
BACHELOR THESIS

Jindřich Bär

Declarative Web Automation Toolkit

Department of Software Engineering

Supervisor of the bachelor thesis: RNDr. Jakub Kĺımek, Ph.D.
Study programme: Computer Science

Study branch: Databases and Web

Prague 2022

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank my supervisor RNDr. Jakub Kĺımek, Ph.D., who has been
a great help in the development of this thesis. Special thanks go to my colleagues
at Apify for their support and insigthful advice.

ii

Title: Declarative Web Automation Toolkit

Author: Jindřich Bär

Department: Department of Software Engineering

Supervisor: RNDr. Jakub Kĺımek, Ph.D., Department of Software Engineering

Abstract: The goal of this thesis is to develop a declarative toolkit for developing
web automations. Despite the great number of web automation tools and libraries
on the market, it is difficult to find one powerful enough to meet the needs of
complicated web automation use cases, yet simple enough to be used by untrained
users. In this thesis, we research existing web automation tools, compare them
based on their features and ease of use, and then develop our own text format
for defining web automations. Following this, we also develop an interpreter and
a validator for this format and a design and implement a GUI tool for creating
and editing web automations in this format. The user testing in the last part of
the thesis describes problems the users have encountered while using the tool. In
the conclusion we try to come up with solutions to those problems and suggest
ideas for further development.

Keywords: web, automation, scraper, crawler, declarative programming

iii

Contents

Introduction 3

1 Analysis 4
1.1 User roles . 4

1.1.1 User . 4
1.1.2 Developer . 4

1.2 Requirements . 5
1.2.1 Editor . 5
1.2.2 Runner . 6

1.3 Use case analysis . 7
1.3.1 Editor . 7
1.3.2 Runner . 9

1.4 Existing solutions . 11
1.4.1 Evaluation criteria . 11
1.4.2 Programming-based solutions 11
1.4.3 Codeless solutions . 13

2 Design 16
2.1 Parts of the project . 16
2.2 Workflow definition format . 16

2.2.1 Programming logic . 16
2.2.2 Conditions . 17
2.2.3 Reactions . 18
2.2.4 Serialization . 19
2.2.5 Validation . 21

2.3 Runner . 22
2.3.1 Components . 22
2.3.2 Programming language, libraries 22

2.4 Editor . 23
2.4.1 Technologies . 23
2.4.2 UI design . 24

3 Implementation 27
3.1 Runner . 27

3.1.1 Performance . 27
3.1.2 Extra features . 28

3.2 Editor . 30
3.2.1 React . 30
3.2.2 Improving the UX . 31

4 Documentation 33
4.1 User documentation . 33

4.1.1 Editor application . 33
4.2 Developer documentation . 38

4.2.1 wbr-interpret . 38

1

4.2.2 wbr-editor . 39
4.2.3 wbr-cloud . 40

4.3 Administrator documentation . 40
4.3.1 Editor application . 40

5 Testing 42
5.1 Code quality . 42
5.2 Automated tests . 42

5.2.1 Unit tests . 42
5.2.2 E2E tests . 43

5.3 User testing . 43
5.3.1 Test scenario . 44
5.3.2 SUS survey . 44

6 Conclusion 45

Bibliography 46

List of Figures 48

List of Tables 49

List of Abbreviations 50

A Attachments 51
A.1 SUS survey details . 51
A.2 wbr-interpret code documentation 52

A.2.1 interpret.ts . 52
A.2.2 proprocessor.ts . 55
A.2.3 types/ . 55
A.2.4 utils/utils.ts . 55
A.2.5 utils/logger.ts . 56
A.2.6 utils/concurrency.ts 56
A.2.7 browserSide/scraper.js 57

A.3 wbr-editor code documentation 58
A.3.1 src/App.tsx . 58
A.3.2 src/Application/ . 58
A.3.3 src/Application/Reusables 58
A.3.4 src/Application/WorkflowEditor 59
A.3.5 src/Application/WorkflowEditor/Components 59
A.3.6 src/Application/WorkflowEditor/Editables 60
A.3.7 src/Application/WorkflowEditor/Utils 60
A.3.8 src/Application/WorkflowPlayer 61

A.4 wbr-cloud API documentation 62

2

Introduction
In the past few years, the web scraping and data extraction industry became
much more prominent, as the need for data rises among all branches of science.
The industry is expected to grow at 13.1% CAGR, reaching a market value of
USD 948.60 Million [MaResFut20].

With web browser automation also being the leading technology for UI testing
and robotic process automation (RPA) for web, the technology exceeds the data
extraction needs by far. Despite the immense size of this evergrowing industry,
there is still no standardized universal format for storing automated workflows.
Most automation developers produce executable code in general purpose pro-
gramming languages, with Java, JavaScript, and Python being the most promi-
nent ones [Applit21].

This approach poses a certain security risk, as the user of such automation
needs to run untrusted code. It also creates a barrier to entry for beginners
without the required programming knowledge. Furthermore, the absence of a
standardized format hinders the collaboration between developers.

Thesis goals
The goal of this thesis is to develop a human-readable, declarative format for
storing and creating web automations, with an interpreter of this format and a
visual editor, allowing less technical users to create and maintain automations in
this format.

Such format should allow for a development of resilient, reusable, and com-
prehensive workflow definitions. It should also be machine-readable, parsable and
editable, ultimately leading to a simpler adoption of the format by developers of
third-party software.

This format should also be application-oblivious, i.e. not too oriented on
automating only web-related workflows. The definition of the format should allow
developers to create interpreters for this format for handling different automation
tasks, still maintaining the same syntax.

The presented workflow interpreter should then be able to parse, validate
and execute the defined web-related workflows. It should also implement a basic
programmable interface to allow other developers to use the interpreter from their
own software.

The workflow editor should be able to generate valid workflow files, allowing
the user to create the workflow definitions without knowing the exact internal
syntax of the definition format. The editor should implement a modern, user-
friendly and intuitive graphical user interface (GUI) with a steep learning curve.
The ultimate goal of the editor is to shield the user from the programming part of
the automation task completely, leaving them with a simple yet powerful graph-
ical tool.

3

1. Analysis
When assembling a multifunctional, reusable toolkit, it is crucial to map the exact
user needs. The following chapter analyses the user requirements and project use
cases. It also describes different user roles and states general functional and
nonfunctional requirements for the software.

1.1 User roles
In the first section of the analysis, we describe the typical users of such a toolkit.
Users may have different requirements based on their level of expertise and knowl-
edge. While the toolkit should be accessible and user-friendly enough to allow
beginners to create web automations with ease, it also should provide the more
experienced users with advanced functionality required for handling specific use
cases.

For clarity, we describe only two user roles with a significant difference in skill
and knowledge. Please note that these roles are rather exemplatory and do not
describe actual users the author has met. Their main purpose is to provide a
clear dichotomy between two common groups of software users.

1.1.1 User
User has a fairly basic knowledge of using personal computers and web-related
technologies - knowledge of e.g. CSS or XPath selectors is expected. A User
wants to reach their goal without much additional knowledge and/or specialized
tools.

Such a user wants to use the toolkit in the most basic way. While they might
have some experience with the technologies used in the toolkit, they generally do
not want to use the toolkit programmatically and rely on the GUI tools only.

Their automation use case is easily described, mostly as a linear sequence of
well-defined, simple steps. Some examples of such use cases might be automated
data extraction and simple robotic process automation.

1.1.2 Developer
The Developer user role describes an intermediate-to-expert computer specialist
with deep knowledge of computer systems, programming and web-related tech-
nologies. This user role expects to take advantage of the advanced features of the
toolkit, possibly spending some extra time learning how to use those properly.

They might not want not only to create and run automations but also to use
the toolkit programmatically, install the toolkit components on their systems or
edit parts of the toolkit.

When creating an automation, the Developer has more complicated use cases
with possibly branching scenarios. Those might be more elaborate data extraction
cases, software testing, complicated RPA and other.

4

1.2 Requirements
The following section describes functional and non-functional requirements for
the toolkit project, based on the requirements of the user roles described in the
section 1.1 User roles.

For clarity, let us divide the toolkit project into individual tools serving dif-
ferent purposes. As the main purposes of the toolkit are creating, editing and
running web automations, we can talk about the Editor and the Runner parts
separately.

1.2.1 Editor
The Editor is the part of the toolkit allowing the users to create and edit the
web automations. It should provide a user-friendly way of doing so while not
restricting the more advanced users.

The goal of the Editor is not to exhaustively support all the features of the
workflow definition syntax, but to provide a simple and intuitive way of creating
and editing web automations.

Functional Requirements

1.2.1.1.1 The Editor must allow the user to create a valid workflow file.

1.2.1.1.2 The Editor must enable the user to upload a valid workflow file into the
Editor.

1.2.1.1.3 If the uploaded file is not a valid workflow file, the Editor must reject it.

1.2.1.1.4 The Editor must allow the user to edit the workflow file. No user-induced
change to the file shall corrupt the valid file syntax.

1.2.1.1.5 The Editor must allow the user to export a valid workflow file. This ex-
ported file must be readable by the Runner.

1.2.1.1.6 The Editor must interface the Runner, allowing the user to test run the
automations.

1.2.1.1.7 During the test run, the Editor must display the automation results in a
human-readable way.

Nonfunctional requirements

1.2.1.2.1 The user interface of the Editor shall adhere to the best user interface (UI)
practices.[UIDesign]

1.2.1.2.2 The Editor shall contain example workflow files for the user to study and
to showcase the capabilities of the toolkit.

5

1.2.2 Runner
The Runner is the part of the toolkit providing support for executing the au-
tomations made with the Editor. It should provide a safe and optimized way for
running the automations as well as a comprehensive user interface.

Functional Requirements

1.2.2.1.1 The Runner must allow the user to execute given valid automations.

1.2.2.1.2 If the provided automation is not valid, the Runner must refuse such au-
tomation, notifying the user.

1.2.2.1.3 If the automation provided to the Runner is not valid, the Runner must
provide the user with detailed information about the errors.

1.2.2.1.4 The Runner must allow the user to observe the automation run.

1.2.2.1.5 The Runner must provide the user with additional information about the
automation run.

1.2.2.1.6 The Runner must enable the user to interrupt the automation execution at
an arbitrary moment.

1.2.2.1.7 The Runner must inform the user of any runtime errors. Furthermore, the
Runner must also log all errors appropriately.

1.2.2.1.8 The Runner must expose a programmable interface to allow for a simple
third-party adoption.

Nonfunctional requirements

1.2.2.2.1 The Runner shall implement the automation execution in an optimized
way.

1.2.2.2.2 The installation of the Runner shall be simple, allowing for quick adoption
of the software.

6

1.3 Use case analysis
The following section goes through multiple use cases for the individual parts of
the toolkit. The described use cases should reflect the user requirements from
the section 1.2 Requirements. Every use case is also accompanied by an example
scenario describing a typical user flow.

For clarity, we again divide the use cases into parts corresponding to the main
features of the toolkit, much like in the previous section.

1.3.1 Editor
The Editor is a part of the toolkit facilitating the creation of the automation
files. The following section contains sample use cases, describing the standard
user flow and exception handling.

The user in all the following use cases corresponds to the User user role.

Use Case 1 : First steps

• Goal: User wants to learn how to operate the Editor.

• Scenario:

1. User accesses the Editor application for the first time.
2. A comprehensive welcome message is shown. The Editor application

provides a step by step explanation of its interface.
3. During this showcase, the Editor interface walks the user through the

process of creating simple automation.
4. After the tutorial phase, the Editor interface returns to the default

state.

• Note: At any time, the user can decide to stop the tutorial and access the
full version of the Editor. On the other hand, the user must be allowed to
start the tutorial manually, even repeatedly.

Use Case 2 : Create an Automation

• Goal: User wants to create a new automation.

• Scenario:

1. User accesses the Editor application.
2. Using the Editor interface, the user creates a new blank automation

file.
3. User edits the newly created automation using the Editor interface.
4. After editing the automation using the Editor, the user can export the

automation. The Editor generates a valid automation file and presents
it to the user.

7

Use Case 3 : Edit an existing automation

• Goal: User wants to edit an existing automation stored on their device.

• Scenario:

1. User accesses the Editor application.
2. Using the Editor interface, the user passes the existing automation to

the Editor.
3. The Editor validates the passed automation.
4. User edits the uploaded automation using the Editor interface.
5. After editing the automation using the Editor, the user can export the

automation. The Editor generates a valid automation file and presents
this to the user.

• Exception: The file provided by the user in step 2 is not a valid automation
file.

– Exception flow: The Editor rejects such file with a comprehensive
error message. The Editor interface returns to the initial state. The
user can pass another automation file.

Here follows the UML diagram specifying the relations between steps of the
use cases and their relation to the end-user.

Workflow author

Validate existing
workflow

Edit existing
workflow

Editor

Create new
workflow

<includes>

Figure 1.1: Editor - Use Case UML diagram

8

1.3.2 Runner
The Runner is the part of the toolkit responsible for the automation execution.
The following section contains sample use cases, describing the standard user
flow and exception handling. If not stated otherwise, the user in the following
examples corresponds to the User user role.

Use Case 1 : Running an automation

• Goal: User wants to run an automation.

• Scenario:

1. User accesses the Runner application.
2. Using the Runner interface, the user passes the automation to the

Runner.
3. The Runner validates the passed automation.
4. The Runner runs the automation, sharing the progress with the user.
5. After the automation is done, the Runner notifies the user, eventually

presenting the results of the automation run.

• Exception: The file provided by the user in step 2 is not a valid automation
file.

– Exception flow: The Runner rejects such file with a detailed error
message. The Runner interface returns to the initial state. The user
can pass another automation file.

Use Case 2 : Stopping the execution early

• Goal: After submitting the automation to the Runner, the user wants to
stop the automation execution prematurely.

• Scenario:

1. User accesses the Runner application.
2. Using the Runner interface, the user passes the automation to the

Runner.
3. The Runner validates the passed automation.
4. The Runner runs the automation, sharing the progress with the user.
5. Using the Runner interface, the user orders the Runner to stop the

execution.
6. The Runner responds to the user’s halt request. It stops the automa-

tion execution and exits gracefully. The Runner presents the user with
the run results.

• Note: The run results (e.g. the data scraped from the websites) can be
incomplete because of the early termination. Despite this, the early termi-
nation must not affect the data integrity.

9

Use Case 3 : Debugging an automation

• Goal: An advanced user (see the Developer user role) needs to gather
information on their automation run performance.

• Scenario:

1. User accesses the Runner application.
2. Using the Runner interface, the user passes the automation to the

Runner. The user also switches the debugging mode on.
3. The Runner validates the passed automation.
4. The Runner runs the automation, sharing the progress with the user.

The Runner now also shares the internal debugging information with
the user.

5. After the automation is done, the Runner notifies the user, presenting
the debugging and performance data. Eventually, it also presents the
results of the automation run.

Workflow user

Interpreter

Run the
workflow

Syntax check

Collect the
output

<<includes>>

Syntax error

<<extends>>

<<includes>>

Figure 1.2: Interpreter - Use Case UML diagram

10

1.4 Existing solutions
As of now, there are already numerous solutions for automating web actions on the
market. A majority of those uses existing web browsers and offer a programmable
interface for simulating user input.

1.4.1 Evaluation criteria
To provide a comprehensive comparison, the existing solutions will be evaluated
based on several common criteria.

1. Ease of use: User experience (UX) quality, evaluated based on different
user knowledge levels.

2. Universality: How applicable is this solution for different web automation
use cases, i.e. UI testing, web scraping, web crawling and other.

3. Automation resilience: Is the automation capable of dealing with unex-
pected situations? Does the solution allow for conditional decisions?

4. Open format: Whether or not does the solution publish open documen-
tation of its internal format.

An universal, open and automation tool should provide all of those qualities.

1.4.2 Programming-based solutions
In general, the existing automation solutions can be divided into two groups,
based on the UX quality and granularity of supported actions. The first group
consists of programmable solutions targetted at experienced users.

Cypress is a end-to-end (E2E) Javascript testing framework containing var-
ious assertions for quality assurance (QA) testing of webpages. It supports mul-
tiple web browsers and offers its own UI and toolkit for test programming and
running. Due to its strong orientation towards testing, it does not provide much
methods for data extraction and crawling.

• Ease of use - Creating Cypress automations requires JavaScript program-
ming knowledge. Cypress also contains a graphical recorder Cypress Studio
as an experimental feature.

• Universality - As a testing framework, Cypress offers methods for web-
related assertions and DOM queries. Because of its library nature, writing
crawlers and scrapers is also possible, despite having very little support
from the library’s side.

• Automation resilience - Since Cypress has been designed as a testing frame-
work, i.e. to be used on one’s own infrastructure, there is no inbuilt support
for handling unexpected states. The official documentation speaks about
modifying the (tested) server itself and explains the usual ways of handling
exceptions in JavaScript. [CyprCond]

• Open format - The automations written in Cypress are JS programs.

11

Selenium WebDriver is a fairly popular tool among web UI testers, as
it offers a wide variety of selector engines and comprehensive method naming.
Distributed as a multilanguage library, Selenium implements a high-level interface
for controlling web browsers from code.

• Ease of use - Creating Selenium WebDriver automations requires knowledge
of at least one of the following programming languages: Ruby, Java, Python,
JavaScript, C#.
Selenium also offers an integrated development environment (IDE) with
low-code/record and playback tools. This IDE is implemented as a Firefox
and Chrome extension.

• Universality - Selenium WebDriver is quite low-level, enough to handle
crawling, scraping and testing use cases alike. On the other hand, there
are no native methods for testing, letting the user work with external test-
ing frameworks.

• Automation resilience - In the Selenium WebDriver library, there is no in-
built support for handling unexpected states. The Selenium IDE allows for
drag-and-drop branching, which corresponds to writing conditions manu-
ally. [SelenCF]

• Open format - The automations written using Selenium are executable pro-
grams. Selenium IDE allows the users to export the created workflows
as code in any of the supported languages, using various popular testing
frameworks (e.g. Mocha for JavaScript, JUnit for Java etc.)

Puppeteer is a low-level library used for web browser automation. Unlike
Cypress and Selenium, Puppeteer oficially supports Chromium based browsers
as its only backend browsers as of now (May 12, 2022).

The communication with the browser is implemented via WebSockets and the
Chrome DevTools Protocol (CDP), a Chromium-specific set of commands. This
allows Puppeteer to exceed Selenium both in stability and performance, sporting
up to 17% speedup in benchmarks [Chck21].

• Ease of use - Using Puppeteer for creating web automations requires knowl-
edge of JavaScript.

• Universality - Just like Selenium WebDriver, Puppeteer provides a low-level
browser control, which makes it an universal tool for testing, scraping and
crawling web.
On the other hand, users requiring high-level abstractions for testing or
data extraction must resort to using third-party libraries or write this func-
tionality themselves.

• Automation resilience - As stated before, Puppeteer is a low-level library
for web browser automation. All conditional branching must be handled by
the programmer themselves.

• Open format - The automations written using Puppeteer are executable
JavaScript programs.

12

Playwright is another low-level library multilanguage library offering pro-
grammable ways of controlling a web browser. For browser communication,
Playwright uses similar technology as Puppeteer unlike Puppeteer, Playwright
supports multiple commercial browsers (Chromium, Firefox, Webkit as of May
12, 2022) and has official bindings for multiple languages (Type/JavaScript, Java,
Python, .NET).

Due to differences between browsers and partial incompatibility of remote
debugging protocols, Playwright is distributed with patched versions of Firefox
and Webkit [PPatch21]. Stock versions of Chromium-based browsers (Google
Chrome, Microsoft Edge) are supported. [PReadme22]

• Ease of use - Using Puppeteer for creating web automations requires knowl-
edge of the selected programming language.

• Universality - Following Puppeteer’s legacy, Playwright also provides a low-
level browser control. This makes it a universal tool for various web au-
tomation related tasks.
Just like Puppeteer, Playwright also lacks content-oriented high-level ab-
stractions for scraping or crawling the web. Again, those must be imple-
mented by the user or imported from third-party libraries.
Unlike Puppeteer, TS/JS version of Playwright comes with Playwright Test,
a simple test-runner using a Jest-inspired syntax.

• Automation resilience - The Playwright library does not provide decision-
making algorithms capable of handling unexpected states.

• Open format - The automations written using Playwright are executable
programs.

1.4.3 Codeless solutions
All the aforementioned examples require programming, which can mean a signif-
icant barrier to entry for beginners. Besides these examples, there are also other
solutions, allowing the users to create, manage and execute automated workflows
using higher-level UI actions.

Dexi.io is one of such services. Accessible as a web application, it provides the
user with a web-based browser recorder, removing both the need for programming
and package installation. Dexi.io GUI editor allows for creating branches based
on user-specified conditions.

The recorder app suffers from problems stemming from its web nature, namely
CORS-related issues, being targetted by anti-scraping measures and worse re-
sponsiveness.

• Ease of use - As mentioned above, Dexi.io provides a graphical WYSIWYG
recorder, shielding the user from coding of any kind. While this recorder
has several flaws - namely unintuitive GUI and problems related to anti-
scraping measures employed by the websites, it still can be well useful in
different use cases.

13

• Universality - The recorder offers many user-defined actions, including test
assertions and smart data extraction with sibling detection, making Dexi.io
a universal tool for testing and scraping. The recorder also allows for limited
web-crawling functionality.

• Automation resilience - The recorder allows the users to manually specify
custom branching conditions on certain places in the workflow.

• Open format - While the recordings are exportable in a JSON1-based for-
mat, the definition of this format is closed, effectively causing a vendor
lock-in. Besides the recorder, Dexi.io provides a platform for scheduling
and running the automations.

Browse.ai serves a similar purpose as Dexi.io. Utilizing a Chrome-only
browser extension for workflow recording, Browser.ai offers arguably better UX
than Dexi.io with more accurate web page representation.

The execution of Browser.ai recordings is available only through the associated
web service without any export option, causing even stronger lock-in than Dexi.io.

• Ease of use - Browse.ai takes pride in making web automation as intuitive as
possible. This, combined with the browser extension nature of the service,
makes it the one with the best UX out of the mentioned options.
However, as of May 12, 2022, author of this work struggled with severe per-
formance issues when using this extension, possibly hinting at optimization
problems.

• Universality - Being oriented mostly towards data extraction, the recorder
provides advanced scraping techniques. Web crawling and UI testing have
limited support.

• Automation resilience - There is no way of specifying conditional branches.

• Open format - There is no way of exporting the recordings. The Browse.ai
website provides an environment for running the recordings, causing a ven-
dor lock-in.
Furthermore, the difference between the recording environment, i.e. client’s
browser, and the execution environment, the cloud service, causes errors.
Those stem from differences between both environments and anti-bot mea-
sures employed by third-party services.

Chrome Recorder is a preview feature of the Google Chrome web browser
(as of May 12, 2022). This can be seen as Google’s reaction to the new emerging
technologies and the first attempt to implement a native recording functionality
into the browser.

• Ease of use - Embedded into the browser, the Chrome recorder provides the
best performance and responsiveness of the mentioned examples.

1https://www.json.org/json-en.html

14

https://www.json.org/json-en.html

• Universality - Since this browser feature is targetted mainly at the QA
testing community, the recorder offers detailed performance measurement
features. For the same reason, data extraction methods are missing, ren-
dering the Chrome Recorder unusable for web scraping use cases.

• Automation resilience - There is no way of specifying conditional branches.

• Open format - The created recording is exportable as a JavaScript code
utilizing the Puppeteer library.

Name Ease of use,
UX Universality Recording

resilience Open format

Cypress,
Selenium %

requires
programming ! − − source code

Puppeteer,
Playwright %

requires
programming ! − − source code

Dexi.io !
web-based
GUI recorder − − %

JSON-based
closed format

Browse.ai !
GUI recorder
(extension) − % %

No export
available

Chrome
Recorder !

GUI recorder
(browser
feature)

% % − source code

This work ! GUI editor ! ! ! open format

15

2. Design
The following sections describe decisions made during the project design phase.
Starting by breaking the project into individual parts, the following chapter ini-
tially describes all the parts separately, followed by definitions of their contact
points.

Design decisions made here should reflect the requirements mentioned in the
previous chapter. These decisions also directly influence the implementation of
the project described further.

2.1 Parts of the project
As stated in the introduction of this thesis, the goal of this thesis is to develop a
clear, concise format for storing web automations as well as tools for simplifying
the work with the format.

Given this assignment, it is only natural to first design the automation format,
as the design of the tools for editing and debugging the automation files largely
depends on the format design itself. For the tools part, we can reuse the rather
informal partition of the tools into Editor and Runner, following the idea from
the section 1.2 Requirements, as this still describes the two principal use cases
of the toolkit. The notional interface and the middle ground between those two
parts (Editor and Runner) is then the workflow definition format, as both tools
are designed to work with it, albeit in different ways.

The main parts of the project from now on are therefore the Format, Editor
and Runner. The design of those three parts is discussed in the following sections
separately.

2.2 Workflow definition format
As both the Runner and the Editor work directly with the files containing the
workflow definitions, the first part of the project to be designed is the workflow
definition format itself.

The workflow definition files should contain all the information needed to
describe an arbitrary web-related workflow. The files in this format should also
be parsable, human- and machine-readable and provide a simple yet powerful
way of programming the web automations.

2.2.1 Programming logic
As the workflow definitions are computer programs of sorts, the first design de-
cision needs to be what programming concepts will the file format implement.
To retain the steep learning curve and user-friendliness, this programming “lan-
guage” also should not be too complicated.

The trend in the current automation tools, such as IFTTT, Zapier or Hug-
inn shows a rise in the popularity of declarative programming. Such languages
and tools work with definitions of the desired results rather than describing the
complete control flow. [Sebesta2015]

16

https://ifttt.com/
https://zapier.com/
https://github.com/huginn/huginn
https://github.com/huginn/huginn

Inspired by logic programming languages such as Prolog - and its popular
implementation SWI Prolog - the workflow definition should contain a set of
conditions describing a possible state of the environment, connected to their re-
spective reactions, describing a sequence of actions to be carried out in case the
condition applies.

2.2.2 Conditions
As stated before, the workflow definition format should allow the user to specify
web environment-related conditions for running the automation steps.

Such conditions can be e.g. the browser visiting a certain url, the current
page containing certain selectors or the current browser session having cookies
set to specific values.

Moreover, the format should allow the user to combine the base conditions
using boolean operators to create more comprehensible and compact syntax.

Following through with the Prolog comparison, the workflow definition could
look something like this:

% X is denoting the current state of the browser
% Y is to be unified with the next state

nextState(X, Y) :- url(X, "https://jindrich.bar"),
% action to be
% executed on
% https://jindrich.bar

nextState(X, Y) :- selector(X, "button"),
% action to be
% executed if the current
% page contains a button

nextState(X, Y) :- cookies(X, "key", "value"),
% action to be
% executed if the current
% browser session has the
% ‘key‘ cookie for the
% page set to ‘value‘

nextState(X, Y) :- url(X, "https://example.org"),
selector(X, "input"),
% action to be
% executed in case of both
% conditions matching
% (boolean AND example)

The conditions might also provide support for advanced functions such as
wildcards or regular expressions. Those would be particularly useful e.g. for
URLs for targetting a specific domain, TLDs etc.

17

https://www.swi-prolog.org/

2.2.3 Reactions
The workflow definition format should also allow the user to specify the actions
to be carried out when the respective condition matches.

Those can be e.g. click, goto, scrapeData and similar. The actions should
be chainable, allowing the user to specify a set of actions to be executed sequen-
tially, without additional condition matching between those.

Completing the Prolog-inspired example from the previous section, the com-
plete workflow definition would look like this:

% X is denoting the current state of the browser
% Y is to be unified with the next state

nextState(X, Y) :- url(X, "https://jindrich.bar"),
goto(X, Y, "https://example.org"), !.

nextState(X, Y) :- selector(X, "button"),
click(X, Y, "button"), !.

nextState(X, Y) :- cookies(X, "key", "value"),
click(X, Y, "logout"), !.

nextState(X, Y) :- url(X, "https://example.org"),
selector(X, "input"),
fill(X, "input", "hello"), !.

The mock implementation of the workflow definition file in SWI-Prolog is
available as a snippet1 in the Prolog online execution environment Swish.

Please note that in this case, the Prolog interpreter is actually taking the role
of the workflow runner.

Note: The examples above also show that the new state of the browser
depends only on the preceding one.
Such quality, also called memorylessness, or Markov property, simplifies
both the runner design and the programming concept itself. It might also
allow for some optimizations utilizing parallel execution.

As mentioned in the Introduction, the workflow definition format should be
application oblivious, allowing other developers to use it in their own automation
tools. For this reason, the action names are not part of the format definition.

1Available at https://swish.swi-prolog.org/p/dwaim.pl

18

https://swish.swi-prolog.org/p/dwaim.pl
https://swish.swi-prolog.org/p/dwaim.pl

2.2.4 Serialization
Finally, the workflow definition needs to be physically stored in a file. As it
would be rather counterproductive to develop a custom file format for storing the
conditions and reactions, the workflow definitions might be stored using a host
meta-format.

Based on the hierarchical nature of both condition-action pairs and possibly
recursive nature of the conditions themselves, it would be only logical to store
the definitions using a hierarchical data format like JSON, XML2 or YAML3.

Comparing these formats, JSON comes out as the most popular [GTrends22]
and most space-saving [Medium21]. While the advanced features of XML are
invaluable when working with complex structured data, it is perhaps too compli-
cated for storing well-defined workflow definitions.

With YAML taking first place, JSON is also a runner-up in human readability.
While improving the file legibility, the indentation oriented nature of YAML
makes it very prone to input errors - this problem is absent in JSON because of
its bracket-oriented grammar.

For the reasons mentioned, the workflow definition format will be built upon
JSON - a host format providing a simple, human-readable serialization for a
structured schema of the definitions.

The JSON serialization of the workflow definition file might then look as
follows:

[
{

"conditions": {
"url": "https://example.org"

},
"actions": [

{
"action": "goto",
"args": ["https://jindrich.bar"]

}
]

},
{

"conditions": {
"selector": "input"

},
"actions": [

{
"action": "fill",
"args": ["input", "hello"]

}
]

}
]

2https://www.w3.org/TR/2006/REC-xml11-20060816/
3https://yaml.org/

19

https://www.w3.org/TR/2006/REC-xml11-20060816/
https://yaml.org/

While being more verbose, the JSON serialization is arguably more readable
to a layman than the Prolog-syntax pseudo implementation.

The root of the workflow definition is a JSON array containing multiple ob-
jects, specifying the rules. Those have two keys, conditions and actions, defin-
ing the required conditions for the web browser environment and actions to be
carried out in case the conditions apply, respectively.

The conditions object describes a valid state of the web browser using a set
of predefined keys (url, selector, cookies and other).

The action object is an array of actions to be carried out. Every action is
described using its name (click, goto, fill...) and an additional, action-specific
set of arguments.

The action arguments are stored in an array. This also applies to singleton
arguments, mainly to maintain consistency and improve the machine readability
of the format.

Boolean operators

As mentioned in subsection 2.2.2 Conditions, the format should offer a way of
combining the defined conditions using basic boolean operators. Following an-
other popular format based on JSON (or rather JavaScript objects), the workflow
definition format might take inspiration from MongoDB query syntax [Mongo20].

In this query language, boolean operations are expressed using an object with
a specific key, containing an array of operand objects.

{ $and: [{expression},{expression},...] }
{ $or: [{expression},{expression},...] }

{ $not: {expression} }

This approach has a direct mapping to JSON syntax, which makes it very
suitable for our use case.

...
{

"conditions": {
"$and": [

{ "url": "https://example.org" },
{ "selector": "input" },
{ "selector": ".green" }

]
},
...

},
...
Because of the associativity of those operations, the representation of the

boolean operators AND and OR can have arbitrary arity. Writing an empty
$and or $or clause corresponds to an empty rule. Specifying only one subrule
(using $and/$or as unary operators) defies the purpose of using those operators,
as the truth value is the same as of the inner condition alone.

With this being said, the format does not specify a required operator arity.

20

Regular expressions

Following the same logic as with the boolean operators, the support for regular
expressions requested in the subsection 2.2.2 Conditions can take inspiration from
MongoDB query operators [Mongo20]. In the MongoDB syntax, regular expres-
sions are stored as objects with predefined keys - "$regex" and "$options":

{ <field>: { $regex: /pattern/, $options: ’<options>’ } }
{ <field>: { $regex: ’pattern’, $options: ’<options>’ } }
{ <field>: { $regex: /pattern/<options> } }

Regarding the types used, only the second mentioned alternative is directly
translatable to JSON, as JSON cannot contain literal regular expressions. There-
fore, storing the expressions as strings is the most fluent option.

...
{

"conditions": {
"url": { "$regex": "http://.*" }

}
},

...

2.2.5 Validation
The GitHub repository of the project contains JSON Schema4 for validating the
workflow definition, as it is implemented by the Runner and Editor modules.
This slightly differs from the format definition described in the previous sections,
though only by naming - the condition part is called where, the action part is
called what. The workflow definition can be also optionally prepended by meta
object, containing the workflow’s name and description. The format documenta-
tion5 published there also describes the format of the workflow definition file in
a similar manner as the chapter before.

The rest of the documentation published in the GitHub repository describes
basics of workflow creation and execution using the workflow definition format.
Please note that the remaining part of the GitHub-hosted documentation is not
part of this thesis and should serve as a user guide only.

4https://github.com/barjin/wbr/blob/main/json-schema.json
5https://github.com/barjin/wbr/blob/main/docs/wbr-interpret/waw definition.md

21

https://github.com/barjin/wbr/blob/main/json-schema.json
https://github.com/barjin/wbr/blob/main/docs/wbr-interpret/waw_definition.md
https://github.com/barjin/wbr/blob/main/docs/wbr-interpret/waw_definition.md
https://github.com/barjin/wbr/blob/main/json-schema.json
https://github.com/barjin/wbr/blob/main/docs/wbr-interpret/waw_definition.md

2.3 Runner
With the workflow definition format designed, we can now design the Runner of
this format. As mentioned in the section 1.2 Requirements, the Runner should
be a piece of software able to read, validate and execute the workflows defined in
the aforementioned format.

2.3.1 Components
To facilitate later design decisions and understanding of the software, we divide
the Runner project into several independent parts. These parts are:

Browser: The web browser to be automated. To simplify the usage and
installation of the solution, the Runner should be able to work with stock (i.e.
unpatched) versions of browsers, allowing the users to use their standard web
browsers.

As seen in the section 1.4 Existing Solutions, most commercial web browsers
already provide programmable interfaces (via CDP, RDP. . .). The Runner -
browser communication can be further simplified by using low-level third-party
libraries, also mentioned in the section 1.4 Existing Solutions.

Workflow validator: A piece of software able to statically validate a given
workflow definition file. While it might provide various ways of validating the
workflow definitions, the minimum is syntax validation, i.e. reading a file written
in the format described above and telling whether it follows the definition of
the format. Optionally, the syntax validator might also provide descriptive error
messages to communicate the problem to the user.

Given the programmable nature of the format, static “code” analysis might
also take place here. While some workflow definition files might be syntactically
correct, it is possible that they might contain logical errors. The validator could
then spot unreachable branches, suggesting reordering of the rules in the definition
or suggesting updating the conditions.

Workflow interpreter: A piece of software comparing the current browser
state with the conditions from the workflow definition, selecting the correct rule
to be applied. Furthermore, the Workflow interpreter should also send the correct
actions to the browser and ensure their execution went well. In accordance with
the requirement 1.2.2.1.7, the interpreter should inform the user in case of any
exceptions.

2.3.2 Programming language, libraries
As mentioned above, the communication with the internal browser can be facil-
itated using a third-party library. This approach - compared to communicating
with the web browser directly - leads to quicker development iteration and less
cluttered code base, ultimately leading to a better tested software.

Looking at the competition analysis, the low-level automation libraries could
be useful for this use case. Both Puppeteer and Playwright offer a lightweight

22

programmable interface by simply wrapping and unifying the debugging func-
tionality of the web browsers (CDP and alternatives).

As mentioned before, Puppeteer’s provides official support only for Chromium-
based browsers, while Playwright provides support for Chromium-, Firefox- and
Webkit-based browsers alike. For these mentioned reasons, the Workflow inter-
preter will be using Playwright as its backend library.

While Playwright has bindings for different languages (JavaScript, Python,
.NET and Java as of May 12, 2022), the primary development is made in Type-
Script (superset of JavaScript).

Given these facts, it would be beneficial to develop the Runner also in Type-
script. This makes sense both because of the library support and the closeness
of the language to the web environment - Typescript can be statically transpilled
into Javascript, a popular client-side web programming language.

The utilization of Typescript also ensures type safety and better IDE support
compared to regular JavaScript code. This simplifies the development of the tool
as well as the third-party adoption of the tools.

2.4 Editor
As mentioned before, the Editor should be a piece of software facilitating the
process of creating and editing a web automation file.

While we designed the workflow definition format to be as readable and con-
cise as possible, the strict JSON syntax makes the format hard to write manually.
Especially less technical users - such as the model user role User - could experience
difficulties when trying to edit larger automation files. As stated in the Require-
ments, the Editor should also provide performance-oriented features, targetting
more experienced users - such as the model Developer .

2.4.1 Technologies
In accordance with the nonfunctional requirements for the Editor, the Editor app
should be user friendly and easy to use. Due to its relatively lightweight nature,
it is possible to implement the Editor as a web application.

This approach would be beneficial for several reasons - removing the need for
installation, providing a cross-platform solution and speeding up the development
and debugging process, to name a few. Implementing the Editor as a client-side
web application in JavaScript seems like a sensible option also because it might
later share a part of the codebase with the Runner application.

Frontend Framework

Client-side web applications are now seldom developed using plain JavaScript -
most developers utilize frontend frameworks and libraries for easier manipulation
with the Document Object Model (DOM) tree and state management [State-
OfFtd20].

According to a popular 2021 JavaScript developer survey [StateOfJS21], the
most popular JavaScript (JS) frontend frameworks among developers are React,
Angular and Vue.js. While the popularity of the tools changes over time with

23

new emerging technologies coming every year, the aforementioned tools have
the largest number of third-party libraries because of their large following. and
modules.

When comparing the frameworks against each other, React comes off as the
framework with the steepest learning curve while being only slightly less popular
than Vue.js, based on the GitHub stars of the project [AnReVue22]. While all
the frameworks are utilizing the model of reusable components, Angular and
Vue.js are taking the concept a little further with their internal HTML templating
systems.

React is the only framework of those three utilizing JSX, i.e. combining the
HTML syntax with the JS syntax. While this might pose certain difficulties for
developers learning this framework, it allows them to interleave the HTML and
JS code in a way that is more readable and easier to maintain in the end.

Since the Editor, given the requirements, should not require any advanced
features of Angular and Vue, we can utilize the React framework for the Editor.

2.4.2 UI design
This subsection describes the specific UI design and presents mockups for the Ed-
itor application. The designs presented here should adhere to the nonfunctional
requirements of user-friendliness and ease of use.

Please note that the following images do not represent the finished software,
only the UI mock-ups. The mock-up designs are also available in Figma6 for
further inspection and future reference.

Figure 2.1: The initial screen

As described in the use case analysis, the initial screen of the application
should allow the user to create a new blank automation file, or to load an existing
automation file. Choosing to load an existing automation file opens a file selection
dialog, allowing the user to select an file from their local file system.

6https://www.figma.com/file/gzisxDDNZX8vbvMdOjfMjT/wbr-editor

24

https://www.figma.com/file/gzisxDDNZX8vbvMdOjfMjT/wbr-editor

Figure 2.2: Validation error message

While creating a new blank file immediately opens the Editor application, in
accordance with the functional requirement 1.2.1.1.3, an uploaded file needs to
be validated first. If the provided file is not a valid workflow definition file, the
user should be notified (Figure 2.2).

Figure 2.3: Workflow editor interface

After successfully opening a workflow definition file, the user is presented with
the Workflow editor interface. Here, the user can edit the workflow definition file
using a GUI editor - in the Figure 2.3, the workflow is presented in the left column.

The hierarchical structure of the workflow definition file allows us to present
the workflow in a tree-like, collapsible structure, further enhancing the UX of the
application.

25

Figure 2.4: Drag & Drop controls

After finishing the editing of the workflow definition file, the user can test the
workflow by clicking the Run button. This follows the functional requirement
1.2.1.1.6 on the Runner interface.

Figure 2.5: Workflow execution

In the Figure 2.5, the execution control buttons are located above the workflow
editor column. The browser window showing the progress of the automation is
in the right half of the screen. Below this window, there is a console for the user
to view the output of the automation and debugging information.

During the automation execution, the Editor application can highlight the
current step of the workflow, allowing the user to follow the execution progress.

26

3. Implementation
The toolkit source code is available in a public GitHub repository1, along with
the informal user documentation and the code and workflow file examples. The
following chapter describes the decisions made during the implementation of the
toolkit.

Just like in the previous chapters, the toolkit is described in a modular fash-
ion, following the Editor - Runner dichotomy. This is also projected in the im-
plementation, as both the Editor and the Runner are implemented as separate,
standalone programs.

3.1 Runner
As stated in the section 1.2 Requirements, the Runner should be a piece of soft-
ware enabling the user to run the automations created by the Editor application.
During the implementation, only small changes were made to the initial design.

The Runner is implemented as a Node.js module and has been published as
an npm package @wbr-project/wbr-interpret@0.9.2. The user-friendly Runner
interface is a part of the Editor application, as both tools together create a simple
and easy-to-use environment for developing the web automations.

3.1.1 Performance
According to the nonfunctional requirement 1.2.2.2.1, the Runner should imple-
ment the automation execution in an optimized way. While this requirement is
rather vague, there are actually several ways the Runner application tries to do
so.

Parallelization

As mentioned in the subsection 2.2.3 Reactions, the workflow definition format is
designed in such way that every step depends on the previous browser state only.
This allows us to think of different browser tabs as of whole different environments
2 and let the Runner parallelize the automation between multiple tabs, possibly
reducing the time required for the execution.

The Interpreter programmable interface allows the user to set maximum
number of concurrent tabs. Using the proper method of enqueuing links in the
workflow (action enqueueLinks) protects the internal Runner browser from open-
ing too many tabs at once, which might hurt the performance. The enqueued
links are then opened as individual tabs by the Runner with respect to the set
concurrency.

In case a tab gets open e.g. as a popup window, it is not interacted with until
the desired concurrency is reached. However, accumulating multiple such tabs
can still lead to performace degradation, as they still have to exist in the browser
memory.

1https://github.com/barjin/wbr/, tag v1.0, commit hash bf45528225e3b9fc05963d75
2Only regarding the workflow execution, they still can share e.g. cookies.

27

https://github.com/barjin/wbr/

Browser communication

As mentioned in the section 2.3 Runner, the communication between the In-
terpreter part of the Runner and the internal web browser is facilitated using
the Playwright library. While Playwright already provides an optimized way of
communication with the browser using the CDP protocol and alternatives, the
text-based interprocess communication still poses a certain performance bottle-
neck.

While designing the Runner, it was a priority to reduce the amount of calls
to the Playwright library, as pretty much any Playwright call results in a CDP
message being sent. During the condition matching phase of the workflow exec-
tion, the current browser state is fetched only once and the rule is then matched
statically, instead of quering the browser repeatedly for the possible current URL,
CSS selectors etc.

This is possible because of the simple design of the workflow definition format,
allowing us to gather all the conditions statically. Knowing all the conditions,
the full browser state can be then described by the truthiness/falsiness of those
conditions, which is all that is needed for the decision making mechanism of the
Interpreter to choose the next step to take.

3.1.2 Extra features
On top of the features described in the section 2.3 Runner, there are some addi-
tional features implemented into the Runner package. While those features are
tested and are available in the main branch of the project, the other parts of the
project - mainly the Editor - typically does not provide full support.

Workflow parametrization

The Runner module provides support for workflow parametrization. Any nonin-
tegral part of the worklfow can be replaced with a special structure, for example
like this:

{
...

"url": { $param: " address " },
...

}

Before the workflow execution, the Runner receives a dictionary of the pa-
rameters’ values, replacing every {$param} field with the declared value. When
initialized with value {"address" : "https://abc.xyz"}, the example above
turns into

{
...,

"url": "https :// abc.xyz",
...

}

28

In case the user does not provide values for all the parameters or provides
values for parameters non-existent in the workflow, the Runner warns the user
about this and does not continue with the workflow execution.

This feature can be utilized to create more universal workflow definitions,
letting the end user to set certain parts of the workflow to match their use case.
The parametrized fields can be e.g. login credentials, URL of the page to run the
automation on or a custom message or data to paste to the website.

Automatic data extraction

While the Runner supports all the methods from the Playwright’s Page class, it
also implements methods for automating data extraction from the browser.

The scrape method allows the user to extract data from the current page by
utilizing an algorithm looking for the “important” data in the page. The user
can restrict the search to a specific element subtree by passing the selector of the
root element as the only argument to this method.

The “importance” of the data in the page is determined using multiple heuris-
tics, mostly by looking for similar-sized elements with similar content - these are
believed to be the “scrapable” data - e.g. online store product cards, rows of a
table, etc.

Guided data extraction

The scrapeSchema method acts as a guided counterpart of the scrape method.
By specifying the names of columns and their respective selectors in the only
argument of this method, the Runner extracts data from these selectors, and
stores them in a dictionary, where the keys are the column names.

In case the selectors target multiple elements on the same page, the Runner
will group the extracted data and output multiple dictionaries. If the numbers
of the targetted elements do not match across the columns, the Runner tries to
group the data by the DOM hierarchy in the web page, possibly leaving some
output fields empty.

Here follows an example of the scrapeSchema method usage and the logic
behind it.

A
B

C

D

B

C

A
B

C

Figure 3.1: Example page to be scraped

29

The Figure 3.1 shows an example page containing a table of user profiles.
A user card can contain a photo of the user (A), their name (B), their profile
description (C) and their phone number (D). The letters represent the selectors
for the Runner to extract the data from.

The user provides the scrapeSchema method with the following schema:
{

"photo": "A",
"name": "B",
"desc": "C",
"phone": "D"

}
The Runner extracts the data from the page. The data is stored in an array

of dictionaries, where each dictionary corresponds to a user card.
[

{
"photo": "https :// abc.xyz/img/ user123 .jpg",
"name": "John Doe",
"desc": "Lorem ipsum dolor sit ...",
"phone": "123 -456 -7890"

},
{

"photo": undefined ,
"name": "Mark Smith",
"desc": "Ipsum dolor amet sit ...",
"phone": undefined

},
{

"photo": "https :// abc.xyz/img/ user234 .jpg",
"name": "Jane Green",
"desc": "Sit dolor ipsum lorem ...",
"phone": undefined

},
]

Note how the contents of the corresponding elements are paired, leaving the
missing fields empty. This is done by traversing the DOM tree of the page, and
grouping the elements by their common parents.

3.2 Editor
As described in the section 2.4 Editor, the workflow editor is implemented as a
React Application. The following section describes decisions made during the
implementation of the Editor application, certain problems and their solutions.

3.2.1 React
While it is possible to set up a React application as a plain Node.js application,
it is not recommended. Handling the bundler configuration is cumbersome and

30

requires a respectable amount of knowledge about the React toolchain. The
React’s signature JSX syntax also requires configuring a transpiler (e.g. babel3),
which adds another level of complexity.

For those reasons, the Editor React application has been initialized with
create-react-app4. This is a command line interface (CLI) tool for simple
initialization of React applications. It mainly provides the Webpack and Babel
configuration files and bootstraps the project with a template website.

Configuring Webpack polyfills

For validating the uploaded worklflow files, the Editor application imports the
Preprocessor class from the Interpret module. While both the Editor and In-
terpret module are written in TypeScript, there are slight differences between
Node.js and browser code.

Most of those problems stem from the module resolution, as both Node.js
and browsers use slightly different approaches to module loading. While this is
covered by Webpack and Babel in most cases, importing the Interpret module
initially caused errors.

This is because since the version 5.0.0, Webpack no longer provides polyfills
for the core Node.js modules, such as path used by the Interpret module. The
path module is not used by the validation feature of the Preprocessor, so the
polyfill could be simply disabled. However, doing so requires a manual update of
the Webpack configuration.

Since the Editor has been created with create-react-app, the Webpack con-
figuration webpack.conf.js is contained in the node_modules/react-scripts
directory. While it might be possible to modify the webpack.conf.js file directly,
it is not recommended - the node_modules directory is used to save the packages
downloaded from the NPM registry. Updating the react-scripts package would
then reset all changes made to the configuration file. Furthermore, because of it’s
dynamic nature, the node_modules directory is omitted from the git version
control.

While the official create-react-app guide suggests to perform eject, i.e. to
export the configuration files for manual maintenance, this is a borderline unsafe
step. The eject script performs irreversible changes to the package structure,
and forces the user to maintain the configuration and dependencies themselves
from then on.

To retain the simplicity of automatic project management, the project now
uses react-app-rewired5. Published as an npm package, react-app-rewired
is an drop-in replacement of create-react-app, which lets the developer to
sideload custom configuration files, while still maintaining the base configuration.

3.2.2 Improving the UX
Given the nonfunctional requirements for the Editor, the Editor application
should adhere to the best UI/UX practices and provide a steep learning curve.
This is manifested multiple times in the Editor application itself.

3https://babeljs.io/
4https://create-react-app.dev/
5https://www.npmjs.com/package/react-app-rewired

31

https://babeljs.io/
https://create-react-app.dev/
https://www.npmjs.com/package/react-app-rewired

Drag & Drop

Since the main control elements in the Editor are modular blocks, allowing the
user to use drag&drop controls e.g. for reordering the blocks seems like the
superior solution in terms of UX.

The drag&drop feature is used for reordering the blocks in the Editor applica-
tion. While it would be possible to drag the entire blocks around the application
window, it is not recommended due to UX reasons. This is solved in the Editor
application by collapsing all the blocks when the drag&drop action is initiated.
This helps the user to focus on the actual meaning of the reordering action, and
not on the content of the blocks.

The implementation of the drag&drop feature is based on the react-dnd6

library. While the authors of this library offer an official example of reordering
a list of block elements, the Editor implementation is not based on this example
due to the mentioned features, which are not provided by the example solution.

Argument type suggestions

The Editor application generates a workflow interpretable by the Runner appli-
cation, which is internally using the Playwright library. The function signatures
of the workflow reaction steps depend on the Playwright library, as most of the
supported steps are mirrored from the Page class methods. While the user might
set the types of the arguments themselves, the Editor application aims to provide
a simple way of creating the web automations.

For this reason, the Editor application provides a prefilled list of arguments
with the correct types and matching input elements, which correspond to the
Playwright Page class methods and present the correct usage of the arguments to
the user. The range of optional arguments is hand-picked for every command to
provide the best variability while still maintaining an exceptional level of user-
friendliness.

Real-time validation

On top of the mentioned argument type suggestion feature, the Editor application
also validates most of the user inputs based on their context in the workflow
definition. Just like the previously mentioned features, the only purpose of this is
enhancement of UX and a user guide; a workflow definition with inputs marked
as invalid still can be executed.

6https://react-dnd.github.io/react-dnd/

32

https://react-dnd.github.io/react-dnd/

4. Documentation
The following chapter contains the documentation of the project. It is divided
into several sections based on the amount of experience of the reader and the
desired actions.

4.1 User documentation
The following section contains user documentation for the Editor application,
following the scenarios from the chapter 1 Analysis. This section describes the
basic features of the Editor application and how to use it.

The documentation of the Runner module is to be found in the section 4.2
Developer documentation, as there is no user interface for the Runner module
itself and the module is to be used only via its application programming interface
(API) in code.

4.1.1 Editor application
The Editor application is available as a web application. To access the user
interface, navigate to the URL of the running server instance using a modern
web browser. Instructions on how to setup the Editor server instance are to be
found in the section 4.3 Administrator documentation.

Getting started

After accessing the Editor application, the user is greeted by a welcome screen.
From here, they can choose whether to create new blank automation or to load
existing automation from their device. In case the uploaded file is not a valid
workflow definition, the user is informed about the reason and asked to try again.

The user can also choose to open one of the example automations provided in
the menu. While the automations themselves are part of the application, their
reliability cannot be guaranteed. The functionality of those automations relies
on the state of the targetted third-party webpages.

Figure 4.1: The initial screen

33

Adding rules

As described in the section 2.2 Workflow definition format, the workflow definition
file is a JSON file, consisting of Rules - Conditions and their matching Actions.

The user can add a new blank pair to the workflow definition file by clicking
the blue square ‘+’ (Plus) button in the bottom of the workflow editor.

Figure 4.2: The workflow editor with a new blank workflow

After clicking the ‘+’ button, the currently edited workflow is updated, ap-
pending the new blank pair to the end of the workflow definition. Clicking the
‘+’ button repeatedly adds new blank pairs to the end of the workflow definition.

Figure 4.3: A new blank pair is added to the workflow

Unwanted pairs can be removed by clicking the red round ‘x’ button in the
top right corner of the pair editor. In such case, the workflow is updated and the
pairs underneath the removed one are shifted up.

34

Editing the conditions

As stated in the section 2.2, Workflow definition format, the pairs are defined as
Conditions and Actions. The automation interpreter is able to find the matching
condition for the current state of the browser and execute the corresponding set
of actions.

The pair’s Condition is displayed under the section “If” in the workflow editor.
The condition is defined as a possibly nested tree of simple condition expressions
and logical operators. By default, the condition consists of the (invisible) top-
level $and operator. This operator is used to combine the first-level conditions -
all of the provided conditions must be true for the pair to be true. Not specifying
any conditions will result in creating an empty clause - a condition that is always
true. This is useful e.g. for defining a default set of actions.

The conditions can be specified by clicking the blue square ‘+’ button in the
bottom of the operator section.

Figure 4.4: Specifying a condition within an $and operator

The Figure 4.4 shows the dropdown condition selector for the $and operator.
The ’url’ condition above has been inserted and initialized before. All of the
inserted conditions provide the correct type and related input element to ensure
better user experience.

Adding a new condition from the presented dropdown menu will result in
inserting a new “neighbor” condition of the url condition. This, together with
the top-level $and operator, results in an combined condition, which is evaluated
to true if all of the nested conditions is true. The dropdown menu also allows the
user to insert a nested logic operator ($and or $or).

Reordering the rules

The order of the pairs in the workflow definition file is important. The work-
flow interpreter will evaluate the pairs in the order of the pairs in the workflow
definition file and match the first pair that is true.

This means that the order of the pairs in the workflow definition corresponds
to the priority of their conditions. The more specific the condition, the higher it
should be placed in the workflow definition file, so it does not get overshadowed
by other, possibly more general, pairs. The pairs can be reordered using a drag
and drop interface.

35

Adding the actions

After specifying the conditions for the given pair, the user can specify the actions
to be executed when the condition is true.

The pair’s Actions are displayed under the section “Then” in the workflow
editor. The set of actions is defined as a list of parametrized action expressions.

A new action can be selected from the dropdown menu by clicking the blue
square ‘+’ button in the bottom of the action section.

Figure 4.5: Selecting the actions for a pair

The Figure 4.5 shows the process of adding new actions to the action sequence
corresponding to the pair.

Selecting an action from the dropdown menu results in inserting a new action
expression into the action sequence. The action expression is defined by the action
type and optional parameters for the action - e.g. the ’click’ action requires a
’selector’ parameter, the ’goto’ action requires a ’url’ parameter etc.

The Editor application suggests the required parameters for the individual
actions to enhance the user experience and avoid errors.

While the wbr-interpret module provides support for all the Playwright’s
Page methods, the Editor application provides only a subset of the most common
actions.

Testing the automation

After creating a new automation, the user can test run the automation by clicking
the ’Run’ button in the top left part of the screen.

This executes the automation, displaying the execution progress in the remote
browser window on the right side of the screen. Additional information about the
execution is displayed in the console below the browser window. To further facili-

36

tate the automation debugging, the Editor also highlights the currently matched
pair in the workflow definition section.

To ensure consistency, any update to the workflow definition made during the
workflow execution will stop the automation execution. The execution can be
also stopped manually by clicking the ’Stop’ button in right part of the control
panel.

Figure 4.6: Execution of a simple workflow

37

4.2 Developer documentation
This section contains the developer documentation for the wbr-interpret mod-
ule and the Editor application. The documentation presented here describes the
main design principles of both pieces of software and how they are implemented.

4.2.1 wbr-interpret
To run the web automations made in the Editor application programatically, it
is possible to install the wbr-interpret module as an npm package.1

This is simply done by running the command

npm i -s @wbr-project/wbr-interpret@0.9.2

in one’s Node project folder. This installs the module into the current project’s
dependency tree.

The module package contains extensive TS typings, further simplifying the
development. The type definition in this package also contains typings for the
workflow definition files, allowing the user to update the workflow files manually,
utilizing the TypeScript IDE suggestions and validation.

Module usage

Using the wbr-interpret module from one’s code is quite simple. The main
Interpreter class provides only two public methods - run() and stop(). The
intended usage is then demonstrated in the following example.2

1 const Interpreter = require (’wbr -interpret ’);
2 const { chromium } = require (’playwright ’);
3

4 const workflow = {...}
5

6 (async () => {
7 const browser = await chromium .launch ();
8 const page = await browser . newPage ();
9 const interpreter = new Interpreter (workflow);

10

11 await interpreter .run(page , { paramName : ’
paramValue ’ });

12 await page.close ();
13 await browser .close ();
14 })();

As shown in the example, the Interpreter class accepts the workflow definition
in the constructor. The run() method of the Interpreter takes a Playwright page
object as an argument and a parameters object as an optional second argument.

1Version 0.9.2 is the latest version of the wbr-interpret module at the time of submission
of this work.

2This example uses CommonJS module syntax.

38

The package structure

The majority of the logic in the wbr-interpret module is implemented in two
main files: interpret.ts and preprocessor.ts. Both of those files also import
utility functions from the files located in the utils/ directory.

interpret.ts contains the main logic for the workflow execution. While the
wbr-interpret module mostly imitates the behaviour of the Playwright’s Page
class during the workflow execution, it also provides custom functions or overrides
for the existing Page class functions, updating their behaviour to suit the interface
of wbr-interpret better. The interpret.ts file contains implementation for
those methods as well.

preprocessor.ts contains the validation logic for the workflow definition
files, as well as methods for workflow initialization. The methods from this file
can be used for runtime validation of the workflow definition files and other
preprocessing analysis tasks.

More detailed descriptions of the code in the wbr-interpret module can be
found in the Attachment A.2.

4.2.2 wbr-editor
The React application wbr-editor is a web application that allows the user to
create and edit web automation workflows. The following section describes the
main design principles of the wbr-editor application.

To run the development server, the user requires to run the following sequence
of commands, while in the wbr-editor project folder:

npm i -s
npm start

This runs the react-scripts development server on a free port (typically
3000). The user documentation for the web application is available in the sec-
tion 4.1 User documentation.

Please note that the react-scripts development server does not contain the
backend logic for the automation execution and is meant to be run only during
the development of the web application.

If the user wants to run the web application in production mode, it needs to
be built first. This is done simply by using the following command:

npm i -s
npm run build

Package structure

The wbr-editor package is structured as a regular React application. All the
source code files are located in the src/ directory. The static files (i.e. images)
are located in the public/ directory.

Closer description of the file contents can be found in the Attachment A.3.

39

4.2.3 wbr-cloud
The wbr-cloud package is factually a part of the wbr-editor application, serving
as its backend. Due to design decisions made prior to the implementation of the
wbr-editor package, these packages are not directly related and are developed
as two individual packages.

Technically speaking, the wbr-cloud package is an HTTP server used for
serving the Editor application and providing a REST API for instantiating and
managing the web automation runs.

Detailed information about the specific REST API endpoints can be found in
the Attachment A.4.

4.3 Administrator documentation
The following section contains the administrator documentation of the project.
It contains installation instructions and a short troubleshooting guide for setting
up a server for the Editor and Runner applications. It also contains a list of
system requirements on the server where the applications are to be deployed.

Aside from this, this section also contains installation instructions for the
Runner npm package, enabling the user to create software able to execute and
validate the workflow definition files.

4.3.1 Editor application
Installation instructions

The Editor and Runner application are both packaged in the Docker image
barjin/wbr. This Docker image3 represents a complete server setup, including all
the dependencies and the Editor and Runner applications. To run a Docker im-
age, the workstation must have Docker installed. Aside from meeting the Docker
system requirements, the Editor Docker image presses no other requirements on
the workstation.

The web server providing the user interface is running on port 8080 of the
Docker container, which is also the only port utilized by the Editor and Runner
applications. On a system with docker installed, running the container requires
only one command:

docker run -p HOSTPORT:8080 -d barjin/wbr

where HOSTPORT is the port number used by the Editor and Runner applications
on the host machine. After running this command, the user interface should be
now available at http://localhost:HOSTPORT/.

The -d option instructs Docker to run the container in so-called ‘detached
mode’, which means that the container is not terminated when the command
finishes. [DockerRef] In case the user wants to stop the container, they can use
the docker stop command with the container ID.

In case the user never ran the docker run nor the docker pull command be-
fore, the Docker daemon first downloads the barjin/wbr image from the Docker

3Tag barjin/wbr:final, sha256:b9e237a3ccf619f4a9b36e6584191bf

40

https://www.docker.com/

Hub. Note that this can cause a delay of several seconds and consume a certain
amount of bandwidth (ca. 200 MiB).

The Docker image can also be built from the attached Dockerfile by invoking
the docker build command in the root folder of the project repository.

Please note that the Editor application allows the users to run arbitrary code
on the server. This is a security risk, and the user is advised to only share their
instance of Editor server with trusted users.

Build instructions

Besides the Docker image, all the software source files are also available in the
project’s GitHub repository.4

The package.json files for the packages wbr-interpret, wbr-editor and
wbr-cloud contain the build instructions for the respective applications, as well
as the required dependencies.

Note: npm is required for building the Editor and Runner applications.
Before building the applications, run

npm run confBuildDeps

command in the root folder of the project repository. This installs the
correct versions of build dependencies in the correct order. Running the
build command without the dependency installation - or installing the
build dependecies in a different way - can result in build errors and/or
unexpected behavior.

The build process is managed by the Turborepo5 build system. Turborepo
allows for faster build times and less wordy build configurations by utilizing a
make-like approach to the build process. It caches the built files and allows for
incremental builds and faster rebuilds. It also constructs a dependency graph
of the source packages by reading their package.json files, which is used to
determine the order in which the packages are built.

The turbo build is invoked by the npm run build command in the root folder
of the repository. Invoking the npm start command in the root folder of the
repository after the build starts the Editor application server.

While the build process has been made to be as streamlined as possible, the
author of this work gives no guarantees about the build process. Use the official
Docker image when possible.

4https://github.com/barjin/wbr/, tag v1.0, commit hash bf45528225e3b9fc05963d75
5https://turborepo.org/

41

https://github.com/barjin/wbr/
https://github.com/barjin/wbr/
https://turborepo.org/

5. Testing
During the development phase, all parts of the project have been tested using
various testing methods. The following chapter describes the testing methodology
and the nature of the individual tests. Aside from testing the software using
automated test suites, user testing was carried out on the Editor application.

5.1 Code quality
While the code quality does not directly influence the correctness of the results,
it is an important aspect of the project, as it influences readability and main-
tainability of the code. Maintaining a consistent code style also speeds up the
development process and reduces the risk of introducing bugs.

The wbr-interpret module and the Editor application are written in Type-
Script and TSX, respectively. The codebase of the entire project follows the
practices described in the Airbnb JavaScript Style Guide1, made and maintained
by Airbnb, Inc. Airbnb Inc. also provides a .eslintrc file for configuring ESLint
in accordance with the practices described in the Style Guide. All the code in
the project is then automatically checked for conforming to the style guide using
ESLint already during the development phase, which simplifies formatting and
allows us to see potential errors right away.

The project’s GitHub repository also contains an automated GitHub Actions
workflow, running the ESLint check with every push to the repository. This helps
with catching the bad code patterns early on and prevents the need for further
manual testing.

5.2 Automated tests
To ensure the elementary correctness of the project parts, the project has con-
tained automated test suites since the early stage of development. This helps
both with code maintenance and new feature implementation, as the automated
test suites ensure we do not introduce any breaking changes.

All of the tests mentioned in the following sections are also ran in the corre-
sponding GitHub Actions workflow. This ensures that the code available in the
main branch of the public repository is always tested against the latest changes.

All the following tests were carried out using the jest2 testing framework, if
not stated otherwise.

5.2.1 Unit tests
The entirety of the wbr-interpret package is covered with unit tests testing the
individual components of the package. Special attention is paid to the Interpreter
and Preprocessor classes, as those are the core of the project and contain the
largest amount of complex code.

1https://airbnb.io/javascript/
2https://jestjs.io/

42

https://airbnb.io/javascript/
https://jestjs.io/

The success of the unit tests is directly related to the code design of the mod-
ule, since almost all methods in both classes were first written as pure functions,
and only then they were converted to classes for encapsulation and to provide a
more convenient interface.

While it is possible to unit test components in a React application, most of
the components in the Editor application are trivial. For this reason, there are
no unit tests for the Editor application and all the testing is carried out by E2E
tests.

5.2.2 E2E tests
Both the Editor application and wbr-interpret package have been tested with
end-to-end tests as well. These tests are typically longer and follow a complete
user path, testing the entire application from the user’s perspective.

The wbr-interpret package is end-to-end tested using custom scripts (not
jest) for two different scenarios:

• Loading, validating and executing a simple workflow.

• Loading, validating, initializing and executing an advanced, parametrized
workflow.

Both E2E tests are run against a local server, which is started before the tests
are run. This way we can observe the actions carried out by the Runner even
without obtaining any output data.

The Editor application has been tested using Playwright library to simulate
the user’s interaction with the application. There are two tested scenarios:

• Uploading various workflow files and seeing which one is valid.

• Creating new automation, editing it, running it, seeing the results and
downloading the workflow definition file.

All the automations are also run against a local server, which allows us to
control the content of the webpages and observe the actions caused by the au-
tomation execution.

5.3 User testing
Aside from the code testing, the Editor application has also been tested by 8
potential users of different technical backgrounds. This was done in two parts.
First, the users were asked to use the Editor application to create a simple au-
tomation file. After getting accustomed to the software, the users were given a
Software Usability Scale (SUS) survey and were asked to rate the application’s
usability.

43

5.3.1 Test scenario
The task for the users testing the Editor application was to create a simple web
automation using the application and execute it to validate the functionality.
Such a task requires utilizing a number of UI elements of the Editor application,
while not being too demanding or requiring much technical knowledge.

The created automation should be able to perform the following steps:

1. Navigate to https://jindrich.bar/.

2. Click an arbitrary link on the page.

3. If the resulting page contains paragraphs with text, download these first,
otherwise just terminate the execution.

The users were provided no additional support during the task. Out of the
eight users, only three of them were able to successfully complete the task, while
the others failed at various points. The successful users were all computer special-
ists with a strong technical background. While this might show a trend towards
excessive technicality of the application, the sample size is not significant enough
to make any conclusions.

The individual user complaints bring better insight into the why some users
failed to complete the task. The less successful users complained mostly about
the complexity of the workflow definition format and the confusing logic of the
workflow interpretation.

There were no direct complaints about the application’s user interface layout.
After concluding the experiment, all of the users were instinctively able to find
all the control elements when asked to perform a specific action. All of them were
also able to answer questions about the system state.

5.3.2 SUS survey
All the testers have also shared their opinions on the usability of the application
via the SUS survey. The detailed results of the SUS survey are included in the
Attachment A.1 SUS Survey Results. The attachment also contains additional
information about the survey itself.

The average SUS score over the ratings of the eight users is 52.5. This sets
the Editor application somewhere between the 10th and 20th percentile of typical
SUS evaluated systems. While this might come off as negative result, it is still a
valuable indicator of the quality of the Editor application.

The main reasons for the low ratings the users stated were the workflow defi-
nition format being confusing and the general unfamiliarity with debugging tools.
While it would be easy to brush these points off as too subjective, the goal of the
thesis was to create a tool that would be easy to use and intuitive for the user -
which makes all the user complaints very relevant.

44

https://jindrich.bar/

6. Conclusion
The goal of this work, as stated in the Introduction was to create a human-
readable, declarative format for storing and creating web automations, with an
interpreter of this format and a visual editor, allowing less technical users to
create and maintain automations in this format.

By implementing the Editor application and the Runner module, this goal
has been achieved in full scale. Both parts of the project are now fully functional
- in accordance with the requirements from the section 1.2 Requiements - and
can be used to create and edit web automations for data extraction and process
automation. Both parts of the project have been developed in a modular fashion,
which makes the further development process easier and faster.

Future work on the project includes further simplification of the Editor appli-
cation, as the current implementation does not quite fulfill the user expectations.
The simple format design could allow for automatic generation of the workflow
definition files, allowing the users to create the resilient web automations by e.g.
recording their actions in a browser. The Runner module could also be updated
with more advanced features, better support for automated data extraction or
support for crawling the web.

45

Bibliography
Andrew Hayes. YAML vs JSON vs XML in Go. 2021. [Online; accessed 6 March

2022].

Applitools. 2022’s Most Popular Programming Languages for UI
Test Automation. https://www.slideshare.net/Applitools/
2022s-most-popular-programming-languages-for-ui-test-automation,
2021. [Online; accessed 22 February 2022].

Aris Pattakos. Angular vs React vs Vue 2022. https://athemes.com/guides/
angular-vs-react-vs-vue/, 2021. [Online; accessed 7 April 2022].

Cypress.io. Cypress - Conditional Testing. https://docs.cypress.io/guides/
core-concepts/conditional-testing, 2022? [Online; accessed 27 February
2022].

Docker Inc. Docker run reference. https://docs.docker.com/engine/
reference/run/, 2013-2023. [Online; accessed 9 April 2022].

Giovanni Rago. Cypress vs Selenium vs Playwright vs Pup-
peteer speed comparison. https://blog.checklyhq.com/
cypress-vs-selenium-vs-playwright-vs-puppeteer-speed-comparison/
#scenario-3-test-suite-against-a-production-web-app, 2021. [Online;
accessed 26 February 2022].

Google. Google Trends - Data Formats. https://trends.google.com/trends/
explore?date=all&q=json,yaml,xml,rdf, 2022. [Online; accessed 6 March
2022].

Market Research Future. Web Scraper Software Market Re-
search Report. https://www.marketresearchfuture.com/reports/
web-scraper-software-market-10347, 2020. [Online; accessed 22 February
2022].

Microsoft. Playwright - Browser Patches. https://github.com/microsoft/
playwright/blob/main/browser_patches/README.md, 2021. [Online; ac-
cessed 27 February 2022].

Microsoft. Playwright - Browsers. https://playwright.dev/docs/browsers,
2022. [Online; accessed 27 February 2022].

MongoDB, Inc. MongoDB - Query and Projection Operators. https://docs.
mongodb.com/manual/reference/operator/query/, 2020? [Online; accessed
13 March 2022].

Sacha Greif. State of JS 2021. https://2021.stateofjs.com/en-US/
libraries/front-end-frameworks, 2021. [Online; accessed 7 April 2022].

Robert Sebesta. Concepts of Programming Languages (11th Edition). Pearson,
hardcover edition, 2 2015. ISBN 978-0133943023.

46

https://www.slideshare.net/Applitools/2022s-most-popular-programming-languages-for-ui-test-automation
https://www.slideshare.net/Applitools/2022s-most-popular-programming-languages-for-ui-test-automation
https://athemes.com/guides/angular-vs-react-vs-vue/
https://athemes.com/guides/angular-vs-react-vs-vue/
https://docs.cypress.io/guides/core-concepts/conditional-testing
https://docs.cypress.io/guides/core-concepts/conditional-testing
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://blog.checklyhq.com/cypress-vs-selenium-vs-playwright-vs-puppeteer-speed-comparison/#scenario-3-test-suite-against-a-production-web-app
https://blog.checklyhq.com/cypress-vs-selenium-vs-playwright-vs-puppeteer-speed-comparison/#scenario-3-test-suite-against-a-production-web-app
https://blog.checklyhq.com/cypress-vs-selenium-vs-playwright-vs-puppeteer-speed-comparison/#scenario-3-test-suite-against-a-production-web-app
https://trends.google.com/trends/explore?date=all&q=json,yaml,xml,rdf
https://trends.google.com/trends/explore?date=all&q=json,yaml,xml,rdf
https://www.marketresearchfuture.com/reports/web-scraper-software-market-10347
https://www.marketresearchfuture.com/reports/web-scraper-software-market-10347
https://github.com/microsoft/playwright/blob/main/browser_patches/README.md
https://github.com/microsoft/playwright/blob/main/browser_patches/README.md
https://playwright.dev/docs/browsers
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://2021.stateofjs.com/en-US/libraries/front-end-frameworks
https://2021.stateofjs.com/en-US/libraries/front-end-frameworks

Selenium. Selenium IDE - Control Flow. https://www.selenium.dev/
selenium-ide/docs/en/introduction/control-flow, 2022? [Online; ac-
cessed 27 February 2022].

The Software House. State of Frontend 2020. https://tsh.io/
frontend-development-trends-2020/, 2020. [Online; accessed 7 April 2022].

Usability.gov. User Interface Design Basics. https://www.usability.gov/
what-and-why/user-interface-design.html, 2014. [Online; accessed 8 May
2022].

47

https://www.selenium.dev/selenium-ide/docs/en/introduction/control-flow
https://www.selenium.dev/selenium-ide/docs/en/introduction/control-flow
https://tsh.io/frontend-development-trends-2020/
https://tsh.io/frontend-development-trends-2020/
https://www.usability.gov/what-and-why/user-interface-design.html
https://www.usability.gov/what-and-why/user-interface-design.html

List of Figures

1.1 Editor - Use Case UML diagram 8
1.2 Interpreter - Use Case UML diagram 10

2.1 The initial screen . 24
2.2 Validation error message . 25
2.3 Workflow editor interface . 25
2.4 Drag & Drop controls . 26
2.5 Workflow execution . 26

3.1 Example page to be scraped . 29

4.1 The initial screen . 33
4.2 The workflow editor with a new blank workflow 34
4.3 A new blank pair is added to the workflow 34
4.4 Specifying a condition within an $and operator 35
4.5 Selecting the actions for a pair . 36
4.6 Execution of a simple workflow 37

48

List of Tables

Competition analysis . 15

49

List of Abbreviations
GUI graphical user interface

API application programming interface

CLI command line interface

RPA robotic process automation

QA quality assurance

E2E end-to-end

SW software

UX user experience

UI user interface

CDP Chrome DevTools Protocol

CSS Cascade Style Sheet

IDE integrated development environment

JS JavaScript

TS TypeScript

JSX JavaScript Extended Syntax

HTML Hypertext Markup Language

WYSIWYG What You See Is What You Get

DOM Document Object Model

CORS cross-origin resource sharing

NPM Node Package Manager

SUS Software Usability Scale

50

https://en.wiktionary.org/wiki/WYSIWYG
https://www.npmjs.com/

A. Attachments

A.1 SUS survey details
This Attachment contains the detailed results of the SUS survey for the Edi-
tor application. While the SUS is somewhat standardized set of questions for
evaluating the quality of software, the questions can be updated to match the
evaluated software’s needs. For completeness, the questions are included in here:

1. I think that I would like to use this application frequently.

2. I found the application unnecessarily complex.

3. I thought the application was easy to use.

4. I think that I would need the support of a technical person to be able to
use this application.

5. I found the various functions in this application were well integrated.

6. I thought there was too much inconsistency in this application.

7. I would imagine that people would learn to use this application very quickly.

8. I found the application very cumbersome to use.

9. I felt very confident using the application.

10. I needed to learn a lot of things before I could get going with this application.

The response scale for each question is then a 5 point Likert agreement scale:

Strongly disagree Disagree Neither agree
nor disagree Agree Strongly agree

1 2 3 4 5

The results of the evaluees’ survey are presented in the following table:

1 2 3 4 5 6 7 8 9 10 SUS
User 1 3 2 4 2 3 2 3 2 4 1 70
User 2 2 2 2 3 4 3 2 2 3 2 52.5
User 3 4 2 4 2 5 2 4 1 5 2 82.5
User 4 3 3 2 4 4 3 3 3 3 4 45
User 5 4 2 3 2 4 1 2 2 4 1 72.5
User 6 1 3 2 4 3 2 2 3 1 3 35
User 7 2 3 2 4 2 3 2 3 2 4 32.5
User 8 1 2 2 5 3 3 2 4 1 3 30
Average 2.5 2.4 2.6 3.3 3.5 2.4 2.5 2.5 2.9 2.5 52.5

51

A.2 wbr-interpret code documentation
This attachment contains in-depth documentation of the wbr-interpret module,
with detailed descriptions of the classes and methods used in the wbr-interpret
module.

The following content is structured by individual files.

A.2.1 interpret.ts
The Interpreter class defined in the interpret.ts file implements the main logic
for the workflow execution.

Type Aliases and Interfaces

In the following subsection, we define the type aliases and interfaces used in the
interpret.ts file.

interface InterpreterOptions
This interface describes the object of the optional parameters passed to the

Interpreter class constructor. All of the following fields are optional, as is the
whole object.

• maxRepeats: number

– The maximum number of times a condition-action pair can be repeated
without interruption before the execution of the workflow is stopped.
This option defaults to 5. Setting this to 0 disables this loop protection
mechanism.

• maxConcurrency: number

– The maximum number of concurrent browser tabs that can be handled
by the Interpreter. This option defaults to 5. Setting this option to
null disables the concurrency limit. This can lead to overloading the
browser and thus to a browser crash.

• serializableCallback: (output: any)
=> (void | Promise<void>)

– The function called when a serializable output is received from the
browser. An object is Serializable iff JSON.stringify can be called
on it without throwing an exception. Defaults to console.log.

• binaryCallback: (output: any, mimeType: string)
=> (void | Promise<void>)

– The function called when a non-serializable output is received from
the browser. The data is accompanied by its MIME type passed in
mimeType parameter. Default behavior logs a warning message in the
console.

52

• debug: boolean

– If set to true, the Interpreter will log additional debug messages to
the console.

• debugChannel: Record<string, unknown>

– An object containing the following fields (all optional):
∗ debugMessage: Function

· If set, this function is called with all the log messages emitted
by the Interpreter. Can be used to run a remote console for
monitoring the automation run.

∗ activeId: Function
· If set, this function is called with every new matched pair’s

index within the workflow definition.

Methods

In the following subsection, both public and private methods of the Interpreter
class are described. The relations between those are also explained here, making
it easier to understand the code.

constructor(workflow:WorkflowFile,
options?:Partial<InterpreterOptions>)

The constructor for the Interpreter class. Accepts a WorkflowFile and a
(subset of) InterpreterOptions object, throws if the WorkflowFile is not a
valid workflow definition.

public async run(page: Page, params?: ParamType): Promise<void>
This method is the main entry point for the workflow execution. Using the

Preprocessor ’s methods, it initializes the workflow with new parameters and starts
executing the workflow using the Interpreter.runLoop() private method.

This method also registers the Interpreter.stopper callback function for
stopping the workflow execution.

public async stop(): Promise<void>
This method runs the necessary checks and stops the workflow execution. In

case the checks fail - for example, the interpreter was not running any workflow
- this method throws an exception.

async runLoop(p: Page, workflow: Workflow): Promise<void>
This private method represents the main loop of the workflow execution. Ac-

cepting the Playwright Page object and an initialized Workflow object as argu-
ments, it keeps repeatedly looking for the applicable condition among the work-
flow’s conditions and executes the corresponding actions.

It also keeps track of already executed actions and the execution history in
general.

53

async getState(page:Page, workflow:Workflow):Promise<PageState>
This private method extracts the state representation from the current browser

page context.
Receiving both the Page instance and the currently active workflow, the

getState method extracts the smallest representation of the browser’s state re-
quired for the current workflow execution. For example, when extracting the
information on elements present in the page, the method first compiles all the se-
lectors from the workflow, which are then used to query the page for the elements
present.

applicable(where: Where, context: PageState,
usedActions : string[] = []): boolean

This private method compares the extracted page state with the conditions
of the workflow.

Given a condition from the workflow being executed and the current page
state, the applicable() method returns true if the condition is applicable to the
current page state. Optionally it also accepts a list of names of actions that were
already executed in the current workflow execution.

async carryOutSteps(page: Page, steps: What[]) : Promise<void>
Given a Page class instance and a list of actions from the current matched

pair, this method carries out the actions on the given Page object.
The implementation of this method also contains the definitions of the custom

actions and overrides for some specific Playwright methods.

54

A.2.2 proprocessor.ts
The Preprocessor class defined in the preprocessor.ts file implements the val-
idation and static analysis of the input workflow definitions.

Methods

In the following subsection, all the methods of the Preprocessor class are de-
scribed. The relations between those are also explained here, making it easier to
understand the code. All of the following methods defined on the class are static,
i.e. they can be called without creating an instance of the class.

validateWorkflow(workflow: WorkflowFile): any
This method validates the given workflow definition based on the syntax defi-

nition from the section 2.2 Format Design. If the object passed is a valid workflow
definition, it returns null. In case of a syntax error in the workflow definition, it
returns an error message describing the problem.

getParams(workflow: WorkflowFile) : string[]
For a parametrized workflow, this method returns the list of the parameter

names used in the workflow. Internally, it performs a recursive search for the
specific parameter structure.

extractSelectors(workflow: Workflow) : SelectorArray
Given a workflow definition, this method extracts the list of the string se-

lectors used in the entire workflow. This is used for the state matching in the
Interpreter.runLoop() method.

initWorkflow(workflow: Workflow, params?: ParamType) : Workflow
Initializes the workflow with the given parameters. Performs checks on the

provided arguments and throws an exception if the parameters are not valid - the
workflow parameters and the provided object do not match, for example. Also
transforms the {$regex: "regex"} objects into regular JS regular expressions.

A.2.3 types/
The types/ directory contains various TS typings used in the wbr-interpret
package.

A.2.4 utils/utils.ts
A file containing various utility functions used in the wbr-interpret package.

Methods

arrayToObject(array : any[]) : any
Converts an array of scalars to an object with items of the array as keys. All

the values are empty arrays.

55

A.2.5 utils/logger.ts
The logger.ts file exports the logger function, used for logging messages across
the wbr-interpret package.

Type Aliases and Enums

Level
The Level enum defines the different log levels. The number values assigned

to the different levels are used for assigning different colours to the messages and
correspond to the ANSI Escape Codes.

Methods

logger(message: string | Error, level: Level)
The exported logger function for logging messages. Prepends every message

with a timestamp and sets the message colour based on the value of the level
parameter.

A.2.6 utils/concurrency.ts
Defines a generic Concurrency class for managing the concurrency of multiple
long-running jobs running in parallel.

Methods

constructor(maxConcurrency: number)
A constructor for the Concurrency class. Accepts a maxConcurrency param-

eter, which defines the maximum number of jobs that can be running in parallel.

addJob(job: () => Promise<any>) : void
Passes a job (a time-demanding async function) to the concurrency manager.

The time of the job’s execution depends on the concurrency manager.
The passed function is guaranteed to be called sometime in the future.

waitForCompletion() : Promise<void>
Waits until there is no running or a waiting job. If the concurrency manager is

idle at the time of calling this function, it waits until at least one job is completed.
Returns a Promise, which gets resolved after there is no running or an awaiting

job.

private runNextJob() : void
A private method taking a waiting job from the queue and processing it. Once

the job is completed, it calls the runNextJob() method until there are no more
jobs in the queue.

56

A.2.7 browserSide/scraper.js
File containing browser-side code for the wbr-interpret specific actions (scrape,
scrapeSchema and other.

Methods

getBiggestElement(selector)
Finds the largest element (based on its area) in the DOM tree that matches

the given selector. Currently unused.

getSelectorStructural(element)
Returns the structural CSS selector of the given element. The structural

selector describes a path to the element from the root element, based on the
tag names. The returned selector is not unique, as this method is used to find
repeating sibling elements on the page in the scrapableHeuristics method.

scrapableHeuristics(...)
An method implementing an heuristic for determining the most probably in-

teresting elements on the page. The “value” of the element is determined by
amount of similar looking elements on the same page.

scrape(selector)
Returns the text content of the elements targetted by scrapableHeuristics.

scrapeSchema(selector)
Given a set of element lists, this method matches the elements from the indi-

vidual lists with each other based on their common ancestors. This is particularly
useful for scraping incomplete tables of elements, where certain columns are not
fully populated.

57

A.3 wbr-editor code documentation
This attachment contains in-depth documentation of the wbr-editor module,
with detailed descriptions of the classes and methods used in the wbr-editor
module.

The project is described in a directory-by-directory manner, as the directory
structure clearly outlines the project’s structure and groups components based
on their locality inside of the application.

A.3.1 src/App.tsx
The root file of the wbr-editor application. This file defines the application
entry point and combines the main application components. It also imports the
CSS files used in the application.

A.3.2 src/Application/
The root directory of the wbr-editor application.

Modal.tsx
The file Modal.tsx describes the invitation modal element that is displayed

when the user first accesses the application. The file upload and workflow vali-
dation logic is implemented here.

A.3.3 src/Application/Reusables
Folder containing small, generally reusable components. While the name might
be a bit misleading, as all the React components are by design reusable, this
folder contains the most general types of components usable throughout the whole
project.

Button.tsx
The Button component is a simple React button with a label, icon and a click

handler. It is used throughout the project to create button elements.

Controls.tsx
The Controls.tsx file contains control elements with less independence than

the button mentioned above.
The file contains the <Select> component, representing the collapsible drop-

down menu. It also contains the <DeleteButton> component, rendering as a
small red button used for expressing the intent to delete.

58

A.3.4 src/Application/WorkflowEditor
The WorkflowEditor contains the elements that allow the user to create and edit
the workflow definition files.

WorkflowManager.tsx
The WorkflowManager.tsx file contains the highest-level logic for the work-

flow definition files editing. The <WorkflowManager> element is the main compo-
nent of the workflow editor part of the application. As the only React component
in the application, <WorkflowEditor> holds the current state of the edited au-
tomation.

Using the generic HistoryManager class, it also maintains the history of the
workflow definition files for the undo/redo operations.

WorkflowEditor.tsx
The <WorkflowEditor> component defined in the WorkflowEditor.tsx file

handles the workflow definition files editing on a lower level than the above de-
scribed WorkfowManager component.

This component also introduces the React Contexts for sharing the global
state of the current actions made in the workflow editor (e.g. collapsing the pairs
for better visibility).

A.3.5 src/Application/WorkflowEditor/Components
The Components directory contains the main building blocks of the workflow
editor.

Where.tsx
The Where.tsx file contains the <Where> component, which is used to render

the recursive condition structures inside the workflow definitions.

What.tsx
The What.tsx file contains the <What> component, which renders the list

of actions inside the workflow definitions. The action list editor implements
drag&drop behavior using the react-dnd library.

Pair.tsx
The <Pair> component defined in the Pair.tsx file combines the <Where>

and <What> components to create an condition-action pair. This component is
draggable (implemented using the react-dnd library) and can be collapsed and
expanded using the outer contexts.

DropZone.tsx
The DropZone.tsx file defines the <DropZone> component, representing the

spots where the <Pair> components can be dropped. This component changes
appearance when being dragged over.

59

A.3.6 src/Application/WorkflowEditor/Editables
The files in this directory contain the definitions of editable input components
used mostly by the <What> and <Where> components.

EditableValue.tsx
The <EditableValue> component defined in this file wrap a simple <input>

HTML element in a React component, while enhancing it’s functionality. It
analyzes the value property of the <EditableValue> component and casts it to
the most appropriate type.

EditableHeading.tsx
A component for displaying a heading with an editable value. The editing

mode is enabled by double-clicking on the heading.

EditableArray.tsx
The <EditableArray> component defined in this file renders an array of val-

ues as a list of <EditableValue> components. If the dynamic option is set, the
length of the array can be changed by the user.

EditableObject.tsx
The <EditableObject> component defined in the EditableObject.tsx file

renders an flat JS object as a table of <EditableValue> components. If the
dynamic option is set, the keys can be added by the user.

RenderValue.tsx
The <RenderValue> component combines the functionality of the previously

mentioned <EditableValue>, <EditableArray> and <EditableObject> compo-
nents. Given a value, this component renders it as an appropriate React compo-
nent, based on its type.

A.3.7 src/Application/WorkflowEditor/Utils
This directory contains various helper functions and global context exports.

GlobalStates.tsx
This file defines the React contexts used in the application to share the global

state of the workflow editor.

UpdaterFactory.tsx
This file implements several factory methods for creating updaters - functions

used for updating the immutable React state. These are used mainly in the
<Where> and <What> components to ensure uniform interface and consistency.

utils.ts
A file containing helper TS methods.

60

A.3.8 src/Application/WorkflowPlayer
This directory contains the components and classes responsible for the frontend
for the remote workflow player.

Screen.tsx
This file contains the <Screen> component, which is the main component of

the workflow player, representing the virtual “screen” for the remote browser view.
Furthermore, it contains the ScreenControls class, which provides methods for
updating the screen component.

Console.tsx
Contains the <Console> component, representing the console for logging the

data from the remote browser view. The file also contains the ConsoleControls
class, providing methods for updating the console component.

Player.tsx
Implements the Player component combining the Screen and Console com-

ponents. Also exports the runWorkflow() function, which implements the remote
browser communication, handling the data from the remote browser and updating
the components.

61

A.4 wbr-cloud API documentation
This attachment documents the wbr-cloud server REST API.

POST /api/performer
The REST API endpoint for passing the automation to the Editor application

backend server for execution.
The body of the request must contain a JSON object with the fields workflow

containing the workflow definition object and parameters, containing the op-
tional parameters for the current workflow.

Returns a JSON object with the fields url containing the unique identifier
of the workflow run, boolean status signalizing whether the workflow started
successfully and message containing the status message.

POST /api/performer/:id
The REST API endpoint for management of the automation running in the

Editor application backend server.
The body of the request must contain a JSON object with the field action

describing the desired action to be executed. Currently, the only valid action is
stop, stopping the specified workflow run.

Other endpoints
Because of legacy reasons, the wbr-cloud server also provides other endpoints,

following the REST API practices. These endpoints are however, not used by
the wbr-editor frontend application and their functionality is not ensured to be
stable, as they are no longer maintained.

62

	Introduction
	Analysis
	User roles
	User
	Developer

	Requirements
	Editor
	Runner

	Use case analysis
	Editor
	Runner

	Existing solutions
	Evaluation criteria
	Programming-based solutions
	Codeless solutions

	Design
	Parts of the project
	Workflow definition format
	Programming logic
	Conditions
	Reactions
	Serialization
	Validation

	Runner
	Components
	Programming language, libraries

	Editor
	Technologies
	UI design

	Implementation
	Runner
	Performance
	Extra features

	Editor
	React
	Improving the UX

	Documentation
	User documentation
	Editor application

	Developer documentation
	wbr-interpret
	wbr-editor
	wbr-cloud

	Administrator documentation
	Editor application

	Testing
	Code quality
	Automated tests
	Unit tests
	E2E tests

	User testing
	Test scenario
	SUS survey

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Attachments
	SUS survey details
	wbr-interpret code documentation
	interpret.ts
	proprocessor.ts
	types/
	utils/utils.ts
	utils/logger.ts
	utils/concurrency.ts
	browserSide/scraper.js

	wbr-editor code documentation
	src/App.tsx
	src/Application/
	src/Application/Reusables
	src/Application/WorkflowEditor
	src/Application/WorkflowEditor/Components
	src/Application/WorkflowEditor/Editables
	src/Application/WorkflowEditor/Utils
	src/Application/WorkflowPlayer

	wbr-cloud API documentation

