018). They note that usually in such studies the authors propose
to extract some features from the document, such as the size and orientation of
the text, the size of the indents, the color of the text and paper. These features
are then used in connecting the pieces to each other. Most of the researchers have
proposed solutions for recovering manually torn documents or those cross-cut by
a shredder machine. Suohai Fan proposed a solver for cross-cut documents us-
ing a genetic algorithm, where he also used letter recognition based on a letter
database (Fan, 2014). Christian Schauer et al. also proposed a solution for cross-
cut documents (Schauer et al., 2010). Their solution is a combination of a genetic
algorithm and local enhancement using variable neighborhood search. Ankush
Roy and Utpal Garain proposed a probabilistic model for reconstruction of torn
forensic documents (Roy and Garain, 2013). In the beginning, their algorithm
selects the largest piece and generates probabilities of all combinations between
it and other remaining pieces. This step is repeated iteratively, each time using
the maximum probability value for the connection. Kantilal P. Rane and S.G.
Bhirud proposed a solver for torn documents (Rane and Bhirud, 2011). In their
work, they determine the approximate orientation of the pieces based on the text
depicted on them, and then they describe new procedures for determining the
boundaries and corners of the pieces. Next, they propose to separate the text
from its background for easier merging of the pieces.
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2. Square-piece puzzles solver

2.1 Problem definition
In this section, we will formally describe the problem we are going to solve.
Suppose there is a rectangular image that has been divided into n square pieces
of equal size. The pieces do not repeat and do not overlap, their orientation and
location in the image are unknown. Our goal is to find the correct neighbors for
each piece, such that when we connect them, we get the original picture. We will
consider as a successful result a correctly assembled picture, even if it is rotated
in the wrong direction. To complicate the task, we will assume that the original
dimensions of the picture are unknown.

2.2 Suggested solution
Most of the solutions proposed for square piece puzzles are greedy, which makes
them vulnerable to getting stuck in local minima. They are also often dependent
on the starting point. For this reason, some studies propose solutions to such puz-
zles based on evolutionary algorithms. In their works, Sholomon et al. proposed
the most successful of such solutions based on a genetic algorithm. They proposed
a solver for puzzles with known dimensions in advance (Sholomon et al., 2014,
Sholomon et al., 2017), but their most practical solver is the one for puzzles with
unknown dimensions or for several puzzles mixed with each other (Dror Sholomon
and Netanyahu, 2014).

In their work, the authors proposed to use a classical genetic algorithm aug-
mented with elitism, retaining the 4 best individuals in the next generation, with
the following pseudocode:

Algorithm 1 A genetic algorithm with elitism
1: population← generate 300 individuals
2: for generation = 1...100 do
3: calculate fitness values of all individuals in population
4: new population← []
5: append the 4 best individuals from population to new population
6: while length(new population) < 300 do
7: parent1← select parent using roulette selection
8: parent2← select parent using roulette selection
9: child← crossover(parent1, parent2)

10: append child to new population
11: end while
12: population← new population
13: end for
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2.2.1 Representation of individuals
The authors proposed a matrix M of size n×4 as an individual, where an element
on the position (i, j) is an edge with which the edge j of a piece i is connected,
or None if the edge (i, j) has no neighbor. Note that in the correct solution, all
pieces except the outermost will have all 4 neighbors, which means that only the
pieces on the edges of the puzzle will have the None value in the representation.
This representation of the individual makes it easier to calculate the value of
fitness, and also makes it easier to create new individuals during the crossover.

Figure 2.1: Example of an individual in the initial population.

The initial population consists of 300 individuals, each of which is generated
by randomly connecting n - 1 edges. All these individuals, however, must be
valid, which means that the pieces in them do not intersect each other and each
piece is present in the solution exactly once. An example of such an individual is
shown in the Figure 2.1.

2.2.2 Selection mechanism and fitness calculation
The authors used roulette selection as a selection mechanism and defined the
fitness of an individual M as:

n∑︂
i=1

4∑︂
j=1

D(pi,j, M [i, j])

where D is a dissimilarity measure, pi,j is the edge j of the piece i and M [i, j] is
its neighbor in the individual M. This value should, of course, be minimized. As
a measure of edges dissimilarity, the authors used the difference between pixels
in the normalized L*a*b* color space proposed by Taeg Sang Cho et al. in their
work (Cho et al., 2010), which is defined as:

D(xi,a, xj,b) =

⌜⃓⃓⎷ K∑︂
k=1

3∑︂
c=1

(xi(k, K, c)− xj(k, 1, c))2

where xi,a corresponds to the right edge of the piece i, xj,b corresponds to the
left edge of the piece j, k is the index of the pixel in the edge, c corresponds
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to color channel, K is the size of piece in pixels and xi(k, K, c) is the pixel of
the piece i at the position (k, K, c). Since the fitness function should not only
minimize the differences between neighboring edges, but also encourage solutions
close in shape to the original image, the authors defined the difference value for
an edge without a neighbor as the average difference between all edges multiplied
by 2. They found that using a smaller value results in solutions that are more
elongated to the sides, while larger values result in solutions where the shape of
the rectangle becomes more important than the correct connections.

2.2.3 Crossover
The most important part of the algorithm is the crossover, where most of the
work takes place. For it to work properly, however, we must perform several
calculations. Before we start the evolution, we will determine the most likely pair
for each edge, which is the edge that is the most similar to it. This is done using
the same edges dissimilarity measure we described above. Then we will call the
edges xi,a and xj,b, for which the following condition is satisfied, the best buddies:

∀e ∈ Edges, D(xi,a, xj,b) ≤ D(xi,a, e)
and

∀e ∈ Edges, D(xi,a, xj,b) ≤ D(xj,b, e)

where Edges is a set of all edges of all pieces. This notion was introduced by
Dolev Pomeranz et al. in their work (Pomeranz et al., 2011) and means that
both these edges see each other as the most possible neighbor.

The crossover process itself looks like this. At the input of the crossover, we
have 2 parents represented using matrices of size n × 4. We start to build a
new solution from scratch, and all the offspring pieces at the beginning have no
neighbors. The whole crossover process is divided into 4 phases, in which the
edges of the pieces are gradually connected to each other. Note that in order
to get an individual in which all pieces are connected to each other and present
exactly once, it is necessary to make exactly n - 1 successful connection of the
edges. The first crossover phase is responsible for transferring information from
parent to offspring. It randomly connects those edges that have the same neighbor
in both parents. In the second phase, the most likely pairs of edges, which we
call best buddies, are connected, however, provided that the pair is connected in
at least one of the parents. The third phase contains greedy connections of edges
with their most similar neighbor in a random order. The final fourth phase is
needed to complete the solution. It includes random connections of edges until
n - 1 connections are made as a total. The crossover process also includes a
mutation that is performed in all but the last phase. It consists in the fact that
each potential connection of a pair of edges is not made with a probability of p.
Summarizing the above, having 2 parents M1 and M2 we do the following:
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1. Connect all edges (i, a) and (j, b) for which the condition M1[i, a] = (j, b) =
M2[i, a] is fulfilled. Each of the connections will be rejected with probability
of p.

2. Connect all pairs of edges that are best buddies, provided that the connec-
tion is present in at least one of the parents. Each of the connections will
be rejected with probability of p.

3. Try connecting all remaining edges with their most compatible pairs in
random order. Each of the connections will be rejected with probability of
p.

4. Make random connections until a total of n - 1 connections is made.

Figure 2.2: The best individual after 2 generations.

An example of the best individual after several generations is shown in the
Figure 2.2. It is worth noting that not all the connections we try to make will
be successful, since they may create an individual in which some pieces overlap.
Only a connection that does not create overlap is allowed. An example of such a
failed connection is shown in Figure 2.3.

This solution proved to be successful. The authors tested their algorithm with
a population size of 300, 100 epochs, and a mutation probability of 0.001. Their
algorithm successfully solved puzzles with 22,755 pieces, as well as several puzzles
mixed together. Such successful results inspired us to extend their solution to
more interestingly shaped puzzles.

2.3 Our implementation
In this part, we will describe our crossover implementation in more detail, since
the authors did not describe in detail some important aspects in their work. We

11



Figure 2.3: Example of a failed connection

propose an implementation in which each piece of the puzzle will be part of a
cluster, where a cluster is a set of pieces whose edges are connected to each
other. In addition to the indices of the pieces it contains, the cluster also has
its own coordinate system in which these pieces are located. We will remember
the coordinates of each piece in its cluster, as well as the number of its edge that
faces up. At the beginning of the crossover, each piece is in its own cluster of size
1, and then all the pieces are gradually combined into larger clusters. Our goal
is to connect all the clusters to each other into one.

Knowing the structure of all clusters, we can easily check whether a potential
connection of edges is possible. The authors describe that having a pair of edges
that we want to connect, we may encounter 3 situations. The first situation is
when the two pieces to which these edges belong are the only ones in their cluster.
In this case, we join the pieces into one cluster so that one of them is above the
other. This situation is shown in Figure 2.4. When we create a new cluster, we
save the coordinates and top edge number for each piece. Since all the pieces are
square and have the same size, we do not need to save the coordinates of their
vertices in the cluster. It is enough to represent them as 1× 1 squares.

[0,0] [0,0]

a

a

d c

bc d

b

[0,0]

[0,1] a

d
c

c

b

d

a

b

Figure 2.4: Connection of the clusters of size 1

The second situation occurs when the first piece is the only one in its cluster,
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and the second is not. Then we determine new coordinates of the first piece in its
new cluster and thus check whether its place is occupied or not. Then we take all
neighboring coordinates and determine new neighbors for the added piece. This
situation is shown in Figure 2.5.

[0,0] [0,0]

a

a

d c

bc d

b

[0,1]

c

d

ca
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[-1,1]c

d

b

a

c
[0,-1]

a

ca
c

[-1,-1]b

c

a
d

b

[-1,0] [0,0]

a

c
d

c

ba

b

[0,1]

c

d

ca

bc
[-1,1]c

d

b

a

c
[0,-1]

d
ca

c
[-1,-1]b

c

a
d

b

b

d

a
d

Figure 2.5: Connection of the clusters of size 1 and size 5. First, we determine
that the neighbor of the edge d of the piece in the blue cluster at position (0, 0)
will have coordinates (-1, 0). Then we check whether the place at position (-1,
0) in the blue cluster is free. Because the place is free, the orange piece becomes
part of the blue cluster and gets the new coordinates (-1, 0). This connection
is written to the solution. Then we check if the piece has other new neighbors
on all 3 sides. In this case there are, and they are pieces at positions (-1,-1) and
(-1,1). Therefore, we add 2 more edge connections to the solution.

The third situation is the most interesting one. In this case, both pieces are in
clusters with sizes greater than 1. Then we choose the smaller of the two clusters
and rotate it around the center of coordinates so that the edges at the place of
connection touch correctly. Since the angle of rotation will always be a multiple
of 90 degrees, it is not difficult to calculate the new coordinates of the pieces.
Next, we determine the coordinates that the piece from the smaller cluster will
have when joined to the larger cluster. By doing so, we determine the shift for all
the pieces in the smaller cluster and can move them into the coordinate system of
the larger cluster. If two different pieces have the same coordinates, it will mean
that we have found an intersection, and it is not possible to make a connection
between these two edges. An example of a successful connection is shown in
Figure 2.6.
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Figure 2.6: Connection of the clusters of size 3 and size 5. First, we identify that
the neighbor of edge d of the piece in the blue cluster at position (0, 0) will have
coordinates (-1, 0). Then we specify that the edge of this neighbor should be on
the right side. The edge a of the piece at position (-1, 1) in the orange cluster,
which we will connect, is on the left. To make it right, we rotate the orange
cluster 180 degrees counterclockwise. The piece now has coordinates (1,-1). We
want the coordinates to be (-1,0) and to achieve that we add (-2,1) to it. We do
this for all pieces in the orange cluster and add them to the blue one by one as
shown in the previous Figure, checking at the same time whether an intersection
of some pieces has been found.

We would also like to clarify how the initial population with random individ-
uals is generated. To speed up the process of creating individuals, we propose to
generate them as follows. In the beginning, we choose one of the pieces, and then
we will gradually add to its cluster one by one all other pieces, by connecting the
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random edges that are still available. Since we always connect only one piece to
the cluster, this connection will always be successful, and we do not have to check
the potential intersection of the pieces.
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3. Our solvers
In this chapter, we describe our solutions for rectangular and triangular puzzles,
as well as for puzzles recursively divided into rectangles. All of these solutions
are based on the solution for square pieces, but some changes were necessary in
the representation of individuals, the fitness function, and the crossover.

3.1 Rectangle-piece puzzles solver

3.1.1 Problem definition

Figure 3.1: Rectangle-piece puzzles 1 Figure 3.2: Rectangle-piece puzzles 2

Perhaps the simplest extension of the solution for the square pieces is to solve
the puzzle divided into rectangular pieces of equal size. Figures 3.1 and 3.2 show 2
variants of such division into pieces. The formal description of the problem in this
case remains almost the same as for the square pieces. It is however necessary to
add the condition that only edges of the same length can be connected. It is easy
to see that in this case the problem becomes easier, since the number of possible
candidates for connection decreases by a factor of 2 for each edge. However, at the
same time we may encounter a situation where one of the edges of the rectangle
is much smaller than the other, as shown in Figure 3.2. Such an edge carries far
less information than its larger neighbor, and if we connect the edges in random
order, as we do in the crossover for square pieces, we can make many connections
based on less accurate data. A generally intuitive rule of thumb is that the more
pixels are used to determine edges dissimilarity, the more likely we are to get the
correct result.

3.1.2 Crossover variants
In our work, we considered several variants of the crossover. In the first case,
we left it almost unchanged, adding the condition that only edges of the same
length can be connected. In the second case, we decided to test our theory from
the previous paragraph and divided the second and third crossover phases into 2
smaller parts. Instead of connecting the edges with the most compatible neighbor
in random order, we propose to give priority to the edges with longer length. To
do this, we first connect all pairs of long edges to each other, and only then
connect the short ones. Having 2 parents M1 and M2, the crossover in this case
looks as follows:
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1. Connect all edges (i, a) and (j, b) for which the condition M1[i, a] = (j, b) =
M2[i, a] is fulfilled. Each of the connections will be rejected with probability
of p.

2. Connect all pairs of larger edges that are best buddies, provided that the
connection is present in at least one of the parents. Each of the connections
will be rejected with probability of p.

3. Connect all pairs of smaller edges that are best buddies, provided that the
connection is present in at least one of the parents. Each of the connections
will be rejected with probability of p.

4. Try connecting all remaining larger edges with their most compatible pairs
in random order. Each of the connections will be rejected with probability
of p.

5. Try connecting all remaining smaller edges with their most compatible pairs
in random order. Each of the connections will be rejected with probability
of p.

6. Make random connections until a total of n - 1 connections is made.

Our second idea was to use 2 different mutation values for the larger and
smaller edges. We changed the mutation probability values so that with a higher
probability, the connection of the smaller edges would not be used. The crossover
then looks as follows:

1. Connect all edges (i, a) and (j, b) for which the condition M1[i, a] = (j, b) =
M2[i, a] is fulfilled. Each of the connections will be rejected with probability
of p.

2. Connect all pairs of edges that are best buddies, provided that the connec-
tion is present in at least one of the parents. Each of the connections will
be rejected with probability of p.

3. Try connecting all remaining edges with their most compatible pairs in
random order. If the edge is the larger one, the connection will not be
made with a probability of p. Otherwise, the connection will not be made
with a probability of 5p.

4. Make random connections until a total of n - 1 connections is made.

Experiments performed on available datasets showed that the first version of
the crossover, which favors large edges, does handle puzzles with very narrow
pieces better. However, this solution is not perfect either and has problems with
some of the pictures. We will describe the detailed results of the experiments in
the next chapter.
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3.1.3 Fitness calculation
The next change we made to the calculation of the fitness value, more specifically,
we changed the dissimilarity value for edges without a neighbor. Recall that
in the algorithm for square pieces the authors proposed a value equal to the
average value of the dissimilarities between all edges multiplied by 2. Suppose
we use the similar technique, and use the same value for all edges of all lengths.
Then we will encounter a situation where individuals with mostly small edges
connected will have a lower fitness value than individuals with more large edges
connected. This is because of the edge dissimilarity calculation we have chosen,
which summarizes the differences between pixels. The fewer pixels we compare,
the less edge dissimilarity there will be on average. Whereas, on the contrary, we
prefer solutions in which edges of both lengths are equally connected. It follows
that a small edge without a neighbor should not add the same value to the fitness
as a large edge without a neighbor. We propose 2 solutions to this problem. The
first solution is to try to minimize not only the dissimilarities between the edges,
but also the area that the solution occupies. To do this, we propose to add the
following value to the fitness function:

(Xmax −Xmin)× (Ymax − Ymin)
n

where Xmax and Xmin are the maximum and minimum x values in the coordinates
of the cluster that corresponds to the individual, Ymax and Ymin are the maximum
and minimum y values in the coordinates of the cluster and n is the number of
images. We have tested different combinations of the dissimilarities between the
edges and this value, and found that the best results were achieved using the
following fitness function:

(Xmax −Xmin)× (Ymax − Ymin)×∑︁n
i=1

∑︁4
j=1 D(pi,j, M [i, j])

n
.

Using this fitness function we have successfully solved most of the puzzles as in
Figure 3.2, but for solving puzzles as in Figure 3.1, the original fitness function
without adding the area has been more successful.

Our next idea was to calculate the value for edges without a neighbor sepa-
rately for short and long edges. That is, when calculating fitness, if a long edge
has no neighbor, we add to the fitness value the average dissimilarity value be-
tween all long edges multiplied by 2. Similarly, if a short edge has no neighbor,
we add to the fitness value the average dissimilarity value between all short edges
multiplied by 2. This change improved results for all kinds of rectangular pieces,
and we decided to leave it in the algorithm.

Any puzzles with rectangular pieces that fulfill the condition that an edge of
their pieces can have only one neighbor of the same length can be solved using our
solution. We have also used our solver for puzzles divided like a brick wall. That
is the way some shredder machines cut documents. An example of such a puzzle
is shown in Figure 3.3. We divided its large pieces into two equal rectangular
parts and successfully solved it with our proposed algorithm.
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Figure 3.3: Division of brick wall puzzles into rectangles

3.2 Triangle-piece solver

3.2.1 Problem definition
The next shape of pieces for which we have proposed a solution is a right triangle.
Examples of such puzzles are shown in Figure 3.4. As in the case of rectangular
pieces, we set the condition that only edges of the same length can be connected.
A further condition is that a diagonal edge can be only connected with another
diagonal edge, and these edges must be parallel to each other. To propose a
solution for a given shape of pieces, we had to solve the following two problems:

1. How should the differences between the two diagonal edges be calculated?

2. What coordinates will the pieces have inside the cluster, given that the
pieces can be neighbors but, at the same time, be connected not by an edge
but by a vertex?

Figure 3.4: Right triangle-piece puzzles

3.2.2 Dissimilarity between the diagonal edges
The triangular pieces our algorithm receives as input are actually rectangles in
which half of the pixels are transparent. To calculate the difference between
the diagonal edges in such a case, we mapped these diagonal edges to the 2
transparent sides of the rectangle, as shown in Figure 3.5. The resulting edges in
this case have the same length as the other non-diagonal edges of the triangle. We
propose to calculate the dissimilarity between two diagonal edges as the difference
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between these mapped edges as follows:

D(xi,a, xj,b) =
√︂

dvertical + dhorizontal,

where

dvertical =
H∑︂

h=1

3∑︂
c=1

(xi,H(h, c)− xj,H(h, c))2

and

dhorizontal =
W∑︂

w=1

3∑︂
c=1

(xi,W (w, c)− xj,W (w, c))2

where xi,a corresponds to the right diagonal edge of the piece i, xj,b corresponds
to the left diagonal edge of the piece j, H is the height of the piece in pixels, W
is the width of the piece in pixels, xi,H is the right diagonal edge of the piece i
mapped to the right side, xj,H is the left diagonal edge of the piece j mapped to
the left side, xi,W is the right diagonal edge of the piece i mapped to the top side
and xj,W is the left diagonal edge of the piece j mapped to the bottom side, h
and w are indices of pixels on the edges and c corresponds to a color channel.

Figure 3.5: Mapping of a diagonal edge to both sides

We have also tested a solution where only one mapped edge, the larger of the
two, has been used to calculate the dissimilarity between the edges. However,
comparing edges from two sides at once, we got better results. We explain this
by the fact that when two diagonal edges are adjacent, some pixels have two
neighbors at once, and knowing them, it would be reasonable to calculate the
differences with both of them.

When calculating the dissimilarity between diagonal edges, we also encoun-
tered the following problem. As we mentioned above, our algorithm receives
rectangular pictures where half of the pixels are transparent as input. To sup-
port transparency the pictures are saved in RGBA color format, and since we
work in the algorithm with pictures in L*a*b* format, we convert them from the
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(a) (b)

Figure 3.6: The process of splitting a rectangular piece into 2 triangular pieces
(a). Transparent pixels when converted from RGBA format to L*a*b* format
become black (b).

Figure 3.7: After mapping the diagonal edges of both pieces to the left and right
sides, there are also black pixels in them, which do not carry any information. So
they are cut off at both edges and only the parts of the edges that are highlighted
in red are compared.

RGBA format to the L*a*b* format. However, during the conversion process the
transparent pixels become black, which creates the problem shown in Figure 3.6.
Here we see that when splitting a rectangle in half diagonally, the pixels in the
corners of some pieces will be transparent and after conversion they will become
black. Thus, the edge which we map to the sides of the rectangle may have black
pixels at the corners, which we should not include in the calculation. If such a
situation occurs, we cut off unnecessary pixels at the borders of both edges and
compare these shortened edges, as shown in the Figure 3.7. If this is not done,
images, especially very light ones, will not be reconstructed correctly, due to in-
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correctly guessed the most compatible neighbors. In general, this problem, if left
unsolved, degrades the results of the algorithm by about 30%.

3.2.3 Fitness calculation
It is easy to see that the value of the dissimilarity between diagonal edges will
in many cases be higher than the same value for the straight edges, since we are
summing up the dissimilarities from both sides at once. In order to prevent our
algorithm from starting to prefer solutions in which diagonal edges remain without
neighbors due to their large contribution to fitness, we used the same technique
as in the case of rectangular pieces. We calculated separately the average value of
the difference between all diagonal, vertical, and horizontal edges and took these
values multiplied by 2 as the difference value for the edges without a neighbor
of the corresponding type. In this case, we expect the algorithm to connect all
types of edges equally.

We have also decided to test other techniques used in our solution for rect-
angular pieces. For example, we compared 2 versions of the fitness function, the
original one and the one augmented with the area taken by the solution. In the
second case, the algorithm produced worse solutions because the shape of the
rectangle in the solution became more important than the correct connection of
the edges.

3.2.4 Crossover variants
Since the dissimilarity values for diagonal edges as well as for long-length edges
are more reliable, we tested the same approach in the crossover as in the solu-
tion for rectangular pieces. In the second and third phases of the crossover, we
first connected the diagonal edges and the longer-length edges, and only then the
shorter-length edges. By doing this we wanted to prioritize more reliable con-
nections, but this idea was not successful, and we left the original version of the
crossover in the solution.

We have also tested a crossover variant, where we gave priority to the edges
with the largest difference in dissimilarities between the best neighbor and the
second-best neighbor. We assume that the larger the difference, the more likely it
is that the best neighbor really is one. The reverse situation, when the difference
between the first and the second-best neighbor is small, on the contrary, tells us
that the best neighbor may have been chosen incorrectly. To use this trick, we
saved the difference between the first and second best neighbors for each edge and
sorted them from the largest difference to the smallest. Then in the crossover
phases, where we join best buddies or just edges with their best neighbor, we
tried to join them in this sorted order. However, this approach also failed and
even worsened the results, probably because the individuals became less diverse.

3.2.5 Implementation details
We would also like to mention some details of our implementation that we have
found to be important. The first thing we needed to change in our algorithm
was the representation of the position of the pieces in the cluster. Recall that
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a cluster is a set of pieces that are connected together, with their coordinates
within this cluster. We find most successful a representation of a cluster, where
the position of each piece is determined by the coordinates of the rectangle it is
located in, and the side of the rectangle it occupies (left or right). Also note that
some triangles are faced up with an edge and others with a vertex. An example
of such a cluster is shown in the Figure 3.8.

[0, 0, left] [1, 0, left]

[0, 0, right]

[1, 1, left]

[0, 1, right]

Figure 3.8: An example of a cluster of triangular pieces with their coordinates.

Our next change is made in the last phase of the crossover, where random
connections of edges are made until a total of n - 1 connections is made. This
is done to ensure that all pieces in the solution are in the same cluster, which
also means that all pieces have at least one neighbor. However, we encountered
a situation where with a large number of pieces, the last connections of large
clusters to each other greatly slow down the whole algorithm. This is because 2
randomly chosen unoccupied edges often cannot be connected to each other. One
solution would be to keep and update the edges on the borders of the clusters,
since they have the highest probability of being connected. However, we propose
a simpler solution, where we allow individuals to be incomplete, so that we set a
limit of attempts to connect random pairs of edges. Once this limit is exceeded,
we finish the crossover. This technique did not make the results of our algorithm
worse, since the fitness of incomplete individuals is higher than that of completed
individuals in most cases. Another advantage of this solution is the guarantee
that the crossover will always end successfully, because in some rare cases we
may not be able to join 2 clusters at all. This will happen when all edges on the
borders of one cluster are diagonal and all edges on the borders of the another
are straight.

Using our proposed solution, puzzles of more complex shapes can also be
solved, provided that their pieces can be divided into right triangles. For example,
these can be pentagons and hexagons with edges of equal length, as well as
isosceles triangles. We have included an example of such a solution for isosceles
triangles in our work.
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Figure 3.9: Puzzle with random rect-
angular pieces that is easier to solve

Figure 3.10: Puzzle with random
rectangular pieces that is harder to
solve

3.3 Random rectangle-piece solver

3.3.1 Problem definition
Our two previous solutions rely on the restriction that the edges of the pieces can
only have one neighbor and are connected to each other by a whole edge. A much
more interesting task would be to reassemble pictures from pieces without such
constraints. Therefore, we propose a solution for a new type of puzzle, which as
far as we know has not been solved by anyone yet. Suppose we have a rectangular
picture. We will choose a random edge out of four and a random point on it.
From that point, we draw a line connecting the edge to the opposite edge and
dividing the rectangle into two smaller rectangles. Then we perform the same
operation recursively on these two rectangles. To summarize the above, in order
to divide a rectangular picture into n pieces, where n is a number which is a
power of two, we use the following function:

1: function divide image into rectangles(image, n)
2: if n == 1 then
3: return [image]
4: end if
5: result← []
6: rectangle1, rectangle2 ← make a split at random point
7: pieces1 ← DIVIDE IMAGE INTO RECTANGLES(rectangle1, n/2)
8: pieces2 ← DIVIDE IMAGE INTO RECTANGLES(rectangle2, n/2)
9: extend result with pieces1 and pieces2

10: return result
11: end function

Examples of such puzzles are shown in Figures 3.9 and 3.10. Note that an
edge in this type of puzzle can now have several neighbors, and the pieces can be
of any size. Furthermore, we assume that we do not know the correct orientation
of the pieces and the dimensions of the original picture. Our task is to reassemble
the picture from the given pieces.

As in our previous solutions, we will keep the group of connected pieces to-
gether with their coordinates as a cluster. It is easy to see that puzzles with the
proposed type of pieces can be reassembled iteratively if we connect not edges of
individual pieces, but edges of entire clusters, provided that these edges have the
same length and are the most similar to each other. To do this, at the beginning
of the algorithm, each piece will be in its own cluster, and these clusters will be
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connected sequentially until all of them are connected. In this case, the correct
connection sequence would be the sequence in reversed order of how the picture
was divided into pieces. However, this solution is not perfect and will not be
able to handle a situation where some of the pieces are missing, for example. In
this case, one of the cluster edges may not be complete and therefore cannot be
connected to its neighbor from another cluster. We propose a more universal so-
lution to such puzzles, which can also handle puzzles in which some of the pieces
are missing.

We propose to take the same solver for puzzles with square pieces, based on
the genetic algorithm as the basis. However, in this case, we should make a few
changes to it. First of all, we have to relax the condition that only edges of the
same length can be connected. We propose to connect edges of any length with
each other instead, but provided that at least one of the two vertices of an edge
coincides with a vertex of another edge. This situation is illustrated in the Figure
3.11. Connecting the edges in this way, we can reconstruct the picture even if
some of the pieces are missing. Note, however, that in some cases there may be so
many missing pieces that the correct solution would be several clusters that are
not connected to each other, which further complicates the problem. Since we do
not know in advance whether the pieces of the original puzzle are missing or not,
it seems right to try to connect as many pieces as possible together. Therefore,
our solution always produces a result where all the pieces are in the same cluster.

Figure 3.11: Connection of rectangles. The vertex of the first rectangle coincides
with the vertex of the second one

3.3.2 Representation of individuals
Since we relaxed the conditions for connecting edges, the number of potential
places where edges can be connected has also changed. Note that now any two
edges can connect in two ways at one of the two vertices. So in our solution
we propose to work not with edges, but with the places near the vertices on the
edges. Each edge has 2 such places, which means that we can connect a piece
to another piece in 8 places. Based on this, we have changed the size of the
individual from n× 4 to n× 8 to save a neighbor for each of the 8 places.
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3.3.3 Dissimilarity between the edges
In order to use a genetic algorithm based solution, we should also determine how
dissimilarities between edges connected in one of the two places will be calculated.
Here we have two problems. The first is the different lengths of the edges we are
comparing. The second is the tendency of the algorithm to consider shorter
edges as the most similar because they do not carry much information and may
be similar to many parts of other edges. Further complicating things for us is the
fact that not all edges should, in fact, be connected by contiguous vertices. Some
of them will be connected in random places as a consequence of connecting their
neighbors to each other.

In general, we would like the function measuring dissimilarity of edges to
have the following properties. First, when comparing edges of the same length,
we would like them to be marked as more similar to each other, regardless of
their length, since they are likely to be correct neighbors. However, the function
should not be based only on the common length of the edges, since not all edges
of the same length will be actually the best neighbors. Second, when comparing
edges of different lengths, we should base it more on the part where they touch
and less on the difference in their lengths. In our work, we have tested several
variants of this function.

In the first case, we compared only the total contiguous part of the edges and
calculated the dissimilarity using the same formula that we used for rectangular
pieces:

D(xi,a, xj,b, top) =

⌜⃓⃓⎷ K∑︂
k=1

3∑︂
c=1

(xi(k, W, c)− xj(k, 1, c))2

where xi,a corresponds to the right edge of the piece i, xj,b corresponds to the left
edge of the piece j, top means that the edges are connected near the top vertex,
W is the width of the piece i, k is the index of the pixel in the edge, c corresponds
to a color channel and

K = min(length(xi,a), length(xj,b)).

This measurement option, however, proved to be unsuccessful because of the
small-sized edges, which the long edges considered to be the most similar. In this
case, even the edges of the same size, which should be connected in the solution
by a whole edge, were not identified as most similar to each other. Their place
was taken by all the same edges of small size.

An obvious solution for comparing edges with large size differences might seem
to be to calculate the average value of the differences between pixels instead of
the sum of the differences. That is, as follows:

D(xi,a, xj,b, top) =
∑︁K

k=1
∑︁3

c=1(xi(k, W, c)− xj(k, 1, c))2

K

where xi,a corresponds to the right edge of the piece i, xj,b corresponds to the left
edge of the piece j, top means that the edges are connected near the top vertex,
W is the width of the piece i, k is the index of the pixel in the edge, c corresponds
to a color channel, and

K = min(length(xi,a), length(xj,b)).
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We have tested this method, but it has been even less successful than the pre-
vious one. That is why we returned to the variant with sum of differences, but
supplemented it with penalization of great difference of lengths of edges. As a
result, the function looked as follows:

D(xi,a, xj,b, top) =

⌜⃓⃓⎷(︄ K∑︂
k=1

3∑︂
c=1

(xi(k, W, c)− xj(k, 1, c))2

)︄
+ (L−K) ∗ 2 ∗Dmean

where xi,a corresponds to the right edge of the piece i, xj,b corresponds to the left
edge of the piece j, top means that the edges are connected near the top vertex,
W is the width of the piece i,

K = min(length(xi,a), length(xj,b)),
L = max(length(xi,a), length(xj,b))

and

Dmean =
∑︁K

k=1
∑︁3

c=1(xi(k, W, c)− xj(k, 1, c))2

K
.

This approach, though not ideal, does not give such an advantage to edges of
small length. The proposed function is also effective when comparing edges of
the same length. We have chosen the value 2 ∗ Dmean, with which we have
complemented the difference for pixels without neighbor, based on experiments
on different pictures. This function gave us the best results, so we have chosen it
as the main one in our algorithm.

3.3.4 Crossover
The next change we propose to make to the crossover. Recall that one of its parts
is the connection of edges which we call best buddies, which means that the edges
consider each other as best neighbors. In this solution, we propose to distinguish
between two types of best buddies. The first of them will include pairs of edges
that are most similar to each other and have the same length. The second type
would include pairs of edges that are most similar to each other and may have
different lengths. In the crossover we propose to connect pairs of edges of the first
type in the beginning, and only then the pairs of the other type, so that we do
not lose connections that are very likely to be correct. We compared this variant
of the crossover with the unchanged variant, and it gave us slightly better results,
so we decided to use it as the main one in our solution.

3.3.5 Fitness calculation
The next important part of the algorithm is the calculation of the fitness values
of individuals. As in the previous solutions, we propose to calculate it as the
sum of the dissimilarity of each edge with its neighbor. To do this, however, we
must decide what dissimilarity value should be used for edges without a neighbor.
Recall that this value should gently encourage the solution to be in rectangular
form, but it cannot be too large because then the rectangular form takes prece-
dence over the correct connections. We have already noted in the previous two
solutions for rectangular and triangular pieces that using the same value for all
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edge lengths is not efficient. In these solutions, we calculated this value separately
for all edge lengths as the average dissimilarity value multiplied by 2, but in the
case of recursively divided rectangles, this method does not seem appropriate. To
complicate things further, we need to know this value not only for whole edges,
but also for individual pixels. This is needed to evaluate the quality of the so-
lution when some parts of the edges are adjacent to other pieces and some are
unoccupied, as shown in the Figure 3.12, for example. Therefore, it seemed more
appropriate to calculate the dissimilarity not between the edges, but between the
pairs of pixels on the borders of the pieces.

Figure 3.12: The bottom edge of the red rectangle has 3 neighbors (the edges
of the blue yellow and green rectangles), but its thick part is not connected to
anything.

We have compared two ways of calculating the dissimilarity between pieces.
In the first one, we calculated the average value of the difference between all pixels
of all pairs of edges and multiplied it by 2. We used this value as the dissimilarity
value for pixels without a neighbor. Then for each edge in the solution, we took
all its neighboring pixels and summed the differences between all pairs of pixels.
The sum of all these values for all edges in the solution was the value of its fitness.
This method, however, was not successful because the best individuals were then
very stretched out to the sides. This led us to the idea that, unlike previous
solutions for rectangular and triangular pieces, in this case we needed to push
the solution harder to the rectangular shape. To achieve this, we have decided to
calculate the fitness differently.

In the second case, having a solution, we have depicted it on a white or black
background, depending on the average lightness of the colors of the pixels on the
borders of the pieces. If the pixels had on average a lighter color, we depicted
the individual on a black background and vice versa. This gave us more contrast
between the borders of the pieces and the background. Then, having this image of
an individual, we could easily calculate the fitness value for any edge. If we take
all its neighboring pixels from this image, then we obtain as a result its ”neighbor
edge”, with which we can compare it by the same formula as for rectangular
pieces. Note that in this case we do not need to check separately which pieces are
adjacent to each other and how, so the calculation is greatly simplified. Because
the dissimilarities between pixels and white or black color were large, the best
solutions began to acquire a more rectangular shape. This greatly improved our
results.
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We also decided to use the method we had previously used for solving puzzles
with narrow rectangular pieces, and combined this value of the dissimilarities
between edges with the relative area occupied by the individual by using the
following formula:

(Xmax −Xmin)× (Ymax − Ymin)
total area

∗ 0.9 +
⎛⎝ n∑︂

i=1

4∑︂
j=1

D(pi,j, M [i, j])
⎞⎠ ∗ 0.1

where Xmax and Xmin are the maximum and minimum x values in the coordinates
of the cluster that corresponds to the individual, Ymax and Ymin are the maximum
and minimum y values in the coordinates of the cluster, M is a matrix that
represents an individual, n is the number of images and

total area =
n∑︂

i=1
piecei area.

This approach has given us better results in some cases than fitness based only
on the dissimilarities between edges, but not always. We will make a detailed
comparison in the next chapter.

3.3.6 Second mutation
While testing our solution, we encountered another problem. When we connect
edges that are adjacent only at one vertex and these edges have almost the same
length, we can connect edges near the wrong vertex mistakenly. This happens
because the neighboring edge pixels are very similar in both cases, and it is not
always clear which connection is correct. When we looked through the solutions
proposed by our algorithm, this was one of its frequent mistakes. To solve it, we
propose to use a second mutation inside the crossover, which, when connecting
two edges at a vertex, with some probability will connect them at the other
vertex. This situation is shown in Figure 3.13. In our solution, we have chosen
the probability of not using an edge connection equal to 0.05, and the probability
of using another vertex when connecting the edges equal to 0.001. The final
version of the crossover then looks as follows:

1. Given two parents M1 and M2, connect all edges (i, a) and (j, b) for which
the condition M1[i, a] = (j, b) = M2[i, a] is fulfilled. With probability 0.05
the connection will not be made, and with probability 0.001 it will be made,
but another pair of vertices will be joined.

2. Try to connect all best buddies with the same length in random order,
provided that the connection is present in at least one of the parents. With
probability 0.05 the connection will not be made.

3. Try to connect all best buddies with different length in random order, pro-
vided that the connection is present in at least one of the parents. With
probability 0.05 the connection will not be made, and with probability 0.001
it will be made, but another pair of vertices will be joined.

4. Try to connect the edges with their most compatible pairs in random order.
With probability 0.05 the connection will not be made, and with probability
0.001 it will be made, but another pair of vertices will be joined.
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5. Make random connections until a total of n - 1 connections is made.

Figure 3.13: An example of the proposed second mutation. The bottom edge of
the blue rectangle should be connected with the top edge of the red rectangle by
touching the left vertex. After the mutation, the edges are connected by touching
the right vertex.

3.3.7 Implementation details
In this section, we would also like to describe our implementation of a cluster with
random rectangular pieces. Recall that in our previous solutions, the pieces were
of the same size. Therefore, it was sufficient for us to represent them as objects
of size 1 x 1 to check for potential overlap. In the case of rectangles of different
sizes, we have to remember their real sizes and the coordinates of their vertices
in the cluster. Note that all pieces, as well as any of their allowed connections,
are polygons. Having 2 clusters represented as polygons, when connecting them
we only need to merge the corresponding polygons. If we want to check whether
two clusters intersect or not, we perform an operation similar to what we did for
square pieces. First, we determine the coordinates of the connection point in the
larger cluster. Then we rotate the smaller cluster, if necessary, and move it so
that its coordinates at the connection point are correct. Next we need to calculate
the intersection area of the two polygons and if it is greater than 0, this means
that some of the pieces intersect and the connection cannot be made. We have
used one of the available Python libraries for working with geometric objects1

to perform the operation of merging and to calculate the area of intersection of
polygons.

1https://shapely.readthedocs.io/en/stable/index.html
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4. Experiments
In this chapter, we describe the results of our experiments on several datasets.
First, we have tested our solutions on a dataset with color photographs, which
has also been used in other works. Then we converted them to black and white
images and tested our solutions on them. The third group of experiments we
have performed on our dataset with printed texts.

We would like to emphasize that the types of puzzles for which we have pro-
posed solutions have not yet been solved by anyone. Therefore, in this chapter we
compare our results with the results of the solutions for the square pieces since
this type of puzzles is the most similar to all our puzzles. In all cases where we
had the opportunity, we divided the images into approximately the same number
of pieces as the other authors, so that the comparison is more representative.

As a measure of the accuracy of our solutions, we, like the other authors, have
used a measure proposed by Cho et al. in their work (Cho et al., 2010). They
call it the neighbor comparison metric, in which the correctness of the solution is
evaluated as the percentage of correctly guessed connections between edges. In
our case, the solution is represented as a matrix of size n × 4. We compare the
elements of this matrix and the matrix of the correct solution, and the score of the
success of this solution will be the number of identical elements in the matrices
divided by the number of all elements.

4.1 Pomeranz et al. dataset with photos

4.1.1 Color images
In this section, we describe experiments performed on the dataset from the work
of Pomeranz et al. with color photographs of 3 sizes (Pomeranz et al., 2011). The
first group consists of 20 images of size 644× 980. The second group contains 3
images with the size of 1120× 1652. In the third group there are also 3 images,
but with a size of 1400 × 1848. All images are mostly nature photos, where
there are few objects and large areas are occupied by a single color. This makes
such images hard to reconstruct, because the best neighbors for the edges can be
guessed inaccurately. In general, we as well as other authors have noticed that
the content of the image greatly affects the success of the solution.

# pieces Pomeranz et al. Zhao et al. Sholomon et al.
805 89.70% 96.07% 96.26%
2360 84.67% 96.52% 88.86%
3300 85.00% 93.39% 92.76%

Table 4.1: Solvers for puzzles with square pieces.

The authors of the proposed solutions for square pieces have tested them on
pieces of size 28× 28. To adequately compare our solutions with their solutions,
we tried to divide the images into pieces so that their area was approximately
the same. To begin with, we divided all the images from these three groups
into rectangular and triangular pieces. As a result, the rectangular pieces had
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# pieces average of 3 runs best of 3 runs
784 96.75% 96.99%
3135 87.19% 87.72%
4703 88.42% 88.88%

Table 4.2: Our solver for puzzles with rectangular pieces.

# pieces same, average same, best random, average random, best
920 95.32% 95.46% 95.26% 95.44%
2240 96.62% 96.72% 96.69% 96.86%
3360 96.89% 96.93% 97.29% 97.38%

Table 4.3: Our solver for puzzles with triangular pieces.

dimensions of 23× 35 in the first group, 10× 59 in the second group, and 25× 22
in the third group. The straight edges of the triangular pieces had dimensions of
28× 49 in the first group, 28× 59 in the second group, and 35× 44 in the third
group. We have also considered 2 cases of right triangle pieces. In the first one,
all the triangles are identical, which means that the rectangles from which they
are formed have been equally separated by a diagonal line. In the second case,
the rectangles have been divided at random by one of the two possible diagonal
lines. Next, we have compared our solutions with the best solutions proposed
for the square pieces, which are shown in Table 4.1 and taken from the works
of the authors (Pomeranz et al., 2011, Zhao et al., 2020, Dror Sholomon and
Netanyahu, 2014). We do not specify the results of our solution for square pieces
separately, since it is only an exact realization of the work of Sholomon et al., and
we assume that ours and their results do not differ. Our results for rectangular
and triangular pieces are shown in Tables 4.2 and 4.3. Note that the solutions
proposed by Pomeranz et al. and Zhao et al. use knowledge of image dimensions
in their solutions. Our solutions, on the other hand, are more universal. In
general, as expected, our proposed solutions are not worse than the others, since
the reconstruction of images from rectangular and triangular pieces is easier than
from square pieces. However, we also do not see a significant improvement in
the results, since some of the images with any shape of pieces remain hard to
reconstruct. We ran our algorithms 3 times on each image. Tables 4.2 and 4.3
show the average and the best results among all images.

Let us consider the results for each picture from the first group separately in
Tables 4.4 and 4.5. Here we see that although the average results for rectangular
pieces (96.99%) are slightly better than for triangular pieces (95.46% and 95.44%),
the number of perfectly solved images is higher in the case of triangular pieces
(7 and 9 versus 4). However, we see that the solution for the triangular pieces
is less stable and shows, for example, much worse results for pictures 6 and 12.
These pictures are shown in Figures 4.1a and 4.1b, and the solutions proposed by
our algorithm for the triangular pieces in Figures 4.2a and 4.2b. We see that on
both images there is a dark-colored green tree, which creates a big problem for
our solution. We also notice that the solution in Figure 4.2a has mostly correctly
connected diagonal edges and has problems with straight edges. However, the
solution in Figure 4.2b has incorrectly connected edges of both types equally and
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image NCM, average NCM, best
1 97.83% 97.85%
2 92.24% 92.55%
3 98.36% 99.87%
4 99.84% 100.0%
5 97.60% 97.65%
6 99.59% 99.59%
7 98.64% 98.82%
8 95.43% 95.43%
9 99.48% 99.56%
10 98.52% 98.54%
11 93.49% 93.91%
12 78.06% 78.62%
13 99.33% 99.33%
14 99.61% 100.0%
15 100.0% 100.0%
16 99.23% 99.23%
17 98.82% 99.59%
18 89.61% 89.79%
19 100.0% 100.0%
20 99.36% 99.46%

Table 4.4: Detailed results for the first group of images, rectangular pieces.

Same triangles
image NCM, average NCM, best

1 94.51% 94.70%
2 89.07% 89.89%
3 99.78% 99.78%
4 99.83% 100.0%
5 99.81% 99.81%
6 74.51% 74.56%
7 100.0% 100.0%
8 100.0% 100.0%
9 98.66% 98.75%
10 99.78% 99.78%
11 97.43% 98.07%
12 63.23% 63.58%
13 100.0% 100.0%
14 100.0% 100.0%
15 100.0% 100.0%
16 98.99% 99.13%
17 99.64% 99.64%
18 91.90% 91.98%
19 100.0% 100.0%
20 99.45% 99.59%

Random triangles
image NCM, average NCM, best

1 96.08% 96.16%
2 92.12% 93.25%
3 99.75% 99.75%
4 100.0% 100.0%
5 98.69% 99.29%
6 69.56% 69.79%
7 100.0% 100.0%
8 99.89% 100.0%
9 99.37% 99.37%
10 99.78% 99.78%
11 98.01% 98.65%
12 61.79% 62.17%
13 100.0% 100.0%
14 100.0% 100.0%
15 100.0% 100.0%
16 99.02% 99.10%
17 100.0% 100.0%
18 91.52% 91.54%
19 100.0% 100.0%
20 99.78% 100.0%

Table 4.5: Detailed results for the first group of images, same and random trian-
gular pieces.

33



(a) The sixth image from the first
group.

(b) The twelfth image from the first
group.

Figure 4.1: Images from the first group which are difficult to reconstruct.

(a) A solution proposed to the sixth image from the first group. NCM = 74.56%

(b) A solution proposed to the twelfth image from the first group. NCM = 63.58%

Figure 4.2: The solutions proposed to the images 6 and 12 from the first group.
Pieces have a shape of triangle.
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Figure 4.3: The dependence of the success rate of solution for rectangular pieces
on the percentage of initially correct guesses of the most similar edges.

has the worst success rate of all of them.
Recall that before we start all our solutions for each edge, we find its most

similar neighbor. The assumptions thus obtained are used within the crossover
and affect how successful the resulting solution will be. The large difference in
results for triangular pieces motivated us to analyze how well the best neighbors
are guessed for each image and how the number of correctly guessed neighbors
affects the success of the whole solution in the output of the algorithm. We
calculated the average percentage of correctly guessed neighbors for all edges
except the edges on the borders of the image. The results for the rectangular and
triangular pieces are shown in Table 4.6, and in Figures 4.3 and 4.4. Here we see
that for solutions of puzzles made of rectangular pieces with success rate of 95%
or higher, it is necessary to correctly guess at least 70% of the correct neighbors.
In the case of puzzles consisting of triangular pieces, to solve them with the same
success rate it is necessary to guess about 85% of correct neighbors correctly,
which makes this type of puzzles more dependent on the similarity measure of
edges. Table 4.6 also shows that in the case of triangular pieces, it is worth relying
more on the guessed neighbors for diagonal edges, since in all cases more correct
neighbors have been guessed for them than for the straight edges.

The next type of pieces we have considered are narrow rectangles, where the
sides are very different in length. This case requires a different approach, and the
same algorithm does not work for it as for the previous type of rectangular pieces.
This is where the second type of crossover described in the previous chapter, in
which the longer edges have priority when connected, comes in handy. Next, we
have used the second version of the fitness function, augmented by the relative
area occupied by the individual, also described in the previous chapter. We
divided the images from the first group into pieces of size 644× 10 and 322× 10,
images from the second group into pieces of size 10 × 1652 and 10 × 826, and
images from the third group into pieces of size 1400×12 and 700×12. The results
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Figure 4.4: The dependence of the success rate of solution for triangular pieces
on the percentage of initially correct guesses of the most similar edges.

Percentage of guessed most compatible neighbours
rectangle triangle

image straight diagonal straight both
1 77.71% 96.85% 79.87% 85.71%
2 71.66% 89.13% 58.84% 69.26%
3 85.15% 98.91% 84.66% 89.56%
4 84.42% 99.78% 81.24% 87.62%
5 75.06% 97.06% 80.62% 86.28%
6 79.13% 88.54% 38.19% 55.58%
7 85.48% 99.13% 88.71% 92.29%
8 70.07% 97.93% 76.51% 83.88%
9 81.28% 95.86% 83.35% 87.65%
10 78.54% 97.82% 83.41% 88.36%
11 73.01% 93.69% 81.36% 85.60%
12 61.93% 70.76% 29.99% 44.28%
13 79.76% 98.26% 84.72% 89.37%
14 87.20% 99.67% 91.91% 94.57%
15 81.94% 99.89% 85.40% 90.38%
16 82.17% 95.65% 81.64% 86.46%
17 73.21% 95.86% 77.88% 84.07%
18 70.73% 87.71% 76.91% 80.63%
19 79.66% 98.36% 83.92% 88.89%
20 83.43% 98.58% 88.65% 92.07%

average 78.08% 94.97% 76.89% 83.13%

Table 4.6: Percentage of guessed most compatible neighbors for straight and
diagonal edges.
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image 644× 10 322× 10
1 100.0% 100.0%
2 99.39% 100.0%
3 99.39% 100.0%
4 82.04% 92.65%
5 100.0% 100.0%
6 99.39% 97.96%
7 100.0% 100.0%
8 100.0% 100.0%
9 100.0% 100.0%
10 100.0% 100.0%
11 100.0% 100.0%
12 100.0% 100.0%
13 100.0% 100.0%
14 100.0% 100.0%
15 100.0% 100.0%
16 100.0% 100.0%
17 99.39% 100.0%
18 100.0% 100.0%
19 100.0% 100.0%
20 82.45% 100.0%

average 98.10% 99.53%

Table 4.7: Results for images from the first group divided into narrow rectangles.

image 10× 1652 10× 826 1400× 12 700× 12
1 100.0% 100.0% 100.0% 100.0%
2 81.25% 98.21% 83.1% 94.55%
3 100.0% 100.0% 100.0% 100.0%

average 93.8% 99.40% 94.4% 98.18%

Table 4.8: Results for images from the second and third groups divided into
narrow rectangles.
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(a) The third image from the first group.

(b) A solution proposed to the third image from the first group. The pieces have
a shape of rectangle and size 644× 10.

Figure 4.5: The solution proposed by our algorithm for the third image of the
first group. Despite the fact that it is wrong, the error made by the algorithm is
not immediately obvious even to the human eye.

of our experiments are shown in Tables 4.7 and 4.8. In this case, we ran our
algorithm only 1 time for all images, because in most cases they were completely
reconstructed almost immediately. We see that only a few images could not
be reconstructed successfully. However, if we look at the solutions proposed by
our algorithm, we see that even for the human eye the errors committed in the
solution are not so obvious. One of these solutions is shown in Figure 4.5b. We
will compare it with the correct solution shown in Figure 4.5a, and we will see that
it is practically the same, but two halves of the image are connected horizontally,
as a consequence of the connection of short edges, whereas long edges should have
been connected. However, we still consider the proposed solution to be successful.

We have performed the next part of experiments on images from all 3 groups,
divided recursively into random rectangles. Since this problem is more complex,
and because the speed of our solution is not fast, we have decided to focus our at-
tention on a smaller number of pieces. In the previous chapter, we have proposed
2 versions of the fitness function for our algorithm, where the first is based on
the difference between all the pixels on the edges, and the second is augmented
by the area occupied by the individual. We have also proposed a second kind of
mutation, where the vertex near which the edges are connected changes with a
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image fit 1, mut 0 fit 1, mut 0.001 fit 2, mut 0 fit 2, mut 0.001
1 100.0% 100.0% 100.0% 100.0%
2 96.52% 95.13% 96.35% 96.53%
3 97.91% 96.87% 97.22% 97.92%
4 97.91% 100.0% 97.56% 98.26%
5 100.0% 100.0% 100.0% 100.0%
6 100.0% 100.0% 100.0% 100.0%
7 100.0% 100.0% 100.0% 100.0%
8 100.0% 100.0% 100.0% 100.0%
9 100.0% 100.0% 100.0% 100.0%
10 100.0% 100.0% 100.0% 100.0%
11 100.0% 100.0% 100.0% 100.0%
12 88.19% 85.93% 88.19% 86.97%
13 100.0% 100.0% 100.0% 100.0%
14 100.0% 100.0% 100.0% 97.91%
15 100.0% 100.0% 100.0% 100.0%
16 100.0% 100.0% 100.0% 100.0%
17 100.0% 100.0% 100.0% 100.0%
18 97.22% 97.22% 100.0% 97.22%
19 100.0% 100.0% 100.0% 100.0%
20 100.0% 100.0% 100.0% 100.0%
21 100.0% 100.0% 100.0% 100.0%
22 100.0% 100.0% 100.0% 100.0%
23 100.0% 100.0% 100.0% 100.0%
24 100.0% 100.0% 100.0% 100.0%
25 100.0% 100.0% 100.0% 100.0%
26 100.0% 100.0% 100.0% 100.0%

99.14% 99.04% 99.20% 99.03%

Table 4.9: Results of the reconstruction of images divided into 64 random rectan-
gles. The effectiveness of the solutions with 2 different fitness functions, as well
as with and without the second mutation, is shown.
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image fit 1, mut 0 fit 1, mut 0.001 fit 2, mut 0 fit 2, mut 0.001
1 96.78% 96.09% 91.14% 96.09%
2 94.27% 94.18% 94.27% 94.09%
3 98.00% 98.00% 98.00% 98.00%
4 100.0% 100.0% 100.0% 100.0%
5 98.87% 99.04% 98.52% 98.52%
6 97.74% 97.74% 97.74% 96.44%
7 99.30% 99.30% 99.30% 99.30%
8 96.70% 100.0% 96.35% 100.0%
9 96.00% 96.00% 96.18% 96.52%
10 99.04% 99.04% 99.04% 100.0%
11 96.35% 96.18% 96.18% 96.44%
12 93.22% 92.96% 92.96% 93.05%
13 98.87% 98.87% 98.87% 98.87%
14 100.0% 100.0% 100.0% 100.0%
15 98.26% 98.26% 98.61% 96.96%
16 97.13% 95.66% 97.13% 97.13%
17 93.92% 93.57% 93.92% 94.18%
18 91.31% 90.89% 91.32% 90.71%
19 93.14% 95.05% 93.14% 92.96%
20 100.0% 100.0% 100.0% 100.0%
21 100.0% 100.0% 100.0% 100.0%
22 100.0% 100.0% 100.0% 100.0%
23 100.0% 100.0% 100.0% 100.0%
24 97.65% 99.05% 99.05% 99.04%
25 98.43% 98.09% 97.74% 98.09%
26 98.35% 98.44% 98.35% 98.43%

97.44% 97.55% 97.22% 97.49%

Table 4.10: Results of the reconstruction of images divided into 128 random
rectangles. The effectiveness of the solutions with 2 different fitness functions, as
well as with and without the second mutation, is shown.
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image fit 1, mut 0 fit 1, mut 0.001 fit 2, mut 0 fit 2, mut 0.001
1 85.15% 85.37% 85.18% 85.80%
2 81.59% 81.33% 81.68% 81.20%
3 90.21% 90.19% 90.21% 90.40%
4 89.64% 89.23% 89.60% 89.53%
5 81.99% 81.70% 82.03% 82.50%
6 82.73% 82.92% 82.57% 82.55%
7 89.91% 89.40% 89.97% 89.36%
8 82.34% 82.11% 82.34% 82.14%
9 85.72% 84.63% 84.96% 84.85%
10 81.81% 81.12% 81.44% 80.98%
11 78.39% 78.79% 78.49% 78.97%
12 75.22% 75.46% 75.82% 75.34%
13 85.81% 84.85% 85.46% 84.83%
14 90.06% 89.30% 89.90% 89.34%
15 86.91% 86.80% 87.15% 86.65%
16 88.38% 88.76% 89.21% 88.38%
17 87.41% 87.35% 87.28% 87.73%
18 81.79% 80.85% 81.68% 81.57%
19 85.62% 85.22% 85.48% 85.43%
20 91.19% 91.03% 91.51% 90.69%
21 97.80% 97.46% 97.72% 97.46%
22 92.14% 91.75% 91.94% 91.21%
23 84.38% 84.29% 85.54% 84.41%
24 96.28% 96.37% 96.33% 96.07%
25 90.86% 90.73% 90.88% 90.21%
26 94.90% 94.81% 95.03% 94.50%

86.86% 86.61% 86.90% 86.62%

Table 4.11: Results of the reconstruction of images divided into 512 random
rectangles. The effectiveness of the solutions with 2 different fitness functions, as
well as with and without the second mutation, is shown.
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small probability. However, which of all the proposed variants will be effective
is not obvious. Also recall that we assume the possible absence of some pieces,
which further complicates our task. The two fitness function options, as well
as the possibility of applying and not applying the second mutation, give us 4
different solutions. We have decided to compare and choose the best one out of
them. To do this, we have divided the images from all 3 groups into 64, 128 and
512 pieces and tested all 4 variants of the solution on them. Each of the solutions
has been run 3 times on each of the images. The results for the 64-, 128-, and
512-piece puzzles are shown in Tables 4.9, 4.10, and 4.11, respectively. The best
result for each image is in bold. From the results, however, we do not see a clear
winner, since there is little difference in the results. In some cases, for example,
the new mutation has not been successful, in others, on the contrary, it has helped
to find a better solution. The same situation is with the second fitness function.
However, we still have chosen our main solution for the following experiments on
the basis of the number of perfectly reconstructed images, as well as the average
success. It is the variant with the second fitness function and without the second
mutation.

Note that we have obtained the worst results by reconstructing images 12 and
18 from the first group. The solutions for them are depicted in the Figures 4.7
and 4.6. Note that image 12 created problems for all our proposed solutions,
and if we look closely at the solution proposed for it, we see that the problem
is created, as in the previous cases, by the pieces with the green leaves. In the
case of image 18, we see that the proposed solution is quite good, and that its
two halves are reassembled almost perfectly. However, they are not connected
together, probably because of the incorrectly guessed best neighbors for some of
the edges.

Our next step has been to check the effectiveness of our chosen solution in the
case where some of the pieces are missing. For this purpose we have conducted
experiments on all the same images with the same number of pieces, but at
the input of the algorithm we have first removed 10% of random pieces, and
then repeated the experiments, but with 20% of missing pieces. In general, in
this case, we expect some decrease in the efficiency of the solution. This is at
least because the correct solution can be several clusters of pieces that are not
connected to each other, while our solution always connects all pieces into one
cluster. The results of the experiments are shown in Tables 4.12 and 4.13. Here
we do see some decrease in the success rate of the solutions, but only by a little
bit. Moreover, in some cases, the success of the solution even increased, probably
due to the absence of problem pieces that are hard to find a pair.

Analyzing the results for all three numbers of pieces, we see that despite the
random division of images into pieces, what is depicted in the picture strongly
influences the success of the solution in all cases. This can be seen in the example
of picture 12 from the first group, which has some of the worst results in all cases,
regardless of the number of pieces and the percentage of missing pieces.

Summarizing all our results, we believe that they are quite successful and com-
parable to existing solutions for square pieces. However, it is worth noting that
the speed of our solutions is not as good as the solution proposed by Sholomon
et al. in their paper (Dror Sholomon and Netanyahu, 2014). There they note
that their solution for puzzles with 22,755 square pieces takes 3.5 hours, whereas
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Figure 4.6: The solution proposed for the 18th image divided into 128 pieces.
NCM = 91.32%.
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Figure 4.7: The solution proposed for the 12th image divided into 512 pieces.
NCM = 75.82%.
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64 pieces
image 0% 10% 20%

1 100.0% 100.0% 96.07%
2 96.35% 96.55% 91.93%
3 97.22% 94.63% 93.02%
4 97.56% 96.55% 94.99%
5 100.0% 97.70% 96.51%
6 100.0% 94.63% 95.21%
7 100.0% 99.23% 96.94%
8 100.0% 97.13% 89.54%
9 100.0% 98.27% 95.64%
10 100.0% 100.0% 99.95%
11 100.0% 100.0% 98.26%
12 88.19% 83.90% 92.16%
13 100.0% 97.31% 94.12%
14 100.0% 99.23% 94.34%
15 100.0% 100.0% 98.26%
16 100.0% 99.62% 96.08%
17 100.0% 100.0% 95.42%
18 100.0% 95.01% 94.98%
19 100.0% 98.85% 94.99%
20 100.0% 97.70% 96.95%
21 100.0% 100.0% 96.08%
22 100.0% 98.46% 97.82%
23 100.0% 100.0% 94.77%
24 100.0% 100.0% 95.86%
25 100.0% 99.61% 94.34%
26 100.0% 98.65% 96.95%

99.20% 97.81% 95.43%

128 pieces
image 0% 10% 20%

1 91.14% 93.62% 92.37%
2 94.27% 92.36% 92.91%
3 98.00% 96.81% 94.23%
4 100.0% 99.61% 95.96%
5 98.52% 94.49% 92.70%
6 97.74% 95.75% 94.00%
7 99.30% 96.42% 96.08%
8 96.35% 96.71% 94.34%
9 96.18% 93.33% 89.76%
10 99.04% 97.48% 93.57%
11 96.18% 94.00% 91.39%
12 92.96% 90.82% 84.96%
13 98.87% 94.88% 92.81%
14 100.0% 98.45% 95.42%
15 98.61% 94.49% 95.42%
16 97.13% 94.97% 89.32%
17 93.92% 94.87% 90.85%
18 91.32% 88.50% 84.31%
19 93.14% 92.27% 90.85%
20 100.0% 98.26% 96.29%
21 100.0% 99.80% 95.53%
22 100.0% 97.10% 94.66%
23 100.0% 99.03% 91.07%
24 99.05% 98.65% 95.31%
25 97.74% 96.32% 92.27%
26 98.35% 98.26% 93.68%

97.22% 95.66% 92.69%

Table 4.12: Results of the reconstruction of images divided into 64 and 128
random rectangles. The first column shows the results when all pieces are present.
The second and third columns show the results in the situation when 10 and 20
% of the pieces are missing, respectively.

45



image 0% 10% 20%
1 85.18% 85.10% 82.57%
2 81.68% 80.74% 79.83%
3 90.21% 89.66% 86.55%
4 89.60% 89.75% 86.85%
5 82.03% 80.24% 82.62%
6 82.57% 79.85% 80.24%
7 89.97% 88.65% 86.42%
8 82.34% 81.93% 81.35%
9 84.96% 83.87% 83.22%
10 81.44% 81.99% 81.62%
11 78.49% 77.94% 77.83%
12 75.82% 76.19% 74.36%
13 85.46% 85.15% 82.73%
14 89.90% 89.39% 87.34%
15 87.15% 86.81% 83.41%
16 89.21% 88.62% 86.42%
17 87.28% 84.72% 82.57%
18 81.68% 81.75% 79.78%
19 85.48% 85.66% 82.33%
20 91.51% 88.64% 88.86%
21 97.72% 96.38% 94.42%
22 91.94% 90.02% 88.11%
23 85.54% 83.13% 81.97%
24 96.33% 95.28% 93.44%
25 90.88% 88.79% 87.61%
26 95.03% 93.18% 92.33%

86.90% 85.90% 84.41%

Table 4.13: Results of the reconstruction of images divided into 512 random
rectangles. The first column shows the results when all pieces are present. The
second and third columns show the results in the situation when 10 and 20 % of
the pieces are missing, respectively.
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our solutions reconstruct images with 8 times fewer pieces on average in the same
time. We believe that our implementation is not the most efficient, and that
the solution time is also affected by the chosen programming language (Python).
However, we have noticed that the number of epochs chosen by the authors of the
algorithm equal to 100 is too large in most cases, and can be reduced. This makes
the solution faster. Moreover, we noticed that with a large number of epochs and
a number of pieces less than 1000, the algorithm finds the best solution before
the 50th epoch, and then the success of the proposed solutions sometimes even
worsens, even though the fitness value only improves. This shows that sometimes
lower fitness values do not correspond to more successful solutions. Therefore,
we propose to use 100 epochs in the algorithm only in the case of a large (more
than 1000) number of pieces, because this is the case where this value is most
successful. In experiments with fewer pieces, we have used 30 or 50 epochs, and
this has given us good results more quickly.

4.1.2 Black and white images
The authors of most of the proposed solutions for puzzles with differently shaped
pieces tested their solutions on color images. We found it interesting to study the
effect on the results of converting images from color to black and white. This type
of images should be more difficult to reconstruct, as there is no information about
the color of the pieces, and we can only rely on their lightness. We experimented
on the same dataset with three groups of images, but this time we made them
black and white. We left the number of pieces the same for a better comparison.
The results of the experiments on the puzzles with rectangular and triangular
pieces are shown in Tables 4.14, 4.15 and 4.16. We see that the success of the
experiments performed on the first group of images decreased by about 3%, which
is not critical. However, with more pieces, we see more degradation of results.
This can be seen in the results of experiments performed on the second and
third groups of images with rectangular pieces, where we see a worsening of the
results by 10% and 24% respectively. However, it is interesting that the results
for triangular pieces worsened by only a couple of percents. This may be due to
the lower number of neighborhood candidates for the edges. We also believe that
the neighborhood candidates are more accurate for diagonal edges rather than for
straight edges, so the solution for triangular pieces is not as vulnerable to missing
colors in the image.

Next, we have tested our solution for narrow rectangular pieces. The results
are shown in Tables 4.17 and 4.18. Interestingly, in this case the results did not
worsen much, and in some cases are even better, as for example in the case of
image 2 in the second group. This provides an interesting observation that in the
case of some images it may be better to rely on pixel lightness rather than color
when comparing edges.

The results of experiments performed on images divided into 512 random
rectangles also show some worsening of the results, from 7 to 9%. They are
shown in Table 4.19. It is interesting that on average the results do not change
regardless of the number of missing pieces.

Note also that, as in the case of color images, the most difficult to reconstruct
in most cases is image 12. We have looked more closely at the solutions of our
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Rectangular pieces, b&w
image average best

1 95.45% 96.63%
2 88.87% 89.74%
3 94.61% 95.43%
4 97.09% 98.51%
5 84.54% 85.61%
6 98.11% 99.59%
7 94.10% 95.10%
8 89.15% 89.43%
9 85.28% 85.76%
10 98.52% 98.52%
11 85.10% 85.25%
12 72.55% 73.03%
13 97.32% 97.34%
14 99.77% 99.77%
15 99.51% 99.51%
16 97.88% 98.06%
17 98.46% 98.67%
18 90.10% 90.20%
19 99.41% 99.59%
20 97.52% 97.52%

93.17% 93.66%

Triangular pieces, b&w
image average best

1 92.90% 93.34%
2 83.23% 83.77%
3 97.50% 97.50%
4 89.80% 90.02%
5 95.48% 95.73%
6 72.06% 72.33%
7 98.64% 98.64%
8 94.51% 94.89%
9 88.36% 88.36%
10 99.78% 99.78%
11 94.91% 95.27%
12 62.17% 62.33%
13 100.0% 100.0%
14 100.0% 100.0%
15 100.0% 100.0%
16 93.72% 93.80%
17 99.45% 99.48%
18 91.52% 91.63%
19 100.0% 100.0%
20 97.77% 97.79%

92.59% 92.73%

Table 4.14: Results of experiments performed on black and white images from
the first group.

rectangular pieces, b&w, second group rectangular pieces, b&w, third group
image average best image average best

1 91.52% 91.91% 1 71.91% 72.20%
2 72.13% 72.16% 2 52.67% 52.67%
3 66.63% 67.17% 3 68.30% 68.83%

76.76% 77.08% 64.29% 64.57%

Table 4.15: Results of experiments performed on black and white images from
the second and third groups.

triangular pieces, b&w, second group triangular pieces, b&w, third group
image average best image average best

1 99.78% 99.78% 1 99.92% 99.95%
2 88.27% 88.37% 2 78.65% 78.80%
3 90.94% 91.79% 3 95.38% 95.52%

93.00% 93.31% 91.32% 91.42%

Table 4.16: Results of experiments performed on black and white images from
the second and third groups.
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Narrow rectangular pieces, b&w
image 644× 10 322× 10

1 100.0% 100.0%
2 99.39% 100.0%
3 100.0% 83.16%
4 84.08% 92.65%
5 100.0% 100.0%
6 99.39% 93.16%
7 100.0% 100.0%
8 100.0% 100.0%
9 100.0% 100.0%
10 100.0% 100.0%
11 100.0% 100.0%
12 100.0% 100.0%
13 100.0% 100.0%
14 100.0% 100.0%
15 100.0% 100.0%
16 100.0% 100.0%
17 99.39% 100.0%
18 100.0% 100.0%
19 99.39% 100.0%
20 79.79% 100.0%

98.07% 98.45%

Table 4.17: Results of experiments performed on black and white images from
the first group. Pieces have a shape of narrow rectangle.

Narrow rectangular pieces, b&w
image 10× 1652 10× 826 1400× 12 700× 12

1 100.0% 100.0% 100.0% 100.0%
2 91.79% 84.64% 82.08% 78.96%
3 100.0% 100.0% 100.0% 100.0%

97.26% 94.88% 94.03% 92.99%

Table 4.18: Results of experiments performed on black and white images from
the second and third groups. Pieces have a shape of narrow rectangle.
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Random rectangular pieces, b&w
image 0% 10% 20%

1 76.49% 75.70% 77.37%
2 77.13% 78.21% 77.85%
3 78.10% 78.45% 78.59%
4 83.02% 81.85% 82.49%
5 70.83% 70.40% 70.13%
6 77.43% 75.07% 76.58%
7 76.49% 75.68% 77.31%
8 76.76% 78.55% 77.51%
9 76.12% 76.59% 74.90%
10 77.23% 77.41% 77.91%
11 71.94% 73.65% 74.28%
12 70.18% 72.23% 70.32%
13 79.42% 77.58% 78.42%
14 81.57% 82.57% 81.62%
15 78.10% 78.28% 78.16%
16 80.03% 80.45% 79.75%
17 78.34% 77.89% 77.83%
18 77.38% 76.30% 76.99%
19 83.96% 83.41% 81.00%
20 79.86% 79.15% 79.13%
21 95.87% 93.42% 90.65%
22 86.26% 85.32% 84.93%
23 81.27% 80.93% 79.89%
24 90.75% 91.03% 88.78%
25 81.72% 80.88% 78.88%
26 90.38% 87.87% 85.88%

79.87% 79.57% 79.12%

Table 4.19: Results of experiments performed on black and white images from
the second and third groups. Pieces have a shape of random rectangle.
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algorithms proposed for it, and we see that the greatest number of errors has
been again committed in the places where the leaves of the trees are depicted.

In general, we see that our solutions can also be used to reconstruct black and
white images, although not with such good results as in the case of color images.
Our experiments show the importance of pixel lightness when comparing edge
similarity.

4.2 Our dataset with printed text
Our last idea has been to use our proposed solutions for the reconstruction of
text documents. Usually all solutions proposed to solve this problem use letter
recognition in one way or another. Furthermore, such solutions use information
from the whole piece, not just the edges. We wondered how well text documents
can be reconstructed based only on the pixels on the edges of the pieces.

For the experiments, we have created our own dataset of 20 images with
printed text, where we have used 5 font sizes and 4 types of text alignment on
the page. The text has been taken from the work The Iliad by Homer1 and from
the play Titus Andronicus by Shakespeare2. We have tried to divide these images
into roughly the same number of pieces as in previous experiments to make the
results clear. As a result, the rectangular pieces were 117 × 46, the triangular
pieces were 117 × 92, and the narrow rectangles were 2340 × 12 and 1170 × 12.
We have performed the experiment on each image 1 time, because according to
our observations, the solutions that the algorithms produce did not practically
change. The results are shown in Table 4.20. We see that texts divided into
rectangles and triangles are reconstructed by a third on average, and if we look
at the proposed solutions, we see that they strongly depend on where the images
have been divided into pieces. For example, if the splitting occurred between
letters, we have no information at the edges of the pieces. On the contrary, if the
letters have been divided into parts, the chance of finding the correct neighbor for
the edge increases. Figures 4.8a and 4.8b show parts of the text from rectangular
pieces, which have been reconstructed well and those which have failed to be
reconstructed. Figures 4.9a and 4.9b show the successful and unsuccessful parts,
but for the triangular pieces. More successful has been the reconstruction of
texts divided into narrow strips. This is how some shredding machines cut text
documents, so this example of reconstruction is very realistic. Here we see a wide
variation of success rate, from 21% to 75%. If we look at the most successful
solution, we see that the text in the middle of the image is reconstructed almost
perfectly, and mistakes have been made in the connection of the white borders of
the image, which is not critical.

Next, we have divided the images with text into 512 random rectangular pieces
and have tried to reconstruct them. We have also removed 10% of the input pieces
and then 20% again, and have compared the success of the proposed solutions.
The results of the experiments are shown in Table 4.21. They are comparable to
the results obtained for rectangular pieces of the same size, but here we see an
interesting feature. We see that the more pieces are missing, the more successful

1http://classics.mit.edu/Homer/iliad.1.i.html
2http://shakespeare.mit.edu/titus/full.html
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(a) (b)

Figure 4.8: Examples of well (a) and poorly (b) reconstructed text from rectan-
gular pieces.

(a) (b)

Figure 4.9: Examples of well (a) and poorly (b) reconstructed text from triangular
pieces.
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Rectangular and triangular pieces, text
image rectangles triangles

1 39.83% 33.96%
2 39.36% 34.93%
3 35.97% 33.05%
4 36.44% 33.72%
5 30.80% 32.15%
6 38.77% 33.44%
7 36.13% 33.40%
8 42.00% 33.85%
9 34.31% 33.58%
10 32.13% 32.67%
11 34.58% 33.12%
12 40.41% 34.69%
13 41.50% 36.08%
14 36.55% 35.79%
15 38.50% 37.99%
16 41.58% 35.48%
17 43.55% 34.55%
18 39.61% 35.93%
19 36.38% 36.25%
20 39.11% 37.01%

37.88% 34.58%

Narrow rectangular pieces, text
image 2340× 12 1170× 12

1 72.61% 67.32%
2 55.65% 52.75%
3 24.64% 22.03%
4 56.09% 22.68%
5 47.97% 22.39%
6 74.06% 68.77%
7 75.36% 63.98%
8 59.71% 63.26%
9 61.59% 22.17%
10 25.79% 21.59%
11 73.48% 54.28%
12 74.20% 58.12%
13 73.48% 53.12%
14 74.06% 55.00%
15 73.33% 21.96%
16 61.01% 69.13%
17 57.10% 55.87%
18 62.32% 52.10%
19 73.19% 56.59%
20 72.75% 21.88%

62.42% 46.25%

Table 4.20: Results of experiments performed on images with text. Pieces have
a shape of rectangles, narrow rectangles and triangles.
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(a) (b)

Figure 4.10: Examples of well (a) and poorly (b) reconstructed text from random
rectangular pieces.

solution, on average, our algorithm offers. Figure 4.10a shows an example of the
part of the text that has been restructured better, and Figure 4.10b shows the
one that has been restructured worse.

In general, this experiment has been interesting, and the results show that our
solution can be used as an assistant to other algorithms for the reconstruction of
text documents.
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Random rectangular pieces, text
image 0% 10% 20%

1 50.59% 53.26% 56.15%
2 48.76% 51.14% 54.01%
3 44.08% 47.12% 49.16%
4 46.66% 49.62% 50.79%
5 48.33% 51.05% 54.74%
6 49.20% 51.96% 53.84%
7 48.26% 50.63% 54.15%
8 48.63% 50.63% 54.49%
9 46.29% 46.59% 52.44%
10 47.46% 50.66% 53.25%
11 48.72% 51.24% 52.66%
12 42.62% 46.93% 49.86%
13 47.24% 50.52% 52.87%
14 51.43% 53.09% 57.07%
15 46.12% 47.38% 50.54%
16 43.68% 47.17% 49.97%
17 47.78% 50.22% 53.20%
18 47.50% 47.05% 53.36%
19 48.54% 50.61% 54.39%
20 49.86% 52.28% 55.31%

47.59% 49.96% 53.11%

Table 4.21: Results of experiments performed on images with text. Pieces have
a shape of random rectangles.
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Conclusion
The goal of this work has been to research existing algorithms for reconstruction of
images divided into pieces, as well as to propose our own solution for this problem.
In the first chapter, we have classified the existing works on this topic into several
types and have separately described the solutions proposed by other authors for
each of them. We have also mentioned in the first chapter a similar problem,
which however has a useful practical application, that is the reconstruction of
textual documents. In our work, we have decided to propose solutions for the
more interesting, in our view, shapes of pieces, these being rectangles, right-angle
triangles, and rectangles of random size. We have also complicated the problem
we have been solving by not relying on knowing the dimensions of the picture we
are reconstructing.

The most similar problem to the one we have solved is the reconstruction
of images divided into square pieces. One of the most successful and universal
solutions for it that have been proposed to date is that of Sholomon et al. based
on a genetic algorithm (Dror Sholomon and Netanyahu, 2014). We have described
their algorithm as well as our implementation in more detail in the second chapter.

In the third chapter, we have separately described our solutions for all the
proposed shapes of pieces. We have explained the peculiarities of each type of
piece, as well as what changes in each case we need to make to the algorithm for
square pieces. We have tested all our ideas on an available dataset with pictures,
which has been also used by other authors in their works. For each type of piece,
we have also shared what we consider to be interesting implementation details
that may be useful to other researchers of this problem. We also provide a short
documentation for developers and users in Attachment A.1.

In the last chapter, we have evaluated the performance of our solutions on
the same dataset with photos of 3 different sizes. The largest number of pieces
we have tried to reassemble was 4703 for rectangles, 3360 for triangles, and 512
for random-sized rectangles. However, we believe that our solutions can handle
more pieces without a significant decrease in efficiency. In the fourth chapter, we
show that the results of our solutions are comparable to the best results of other
authors. It is worth mentioning, however, that our implementation is not as fast
as other authors, and is a place of potential improvement in our solution.

Unlike other authors, we have also tested our solutions on black and white
images as well as images with text. We have found that in many cases, we do not
particularly need color information, but only lightness information to successfully
reconstruct images. In the case of images with text, as expected, our solutions
are not sufficient for their successful reconstruction. However, we believe that
they can be used as an assistance for other, more advanced algorithms.

We would also like to describe ideas for further research on this topic. We
have already mentioned that pixel lightness has been very useful in comparing
edge dissimilarity of black and white pieces. It would be interesting to propose
and test another edge dissimilarity function in which color and lightness would be
considered separately, or where lightness would have more weight. In general, the
reconstruction of black and white images is not much studied and is an interesting
research topic in its own right.
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We also want to note that our solution for random rectangles has not been
as successful as our other solvers, because this problem is more complicated in
general. We have not tested it on a large number of pieces, due to time constraints.
Note that the biggest problem of our algorithm is posed by pieces with very short
edges, for which it is very difficult to find correct neighbors. We have proposed
various solutions to this problem in our work, but they are not perfect. Therefore,
this part of the algorithm can also be the subject of further research.
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A. Attachments

A.1 Project documentation
In this section, we will describe the structure of the implementation of our solu-
tion and the necessary requirements for its work. Our project has been written
and tested in Python version 3.10. We have also used several additional libraries,
such as Numpy1, Deap2, Shapely3, and others. All required libraries and their
versions are listed in file requirements.txt and can be installed with the follow-
ing command:

python -m pip install --user -r requirements.txt

The structure of our solutions is as follows. The solver for each type of piece
shape is in its own file. We have implemented a total of 6 of them:

1. square pieces solver.py

2. rectangular pieces solver.py

3. cross cut shredder solver.py

4. right triangle pieces solver.py

5. triangle pieces solver.py

6. random rectangular pieces solver.py

The basis of all solvers is the solution proposed for square pieces, which is imple-
mented in file square pieces solver.py. It is represented as a class in which
all operators of the genetic algorithm are implemented. In order to use it, it is
necessary to create and initialize an instance of this class, and then call the solve
method on it. In each iteration of the algorithm, the best solution is saved in
the separate file. All other solutions are inherited from this and, in some cases,
rewrite the implementation of the operators. This structure allows us to extend
our solution, since we only need to inherit from one of the classes and rewrite the
necessary methods as needed.

Since the calculation of fitness values and the crossover process can run in
parallel, we use a module in Python to work with multiple processes. In our
experiments, we ran our solutions in 8 processes, but we allow changing this
value.

We have also tested the complex parts of our implementation where it is easy
to make mistakes, such as checking for cluster intersection and calculating the
fitness value. To run the tests, you can use the following command:

python -m pytest -vv tests/

1https://numpy.org/doc/stable/
2https://deap.readthedocs.io/en/master/
3https://shapely.readthedocs.io/en/stable/index.html
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We would like to clarify that all methods and classes in all files are documented
with comments.

We attach to our work the functions we have implemented to work with im-
ages. They can be found in the file image utils.py. We also attach to the
solution a script create puzzles.py for splitting the pictures into pieces of all
the forms mentioned in this work. The resulting pieces are stored in a certain
order, necessary for the subsequent identification of the correct solution. Note
that this correct solution is in no way used in the work of the algorithm, but is
only needed for its subsequent comparison with the proposed solution. Let us
specify that at the beginning of each algorithm we randomly mix the pieces and
give their edges random indices, so that the correct solution is not always the
same and does not depend on the order of the pieces. When we divide images
into random rectangles, the correct solution with already shuffled pieces is saved
in a separate file. In other cases, we only save the pieces in the correct order, and
the correct solution is always determined by itself before the algorithm starts.

In the following, we describe how to use our proposed solutions. Recall that
each solver is in its own file. All of these scripts work in two modes. The first is
the experiment mode, in which we assume a comparison of the correct solution
with the proposed solution. To do this, this correct solution must be provided to
the algorithm as input in the case of pieces in the form of random rectangles, or
as pieces sorted in the correct order in the case of pieces of all other shapes. To
work in this mode, we propose to divide images into pieces using our script as
follows, for example:

./create_puzzles.py -p imgs_from_papers/pomeranz_db1/1.jpg \
-f square -s 28 28

In this mode, the algorithm will output the value of the neighbor comparison
metric after each iteration, and it will also save the best individual in a special
directory.

In the second mode, we do not assume knowledge of the correct solution,
and we give each script an input directory of pieces in any order. In this case,
after each iteration, the algorithm will only output the fitness value of the best
individual, and will save it in a special directory. We have given examples of
usage of our solvers for all types of pieces in the file examples.txt.

We also attach a CD to our solution, which contains the best individuals for
each of the experiments performed in this work, in order to make the results
of our work more illustrative. Part of the attachment to the work are also the
datasets on which the experiments have been performed.
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