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Introduction 

Inspired by human brain morphology and functioning, new computational techniques emerged. 

When one wishes to stay abstract, one talks about “artificial intelligence” and “machine 

learning-based” techniques. Otherwise, when one desires to invoke concrete informatics 

algorithms, the more precise term neural network (NN) is used. NNs represent a powerful tool 

suitable for variety of tasks, such as data classification, analysis, processing or compressing. In 

this work, we will use autoencoder NN to compress and reconstruct magnetic configuration.  

Specifically, we will investigate, how will the performance of autoencoder change when we 

supply or model with Hamiltonian term. Since the Hamiltonian measures system’s energy, by 

including it in our model we hope to force the autoencoder better conserve the energy when 

processing the data. Intuitively, we would expect that this would lead to autoencoder 

reconstructing the configuration in a more physical way. Nevertheless, as we will learn such 

interpretation is not straight-forward as different magnetic configurations will be influenced in 

a dissimilar way with the over effect being very complex.   

This work is structured in a following manner: In the section named “The physical 

background”, IT models of magnetic configurations will be explained. We will introduce the 

Hamiltonian term, describe its components and effect on the configuration. Furthermore, we 

will describe how do the different magnetic phases look like for the values of external factors 

we work with. At the end of this section, we will present the work of Kwon et al. 2021 to show 

our motivation for combining the NN with Hamiltonian term. 

In the section called the “IT background”, we will explain the basics of neural network 

functioning, focusing specifically on the type of neural network (the convolutional 

autoencoder) we will work with.  

In the section “Methods” we will describe the features of our dataset, specifying what magnetic 

phases are present in our dataset and how did we choose to classify them. We will also describe 

the structure of the two distinct types of autoencoders this work will use. 

In the section “Implementation of the Hamiltonian”, we will undergo a series of reflexions 

(including a short experiment) with aim to determine how to best implement the Hamiltonian 

in the autoencoder. In the end, we will work with a “local Hamiltonian” (newly defined quantity 

describing the conservation of spin energies) and the results for this model will be presented. 

Finally, in the “Discussion” we will discuss these results in context of magnetic phase 

recognition problematics. 
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1 The physical background 

Artificial intelligence has proven to be of great utility in condensed matter physics. Numerical 

methods are being used to enhance resolution of grid-system configurations, implement 

temperature fluctuation, simulate complex many body systems, and examine classical and 

quantum spin states (as discussed in Kwon et al. 2021a and Iakolev et al. 2018). They are also 

extremely useful when studying phase transitions, not only for learning order parameters 

(Wetzel 2017) but also for establishing boundaries between individual phases (Carrasquilla and 

Melko 2017).  

 

1.1 Studying magnetic systems with machine learning  

 

Specifically, machine learning-based techniques are often being employed to study phase 

transitions in magnetic compounds. The whole situation is simplified by reducing the dimension 

of the system to planar case (which however may simulate well thin layers). In 2D, there are 

two main models used to describe the system: Ising and Heisenberg (Kawamura 2010).  In Ising 

model spins of the atoms are only allowed to acquire binary values of -1 or +1. In Heisenberg 

model, the spins are thought as three-dimensional vectors.  

The organization of the spins within the system respects thermodynamic considerations. One 

can obtain allowed configuration through Monte Carlo simulations using Metropolis algorithm. 

As explained in Kapitan et al. 2021, in each step of the Metropolis algorithm, one spin from the 

configuration is selected. If changing the direction of this spin results in configuration with 

lower energy, then the direction of the spin is changed. If changing the direction of this spin 

results in configuration with higher energy, then the direction of the spin is changed with the 

probability equal to ratio between thermodynamic distributional probability of these two states. 

(The probability of change is equal to distributional probability of the state with altered spin 

divided by distributional probability of the state with non-altered spin.) Beside Monte Carlo 

simulations, there are machine learning-based techniques for obtaining magnetic configuration: 

For Ising model, such approach was used by Morningstar and Melko 2018. For Heisenberg 

model, this was done by Kwon et al. 2019a and Kwon et al. 2021.  

This work with revolve around Heisenberg model with configurations generated by Monte 

Carlo simulations. Specifically, we will focus on phase transition in magnetic compounds in 

vicinity of absolute zero. There one can distinguish three main phases: ferromagnetic phase, 

spiral phase and skyrmionic phase. The projection of z-spin (out-of-plane) component in these 
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phases may be seen on Figure 1.1. Figure 1.2 shows the in-plane projection of spins. A thorough 

analysis of each phase including energetic considerations is provided by Ezawa 2011. In 

ferromagnetic phase, spins are aligned with the direction of the magnetic field. In spiral phase, 

spins form sinusoidal waves. In skyrmionic phase, the configuration is composed of skyrmions 

in hexagonal lattice. 

 
Figure 1.1. Out-of-plane (z) projection of the three main phases as shown on the bwr python colourmap 

(dark red corresponding to 1, dark blue corresponding to -1). A) ferromagnetic phase B) skyrmionic phase 

C) spiral phase. 

 

 
Figure 1.2. In-plane projection of the three main phases shown as a vector plot. A) ferromagnetic phase B) 

skyrmionic phase C) spiral phase. 

 

1.2 Skyrmions 

There is no official definition of skyrmion, but following Evershor-Sitte et al. 2018, we can 

describe it as “spin structure in which the center of magnetization is in the opposite direction to 

its boundary and which can be mapped once to the sphere”. As a consequence of containing 

singularity, skyrmions are characterized by topological invariant called topological charge. It 

is defined via following expression (Mathies 2022): 

𝑄 =
1

4𝜋
∫ 𝑆 ⋅ (

𝛿𝑆

𝛿𝑥
×

𝛿𝑆

𝛿𝑦
) 𝑑𝑥𝑑𝑦                                                                                                           (1.1) 

 

Here 𝑆 denotes spins of individual atoms and the integration is performed over the region 

containing the skyrmion. Equation (1.1) is non-well suited for numerical calculation. Typically, 
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(as was done for instance in Iakovlev et al. 2018 and Heo et al. 2016 one uses form (1.2) as 

developed by Berg and Lüsher 1981. We will follow this suit too.  

𝑄 =
1

4𝜋
∑ 2𝑎𝑟𝑐𝑐𝑜𝑠

1+𝑆𝑖⋅𝑆𝑗+𝑆𝑗⋅𝑆𝑘+𝑆𝑘⋅𝑆𝑖

√2(1+𝑆𝑖⋅𝑆𝑗)(1+𝑆𝑗⋅𝑆𝑘)(1+𝑆𝑘⋅𝑆𝑖)
                                                                         (1.2) 

 

We can also define topological charge density as the quantity calculated by expression (1.1) 

without performing the integration or by expression (2) without taking the sum. As the Figure 

1.3 shows, for skyrmionics phase are plots of topological charge density quite similar to plots 

of z-magnetisation. 

 
Figure 1.3 Comparison of z-spin projection and topological charge density: The upper row contains plots 

of z-pin projection; the lower row contains plots of topological charge density. 

 

The exact profile of magnetization inside the skyrmion can take various forms. We differentiate 

three main types of skyrmions: Bloch skyrmion with 𝑄=-1, Neel skyrmion with 𝑄=-1 and 

antiskyrmion 𝑄=1 (Kovalev and Sanhoefner 2018). They are depicted on Figure 1.4. These are 

all plane structures. However, there exist other exotic types of skyrmions, some of them even 

three dimensional (see Evershor-Sitte et al. 2018).  As such, skyrmions are stable configurations 

whose creation and annihilation can be induced via thermal excitation or favourable tuning of 

magnetic and electric field. Skyrmions are also capable of later shift – one perceives them as 

quasi particles performing analogue of Brownian motion. (Mathies 2022). Again, speed and 

direction of this motion can be regulated through thermal/electric/magnetic gradient or spin 



 7 

torque (Evershor-Sitte et al. 2018). Since there are ways how to control skyrmions one aspires 

to use them in racetrack memory - a type of memory where data could be manipulated without 

having to transfer them from storage from processor (Evershor-Sitte et al. 2018, Cortes-Ortunõ 

et al. 2017). Other possible applications include: skyrmion based conventional logic devices, 

skyrmion based transistor, skyrmionic reshuffler for obtaining uncorrelated signals and 

simulations of biological synapses (Evershor-Sitte et al. 2018). 

 
Figure 1.4: Three main basic types of skyrmions – drawings inspired by figures presented in (Evershor-

Sitte et al. 2018). 

 

1.3 Hamiltonian of magnetic system 

Now that we have introduced notion of skyrmions, we can return to phase transitions. Two-

dimensional magnetic compounds are characterized by Hamiltonian with the following form 

(Kwon et al. 2019, Pepper et al. 2018): 

𝐻 = −𝐽 ∑ (𝑆𝑘 ∙ 𝑆𝑘+𝑢⃗⃗⃗𝑥
+ 𝑆𝑘 ∙ 𝑆𝑘+𝑢⃗⃗⃗𝑦

) + ∑ [(𝐷⃗⃡ ⋅ 𝑢⃗⃗𝑥) ⋅ (𝑆𝑘 × 𝑆𝑘+𝑢⃗⃗⃗𝑥
) + (𝐷⃗⃡ ⋅ 𝑢⃗⃗𝑦) ⋅ (𝑆𝑘 ×

𝑆𝑘+𝑢⃗⃗⃗𝑦
)] −ℎ ∑(𝑆𝑘 ∙ 𝑢⃗⃗ℎ) + 𝐸𝑎𝑛𝑖𝑠 + 𝐸𝑑𝑖𝑝 + 𝐸𝑑𝑒𝑚𝑎𝑔                                                                               (1.3) 

 

(Where 𝐽 represents exchange interaction constant, 𝐷⃗⃡ represents Dzyaloshinskii-Moriya (DM)  

tensor and ℎ strength of external magnetic field, with 𝑒ℎ being it unitary direction vector. 

Symbols 𝑆𝑖 denote spins, 𝑆𝑖+𝑒𝑥
 and 𝑆𝑖+𝑒𝑦

 are the spins one obtains by transferring along x or y 

axis by one atom.) First term of (3) represent exchange interaction; the second Dzyalonshinskii-

Moriya interaction; the third Zeeman energy; the fourth energy of magnetic anisotropy 

(preferred direction of magnetic spins characteristic for the material); the fifth energy of dipolar 

interaction; the sixth energy of demagnetization (changes in magnetic field arising as 

a consequence of system’s own magnetization.) When studying properties of phase transition 

and individual magnetic phases practically never all contributions of the equation (1.3) are 

taken into account. Usually, one on first four terms (as was for instance done in Salcedo-Gallo 
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et al. 2020 or in Kovalev and Sanhoefner 2018) or on the first three terms (as was for instance 

done in Iakovlev 2018, Kapitan 2021, Albarracín 2022). In this work, we will follow the latter 

approach, neglecting all but first three terms of the relationship (1.3). 

Let us analyse the effect of these three terms closer. It is apparent that exchange interaction 

would try to align the direction of the neighbouring spin. On the other hand, The Zeeman energy 

term would attempt to align spins to the direction of the magnetic field which in our case will 

be that of the z-axis (𝑢⃗⃗ℎ=𝑢⃗⃗𝑧). The real mystery though, is the Dzyaloshinskii-Moriya term. 

Since this term contains vector products, one intuitively feels that it would try to compensate 

the exchange interaction by forcing the neighbouring spins to tilt away from each other. Hence, 

is not surprising that it is the Dzyaloshinskii-Moriya interaction what facilitates the formations 

of skyrmions. Nevertheless, how exactly does this happen and what would be the appearance 

of resulting skyrmions depend on the form of tensor 𝐷⃗⃡ - which is in turn determined by the 

symmetry of the system. In this work, we will consider the system with geometry alike one 

shown on Figure 1.5. DM interaction arises from spin-orbital coupling between magnetic and 

non-magnetic atoms (Güngordü at al. 2016), Kovalev and Sanhoefner 2018). If we denote the 

distance between first magnetic atom and the nonmagnetic atom 𝑟1, and the distance between 

second magnetic atom and the nonmagnetic atom 𝑟2, with 𝑢⃗⃗ being the distance between the two 

magnetic atoms, then direction of Dzyaloshinskii-Moriya tensor contracted with 𝑢⃗⃗ will be equal 

to direction of vector product of 𝑟1 and 𝑟2 (Moskvin 2019): 

(𝐷⃗⃡ ⋅ 𝑢⃗⃗) ∝ (𝑟1 × 𝑟2)                                                                                                                                 (1.4) 

 

Hence in our case, when non-magnetic atoms are positioned as shown on Figure 1.5, the 

components of DM interaction will be determined by (1.5).  

(𝐷⃗⃡ ⋅ 𝑢⃗⃗𝑥) = (0,1,0);  (𝐷⃗⃡ ⋅ 𝑢⃗⃗𝑦) = (−1,0,0)                                                                                        (1.5) 

With this in mind we can rewrite expression (1.3) as (1.6) – the final form of Hamiltonian we 

will be working with. 

𝐻 = ∑ {−𝐽(𝑆𝑖𝑗 ∙ 𝑆𝑖(𝑗+1) + 𝑆𝑖𝑗 ∙ 𝑆(𝑖+1)𝑗) + 𝐷 [(𝑆𝑖𝑗 × 𝑆(𝑖+1)𝑗)
𝑦

− (𝑆𝑖𝑗 × 𝑆𝑖(𝑗+1))
𝑥

] − ℎ(𝑆𝑖𝑗)
𝑧
}  

(1.6) 

The form of 𝐷⃗⃡ we use is known to give rise to Neel skyrmions (Güngordü at al. 2016). How 

precisely this happens is illustrated on Figure 1.6. 
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Figure 1.5: On the left, we see positions of non-magnetic atoms which would correspond to symmetry of 

DM tensor we are working with: The non-magnetic are represented by red spheres; the magnetic atoms are 

represented by black spheres. The magnetic atoms are positioned directly underneath the line joining the 

non-magnetic atoms. Hence, this constellation is of C2V.  

On the right, we see illustration of the geometrical consideration used to determine the direction of the DM 

vector. Here, the magnetic atoms are represented by smaller white spheres and non-magnetic atoms are 

represented by bigger white spheres. We can clearly see that the vector product (𝐫⃗𝟏 × 𝐫⃗𝟐) has the direction 

(0,1,0) for magnetic atoms lying on the x-axis and the direction (-1,0,0) for magnetic atoms lying on the y-

axis.                                                                                                                                                                            
 

 
Figure 1.6: Figure showing how DM interaction leads to formation of skyrmions. From the expression (6) 

we see know, that to minimize the DM term, the vector product of the neighbouring spins must be collinear 

but of opposite sign to DM vector. This figure shows four cases in which such requirement is easy to satisfy 

– the DM minimizing vectors are shown in violet. Nevertheless, reaching such optimum would require the 

direction of neighbouring spins to differ greatly. Such alignment would therefore lead exchange interaction 

(the first term in expression (6)) achieving energy-unfavourable values. Hence, under the combined effect 

of these two terms, the neighbouring spins would tilt away from each other in the direction preferred by 

DM interaction, but this change would be smaller and gradual. The image in the upper left corner of this 

Figure shows how these small changes can give rise to skyrmion. 
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1.4 Intermediate phases 

In our sample besides the configurations containing pure skyrmions, pure spirals or pure 

ferromagnetic alignment, there are also intermediate phases. Some configurations contain 

skyrmions that do not form lattices, but disordered assemblies. They also may be present as 

solitary objects. Such interphase is termed ‘skyrmionic gas’. It can be seen on Figure 1.7. 

Other configurations contain skyrmions which are no longer symmetrical: These appear 

stretched with one of their axes elongated, so that they resemble stripes rounded ends. If those 

stripes are long, they can be viewed as finite sized spirals and interpreted as product of transition 

between skyrmionic and spiral state – they appear on corresponding location of the phase 

diagram. These ‘stripes with rounded edges’ are called bimerons. On plot of z-spin 

magnetisation, they appear as one continuous object. Nevertheless, the plot of topological 

charge density reveals two dense regions at the ends of the bimeron separated by a cleft with 

no topological charge. These regions of high topological charge density are sometimes 

perceived as separate objects. One calls them merons. As expected, integration of topological 

charge density over location containing meron gives the topological number of one half. (The 

distinction between meron and bimeron can be seen on Figure 1.8) 

 
Figure 1.7: Comparison of skyrmionics gas configuration and skyrmion lattice: A) skyrmion lattice B) dense 

skyrmion gas C) looser form of skyrmion gas with patches corresponding to ferromagnetic state D) very 

loose form of skyrmion gas with only few skyrmions present. 

 

 
Figure 1.8 Different plots of bimerons. Dotted line shows bimeron, full line shows meron. A) plot of z-spin 

magnetisation. B) plot of in-plane spin projection C) plot of topological charge density. 
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Figure 1.9 Meron-spiral interphases A) spirals with two intercalated merons B) merons forming differently 

oriented plate C) merons forming a rotated domain D) merons loosely organized. 

 

Anyway, presence of bimerons (merons) in our sample is an unexpected occurrence, since these 

should not be present when the temperature is equal to absolute zero (Ezawa 2021). But it can 

be explained by the way our sample was generated: To reach the absolute zero limit, the 

temperature parameter in the Monte Carlo simulation was gradually decreased to arbitrary low 

values. But not absolute zero - that is impossible to reach. Low-temperature phases contain 

bimerons, though they gradually start disappearing through following mechanism described in 

the following paragraph. 

In contrast to ordered phases of magnetic compounds present at vicinity of zero temperature, 

high temperature phases are characterised by uncorrelated arbitrarily oriented spins. However, 

as one cools the magnet, symmetries began to appear (Wetzel 2017). Specifically, as shown by 

Salcedo-Gallo 2020: When transitioning to skyrmionic phase, spin start to align so that 

individual skyrmions slowly appear, first looking blurred, but gradually smoothing out. In 

contrast ordering of helical phase is a non-continuous process with non-aligned helical domains 

appearing and vanishing until the temperature reaches low enough value to enable formation of 

helical phase with long-ranged order. First, we see assembly of small blurred helical islets 

(composed of bimerons) rotated with respect to each other. Within these islets direction of 

individual bimerons changes with further evolution. Finally, for temperatures close to zero, we 

obtain long-range order of spirals all pointing to the same direction. From this, one can derive 

a phonological explanation for origin of merons in our sample: Some of the intermediate 

domains simply remain unaligned as we stopped decreasing the temperature. (Rotated domains 

in interphase configurations can be seen on Figure 1.9) On the other hand, short bimerons in 

our sample (present within skyrmion lattices) may have appeared as result of non-perfect 

ordering of skyrmion lattice (bimerons are known to fill topological defects, see Iakovlev 2018.)   

Nevertheless, it is difficult to interpret the low-temperature limit of the Monte-Carlo 

simulations. For the extremely low temperatures situations Monte Carlo simulations are 

sometimes referred to as unreliable due to being prone to get stuck in local minima (see Kwon 
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et al. 2019). We will to this energy-stability dilemma, again when it gets more relevant. Let us 

now explain the main focus of this work. 

 

1.5 Motivation  

In this work, we will use neural networks to compress and reconstruct magnetic configuration 

from our sample. The motivation for what exactly we are going to do is following: Kwon et al. 

2021 found out numerical approach tuned to Hamiltonian minimization favours energetically 

stable states. In their work, they focused on generation of new samples from learned distribution 

of template data. (They used ‘variational autoencoder’ - a type of neural network used for 

generation of new data, as will be soon explained.) Their template data contained topological 

defects corresponding to non-perfect ordering of skyrmion lattice. Without Hamiltonian, their 

model would start generating configurations with weird type of defects - such that wouldn’t 

correspond to classical topological defects on account of being created as combination of 

defected and non-defected configuration. These weird ‘intermediate’ topological defects are 

non-physical – they have much higher energy than both non-defected and (classically) defected 

configurations. By using Hamiltonian, they were able to penalize energetically-disfavoured 

configuration, obtaining only stable states.  

Now let us get back to our reconstructive neural network: Imagine our model is biased towards 

reconstructing the configuration so that the reconstructed configurations are close the original 

configuration but possessing non-classical topological defects. That would make the 

reconstructed data non-physical, which is for many reasons unfortunate. As physicist, we might 

strive to preserve physicality of data, even though there might be undesired consequences of 

this effort. Hence in this work, motivated by what Kwon et al. 2021 we will implement 

Hamiltonian in our neural network and explore whether it improved quality of reconstructed 

data without causing too many unwanted side effects. 
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2 IT background 

The following is short summary a of all the concepts related to the theory of neural network 

which the reader should be familiar with to understand our informatic model.  

 

2.1 General concepts 
 

2.1.1 Operation performed by neurons 

The most basic type of neural network (referred to as ‘fully-connected’ or ‘dense’ neural 

network – see Chollet 2018, p. 28) can be thought as a series of data transformations represented 

by layers of neurons. During each transformation m inputs x are linearly transformed to n 

values. On each of this n values a nonlinear “activation function” f is performed, creating n 

outputs y. We can describe this via equation (Mehta 2019, p.47):  

yi =  fi(wijxj + b𝑖)                                                                                                                                        (1.1) 

 

The “neuron” is the entity hosting the value wijxj + b𝑖. In this sense, the activation function 

represents eagerness of the neuron to propagate its input further. The coefficients of linear 

transformation wij are also called “weights” of the neuron and additive constant b𝑖 “bias” of 

the neuron (Chollet 2018, p. 151).  

Though, theoretically any function can be used activation function, there is a limited collection 

of the functions that are commonly used as activation functions (Mehta 2019, p. 48). The 

activation functions are layer specific. There is no fixed protocol on how to choose activation 

function. Nevertheless, they are extremely useful. Thanks to activation functions  fi, NNs can 

perform nonlinear operations which greatly widens the range of possible data representation 

(Chollet 2018, p. 72). 

 

2.1.2 Data processing 

To enter the NN, the data must be expressed in form of a tensor with dimensions equal 

dimensions of the first layer (called the “input” layer) of the NN. Each neuron acts on one data 

point. After performing the transformation according to (1.7), the data is transferred to the 

second layer. In this manner the data move through the successive “hidden” layers until 

reaching the “output” layer. 

The character of the output depends on what the NN is constructed to do. In NNs used for the 

classification (called the classifiers), the ultimate outputs describe the probabilities that the data 



 14 

belong to specific category. (Individual neurons in the final layer represent the categories; their 

outputs the corresponding probabilities, Mehta 2019, pp. 29-30) In NNs used for image 

reconstruction – called the “autoencoders”, the final output has the same dimension as the 

original input and should be as close to it as possible. Related form of NNs - the variational 

autoencoders - attempts to construct an output belonging to same normal distribution as the 

input. In this way, we create new data with same properties as the original. (For a beautiful 

introduction to autoencoders and variational autoencoders, see Chollet 2018, pp. 296-305.) 

 

2.1.3 Loss function 

For the network to best achieve its intent, the values wij and b𝑖 must be tuned to optimal level. 

For this purpose, the NN undergoes the training. During the training, the NN processes sample 

data (as part of the “training” dataset) and adjust the wij and b𝑖 parameters until its output 

reflects the desired output. The degree of such correspondence is evaluated through the “loss 

function” (with a low “loss” being an indicator of a good correspondence). Depending on the 

type of neural network, the loss function can take various forms. For the autoencoders, the most 

basic type of loss function is a mean squared error (MSE) calculated between input and output. 

In this case, low loss means the output is reconstructed as a close replica of the input. 

 

2.1.4 Supervised vs unsupervised learning 

Depending on the character of the desired output, we differentiate supervised and unsupervised 

learning (Chollet 2018, p. 94). In unsupervised learning, the training process relies solely on 

the input data without requiring any additional information. In other words, the character of 

desired output is fully determined by the input. This is how the training of the autoencoders 

works – since the input is the same as the output, knowing our input we immediately know 

what our desired output is. On the other hand, to enable the supervised learning, we must supply 

the NN with the information about the desired output. This is how the training proceeds for 

classifiers: Unless provided with the labelled data, the NN wouldn’t learn how to classify them. 

 

2.1.5 Gradient descent 

The training consists of multiple iterations – epochs. During each epoch, fixed number of data 

(the “batch”, Chollet 2018, p. 96) is fed in the NN. For this batch, the loss function is calculated, 

and gradient descent method is used to update the values of  wij and b𝑖. Though the gradient 
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descent methods for NNs all rely on “backpropagation” technique, there can be small 

differences in the implementation depending on which “optimizer” is chosen. 

As we know, gradient descent is often problematic as it can lead to local, not global minimum. 

For NNs this threat is to large extent mitigated calculating the gradient for multiple subsets of 

the data separately, therefore introducing stochasticity. (This is main idea behind working with 

batches, see Mehta 2019, p. 15). Nevertheless, there are also different ways how to introduce 

the randomness in the training. For instance, in each iteration we can randomly choose neuron 

whose outputs would be silenced (called “drop-out”, Mehta 2019, p. 52). This would prevent 

NN from over-relying on constrained number of neurons and give all neurons the opportunity 

to show their potential for learning. Another way how to achieve this is through “batch-

normalization” which controls the outputs  fi, preventing them from reaching unreasonably high 

values (Mehta 2019, pp. 52-53). Similarly, the magnitude of wij and b𝑖 can be controlled by 

adding regularizer term (λ1‖w‖+ λ2‖b‖) to loss function. (See Chollet at al. 2015, “Layer 

weight regularizers”.) 

 

2.1.6 Validation set and overfitting 

In previous we established that the training uses gradient descent method to minimize the loss 

computed over the training dataset. As one intuitively understands, a prolonged training might 

lead to wij and b𝑖 values ending up overfitted, with the NN best prepared for the input 

encountered during the training. To prevent such scenario, we introduce a “validation” dataset. 

Throughout the training, the value of loss is calculated not only for the training dataset but also 

for the validation dataset. In this way, for each epoch we obtain a “training loss” and “validation 

loss”. The former is used for gradient descent; the latter is used to assess prevent overfitting. 

During the training, the validation loss should not significantly exceed the training loss. In fact, 

validation loss rising above training loss can be taken as an indication the training is completed. 

Alternatively, the training can be stopped when the loss seems no longer decreasing. In theory, 

this should indicate that the performance of the NN would not improve significantly even if the 

training session was extended. In praxis, this is not guaranteed – sometimes the loss can change 

abruptly, even after longer periods of remaining unchanged.  

 

2.1.7 Comparing the performance of different NNs 

The performance of the NN is assessed by calculating the loss over the validation set, after 

training is completed. This gives us an estimate for how well NN achieved its intent on an 
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unfamiliar dataset. (However, in case when the validation loss was used to stop the training, 

validation set can no longer be perceived as unfamiliar. In such scenarios, one needs to split the 

dataset to three parts and use only the third part, the so called ‘test’ dataset for evaluating the 

performance. (Chollet 2018, pp. 97-98)). Assessing the performance-based validation loss 

might be biased if the validation set contained only non-challenging (or alternatively too 

problematic) data. To prevent this from occurring, one may repeat the training so that different 

validation dataset would be used for each training. Usually, one does this through dividing the 

dataset to multiple parts (so called “folds”) and repeats the training so that each time a different 

fold will be used as the validation set (with the remainder of the folds merged together and used 

as the training set). This means that all the data would be at some point included in the dataset, 

preventing the chance the problematic data will get overseen. However, it wouldn’t erase the 

bias completely since it may still happen that problematic and non-problematic data get coupled 

together and influence the performance of NN in a nontrivial way. Therefore, one always tries 

to work with as many folds as the computational cost allows. This form of assessing the 

performance of NN is called k-fold cross validation; with k standing for the number of folds 

(Chollet 2018, pp. 87).  

 

2.2 Convolutional neural network 

The neural networks are divided to different subclasses according to how the neurons are 

interconnected. We dense neural network was already describe in the beginning of this section 

as the simplest type of NN. Now, we will describe the type of NN this work uses. It is called 

“convolutional neural network” (CNN) work.  

 

2.2.1 Convolution 

To illustrate how the CNN works, let us suppose that we have input with represented with three-

dimensional tensor of size A1xA2xA3. Let us denote its coordinates x, y and z. Now suppose we 

have tensor of size S1xS2xA3, called the “filter” (Mehta 2019, p. 57). Now let us do the following 

convolutional procedure (the “convolution” as described in Mehta 2019, pp. 56, 57, for 

illustration see Figure 2.1): From the input tensor, a sub-tensor with size equal to filter size is 

chosen. Point multiplication followed by contraction is performed, resulting in scalar value. To 

this scalar, we would add bias b and let activation function acting on the result. Next, we would 

choose another sub-tensor, just adjacent to previous one and perform multiplication, contraction 

and scalar transformation again (with the same bias b as in the previous).  We would repeat this 
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process until the whole input tensor is mapped into matrix of scalars. The size of the output 

matrix depends on our stride – how far we travelled when moving to next sub-tensor. In the 

simplest case when we moved just by one point at the coordinate axis, the size of the output 

would be almost equal to A1xA2 – the would be slight size reduction because of effects at 

boundaries. We would deal with this padding the boundaries with zeros. Now let us suppose 

that we don’t have just one filter, but assembly of N such filters. If we applied them one by one 

on the input tensor we would obtain an output with size S1xS2xN. In the nomenclature of CNNs, 

the “kernels” are matrices of size S1xS2 (and usually S1=S2); the assembly of filters is our 

“convolutional layer” (Chollet 2018, pp. 122-128). The different filters are expected to capture 

different non-trivial features of the data. Hence, the process of applying filters is termed 

“feature extraction”. In this case described the total number of trainable weights w for such 

convolutional layer can be calculated as A3xS1xS2xN, total number of trainable biases b would 

be N, with every filter having its own bias.  

 

2.2.2 Architecture 

With the autoencoders, we are interested in creating alternative representations of the original 

data. The process rescaling the data to our desired representation is called “encoding”. After 

encoding the data are represented in the “latent space”. The process of reconstructing the data 

from latent space back to the original is referred to as “decoding”. (Terminology as in Chollet 

2018). For encoding of three-dimensional input, we most of the time try to reduce the first two 

dimensions (A1 and A2) while increasing the third (A3). Of course, very popular usage of 

autoencoder is image compression which requires the total volume A1xA2xA3 to decreasing to 

smallest possible values. In the physical problems, we have yet another usage for the 

autoencoder - we be interested in knowing how would the topological features project on a 

smaller space. In this sense, the filters can be thought as the operators trying to capture different 

properties of data, distributed across the space in the non-trivial way.  
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Figure 2.1: Illustration of the convolutional procedure. In this case, the initial tensor (A) is the tensor of size 

A1xA2xA3=5x5x1. On this tensor we apply the three filters (B), (C), (D) of sizes S1xS2xA3=3x3x1. In each step 

of the convolutional procedure, we select a subtensor from the matrix A and multiply is with one of the 

filters, placing the resulting value in the designed position. After performing this process for all available 

subtensors, we obtain the matrices (E), (F) and (G) which altogether form tensor of size 5x5x3. As we see, 

the boundaries of the matrices (E), (F) and (G) are padded by zero, because the convolution would otherwise 

reduce the dimensions. 
 

2.2.3 Handling dimensions 

Now let us get back to our problem of dimensionality reduction. We know that to increase the 

third dimension (A3) we can make the number of filters larger than the depth of the input: N>A3. 

(The encoder is usually constructed in such a way that the number of filters is gradually 

increasing for successive convolutional layers.) To decrease the dimension (A1 and A2) we can 

perform convolutions with filters strolling through the input at higher pace, leaving spaces 

between sub-tensors. Alternatively, we can use a “pooling layer”. For a pooling layer, we also 
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specify the kernel size S1xS2. In this case, it determines the size of non-overlapping patches to 

which the input will be divided. In the maxpooling layer, the output represents the maxima of 

the patches; in the average-pooling layer, the output represents averages over the patches 

(Chollet 2018, p. 128-129). The most common values of pooling kernel sizes include 2x2 and 

3x3, higher sizes are believed to lead to informational loss. (Nagi (2014)) In the decoders, the 

convolutional and pooling layers are often used in an alternating fashion. (Chollet 2018, p.133) 

In this way, after each dimensional reduction, the spatial information loss can be compensated 

be finding new properties characterizing the data: thanks to dimensional reduction we can find 

the correlation between more and more distant topological features.  

Quite obviously, to get from the latent phase representation back to the original dimensions of 

the data, we should increase the first two dimension A1, A2 while decreasing the depth A3. We 

can solve the latter via successive application of convolutional layers with gradually decreasing 

filter numbers. To increase A1 and A2, we would use “upsampling” layer which copies each 

input value into patch of size S1xS2. Most of the time S1xS2=2x2. In terms of dimension 

transformation, the decoder can be, and often is, constructed as the mirror image of the encoder. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 20 

3 Methods 

 

3.1 Different phases in our dataset 

Our dataset contains 600 configurations, each represented by the 40000 distinct spin values 

carried on 200x200 grid.  Out of these 600 configurations, 138 contained skyrmion lattices (for 

simplicity also called ‘skyrmion phase’ or just ‘skyrmions’), 110 consisted of spirals, 144 

showed ferromagnetic alignment, 13 represented skyrmion gas and 205 hosted some form of 

bimerons.  

 

3.1.1 Subdivision of bimeron-containing interphase 

Since bimeron-containing interphase was very non-homogenous, it was decided that it would 

be split into multiple separate categories. First one was ‘skyrmions with few bimerons’ where 

there was only handful bimerons. There was 24 of such configurations. Second was ‘skyrmions 

with some bimerons’ where there was enough bimerons to enable their uniform distribution 

across the configuration, yet there were still large patches containing no skyrmions. There was 

43 of such configurations. Third is ‘skyrmions with many bimerons’. In contrast to previous 

category, skyrmion-free patches are small. There was 15 of such configurations. Fourth is 

‘bimeron with many skyrmions’ phase in which there is same number of skyrmions as 

bimerons. There was 21 of such configurations. Fifth is ‘bimerons with few skyrmions’, where 

the configuration is mostly composed of bimerons with few intercalated skyrmions. There was 

7 of such configurations. Sixth ‘spirals with bimerons’ phase where there are bimerons as wells 

as spirals present. There was 80 of such configurations. Finally, seventh is ‘spiral with merons’ 

which consist of spirals with few of them capped by merons. There was 5 of such phases. Figure 

3.2 shows all the bimeron-containing interphases that we just defined. Figure 3.1 shows all the 

phases (intermediate as well as pure) that were defined and identified in our sample. 

 

3.1.2 Alternative subdivision of bimeron-containing interphase 

The division of bimeron-containing phase to seven distinct subclasses was performed prior 

obtaining the results. As we will later see, based on reconstruction error calculated for 

Hamiltonian-containing autoencoder, the bimeron-containing interphase can be divided to three 

different subphases. To aid clarity in later parts of this work, these three subphases will be 

introduced now. First is the ‘skyrmion-bimeron’ phase. It contains data belonging to ‘skyrmions 

with few bimerons’, ‘skyrmions with some bimerons’ and ‘skyrmions with many bimerons’ 
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phases. Hence it hosts all the bimeron-containing configurations in which there are visibly more 

skyrmions than bimerons. Second is the ‘bimeron-skyrmion’ phase. In contains data belonging 

to ‘bimeron with many skyrmions’ and ‘bimeron with many skyrmions’. Hence it hosts all the 

mixtures of skyrmions and bimerons in which the number of skyrmions is less or equal to 

number of bimerons. Finally, the third ‘bimeron-spiral’ phase contains the ‘spirals with 

bimerons’ and ‘spiral with merons’ configurations. 

 
Figure 3.1 A summary of all the phases present in our dataset. 
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Figure 3.2 A summary of skyrmion-bimeron intermediate phases in our dataset: A), B) skyrmion with few 

bimerons (a solitary bimeron is shown in a yellow circle). C) skyrmions with few bimerons D) skyrmions 

with many bimerons E) skyrmion-bimeron F) bimerons with few skyrmions. 

 

3.2 Obtaining the dataset 

The assembly of different magnetic configuration was obtained through performing Monte 

Carlo simulations for differing values of 𝐷 and ℎ: For different values of 𝐷 and ℎ, different 

magnetic phase was thermodynamically favoured. The exact relationship between 𝐷, ℎ and 

identity of magnetic phase, the ‘phase diagram’, can be seen on Figure 3.3. It is worth to note 

that the values of 𝐷 and ℎ were part of dataset – for each configuration there was a 

supplementary information about the 𝐷 and ℎ values from which it was obtained. It could not 

have been done otherwise, since the neural network needed this information to calculate 

Hamiltonian through equation 1.6. To prevent confusion, it is necessary to stress that the 𝐷 and 

ℎ values were not part autoencoder input - they were not part of the data intended for 

reconstruction. They entered the network through completely different path, as part of the data, 

the network used calculate loss function. 
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Figure 3.3 The phase diagram 

 

3.3 Skyrmions in our dataset 

Let us get back to problematics of different phases: Though in different sense than bimeron-

containing interphase, skyrmionic phase was also quite heterogeneous. It contained skyrmions 

of various sizes and densities. To better address this, the distribution of skyrmionic properties 

was described and several relevant properties were developed. 

In the 138 configurations of skyrmion lattices in our sample, the number of skyrmions within 

the 200x200 grid varied from 116 – 607 with mean 333. Most numbers fell within the range 

200-450 where the distribution can be approximate as uniform. This distribution is so wide 

because the size of the skyrmions as well as the distance between skyrmions varied. To describe 

this better, new variable called ‘inter-center distance’ was defined as the distance between 

skyrmions 𝑑𝑐 measured from the midpoint of one skyrmion to midpoint of adjacent skyrmion. 

In our dataset the value of inter-center distance ranged from 8 to 22 grid points with most of 

the values in the interval 10-12 grid points. To derive an explicit formula for inter-center 

distance, and various correlations were explored. (Corresponding plots showing correlations 

can be found in ). It was found that inter-center distance is best described via equation (3.1). 

 

𝑑𝑐 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑖𝑑 𝑝𝑜𝑖𝑛𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑘𝑦𝑟𝑚𝑖𝑜𝑛𝑠
∙ 0.042 + 6.544 = −

40 000

𝒯
∙ 0.042 + 6.544                             (3.1) 

 

Alternatively, we can measure the distance between edges of skyrmions, the ‘inter-edge 

distance’ 𝑑𝑒. In theory 𝑑𝑒 should be for same 𝑑𝑐 lower for big skyrmions and greater for small 
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skyrmions. In our sample, 𝑑𝑒 is estimated to fall within the 3-12 grid points, with most of the 

values around 4-5 grid points. Inter-edge distance 𝑑𝑒 is well characterized by (3.2) which was 

obtained in very similar way as (3.1). The total magnetization is the value one obtains by 

summing all the spins 𝑆 on the grid. As it would be expected 𝑑𝑒 is also correlated with 𝑑𝑐, but 

this correspondance is weaker than what one obtains with (3.1) or (3.2). 

 

𝑑𝑒 =
𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑘𝑦𝑟𝑚𝑖𝑜𝑛𝑠
∙ 0.040 + 1.924 = −

∑ 𝑆

𝒯
∙ 0.042 + 6.544                                          (3.2) 

 

Last property of skyrmions, we can be interested in knowing, is their size. We can distinguish 

size of whole skyrmion and the size of the inner core. The size of the whole skyrmions ranged 

from 30 to 70 grid points, with most values estimated to be around 40. Size of the part 

representing negative values, the inner core, ranged from 21 to 45 grid points.  

 

 
Figure 3.4 Architecture of the four-fold reducing autoencoder. 
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Figure 3.5: Architecture of the eight-fold reducing autoencoder. 

 

3.4 The autoencoders used in this work 

Knowing such microscopic properties is important for assessing limitations of dimensional 

reduction. Suppose we work with autoencoder which decreases the input grid with dimensions 

200x200 eight-times, so that in the latent space representation the grid is of size 25x25 and is 

represented by 625 grid points. As discussed previously, highest number of skyrmions in our 

dataset is 607, so on the 25x25 grid, each skyrmion will be represented with approximately one 

grid point. This does not necessarily mean that we would face significant information loss – we 

can still have the third dimension of the latent space compensating for this reduction. In case of 

the regular skyrmion lattices, the feature-extraction path can lead to filters capturing lattice 

symmetry. Nevertheless, some of the bimeron-containing interphases are also very densely 

packed but possess little symmetry, making the feature-extraction difficult.  

From this we see that eight-fold dimensional reduction is a difficult task. It turns that designing 

four-fold reducing autoencoder that able reconstruct the configurations well (so that the visual 

appreciation cannot reveal any faults) is an easy task. In contrast, eight-fold reducing 

autoencoder that able reconstruct the configurations reasonably well is so far unavailable. In 

this work, we will try implement Hamiltonian term in eight-fold reducing autoencoder with 

hope to improve its performance. 

Preliminary experiments showed that varying the parameters of the network (such adjusting the 

filter sizes and filter number or changing the activation function) had not as significant effect 

on the autoencoder performance as did the scaling. The focus of this how the Hamiltonian term 

influences performance and not in finding best working autoencoder, so choice of specific 

models was not critical. Hence, we will use two different autoencoders, one eight-fold reducing 
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(for implementation of Hamiltonian) and one four-fold reducing (for assessing the significance 

of trends observed), without giving reasons for why their architecture was designed the way it 

was.  

The complete set of parameters for these autoencoders (including kernel sizes, filter sizes and 

activation functions) is shown on Figure 3.4 and Figure 3.5. The latent space of the four-fold-

reducing CNN had dimensions A1xA2xA3=50x50x5, for the eight-fold-reducing it was 

25x25x32. Both the autoencoders used ADAM as the optimizer. The batch size was always set 

to 8 and number of epochs to 200. As for the loss function, the default form is (3.3). 

(Nevertheless, when trying to assess the effect of Hamiltonian inclusion, the loss function will 

be modified in the manner that would be specified later.) 

 

𝐿 = ∑(𝑆𝑥true
− 𝑆𝑥pred

)2 + (𝑆𝑦true
− 𝑆𝑦pred

)2 + (𝑆𝑧true
− 𝑆𝑧pred

)2 = ∑(𝑆true − 𝑆pred)2   

(3.3) 

In the above expression, 𝐿 stands for loss and 𝑆 represent individual spin components. The 

subscript ‘true’ means that we refer to the value of the original spin (input), the subscript ‘pred’ 

stands for predicted and it means we refer to value of the spin obtained after the reconstruction 

(output): Our loss is basically the mean square error of the spin matrix. It should that the input 

of the CNNs is not in form of x, y and z spin components. Instead, we take advantage of the 

fact the spin as a vector has a constant (unitary) magnitude and represent the spin in spherical 

coordinates via (normed) azimuthal vector 𝜑 and the polar angle 𝜃, reducing the dimension 

from 3 to 2. Hence when calculating the loss from (3.3), the NN first needs to take perform 

transformation from spherical to Cartesian coordinates. 

Since the direction of the spins corresponds to system magnetisation, squared difference of 

spins as calculated by the expression (3.3) would in this work be referred to as ‘magnetic MSE’, 

‘magnetisation MSE’, ‘magnetisation error’ or simply ‘reconstruction error’. 

The total number of configurations in our dataset is 600. We split them in a ratio 9:1 to training 

and validation dataset. When performing cross validation, we have 10 folds, so the sizes of 

validation and training dataset correspond to this splitting ratio. The size of the input of the 

CNNs is 540x200x200x2. This means we have training dataset with 540 configurations 

modelled on a 200x200 grid, so there are 200x200 spin values determined by 2 angle values.  
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3.5 Comparing four-fold reducing and eight-fold reducing autoencoder 

Having discussed the features of our dataset, we can proceed to compare the performance of 

the two used autoencoders (four-fold reducing vs eight-fold reducing). Knowing that the 

performance of the four-fold reducing autoencoder is what we strive to achieve, we will later 

use this comparison to assess whether the inclusion of Hamiltonian changed the performance 

of eight-fold reducing autoencoder in a significant way. 

In previous, we said that instead of comparing the performance of NNs through loss, we will 

use other metrics. In this case, we will explore the in-plane magnetisation MSE (denoted 

𝑀𝑆𝐸𝑖𝑛) and out-of-plane magnetisation MSE (denoted 𝑀𝑆𝐸𝑜𝑢𝑡)  as defined through 

expressions (3.4) and (3.5). Since our system possess rotational symmetry, MSE of x-spin 

components and MSE of y-spin components are equivalent and therefore are evaluated together. 

On the other hand, MSE of z-spin component might behaved differently and therefore is 

evaluated on its own. 

 

𝑀𝑆𝐸𝑖𝑛 = ∑(𝑆𝑥true
− 𝑆𝑥pred

)2 + (𝑆𝑦true
− 𝑆𝑦pred

)2                                                                   (3.4) 

 

𝑀𝑆𝐸𝑜𝑢𝑡 = ∑(𝑆𝑧true
− 𝑆𝑧pred

)2                                                                                                         (3.5) 

 

Figure 3.6 shows the values of mean in-plane MSE for different phases (mean in-plane MSE is 

obtained by calculating in-plane MSE for each configuration separately and then taking mean 

over each phase). Figure 3.7 shows this for out-of-plane MSE. As we see for ferromagnetic 

phase and for skyrmion gas phase, the MSE is very low for both four-fold reducing and eight-

fold reducing NN. This is exactly as expected since for these two phases the configuration is 

(mostly) composed z-axis aligned spins with negligible in-plane projections. (Hence there are 

almost no opportunities to fail the reconstruction). For the four-fold reducing autoencoder, the 

in-plane MSEs of all other phases have all very similar values. For the eight-fold reducing 

autoencoder the mean MSEs are a lot lower for skyrmions and spirals than for the intermediate 

phases. Nevertheless, if one compares the total MSEs, one will find out that by far the biggest 

contributor to the total MSE is the spiral-bimeron phase. (Although, arguably if one considered 

all the skyrmion-bimeron interphases as one, one would obtain similarly high contribution.)  

The trends in the mean and total out-of-plane MSE (shown on the Figures 3.6 and 3.7) were 

similar to trends of the in-plane MSE. 
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Figure 3.6 Comparing performance of four-fold and eight-fold reducing autoencoder for different phases: 

In-plane MSE 

 

 
Figure 3.7 Comparing performance of four-fold and eight-fold reducing autoencoder for different phases: 

Out-of-plane MSE 
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4 Implementation of Hamiltonian term 
 

4.1 Initial considerations 

Before embarking on data collection, it needs to be defined how exactly the Hamiltonian will 

be implemented in the loss.  

4.1.1 Experiment 

If we decided to follow the approach of Kwon et al. (2021) we would just supplement the loss 

function with a term containing Hamiltonian as calculated via expression (1.6). In this way, the 

energy of the resulting configuration should be minimised. Nevertheless, to better understand 

how this would influence the training of the CNN, small preliminary experiment was done. 

Specifically, it was investigated what would happen if the loss function contained only the 

Hamiltonian term without any contribution of magnetic MSE. This means that the loss had form 

(4.1), where 𝐻 was calculated from the expression (1.6). 

𝐿 = 𝐻                                                                                                                                                        (4.1) 

 

 It would be impossible train the network in a set-up like that. To overcome this obstacle the 

network was first trained on the four-fold reducing autoencoder with classical form of loss 

(expressed by the equation (3.3)). In this way, the network’s trainable parameters (the weight 

wij and biases bj values) got adjusted at the optimal level. Then autoencoder with Hamiltonian 

as loss function was trained, inheriting initial values of wij and bj from the trained parameters 

of the four-fold reducing autoencoder. When the autoencoder trained in this way was applied 

on our dataset, it reconstructed spirals and ferromagnetic phase in a same way as the four-fold-

reducing autoencoder: for the spirals and ferromagnetic phase the performance wasn’t 

influenced by the subsequent training. The story was different for skyrmionic lattices: one 

epoch of training sufficed in making the autoencoder reconstruct the skyrmions in slightly 

different way – they got smaller and their shape got regularized (as shown on Figure 4.1, part 

D) . In the next few epochs, skyrmions gradually disappeared – the autoencoder reconstructed 

skyrmionic phase as a ferromagnetic phase. 

The previous only held for pure skyrmionic lattices. In configuration containing skyrmionic 

intermixed with bimerons, the skyrmion is got smaller, but never started disappearing, not even 

after the number of epochs was set to some arbitrary large value like 1000. In contrast, bimerons 

got progressively smaller and gradually (over the period of around 30 epochs) vanished. This 
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means that Hamiltonian-trained autoencoder erased the bimerons while leaving the skyrmions 

intact (as shown on Figure 4.1, part B) Similarly, for spirals containing merons, merons got 

deleted, but spirals did not. Reading this, one is immediately tempted to try using Hamiltonian-

trained autoencoder as a selective bimeron detector with bimeron presence determined through 

change in total magnetisation (which would decrease after deletion of bimerons). 

Unfortunately, exploring such idea to sufficient detail is beyond the scope of this work. 

Figure 4.1 Disappearing bimerons. A) original plot of bimeron-containg configuration B) bimeron-containg 

configuration after reconstruction C) original plot of skyrmion-lattice configuration D) skyrmion-lattice 

configuration after one epoch. 

 

4.1.2 Explanation 

Nevertheless, let us at least try to explain these intriguing results. For this purpose, it was 

explored which of the phases represents the energetic minimum in the various places on the 

phase diagram. To be clearer, for each of the eleven observed phases, 𝑛 configurations were 

chosen whose 𝐷 and ℎ values were used to calculate Hamiltonian for all available 

configurations: In such paradigm Hamiltonians were not calculated for particular configuration 

and its corresponding 𝐷 and ℎ values. Instead, 𝐷 and ℎ values were kept fixed (at 𝑛x11 chosen 

values), while the configuration supplemented to Hamiltonian alternated, until all the 600 

available configurations were processed. In this way, we should be able to determine which of 

the observed phases (as represented by a pool of the configurations) embodies energetic 

minimum for particular 𝐷 and ℎ values.  

Though 𝑛 was taken as 𝑛=10, out of these 10 samples, one representative was chosen to be 

shown on Figure 4.2-4.4. As we can see, the results were following: It was found that for 𝐷 and 

ℎ values corresponding to ferromagnetic, skyrmion gas and skyrmion lattice phase the energetic 

minimum is represented ferromagnetic configurations. This means that if all skyrmions in our 

sample got deleted energy would be released – which is no doubt the reason why Hamiltonian-

trained autoencoder performed such deletions. On the other hand, for the skyrmion-bimeron 

phase (containing mixture of skyrmions and bimerons with prevalence of skyrmions) the 
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energetic minimum is represented trough skyrmion-lattice phase. Again, this explains why 

Hamiltonian-trained autoencoder erased bimerons but left skyrmions intact. For remainder of 

bimeron-containing phases, energetic minimum is represented through mixture of spiral, 

skyrmion and bimeron-containing phases. There is no straight-forward interpretation of this. 

Finally, as it would be expected, for pure spirals the energetic minimum is represented through 

spirals. 

 
Figure 4.2 Calculating Hamiltonian for D and B of phases for which ferromagnetic phase represents the 

minimum. For each phase, from the pool of five plots one representative was chosen. 

 

4.1.3 Minimal energy 

Contemplating these results, one may get confused as to why Monte-Carlo simulation provided 

configuration which do not represent energetic minimum for the target value of 𝐷 and ℎ. 

Nevertheless, the minimum energy state might not necessarily represent the thermodynamically 

most favoured state, not even if one approaches absolute zero temperature. This is obvious if 

one realises that for higher temperatures, states with higher energy are favoured and therefore 

would be assumed by the system. After subsequent cooling, the system might not have enough 

energy to undergo phase transition and hence might remain in its current phase, even though 

when it does not represent energetic minimum. As an illustration of this, let us take an example 

of skyrmions: Transitioning from skyrmionic to different phase is associated with non-zero 

energetic barrier. Therefore, skyrmions display hysteretic behaviour (Makino et al. 2017) and 

may be present even when not representing energetic minimum (Cortes-Ortunõ 2017). 
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Figure 4.3 Calculating Hamiltonian for D and B of skyrmion-meron interphase. For each phase, from the 

pool of five plots one representative was chosen. 

 

 
Figure 4.4 Calculating Hamiltonian for D and B of meron-spiral interphases and spirals. For each phase, 

from the pool of five plots one representative was chosen. 

 

4.1.4 Local Hamiltonian 

Returning to our original query, we may argue that basing our loss function on minimization of 

the Hamiltonian carries certain disadvantages. Specifically, there is a risk that instead of aiding 

the reconstruction in a productive way, Hamiltonian term might hamper through trying to alter 
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the configuration towards different phase, as this behaviour was observed when it acted alone. 

Therefore, this work used a different approach. Namely, instead of attempting to minimize the 

Hamiltonian on its own, we minimize the difference between energy of original configuration 

and energy of the reconstructed configuration. Nevertheless, by doing so we are confronted 

with yet another issue: Arguably, there are many configurations carrying same energy but 

differing in the topology. Hence the energy difference term would not provide guidance as to 

how exactly the reconstruction should be altered to produce energetically stable representations 

of the input. In other words, if faced with an energetically problematic configuration, the 

Hamiltonian term would alert the network that there is problem but wouldn’t offer solution.  

To solve the issue of non-locality, new variable termed ‘the local Hamiltonian’ was defined. It 

is basically a map of the spin energies, with its MSE representing a squared difference of spin 

energies prior and after reconstruction. The energy of individual spin (denoted as 𝐻𝑖𝑗
𝑙𝑜𝑐) was 

calculated through the expression (1.6) without taking the sum, hence obtaining formula (4.2). 

𝐻𝑖𝑗
𝑙𝑜𝑐 = {−𝐽(𝑆𝑖𝑗 ∙ 𝑆𝑖(𝑗+1) + 𝑆𝑖𝑗 ∙ 𝑆(𝑖+1)𝑗) + 𝐷 [(𝑆𝑖𝑗 × 𝑆(𝑖+1)𝑗)

𝑦
− (𝑆𝑖𝑗 × 𝑆𝑖(𝑗+1))

𝑥
] − ℎ(𝑆𝑖𝑗)

𝑧
}      

(4.2) 

From this MSE of local Hamiltonian (denoted 𝑀𝑆𝐸𝐻) can be expressed as (4.3), where the 

indices ‘pred’ and ‘true’ mean we refer to predicted and true value, respectively. 

𝑀𝑆𝐸𝐻 = ∑(𝐻𝑖𝑗,true
𝑙𝑜𝑐 − 𝐻𝑖𝑗,pred

𝑙𝑜𝑐 )2                                                                                                                  (4.3) 

 

Making use of local Hamiltonian, the loss was defined in following way: 

𝐿 = ∑[(𝑆true − 𝑆pred)2 + 𝑐 ∗ (𝐻𝑖𝑗,true
𝑙𝑜𝑐 − 𝐻𝑖𝑗,pred

𝑙𝑜𝑐 )2]                                                             (4.4) 

 

Figure 4.5 Upper row shows plots of z-magnetic component (“terrain” colour-map). Lower row shows plots of local 

Hamiltonian. 
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Figure 4.6 First row shows plots of z-magnetic component (“terrain” colour-map). Second row shows plots of local 

Hamiltonian, third row shows plots of local Hamiltonian averaged over the patch of size 3x3. 

 

Now instead difference between total configuration energy, the difference between energies is 

calculated for each spin separately. Therefore, if there was a spin (or a group of spins) making 

troubles the spin MSE would immediately pinpoint the source of the error and provide guidance 

on how to remove it, so that reconstruction would be altered in a desired way. Of course, this 

would only work if the plot of the spin energies offered some characteristic pattern, non-trivial 

on the small scale, ideally manifesting for each phase in a different way. Well, it turns out that 

plots of local Hamiltonian look very similar to plots of z-component magnetisation. To be more 

specific, there is almost no different between plots of spirals without defects and homogeneous 

magnetisation phases. For spiral-meron phases, the interphase between meron caps and spirals 

get highlighted. This might be exactly what we want, as this is the location where eight-fold-

reducing autoencoder often fail to produce good reconstruction. Making this an energetically 

privileged place (a place where conservation of energy is particularly important) might force 

the autoencoder to handle it better. 

Unfortunately, energy plots of skyrmion phases look a lot less promising. Let us observe Figure 

4.5. (Upper row shows plots of z-magnetisation component, lower row shows plots of local 

Hamiltonian). We can see that for skyrmion gases (and for sparse skyrmion lattices) the space 

around skyrmions appears grainy, showing that small irregular fluctuation of magnetisation had 

non- negligible energy contribution – which is arguably not what we want. On the other hand, 

for dense skyrmion lattices, the individual skyrmions appear less sharp. The lower contrast 
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means that in terms of energy, dense skyrmions are less important - lesser loss would arise from 

their deformation. Again, this is not what we would like to observe. And it will only get worse: 

In previous, the bounds of the colour-map were recalculated separately for each image (so that 

upper bound corresponded to maximum of the image and lower bound to minimum of the 

image.) If we set upper bound to maximum of the dataset and lower bound to minimum, we 

would obtain plots alike second row in Figure 4.6 (where the first row again shows plots of z- 

magnetisation component.) In this case, the contrast is even lower.  

 
Figure 4.7 First column shows plots of z-magnetic component (“terrain” colour-map). Second columns show plots of 

local Hamiltonian. The remaining three columns show plots of local Hamiltonian as averaged over different patch sizes. 

 

 
Figure 4.8 First column shows plots of z-magnetic component (“terrain” colour-map). Second columns show plots of 

local Hamiltonian. The remaining three columns show plots of local Hamiltonian as averaged over different patch sizes. 
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4.1.5 Averaged Hamiltonian 

So, energy plots have two undesirable properties: configuration-dependent low contrast and 

background noise. Is there a way how to eliminate this? Well, here is the thing: What if we 

instead of calculating energy for each spin separately, calculated energy for small assembly 

(like 3x3 matrix) of spins? We would obtain results alike third row in Figure 4.6. We see that 

for most of the configurations, the contrast is deepened. If we experiment with size of the 

averaging matrix, we would see that this change is gradual, as Figure 4.7 shows. Unfortunately 

increasing size of averaging matrix starts blurring helical configuration as Figure 4.8 shows. 

After all, even Figure 4.7 shows that to large sizes of averaging matrices can produce non- 

physical results (last column). Moreover, as we can see on Figure 4.6, there are low-contrast 

configuration for which averaging energy exacerbates the problem, rather than helps it (middle 

column).  

In the end, there are four main reasons why working with local Hamiltonian is preferred to 

averaged energy: 1) local Hamiltonian has more direct physical interpretation 2) averaging 

energy blurs topology of spiral phases 3) contrast-sharpening doesn’t work on all configurations 

4) training CNN with averaged energy as loss function is numerically more demanding (hence 

the whole process takes significantly longer time even for averaging matrices of smallest sizes). 

 

4.2 Implementing local Hamiltonian 

Now, let us contemplate the results. We are going to explore how the performance of CNN 

changed with increasing the contribution of local Hamiltonian to the total loss. Specifically, the 

constant c varied in the interval from 0 to 1,4. As the Figures 4.19 and 4.20 show, for the values 

of c approaching 1,4, the reconstruction error rose drastically. This was the main reason why 

higher values of c weren’t investigated.  

 

4.2.1 Main trends 

It was found that with increasing Hamiltonian contribution increased both in-plane 

magnetisation errors and out-of-plane magnetisation error. This can be seen on Figures 4.19 

and 4.20. Of course, this does not tell us whether the CNN failed only at some configuration, 

or its performance worsened uniformly. If we plot the errors for each phase separately (as it is 

done in Figures 4.9 – 4.18), we will find out the following: For bimeron-spiral configurations 

(spirals with bimerons and spirals with merons), MSE of out-of-plane magnetisation rises in 

the whole interval. For skyrmions, it stays approximately constant for c within the interval 0-

0,8, but sharply rises for c>0,8. For skyrmion-bimeron and bimeron-skyrmion configurations, 
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it rises negligibly for c within the interval 0-0,8, but accelerates for c>0,8. For pure spiral 

configurations it drops sharply for c within the interval 0-0,3, but decelerates for c>0,3. The 

trends for MSE of in-plane magnetisation are very similar, except for the fact that it does not 

seem to rise for spirals with merons configurations.  

From this it can be concluded that the optimal value of c should be sought in the interval 0-0,8. 

In this interval the magnetic MSE not to worsen that drastically for most of the phases. 

Contemplating the Figures 4.19 and 4.20) again, we see that this also applies to the total errors: 

Both total MSEs (in-plane as well as out-of-plane) rise most significantly for the c in the interval 

0.8-1.4.  

For the MSE of local Hamiltonian, the trends were completely different: For increasing value 

of c, MSE of local Hamiltonian decreased. It is shown on the Figures (42) and (43). This trend 

was seen for all phases although individual phases differed in terms of how sharply the MSE 

of Hamiltonian seemed dropping. 

 

 
Figure 4.9 In-plane MSE of bimeron-spiral phases. 
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Figure 4.10 Out-of-plane MSE of bimeron-spiral phases. 

 

Figure 4.11 In-plane MSE of phases containing only skyrmions. 
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Figure 4.12 Out-of-plane MSE of phases containing only skyrmions. 

 

 

Figure 4.13 In-plane MSE of spirals. 
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Figure 4.14 Out-of-plane MSE of spirals. 

 

 

Figure 4.15 In-plane MSE of skyrmion-bimeron phases. 
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Figure 4.16 Out-of-plane MSE of skyrmion-bimeron phases. 

 

 
Figure 4.17 In-plane MSE of bimeron-skyrmion phases. 
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Figure 4.18 Out-of-plane MSE of bimeron-skyrmion phases. 

 

 

Figure 4.19 In-plane MSE for all phases combined. 
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Figure 4.20 Out-of-plane MSE for all phases combined. 

 

Figure 4.21 MSE of local Hamiltonian for all phases combined. 
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4.2.2 Contribution of each phase to the total error 

For neither in-plane magnetic MSE nor MSE of local Hamiltonian, inclusion of Hamiltonian 

term didn’t change the ratio in which the phases contributed to the total error. Figures 4.19 

and 4.21 show the pie charts showing the relative contribution of each phase to the total 

error. These are plotted for c=0, but for higher values of c, they look very similar. As we can 

see, the biggest contributor to the total error to the in-plane MSE are the bimeron-containing 

phases, all main three categories having similar contribution. For the MSE of local 

Hamiltonian, the biggest contributor were spirals. For the out-of-plane MSE, inclusion of 

Hamiltonian did change the ratio in which the phases contributed to total error. Specifically, 

with rising value of c, the contribution of spirals with merons rose until it dominated the total 

out-of-plane MSE. The gradual change can be seen on the Figure 4.22, which shows the pie 

charts for differing values of c. 

 

Figure 4.22 Pie charts showing how different phases contribute to total out-of-plane MSE for differing c. 

 

4.2.3 Comparing MSEs of different phases 

The Figures A-Z the performance of four-fold reducing autoencoder, eight-fold reducing 

autoencoder and family of Hamiltonian-containing eight-fold reducing autoencoders with c in 
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the range 0-0,8 (reflecting the optimum). The bar charts show mean MSEs for different 

phases. For spirals, both in-plane and out-of-plane magnetic MSEs decrease until reaching 

values obtained for four-fold reducing autoencoder. For skyrmions, the MSEs increase, but 

not as significantly as it was observed for the for bimeron-containing interphases: The in-plane 

magnetic MSEs rise for all interphases, but most significantly for the skyrmion-bimeron phase. 

On the other hand, the out-of-plane magnetic MSEs rise dramatically for the bimeron-spiral 

phase, more slowly for bimeron-skyrmion phase and remain unchanged for the skyrmion-

bimeron phase. 

As for the MSE of local Hamiltonian, the values achieved for higher c are close to what was 

observed for four-fold reducing autoencoder. Only exceptions of this trend are spiral and 

spiral-bimeron phases for which MSE of local Hamiltonian remains relatively large. 

 

 

 
Figure 4.23 Comparing local Hamiltonian MSEs of different phases for differing c. 
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Figure 4.24 Comparing in-plane MSEs of different phases for differing c. 
 
 

 

 
Figure 4.25 Comparing out-of-plane MSEs of different phases for differing c. 
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4.2.4 Abrupt worsening of reconstruction for c=0.8 

In this section we will discuss the problem of abrupt worsening of reconstruction for 

Hamiltonian contribution constant equal to c=0.8. To do this, let us for a moment concentrate 

on pure skyrmion lattice configurations. If we plot the value of skyrmion magnetic MSE against 

skyrmion total magnetisation, we will find out that the value of magnetic MSE is directly 

proportional to the magnetisation. Which is not surprising: The value of magnetisation tells us 

how much space is devoted to the skyrmions. In other words: what proportion of the 

configuration contains nontrivial (non-ferromagnetic) topological elements and hence is 

expected to carry reconstructive errors. 

Very important is following realisation: The configurations with skyrmionic lattices are 

homogeneous in the sense that within the configuration all small assemblies of skyrmions 

have similar appearance.  (Even though there might be a topological defect breaking the large-

scale symmetry, on the small scale all parts of the configuration look very alike.) Therefore, if 

the CNN was to completely fail the reconstruction, the error would be everywhere very 

similar. In the extreme case if we imagined the CNN turning skyrmionic lattices to 

ferromagnetic configuration, there would be a perfect linear dependence of the error on the 

magnetisation. And such notion is not unrealistic: On the plot of z-magnetisation of the 

reconstructed configurations it was observed that the most problematic configurations got 

reconstructed as pure red images with few regular white blobs.  

 
Figure 4.26 Correlating out-of plane MSE with total magnetisation. 
 

More quantitative analysis of the situation might be performed by contemplating the Figure 

4.26, which shows that there truly is a linear dependence between magnetisation and 

magnetisation error with the relationships being almost perfect for truly badly reconstructed 
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configuration. In fact, the whole plot appears split to parts: the upper part showing the perfect 

linear dependence (present only for cases when c>0.8) and the lower part showing linear 

trend with large spread. Here we see that for c>0.8 some of the skyrmionic configuration 

become outliers as a result of being reconstructed in a non-physical way. Very probably, such 

outliers occurred in all skyrmion-bimeron interphases, since these interphases also contained 

skyrmions and their reconstruction also worsened for c>0.8. Presence of outliers was another 

reason (beside high total MSE) why the values of c greater than 0.8 are disfavoured. 

 

4.2.5 Correlating reconstruction error with skyrmionic properties 

In an attempt to explain the large spread of skyrmionic MSE for low values of magnetisation, 

the dependence of MSE on different skyrmionic properties was explored. These properties 

were: inter-center distance (as calculated by expression 3.1), inter-edge distance (as 

calculated by expression 3.2), size (as defined in section “skyrmionic properties”) and inner 

core size (as defined in section “skyrmionic properties”). 

For size and inner core size, no correlation was observed. For the inter-center distance, a linear 

relationship was found between skyrmion inter-center distance and inverted magnetic MSEs 

(see Figures 4.27 and 4.28). It held for all values of estimated inter-center distance, but it was 

particularly strong for the interval 9-11. This is also the sole interval in which one can see a 

difference in autoencoder performance for different Hamiltonian contribution constant. In 

particular, with rising c value the linear trend gets shifted downwards (the inverted MSE starts 

at lower values). This is clearly visible on Figure 4.30 where linear best fit lines are compared 

for different c. Interestingly, this only holds for z-magnetisation MSE: Though for in-plane 

magnetisation error, there is also the linear relationships between inverted MSE and inter-

center distance, no difference is observed when changing Hamiltonian contribution constant 

(see Figure 4.29). If instead of magnetic MSE, MSE of Hamiltonian is plotted, the trend-line-

shift is in the opposite direction - for higher values of the constant c, trend lines are positioned 

more towards the top (see Figure 4.31). This is true for whole investigated range, not only for 

the interval 9-11. Nevertheless, for high values of c situation start to worsen. 

The trends observed for inter-edge distance were similar to trends observed inter-center 

distance. 
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Figure 4.27 Correlating out-of plane MSE with inter-center distance. 
 

 

Figure 4.28 Correlating in-plane MSE with inter-center distance. 
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Figure 4.29 Correlating MSE of local Hamiltonian with inter-center distance. 

 

Figure 4.30 Visualising linear trends for out-of-plane MSE 
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Figure 4.31 Visualising linear trends for MSE of local Hamiltonian 
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5 Discussion 

For the classification of magnetic phase configurations, simple neural networks with only few 

layers are often employed. This approach allows magnetic phase recognition based on global 

parameters, such as global magnetisation or topological charge. To aid classification of 

complex dataset, the data can be transformed to alternative representation. (Zhang at al. 2014) 

One possibility is to work with latent space of autoencoder neural network which encodes 

complex data properties obtained through feature-extraction path. In theory, using latent space 

representation as an input for classifier, should help with discriminating between data differing 

only in a non-trivial way. Such approach was successfully applied for diagnosis of prostate 

cancer from MRI images (Abrahan and Nair 2018), diagnosis of osteoporosis disease (Nasser 

et al. 2017) and speech emotion recognition (Cibau et al. 2013) In this work, we investigated 

autoencoder reconstructing magnetic configurations, with a prospect of using its latent space 

representation to facilitate recognition based on complex topological features rather than global 

parameters. 

For the set-up used in this work, one has two main options: Either to work with four-fold 

reducing autoencoder or with eight-fold reducing. The four-fold reducing offers reliable 

reconstruction, but less complex representation. Hence, with the motivation explained above, 

we might be very interested in knowing whether the eight-fold reducing autoencoder could be 

somehow modified so that its reconstruction improves. Inspired by the work of Kwon 2021b, 

we explored the possibility of doing this via Hamiltonian term. 

The limitations of eight-fold autoencoder were most apparent on the skyrmionic phase, where 

there was a strong linear relationship between inverted magnetic MSE and inter-center distance 

for the interval of inter-center distance equal to 9-11 grid points (corresponding to smallest 

distances in our dataset). This was interpreted as densely packed skyrmions having so rich 

topology that it cannot be constrained smaller-scale xy-plane. (Since MSE didn’t correlate with 

skyrmionic size, this must be a problem of scaling not resolution). For the Hamiltonian-

containing autoencoder linear trend persevered, but trend-lines got shifted downwards. 

Interestingly, MSE didn’t change outside the interval of inter-center distance 9-11, implying 

that sparse skyrmions were resistant to detrimental effect of Hamiltonian. As for the local 

Hamiltonian MSE, inclusion of the Hamiltonian had distance-independent positive effect. All 

this was explained via following: 

As we saw on the plots in the beginning of this section, the Hamiltonian metric is more sensitive 

to small z-axis spin disturbances. (Energy plots were very similar to z-magnetisation plots. In 
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contrast to z-magnetisation plot, the energy plot appeared grainy - showing that it picked up 

small changes relative position of neighbouring spins.) Hence even the changes which would 

not influence magnetisation MSE greatly, can have big effect on local Hamiltonian. Including 

Hamiltonian in the loss function might therefore prompt the spins to organize more neatly. 

Nevertheless, such attention on the detail probably would have come at cost of having less 

learning capacity to focus on truly problematic configuration. That might be the reason why 

Hamiltonian-containing autoencoder did not do so badly on the configurations with non-dense 

skyrmionic lattices - loose lattices never presented a problem for the autoencoder. On the other 

hand, increasing Hamiltonian contribution resulted in worsened performance on dense 

skyrmionic lattices which were autoencoder’s weak point. 

This discussion can also be extended to non-skyrmionic phases: Intermediate phases possess 

low symmetry, therefore are more topologically rich and harder to reconstruct. Hence as it 

would be expected, these were the phases for which the detrimental effect of the Hamiltonian 

was most clear to see. Particularly interesting was how the MSE for spirals lowered while MSE 

for bimeron-spiral phases increased. Both, bimeron-spiral and spiral phase had for some reason 

high Hamiltonian MSE. This means that Hamiltonian-containing autoencoder would try harder 

to reconstruct these two phases well. Nonetheless, this did not work out for bimeron-spiral 

indicating that they are extremely hard to reconstruct, possibly on account of their high 

topologically complexity.  

Yet, this is a conjecture, similarly as most other explanations presented in this section. In the 

end, we don’t know whether inclusion of Hamiltonian made our data more physical. Despite 

this, the prospect of using Hamiltonian-containing autoencoder for phase recognition might not 

be as bad as would the high reconstruction error indicate: For the phase-reconstruction task we 

don’t need a perfect latent space representation, we just need it to be characteristic for each 

phase. (This was also the reason why we worked with so many phases – we wanted to be able 

to perform the evaluation for each phase separately.) From the fact that the reconstruction errors 

differ, we can infer that there are qualitative differences in how the phases are represented. 

Perhaps it could be even possible to perform the phase-recognition solely on a basis of 

reconstruction errors without requiring a classifier, as it was done in Betechuaoh et al. 2016. 
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Conclussion 

To reach the goal of modifying the autoencoder with Hamiltonian term, the Hamiltonian was 

added in form of local Hamiltonian – a quantity representing energies of spins. Specifically, the 

loss was constructed so that it consisted of simple MSE term and MSE of local Hamiltonian 

multiplied by constant c, which varied in the range 0-1.4. For the c in the interval 0.8-1.4, the 

total magnetic MSE rose drastically with this trend applying to most of the phases when 

analysed separately. For the skyrmionic phase, this interval was characteristic by the presence 

of badly reconstructed outliers. 

For the c in range 0-0.8, trends in magnetic MSE were phase specific. For spirals, MSE 

decreased until reaching levels expected for reliable reconstruction. For skyrmions, MSE rose 

insignificantly. For the bimeron-containing phase the errors rose drastically, with in-plane MSE 

rising most for the skyrmion-bimeron phase and off-plane MSE rising most for the bimeron-

spiral phase. The errors of ferromagnetic and skyrmion gas phase remained negligible. 

The quantitative differences in MSE profiles were also found for different densities of skyrmion 

lattices. For higher densities, MSE was high and was indirectly proportional to distance between 

skyrmions. This was interpreted as dense skyrmionic lattices containing so many nontrivial 

topological elements that it is impossible to represent them on the constrained latent space 

without facing information loss. Inclusion of Hamiltonian term had negative effect on off-plane 

MSE, but not in-plane MSE, and only for high density configurations. 

As for the MSE of local Hamiltonian, inclusion of Hamiltonian term had phase-independent 

positive effect, with the gradient of change steepest for the lower values of c. 

It was concluded that if the Hamiltonian-containing autoencoder is to be used in further 

applications (for instance in phase-recognition task, where the prospects seem hopeful), one 

should focus on the c in the interval 0-0.8. 
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