
BACHELOR THESIS

Eldar Urmanov

Coloring of triangle-free graphs on torus

Mathematical-Physical Faculty

Supervisor of the bachelor thesis: prof. Mgr. Zdeněk Dvořák, Ph.D.

Study programme: Informatics

Study branch: Informatics

Prague 2022

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

ii

Dedication. I am grateful to my parents for providing me with the opportunity to
become a student in Charles University and for stoically accepting my decision
to study Theoretical Informatics. Also I would like to thank my supervisor
for trusting me such a great and important topic and patiently pointing out all
occurrences of the same mistakes I have made in the drafts just to see these
mistakes appear in the new chapters. A word of gratitude towards my friends
and colleagues motivating me to finish my studies in time, advocating for Charles
University and translating the abstract of this thesis to Czech language.

iii

iv

Title: Coloring of triangle-free graphs on torus

Author: Eldar Urmanov

Department of Applied Mathematics: Mathematical-Physical Faculty

Supervisor: prof. Mgr. Zdeněk Dvořák, Ph.D., Department of Applied Mathemat-
ics

Abstract: Pekárek and Dvořák (2021) proposed a linear-time algorithm to decide
3-colorability of triangle-free graphs drawn on the torus. We implemented this
algorithm efficiently and evaluated its performance on a natural class of graphs.

Keywords: toroidal graph 3-colorability algorithm implementation

v

vi

Contents

Introduction 3

1 Data structure 5

2 Nowhere-zero flows 7

3 Extending the precoloring of two cycles 11

4 Short non-contractible cycles 21

5 3-coloring for toroidal graphs 33

6 Eliminating non-facial 4-cycles 37

7 Coloring algorithm 49

8 Results 59

Conclusion 63

Bibliography 65

A Using the algorithm 67

1

2

Introduction

By a well-known theorem of Grötzsch [1], every triangle-free planar graph is
3-colorable. This result has been proved in a number of different ways [2, 3]
and there is a linear-time algorithm to find a 3-coloring of a given triangle-free
planar graph [4]. There are infinitely many triangle-free minimal non-3-colorable
graphs that can be drawn in any other surface, e.g., Mycielsky graphs of odd cycles.
Dvořák, Kráľ and Thomas [5] gave a linear-time algorithm to decide 3-colorability
of a triangle-free graph drawn in any fixed surface, however, their algorithm is not
practical. Dvořák and Pekárek [6] gave an exact characterization of 3-colorability
of triangle-free graphs on torus, and in [7] they designed a practical algorithm to
decide whether a given triangle-free toroidal graph is 3-colorable.

The goal of this work is the implementation and evaluation of the algorithm [7]
deciding whether a triangle-free toroidal graph is 3-colorable (”the implementa-
tion” or ”the program” from now on). A graph 𝐺 is 3-colorable if there exists a
mapping 𝑐 ∶ 𝑉 (𝐺) → {0, 1, 2} such that 𝑐(𝑢) ≠ 𝑐(𝑣) holds for every 𝑢𝑣 ∈ 𝐸(𝐺).

The program receives a graph which does not contain any cycles of length≤ 3 as subgraphs, is connected and is embeddable on torus without crossings
with a correct embedding provided with the graph. The output of the program is
binary, indicating whether there exists a correct 3-coloring of the graph or not.
Note that the program does not find the coloring but only decides on its existence.

The time complexity of the algorithm used for this problem is 𝑂(|𝑉 (𝐺)|) but
some parts of the implementation use structures like hashmaps and self-balancing
BSTs so the actual complexity will be higher. The program could have been
written in linear time but the choice was made in favor of code simplification and
occasional real execution time reduction.

The program was widely tested on the graphs from [6] and their various
augmentations and for the case of small graphs compared with a bruteforce
solution. The graphs [6] from with non-floating faces arbitrarily quadrangulated
are non-3-colorable, so the comparison with bruteforce was not needed. The
program passed all tests correctly and the benchmarks showed that the execution
time is practically linear to the input size (number of vertices in the graph).

The program was written in C++ using features up to C++17 and can be

3

compiled by any compiler that supports C++17 standard.

4

Chapter 1

Data structure

The data structure used to store the graph and all needed metadata is Doubly
Connected Edge List (DCEL), a list of vertices, half-edges and faces connected by
pointers. Each edge is represented by a pair of half-edges – directed edges having
the same endpoints but opposite to each other.

The overview of the DCEL structure is as follows:
Half-edge:

• 𝑓 𝑟𝑜𝑚 - a pointer to the vertex this half-edge is directed from (the source
vertex).

• 𝑡𝑜 - a pointer to the vertex this half-edge is directed to (the target vertex).

• 𝑜𝑝𝑝 - a pointer to the opposite half-edge.

• 𝑛𝑒𝑥𝑡 - a pointer to the next half-edge with the same source vertex in the
clockwise order.

• 𝑙𝑒𝑓 𝑡 - a pointer to the face on the left side of this half-edge. Note that the
pointer for the right side will be 𝑙𝑒𝑓 𝑡(𝑜𝑝𝑝).

Vertex :

• 𝑡𝑜 - pointer to any half-edge directed from this vertex. All half-edges
directed from this vertex form a connected list as 𝑡𝑜, 𝑛𝑒𝑥𝑡(𝑡𝑜), 𝑛𝑒𝑥𝑡(𝑛𝑒𝑥𝑡(𝑡𝑜)),
... in clockwise order.

Face:

• 𝑓 𝑠𝑡 - pointer to any half-edge on the directed cycle bounding this face
in counter-clockwise order. All these half-edges can be accessed as 𝑓 𝑠𝑡,𝑛𝑒𝑥𝑡(𝑜𝑝𝑝(𝑓 𝑠𝑡)), 𝑛𝑒𝑥𝑡(𝑜𝑝𝑝(𝑛𝑒𝑥𝑡(𝑜𝑝𝑝(𝑓 𝑠𝑡)))), ... in counter-clockwise order.

5

Note that those are only the attributes that were used to define the bare graph
structure. Actual class definitions in the code contain many more attributes, most
of which will be described later.

On the input however the program expects a simpler representation: for a
graph 𝐺 the vertices are presented with a set of numbers [1… |𝑉 (𝐺)|] and the
edges are stored in an array 𝑔 of length |𝑉 (𝐺)| where 𝑔[𝑥] is the list of all edges
incident with the vertex 𝑥 sorted clockwise. Every edge appears exactly twice in
this array in the form of two opposite directed edges (called directions from this
point on) and the structure of the directions (called simple_edge in code) is as
follows:

• 𝑓 𝑟𝑜𝑚 - the identifier of the source vertex of this direction.

• 𝑡𝑜 - the identifier of the target vertex of this direction.
• 𝑖𝑛𝑑𝑒𝑥 - an identifier of this direction. Both directions of the same edge have
different indices.

• 𝑙 𝑖𝑛𝑘 - an identifier of the corresponding edge. Two directions of the same
edge have the same link.

Importantly, the order in the list 𝑔[𝑥] is crucial, as with different orderings
one could get different embeddings of the graph, possibly on different surfaces.

We use another structure to store the dual graph 𝐺⋆ (usually named in the
code as 𝐻 or 𝐺 if the code is for dual graphs only). We define the connection
between 𝐺 and its dual by a function 𝑑𝑢𝑎𝑙 such that for 𝑣 ∈ 𝑉 (𝐺⋆) 𝑑𝑢𝑎𝑙(𝑣) is
defined as the corresponding face 𝑓 ∈ 𝐹(𝐺) and 𝑑𝑢𝑎𝑙(𝑓) = 𝑣. Similarly, for each
half-edge 𝑒 ∈ 𝐸(𝐺) we define the connection to the dual as 𝑑𝑢𝑎𝑙(𝑒) = 𝑒⋆ ∈ 𝐸(𝐺⋆)
where the edge 𝑒⋆ of the dual graph is going from the face on the left side of 𝑒 to
the face on the right side of 𝑒. Also, we define 𝑑𝑢𝑎𝑙(𝑒⋆) = 𝑒. Note that there is no
dual connection from 𝑉 (𝐺) because the faces of the dual graph are irrelevant for
our purposes and are not stored.

Lastly, for a face 𝜙 we define |𝜙| ∶= |{𝑒 | 𝑒 ∈ 𝐸(𝐺), 𝑙𝑒𝑓 𝑡(𝑒) = 𝜙}|, the length of
the bounding closed walk of the face 𝜙. Note that |𝜙| = deg 𝑑𝑢𝑎𝑙(𝜙).

We will use a dual graph also as a flow network in the algorithm and to do
that we add capacity and flow to all half-edges in the dual graph: 𝑓 (𝑒⋆) and 𝑐(𝑒⋆)
correspondingly.

From this point and until further notice DCEL representation of the graphs
will be used. This means, in particular, that we view each edge 𝑒 ∈ 𝐸(𝐺) as directed
where 𝑢𝑣 ∈ 𝐸(𝐺) ⟺ 𝑣𝑢 ∈ 𝐸(𝐺), i.e. each undirected edge is represented by a
pair of directed half-edges.

6

Chapter 2

Nowhere-zero flows

One way to represent 3-colorings of a plane graph is by nowhere-zero flows in the
dual graph. Let 𝑐𝑜𝑙 ∶ 𝑉 (𝐺) → {0, 1, 2} be a proper coloring of a plane graph 𝐺
and let 𝐺⋆ be the dual graph of 𝐺. Note that for each edge 𝑒 ∈ 𝐸(𝐺)𝑐𝑜𝑙(𝑡𝑜(𝑒)) − 𝑐𝑜𝑙(𝑓 𝑟𝑜𝑚(𝑒)) ≡ ±1 (mod 3)
Define 𝛿(𝑒) ∈ {−1, +1} so that𝛿(𝑒) ≡ 𝑐𝑜𝑙(𝑡𝑜(𝑒)) − 𝑐𝑜𝑙(𝑓 𝑟𝑜𝑚(𝑒)) (mod 3)
and set the flow of a dual half-edge 𝑓 (𝑑𝑢𝑎𝑙(𝑒)) as 1 if 𝛿(𝑒) = 1, otherwise set the
flow to 0. Now observe that 𝛿(𝑒) + 𝛿(𝑜𝑝𝑝(𝑒)) = 0, and thus𝑓 (𝑑𝑢𝑎𝑙(𝑒)) + 𝑓 (𝑑𝑢𝑎𝑙(𝑜𝑝𝑝(𝑒))) = 1
i.e. exactly one half-edge out of any pair of opposite half-edges in the dual graph
will have flow 1.

Also define 𝛿𝑓 (𝑒⋆) ∈ {−1, +1} as 𝛿𝑓 (𝑒⋆) = 𝑓 (𝑒⋆) − 𝑓 (𝑜𝑝𝑝(𝑒⋆)). Alternatively𝛿𝑓 (𝑒⋆) = 2𝑓 (𝑒⋆) − 1, and thus we can deduce 𝑓 from 𝛿𝑓 and vice versa. Note that𝛿𝑓 (𝑒⋆) = 𝛿(𝑑𝑢𝑎𝑙(𝑒⋆)).
We call a flow 𝑓 a unit flow if for every 𝑒⋆ ∈ 𝐸(𝐺⋆) 𝑓 (𝑒⋆) ∈ {0, 1}. We call a

unit flow a nowhere-zero flow if 𝛿𝑓 (𝑒⋆) = ±1 for every 𝑒⋆ ∈ 𝐸(𝐺⋆).
Note that our notion of a flow is slightly different from the usual one, as we

allow the amount of flow leaving a vertex to be non-zero, i.e. a vertex can have a
non-zero excess. Still, we can make some observation on the excess, which we
denote as Δ𝑓 ∶ 𝑉 (𝐺⋆) → ℤ and define asΔ𝑓 (𝑣) = ∑𝑒⋆∈𝐸(𝐺⋆) ∶ 𝑡𝑜(𝑒⋆)=𝑣 𝑓 (𝑒⋆) − ∑𝑒⋆∈𝐸(𝐺⋆) ∶ 𝑓 𝑟𝑜𝑚(𝑒⋆)=𝑣 𝑓 (𝑒⋆) for each 𝑣 ∈ 𝑉 (𝐺).
Note that for flows derived from 3-colorings as described above, the values of the
excess are constrained as explained in the following lemma:

7

Lemma 2.1. Let 𝐺 be a plane graph, let 𝐺⋆ be the dual of 𝐺 and let 𝑓 be the flow in𝐺⋆ defined by a 3-coloring of 𝐺 as described above. Let 𝜙 be a face of 𝐺 with the dual
vertex 𝑣. It holds that Δ𝑓 (𝑣) ∈ {6𝑘 | 𝑘 ∈ ℤ} for even |𝜙| and Δ𝑓 (𝑣) ∈ {3 + 6𝑘 | 𝑘 ∈ ℤ}
for odd |𝜙|.
Proof. Let 𝐶 be the closed walk bounding 𝜙. Without loss of generality suppose
that the edges in 𝐶 are directed clockwise around 𝜙, so for each 𝑒 ∈ 𝐸(𝐺), we have𝑙𝑒𝑓 𝑡(𝑜𝑝𝑝(𝑒)) = 𝜙. This means that 𝑡𝑜(𝑑𝑢𝑎𝑙(𝑒)) = 𝑓 𝑟𝑜𝑚(𝑑𝑢𝑎𝑙(𝑜𝑝𝑝(𝑒))) = 𝑣, i.e. the
duals to half-edges in 𝐶 are directed to 𝑣. ThereforeΔ𝑓 (𝑣) = ∑𝑢𝑣∈𝐸(𝐺⋆) 𝛿𝑓 (𝑢𝑣) = ∑𝑢𝑣∈𝐸(𝐺⋆) 𝛿(𝑑𝑢𝑎𝑙(𝑢𝑣)) = ∑𝑒∈𝐶 𝛿(𝑒).
By the definition of 𝛿(𝑒), we have ∑𝑒∈𝐶 𝛿(𝑒) ≡ 0 (mod 3), and thusΔ𝑓 (𝑣) ∈ {3𝑘 | 𝑘 ∈ ℤ}.

To finish the proof it is only left to see that each edge in 𝐶 contributes ±1 to∑𝑒∈𝐶 𝛿(𝑒) and consequently to Δ𝑓 (𝑣), and thus Δ𝑓 (𝑣) ≡ |𝐶| (mod 2).
Conversely, as was first observed by Tutte [8], the existence of a flow with

these properties implies that the graph is 3-colorable. Define a boundary on a
graph 𝐻 = (𝑉 , 𝐸) as a function 𝑏𝐻 ∶ 𝑉 (𝐻) → ℤ, such that ∑𝑣∈𝑉 (𝐻) 𝑏𝐻(𝑣) = 0.
We say that the boundary is valid, when for every 𝑣 ∈ 𝑉 (𝐻) it holds that 𝑏𝐻(𝑣) ∈{3+6𝑘 | 𝑘 ∈ ℤ} for odd deg 𝑣, 𝑏𝐻(𝑣) ∈ {6𝑘 | 𝑘 ∈ ℤ} for even deg 𝑣 and |𝑏𝐺⋆(𝑣)| ≤ deg 𝑣.
We will typically use this definition in the context 𝐻 = 𝐺⋆. We will show that if
there is a valid boundary for 𝐺⋆ such that there exists a unit flow with excesses
equal to this boundary, then 𝐺 is 3-colorable.
Theorem 2.2. Let 𝐺 be a plane graph, and let 𝐺⋆ be the dual of 𝐺. The graph 𝐺 is3-colorable iff there exists a valid boundary 𝑏𝐺⋆ and a unit flow 𝑓 in 𝐺⋆ such that𝑏𝐺⋆ = Δ𝑓.
Proof. The existence of a boundary with this property in 3-colorable graphs
follows from Lemma 1 and its proof. The other implication can be proven by
constructing a proper 3-coloring given a valid boundary 𝑏𝐺⋆ and a unit flow 𝑓
whose excess matches this boundary.

First of all, we will show that there also is a nowhere-zero unit flow with the
same excess. We will do this by transforming the flow 𝑓 into a nowhere-zero flow.
A pair of opposite half-edges 𝑢𝑣 and 𝑣𝑢 is called directed if 𝑓 (𝑢𝑣) ≠ 𝑓 (𝑣𝑢) and
undirected otherwise. Our goal is to make every pair directed. Every undirected
pair of opposite half-edges {𝑢𝑣 , 𝑣𝑢} contributes 0 to the parity of Δ𝑓 (𝑢) and Δ𝑓 (𝑣)
and every directed pair contributes ±1. Note that for 𝑣 ∈ 𝑉 (𝐺⋆), Δ𝑓 (𝑣) = 𝑏𝐺⋆(𝑣) ≡
deg 𝑣 (mod 2), so for each dual vertex there is an even number of undirected
pairs of half-edges incident to it.

8

Let 𝐺𝐸 be the graph with 𝑉 (𝐺𝐸) = 𝑉 (𝐺) such that for each undirected pair
of half-edges {𝑢𝑣 , 𝑣𝑢} in 𝐺 there is an undirected edge 𝑢𝑣 in 𝐸(𝐺𝐸). From the
statement above it follows that each component of 𝐺𝐸 is an eulerian graph, and
thus we can orient the edges in 𝐺𝐸 so that 𝑑𝑒𝑔+(𝑣) = 𝑑𝑒𝑔−(𝑣) for 𝑣 ∈ 𝑉 (𝐺𝐸).
Now if an edge 𝑢𝑣 ∈ 𝐸(𝐺𝐸) is oriented from 𝑢 to 𝑣, set the flow of the half-edge𝑢𝑣 ∈ 𝐸(𝐺) to 1 and of the half-edge 𝑣𝑢 ∈ 𝐸(𝐺) to 0. From the properties of the
orientation of 𝐺𝐸 it is clear that this does not change the excess of 𝑓 and causes all
pairs of half-edges in 𝐺 to be directed. Finally, since all pairs are directed, it is true
that 𝑓 (𝑜𝑝𝑝(𝑒)) ≠ 𝑓 (𝑒) for every 𝑒 ∈ 𝐸(𝐺⋆), and thus the flow is nowhere-zero.

Hence, we can assume that 𝑓 is a nowhere-zero flow in 𝐺⋆ with Δ𝑓 (𝑣) = 𝑏𝐺⋆ ≡0 (mod 3) for every 𝑣 ∈ 𝑉 (𝐺⋆). Let 𝑇 be a directed spanning tree of 𝐺with root in𝑟 and let 𝑇 ′ be the reverse of 𝑇, i.e. 𝐸(𝑇 ′) = {𝑜𝑝𝑝(𝑒) | 𝑒 ∈ 𝐸(𝑇)}. Set 𝑐𝑜𝑙(𝑟) = 0 and
color the vertices of 𝐺 so that 𝛿(𝑒) = 𝛿𝑓 (𝑑𝑢𝑎𝑙(𝑒)) for each edge 𝑒 of 𝑇; this can be
done by setting the color of the vertices in order according to the distance from 𝑟.
The color difference is always ±1, so we get a proper coloring for 𝑇 and 𝑇 ′. The
only thing left to check is if the colors are different for edges in 𝐸(𝐺)/𝐸(𝑇 ∪ 𝑇 ′).
Let 𝑒 = 𝑢𝑣 be a half-edge from 𝐸(𝐺)/𝐸(𝑇 ∪ 𝑇 ′). There is a path 𝑃𝑣𝑢 from 𝑣 to𝑢 in 𝑇 ∪ 𝑇 ′ and it holds that ∑𝑒∈𝑃𝑣𝑢 𝛿𝑓 (𝑑𝑢𝑎𝑙(𝑒)) = ∑𝑒∈𝑃𝑣𝑢 𝛿(𝑒) ≡ 𝑐𝑜𝑙(𝑢) − 𝑐𝑜𝑙(𝑣)(mod 3). Let 𝐶𝑢𝑣 be a cycle defined as 𝐶𝑢𝑣 ∶= {𝑢𝑣} ∪ 𝑃𝑣𝑢. Note that in the plane
graph cycles divide the plane into two parts, the dual of the cycle 𝐶𝑢𝑣 denoted
as 𝐶⋆𝑢𝑣 is a cut in 𝐺⋆, and consequently, the amount of flow going through 𝐶⋆𝑢𝑣
is equal to the sum of Δ𝑓 (𝑣) for the vertices on one side of the cycle. HoweverΔ𝑓 (𝑣) ≡ 0 (mod 3) for each 𝑣 ∈ 𝑉 (𝐺⋆) so the sum is also a multiple of 3, i.e.∑𝑒∈𝐶𝑢𝑣 𝛿𝑓 (𝑑𝑢𝑎𝑙(𝑒)) = 0 (mod 3). Then

0 ≡ ∑𝑒∈𝐶𝑢𝑣 𝛿𝑓 (𝑑𝑢𝑎𝑙(𝑒)) = (∑𝑒∈𝑃𝑣𝑢 𝛿𝑓 (𝑑𝑢𝑎𝑙(𝑒))) + 𝛿𝑓 (𝑑𝑢𝑎𝑙(𝑢𝑣)) (mod 3)
0 ≡ 𝑐𝑜𝑙(𝑢) − 𝑐𝑜𝑙(𝑣) + 𝛿𝑓 (𝑑𝑢𝑎𝑙(𝑢𝑣)) (mod 3)𝛿𝑓 (𝑑𝑢𝑎𝑙(𝑢𝑣)) ≡ 𝑐𝑜𝑙(𝑣) − 𝑐𝑜𝑙(𝑢) (mod 3)

And since 𝑓 is a nowhere-zero flow and 𝛿𝑓 (𝑒⋆) = ±1 for every 𝑒⋆ ∈ 𝐸(𝐺⋆), we
have 𝑐𝑜𝑙(𝑢) ≠ 𝑐𝑜𝑙(𝑣). Therefore, 𝑐𝑜𝑙 is a proper 3-coloring of 𝐺.

By Theorem 2.2we can decide whether 𝐺 is 3-colorable by going over all valid
boundaries, and for each valid boundary 𝑏𝐺⋆ testing whether exists a unit flow
satisfying Δ𝑓 = 𝑏𝐺⋆ .

Iterating through all boundaries is done by a simple bruteforce search – for
each vertex 𝑣 in the dual graph the value of boundary is between − deg 𝑣 and
deg 𝑣 and depending on the parity of deg 𝑣 it belongs either to {6𝑘|𝑘 ∈ ℤ} or to{3 + 6𝑘|𝑘 ∈ ℤ}. There can be exponentially many different boundaries for 𝐺;

9

however, for a face 𝜙 with |𝜙| = 4, 𝑏𝐺⋆(𝑑𝑢𝑎𝑙(𝜙)) can only be 0. Therefore, for
near-quadrangulations, i.e. the graphs where the lengths of all faces are bounded
by a constant and in which there are at most constantly many faces of length
distinct from 4, there are constantly many choices of 𝑏𝐺⋆ .

Once we chose a valid boundary function, we need to try to find a unit flow
with the same excess. For every vertex 𝑣 ∈ 𝑉 (𝐺⋆), if 𝑏𝐺⋆(𝑣) < 0, 𝑣 has to generate
exactly |𝑏𝐺⋆(𝑣)| units of flow, if 𝑏𝐺⋆(𝑣) > 0 the vertex has to consume |𝑏𝐺⋆(𝑣)|
units of flow, while every edge can transfer either 0 or 1 unit of flow. This is
a classic problem of multi-source and multi-target maximum flow that can be
solved by adding a source vertex 𝑠 and a target vertex 𝑡 and for all 𝑣 ∈ 𝑉 (𝐺⋆) if𝑏𝐺⋆(𝑣) is positive, creating a half-edge from 𝑣 to 𝑡 with capacity 𝑏𝐺⋆(𝑣), otherwise
creating a half-edge from 𝑠 to 𝑣 with capacity −𝑏𝐺⋆(𝑣). For all other edges we
set the capacity to 1. We then find the maximum flow from 𝑠 to 𝑡. It is easy to
see that the maximum flow will saturate all edges incident to the source and the
target if and only if the boundaries of 𝑏𝐺⋆ are met in the corresponding flow in
an unaugmented graph. We use Ford-Fulkerson algorithm to find the maximum
flow. The asymptotic complexity of this algorithm is 𝑂(|𝑀||𝐸|), where 𝑀 is the
size of the maximum flow. Note that 𝑀 is bounded by ∑𝑣∈𝑉 (𝐺⋆) |𝑏𝐺⋆(𝑣)|, which
is constant for near-quadrangulations, so the maximum flow for one boundary
choice will be found in linear time. Moreover, the number of different valid
boundaries for a near-quadrangulation is constant, so the whole algorithm will
run in linear time.

The implementation of this algorithm including comments can be found in
nquadcol.cpp.

10

Chapter 3

Extending the precoloring of two
cycles

As the next step, we consider the problem of extending a precoloring of two facial
cycles 𝐶1 and 𝐶2 to the 3-coloring of the whole plane graph.

First, let us show how this problem can be solved in the case of one precolored
facial cycle. A high-level description of the solution is as follows: We will find a
nowhere-zero unit flow with the excess equal to a chosen boundary and addition-
ally matching the color differences on the precolored cycle, and then construct
a proper 3-coloring out of this flow using a slight modification of the algorithm
from the proof of Theorem 2.2.

Let 𝐺 be a DCEL representation of the graph, let 𝜙 be the face whose boundary
is precolored, let 𝐶 ⊆ 𝐸(𝐺) be the the set of all half-edges incident with 𝜙 and
let 𝐶⋆ = {𝑑𝑢𝑎𝑙(𝑒) | 𝑒 ∈ 𝐶}. Note that for 𝑒 ∈ 𝐶⋆ the desired value of 𝛿(𝑑𝑢𝑎𝑙(𝑒)) is
determined by the precoloring of 𝐶. Hence, we fix the flow on edges of 𝐶⋆ so that𝛿𝑓 (𝑒) = 𝛿(𝑑𝑢𝑎𝑙(𝑒)) and search for a nowhere-zero flow that matches it. In the
following subsection we will describe a way to search for a nowhere-zero flow in𝐺⋆ that extends the fixed flow in 𝐶⋆ or generally in any subgraph of 𝐺⋆.
Extending a nowhere-zero flow of a subgraph
Let us start by showing how to extend a nowhere-zero flow in a subgraph to a
unit flow, an extension to a nowhere-zero flow will easily follow.

Theorem 3.1. Let 𝐻 be a graph, and let 𝑏𝐻 be a boundary on 𝐻. Let 𝑆 be a subgraph
of 𝐻, let 𝐻 ′ ∶= 𝐻 − 𝐸(𝑆) and let 𝑓0 be a unit flow in 𝑆. For each 𝑣 ∈ 𝑉 (𝐻) let𝑏′(𝑣) = 𝑏𝐻(𝑣) − Δ𝑓0(𝑣). Then there exists a unit flow in 𝐻 with boundary 𝑏𝐻 and
matching 𝑓0 on 𝑆 if and only if there exists a unit flow in 𝐻 ′ with boundary 𝑏′.

11

Proof. Let 𝑓𝐻 be a unit flow in 𝐻, such that Δ𝑓𝐻 = 𝑏𝐻 and 𝑓𝐻(𝑒) = 𝑓0(𝑒) for every𝑒 ∈ 𝐸(𝑆). Let 𝑓𝐻 ′ be a unit flow in 𝐻 ′ with 𝑓𝐻 ′(𝑒) = 𝑓𝐻(𝑒) for 𝑒 ∈ 𝐸(𝐻 ′). Then, for
every 𝑣 ∈ 𝑉 (𝐻) Δ𝑓𝐻 ′(𝑣) = Δ𝑓𝐻(𝑣) − Δ𝑓0(𝑣) = 𝑏𝐻(𝑣) − Δ𝑓0(𝑣)
and thus the excess of 𝑓𝐻 ′ is equal to 𝑏′.

Conversely, let 𝑓𝐻 ′ be a unit flow in 𝐻 ′, such that Δ𝑓𝐻 ′ = 𝑏′. We define a unit
flow 𝑓𝐻 as

𝑓𝐻(𝑒) ∶= {𝑓0(𝑒) if 𝑒 ∈ 𝐸(𝑆)𝑓𝐻 ′(𝑒) if 𝑒 ∈ 𝐸(𝐻 ′)
for 𝑒 ∈ 𝐻. Note that for each 𝑣 ∈ 𝑉 (𝐻)Δ𝑓𝐻(𝑣) = Δ𝑓𝐻 ′(𝑣) + Δ𝑓0(𝑣) = 𝑏′(𝑣) + Δ𝑓0(𝑣) = 𝑏𝐻(𝑣)

Now suppose 𝑓0 is a nowhere-zero flow and 𝑏𝐻 is a valid boundary, then we
can notice that 𝑏′(𝑣) ≡ deg 𝑣 (mod 2) and according to Theorem 2.2 there will be
a nowhere-zero flow 𝑓𝐻 ′ with excess 𝑏′, and thus 𝑓𝐻 obtained from combining𝑓𝐻 ′ and 𝑓0 as shown above will also be a nowhere-zero flow.

Extending a precoloring of one cycle
Consider the case of Theorem 3.1 where 𝐻 is the dual of a plane graph 𝐺 and 𝑆 is
the dual of a facial cycle 𝐶 in 𝐺 bounding a face 𝜙. Note that the edges in 𝐶⋆ are
exactly the edges incident with 𝑑𝑢𝑎𝑙(𝜙) in 𝐻, and thus 𝐻 ′−𝑑𝑢𝑎𝑙(𝜙) = 𝐻 −𝑑𝑢𝑎𝑙(𝜙).

We define contracting a face 𝜙 in a plane graph 𝐺 (denoted as 𝐺/{𝜙}) as an
operation that corresponds to contracting every edge of 𝐺 incident to 𝜙. From the
geometric perspective it can be seen as reducing the size of the face 𝜙 sufficiently
and replacing it with a vertex. We call this new vertex a representative of the face𝜙 in a new graph. Note that in our case the dual of 𝐺/{𝜙} is 𝐻 − 𝑑𝑢𝑎𝑙(𝜙).

Therefore to extend a fixed nowhere-zero flow 𝑓0 in 𝐶⋆ to a nowhere-zero
flow in 𝐺 satisfying some 𝑏𝐺⋆ we need to:

• Construct 𝐻 ′ ∶= 𝐺⋆ − 𝑑𝑢𝑎𝑙(𝜙).
• Iterate through all valid boundary functions 𝑏𝐺⋆ .
• For each plausible 𝑏𝐺⋆ create 𝑏𝐻(𝑣) ∶= 𝑏𝐺⋆(𝑣) − Δ𝑓0(𝑣).

12

• Search for a nowhere-zero unit flow in 𝐻 ′ with excess equal to 𝑏𝐻.
• If there is a flow 𝑓 ′ in 𝐻 ′ with excess equal to any 𝑏𝐻, change 𝑓 ′ into a
nowhere-zero flow without changing the excess as shown in Theorem 2.2,
transform 𝑏𝐻 back to 𝑏𝐺⋆ and add vertex 𝑑𝑢𝑎𝑙(𝜙) back with all fixed dual
edges.

Suppose this procedure succeeds, and thus we have a nowhere-zero flow with
excess 𝑏𝐺⋆ extending the fixed flow on 𝐶⋆. Now we can use this flow to construct
a 3-coloring of 𝐺which will be an extension of the coloring of 𝐶. This can be done
with the algorithm described in the proof of Theorem 2.2, except we choose the
root 𝑟 of 𝑇 as one of the precolored vertices and start by giving it the prescribed
color. The only thing left is to prove that the obtained coloring is indeed an
extension of the precoloring of 𝐶.

Define the amount of flow 𝑓 going through a path 𝑃 asΦ𝑓(𝑃) = ∑𝑒⋆∈𝑃⋆ 𝛿𝑓 (𝑒⋆)
.

Lemma 3.2. Let 𝐺 be a plane graph, let 𝐺⋆ be its dual and let 𝑓 be a nowhere-zero
unit flow with excess equal to 𝑏𝐺⋆ , where the boundary 𝑏𝐺⋆ is valid. Let 𝑣1 and 𝑣2 be
vertices of 𝐺. For any two paths 𝑃1, 𝑃2 ⊆ 𝐸(𝐺) starting in 𝑣1 and ending in 𝑣2 it is
true that Φ𝑓(𝑃1) = Φ𝑓(𝑃2) (mod 3)
Proof. From Theorem 2.2 we know that there exists a 3-coloring 𝑐𝑜𝑙′ of 𝐺 such
that for every edge in 𝐺, 𝛿𝑓 (𝑑𝑢𝑎𝑙(𝑒)) = 𝛿(𝑒). In this case Φ𝑓(𝑃𝑖) = ∑𝑒⋆∈𝑃⋆𝑖 𝛿𝑓 (𝑒⋆) =∑𝑒∈𝑃𝑖 𝛿(𝑒) ≡ 𝑐𝑜𝑙′(𝑣2) − 𝑐𝑜𝑙′(𝑣1) (mod 3) for 𝑖 ∈ {1, 2}.
Theorem 3.3. Let 𝐺 be a plane graph and let 𝐻 be a connected subgraph of 𝐺. Let𝑐𝑜𝑙′ ∶ 𝑉 (𝐻) → {0, 1, 2} be a proper 3-coloring of 𝐻. Then 𝑐𝑜𝑙′ can be extended to a3-coloring of 𝐺 if and only if there exists a valid boundary 𝑏𝐺⋆ and a nowhere-zero
unit flow 𝑓 with excess 𝑏𝐺⋆ such that 𝛿𝑓 (𝑑𝑢𝑎𝑙(𝑒)) = 𝛿(𝑒) for every 𝑒 ∈ 𝐸(𝐻) where𝛿(𝑒) is deduced from the precoloring of 𝐻.
Proof. Let 𝑇 be a spanning tree of 𝐺. Choose a precolored vertex 𝑟 as a root and
color 𝑇 so that 𝑐𝑜𝑙(𝑟) = 𝑐𝑜𝑙′(𝑟) and 𝛿(𝑒) = 𝛿𝑓 (𝑑𝑢𝑎𝑙(𝑒)) for every 𝑒 ∈ 𝐸(𝑇). In
Theorem 2.2 it is shown that this is a proper 3-coloring of 𝐺.

For every precolored vertex 𝑣 there exist paths 𝐻𝑣 ⊆ 𝐻 and 𝑃𝑣 ⊆ 𝑇 from 𝑟 to 𝑣.
From the preceding lemma Φ𝑓(𝐻𝑣) = Φ𝑓(𝑃𝑣) (mod 3), and thus 𝑐𝑜𝑙′(𝑣) − 𝑐𝑜𝑙′(𝑟) =𝑐𝑜𝑙(𝑣) − 𝑐𝑜𝑙(𝑟). Since 𝑐𝑜𝑙′(𝑟) = 𝑐𝑜𝑙(𝑟), it holds that 𝑐𝑜𝑙′(𝑣) = 𝑐𝑜𝑙(𝑣) and the coloring𝑐𝑜𝑙 is indeed an extension of 𝑐𝑜𝑙′.

For the second implication, let 𝑐𝑜𝑙 be an extension of 𝑐𝑜𝑙′, define 𝑓 as 𝛿𝑓 (𝑒) =𝛿(𝑑𝑢𝑎𝑙(𝑒)) for each edge 𝑒 of 𝐺⋆ and let 𝑏𝐺⋆ = Δ𝑓.
13

It is worth noting that this proof is valid for any connected precolored sub-
graph, not just a face boundary.

One can find the implementation of this part in cycle_extension.cpp. This
part is not used in the algorithm.

Unfortunately, extending a precoloring of two facial cycles 𝐶1 and 𝐶2 is not
as simple since the subgraph 𝐶1 ∪ 𝐶2 is not connected and thus, even if we find a
flow whose values on the edges of 𝐶⋆1 ∪ 𝐶⋆2 correspond to the precoloring, it may
not be possible to turn this flow into a 3-coloring that matches the precoloring of
both cycles. In order to solve this problem, it is thus necessary to prescribe the
value of the flow over a path 𝑃 connecting the two cycles.

Theorem 3.4. Let 𝐺 be a plane graph, let 𝐶1 and 𝐶2 be facial cycles of 𝐺, and let𝑃 be a path in 𝐺 from a vertex 𝑣1 ∈ 𝑉 (𝐶1) to a vertex 𝑣2 ∈ 𝑉 (𝐶2). A precoloring
of 𝐶1 ∪ 𝐶2 can be extended to a proper 3-coloring of 𝐺 if and only if there exists a
valid boundary 𝑏𝐺⋆ and a nowhere-zero unit flow 𝑓 with excess 𝑏𝐺⋆ in 𝐺⋆ matching
the flows on 𝐶⋆1 and 𝐶⋆2 derived from 𝑐𝑜𝑙′ and satisfying Φ𝑓(𝑃) ≡ 𝑐𝑜𝑙′(𝑣2) − 𝑐𝑜𝑙′(𝑣1)(mod 3).
Proof. Suppose first 𝑐𝑜𝑙 is an extension of 𝑐𝑜𝑙′. Define 𝑓 such that 𝛿𝑓 (𝑒) =𝛿(𝑑𝑢𝑎𝑙(𝑒)) for every 𝑒 ∈ 𝐸(𝐺⋆). It is easy to verify that 𝑓 is a unit nowhere-zero
flow satisfying the conditions of the theorem.

Conversely, suppose that 𝑓 is a nowhere-zero unit flow satisfying the condi-
tions described in the statement of the theorem. Then we can color the vertices of𝑃, denoting this coloring as 𝑐𝑜𝑙𝑃, so that 𝑐𝑜𝑙𝑃(𝑣1) = 𝑐𝑜𝑙′(𝑣1) and 𝛿𝑓 (𝑑𝑢𝑎𝑙(𝑒)) = 𝛿(𝑒)
for every edge 𝑒 in 𝑃. Note that 𝑐𝑜𝑙𝑃(𝑣2) = 𝑐𝑜𝑙′(𝑣2) from the last condition in the
statement of the theorem, and thus, combined with the fact that 𝑐𝑜𝑙𝑃(𝑣1) = 𝑐𝑜𝑙′(𝑣1),𝑐𝑜𝑙′(𝑣) is equal to 𝑐𝑜𝑙𝑃(𝑣) for any other vertex 𝑣 ∈ 𝑉 (𝑃) ∩ 𝑉 (𝐶1 ∪ 𝐶2) as follows
from Lemma 3.2. Let 𝐻 = 𝐶1 ∪ 𝐶2 ∪ 𝑃 and note that 𝐻 is a connected subgraph
of 𝐺, as it includes 𝐶1 and 𝐶2 and a path between them. Extend 𝑐𝑜𝑙′ by 𝑐𝑜𝑙𝑃. The
conclusion then follows from Theorem 3.3.

Our aim for the next subsection is to ensure thatΦ𝑓(𝑃) ≡ 𝑐𝑜𝑙′(𝑣2) − 𝑐𝑜𝑙′(𝑣1) (mod 3)
Therefore, we need an algorithm to determine whether there exists a nowhere-
zero flow 𝑓 ′ such that Φ𝑓 ′(𝑃) is some given fixed value modulo 3 and Δ𝑓 = Δ𝑓 ′.
Flows with the exact amount going through a path
An operation that we can apply on the flow without changing Δ𝑓 is inverting a
cycle. Let 𝐶 ⊆ 𝐺⋆ be a cycle such that 𝑓 (𝑒) = 1 for every 𝑒 ∈ 𝐸(𝐶) (we call such

14

cycles flow-directed). The new flow 𝑓⊕ obtained by inverting 𝐶 in 𝐹 is defined by

𝑓⊕(𝑒) ∶= {𝑓 (𝑜𝑝𝑝(𝑒)) {𝑒, 𝑜𝑝𝑝(𝑒)} ∩ 𝐸(𝐶) ≠ ∅𝑓 (𝑒) otherwise

We define 𝑓 ⊕ 𝐶 ∶= 𝑓⊕. We will show that this operation is sufficient for
transitioning between any two flows with the same excess.

Theorem 3.5. Let 𝑓1 and 𝑓2 be nowhere-zero flows in a graph 𝐻 satisfying Δ𝑓1 =Δ𝑓2. Then there exist pairwise edge-disjoint flow-directed cycles 𝐶1, 𝐶2, … , 𝐶𝑛 ⊆ 𝐻
such that 𝑓2 = 𝑓1 ⊕ 𝐶1 ⊕ 𝐶2 ⊕⋯ ⊕ 𝐶𝑛.
Proof. Consider the flow 𝑓𝑎𝑣𝑔 defined by 𝛿𝑓𝑎𝑣𝑔(𝑒) = 𝛿𝑓1(𝑒)−𝛿𝑓2(𝑒)2 for every edge 𝑒
of 𝐻. From the definition it follows that 𝛿𝑓𝑎𝑣𝑔(𝑒) = 0 if and only if 𝛿𝑓1(𝑒) = 𝛿𝑓2(𝑒).
Now let 𝐸𝐶 = {𝑒 | 𝑒 ∈ 𝐸(𝐻), 𝛿𝑓𝑎𝑣𝑔(𝑒) = 1}.
Note that 𝑒 ∈ 𝐸𝐶 exactly when 𝑒 ∈ 𝐸(𝐻) and 𝛿𝑓1(𝑒) = −𝛿𝑓2(𝑒) = 1. Also it can be
easily shown that for every 𝑣 ∈ 𝑉 (𝐻), Δ𝑓𝑎𝑣𝑔(𝑣) = Δ𝑓1(𝑣)−Δ𝑓2(𝑣)2 = 0, and thus there
are as many half-edges in 𝐸𝐶 entering 𝑣 as ones leaving 𝑣. This implies that we
can partition 𝐸𝐶 into a set of pairwise edge-disjoint directed cycles 𝐶1, 𝐶2, … , 𝐶𝑛.
Inverting each of the cycles gives us the flow 𝑓1 − 2𝑓𝑎𝑣𝑔 = 𝑓2 as required.
Corollary 3.6. Let 𝐺 be a plane graph, let 𝐺⋆ be its dual and let 𝑏𝐺⋆ be a boundary
on 𝐺⋆. Let 𝑃 be a path in 𝐺. Let 𝑓min and 𝑓max be nowhere-zero flows in 𝐺⋆ such that𝑏𝐺⋆ = Δ𝑓min = Δ𝑓max and Φ𝑓min

(𝑃) is minimal and Φ𝑓max
(𝑃) is maximal among

all nowhere-zero unit flows with this property. For every integer 𝑥 there exists a
nowhere-zero unit flow 𝑓𝑥 such that Δ𝑓𝑥 = 𝑏𝐺⋆ and Φ𝑓𝑥(𝑃) = 𝑥 if and only if 𝑥 ≡ |𝑃|(mod 2) and Φ𝑓min

(𝑃) ≤ 𝑥 ≤ Φ𝑓max
(𝑃).

Proof. It is easy to notice that if 𝑥 does not satisfy the requirements in the state-
ment, the flow 𝑓𝑥 does not exist. To prove the equivalence we need to verify that,
if 𝑥 satisfies these requirements, 𝑓𝑥 exists.

Before that, let us make a couple of observations:
Let 𝐶 ⊆ 𝐺⋆ be a flow-directed cycle and let 𝑓 be a nowhere-zero unit flow. Let𝑒1, 𝑒2, … , 𝑒𝑛 be the edges of 𝑃 that cross 𝐶 in order along 𝑃. Then

Φ𝑓⊕𝐶(𝑃) − Φ𝑓(𝑃) = −2 𝑛∑𝑖=0 𝛿𝑓 (𝑑𝑢𝑎𝑙(𝑒𝑖)).
Note that 𝐶 divides the plane into two parts 𝑆1 and 𝑆2 and whenever an edge𝑒𝑖 ∈ 𝐸(𝑃) crosses 𝐶, the endpoints of 𝑒𝑖 lie in different parts. Therefore if 𝑒𝑖 enters

15

(say) 𝑆1, then 𝑒𝑖+1 leaves 𝑆1 and 𝛿𝑓 (𝑑𝑢𝑎𝑙(𝑒𝑖)) = −𝛿𝑓 (𝑑𝑢𝑎𝑙(𝑒𝑖+1)) holds, since 𝐶 is
flow-directed. Thus

Φ𝑓⊕𝐶(𝑃) − Φ𝑓(𝑃) ∶= {±2 if 𝑛 is odd0 if 𝑛 is even
holds. In other words, inverting 𝐶 can change Φ𝑓(𝑃) by at most 2.

From Theorem 3.5 it follows that there exist pairwise edge-disjoint flow-
directed cycles 𝐶1, 𝐶2, … 𝐶𝑛, such that 𝑓min ⊕ 𝐶1 ⊕ 𝐶2 ⊕⋯ ⊕ 𝐶𝑛 = 𝑓max and in
a sequence Φ𝑓min

(𝑃), Φ𝑓min⊕𝐶1(𝑃), Φ𝑓min⊕𝐶1⊕𝐶2(𝑃), … , Φ𝑓max
(𝑃) the difference be-

tween every two neighboring elements is in {−2, 0, 2} from the observation above.
Therefore, we can choose one of these flows as 𝑓𝑥.

However, this result cannot yet be applied directly to solve the problem of
this chapter, since the resulting flow 𝑓𝑥 might not match the flow derived from
the precoloring of 𝐶1 ∪ 𝐶2. To solve this we need to modify the graph so that it
does not contain the edges with the prescribed flow.

Removing the precolored cycles
We will start with the following lemma:

Lemma 3.7. Let 𝐺 be a plane graph, let 𝐺⋆ be the dual of 𝐺, let 𝜙1 and 𝜙2 be
faces in 𝐺, bounded by cycles 𝐶1 and 𝐶2 correspondingly and let 𝑃 be a path in 𝐺
between 𝑣1 ∈ 𝑉 (𝐶1) and 𝑣2 ∈ 𝑉 (𝐶2), such that 𝑉 (𝑃) ∩ 𝑉 (𝐶1 ∪ 𝐶2) = {𝑣1, 𝑣2}. Let 𝑓
be a nowhere-zero unit flow in 𝐺⋆. Let 𝐺′ ∶= 𝐺/{𝜙1}/{𝜙2}, with 𝑣1 and 𝑣2 being
the representatives of 𝜙1 and 𝜙2 correspondingly and let (𝐺′)⋆ be the dual graph of𝐺′. Finally, let 𝑓 ′ be a nowhere-zero unit flow in (𝐺′)⋆, such that 𝑓 ′(𝑒) ∶= 𝑓 (𝑒) for
each 𝑒 ∈ 𝐸(𝐺′). Then 𝑃 is a subgraph of 𝐺′ and Φ𝑓(𝑃) = Φ𝑓 ′(𝑃).
Proof. The assumptions on 𝑃 imply that no edge in 𝑃 is incident to 𝜙1 or 𝜙2 and
also the only vertices in 𝑃 lying on 𝐶1 ∪ 𝐶2 are 𝑣1 and 𝑣2 that will persist as the
representatives of 𝜙1 and 𝜙2. This means that the contractions do not change𝑃 in any way. From the dual perspective, no edge in 𝑃⋆ is incident to 𝑑𝑢𝑎𝑙(𝜙1)
or 𝑑𝑢𝑎𝑙(𝜙2), and thus, from the definition of 𝑓 ′, the flow on 𝑃⋆ also does not
change.

In other words, if a path 𝑃 touches the cycles 𝐶1 and 𝐶2 only in the endpoints,
contracting 𝜙1 and 𝜙2 changes neither 𝑃 nor Φ𝑓(𝑃).
Theorem 3.8. Let 𝐺, 𝐺⋆, 𝜙1, 𝜙2, 𝐶1, 𝐶2, 𝑃, 𝐺′ be defined the same way as in the
lemma above. Let 𝑐𝑜𝑙′ be a proper precoloring of 𝐶1 ∪ 𝐶2 and let 𝑓0 be the unit flow

16

derived from 𝑐𝑜𝑙′. Then 𝑐𝑜𝑙′ can be extended to a proper 3-coloring of 𝐺 if and only
if there exists a valid boundary 𝑏𝐺 and a nowhere-zero unit flow 𝑓 ′ in (𝐺′)⋆ with
excess equal to 𝑏𝐺′ ∶= 𝑏𝐺⋆ − Δ𝑓0, such that Φ𝑓 ′(𝑃) ≡ 𝑐𝑜𝑙′(𝑣2) − 𝑐𝑜𝑙′(𝑣1) (mod 3).
Proof. Note that (𝐺′)⋆ = 𝐺⋆ − 𝑑𝑢𝑎𝑙(𝜙1) − 𝑑𝑢𝑎𝑙(𝜙2), and thus, from Theorem 2.2
it follows that the existence of the given 𝑓 ′ is equivalent to the existence of a
nowhere-zero unit flow 𝑓with excess equal to 𝑏𝐺⋆ . Moreover, 𝑓 can be constructed
from 𝑓 ′ and 𝑓0, so that

𝑓 (𝑒) ∶= {𝑓0(𝑒) if 𝑒 ∈ 𝐸(𝐶⋆1 ∪ 𝐶⋆2)𝑓 ′(𝑒) if 𝑒 ∈ 𝐸((𝐺′)⋆)
Therefore, using Lemma 3.7 we get thatΦ𝑓(𝑃) = Φ𝑓 ′(𝑃) ≡ 𝑐𝑜𝑙′(𝑣2) − 𝑐𝑜𝑙′(𝑣1) (mod 3).
From here we can apply Theorem 3.4 on 𝑓 which also gives an equivalence.

With this we have transformed a problem of determiningwhether an extension
of 𝑐𝑜𝑙′ on 𝐺 exists into a problem of finding a nowhere-zero flow with certain
conditions in (𝐺′)⋆.

The last thing left to do is to be able to find 𝑓min and 𝑓max:

Finding maximal and minimal flow on a path
Theorem 3.9. Let 𝑓 be a nowhere-zero flow in the dual of a plane graph 𝐺 and let𝑃 ⊆ 𝐸(𝐺) be a directed path from 𝑣1 to 𝑣2. If there is a path 𝑃+ ⊆ 𝐸(𝐺) from 𝑣1 to 𝑣2
with 𝛿(𝑑𝑢𝑎𝑙(𝑒)) = 1 for every edge 𝑒 of 𝑃+, then Φ𝑓(𝑃) is maximal possible among
all nowhere-zero flows with the same excess.

Proof. Let 𝑓max be any nowhere-zero flow in𝐺⋆withΔ𝑓max = Δ𝑓. By Theorem 3.5,
there are edge-disjoint directed cycles 𝐶1, 𝐶2, … , 𝐶𝑛 such that 𝑓⊕𝐶1⊕⋯⊕𝐶𝑛 = 𝑓max.
For contradiction suppose Φ𝑓max

(𝑃) > Φ𝑓(𝑃). This means there is a cycle 𝐶𝑖 whose
inversion increases Φ𝑓(𝑃). This happens only if 𝑣1 and 𝑣2 lie on different sides of
the 𝐶𝑖 (i.e. one vertex lies outside of 𝐶𝑖, the other lies inside). But then the same is
true for 𝑃+ and inverting 𝐶𝑖 should increase Φ𝑓(𝑃+) too, which is impossible.

Therefore to get 𝑓max we need to find a flow for which there is such a path𝑃+. From this, a subroutine for finding 𝑓max follows:

1. Start with 𝑇 = {𝑣1}.
2. If 𝑣2 ∈ 𝑇, set 𝑓max ∶= 𝑓 and stop.

17

3. If there is an edge 𝑢𝑣 ∈ 𝐸(𝐺), such that 𝑢 ∈ 𝑇 , 𝑣 ∉ 𝑇 and 𝛿𝑓 (𝑑𝑢𝑎𝑙(𝑢𝑣)) = 1,
add 𝑣 to 𝑇 and go to step 2.

4. Otherwise let 𝐸 be a cut between 𝑇 and 𝐸(𝐺)/𝑇. Since 𝐸 is a cut, 𝐸⋆ is an
eulerian graph, decompose 𝐸⋆ into pairwise edge-disjoint cycles 𝐶1, 𝐶2, … 𝐶𝑛
and set 𝑓 ∶= 𝑓 ⊕ 𝐶1 ⊕⋯ ⊕ 𝐶𝑛. Go to step 2.

Throughout the run of the algorithm 𝑇 contains vertices of 𝐺 that are reachable
from 𝑣1 through the edges with 𝛿𝑓 (𝑑𝑢𝑎𝑙(𝑒)) = 1. It is not difficult to verify that if𝐺 is connected, this algorithm will always finish. It is worth mentioning that in
the step 4 there is no need to decompose 𝐸⋆ into cycles, inverting flow on every
edge of 𝐸⋆ is enough. Overall, this algorithm can be implemented by a modified
breadth-first search and will work in linear time if implemented carefully.

This way we will obtain 𝑓max. We can obtain 𝑓min analogously.

Extending a precoloring of two cycles
Now we finally have enough ingredients to construct an algorithm that will
extend a precoloring of two cycles.

First we define a subroutine 𝑝𝑟𝑒𝑠𝑐𝑟 𝑖𝑏𝑒𝑑(𝐺, 𝑏𝐺⋆ , 𝑃 , 𝑥) that for a graph 𝐺, a bound-
ary 𝑏𝐺⋆ on 𝐺⋆ and a path 𝑃 determines if a flow 𝑓𝑥 exists such that Δ𝑓𝑥 = 𝑏𝐺⋆ andΦ𝑓𝑥(𝑃) ≡ 𝑥 (mod 3):

• If a nowhere-zero unit flow with excess 𝑏𝐺⋆ does not exist, return ”false”.

• Otherwise let 𝑓 be any such flow.

• Construct 𝑓min and 𝑓max from 𝑓 by the algorithm above.

• Return ”true” if there exists 𝑦 ∈ ℤ such that𝑦 ≡ |𝑃| (mod 2) and Φ𝑓min
(𝑃) ≤ 𝑦 ≤ Φ𝑓max

(𝑃) and 𝑦 ≡ 𝑥 (mod 3).
• Otherwise return ”false”.

The complexity of this subroutine depends on the complexity of finding𝑓max and 𝑓min, which is linear as shown above, and the complexity of finding a
nowhere-zero unit flow with excess equal to a given boundary, which also has
linear complexity for near-quandrangulations. Therefore, 𝑝𝑟𝑒𝑠𝑐𝑟 𝑖𝑏𝑒𝑑(𝐺, 𝑏𝐺⋆ , 𝑃 , 𝑥)
runs in linear time when 𝐺 is a near-quadrangulation.

Now we have everything prepared to formulate an algorithm to decide
whether in a plane graph 𝐺, a precoloring 𝑐𝑜𝑙′ of two facial cycles 𝐶1 and 𝐶2 that
bound faces 𝜙1 and 𝜙2 can be extended to a 3-coloring of the whole graph 𝐺:

18

1. Create a graph 𝐺′ from 𝐺 by contracting 𝜙1 and 𝜙2, 𝑣1 and 𝑣2 being the
representatives.

2. Find a path 𝑃 from 𝑣1 to 𝑣2 in 𝐺′, mark first and last edges of 𝑃 as 𝑒1 and 𝑒2.
3. Map 𝑒1 and 𝑒2 back to 𝐺, remember the colors of 𝑓 𝑟𝑜𝑚(𝑒1) and 𝑡𝑜(𝑒2) as 𝑐𝑜𝑙1

and 𝑐𝑜𝑙2.
4. Iterate through every valid boundary 𝑏𝐺⋆ for the graph 𝐺.

• For the boundary 𝑏𝐺⋆ create the boundary 𝑏𝐺′ on (𝐺′)⋆ as defined in
Theorem 3.8.

• If 𝑝𝑟𝑒𝑠𝑐𝑟 𝑖𝑏𝑒𝑑(𝐺′, 𝑏𝐺′ , 𝑃 , 𝑐𝑜𝑙2 − 𝑐𝑜𝑙1) is ”true”, return ”true”.

5. Otherwise return ”false”.

As we explained in the previous chapter, there are at most constantly many dif-
ferent valid boundaries for near-quadrangulations and for each chosen boundary
we run a 𝑝𝑟𝑒𝑠𝑐𝑟 𝑖𝑏𝑒𝑑 subroutine, which has a linear time complexity for near-
quadrangulations. Thus, for a near-quadrangulation 𝐺 and two precolored facial
cycles 𝐶1 and 𝐶2 we can decide whether the precoloring can be extended into a
proper 3-coloring of 𝐺 in asymptotically linear time.

This algorithm was implemented in double_cycle.cpp.

19

20

Chapter 4

Short non-contractible cycles

The aim of the next two chapters will be extending the 3-coloring algorithm given
in the previous chapters to the case of toroidal graphs. In this chapter we assume
that the graph 𝐺 is toroidal but not planar. The idea is to find a non-contractible
cycle 𝐶 in 𝐺 and for every coloring of 𝐶 split the cycle in two cycles with the
same coloring and try to extend the coloring of these two cycles in the resulting
planar graph by the routine described before. This approach will be explained
later in more detail. To be able to try all colorings of 𝐶 in linear time we need 𝐶 to
be short, the length should be constant in particular, and to make 𝐺 planar after
splitting the cycle 𝐶 we need 𝐶 to be non-contractible. Therefore, the task that
we consider in this section is finding a short non-contractible cycle.

Non-contractible cycles in the dual graph
First let us describe a way to check if some cycle in 𝐺 is non-contractible. For this
we start by finding two non-contractible and homotopically non-equivalent cycles𝐶𝑥 and 𝐶𝑦 in the dual graph 𝐺⋆ that we view as circling the torus by ”latitude”
and ”longitude”. This is done in the following way:

• Find a spanning tree 𝑇 ⊆ 𝐸(𝐺)
• Let 𝐸𝑐 be {𝑑𝑢𝑎𝑙(𝑒) | 𝑒 ∈ 𝐸(𝐺)/𝑇 }. Since 𝐺 has a 2-cell embedding on a torus,
the generalized Euler formula gives us |𝐸(𝐺)| = |𝑉 (𝐺)|+ |𝐹 (𝐺)|, and we have|𝐸𝑐| = |𝐸(𝐺)| − |𝐸(𝑇)| = |𝐸(𝐺)| − |𝑉 (𝐺)| + 1 = |𝐹(𝐺)| + 1 = |𝑉 (𝐺⋆)| + 1.
Moreover, we can observe that the subgraph of 𝐺⋆ with edge set 𝐸𝑐 is
connected.

• Find a spanning tree 𝑇 ⋆ of 𝐺∗ with 𝐸(𝑇 ∗) ⊆ 𝐸𝑐, and let 𝐸𝑐/𝐸(𝑇 ⋆) = {𝑒𝑥, 𝑒𝑦}.
21

• Let 𝐶𝑥 be the unique cycle in 𝑇 ⋆ + 𝑒𝑥.
• Let 𝐶𝑦 be the unique cycle in 𝑇 ⋆ + 𝑒𝑦.

Theorem 4.1 (Eppstein [9]). Let 𝐺 be a graph with a 2-cell embedding on a torus.
Then the cycles 𝐶𝑥 and 𝐶𝑦 obtained as described above are non-contractible and
homotopically non-equivalent.

Note: this algorithm uses the conventional representation of undirected graphs
where 𝐸(𝐺) and 𝐸(𝐺⋆) are sets of undirected edges. Let us direct 𝐶𝑥 and 𝐶𝑦 in any
direction and proceed using the DCEL representation from this point.

Let 𝑐𝑟𝑜𝑠𝑠𝑥(𝑒) for 𝑒 ∈ 𝐸(𝐺) be 1 if 𝑜𝑝𝑝(𝑑𝑢𝑎𝑙(𝑒)) ∈ 𝐶𝑥, −1 if 𝑑𝑢𝑎𝑙(𝑒) ∈ 𝐶𝑥 and 0
otherwise. Let us remark that 𝑜𝑝𝑝(𝑑𝑢𝑎𝑙(𝑒)) ∈ 𝐶𝑥 intuitively means that 𝑒 crosses 𝐶𝑥
from left to right and 𝑑𝑢𝑎𝑙(𝑒) ∈ 𝐶𝑥 means 𝑒 crosses 𝐶𝑥 from right to left. We extend
this definition to walks 𝑃 in 𝐺 by letting 𝑐𝑟𝑜𝑠𝑠𝑥(𝑃) ∶= ∑𝑒∈𝑃 𝑐𝑟𝑜𝑠𝑠𝑥(𝑒). Analogously
we define 𝑐𝑟𝑜𝑠𝑠𝑦 for 𝐶𝑦. Given a directed cycle 𝐶 ⊆ 𝐺, we can decide if 𝐶 is
contractible by counting 𝑐𝑟𝑜𝑠𝑠𝑥(𝐶) and 𝑐𝑟𝑜𝑠𝑠𝑦(𝐶).
Theorem 4.2. Let 𝐺 be a graph with a 2-cell embedding on a torus and let 𝐶𝑥, 𝐶𝑦 ⊆ 𝐺
be non-contractible homotopically non-equivalent cycles. Then a cycle 𝐶 ⊆ 𝐺 is
contractible if and only if 𝑐𝑟𝑜𝑠𝑠𝑥(𝐶) = 𝑐𝑟𝑜𝑠𝑠𝑦(𝐶) = 0.

Remark: Eppstein [9] shows this (for general surfaces) in the homology
setting. We use the homotopy language to avoid having to introduce the homology
formalism, noting that as is well-known, the fundamental group of the torus is
commutative and thus coincides with the homology group.

Consequently, to find a shortest non-contractible cycle, it suffices to find
a shortest cycle 𝐶1 with non-zero 𝑐𝑟𝑜𝑠𝑠𝑥(𝐶1), a shortest cycle 𝐶2 with non-zero𝑐𝑟𝑜𝑠𝑠𝑦(𝐶2), and return the shorter of the two cycles.

Orientation of a graph
We define the outdegree of a vertex 𝑣 in a directed graph 𝐺 as a function

deg+⃗𝐺 𝑣 ∶= |{(𝑣 , 𝑢) | (𝑣 , 𝑢) ∈ 𝐸(𝐺)}|
For a graph 𝐺, we define an orientation of 𝐺 as a directed graph 𝐺 such that𝑉 (𝐺) = 𝑉 (𝐺) and for each 𝑢𝑣 ∈ 𝐸(𝐺) exactly one of {𝑢𝑣 , 𝑣𝑢} is contained in 𝐸(𝐺).

Also, we call orientations of cycles pseudocycles, orientations of paths pseudopaths
and orientations of walks pseudowalks.

Finally, if 𝐺 is an orientation of a graph 𝐺 and 𝐶 is a subgraph of 𝐺, define𝑆𝐺(𝐶) = 𝐶 where 𝑉 (𝐶) = 𝑉 (𝐶) and 𝐸(𝐶) = {(𝑢, 𝑣) | (𝑢, 𝑣) ∈ 𝐸(𝐺) ∧ 𝑢𝑣 ∈ 𝐸(𝐶)}, i.e.
we get 𝐶 by inducing the orientation of 𝐺 on 𝐶.

22

Figure 4.1 A cycle Figure 4.2 A pseudocycle

Figure 4.3 A path Figure 4.4 A pseudopath

Orientation with a bounded maximum outdegree
In this subsection we will define an algorithm that will return an orientation of
every graph 𝐺 and will show that for a special class of graphs, the maximum
outdegree of the resulting orientation is bounded by a constant. This algorithm
is particularly interesting for us because all graphs considered in the rest of this
chapter have this property.

Define the density of a graph 𝐺 as the value |𝐸(𝐺)||𝑉 (𝐺)| . Note that the density
of G is half of its average degree. Let 𝑀 be the maximum of densities of all
subgraphs of 𝐺. Since the density of 𝐺 is at most 𝑀, there is a vertex 𝑣min ∈ 𝑉 (𝐺)
with deg𝐺 𝑣min ≤ 2𝑀. Remove this vertex, orient 𝐺 − 𝑣min recursively, add 𝑣min
and leave only the half-edges directed out of 𝑣min. This way, we can obtain an
orientation 𝐺 of 𝐺 with max𝑣∈𝑉 (𝐺) deg+⃗𝐺 𝑣 ≤ 2𝑀. Let us call this algorithm a
constant-degree orientation algorithm for the reasons explained in the following
observation.

Observation 4.3. Let 𝒞𝑘 be a family of graphs, such that the density of every graph𝐺 in𝒞𝑘 is at most 𝑘 and every subgraph of 𝐺 also belongs to𝒞𝑘 (i.e. 𝒞𝑘 is closed under
the subgraph relation). Then for every graph in 𝒞𝑘 the constant-degree orientation
algorithm will return an orientation with the maximum outdegree bounded by 2𝑘.

From this observation it follows that for every graph with a 2-cell embedding
on a torus this algorithm will return an orientation with the maximum outdegree
bounded by 6.

To be able to make use of this algorithm we will need the following observa-
tion:

Observation 4.4. Let 𝐺 be a directed graph with maximum outdegree 𝑀. Let 𝑣 be
a vertex in 𝑉 (𝐺). Then there are at most 𝑀𝑛 directed walks of length 𝑛 in 𝐺 starting
in 𝑣.

23

In particular, we can enumerate all directed cycles of constant length contain-
ing 𝑣 in constant time. However, apart from the fact that we need to consider
pseudocycles as well, we are interested only in non-contractible cycles, so we
need to come up with a method for distinguishing them.

Differentiating non-contractible cycles
Let us now fix a constant ℓ, the maximum length of a non-contractible cycle in𝐺 that is of interest to us; in the program, ℓ = 5. We keep track of the value of𝑐𝑟𝑜𝑠𝑠𝑥 using the following auxiliary graph:

We define the ℓ-extension of a graph 𝐺 as the graph �⃗�with the vertex set being𝑉 (𝐺) × {−ℓ, … , ℓ}where for each edge (𝑢, 𝑣) ∈ 𝐸(𝐺), �⃗� contains edges ((𝑢, 𝑎), (𝑣 , 𝑏))
for every 𝑎, 𝑏 ∈ {−ℓ, ℓ} such that 𝑎 + 𝑐𝑟𝑥((𝑢, 𝑣)) = 𝑏.
Observation 4.5. Let 𝐺 be a graph with a 2-cell embedding on a torus and let�⃗� be an ℓ-extension of 𝐺. We can embed �⃗� on a cylinder by cutting the torus
embedding of 𝐺 along 𝐶𝑥, thus getting a cylinder, and concatenating 2ℓ + 1 copies of
this cylinder where the 𝑖-th cylinder contains the vertices of type (𝑣 , 𝑖) for 𝑣 ∈ 𝑉 (𝐺)
and 𝑖 ∈ {−ℓ, … ℓ}. Since a cylinder is homeomorphic to a subset of plane, �⃗� is a plane
graph.

Let 𝐺 be a graph and let 𝐺 be its orientation. Let �⃗� be an ℓ-extension of 𝐺. Let𝑣 = 𝑣1 be a vertex of 𝐶, let 𝐶 = 𝑣1𝑣2𝑣3…𝑣𝑛𝑣1 be a cycle in 𝐺 of size 𝑛 ≤ ℓ and let𝐶 = 𝑆𝐺(𝐶). Define the unfolding of 𝐶 in 𝑣 as the pseudopath 𝑃 ⊆ �⃗� of length 𝑛
defined inductively with a sequence of pseudopaths (𝑃0, 𝑃1, … , 𝑃𝑛−1, 𝑃𝑛), where𝑃0 ∶= {(𝑣 , 0)}, 𝑎0 ∶= 0 and for each 𝑖 ∈ {1, … 𝑛}

𝑎𝑖 ∶= {𝑎𝑖−1 + 𝑐𝑟𝑜𝑠𝑠𝑥(𝑣𝑖𝑣𝑖+1) if 𝑣𝑖𝑣𝑖+1 ∈ 𝐸(𝐶)𝑎𝑖−1 − 𝑐𝑟𝑜𝑠𝑠𝑥(𝑣𝑖+1𝑣𝑖) if 𝑣𝑖+1𝑣𝑖 ∈ 𝐸(𝐶)𝑃𝑖 ∶= {𝑃𝑖−1 + ((𝑣𝑖, 𝑎𝑖−1), (𝑣𝑖+1, 𝑎𝑖)) if 𝑣𝑖𝑣𝑖+1 ∈ 𝐸(𝐶)𝑃𝑖−1 + ((𝑣𝑖+1, 𝑎𝑖), (𝑣𝑖, 𝑎𝑖−1)) if 𝑣𝑖+1𝑣𝑖 ∈ 𝐸(𝐶)
When defining 𝑃𝑛, we let 𝑣𝑛+1 = 𝑣1. Finally, set 𝑃 = 𝑃𝑛.

This operation can be viewed as cutting the cycle in 𝑣, mapping one end of
the resulting path to (𝑣 , 0), mapping the other end to (𝑣 , 𝑐𝑟𝑜𝑠𝑠𝑥(𝐶)) and matching
the rest of the vertices to the corresponding vertices of the extended graph.

Conversely, it clearly holds that any pseudopath 𝑃 in �⃗� from (𝑣 , 0) to (𝑣 , 𝑎)
corresponds to a closed pseudowalk in 𝐺 of the same length.

24

𝑣 (𝑣 , 0) (𝑣 , 𝑎)
Figure 4.5 The unfolding of a pseudocycle

Theorem 4.6. Let 𝐺 be a graph with a 2-cell embedding on torus, let 𝐶𝑥 be a non-
contractible cycle in 𝐺 and let 𝑐𝑟𝑜𝑠𝑠𝑥 be defined the same way as before for 𝐶𝑥. Let 𝐺
be an orientation of 𝐺 obtained from a constant-degree orientation algorithm and
let �⃗� be the ℓ-extension of 𝐺. Suppose 𝑃 is a shortest pseudopath in �⃗� such that 𝑃
starts in (𝑣 , 0) and ends in (𝑣 , 𝑎) for some vertex 𝑣 ∈ 𝑉 (𝐺) and 𝑎 ≠ 0. If the length of𝑃 is at most ℓ, then 𝑃 is the unfolding of 𝑆𝐺(𝐶) for a shortest cycle 𝐶 in 𝐺 such that𝑐𝑟𝑜𝑠𝑠𝑥(𝐶) ≠ 0.
Proof. First, we can show that for every two distinct vertices of type (𝑢, 𝑖) and(𝑢, 𝑗) in 𝑃 there is a path in �⃗� from (𝑢, 0) to (𝑢, 𝑖 − 𝑗) and this pseudopath is shorter
than 𝑃 unless (𝑢, 𝑖) and (𝑢, 𝑗) are exactly the ends of 𝑃. Therefore, there exists a
pseudocycle 𝐶 ⊆ 𝐺, such that the unfolding of 𝐶 is 𝑃.

Define 𝐶 ⊆ 𝐺 as a cycle that is an orientation of 𝐶. Note that 𝑐𝑟𝑜𝑠𝑠𝑥(𝐶) ≠ 0.
Let 𝐶′ be a shortest (non-contractible) cycle in 𝐺 such that 𝑐𝑟𝑜𝑠𝑠𝑥(𝐶′) ≠ 0 and let𝐶′ = 𝑆𝐺(𝐶′), then |𝑐𝑟𝑜𝑠𝑠𝑥(𝐶′)| ≤ |𝐸(𝐶′)| = |𝐸(𝐶′)| ≤ |𝐸(𝐶)| ≤ ℓ.

Let a pseudopath 𝑃 ′ ⊆ �⃗� be an unfolding of 𝐶′ and let (𝑥, 0) and (𝑥, 𝑐𝑟𝑜𝑠𝑠𝑥(𝐶′))
for some vertex 𝑥 ∈ 𝑉 (𝐺) be the start and the end of 𝑃 ′ respectively. Recall that𝑐𝑟𝑜𝑠𝑠𝑥(𝐶′) ≠ 0. Since |𝐸(𝐶′)| ≤ |𝐸(𝐶)| , we have |𝐸(𝑃 ′)| ≤ |𝐸(𝑃)| but 𝑃 is a shortest
pseudopath of this type, so |𝐸(𝐶′)| = |𝐸(𝐶)| and 𝐶 is a shortest cycle in 𝐺.

Consequently, the problem of this chapter can be transformed to a problem of
finding a shortest pseudopath between certain vertices with length bounded by ℓ.
Moreover, we will show that we do not need to consider all possible orientations
of a path.

Iterating through unfoldings of all short pseudocy-
cles
As we are interested only in case ℓ = 5 we will concentrate on it from now on, as
the details for the larger ℓ would be more involved.

25

For a pseudocycle 𝐶, a vertex 𝑣 ∈ 𝑉 (𝐶) is a source if both edges incident to𝑣 are directed out of 𝑣. Let us now categorize all possible pseudocycles by the
number of sources:

• Pseudocycles without any source are exactly directed cycles.

• Pseudocycles with one source have also exactly one sink vertex, and thus
they can be obtained by joining the endpoints of two paths.

𝑣 𝑣
Figure 4.6 Examples of pseudocycles with one source

• There are only two pseudocycles with length at most 5 that contain two
sources.

𝑣 𝑣
Figure 4.7 Pseudocycles with 2 sources

Now let 𝐺 be a graph with a 2-cell embedding on a torus, let 𝐺 be an orientation
of 𝐺 obtained by the constant-degree orientation algorithm and let �⃗� be the ℓ-
extension of 𝐺. Note that the maximum outdegree in 𝐺 and, consequently, in �⃗�,
is bounded by a constant. Let us show which pseudopaths we need to consider in�⃗� to cover the unfoldings of all pseudocycles in 𝐺.

The pseudocycles with no sources correspond to paths in �⃗�. According to
Observation 14, there are at most constantly many paths of length ≤ ℓ starting in
any vertex of �⃗�. Thus, it would be asymptotically optimal to iterate through all
vertices of 𝐺 and for each vertex 𝑣 iterate through all paths in �⃗� starting in (𝑣 , 0)
of length ≤ 5.

The pseudocycles with one source 𝑣 can be unfolded from 𝑣 and the unfolding
corresponds to a union of two paths starting in (𝑣 , 0) and (𝑣 , 𝑎) that meet in a
vertex (Fig. 8). Thus, to iterate through all such unfoldings, for every pair of

26

vertices of type (𝑣 , 0) and (𝑣 , 𝑎) for 𝑣 ∈ 𝑉 (𝐺) and 𝑎 ≠ 0 we iterate through all
pairs of paths (𝑃1, 𝑃2) of total length ≤ ℓ, 𝑃1 starting in (𝑣 , 0), 𝑃2 starting in (𝑣 , 𝑎)
and both ending in the same vertex. There are linearly many choices of (𝑣 , 𝑎) and
for each pair (𝑣 , 0) and (𝑣 , 𝑎) there are constantly many pairs of paths starting in
these vertices. Therefore, iterating through pseudocycles with one source can be
done in linear time. (𝑣 , 0) (𝑣 , 𝑎)

Figure 4.8 An unfold of a pseudocycle with one source vertex

To iterate through unfoldings of pseudocycles with 2 source vertices we
use the idea of augmentations first used by Kowalik and Kurowski [10]. For
the graph 𝐺; we define the graph 𝐺+, such that 𝑉 (𝐺+) ∶= 𝑉 (𝐺) and 𝐸(𝐺+) ∶={𝑣𝑤 | (𝑢, 𝑣), (𝑢, 𝑤) ∈ 𝐸(𝐺), (𝑢, 𝑣) ≠ (𝑢, 𝑤)}, we call this graph and edges in it
auxiliary. Let us use the fact that 𝐺 has an embedding on a torus and prove that
the density of every subgraph of 𝐺+ is bounded by a constant. From this fact it
then follows, that the constant-degree orientation algorithm applied to 𝐺+ will
produce an orientation 𝐺+ with a maximum outdegree bounded by some constant
and the graph 𝐽 ∶= 𝐺 ∪ 𝐺+ will also have maximum outdegree bounded by a
constant.

Theorem 4.7. Let 𝐺 be a directed graph with a 2-cell embedding on a torus and
let Δ+ ∶= max deg+⃗𝐺 𝑣. Let 𝐺+ be a graph, such that 𝑉 (𝐺+) = 𝑉 (𝐺) and 𝐸(𝐺+) ∶={𝑣𝑤 | (𝑢, 𝑣), (𝑢, 𝑤) ∈ 𝐸(𝐺), (𝑢, 𝑣) ≠ (𝑢, 𝑤)}. Then the density of every subgraph of 𝐺+
is at most (Δ+2) + 3Δ+2 .

Proof. Let 𝐹+ be a subgraph of 𝐺+, let 𝐺− be the random graph obtained from𝐺 by randomly choosing an edge going out of 𝑣 for each 𝑣 ∈ 𝑉 (𝐺) ⧵ 𝑉 (𝐹+) and
contracting the chosen edges. Let 𝐹− be the subgraph of 𝐺− induced on 𝑉 (𝐹+). Let𝑣𝑤 be an edge in 𝐹+, then there exists a vertex 𝑢, such that {(𝑢, 𝑣), (𝑢, 𝑤)} ⊆ 𝐸(𝐺).
If 𝑢 is outside of 𝐹+, then the edge 𝑣𝑤 will appear in 𝐺− if, for example, 𝑢𝑤 or𝑢𝑣 gets contracted. Then the probability of 𝑣𝑤 being in 𝐺− is at least 2Δ+ . If 𝑢 is
inside of 𝐹, then 𝑣𝑤 might never appear in 𝐺−, but the amount of such edges is
bounded by (Δ+2)|𝑉 (𝐹+)|. Therefore, the expected number of edges of the random

graph 𝐹− is at least 2Δ+ (|𝐸(𝐹+)| − (Δ+2)|𝑉 (𝐹+)|)
At the same time, 𝐹− is a minor of a toroidal graph, and thus is a toroidal

graph itself, so the number of edges in 𝐹− is bounded by 3|𝑉 (𝐹−)|, and so2Δ+ (|𝐸(𝐹+)| − (Δ+2)|𝑉 (𝐹+)|) ≤ 3|𝑉 (𝐹−)|
27

|𝐸(𝐹+)| ≤ 3Δ+2 |𝑉 (𝐹+)| + (Δ+2)|𝑉 (𝐹+)|
Note that for Δ+ ≤ 6 the density of 𝐹+ is at most 24.

𝑣𝑠1 𝑠2 𝑣
𝑠1 𝑠2

Figure 4.9 Pseudocycles with edges from 𝐺+
𝑠1 𝑠2𝑢1 𝑢2𝑣1 𝑣2 𝑠1 𝑠2𝑢1 𝑢2𝑣1 𝑣2

Figure 4.10 Pseudopaths with edges from 𝐺+
We now can use this theorem to iterate through pseudocycles with 2 sources

effectively. Let 𝐺 be a graph with a 2-cell embedding on torus and let 𝐺 be
the constant-degree orientation of 𝐺. Let 𝐺+ be the auxiliary graph of 𝐺 and
let 𝐺+ be the constant-degree orientation of 𝐺+. Let 𝐽 ∶= 𝐺 ∪ 𝐺+. For every
pseudocycle 𝐶 ⊆ 𝐺 with sources 𝑠1 and 𝑠2 there is a pseudocycle 𝐶+ ⊆ 𝐽 of length
at most 3 with 𝑉 (𝐶+) = 𝑉 (𝐶) ⧵ {𝑠1, 𝑠2} (dashed and solid grey on Figure 9). Let𝑒 ∶= (𝑢, 𝑣) be an edge in 𝐺+, then there should be a pair of edges (𝑠, 𝑢) and (𝑠, 𝑣)
in 𝐺. Then we define 𝑜𝑟 𝑖𝑔𝑖𝑛(𝑒) = {(𝑠, 𝑢), (𝑠, 𝑣)}. There can be different pairs that𝑒 can originate from but we remember only one as our goal is to find only one
shortest pseudocycle. Similarly, for a pseudocycle 𝐶+ ⊆ 𝐽 we define the original
pseudocycle 𝐶 in 𝐺 obtained by replacing all auxiliary edges in 𝐶+ by their origins.
Note that we need to allow multi-edges because a pseudocycle of length 4 with
two sources is represented by a cycle of length 2.

Note that the for every pseudocycle 𝐶 of length at most 5 the pseudocycle𝐶+ will have length at most 3. This means 𝐶+ can have at most one source and
each pseudocycle with 2 sources in 𝐺 is represented by a pseudocycle with at
most one source in 𝐽. This leads us to the idea of finding shortest pseudopaths
in 𝐽 instead of 𝐺. However, the auxiliary edges in 𝐽 are not embedded and thus
do not have 𝑐𝑟𝑜𝑠𝑠𝑥 and 𝑐𝑟𝑜𝑠𝑠𝑦 defined. Let 𝑒 ∶= (𝑢, 𝑣) be an auxiliary edge in 𝐽

28

and let 𝑜𝑟 𝑖𝑔𝑖𝑛(𝑒) = {(𝑠, 𝑢), (𝑠, 𝑣)}. We define 𝑐𝑟𝑜𝑠𝑠𝑥(𝑒) = 𝑐𝑟𝑜𝑠𝑠𝑥((𝑠, 𝑣))−𝑐𝑟𝑜𝑠𝑠𝑥((𝑠, 𝑢)),
similarly for 𝑐𝑟𝑜𝑠𝑠𝑦. Let 𝐻𝐽 be an ℓ-extension of 𝐽, we can see that for an auxiliary
edge 𝑒 = (𝑢, 𝑣) with the origin (𝑠, 𝑢) and (𝑠, 𝑣) and every integer 𝑎, such that|𝑎| ≤ ℓ, |𝑎 + 𝑐𝑟𝑜𝑠𝑠𝑥((𝑠, 𝑢))| ≤ ℓ and |𝑎 + 𝑐𝑟𝑜𝑠𝑠𝑥((𝑠, 𝑣))| ≤ ℓ there is an edge from(𝑢, 𝑎 + 𝑐𝑟𝑜𝑠𝑠𝑥((𝑠, 𝑢)) to (𝑣 , 𝑎 + 𝑐𝑟𝑜𝑠𝑠𝑥((𝑠, 𝑣))) in 𝐻𝐽. Then, if a pseudocycle 𝐶+ in𝐽 originates from a pseudocycle 𝐶 in 𝐺 of length at most 5, we can deduce the
unfolding of 𝐶+ starting in some vertex 𝑣 from an unfolding of 𝐶 starting in the
same vertex as shown in Figure 10. Therefore, every pseudocycle in 𝐽 can be
properly unfolded in 𝐻𝐽.

The only issue left is that we need a shortest pseudopath in an ℓ-extension�⃗� of 𝐺, which is 𝐻𝐽 without the auxiliary edges, so we need to transform every
unfolding found in 𝐻𝐽 to the unfolding of the original pseudocycle in �⃗�. For this
we define a procedure 𝑟𝑒𝑠𝑡𝑜𝑟𝑒(𝑃𝐽) that will return a corresponding pseudopath in�⃗� given a pseudopath in 𝐻𝐽:

1. Set 𝑃 ∶= ∅.
2. For every edge 𝑒 in 𝑃𝐽:

• If 𝑒 is auxiliary, add 𝑜𝑟 𝑖𝑔𝑖𝑛(𝑒) to 𝑃.
• Otherwise add 𝑒 to 𝑃.

3. Return 𝑃.
With this, we transform our problem of finding a shortest unfolding of a short
non-contractible pseudocycle in �⃗� to iterating through all unfoldings of short
pseudocycles with at most one source in 𝐻𝐽.
The algorithm
Putting all ingredients together we are finally able to develop an algorithm that
will find a shortest non-contractible cycle with length ≤ ℓ = 5 in a graph 𝐺 with a
2-cell embedding on a torus:

1. Find 𝐶𝑥 and 𝐶𝑦 in 𝐺 as shown in this chapter.

2. Compute 𝑐𝑟𝑜𝑠𝑠𝑥 and 𝑐𝑟𝑜𝑠𝑠𝑦 for every edge.

3. Construct 𝐺 by orienting 𝐺 with a constant-degree orientation algorithm.

4. Construct 𝐺+ as shown above.

29

5. Construct 𝐺+ as a constant-degree orientation of 𝐺+.
6. Construct 𝐽 ∶= 𝐺 ∪ 𝐺+ and 𝐻𝐽 as the ℓ-extension of 𝐽.
7. For every 𝑣 ∈ 𝑉 (𝐺) search through all paths in 𝐻𝐽 starting in (𝑣 , 0) of length≤ ℓ.

• If some path 𝑃 ends in (𝑣 , 𝑎) for 𝑎 ≠ 0, update a current shortest
pseudopath 𝑃𝑥 with 𝑟𝑒𝑠𝑡𝑜𝑟𝑒(𝑃).

8. For every 𝑣 ∈ 𝑉 (𝐺) and 𝑎 ≠ 0 search through all pairs of paths (𝑃1, 𝑃2) in𝐻𝐽, 𝑃1 starting in (𝑣 , 0), 𝑃2 starting in (𝑣 , 𝑎), both of length ≤ ℓ.
• If for some 𝑃1 and 𝑃2 the ends coincide, update 𝑃𝑥 with 𝑟𝑒𝑠𝑡𝑜𝑟𝑒(𝑃1 ∪𝑃2).

9. Create 𝐻𝐽 as an ℓ-extension but using 𝑐𝑟𝑜𝑠𝑠𝑦 and repeat steps 3-8 storing
the shortest path found in 𝑃𝑦.

10. Return the shortest of 𝑃𝑥 and 𝑃𝑦.
The critical section of this algorithm is iterating through all paths of length at
most ℓ starting in some vertex. It can be shown that in the chosen orientation
there are constantly many such paths and thus this section takes constant amount
of time for each vertex. Indeed, maximum outdegree of 𝐻𝐽 is bounded by some
constant 𝑀 and the length of each path is at most ℓ, therefore the number of such
paths is bounded by 𝑀 ℓ.

However, even though the number of such paths is bounded by a constant, in
practice this number can be large and this is why one should proceed with extra
care when implementing this part, especially the part with iterating through pairs
of paths on step 7. For this reason a recursive procedure 𝑖𝑡𝑒𝑟𝑎𝑡𝑒(𝑃1, 𝑃2) is used for𝑃1 and 𝑃2 being the intermediate paths:

1. Let 𝑠1 be the first vertex of 𝑃1 and let 𝑡1 be the last vertex of 𝑃1, define 𝑠2, 𝑡2
analogously for 𝑃2.

2. If |𝑃1| + |𝑃2| + 1 ≥ 6, return.
3. If there is an edge 𝑡1𝑠2 in 𝐽, update 𝑃𝑥 with 𝑟𝑒𝑠𝑡𝑜𝑟𝑒(𝑃1 ∪ {𝑡1𝑠2} ∪ 𝑃2).
4. If there is an edge 𝑡2𝑠1 in 𝐽, update 𝑃𝑥 with 𝑟𝑒𝑠𝑡𝑜𝑟𝑒(𝑃2 ∪ {𝑡2𝑠1} ∪ 𝑃1).
5. For every edge 𝑒1 going out of 𝑡1:

• Call 𝑖𝑡𝑒𝑟𝑎𝑡𝑒(𝑃1 ∪ 𝑒1, 𝑃2).
30

6. For every edge 𝑒2 going out of 𝑡2:
• Call 𝑖𝑡𝑒𝑟𝑎𝑡𝑒(𝑃1, 𝑃2 ∪ 𝑒2).

We can replace steps 3 and 4 in the main algorithmwith 𝑖𝑡𝑒𝑟𝑎𝑡𝑒({(𝑣 , 0)}, {(𝑣 , 𝑎)})
for 𝑣 ∈ 𝑉 (𝐺) and 𝑎 ≠ 0, since on step 3 of the procedure we update 𝑃𝑥 with a path
when 𝑃2 has no edges. Step 2 introduces a way to cut the recursion branches that
will not improve the solution. It is also possible to bound by the current minimum
or, ultimately, stop the search once we found a non-contractible 4-cycle, which
would significantly decrease average execution time, however this is a heuristic
and we did not include it for more precise benchmarks. Another optimization lies
in steps 3 and 4, where the search for the fitting edge can be done with associative
dictionaries based on, for example, hashing. This breaks linear time complexity
of the algorithm but greatly speeds up the implementation.

Other than that, constant-degree orientation and ℓ-extension can be imple-
mented in linear time and it is clear that we conduct a path search at most twice
in every vertex of 𝐻𝐽, therefore this whole algorithm works in linear time.

This algorithm was implemented in short_cycle.cpp and the algorithm for
finding 𝐶𝑥 and 𝐶𝑦 was implemented in non_cont_cycles.cpp.

31

32

Chapter 5

3-coloring for toroidal graphs

The previous chapters gave us enough background to build the 3-coloring algo-
rithm for near-quadrangulations of the torus containing a noncontractible cycle
of length at most 5. Let 𝐺 be a graph with an embedding on a torus. We will
assume that the embedding is 2-cell, if it is not, then the graph is a plane graph
and we can use the approach from the chapter with the 3-coloring algorithm for
plane graphs. This is simply verifiable by checking the characteristic number of
the embedding: an embedding of a connected graph 𝐺 on a torus is not 2-cell
exactly if |𝑉 (𝐺)| − |𝐸(𝐺)| + |𝐹 (𝐺)| = 2.

Now the approach is to convert 𝐺 into a plane graph and use already developed
techniques to determine whether a 3-coloring exists.

This approach only works if 𝐺 contains a short non-contractible cycle. We
have an algorithm that finds such a cycle efficiently if its length is at most ℓ = 5,
and this turns out to be sufficient for our purposes due to the following result.

Theorem 5.1 ([6]). Let 𝐺 be a triangle-free graph with a 2-cell embedding on a
torus. If 𝐺 contains no non-contractible cycle of length at most 5, then 𝐺 is 3-colorable.

Hence, we can assume 𝐺 contains a non-contractible cycle 𝐶 of length at most
five, which we found using the algorithm from the previous section.

Next, we cut the graph 𝐺 by 𝐶: Denote one side of 𝐶 as the left side and the
other as the right side. Split 𝐶 into two cycles of the same length named 𝐶𝐿 and𝐶𝑅 and connect the edges incident to 𝑉 (𝐶) from the left side to 𝑉 (𝐶𝐿) and the rest
of them to 𝑉 (𝐶𝑅).

After cutting the torus along a non-contractible cycle 𝐶 the resulting surface
will be a cylinder, which is homeomorphic to a subset of the plane, and thus after
this transformation 𝐺 will be planar.

Now we will use the fact that the length of 𝐶 is bounded by a constant:

Observation 5.2. Let 𝐺 be a graph with a 2-cell embedding on a torus, and let𝐶 ⊆ 𝐺 be a non-contractible cycle of length bounded by a constant. Let 𝐻 be

33

𝐶 𝐶𝑅 𝐶𝐿 𝐶𝑅𝐶𝐿
Figure 5.1 Cutting along a non-contractible cycle.

the graph obtained by cutting 𝐺 along 𝐶 where 𝐶 was split to 𝐶𝐿 and 𝐶𝑅. Let𝑐𝑜𝑙′ ∶ 𝑉 (𝐶) → {0, 1, 2} be the precoloring of 𝐶 and let 𝑐𝑜𝑙𝐻 ∶ 𝑉 (𝐶𝐿 ∪𝐶𝑅) → {0, 1, 2}
be a precoloring, obtained by applying 𝑐𝑜𝑙′ on 𝐶𝐿 and 𝐶𝑅. Then 𝑐𝑜𝑙′ can be extended
to a 3-coloring of 𝐺 if and only if 𝑐𝑜𝑙𝐻 can be extended to a 3-coloring of 𝐻.

From this an algorithm 𝑡ℎ𝑟𝑒𝑒𝑐𝑜𝑙4(𝐺) for determining the existence of a three-
coloring of a triangle-free graph 𝐺 with a 2-cell embedding on a torus follows:

1. Find a shortest non-contractible cycle in 𝐺 with length ≤ 5.
2. If there is no such cycle, 𝐺 is 3-colorable, return ”true”.

3. Otherwise let 𝐶 be a shortest non-contractible cycle in 𝐺.
4. Create 𝐻 from 𝐺 by cutting 𝐺 along 𝐶 where 𝐶 is split into cycles 𝐶𝐿 and 𝐶𝑅.
5. Iterate through all proper precolorings of 𝐶.

• For each such precoloring 𝑐𝑜𝑙′ let 𝑐𝑜𝑙𝐻 be 𝑐𝑜𝑙′, applied on 𝐶𝐿 and 𝐶𝑅.
Verify whether 𝑐𝑜𝑙𝐻 can be extended to a 3-coloring of 𝐻 using the
cycle extension algorithm from the corresponding chapter. If it can,
then 𝐻 is 3-colorable, and so is 𝐺. Return ”true”.

• If no such extendable precoloring exists, return ”false”.

As shown in the previous chapter, step 1 is done in linear asymptotic time.
If implemented carefully, cutting a graph along a cycle of constant length takes
asymptotically linear time. Since the size of 𝐶 is bounded by a constant, the
number of valid precolorings is also constant, therefore we will need to verify
whether the precoloring is extendable for a constant number of precolorings.
However, we cannot guarantee that the verification will take linear asymptotic
time, only in case of 𝐻 being a near-quadrangulation. Note that if 𝐺 is a near-
quadrangulation, then 𝐻 is a near-quadrangulation as well. Thus, if 𝐺 is a near-
quadrangulation, the last step will also have linear time complexity.

34

From this it follows, that this algorithm will decide if 𝐺 is 3-colorable and will
do so in asymptotically linear time if 𝐺 is a near-quadrangulation.

35

36

Chapter 6

Eliminating non-facial 4-cycles

Motivation
In the previous chapter we finished an algorithm that will decide if a graph
embedded on a torus is 3-colorable. That algorithm has linear time complexity for
near-quadrangulations. Note that we can safely assume that the given graph is
not planar, since we work only with triangle-free graphs and planar triangle-free
graphs are 3-colorable by Grötzsch’s theorem.

Naturally, the next thing to do is to try and transform a more general graph
into a near-quadrangulation and apply the algorithm we have. Essentially, this
near-quadrangulation should be 3-colorable exactly when the original graph is.
For this reasons the following operation is offered:

Let 𝐺 be a graph with a 2-cell embedding on a surface Σ where Σ is not the
sphere, and let 𝐾 ⊆ 𝐺 be a contractible cycle. Then 𝐾 divides 𝑆 into two parts,
exactly one of them is homeomorphic to a disk, let this part be the interior of 𝐾.

Let 𝐺 be a graph with a 2-cell embedding on a torus, and let 𝐾 ⊆ 𝐺 be a
contractible cycle of length 4 (from now on a 4-cycle), We let 𝐺 ⊙ 𝐾 denote the
subgraph of 𝐺 obtained by eliminating the interior of 𝐾 in 𝐺, that is removing all
edges and vertices drawn in the interior of 𝐾.

The following stronger form of the Grötzsch’s theorem was proved by Ak-
sionov [11]:

Theorem 6.1. Let 𝐺 be a triangle-free plane graph with an outer face bounded
by a 4-cycle 𝐾 and let 𝑐𝑜𝑙𝐾 be a 3-coloring of 𝐾. Then the 𝑐𝑜𝑙𝐾 can be extended to a
3-coloring of 𝐺.
Corollary 6.2. Let 𝐺 be a triangle-free graph with a 2-cell embedding on a torus,
and let 𝐾 be a contractible 4-cycle in 𝐺. Then 𝐺 is 3-colorable if and only if 𝐺 ⊙ 𝐾 is
colorable.

37

To motivate the usefulness of this operation, let us note the following result
of Dvořák and Pekárek [6]:

Theorem 6.3. Let 𝐺 be a triangle-free graph with a 2-cell embedding on torus, and
assume 𝐺 contains no non-contractible 4-cycles. If 𝐺 is not 3-colorable, then there
exists a subgraph 𝐻 ⊆ 𝐺 that is a quadriangulation and is not 3-colorable.

In this chapter we will design an algorithm that will determine the existence
of 3-coloring in asymptotically linear time for triangle-free graphs embedded on
a torus with no non-contractible 4-cycles. The last limitation will be resolved in
the next chapter.

The idea of the algorithm is to iteratively eliminate the interiors of non-facial
4-cycles in 𝐺 until all 4-cycles in 𝐺 are facial (we call this process compression).
Compression is a finite process, because every non-facial cycle contains at least 2
faces in the interior, so each interior elimination reduces the number of faces.

If after the compression we end up with a quadrangulation 𝐻, check its 3-
colorability. If 𝐻 is not 3-colorable, 𝐺 is not 3-colorable as well. If 𝐻 is 3-colorable,
we can extend the coloring of 𝐻 to a coloring of 𝐺 according to Corollary 7.2. The
only case left is when the compressed graph is not a quadrangulation. Then we
claim the following:

Theorem 6.4. Let 𝐻 be a triangle-free graph with a 2-cell embedding on a torus Σ
with no non-contractible 4-cycles. If 𝐻 contains no contractible non-facial 4-cycle as
a subgraph and 𝐻 is not a quadrangulation, then 𝐻 is 3-colorable.

Proof. Let 𝜙 be a face of 𝐻 with |𝜙| > 4 and let the cycle bounding 𝜙 be 𝐶. For
contradiction, assume that 𝐻 is not 3-colorable, then by Theorem 7.3 there is a
quadrangulation 𝑄 ⊂ 𝐻 that is not 3-colorable. Say 𝜙 is contained inside of some
face 𝜙𝑄 ∈ 𝐹(𝑄), denote the cycle bounding 𝜙𝑄 as 𝐶𝑄. Since 𝐶𝑄 bounds a face of a
quadrangulation, it is contractible We will show that 𝐶𝑄 is a non-facial cycle in 𝐻,
which would also lead to a contradiction.

Since |𝐶| > |𝐶𝑄|, 𝐶𝑄 can not contain all vertices of 𝐶, so at least one vertex of𝐶 is contained in 𝜙𝑄, and this is not a face in 𝐻. The other side of 𝐶𝑄 can not be a
face in 𝐻, either: since 𝜙𝑄 is homeomorphic to a disk, Σ/𝜙𝑄 is not homeomorphic
to a disk and the embedding of 𝐻 is 2-cell. Consequently, the existence of such
quadrangulation 𝑄 ⊆ 𝐻 would contradict the fact 𝐻 has no non-facial 4-cycles,
and thus 𝐻 is 3-colorable according to Theorem 7.3.

From this theorem it follows that if the subgraph 𝐻 ⊆ 𝐺 obtained by compres-
sion 𝐺 is not a quadrangulation, then 𝐺 is 3-colorable due to Corollary 7.2 and
Theorem 7.4.

Therefore, the strategy is to compress 𝐺 and to obtain a graph 𝐻 ⊆ 𝐺 as the
result of the compression. If𝐻 is not a quadrangulation, 𝐺 is 3-colorable, otherwise

38

determine 3-colorability of 𝐻 by the algorithm from the previous chapter. Note
that that algorithm works in linear time for quadrangulations.

Let us first show how to find and eliminate the interior of a contractible 4-cycle,
later we will develop an algorithm that will iterate through all contractible 4-
cycles in 𝐺 and eliminate their interiors using procedures defined in the following
sections.

Determining the interior
Once we have a contractible 4-cycle 𝐾 ⊆ 𝐺 in order to eliminate the interior we
need to first determine which side of 𝐾 is the interior. For this we will extend the
notion of an ℓ-extension:

Let 𝐺 be a graph with a 2-cell embedding on a torus, let 𝐶𝑥 and 𝐶𝑦 be non-
contractible homotopically inequivalent cycles in the dual of 𝐺, and let 𝑐𝑟𝑜𝑠𝑠𝑥 and𝑐𝑟𝑜𝑠𝑠𝑦 be the crossing functions of 𝐶𝑥 and 𝐶𝑦. Then the (ℓ𝑥,ℓ𝑦)-extension of 𝐺 is the
graph𝐻, such that 𝑉 (𝐻) = 𝑉 (𝐺)×{−ℓ𝑥, … , ℓ𝑥}×{−ℓ𝑦, … , ℓ𝑦} and for 𝑎𝑥, 𝑎𝑦, 𝑏𝑥, 𝑏𝑦, 𝑢, 𝑣
there is an edge 𝐻 from (𝑢, 𝑎𝑥, 𝑎𝑦) to (𝑣 , 𝑏𝑥, 𝑏𝑦) exactly if there is an edge 𝑢𝑣 in 𝐺,𝑏𝑥 = 𝑎𝑥 + 𝑐𝑟𝑜𝑠𝑠𝑥(𝑢𝑣) and 𝑏𝑦 = 𝑎𝑦 + 𝑐𝑟𝑜𝑠𝑠𝑦(𝑢𝑣).

Let us visualize this transformation, see Figures 11 and 12. Suppose for
simplicity that the cycles 𝐶𝑥 and 𝐶𝑦 intersect in exactly one vertex (this does not
have to be the case, complicating the visualizations but not affecting the validity
of the results). The (ℓ𝑥,ℓ𝑦)-extension is done by cutting the torus along 𝐶𝑥 and 𝐶𝑦,
thus getting a disk, inside which a graph is embedded, except some of the edges
(specifically, the edges with non-zero 𝑐𝑟𝑜𝑠𝑠𝑥 or 𝑐𝑟𝑜𝑠𝑠𝑦) are cut into two.

𝐶𝑦𝐶𝑥
𝐶𝑦𝐶𝑦

𝐶𝑥

𝐶𝑥
Figure 6.1 Cutting a torus into a disk

Next, glue ℓ𝑥 ⋅ ℓ𝑦 copies of this disc into a grid ℓ𝑥 × ℓ𝑦 by connecting the
opposite sides of 𝐶𝑥 horizontally and analogously for 𝐶𝑦 vertically, connecting

39

the corresponding parts of cut edges. In the end some of the edges might still be
cut into two, remove them. As a result we get the embedding of 𝐻 in the plane.

Figure 6.2 (1,1)-extension of a graph

Similarly, we define the unfolding of a cycle: let 𝐺 be a graph with a 2-cell
embedding on a torus, let 𝐻 be the (ℓ𝑥,ℓ𝑦)-extension of 𝐺. The unfolding of a cycle𝐾 = 𝑣1𝑣2…𝑣𝑛 is a walk 𝐾 = 𝑣1𝑣2…𝑣𝑛+1 in 𝐻, such that

𝑣𝑖 ∶= (𝑣𝑖, 𝑖∑𝑘=2 𝑐𝑟𝑜𝑠𝑠𝑥(𝑣𝑘−1, 𝑣𝑘), 𝑖∑𝑘=2 𝑐𝑟𝑜𝑠𝑠𝑦(𝑣𝑘−1, 𝑣𝑘))
To accommodate an unfolding of a cycle of length four a (4, 4)-extension will

clearly be enough. However, we can note that the unfolding of a contractible
cycle is a cycle as well, therefore the last vertex should be of form (𝑣1, 0, 0) and
the unfolding will fit in a (2,2)-extension. Moreover, if we allow the cycle to start
in (𝑣1, 𝑥, 𝑦) for any 𝑥 and 𝑦, we can fit the unfolding of every contractible 4-cycle
in a (1,1)-extension.

A contractible cycle 𝐾 divides the torus into a disk and the rest of the torus.
The unfolding 𝐾 ⊆ 𝐻 of 𝐾 also divides the plane into a disk and the unbounded
part, where the disk in 𝐻 bounded by 𝐾 contains the same subgraph as the disk
in 𝐺 bounded by 𝐾, the disks being the interiors of the corresponding cycles.
Furthermore, since 𝐾 and 𝐾 are oriented in the same direction, 𝐾 is oriented
counterclockwise relatively to the interior if and only if the same is true for 𝐾.
This means, to find the interior of 𝐾 in 𝐺 we can find the interior of 𝐾 in a plane
graph 𝐻.

40

Determining the interior in the plane graph
We have translated the problem of determining the interior of a cycle from toroidal
graphs to plane graphs. We know that there is exactly one unbounded face in any
plane graph, that is the outer face. Since every interior is bounded, the interior of
a cycle 𝐶 can not contain the outer face and this uniquely determines the side of𝐶 that bounds the interior.

The high-level strategy is to assume that 𝐶 is directed counterclockwise around
the interior, then we compute the number of faces inside the interior of 𝐶 in a
way that depends on the made assumption; if we get obviously wrong results,
we can conclude that 𝐶 is directed around the interior in the clockwise manner,
otherwise the assumption was correct.

Theorem 6.5. Let𝐻 be a plane graph with outer face 𝜙, let 𝐶 be a cycle in 𝐺, directed
counterclockwise around its interior, and let 𝑆 be the interior of 𝐶. Let 𝐻⋆ be the dual
of 𝐻, and let 𝑇 be a directed spanning tree of 𝐻⋆ rooted in 𝑑𝑢𝑎𝑙(𝜙) with all edges
directed from the root. Let 𝑠𝑧 ∶ 𝐸(𝑇) → ℤ+ be the function, assigning to each edge(𝑢, 𝑣) in 𝑇 the number of vertices in the subtree of 𝑇 rooted in 𝑣. Then the number of
faces lying in 𝑆 is ∑𝑒∈𝐸(𝑇) ∶ 𝑑𝑢𝑎𝑙(𝑜𝑝𝑝(𝑒))∈𝐶 𝑠𝑧(𝑒) − ∑𝑒∈𝐸(𝑇) ∶ 𝑑𝑢𝑎𝑙(𝑒)∈𝐶 𝑠𝑧(𝑒).
Proof. Let 𝑣 be a vertex in 𝐻⋆ and let 𝑃 be the path in 𝑇 from 𝑑𝑢𝑎𝑙(𝜙) to 𝑣. Since𝜙 does not lie in 𝑆, the number of times 𝑃 enters 𝑆 is the same as the number
of times 𝑃 leaves 𝑆 if 𝑣 does not lie in 𝑆, otherwise 𝑃 enters one more time. Let𝜒(𝑣) = |{𝑒 | 𝑒 ∈ 𝐸(𝑃), 𝑒 enters 𝑆} − |{𝑒 | 𝑒 ∈ 𝐸(𝑃), 𝑒 leaves 𝑆}. It will be 1 if 𝑣
lies in 𝑆, 0 otherwise. Consequently, we will get the number of dual vertices
(and thus, also faces) inside 𝑆 as ∑𝑣∈𝑉 (𝐻 ⋆) 𝜒(𝑣). Notice that every edge 𝑒 in 𝑇
entering 𝑆 contributes 𝑠𝑧(𝑒) to the sum and every 𝑒 in 𝑇 leaving 𝑆 contributes−𝑠𝑧(𝑒). Therefore the amount of faces in 𝐻⋆ inside of 𝑆 is equal to∑𝑒∈𝐸(𝑇) enters 𝑆 𝑠𝑧(𝑒) − ∑𝑒∈𝐸(𝑇) leaves 𝑆 𝑠𝑧(𝑒).
To end the proof we use the assumption on the orientation of 𝐶 and note that𝑒 ∈ 𝐸(𝐻⋆) enters 𝐶 exactly if 𝑑𝑢𝑎𝑙(𝑜𝑝𝑝(𝑒)) is in 𝐶 and leaves 𝑆 if 𝑑𝑢𝑎𝑙(𝑒) is in 𝐶.

Note that the result of the proven expression has the opposite sign if 𝐶 is
directed the opposite way and that there is at least one face inside 𝑆. Then 𝐶 is
counterclockwise relatively to 𝑆 exactly if the result of the expression above is
positive. Another important remark is that the construction needed to find the
interior does not need to change even if the graph 𝐺 is changed after eliminating

41

Figure 6.3 The construction with a spanning tree of the dual

a cycle: The interior of a cycle in a subgraph of 𝐺 is the same as the interior of
this cycle in 𝐺.

We will now define a procedure 𝑖𝑛𝑡𝑒𝑟 𝑖𝑜𝑟(𝐶, 𝐻 , 𝑇 , 𝑠𝑧) that will orient a given
contractible pseudocycle 𝐶 counterclockwise around its interior in a plane graph𝐻, where 𝑇 is a directed spanning tree of the dual of 𝐻 rooted in the outer face of𝐻 and 𝑠𝑧 is the function defined in the previous part of the chapter.

1. Orient all edges of 𝐶 to one direction, no matter which one.

2. Initialize 𝑆 to be 0.

3. For every edge 𝑒 of 𝐶, if 𝑑𝑢𝑎𝑙(𝑜𝑝𝑝(𝑒)) ∈ 𝑇, add 𝑠𝑧(𝑑𝑢𝑎𝑙(𝑜𝑝𝑝(𝑒))) to 𝑆
4. For every edge 𝑒 of 𝐶, if 𝑑𝑢𝑎𝑙(𝑒) ∈ 𝑇, subtract 𝑠𝑧(𝑑𝑢𝑎𝑙(𝑒)) from 𝑆
5. If 𝑆 < 0, reverse all edges of 𝐶
6. Return 𝐶
We can clearly see that for a pseudocycle of constant length this algorithm

runs in constant asymptotic time. To find the interior of a contractible cy-
cle in a triangle-free graph 𝐺 with a 2-cell embedding on a torus we can use𝑖𝑛𝑡𝑒𝑟 𝑖𝑜𝑟(𝐶, 𝐻 , 𝑇 , 𝑠𝑧) with 𝐻 being the (2,2)-extension of 𝐺. Since at any point of
time we do not change the embedding of 𝐺 but only delete vertices and edges,𝐻 can be static and we can compute 𝐻, 𝑇 and 𝑠𝑧 before the first invocation and
reuse the same structures in every call of 𝑖𝑛𝑡𝑒𝑟 𝑖𝑜𝑟(𝐶, 𝐻 , 𝑇 , 𝑍).

42

Eliminating the interior of a 4-cycle
Once we have determined the direction in which the interior is, we need to remove
everything inside of it. Let 𝐺 be a graph with a 2-cell embedding on torus and let𝐶 be a contractible cycle in 𝐺, oriented counter-clockwise around its interior. We
define procedure 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒(𝐶, 𝐺) that removes all edges, vertices and faces in the
interior of 𝐶:

1. Let 𝑄 be a queue of faces, Push 𝑙𝑒𝑓 𝑡(𝑒) for every edge 𝑒 in 𝐶 to 𝑄.
2. Until 𝑄 is empty:

• Pop a face 𝐹 out of 𝑄.
• Mark 𝐹 as pending deletion.

• For every edge 𝑒 adjacent to 𝐹, such that neither 𝑒 nor 𝑜𝑝𝑝(𝑒) belong
to 𝐶, mark 𝑒 and 𝑜𝑝𝑝(𝑒) as pending deletion and add 𝑙𝑒𝑓 𝑡(𝑜𝑝𝑝(𝑒)) to 𝑄
if it has not been there yet.

3. Delete all faces and edges pending deletion, delete vertices with all incident
edges deleted.

4. Add one face 𝐹𝑛 and set its boundary to 𝐶 (more specifically, update 𝑛𝑒𝑥𝑡
for all edges from 𝐶 and set one of the edges as 𝑓 𝑖𝑟𝑠𝑡(𝐹𝑛)).

The time complexity of 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒(𝐶, 𝐺) is linear to the number of faces in the
interior of 𝐶, but every face accessed during the elimination is deleted and only
one new face is created. Therefore the amortized complexity of 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒(𝐶, 𝐺) is𝑂(|𝐹 (𝐺)| + 𝑁𝐶), where 𝑁𝐶 is the number of invocations of 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒(𝐶, 𝐺). Since
invocation for a non-facial 4-cycle decreases the number of faces, we have 𝑁𝐶 ∈𝑂(|𝐹 (𝐺)|). Therefore, the total time complexity of all calls of 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒(𝐶, 𝐺) will
be linear to the size of 𝐺.
Compression
In this section we will define the compression algorithm.

To compress a graph 𝐺 one needs to iterate through all its non-facial con-
tractible 4-cycles. To do this we will mostly use techniques and tools developed
in Chapter 5.

Let 𝐺 be a graph with a 2-cell embedding on a torus and let 𝐺 be an orientation
of 𝐺 obtained by applying the constant-degree orientation algorithm on 𝐺. LetΔ+ ∶= max𝑣∈𝑉 (𝐺) deg+⃗𝐺 𝑣. Then, the same as in the chapter with short non-
contractible cycles we will consider all possible cases of orientations of 4-cycles

43

in 𝐺, iterate through the pseudocycles of length 4 in 𝐺, translate each pseudocycle
to a cycle in 𝐺 and eliminate the interior of every such cycle.

𝑣 𝑣 𝑣 𝑣
Figure 6.4 Orientations of a 4-cycle

Again, we categorize the pseudocycles of length 4 by the number of sources:

• No source: We can iterate through all such pseudocycles of length 4 con-
taining a vertex 𝑣 by iterating through all walks of length 4 starting in 𝑣,
the number of which is bounded by (Δ+)4.

• One source: we can iterate through all pseudocycles of length 4 with the
only source being 𝑣 by iterating through all pairs of paths starting in 𝑣
with the total length of the paths equal to 4. The number of such pairs is
bounded by 3(Δ+)4

• Two sources: Iterating through pseudocycles of length 4 with two
sources can be done in the following way: Let 𝑣 be a vertex in 𝐺 and
let (𝑢1, 𝑣), (𝑢2, 𝑣), … (𝑢𝑘, 𝑣) be all edges incident to 𝑣 and directed towards 𝑣.
For each 𝑖 ∈ {1, … , 𝑘} iterate through all edges going out of 𝑢𝑖 and if there
are 𝑖 ≠ 𝑗, such that there exist edges (𝑢𝑖, 𝑎) and (𝑢𝑗, 𝑎) for 𝑎 ≠ 𝑣, then there
exists a pseudocycle of length 4 with vertices 𝑣 , 𝑢𝑖, 𝑎, 𝑢𝑗.

Let us elaborate on the iteration algorithm from the last bullet. For vertices 𝑣
and 𝑎 in 𝐺, let 𝑖𝑛𝑣(𝑎) = {𝑥 | (𝑥, 𝑎), (𝑥, 𝑣) ∈ 𝐸(𝐺)}. For every vertex 𝑎 ∈ 𝑉 (𝐺) iterate
through all pairs 𝑥, 𝑦 ∈ 𝑖𝑛𝑣(𝑎) and for every such pair a pseudocycle with vertices𝑣 , 𝑥, 𝑎, 𝑦 exists with 𝑥 and 𝑦 being the sources (note that since 𝐺 has no cycles of
length ≤ 3, we can specify a 4-cycle with four vertices unambiguously). With
this we can define a prototype algorithm for iterating through all 4-cycles with 2
sources:

• For every vertex 𝑣 in 𝑉 (𝐺):
1. For every edge 𝑒 ∶= (𝑢𝑖, 𝑣) entering 𝑣 from 𝐸(𝐺):

• For every (𝑢𝑖, 𝑎) ∈ 𝐸(𝐺), 𝑎 ≠ 𝑣 add 𝑢𝑖 to 𝑖𝑛𝑣(𝑎).
2. For every vertex 𝑎 ,where 𝑖𝑛𝑣(𝑎) is non-empty:

44

• For every pair 𝑥, 𝑦 ∈ 𝑖𝑛𝑣(𝑎), 𝑥 ≠ 𝑦 eliminate the interior of a cycle
with vertices 𝑎, 𝑥, 𝑣 , 𝑦.

3. Clear 𝑖𝑛𝑣.
Of course, there can be a vertex 𝑎, for which the size of 𝑖𝑛𝑣(𝑎) after step 1

might be up to Θ(|𝑉 (𝐺)|), so this solution is not effective enough. However, we
can bound the size if we eliminate the cycles at the same time while calculating𝑖𝑛𝑣:

• For every vertex 𝑣 in 𝑉 (𝐺)
1. For every edge 𝑒 ∶= (𝑢𝑖, 𝑣) entering 𝑣 from 𝐸(𝐺).

• For every (𝑢𝑖, 𝑎) ∈ 𝐸(𝐺), 𝑎 ≠ 𝑣
• Add 𝑢𝑖 to 𝑖𝑛𝑣(𝑎).
• For every pair 𝑥, 𝑦 ∈ 𝑖𝑛𝑣(𝑎), 𝑥 ≠ 𝑦 eliminate the interior of
a cycle with vertices 𝑎, 𝑥, 𝑣 , 𝑦; the deleted vertices are also
removed from all the sets 𝑖𝑛𝑣(𝑎) that contain them.

2. Clear 𝑖𝑛𝑣.
The fact that this improves the complexity is not evident but with the help

of the following observation it can be shown that at any state of the algorithm|𝑖𝑛𝑣(𝑎)| ≤ 3 holds for every 𝑣 and 𝑎.
Observation 6.6. Let 𝑆 be a graph, embedded on a torus, such that 𝑉 (𝑆) ={𝑢, 𝑣 , 𝑥1, 𝑥2, 𝑥3} and 𝐸(𝑆) = {{𝑢, 𝑥𝑖} | 𝑖 ∈ {1, 2, 3}} ∪ {{𝑥𝑖, 𝑣 } | 𝑖 ∈ {1, 2, 3}}. If the
embedding of 𝑆 contains no non-contractible 4-cycles,then 𝑆 contains a 4-cycle whose
interior is not a face.

𝑢 𝑣𝑥1
𝑥3𝑥2

Figure 6.5 Graph S

The idea is that once we add the third vertex to 𝑖𝑛𝑣(𝑎), from 7.6 it follows that
there should be a cycle 𝐶 ∶= 𝑣𝑥′𝑎𝑦 ′ in 𝐺 with 𝑥′, 𝑦 ′ ∈ 𝑖𝑛𝑣(𝑎), such that there is𝑧 ∈ 𝑖𝑛𝑣(𝑎) ⧵ {𝑥′, 𝑦 ′} that lies in the interior of 𝐶. By eliminating the interiors of𝑣𝑥𝑎𝑦 for all pairs 𝑥, 𝑦 ∈ 𝑖𝑛𝑣(𝑎) in the next step we will eventually eliminate the

45

interior of 𝐶, thus deleting 𝑧 and decreasing the size of 𝑖𝑛𝑣(𝑎) back to 2. With this
the size of 𝑖𝑛𝑣(𝑎) for any 𝑣 and 𝑎 can not be more than 3.

Consequently, at each iteration of 𝑢𝑖 a constant amount of new 4-cycles is
found. Taking the amortized complexity of 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒 into account, we can see that
the time complexity of this routine is linear to the size of 𝐺.

This concludes the case of pseudocycles with two sources. Apart from that,
we need to precompute the augmenting structures for determining the interior
and eliminate the interiors of contractible pseudocycles of length 4 with zero
or one source. Thus we define 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝐺) for a triangle-free graph 𝐺 with a
2-cell embedding on torus without non-contractible 4-cycles that will return a
compressed subgraph of 𝐺 that is 3-colorable exactly if 𝐺 is 3-colorable:

1. Initialize 𝐻 as the (2, 2)-extension of 𝐺, let 𝜙 be an outer face of 𝐻 and let𝐻⋆ be the dual of 𝐻.
2. Find a spanning tree 𝑇 of 𝐻⋆ and compute 𝑠𝑧 on 𝑇.
3. Let 𝐺 be 𝐺 oriented with the constant-degree orientation algorithm

4. For every vertex 𝑣 in 𝑉 (𝐺)
• Iterate through all paths 𝑃 of length 4 in 𝐺 starting in 𝑣. If 𝑃 ends at 𝑣,
do 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒(𝑖𝑛𝑡𝑒𝑟 𝑖𝑜𝑟(𝑃, 𝐺, 𝑇 , 𝑠𝑧), 𝐺).

• Iterate through all pairs of paths of total length equal to 4 in 𝐺 start-
ing in 𝑣. If 𝑃1 and 𝑃2 end in the same vertex, reverse 𝑃1 and do𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒(𝑖𝑛𝑡𝑒𝑟 𝑖𝑜𝑟(𝑃1 ∪ 𝑃2, 𝐺, 𝑇 , 𝑠𝑧), 𝐺)

• For every edge 𝑒 ∶= (𝑢𝑖, 𝑣) entering 𝑣 from 𝐸(𝐺).
• For every (𝑢𝑖, 𝑎) ∈ 𝐸(𝐺), 𝑎 ≠ 𝑣

• Add 𝑢𝑖 to 𝑖𝑛𝑣(𝑎).
• For every pair 𝑥, 𝑦 ∈ 𝑖𝑛𝑣(𝑎), 𝑥 ≠ 𝑦 do𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒(𝑖𝑛𝑡𝑒𝑟 𝑖𝑜𝑟(𝑣𝑥𝑎𝑦, 𝐺, 𝑇 , 𝑠𝑧), 𝐺), updating the sets of𝑖𝑛𝑣(𝑎).

• Clear 𝑖𝑛𝑣.
5. Remove every edge from 𝐺 such that {𝑒, 𝑜𝑝𝑝(𝑒)} ∩ 𝐸(𝐺) = ∅.
6. Remove all faces and vertices removed in 𝐺.
7. Return 𝐺.

46

Finally, let us define the algorithm 𝑡ℎ𝑟𝑒𝑒𝑐𝑜𝑙5(𝐺) for checking 3-colorability of
a triangle-free graph 𝐺 with an embedding on a torus and no non-contractible
cycles of length less than five.

1. If |𝑉 (𝐺)| − |𝐸(𝐺)| + |𝐹 (𝐺)| = 2, the graph is planar and thus is 3-colorable,
return ”true”.

2. Let 𝐻 = 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝐺).
3. If 𝐻 has a face of length different from 4, return ”true”.

4. return 𝑡ℎ𝑟𝑒𝑒𝑐𝑜𝑙4(𝐻).
As we have already proven, 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝐺) has linear time complexity. The

3-coloring algorithm from chapter 6 has linear time complexity for quadriangula-
tions.

From the analysis it is clear that this algorithm runs in linear asymptotic time
for each graph satisfying the requirements stated in this chapter, i.e. triangle-free,
embedded on torus and with no non-contractible cycles of length four.

47

48

Chapter 7

Coloring algorithm

Theoretical basis
In this chapter we will extend the previous algorithm to the case of the graphs
with non-contractible 4-cycles. For this case Theorem 7.3 does not apply, however
there is a theorem that does not need this assumption and is similar to 7.3, albeit
more complicated:

From now on we will call a face of length 𝑙 an 𝑙-face.
Let 𝐺 be a triangle-free graph with a 2-cell embedding on a torus. We call 𝐺

an almost-quadrangulation if there are

• no faces of length greater than 4, or

• two 5-faces, or

• four 5-faces, or

• one 6-face and two 5-faces, or

• one 7-face and one 5-face

in 𝐺 and the rest of the faces in 𝐺 have length 4. Note that every almost-
quadrangulation is a near-quadrangulation

Theorem 7.1. Let 𝐺 be a triangle-free graph with a 2-cell embedding on a torus. If𝐺 is not 3-colorable, there is a subgraph 𝑄 of 𝐺 that is an almost-quadrangulation
and is not 3-colorable.

Analogously to the previous chapter, we need to perform some operation
on the graph 𝐺, so that the resulting graph 𝐻 is 3-colorable if and only if 𝐺 is 3-
colorable, at the same time 𝐻 is either an almost-quadrangulation or is 3-colorable.
For this we first need to define some utilities, based on the ideas of [12]

49

Let 𝐺 be a triangle-free graph with a 2-cell embedding on torus and let 𝜙 be a
face of 𝐺. The face 𝜙 is considered k-free if there is no contractible cycle of length
at most min(𝑘, |𝜙| + 1) containing 𝜙, with the exception of the cycle bounding 𝜙 if𝜙 is bounded by a cycle.

Lemma 7.2 ([13]). Let 𝐻 be a plane graph with the outer face bounded by a cycle𝐶. If there is a non-outer face 𝜙 in 𝐻 with length at least |𝐶| − 1 that is not contained
in a cycle of length at most |𝐶| − 2, then every 3-coloring of 𝐶 can be extended to a
3-coloring of 𝐻.

Let 𝐺 be a triangle-free graph with a 2-cell embedding on a torus, we define
freeing of a face 𝜙 in 𝐺 as the following procedure 𝑓 𝑟𝑒𝑒(𝐺, 𝜙):

1. While 𝜙 is not 7-free:
• Find a shortest contractible cycle 𝐶 containing 𝜙 that is not the bound-
ary of 𝜙. Secondarily choose one with the maximal interior by inclu-
sion.

• Eliminate the interior of 𝐶, set the new face as 𝜙.
2. return 𝜙.
There will be constantly many iterations in this loop, because a shortest cycle

we chose is also maximal by inclusion and after every iteration the length of
the shortest non-facial cycle containing 𝜙 will strictly increase. To finish this
algorithm we need to be able to find such cycle in asymptotically linear time.

Finding a minimal enclosing cycle
In this subsection we will show a way to find a shortest cycle containing a face𝜙 in a graph 𝐺 with a 2-cell embedding on a torus, secondarily choosing the
maximal by inclusion of the interior. First, let us transform this problem into the
same problem but for a plane graph:

Observation 7.3. Let 𝐺 be a graph with a 2-cell embedding on a torus and let 𝜙
be a face in 𝐺. Let 𝐻 be the (3,3)-extension of 𝐺 and let 𝜙𝐻 be a face in 𝐻, such
that the boundary of 𝜙𝐻 is the unfolding of the boundary of 𝜙 in 𝐻. Let 𝐶 ⊆ 𝐺 be a
contractible cycle of length at most 7 and let 𝐶𝐻 be the unfolding of 𝐶 in 𝐻. Then 𝜙
is contained in the interior of 𝐶 exactly if 𝜙𝐻 is contained in the interior of 𝐶𝐻.

Therefore find a shortest cycle containing a face 𝜙 in 𝐺 we can find a shortest
cycle 𝐶𝐻 containing 𝜙 in the (3, 3)-extension 𝐻 of 𝐺.

50

Finding a shortest cycle containing a face 𝜙 in a plane graph 𝐻 with the dual𝐻⋆ and the outer face 𝜙′ can be done by finding a minimal cut between 𝑑𝑢𝑎𝑙(𝜙′)
and 𝑑𝑢𝑎𝑙(𝜙). The minimum cut is found using the minimum cut/maximum flow
duality and the maximum flow is found with Ford-Fulkerson algorithm. If 𝜙 is not
7-free, the size of the minimum enclosing cycle, and thus the size of the minimum
cut will be at most 7, therefore once we find a flow of size 8 or more, we conclude
that 𝜙 is 7-free and stop the procedure.

The next requirement for the desired cycle is that it has to be maximal by
inclusion among shortest ones, i.e. we need to maximize the amount of faces in
the interior of the cycle or minimize the amount of faces outside of the cycle. For
this we can choose a minimum cut that will be the closest to the source in the
dual graph: Let a minimal cut 𝐸 divide the vertices of the dual graph 𝐻⋆ into two
parts 𝐴(𝐸) and 𝐵(𝐸). Let 𝐶 be the dual of 𝐸, since 𝐸 is a minimal cut between two
vertices, 𝐶 is a cycle. Assume that the source lies in 𝐴(𝐸). Note that the source is
dual to the outer face in 𝐻, and then 𝐴(𝐸) is the set of vertices dual to those faces
in 𝐻, that lie outside of the interior of 𝐶. Therefore it makes sense to minimize𝐴(𝐸) to maximize the interior of 𝐶.

Let 𝑒 be an edge from the dual of a graph in DCEL representation, define
residual capacity of 𝑒 as 𝑐𝑎𝑝(𝑒) − 𝑓 𝑙𝑜𝑤(𝑒).

Let 𝑆 ⊆ 𝑉 (𝐻⋆) be the set of all vertices in𝐻⋆ that are reachable from the source
by the edges with non-zero residual capacity. Since Ford-Fulkerson algorithm
finished, the target does not lie in 𝑆 and 𝑆 ≠ 𝑉 (𝐻⋆). Then the minimum cut
closest to the source would be a cut 𝐸′ between 𝑆 and 𝑉 (𝐻⋆) ⧵ 𝑆. Indeed, in any
minimum cut 𝐸 all edges have zero residual capacity and no vertex reachable from
the source by the edges with non-zero residual capacity will be in 𝐵(𝐸), therefore𝑆 ⊆ 𝐴(𝐸) for every minimal cut 𝐸.

Lastly, we can exclude the boundary of 𝜙 by choosing a specific edge from the
boundary and setting its capacity to +∞. We do not know which edge does not
appear in the optimal cycle, so we try this with every edge and take the best result.
If |𝜙| ≥ 8, we do not need to exclude the boundary as we are only interested in
cycles of length at most seven.

First we will define a procedure 𝑚𝑖𝑛𝑐𝑢𝑡(𝐻⋆, 𝑣𝑠, 𝑣𝑡) that will find a minimum
size cut in 𝐻⋆ between 𝑣𝑠 and 𝑣𝑡, secondarily being the closest to 𝑣𝑠:

1. Run Ford-Fulkerson DFS relaxations from 𝑣𝑠 to 𝑣𝑡 for at most 7 times or
until there are no augmenting paths.

2. If there are no augmenting paths from 𝑣𝑠 to 𝑣𝑡:
• Set 𝑆 ⊆ 𝑉 (𝐻⋆) as the set of vertices reachable from 𝑣𝑠 by the edges
with non-zero residual capacity.

51

• Set 𝐸 as the cut between 𝑆 and 𝑉 (𝐻⋆) ⧵ 𝑆 in 𝐻⋆.
3. Otherwise 𝐸 ∶= ∅.
4. return 𝐸.
Also we now can define 𝑓 𝑟𝑒𝑒(𝐺, 𝜙) in more detail:

1. Repeat:

• Let 𝐻 be the (3,3)-extension of 𝐺.
• Let 𝐻⋆ be the dual of 𝐻.
• Let 𝐶 be the walk bounding 𝜙.
• Let 𝐶𝐻 ⊆ 𝐻 be the unfolding of 𝐶.
• Let 𝜙𝑠 be an outer face in 𝐻, 𝑣𝑠 ∶= 𝑑𝑢𝑎𝑙(𝜙𝑠).
• Let 𝜙𝑡 be a face in 𝐻 bounded by 𝐶𝐻, 𝑣𝑡 ∶= 𝑑𝑢𝑎𝑙(𝜙𝑡).
• Set 𝐶min ∶= ∅.
• If |𝐶| > 7:

• Set 𝐶min as the dual of 𝑚𝑖𝑛𝑐𝑢𝑡(𝐻⋆, 𝑣𝑠, 𝑣𝑡).
• Otherwise, for every edge 𝑒 from 𝐶𝐻:

• Set 𝑐𝑎𝑝(𝑑𝑢𝑎𝑙(𝑒)) to +∞.

• Set 𝐶 as the dual of 𝑚𝑖𝑛𝑐𝑢𝑡(𝐻⋆, 𝑣𝑠, 𝑣𝑡).
• If 𝐶 is not empty:

• If 𝐶min is empty or |𝐶| < |𝐶min|, 𝐶min ∶= 𝐶.
• Set 𝑐𝑎𝑝(𝑑𝑢𝑎𝑙(𝑒)) back to 1 and reset the flows in 𝐻⋆.

• If 𝐶min is empty, return.

• Map 𝐶min to a cycle 𝐶 in 𝐺, eliminate the interior of 𝐶.
• Set the new face in 𝐺 as 𝜙.

2. return 𝜙.
From the analysis above we can see that 𝑓 𝑟𝑒𝑒(𝐺, 𝜙) has time complexity linear

to the size of 𝐺.
52

Turning into an almost-quadrangulation
In this subsection we will find a way to turn a triangle-free graph 𝐺 with a 2-cell
embedding on a torus into an almost-quadrangulation using freeing and a similar
operation.

The next lemma will show an important property of freeing:

Lemma 7.4. Let 𝐺 be a triangle-free graph with an embedding on torus, let 𝜙 be
a face in 𝐺, and let 𝐶 be a shortest cycle containing 𝜙 in the interior that is not
the boundary of 𝜙. If 𝜙 is not 7-free, then 𝐺 ⊙ 𝐶 is 3-colorable if and only if 𝐺 is
3-colorable.

Proof. Since 𝐺 ⊙ 𝐶 is a subgraph of 𝐺, if 𝐺 ⊙ 𝐶 is not 3-colorable, then 𝐺 is not as
well.

Otherwise note that |𝐶| ≤ min(7, |𝜙| + 1), so |𝐶| − 1 ≤ |𝜙|. At the same time,
since 𝐶 is a shortest cycle containing 𝜙 except the boundary, for every cycle 𝐶′
containing 𝜙 in the interior but not being the boundary of 𝜙, |𝐶′| ≥ |𝐶| holds and
for the boundary |𝜙| ≥ |𝐶| − 1 holds. Therefore, a coloring of 𝐶 can be extended
to the coloring of the interior of 𝐶 according to Theorem 8.2.

An important property of 7-free faces of length more than 5 is that they appear
in every almost-quadrangulation subgraph:

Observation 7.5. Let 𝐺 be a triangle-free graph with a 2-cell embedding on torus,
and let 𝑄 be a subgraph of 𝐺. Let 𝜙 be a 7-free face in 𝐺. If 𝜙 ∉ 𝐹(𝑄), then the
boundary of the face of 𝑄 containing 𝜙 is either non-contractible or has length at
least 𝑚𝑖𝑛(|𝜙| + 2, 8).

If |𝜙| is 6 or 7, the face containing 𝜙 in 𝑄 is either non-contractible or has
length more than 7, which makes the subgraph either planar or not almost-
quadrangulation. If 𝑄 is an almost-quadrangulation that is not 3-colorable, we
can see that 𝜙 is in 𝐹(𝑄). However, 7-free faces of length 5 in this case can still
be contained inside of a face of length 7. For this case the following theorem is
useful:

Theorem 7.6 ([14]). Let 𝐻 be a triangle-free plane graph with the outer face
bounded by a cycle 𝐶 of length 7. If there are two 5-faces in 𝐻 not contained inside a
non-facial 5-cycle, then every coloring of 𝐶 can be extended to a coloring of 𝐻.

The first step of the coloring algorithm is to find a subgraph of 𝐺, such that
it is either an almost-quadrangulation or is 3-colorable and at the same time it
is 3-colorable if and only if the original graph is 3-colorable. A graph 𝐺 with a
2-cell embedding on a torus is conditioned if all faces of length 5 and more are

53

7-free and if no pair of 5-faces lies in the interior of a contractible 7-cycle. The
act of transforming the graph into a conditioned one by freeing the faces is called
conditioning. Now we prove that a conditioned graph is 3-colorable if it is not an
almost-quadrangulation. First let us prove an auxiliary lemma:

Lemma 7.7. Let 𝐺 be a graph with a 2-cell embedding on a torus and let 𝐶 be a
contractible cycle in 𝐶. Then the sum of the lengths of the faces in the interior of 𝐶 is
even if and only if the length of 𝐶 is even.

Proof. Denote the mentioned sum as 𝐿. Every edge 𝑒 in the strict interior of 𝐶
(i.e. excluding the edges of 𝐶) contributes 2 to 𝐿, since the faces on both sides of𝑒 lie inside of 𝐶. Every edge from 𝐶 contributes exactly 1 to 𝐿, therefore we can
formulate 𝐿 as |𝐶| + 2𝐾 for 𝐾 ∈ ℤ.
Theorem 7.8. Let 𝐺 be a conditioned triangle-free graph with a 2-cell embedding
on torus. If 𝐺 is not an almost-quadrangulation, then 𝐺 is 3-colorable.

Proof. Let us prove it by contradiction. If 𝐺 is not 3-colorable, there is an almost-
quadrangulation 𝑄 ⊆ 𝐺 that is not 3-colorable by Theorem 8.1. We will assume
that the embedding of 𝑄 derived from the embedding of 𝐺 is 2-cell, as otherwise𝑄 is planar, triangle-free and thus 3-colorable according to Grötzsch’s theorem.

Let us describe the relationship between the faces of 𝐺 and 𝑄:
• Every 5-face in 𝐺will either be in 𝑄 as a face or will be inside of some 7-face
in 𝑄, where at most one 5-face in 𝐺 can be inside of a 7-face in 𝑄.
On the other hand, let 𝜙5 be a 5-face in 𝑄 that is not a face in 𝐺, let 𝐶5 ⊆ 𝑄 be
a bounding cycle of 𝜙5, then the interior of 𝐶5 is not empty in 𝐺. However,
there can not be a face of length 5 or more (since they all are 7-free) inside
of 𝐶5, therefore the interior of 𝐶5 can only be quadrangulated, which is also
impossible according to the Lemma 8.7. Consequently, every 5-face in 𝑄
will be a face in 𝐺.

• Every 6-face in 𝐺 will be a face in 𝑄 according to Lemma 8.4. Every 6-face
in 𝑄 is either a face in 𝐺 or is quadrangulated in 𝐺 according to Lemma 8.7
and arguments from the previous bullet.

• Every 7-face in 𝐺 will be a face in 𝑄 (by Observation 8.5). A 7-face in 𝑄 will
either be a face in 𝐺 or will contain exactly one 5-face and the rest 4-faces
in the interior due to Lemma 8.7.

Let 𝑆𝐻 for a graph 𝐻 with a 2-cell embedding on some surface be the multiset,
defined as 𝑆𝐻 = {|𝜙| | 𝜙 ∈ 𝐹(𝐻), |𝜙| > 4}

Since 𝑆𝑄 is an almost-quadrangulation, 𝑆𝑄 can be ∅, {5, 5}, {5, 5, 5, 5}, {6, 5, 5}
or {7, 5}.

54

• If 𝑆𝑄 = {7, 5}, then 𝑆𝐺 can be either {7, 5} or {5, 5}.
• If 𝑆𝑄 = {6, 5, 5}, then 𝑆𝐺 can be either {6, 5, 5} or {5, 5}.
• In all other cases 𝑆𝑄 = 𝑆𝐺.

As we can see, all cases imply that 𝐺 is an almost-quadrangulation, which cannot
be true.

The strategy is to condition the graph, and if we got an almost-quadrangulation,
apply the 3-colorability algorithm for near-quadrangulations. Here we define the
procedure 𝑐𝑜𝑛𝑑𝑖𝑡 𝑖𝑜𝑛(𝐺) that will return a subgraph 𝐻 of 𝐺 that is 3-colorable if
and only if 𝐺 is 3-colorable, where if 𝐻 is not an almost-quadrangulation, then 𝐺
is 3-colorable:

1. 𝐻 ∶= 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝐺), 𝑆 ∶= ∅.
2. 𝒮 ∶= {{5}, {5, 5}, {5, 5, 5}, {5, 5, 5, 5}, {6}, {6, 5}, {6, 5, 5}, {7}, {7, 5}} is a set of all

states of 𝑆 from which an almost-quadrangulation is reachable (will be
clarified later).

3. While 𝐹(𝐻) ⧵ 𝑆 contains a face with length > 4 and while the multiset of
lengths of faces in 𝐻 belongs to 𝒮:

• Let 𝜙 be a face from 𝐹(𝐻) ⧵ 𝑆 such that |𝜙| ≥ 5.
• 𝜙 = 𝑓 𝑟𝑒𝑒(𝐻 , 𝜙), remove the faces deleted during this procedure from𝑆.
• If |𝜙| = 5, for every 5-face 𝜙′ from 𝑆 find a shortest cycle 𝐶 in 𝐻
containing 𝜙 and 𝜙′.

• If there is 𝜙′, for which |𝐶| = 7:
• Clean the interior of 𝐶, let the new face be 𝜙𝑛𝑒𝑤.
• Set 𝜙𝑛𝑒𝑤 ∶= 𝑓 𝑟𝑒𝑒(𝐻 , 𝜙𝑛𝑒𝑤), remove the faces deleted during𝑓 𝑟𝑒𝑒 from 𝑆.
• Add 𝜙𝑛𝑒𝑤 to 𝑆.

• Otherwise add 𝜙 to 𝑆.
4. Otherwise return 𝐻.
At the first step we perform 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝐺) even though 𝐺 may contain non-

contractible 4-cycles. To do this correctly, we will eliminate the interiors of only
contractible 4-cycles in 𝐺, ignoring the non-contractible ones. Another difference
is that Observation 7.5 does not help in case of non-contractible 4-cycles, however

55

it can be shown that 𝐾2,9 will have a non-facial 4-cycle in any embedding on a
torus, which means that in 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠 algorithm |𝑖𝑛𝑣(𝑎)| ≤ 9will hold. Compression
ensures that the result of 𝑓 𝑟𝑒𝑒(𝐻 , 𝜙) will be a cycle of length at least 5, since there
are no non-facial 4-cycles in 𝐻.

At every step of the algorithm it is true that all faces in 𝑆 are 7-free and no pair
of 5-faces from 𝑆 lie inside of a contractible 7-cycle, at the end of the algorithm
all faces of length more than 4 will be in 𝑆. After each iteration at step 3 a new
face is added, possibly removing some other faces lying inside of the new one
from 𝑆. However, since the aforementioned invariants hold, the only time a face
can be removed from 𝑆 is when we find a pair of 5-faces contained in a 7-cycle or
when the result of 𝑓 𝑟𝑒𝑒 is a 7-face, so during cleaning the interior a 5-face might
be deleted. Furthermore, only two 5-faces can be deleted during the first case and
at most one - during the second case and in both cases a 7-face is added to 𝑆.

From this we can see that states of 𝑆 can not ”loop”: after each iteration either
the size of 𝑆 increases or a new 7-face is added, and once there are two 7-faces in𝑆, 𝐻 will definitely not become an almost-quadrangulation. More generally, this
fact allows us to define a set of states of 𝑆, from which it is possible to obtain an
almost-quadrangulation, this set being𝒮. These states with all possible transitions
are depicted in Figure 16, where solid line transitions stand for freeing a found
face and dashed ones stand for finding a pair of 5-faces inside of a 7-cycle.∅

{5}
{5, 5}
{5, 5, 5}
{5, 5, 5, 5}

{6}
{6, 5}
{6, 5, 5}

{7}
{7, 5}

Figure 7.1 A graph of all valid states of 𝑆 and transitions between them

Note that once 𝑆 is not in this graph we can stop the algorithm and claim

56

that the graph is 3-colorable since no conditioned subgraph can be an almost-
quadrangulation.

We already know that 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝐺) (with slight modifications for non-
contractible 4-cycles) has linear time complexity for graphs embedded on a
torus, that 𝑓 𝑟𝑒𝑒(𝐻 , 𝜙) has linear time complexity and that the number of invo-
cations of 𝑓 𝑟𝑒𝑒 is constant. We can use the same min-cut finding algorithm as
in 𝑓 𝑟𝑒𝑒 to find a shortest cycle containing 5-faces 𝜙 and 𝜙′, except we connect𝑑𝑢𝑎𝑙(𝜙) and 𝑑𝑢𝑎𝑙(𝜙′) to a new auxiliary vertex that will be a target (the same
multi-target flow trick we used in Chapter 3). Since we are interested only in
7-cycles, we can stop Ford-Fulkerson algorithm once the flow is 8 or more. Note
that the dual of the resulted minimum cut will be a set of cycle 𝒞 but also will
have the size at most 7. Since the shortest cycle in 𝒞 has length at least 4, it
follows that |𝒞 | = 1 and the result is an enclosing cycle. In summary, this part
and the whole algorithm will take linear asymptotic time.

With this we can define the final algorithm 𝑡ℎ𝑟𝑒𝑒𝑐𝑜𝑙(𝐺) that determines
whether a triangle-free graph 𝐺, embedded on a torus is 3-colorable:

1. If |𝑉 (𝐺)| − |𝐸(𝐺)| + |𝐹 (𝐺)| = 2, the embedding is not 2-cell, return ”true”.

2. 𝐻 = 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝐺).
3. If 𝐻 is not an almost-quadrangulation, return ”true”.

4. return the result of 𝑡ℎ𝑟𝑒𝑒𝑐𝑜𝑙4(𝐻).
As was already shown, 𝑐𝑜𝑛𝑑𝑖𝑡 𝑖𝑜𝑛(𝐺) has time complexity linear to the size of 𝐺.

Since we run 𝑡ℎ𝑟𝑒𝑒𝑐𝑜𝑙4 on almost-quadrangulation and an almost-quadrangulation
is a near-quadrangulation, the last steps also has linear time complexity. Therefore,𝑡ℎ𝑟𝑒𝑒𝑐𝑜𝑙(𝐺) has linear time complexity for every triangle-free graph embedded on
torus.

57

58

Chapter 8

Results

The main goal of this work was to implement the described algorithm and verify
if the algorithm is actually practical, which means it runs in realistic time for big
graphs and the execution time is linearly proportional to the size of this graph.

The algorithm was implemented in C++ language primarily as a library using
C++17 standard. We also implemented a testing framework threecol_test that
was used for intermediate unit-tests and the benchmarks.<

For the benchmarks we have used the results of [6], where it is stated that
every triangle-free graph with an embedding on a torus that is not 3-colorable can
be generated from one of 186 graphs called templates by quadrangulating a certain
subset of faces in it (we call these faces non-floating). Furthermore, every such
generated graph is not 3-colorable. This is convenient for testing our program,
as for non 3-colorable graphs, all parts of the algorithm (such as trying all valid
boundaries during the nowhere-zero flow search, trying all cycle precolorings
during double cycle extension, and so on) are executed. Therefore, we create an
input graph for the benchmark by taking one of the templates and quadrangulating
all its non-floating faces. The problem is that some quadrangulations might create
triangles in the graph. For this a certain quadrangulation technique is used:

Let 𝜙 be a face that needs to be quadrangulated and let 𝐶 be the bounding
cycle of 𝜙. We can assume that |𝐶| is even, as it is impossible to quadrangulate
faces of odd length according to Lemma 8.7. We add 𝑛 face layers inside 𝜙 by
creating cycles 𝐶1, 𝐶2, … 𝐶𝑛 of the same length and connecting the vertices of 𝐶1
with 𝐶 and 𝐶𝑖−1 with 𝐶𝑖 for 𝑖 ∈ {2, … 𝑛} as shown on Figure 8.1. The interior of 𝐶𝑛
will be a new face 𝜙′. Overall it is enough to create three face layers to be able to
quadrangulate 𝜙′ arbitrarily without the risk of creating triangles or multi-edges.
During the graph generation the amount of face layers inside each non-floating
face is the primary method of controlling the size of the resulting graph (it might
resemble spinning a web of the needed size). We can quadrangulate 𝜙′ trivially
by creating a new vertex inside of it and connecting it to every second vertex in

59

Figure 8.1 Quadrangulating a face after adding 2 face layers

Figure 8.2 Dividing a 4-face in a random manner

the clockwise order.
This quadrangulation method is straightforward, however it has some dis-

advantages. An important one is that the resulting graphs are not random and
a big part of the graph follows the same pattern (i.e. the repetitive ”web” takes
almost the whole size of the graph). This makes benchmarks dependent on the
mentioned quadrangulation pattern. One of the solutions is to quadrangulate the
face the following way: after quadrangulating 𝜙 with this method using a small
number of face layers, iteratively pick random 4-faces inside of 𝜙 and divide the
chosen faces into two 4-faces until the size of the quadrangulation is sufficient.
This would diversify created graphs, but unfortunately this testing method was
out of our time scope.

The benchmark was performed the following way: for a chosen number
of vertices 𝑁 we generated a graph 𝐺𝑗 with roughly 𝑁 vertices using the 𝑗-th
template out of 186, ran the program on every 𝐺𝑗 and averaged the result over
all 𝑗. With this we obtained our estimate of the expected execution time of the
implementation on a graph with approximately 𝑁 vertices. The set of chosen 𝑁 is{100, 800, 1200, 1600, 2000, 10000, 20000} and the corresponding average execution
time for each 𝑁 can be seen in Figure 8.3:

As one can see, the expected execution time indeed grows linearly to the

60

0 0.5 1 1.5 2⋅1040
20
40
60

Number of vertices

Ex
ec
ut
io
n
tim

e(
s)

3-coloring algorithm performance

size of the graph. Moreover, it takes less than a minute to process a graph with
20000 vertices. The program correctly decides that all received graphs are not
3-colorable. The program was tested on a laptop CPU with 4.5GHz tact frequency.
The compiler was GNU C++ with Release-type CMake build, however the code
should be compilable by any compiler supporting C++17 standard and CMake.

Another type of testing could be checking the correctness of the output on
large random graphs but a proper testing would involve generating random
triangle-free graphs embeddable on a torus and using another 3-coloring algo-
rithm that would verify if the decision of our program was correct. This was out
of the scope of this work, so the program was tested only with the aforemen-
tioned template extensions, several manually constructed 3-colorable graphs and
occasional intermediate unit tests. On all of them the program returns correct
answer.

61

62

Conclusion

In summary, the goal of implementing and evaluating the algorithm, determining
if a triangle-free graph embedded on a torus is 3-colorable, wasmet. The algorithm
was implemented fully and in numerous tests was shown to return the correct
result and run in time that is linearly proportional to the size of the input graph.
An explanation of the algorithm and its implementation was given in this paper
and in the commentaries in the code.

The program is reasonably fast and, we believe, can be used in practice in
future: it can be used in future works considering 3-coloring on graphs embedded
on a surface or possibly other combinatorial problems, as this algorithm solves
an NP-complete problem, even if on a limited number of inputs.

For the future work however, it would make sense to test and evaluate this
implementation more. It is possible that there are still mistakes which we did
not catch due to the nature of the algorithm. Since the output of a program
is binary, it is difficult to judge if the answer was correct ”by luck” or some
mistake was overshadowed by another mistake (which has certainly happened
several times during the testing and fixing). Moreover we have found the testing
inconclusive also because the program was not tested on large 3-colorable graphs.
It is generally difficult to independently check if some big graph is 3-colorable and
the implemented algorithm returns no coloring, except for some of its parts (for
example, for near-quadrangulations), making it impossible to verify the answer.

As a future work, we leave finding a practical algorithm that would not only
determine if a triangle-free graph embedded on a torus is 3-colorable but also
find a proper 3-coloring.

63

64

Bibliography

[1] H. Grötzsch. “Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel”. In:
Math.-Natur. Reihe 8 (1959), pp. 109–120.

[2] C. Thomassen. “3-list-coloring planar graphs of girth 5”. In: J. Combin.
Theory, Ser. B 64 (1995), pp. 101–107.

[3] A. V. Kostochka and M. Yancey. “Ore’s conjecture on color-critical graphs
is almost true”. In: J. Comb. Theory, Ser. B 109 (2014), pp. 73–101.

[4] Z. Dvořák, K. Kawarabayashi, and R. Thomas. “Three-coloring triangle-free
planar graphs in linear time”. In: Trans. on Algorithms 7 (2011), article no.
41.

[5] Z. Dvořák, D. Kráľ, and R. Thomas. “Three-coloring triangle-free graphs
on surfaces I. Extending a coloring to a disk with one triangle”. In: Journal
of Combinatorial Theory, Series B 120 (2016), pp. 1–17. issn: 0095-8956.

[6] Z. Dvořák and J. Pekárek. “Characterization of 4-critical triangle-free
toroidal graphs”. In: Journal of Combinatorial Theory, Series B 154 (2022),
pp. 336–369. issn: 0095-8956.

[7] Z. Dvořák and J. Pekárek. “Coloring near-quadrangulations of the cylinder
and the torus”. In: European Journal of Combinatorics 93 (2021), p. 103258.
issn: 0195-6698.

[8] W. Tutte. “A Contribution to the Theory of Chromatic Polynomials”. In:
Canadian Journal of Mathematics 6 (1954), pp. 80–91.

[9] D. Eppstein. “Dynamic generators of topologically embedded graphs”. In:
arXiv preprint cs/0207082 (2002).

[10] Ł. Kowalik and M. Kurowski. “Oracles for bounded length shortest paths
in planar graphs”. In: ACM Trans. Algorithms 2 (2006), pp. 335–363.

[11] V. A. Aksionov. “On continuation of 3-colouring of planar graphs”. In:
Diskret. Anal. Novosibirsk 26 (1974). In Russian, pp. 3–19.

65

[12] Z. Dvořák, D. Král’, and R. Thomas. “Three-coloring triangle-free graphs on
surfaces VII. A linear-time algorithm”. In: Journal of Combinatorial Theory,
Series B 152 (2022), pp. 483–504.

[13] Z. Dvořák, D. Král’, and R. Thomas. “Three-coloring triangle-free graphs
on surfaces IV. Bounding face sizes of 4-critical graphs”. In: Journal of
Combinatorial Theory, Series B 150 (2021), pp. 270–304.

[14] V. A. Aksenov, O. V. Borodin, and A. N. Glebov. “Extending 3-colorability
from a 7-face to a planar triangle-free graph”. In: Sib. Elektron. Mat. Izv. 1
(2004). In Russian, pp. 117–128.

66

Appendix A

Using the algorithm

The program is implemented in C++ and was tested mainly in native Linux
environment and in Windows Visual Studio IDE. It can be used as a library, where
the source files are at threecol/include/ or as an executable.

In case one wants to use the library, the main framework is described in
test.hpp. The input graph is an adjacency list g that is transformed into DCEL
with build_from_list. Each vertex in the input graph is identified with a num-
ber starting from 0, g[i] is a vector of all edges incident to i sorted clockwise.
An edge (𝑢, 𝑣) appears in g[u] as simple_edge(u, v, index_1, shared)
and in g[v] as simple_edge(v, u, index_2, shared) where index_1 and
index_2 should be unique for all instances of simple_edge in g and shared
should be unique for every such pair representing an edge.

To use the executable, one needs to build the project: on Linux you can use
test_all.sh from the root directory of the project or can build it on their own
with cmake . and make. In threecol/threecol-test/ of the build directory
there will be two executables: threecol-big-test and threecol-manual.

threecol-big-test n reads output_n.txt, quadrangulates the non-
floating faces and runs the 3-coloring algorithm while measuring the exe-
cution time. threecol-big-test without arguments does the same for all
output_*.txt templates and returns the mean execution time and number of
vertices. If you want to change the size of the quadrangulation, you can set a
custom number of face layer in QUAD_FACTOR.

threecol-manual expects on stdin the following description of the graph:

1. On the first line a number 𝑛 - the number of vertices in the graph. All
vertices have indices from 0 to 𝑛 − 1.

2. On the line 𝑖 + 2 there is 𝑠𝑧𝑖 - the number of vertices incident to the vertex𝑖 followed by 𝑠𝑧𝑖 numbers - indices of the vertices incident to 𝑖 ordered
clockwise around 𝑖.

67

An adjacency list of 𝐾4.
std::vector <std::vector <simple_edge >> g(4);
g[0] = {simple_edge(0, 1, 0, 0),

simple_edge(0, 2, 1, 1),
simple_edge(0, 3, 2, 2)};

g[1] = {simple_edge(1, 2, 3, 3),
simple_edge(1, 0, 4, 0),
simple_edge(1, 3. 5, 5)};

g[2] = {simple_edge(2, 3, 6, 4),
simple_edge(2, 0, 7, 1),
simple_edge(2, 1, 8, 3)};

g[3] = {simple_edge(3, 1, 9, 5),
simple_edge(3, 0, 10, 2),
simple_edge(3, 2, 11, 4)};

3. For the case of output_*.txt there are more lines. They describe the
faces that need to be quadrangulated. One line is a description of one face,
a sequence of vertex indices that are on the boundary ordered counter-
clockwise. This is not the part of the input in threecol-manual.

All graphs in output_*.txt fit this description.
Onemore executable showgraph is used to read the templates in template.txt

and convert them to the structure readable by our program in output_X.txt
for X from 1 to 186. These new files are used as the templates in performance
testing. This program as well as the list of templates are taken from [6]. To
build this executable and generate the test data locally, build the project with
cmake . -DROLL_TESTS=True, otherwise the existing in threecol/threecol-
test/tests templates are generated. The option -DROLL_TESTS=True has been
shown to work reliably only on Linux.

68

	Introduction
	Data structure
	Nowhere-zero flows
	Extending the precoloring of two cycles
	Short non-contractible cycles
	3-coloring for toroidal graphs
	Eliminating non-facial 4-cycles
	Coloring algorithm
	Results
	Conclusion
	Bibliography
	Using the algorithm

