
MASTER THESIS
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List of Abbreviations and
Notation

LC complete-data likelihood function
ℓC complete-data log-likelihood function
ℓobs observed-data log-likelihood function
EM expectation-maximization algorithm
Ep expectation with respect to the distribution p
M1(µ, Σ; [s, t]) first moment of Gaussian distribution N (µ, Σ) truncated to

the rectangle window [s, t]
M2(µ, Σ; [s, t]) second moment of Gaussian distribution N (µ, Σ) truncated

to the rectangle window [s, t]
DKL(p||q) Kullback-Leibler divergence for distributions p and q
det(A) determinant of square matrix A
AIC Akaike’s information criterion
BIC Bayesian information criterion
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Introduction
In spatial statistics, we often deal with cluster point processes observed on some
restricted observation window. The truncated Gaussian mixture is a simple but
powerful model for such situtations. In order to estimate parameters of a mixture,
the expectation-maximization algorithm (EM algorithm for short) is often used,
see for example the resources we used for this thesis Dempster [1977], McLach-
lan and Rathnayake [2014], Kushary [1998] or Figueiredo and Jain [2002]. This
work derives the version of the EM algorithm for truncated Gaussian mixtures,
discusses practical issues arising from fitting the model to data and then studies
the properties of the results using both simulated and real data.
This thesis is divided into four chapters. In the first chapter, we discuss
the expectation-maximization algorithm for Gaussian mixtures. Firstly, we
define a finite mixture distribution via its probability density function, a finite
linear combination of probability density functions, and its commonly used ex-
ample, the Gaussian mixture. Then, we introduce the expectation-maximization
algorithm in general. We state two important theorems regarding the EM
algorithm. The first one states that the log-likelihood does not decrease in
each iteration. The second proves the convergence to a local maximum of
the log-likelihood function. Finally, we combine the previous two sections of
this chapter and apply the EM algorithm for Gaussian mixtures. By calculating
the partial derivatives of the derived Lagrange function, we arrive at the updated
parameters obtained in M step of the EM algorithm. We also show the simplified
formulas for the updated parameters for homoscedastic components and/or
isotropic components.

The second chapter applies the EM algorithm to the truncated Gaussian
mixtures, bounded to a rectangular observation window. First we define
the truncated Gaussian distribution and calculate its first two moments. Then
we extend the defined distribution into a mixture of such distributions. Finally,
we can apply the EM algorithm for truncated Gaussian mixtures. We derive
the formulas for both steps of the EM algorithm, however we are not able
to express the updated parameters in a closed form as for the standard EM
algorithm because the unknown parameters occur inside an integral which makes
it impossible to separate them from the corresponding equations. The method
used in Lee and Scott [2012] is summarised in the next section of this chapter.
We describe what simplification has been made in the approach used in this
article and try to explain the main reason why this heuristic method has been
introduced. We also address the major weak point of such approach: we cannot
rely on the theory behind the EM algorithm. In the penultimate subchapter,
the effect of truncation on the EM algorithm is shown in the example of
a one-dimensional Gaussian mixture with two clusters where one of them is
affected by truncation to a considerable degree. The mean estimates in cases
when truncation is not considered and in case when truncation is taken into
account are shown. At the end of this chapter, we outline how the algorithm can
be generalised for an arbitrary observation window.
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In the third chapter, we discuss the practical issues related to the EM algorithm.
The first of them is the problem of the unknown number of components. We
then show a few options on how to initialize the EM algorithm. In the third
section, we mention several stopping criteria. In the end we briefly describe the
implementation of the EM algorithm in the Python programming language.

In the last chapter, we apply the proposed algorithm and selected methods from
the third chapter to the simulated datasets and the real dataset. We compare
the performance of the proposed algorithm with the approach introduced in
Lee and Scott [2012]. Apart from the comparative analysis, we performed
experiments showing us some interesting practical results.

One of the main contributions of this master thesis is the detailed derivation of
the EM algorithm in application on truncated Gaussian mixtures. Furthermore,
it clarifies that Lee and Scott [2012] does not use the EM algorithm for finding
estimates of truncated Gaussian mixtures, it uses its heuristic version instead.
With such simplification, we cannot rely on the theory behind the EM algorithm.
In practical examples, we show the comparison of the proposed rigorous use of
the EM algorithm for truncated Gaussian mixtures with the approach described
in Lee and Scott [2012]. To perform such a comparison, we implemented both
approaches in the Python programming language. In addition to the theoretical
part, we also provide a Python library capable of simulating truncated Gaussian
mixtures (with the help of the R library truncnorm) in one and two dimensions,
as well as performing the proposed EM algorithm on simulated and real datasets.
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1. EM algorithm for Gaussian
mixture model
We introduce the expectation-maximization algorithm (generally abbreviated
as the EM algorithm) for Gaussian mixture data. This is an iterative method
for computing the maximum likelihood estimate of the model parameters,
widely used not only for incomplete data problems. A Gaussian mixture is
a probabilistic model represented by a finite number of Gaussian distributions 1.
At first glance, this does not seem to be an incomplete-data problem however we
can formulate it as such as well.

1.1 Gaussian mixture distribution
Often we observe data that are grouped in so-called clusters. This could be due
to the similarity between observations belonging to one cluster in some property
or location. When analysing such dataset, we would like to classify the data
into such groups. There are three major categories of clustering methods which
deal with this problem, partitioning algorithms (for example K-means), distance-
based algorithms (hierarchical methods) and parametric model-based methods,
see Melnykov and Melnykov [2012]. The last is usually based on finite mixture
models where we assume a specific distribution of clusters which depends on some
unknown parameters. Let us define a finite mixture formally.
Definition 1. Let K ∈ N, Y be a d-dimensional real random vector with the prob-
ability density function

f(y) =
K∑︂

k=1
πk fk(y), y ∈ Rd, (1.1)

where fk(y), k = 1, . . . , K, are probability density functions and 0 ≤ πk ≤ 1,
k = 1, . . . , K, satisfy ∑︁K

k=1 πk = 1. Then we say Y is distributed as a finite mix-
ture with K components, fk(y) is the k-th component density function and πk is
the k-th mixing weight.
When dealing with data distributed as a mixture, our aim often is to estimate
the mixing weights and component density functions. Usually those component
densities fk(y), k = 1, . . . , K, can be parametrized by θk, so we will write fk(y) =
fk(y; θk) for k = 1, . . . , K. Then the probability density function of the mixture
can be written as

f(y; θ) =
K∑︂

k=1
πk fk(y; θk), y ∈ Rd, (1.2)

1Note that there is an infinite Gaussian mixture model where the number of clusters tends
to infinity which can be useful in many applications where we do not want to limit the number
of clusters. Since the condition for the mixing weights remains the same (all weights should
sum up to one), they have to follow a distribution which ensures that the majority of clusters
will have negligible weight. Then the model will be well defined. See for example Rasmussen
[1999]. Nevertheless, we will assume a finite number of clusters in this thesis.

6



Figure 1.1: Example of a Gaussian mixture with two clusters with means µ1 = 0
and µ2 = 4, common variance σ2

1 = σ2
2 = 1 and weights π1 = 0.3, π2 = 0.7.

where θ = (π1, . . . , πK , θ1, . . . , θK) is the vector of all unknown parameters
including the mixing weights.

Note that we assume K to be fixed in the definition of a finite mixture, however
as we will see later, the value K is unknown in many applications and has to be
estimated as well.

The most common finite mixture model is a mixture where each component has
a multivariate or univariate normal density function. Then we call it a Gaussian
mixture model. Its k-th component density function fk depends on parameter
θk = (µk, Σk), where µk ∈ Rd is the mean and Σk ∈ Rd×d is a positive definite
matrix representing the variance matrix, d ∈ N. We have

fk(y; θk) = (2π)− d
2 det (Σk)− 1

2 exp
{︃

−1
2 (y − µk)T Σ−1

k (y − µk)
}︃

, y ∈ Rd.

The density function of the mixture is then

f(y; θ) = (2π)− d
2

K∑︂
k=1

πk det (Σk)− 1
2 exp

{︃
−1

2 (y − µk)T Σ−1
k (y − µk)

}︃
, y ∈ Rd,

where θ = (π1, . . . , πK , θ1, . . . , θK) is a vector of all model parameters.

An example of the density of univariate Gaussian mixture with two components is
shown in Figure 1.1. We can see the weighted density function for each component
and the resulting sum of these densities.
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1.2 EM algorithm
We will describe the EM algorithm for a general finite mixture model described
in Definition 1. Our aim is to estimate the vector of unknown parameters θ ∈ Θ,
where Θ is the parameter space, a finite-dimensional subset of Euclidean space,
based on observed data Yn ∈ Rd, n = 1, . . . , N , generated from a mixture Y with
K components. Since direct maximization of the observed log-likelihood function
with densities in the form of (1.2) would be difficult to handle numerically, we
approach this problem in a different way.

Let us define new indicator variables Z = (Z1, . . . , ZK)T where Zk = 1 if and only
if Y is generated from a distribution with the density function fk and Zk = 0
otherwise. Thus, vector Z has a multinomial distribution with one trial and K
possible events. With Zn = (Zn,1, . . . , Zn,K), n = 1, . . . , N, we obtain a new
dataset

(︂
(Yn)T , (Zn)T

)︂T
∈ Rd+K , n = 1, . . . , N , forming a random sample from

a distribution with joint density function

f(Y ,Z) (y, z; θ) = f(Y |Z) (y|z; θ) fZ (z; θ) , y ∈ Rd, z ∈ {0, 1}K ,

where fZ denotes the density of Z with respect to the counting measure.
Obviously, we do not observe Z1, . . . , Zn. When dealing with incomplete-data
parameters estimation, the EM algorithm performs well.

The complete-data likelihood function is

LC(θ) =
∏︂
n

f(Y ,Z) (Yn, Zn; θ) .

We take a logarithm of the complete-data likelihood function and obtain
the complete-data log-likelihood function

ℓC(θ) = ln
(︄

N∏︂
n=1

f(Y ,Z) (Yn, Zn; θ)
)︄

= ln
(︄

N∏︂
n=1

fY |Z(Yn|Zn; θ) fZ(Zn; θ)
)︄

= ln
{︄

N∏︂
n=1

[︄(︄
K∑︂

k=1
Zn,kfk(Yn; θk)

)︄(︄
K∏︂

k=1
(πk)Zn,k

)︄]︄}︄

=
N∑︂

n=1
ln
(︄

K∑︂
k=1

Zn,kfk(Yn; θk)
)︄

+
N∑︂

n=1

K∑︂
k=1

Zn,k ln πk

=
N∑︂

n=1
ln
(︄

K∏︂
k=1

(fk(Yn; θk))Zn,k

)︄
+

N∑︂
n=1

K∑︂
k=1

Zn,k ln πk (1.3)

=
N∑︂

n=1

K∑︂
k=1

Zn,k ln (fk(Yn; θk)) +
N∑︂

n=1

K∑︂
k=1

Zn,k ln πk. (1.4)

Remark. The equality on the line (1.3) is well-defined for fk, k = 1 . . . , K,
being strictly greater than zero. In cases where fk(Yn; θk) = 0 for some k and
Yn we introduce the convention 00 = 1. The next equality on the line (1.4)
is again well-defined for fk, k = 1 . . . , K strictly greater than zero. In cases
where fk(Yn; θk) = 0 for some k and Yn we introduce the convention 0∗(−∞) = 0.

8



In the classical approach of maximum likelihood estimation, we would maxi-
mize the log-likelihood function. However, here we have variables which are not
observed and therefore we first have to deal with them before we proceed to
maximization. This leads us to the first step of the EM algorithm, called the ex-
pectation step, E step in short. We take the expected value of the complete-data
log-likelihood function with respect to the conditional distribution of Z1, . . . , ZN

given Y1, . . . , YN . This distribution depends also on the vector of unknown pa-
rameters. Here we assume it is known and we use the estimate from the previous
iteration θ̂old (or the initial estimate θinit if it is the first iteration).

E-step (Expectation step):

Q(θ, θ̂
old) := Eθ̂old [ℓC(θ)|Y ] (1.5)

= Eθ̂old

[︄
N∑︂

n=1

K∑︂
k=1

Zn,k ln (fk(Yn; θk)) +
N∑︂

n=1

K∑︂
k=1

Zn,k ln πk

⃓⃓⃓⃓
⃓ Y

]︄

=
N∑︂

n=1

K∑︂
k=1

ln (fk(Yn; θk))Eθ̂old [Zn,k|Yn] +
N∑︂

n=1

K∑︂
k=1

ln πkEθ̂old [Zn,k|Yn]

(1.6)
We used a fact that the random vectors Z1, . . . , Zn are mutually independent.
Moreover, it is sufficient to only consider Yn in the condition instead of whole
vector Y because Zn is independent with Yi for all n ̸= i. Let us calculate
Eθ̂old [Zn,k|Yn] by using the definition of conditional probability and Bayes’ theo-
rem, see Brémaud [2020], Chapter 1.2.2.

Eθ̂old [Zn,k|Yn] = Pθ̂old (Zn,k = 1|Yn) = fZ|Y
(︂
ek|Yn; θ̂old

)︂
=

fY |Z
(︂
Yn|ek; θ̂old

)︂
fZ

(︂
ek; θ̂old

)︂
fY

(︂
Yn; θ̂old

)︂ =
fk

(︂
Yn; θ̂old

)︂
π̂old

k∑︁K
l=1 π̂old

l fl

(︂
Yn; θ̂old

)︂ =: ⟨zn,k⟩

(1.7)

Here ek := (ek,1, . . . , ek,K)T denotes a K-dimensional vector with ek,j = 1 for
j = k and 0 otherwise. Now we obtain the updated value of vector θ̂new as
the maximum over all possible θ ∈ Θ of Eθ̂old [ℓC(θ)|Y ].

M-step (Maximization step):

θ̂new = arg max
θ∈Θ

Eθ̂old [ℓC(θ)|Y ]

= arg max
θ∈Θ

N∑︂
n=1

K∑︂
k=1

⟨zn,k⟩ ln (fk(Yn; θk)) +
N∑︂

n=1

K∑︂
k=1

⟨zn,k⟩ ln πk

such that ∑︁K
k=1 πk = 1. This kind of optimization with constraints is usually

solved using the Lagrange multipliers method. The Lagrange function is then

L (θ, λ) = Eθ̂old [ℓC (θ) |Y ] − λ

(︄
K∑︂

k=1
πk − 1

)︄

=
N∑︂

n=1

K∑︂
k=1

⟨zn,k⟩ ln fk (Yn; θk) +
N∑︂

n=1

K∑︂
k=1

⟨zn,k⟩ ln πk − λ

(︄
K∑︂

k=1
πk − 1

)︄
.
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We can see that the first double summation depends only on the parameters
of the component densities θk and the rest of the expression depends only on
the weights πk. Thus, we can maximize the terms separately, which makes
the problem significantly easier.
First, we calculate the partial derivative of L with respect to the Lagrange mul-
tiplier λ and set it equal to zero. We get

∂

∂λ
L (θ, λ) = 1 −

K∑︂
k=1

π̂new
k

!= 0. (1.8)

We then calculate the partial derivatives of the Lagrange function with respect
to each model parameter and set it equal to zero (or zero vector/matrix if the di-
mension is greater than 1). Then we are dealing with solving a set of equations.
We calculate the partial derivative of (1.6) with respect to the mixing weight πk

which leads to a closed-form solution for the estimate of πk. We have
∂

∂πk

L (θ, λ) = 1
π̂new

k

N∑︂
n=1

⟨zn,k⟩ − λ
!= 0

1
λ

N∑︂
n=1

⟨zn,k⟩ = π̂new
k .

In order to calculate λ, we take the sum over all k = 1, . . . , K and together with
(1.8) this leads us to

1
λ

K∑︂
k=1

N∑︂
n=1

⟨zn,k⟩ =
K∑︂

k=1
π̂new

k ,

1
λ

K∑︂
k=1

N∑︂
n=1

⟨zn,k⟩ = 1,

K∑︂
k=1

N∑︂
n=1

fk (Yn) π̂old
k∑︁K

l=1 π̂old
l fl (Yn)

= λ,

N∑︂
n=1

K∑︂
k=1

fk (Yn) π̂old
k∑︁K

l=1 π̂old
l fl (Yn)

= λ,

N∑︂
n=1

1 = λ,

N = λ.

We obtain the expression for the mixing weights πk

π̂new
k = 1

N

N∑︂
n=1

⟨zn,k⟩, k = 1, . . . , K. (1.9)

If we take a partial derivative of L with respect of θk we get
∂

∂θk

L (θ, λ) =
N∑︂

n=1
⟨zn,k⟩ ∂

∂θk

[ln fk (Yn; θk)] .

Thus, if we can differentiate the logarithm of the component density func-
tion fk with respect to its parameters θk, we may get a solution in a closed
form. We will see such distribution in the next sub-chapter for Gaussian mixtures.

Let us summarize the whole EM algorithm process.
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Initialization: Here, we have two options how to initialize the EM algorithm.
First, we can choose the initial vector of all unknown parameters θinit and then
proceed to E step. Second, we can just estimate coefficients ⟨zn,k⟩ and then
go directly to M step. For a discussion of how to select the initial values, see
Section 3.2.

E-step: Calculate Eθ̂old [ℓC(θ)|Y ].

M-step: Find the updated values θ̂new as arg max
θ∈Θ

Eθ̂old [ℓC(θ)|Y ].

Stopping criterion: Check if the stopping criterion is satisfied. If not, con-
tinue with the updated value to the E-step where θ̂new from the current iteration
becomes θ̂old in the next iteration. If the stopping criterion is not met, the algo-
rithm ends. See Section 3.3 for different stopping criteria.

1.2.1 Basic theory
Let us formulate some theory behind the EM algorithm. We are mainly using
the course notes [Omelka, 2021] supported with Wu [1983] and Kushary [1998].
The main goal of the EM algorithm is to substitute direct maximization of the ob-
served log-likelihood function, since it could easily lead to numerical instability,
and to obtain a suitable estimate of the maximum likelihood estimator. Let us
rewrite the observed log-likelihood function in the terms of the complete-data
log-likelihood which is used in the EM algorithm.

ℓobs(θ) = ln
(︄

N∏︂
n=1

fY (Yn; θ)
)︄

= ln
(︄

N∏︂
n=1

fY (Yn; θ) fZ|Y (Zn|Yn; θ)
fZ|Y (Zn|Yn; θ)

)︄

= ln
(︄

N∏︂
n=1

fY (Yn; θ) fZ|Y (Zn|Yn; θ)
)︄

− ln
(︄

N∏︂
n=1

fZ|Y (Zn|Yn; θ)
)︄

= ln
(︄

N∏︂
n=1

f(Y ,Z) (Yn, Zn; θ)
)︄

− ln
(︄

N∏︂
n=1

fZ|Y (Zn|Yn; θ)
)︄

= ℓC(θ) − ln
(︄

N∏︂
n=1

fZ|Y (Zn|Yn; θ)
)︄

(1.10)

With the use of the expression above, we will prove that the observed log-
likelihood in each step does not decrease.

Theorem 1. Let ℓobs(θ) be the observed log-likelihood and θ̂(k) be a result of
the k-th iteration of the EM algorithm. Then

ℓobs(θ̂
(k+1)) ≥ ℓobs(θ̂

(k)).
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Proof. We apply Eθ̂(k) [ · |Y ] on both sides of (1.10) and from the independence
of ℓobs(θ) on Z we get

ℓobs(θ) = Eθ̂(k) [ℓobs(θ)|Y ]

= Eθ̂(k) [ℓC(θ)|Y ] − Eθ̂(k)

[︄
ln
(︄

N∏︂
n=1

fZ|Y (Zn|Yn; θ)
)︄ ⃓⃓⃓⃓
⃓ Y

]︄
=: Q(θ, θ̂(k)) − H(θ, θ̂(k)). (1.11)

From the M step, we immediately obtain the following implication.

θ̂(k+1) = arg max
θ∈Θ

Q(θ, θ̂(k)) ⇒ Q(θ̂(k+1), θ̂(k)) ≤ Q(θ̂(k), θ̂(k))

Now, let us restrict H(θ, θ̂(k)) from above.

H(θ, θ̂(k)) = Eθ̂(k)

⎡⎣ln

⎛⎝ ∏︁N
n=1 fZ|Y (Zn|Yn; θ)∏︁N

n=1 fZ|Y
(︂
Zn|Yn; θ̂(k)

)︂
⎞⎠ ⃓⃓⃓⃓ Y

⎤⎦
+ Eθ̂(k)

[︄
ln
(︄

N∏︂
n=1

fZ|Y
(︂
Zn|Yn; θ̂(k)

)︂)︄ ⃓⃓⃓⃓
Y

]︄

≤ ln

⎛⎝Eθ̂(k)

⎡⎣ ∏︁N
n=1 fZ|Y (Zn|Yn; θ)∏︁N

n=1 fZ|Y
(︂
Zn|Yn; θ̂(k)

)︂ ⃓⃓⃓⃓ Y

⎤⎦⎞⎠+ H(θ̂(k), θ̂(k))

= ln(1) + H(θ̂(k), θ̂(k)) = H(θ̂(k), θ̂(k))

In the inequality above we use Jensen’s inequality for conditional expectations.
Altogether we get the desired inequality.

ℓobs(θ̂
(k+1)) − ℓobs(θ̂

(k)) = Q(θ̂(k+1)
, θ̂

(k)) − Q(θ̂(k)
, θ̂

(k))
−
[︂
H(θ̂(k+1), θ̂(k)) − H(θ̂(k), θ̂(k))

]︂
≥ 0

To obtain some convergence characteristic, we need to make the following
regularity assumptions.

• the parameter space Θ is a subset of Rp.

• the set Θ0 = {θ ∈ Θ : ℓobs(θ) ≥ ℓobs(θ0)} is compact for any θ0 ∈ Θ such
that ℓobs(θ0) > −∞.

• ℓobs(θ) is continuous in Θ and differentiable in the interior of Θ.

12



With those assumptions, let us state without the proof the convergence theorem
of the EM algorithm.

Theorem 2. Let the function Q(θ, θ̂) defined in (1.6) be continuous both in θ

and θ̂. Then all the limit points of any instance
{︃

θ̂
(k)
}︃

are stationary points of

ℓobs(θ). Further
{︃

ℓobs(θ̂
(k))

}︃
converges monotonically to some value ℓ∗ = ℓobs(θ∗),

where θ∗ is a stationary point of ℓobs(θ).

Proof. See Wu [1983].

Theorem 2 tells us that the EM algorithm gives us
{︃

θ̂
(k)
}︃

which monotonically
converges to some local maximum of ℓobs(θ). Now, we are interested in the speed
of such convergence. Let θ̂

(k+1) be the updated parameter from the M-step, i.e.

θ̂
(k+1) = arg max

θ∈Θ
Q(θ, θ̂(k))

where Q(θ, θ̂(k)) is defined at (1.11). Denote this mapping as M : θ̂(k) ↦−→ θ̂(k+1).
It can be shown that for M sufficiently smooth, the following holds

θ̂
(k+1)

− θ∗ = ∂M (θ)
∂θT

⃓⃓⃓⃓
⃓
θ=θ∗

(θ̂(k)
− θ∗) + o(∥θ̂

(k)
− θ∗∥) (1.12)

holds and the Jacobi matrix can be expressed as

∂M (θ)
∂θT

⃓⃓⃓⃓
⃓
θ=θ∗

=
[︄
−Eθ

[︄
∂2ℓC(θ)
∂θ∂θT

⃓⃓⃓⃓
⃓ Y

]︄]︄−1 (︄
−Eθ

[︄
∂2 ln f(Z|Y ; θ)

∂θ∂θT

⃓⃓⃓⃓
⃓ Y

]︄)︄ ⃓⃓⃓⃓
⃓
θ=θ∗

.

From (1.12) we get the linear rate of convergence.

1.3 EM algorithm for Gaussian mixtures
In Section 1.2 we introduced the EM algorithm for the general finite mixture
model and obtained the expression for the update of the mixing weights πk. Now
it is a question whether we can obtain a closed form expression for the updates
of the parameters of the component densities θk. As we stated before, we have
to ensure that the logarithm of the component density fk is differentiable in θk.
Moreover, we want this derivative to have a closed-form expression.
Now let us assume that we have a finite mixture where each component has
a multivariate Gaussian distribution, a Gaussian mixture. The complete-data

13



log-likelihood function is

ℓC(θ) =
N∑︂

n=1

K∑︂
k=1

Zn,k ln
(︃

(2π)− d
2 det (Σk)− 1

2 e− 1
2 (Yn−µk)T Σ−1

k
(Yn−µk)

)︃

+
N∑︂

n=1

K∑︂
k=1

Zn,k ln πk

=
N∑︂

n=1

K∑︂
k=1

Zn,k

[︄
−d

2 ln (2π) − 1
2 ln det (Σk) −1

2 (Yn − µk)T Σ−1
k (Yn − µk)

]︄

+
N∑︂

n=1

K∑︂
k=1

Zn,k ln πk.

Let θ̂
old be the estimate of θ from the previous iteration (or the initial estimate).

We can proceed to the expectation step.

E-step (Expectation step):

Eθ̂old [ℓC(θ)|Y ] =
N∑︂

n=1

K∑︂
k=1

Eθ̂old [Zn,k|Yn]

·
[︄
−d

2 ln (2π) − 1
2 ln det (Σk) −1

2 (Yn − µk)T Σ−1
k (Yn − µk)

]︄

+
N∑︂

n=1

K∑︂
k=1

ln πkEθ̂old [Zn,k|Yn]

From (1.7) we have

⟨zn,k⟩ = Eθ̂old [Zn,k|Yn] =
πold

k fk

(︃
Yn; θ̂

old

k

)︃
∑︁K

l=1 πold
l fl

(︃
Yn; θ̂

old

l

)︃ .

Then we find the updated value θ̂
new in the maximization step.

M-step (Maximization step):

θ̂new = arg max
θ∈Θ

[︄
N∑︂

n=1

K∑︂
k=1

⟨zn,k⟩ ln (fk(Yn; θk)) +
N∑︂

n=1

K∑︂
k=1

⟨zn,k⟩ ln πk

]︄

= arg max
θ1,...,θK

N∑︂
n=1

K∑︂
k=1

⟨zn,k⟩

·
[︄
−d

2 ln (2π) − 1
2 ln det (Σk) −1

2 (Yn − µk)T Σ−1
k (Yn − µk)

]︄

+ arg max
π1,...,πK

N∑︂
n=1

K∑︂
k=1

⟨zn,k⟩ ln πk

14



such that ∑︁K
k=1 πk = 1. This again leads us to the Lagrange multiplier method.

The Lagrange function in this case is

L (θ, λ) = Eθ̂old [ℓC (θ) |Y ] − λ

(︄
K∑︂

k=1
πk − 1

)︄

=
N∑︂

n=1

K∑︂
k=1

⟨zn,k⟩

·
[︄
−d

2 ln (2π) − 1
2 ln det (Σk) −1

2 (Yn − µk)T Σ−1
k (Yn − µk)

]︄

+
N∑︂

n=1

K∑︂
k=1

⟨zn,k⟩ ln πk − λ

(︄
K∑︂

k=1
πk − 1

)︄
.

In the same way as we obtained (1.9), we get

π̂new
k = 1

N

N∑︂
n=1

⟨zn,k⟩, k = 1, . . . , K.

Let us calculate the partial derivatives of the Lagrange function with respect to
µk and Σk, set them equal to 0 (or zero vector/matrix) and find the updated
values θ̂

new, Σ̂
new. We will use the matrix differential calculus, see for example

[Magnus, 2019, Part Three].

∂

∂µk

L (θ, λ) = −1
2

N∑︂
n=1

⟨zn,k⟩ ∂

∂µk

[︂
(Yn − µk)T Σ−1

k (Yn − µk)
]︂

= −1
2

N∑︂
n=1

⟨zn,k⟩
[︂
−2Σ−1

k (Yn − µk)
]︂

=
N∑︂

n=1
⟨zn,k⟩Σ−1

k (Yn − µk) != 0

Solving the equality yields
N∑︂

n=1
⟨zn,k⟩(Σ̂new

k )−1µ̂new
k =

N∑︂
n=1

⟨zn,k⟩(Σ̂new

k )−1Yn

µ̂new
k =

∑︁N
n=1⟨zn,k⟩Yn∑︁N

n=1⟨zn,k⟩
.

∂

∂Σk

L (θ, λ) = −1
2

N∑︂
n=1

⟨zn,k⟩ ∂

∂Σk

[︂
ln det Σk + (Yn − µk)T Σ−1

k (Yn − µk)
]︂

= −1
2

N∑︂
n=1

⟨zn,k⟩
[︂
Σ−1

k − Σ−1
k (Yn − µk) (Yn − µk)T Σ−1

k

]︂ != 0

Again, solving the equality yields
N∑︂

n=1
⟨zn,k⟩(Σ̂new

k )−1 =
N∑︂

n=1
⟨zn,k⟩(Σ̂new

k )−1 (Yn − µ̂new
k ) (Yn − µ̂new

k )T (Σ̂new

k )−1

Σ̂
new

k =
∑︁N

n=1⟨zn,k⟩ (Yn − µ̂new
k ) (Yn − µ̂new

k )T∑︁N
n=1⟨zn,k⟩

.

15



We summarize the updated parameters.

π̂new
k = 1

N

N∑︂
n=1

⟨zn,k⟩ (1.13)

µ̂new
k =

∑︁N
n=1⟨zn,k⟩ Yn∑︁N

n=1⟨zn,k⟩
(1.14)

Σ̂new
k =

∑︁N
n=1⟨zn,k⟩ (Yn − µ̂new

k ) (Yn − µ̂new
k )T∑︁N

n=1⟨zn,k⟩

1.3.1 Homoscedastic components
Until now we considered the case where each Gaussian cluster has its own covari-
ance matrix. However in practice we often set an assumption for them to being
the same, i.e.

Σk = Σ, k = 1, . . . , K,

for some positive definite covariance matrix Σ. The updated parameters π̂new
k and

µ̂new
k will remain the same as for general Gaussian mixture, see (1.13) and (1.14).

Let us calculate the partial derivative of the Lagrange function with respect to
Σ and set it to zero matrix in order to obtain the updated parameter Σ̂

new.

∂

∂Σ
L (θ, λ) = −1

2

N∑︂
n=1

K∑︂
k=1

⟨zn,k⟩ ∂

∂Σ
[︂
ln det Σ + (Yn − µk)T Σ−1 (Yn − µk)

]︂

= −1
2

N∑︂
n=1

K∑︂
k=1

⟨zn,k⟩
[︂
Σ−1 − Σ−1 (Yn − µk) (Yn − µk)T Σ−1

]︂

= −1
2

N∑︂
n=1

K∑︂
k=1

[︂
⟨zn,k⟩Σ−1 − ⟨zn,k⟩Σ−1 (Yn − µk) (Yn − µk)T Σ−1

]︂

= −N

2 Σ−1 + 1
2

N∑︂
n=1

K∑︂
k=1

⟨zn,k⟩Σ−1 (Yn − µk) (Yn − µk)T Σ−1 != 0

We obtained

N(Σ̂new)−1 =
N∑︂

n=1

K∑︂
k=1

⟨zn,k⟩(Σ̂new)−1 (Yn − µ̂new
k ) (Yn − µ̂new

k )T (Σ̂new)−1

which leads to

Σ̂new = 1
N

N∑︂
n=1

K∑︂
k=1

⟨zn,k⟩ (Yn − µ̂new
k ) (Yn − µ̂new

k )T . (1.15)
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1.3.2 Isotropic components
Let us consider another special case where each Gaussian cluster has Gaussian
distribution with covariance matrix equal to

Σk = σ2
kId, k = 1, . . . , K,

for some σ2
k > 0, k = 1, . . . , K. The updated parameters π̂new

k and µ̂new
k will

remain the same as for general Gaussian mixture, see (1.13) and (1.14). Let us
calculate the partial derivative of the Lagrange function with respect to σk and
set it to a zero matrix in order to obtain the updated parameter σ̂new

k .

∂

∂σ2
k

L (θ, λ) = −1
2

N∑︂
n=1

⟨zn,k⟩ ∂

∂σ2
k

[︄
ln det σ2

kId − 1
σ2

k

(Yn − µk)T Id (Yn − µk)
]︄

= −1
2

N∑︂
n=1

⟨zn,k⟩
[︄

d

σ2
k

− 1
σ4

k

(Yn − µk)T (Yn − µk)
]︄

!= 0

From there we have

σ̂new
k = 1

d
∑︁N

n=1⟨zn,k⟩

N∑︂
n=1

⟨zn,k⟩ (Yn − µ̂new
k )T (Yn − µ̂new

k ) . (1.16)

1.3.3 Isotropic homoscedastic components
Let us consider another special case where each Gaussian cluster has Gaussian
distribution with covariance matrix equal to

Σk = σ2Id, k = 1, . . . , K,

for some σ2 > 0. The updated parameters π̂new
k and µ̂new

k will remain the same
as for general Gaussian mixture, see (1.13) and (1.14). From (1.15) and (1.16)
we get

σ̂new = 1
Nd

N∑︂
n=1

K∑︂
k=1

⟨zn,k⟩ (Yn − µ̂new
k )T (Yn − µ̂new

k ) .
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2. EM algorithm for truncated
Gaussian mixture model
In this chapter we would like to apply the introduced algorithm to Gaussian
mixture when dealing with truncated data. The truncation often occurs in spatial
processes when the observation window is restricted to some size and we are not
able to observe data points outside this window.

2.1 Truncated Gaussian distribution
Assume we have a sample from a Gaussian distribution in Rd with mean µ ∈ Rd

and covariance matrix Σ ∈ Rd×d but our observation window is restricted to
a bounded rectangle [s, t], s, t ∈ Rd. In order to take such truncation into
account we often use a truncated Gaussian distribution instead. The probability
density function of the truncated Gaussian distribution is

g(y; µ, Σ) = f(y; µ, Σ)∫︂ t

s
f(x; µ, Σ) dx

, y ∈ Rd

where f(y; µ, Σ) is a probability density function of a normal random variable
with mean µ and covariance matrix Σ.

Let us now calculate the first two moments for the truncated Gaussian variable Y .
The gradient of a function f is denoted as ∇f .

EY =
∫︂ t

s
y g(y; µ, Σ) dy =

∫︂ t

s
y

f(y; µ, Σ)∫︂ t

s
f(x; µ, Σ) dx

dy

= 1∫︂ t

s
f(x; µ, Σ) dx

∫︂ t

s
(y − µ + µ)f(y; µ, Σ) dy

= 1∫︂ t

s
f(x; µ, Σ) dx

[︃
Σ
∫︂ t

s
Σ−1(y − µ)f(y; µ, Σ) dy + µ

∫︂ t

s
f(x; µ, Σ) dx

]︃

= 1∫︂ t

s
f(x; µ, Σ) dx

Σ
∫︂ t

s
∇f(y; µ, Σ) dy + µ =: M1(µ, Σ; [s, t]) (2.1)

The integral part of the formula above is

∫︂ t

s
∇f(y; µ, Σ) dy =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫︂ t

s

∂

∂y1
f(y) dy∫︂ t

s

∂

∂y2
f(y) dy

...∫︂ t

s

∂

∂yd

f(y) dy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.2)
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Now, take the ith element of (2.2).∫︂ t

s

∂

∂yi

f(y) dy =
∫︂ t1

s1
· · ·

∫︂ td

sd

∂

∂yi

f(y) dy1 · · · dyd =
∫︂ t−i

s−i

f(y) dy−i =: Fi(yi)

The notation x−k denotes the (d − 1)th dimensional vector with elements xi for
i ∈ {1, · · · d} \ {k}. Let ϕi(x′; µ′, Σ′), Φi(x′; µ′, Σ′) denote the probability density
function and the cumulative distribution function, respectively, for i-dimensional
multivariate normal distribution with mean µ′ and covariance matrix Σ′. Since f
is Gaussian density, the conditional densities of Y−i|Yi, where Yi is the ith element
of vector Y , are also Gaussian with mean µ−i|i(yi) = Σ−i|iΣ−1

i,i yi and covariance
matrix Σ−i|i = Σ−i,−i − Σ−i,iΣ−1

i,i Σi,−i.
We can now express Fi(yi),

Fi(yi) =
∫︂ t−i

s−i

f(y) dy−i = ϕ1(x; µi, σ2
i )
∫︂ t−i

s−i

ϕd−1(x−i; µ−i|i(yi), Σ−i|i)dy−i

= ϕ1(x; µi, σ2
i )
(︂
Φd−1(t−i; µ−i|i(yi), Σ−i|i) − Φd−1(s−i; µ−i|i(yi), Σ−i|i)

)︂
(2.3)

By combination of (2.1) and (2.3) we get

M1(µ, Σ; [s, t]) = 1∫︂ t

s
f(x; µ, Σ) dx

Σ ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1(Y1)

F2(Y2)

...

Fd(Yd)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ µ.

Similarly we calculate the second moment of the truncated Gaussian variable Y .

EY Y T =
∫︂ t

s
yyT g(y; µ, Σ) dy =

∫︂ t

s
yyT f(y; µ, Σ)∫︂ t

s
f(x; µ, Σ) dx

dy

= 1∫︂ t

s
f(x; µ, Σ) dx

∫︂ t

s
(y − µ)(y − µ)T f(y; µ, Σ) dy

+ 1∫︂ t

s
f(x; µ, Σ) dx

∫︂ t

s
(−µµT + µyT + yyT )f(y; µ, Σ) dy

= 1∫︂ t

s
f(x; µ, Σ) dx

∫︂ t

s
(y − µ)(y − µ)T f(y; µ, Σ) dy

⏞ ⏟⏟ ⏞
denoted by N

− µµT + µM1(µ, Σ; [s, t])T + M1(µ, Σ; [s, t])µT

=: M2(µ, Σ; [s, t])
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Let us calculate N .

N = 1∫︂ t

s
f(x; µ, Σ) dx

∫︂ t

s
(y − µ)(y − µ)T f(y; µ, Σ) dy

= 1∫︂ t

s
f(x; µ, Σ) dx

∫︂ t

s
J (∇f(y; µ, Σ)) dy

Here, J denotes the Jacobian matrix. So in order to express N , we need to
calculate partial derivatives of the terms Fi defined in (2.3). It can be shown that

∂Fi (yi)
∂yj

= ∂

∂xj

∫︂ t1

s1
. . .
∫︂ ti−1

si−1

∫︂ ti+1

si+1
. . .
∫︂ td

sd

f(y) dy−i

= σj,iyiFi (yi)
σi,i

+
∑︂
q ̸=i

(︄
σj,q − σi,qσj,i

σi,i

)︄
(Fi,q (yi, sq) − Fi,q (xi, tq))

where

Fi,q(yi, yq) =
∫︂ t−{i,q}

s−{i,q}

f(y) dy−{i,q}

= ϕ2(yi, yq; µ{i, q}, Σ{i,q},{i,q})

·
∫︂ t−{i,q}

s−{i,q}

ϕd−2(x−{i,q}; µ−{i,q}|{i,q}(yi, yq), Σ−{i,q}|{i,q}) dy−{i,q}

= ϕ2(yi, yq; µ{i, q}, Σ{i,q},{i,q})

·
(︃

Φd−2(t−{i,q}; µ−{i,q}|{i,q}(yi, yq), Σ−{i,q}|{i,q})

− Φd−2(s−{i,q}; µ−{i,q}|{i,q}(yi, yq), Σ−{i,q}|{i,q})
)︃

(2.4)

holds, see Lee [1979]. Altogether, after further steps described in mentioned
source, we would obtain the following expression

E (Yi, Yj) =
d∑︂

k=1
σi,k

σj,k (skFk (sk) − tkFk (tk))
σk,k

+
d∑︂

k=1
σi,k

∑︂
q ̸=k

(︄
σj,q − σk,qσj,k

σk,k

)︄ [︂
(Fk,q (sk, sq) − Fk,q (sk, tq))

− (Fk,q (tk, sq) − Fk,q (tk, tq))
]︂

2.2 Truncated Gaussian mixture distribution
We would like to apply the EM algorithm for a Gaussian mixture data observed
in a bounded rectangle window [s, t], s, t ∈ Rd. The density of such process is
then

g(y; θ) = f(y; θ)∫︂ t

s
f(x; θ) dx

, y ∈ Rd (2.5)
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where

f(y; θ) =
K∑︂

k=1
πk fk(y; θk), y ∈ Rd (2.6)

is the probability density of a Gaussian mixture without truncation, see Defini-
tion 1. We can rewrite such density as

g(y; θ) =
K∑︂

k=1
ηk gk(y; θk) =

K∑︂
k=1

πk

∫︂ t

s
fk(x; θk) dx∫︂ t

s
f(x; θ) dx

fk(y; θk)∫︂ t

s
fk(x; θk) dx

with mixing weights

ηk = πk

∫︂ t

s
fk(x; θk) dx∫︂ t

s
f(x; θ) dx

, k = 1, . . . , K (2.7)

and component densities

gk(y; θk) = fk(y; θk)∫︂ t

s
fk(x; θk) dx

, k = 1, . . . , K. (2.8)

We can see that component densities are actually truncated Gaussian densities.
Hence, when dealing with Gaussian mixture data observed on a bounded rectangle
window, we can approach it as a truncated Gaussian mixture with weights
defined by (2.7).

2.3 EM algorithm for truncated Gaussian mix-
ture

In the previous section we introduced the truncated Gaussian mixture. Now, we
can move on to using the EM algorithm itself on such mixture. As in Section 1.3,
we are following steps described in Section 1.2. The established notation also
remains the same.
The complete-data log-likelihood function for the truncated Gaussian mixture is

ℓC(θ) =
N∑︂

n=1

K∑︂
k=1

Zn,k ln
(︂
(2π)− d

2 det (Σk)− 1
2 e− 1

2 (Yn−µk)T Σ−1
k

(Yn−µk)
)︂

+
N∑︂

n=1

K∑︂
k=1

Zn,k ln ηk

−
N∑︂

n=1

K∑︂
k=1

Zn,k ln
∫︂ t

s

(︂
(2π)− d

2 det (Σk)− 1
2 e− 1

2 (x−µk)T Σ−1
k

(x−µk)
)︂

dx

= −1
2

N∑︂
n=1

K∑︂
k=1

Zn,k

[︂
d ln (2π) + ln det (Σk) + (Yn − µk)T Σ−1

k (Yn − µk)
]︂

+
N∑︂

n=1

K∑︂
k=1

Zn,k ln ηk

−
N∑︂

n=1

K∑︂
k=1

Zn,k ln
∫︂ t

s

(︂
(2π)− d

2 det (Σk)− 1
2 e− 1

2 (x−µk)T Σ−1
k

(x−µk)
)︂

dx.
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Figure 2.1: Example of a truncated Gaussian mixture with two clusters with
means µ1 = 0 and µ2 = 4, common variance σ2

1 = σ2
2 = 1 and weights π1 = 0.3,

π2 = 0.7, [s, t] = [0, 6]. Note that the aforementioned weights π1, π2 are weights of
a Gaussian mixture without truncation, see (2.6). In order to calculate the mixing
weights, we use formula (2.7).

Let θ̂
old be the estimate of θ from the previous iteration (or the initial estimate).

We can proceed to the expectation step.

E-step (Expectation step):

Eθ̂old [ℓC(θ)|Y ] = −1
2

N∑︂
n=1

K∑︂
k=1

Eθ̂old [Zn,k|Yn]

·
[︂
d ln (2π) + ln det (Σk) + (Yn − µk)T Σ−1

k (Yn − µk)
]︂

+
N∑︂

n=1

K∑︂
k=1

Eθ̂old [Zn,k|Yn] ln ηk

−
N∑︂

n=1

K∑︂
k=1

Eθ̂old [Zn,k|Yn]

·
[︃
ln
∫︂ t

s

(︃
(2π)− d

2 det (Σk)− 1
2 e− 1

2 (x−µk)T Σ−1
k

(x−µk)
)︃

dx
]︃

From (1.7) we have

⟨zn,k⟩ = Eθ̂old [Zn,k|Yn] =
ηold

k gk

(︃
Yn; θ̂

old
)︃

K∑︂
l=1

ηold
l gl (Yn; θl)

=

ηold
k

fk(Yn; θ̂
old

k )∫︂ t

s
fk(x; θ̂

old

k ) dx

K∑︂
l=1

ηold
l

fl(Yn; θ̂
old

l )∫︂ t

s
fl(x; θ̂

old

l ) dx
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Then we find the updated value θ̂
new in the maximization step.

M-step (Maximization step):

θ̂new = arg max
θ∈Θ

[︄
N∑︂

n=1

K∑︂
k=1

⟨zn,k⟩ ln (gk(Yn; θk)) +
N∑︂

n=1

K∑︂
k=1

⟨zn,k⟩ ln ηk

]︄
(2.9)

= arg max
θ1,...,θK

{︄
− 1

2

N∑︂
n=1

K∑︂
k=1

⟨zn,k⟩ (2.10)

·
[︂
d ln (2π) + ln det (Σk) + (Yn − µk)T Σ−1

k (Yn − µk)
]︂

(2.11)

+
N∑︂

n=1

K∑︂
k=1

⟨zn,k⟩ ln ηk (2.12)

−
N∑︂

n=1

K∑︂
k=1

⟨zn,k⟩ (2.13)

·
[︃
ln
∫︂ t

s

(︃
(2π)− d

2 det (Σk)− 1
2 e− 1

2 (x−µk)T Σ−1
k

(x−µk)
)︃

dx
]︃ }︄

(2.14)

such that ∑︁K
k=1 ηk = 1. This again leads us to the Lagrange multiplier method.

The Lagrange function in this case is

L (θ, λ) = Eθ̂old [ℓC (θ) |Y ] − λ

(︄
K∑︂

k=1
ηk − 1

)︄

= −1
2

N∑︂
n=1

K∑︂
k=1

⟨zn,k⟩

·
[︂
d ln (2π) + ln det (Σk) + (Yn − µk)T Σ−1

k (Yn − µk)
]︂

+
N∑︂

n=1

K∑︂
k=1

⟨zn,k⟩ ln ηk

−
N∑︂

n=1

K∑︂
k=1

⟨zn,k⟩

·
[︃
ln
∫︂ t

s

(︃
(2π)− d

2 det (Σk)− 1
2 e− 1

2 (x−µk)T Σ−1
k

(x−µk)
)︃

dx
]︃

− λ

(︄
K∑︂

k=1
ηk − 1

)︄
. (2.15)

(2.16)

In the same way as we obtained (1.9), we get

ηk̂
new = 1

N

N∑︂
n=1

⟨zn,k⟩, k = 1, . . . , K.

Let us calculate the partial derivatives of the Lagrange function with respect to
µk and Σk, set them equal to 0 (or zero vector/matrix) and find the updated
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values θ̂
new

k , Σ̂
new

k .

∂

∂µk
L (θ, λ) = −1

2

N∑︂
n=1

⟨zn,k⟩ ∂

∂µk

[︂
(Yn − µk)T Σ−1

k (Yn − µk)
]︂

−
N∑︂

n=1
⟨zn,k⟩ ∂

∂µk

[︃
ln
∫︂ t

s

(︂
(2π)− d

2 det (Σk)− 1
2 e− 1

2 (x−µk)T Σ−1
k

(x−µk)
)︂

dx

]︃

= −1
2

N∑︂
n=1

⟨zn,k⟩
[︂
−2Σ−1

k (Yn − µk)
]︂

−
N∑︂

n=1
⟨zn,k⟩Σ−1

k

[︂
M1(µk, Σk; [s, t]) − µk

]︂

= Σ−1
k

N∑︂
n=1

⟨zn,k⟩Yn − Σ−1
k M1(µk, Σk; [s, t])

N∑︂
n=1

⟨zn,k⟩ != 0

∂

∂Σk
L (θ, λ) = −1

2

N∑︂
n=1

⟨zn,k⟩ ∂

∂Σk

[︃
ln det Σk + (Yn − µk)T Σ−1

k (Yn − µk)

− ln
∫︂ t

s

(︂
(2π)− d

2 det (Σk)− 1
2 e− 1

2 (x−µk)T Σ−1
k

(x−µk)
)︂

dx

]︃

= −1
2

N∑︂
n=1

⟨zn,k⟩
[︃
Σ−1

k − Σ−1
k (Yn − µk) (Yn − µk)T Σ−1

k

+ Σ−1
k − Σ−1

k M2(0, Σk; [s − µk, t − µk])Σ−1
k

]︃
!= 0

As the unknown parameters are part of the integral, it is not possible to ob-
tain closed formulas for the updated values of µ̂new

k and Σ̂new
k . To obtain those

estimates, the numerical optimization will be used. In order to guarantee that
the covariance matrix will always be positive semi-definite, we perform Cholesky
matrix decomposition

Σk = QT
k Qk, k = 1, . . . , K. (2.17)

This decomposition always exists and is unique as Σk is symmetric positive defi-
nite matrix, see for example Griffel [1989]. Then our aim is to find the unknown
matrix Qk and from the expression (2.17), Σk is computed.

2.3.1 Method used in the article Lee and Scott [2012]
In this diploma thesis we are dealing with truncated Gaussian mixtures and
the application of the EM algorithm to these mixtures. The article EM algorithm
for multivariate Gaussian mixtures models with truncated and censored data, Lee
and Scott [2012], derived formulas for the updated parameters in M step as follows

π̂new
k = 1

N

N∑︂
n=1

⟨zn,k⟩

µ̂new
k =

∑︁N
n=1⟨zn,k⟩ Yn∑︁N

n=1⟨zn,k⟩
− mk

Σ̂new
k =

∑︁N
n=1⟨zn,k⟩ (Yn − µ̂new

k ) (Yn − µ̂new
k )T∑︁N

n=1⟨zn,k⟩
+ Hk
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where mk and Hk are

mk = M1(0, Σ̂k; [s − µ̂k, t − µ̂k])
Hk = Σ̂k − M2(0, Σ̂k; [s − µ̂k, t − µ̂k]) (2.18)

and µ̂k, Σ̂k are the updated parameters from the previous iteration step and
M1(0, Σ̂k; [s − µ̂k, t − µ̂k]), M2(0, Σ̂k; [s − µ̂k, t − µ̂k]) are the first, respective
the second, moment of a centred Gaussian distribution with covariance Σ̂k while
truncation to a bounded rectangle window [s − µ̂k, t − µ̂k].
The simplification from the more correct approach described in this diploma
thesis lies in the expressions mk and Hk as they use the updated parameters
from the previous step. However, there should be the unknown parameters µ̂new

k ,
Σ̂

new

k respectively. It is understandable simplification as this way we can get rid of
the unknown parameters in integrals and the whole expressions for the unknown
parameters is reduced to a simple formula. If such simplification is made, we do
not have guaranteed that the basic theory behind the EM algorithm is applicable.
No justification was made in this article. We could struggle with the convergence
speed and even convergence itself. Moreover, we can obtain singular covariance
matrix during the M step. In one-dimensional case it would occur when∑︁N

n=1⟨zn,k⟩ (Yn − µnew
k )2∑︁N

n=1⟨zn,k⟩
≤ M2(0, σ̂k; [s − µ̂k, t − µ̂k]) − σ̂2

k.

2.4 Effect of truncation on EM algorithm
Applying the EM algorithm for truncated Gaussian mixtures causes non-
existence of the explicit formulas for the updated parameters in M-step. Hence,
we have to use the numerical optimization for obtaining those parameters.
the question is if it is necessary to take into account the truncation. We will
compare the standard algorithm with Gaussian distributions and the version
where truncation is considered.

In Figure 2.2 of one-dimensional Gaussian mixture with two components such
that µ1 = −3 and µ2 = 20 and the variance is for both σ2 = 10. The truncation
interval is [0, 40] so the first mean µ1 lies outside the observation window. We can
see that both algorithms, the one described in this Chapter and its standard ver-
sion described in Chapter 1 where truncation is not considered, produce a good
estimate of µ2. On the other hand, the estimate of mean µ1 which lies outside
the observation window with standard version of the EM algorithm is not good.
The truncated version of EM algorithm performs much better, it correctly detects
that the mean of first cluster lies outside the window. Moreover, the estimated
variance using standard EM algorithm is much lower for the cluster centred out-
side the window, approximately 2.6, as it is estimated only based on observed
data. the same variance estimated using truncated version of EM algorithm is
close to true value, approximately 11.6. The conclusion of this example would
be that it is not recommended to use the standard version of the EM algorithm
when we have a priori information about some not negligible truncation.
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Figure 2.2: The experiment with one-dimensional synthetic data. Data comes
from Gaussian mixture with two components with means −3 and 20 and com-
mon variance 10. In total, 1000 data points were simulated. Then the truncation
at interval [0, 40] was performed. The histogram (top) of truncated data is shown
together with real mean and estimated means with the standard EM algorithm
and using the algorithm described in this Chapter and its standard version de-
scribed in Chapter 1.

2.5 Generalisation
Until now we consider Gaussian mixtures truncated on a bounded rectangle win-
dow [s, t], s, t ∈ Rd, however we could easily extend the presented theory to cases
where the truncation window is general arbitrary window W . Then the integral
in denominator of expression (2.8) is replaced by

∫︂
W

fk(x; θk) dx which is an in-
tegral of Gaussian density over a window W . As long as we can calculate this
integral, we are able to proceed with the EM algorithm as described for a bounded
rectangular window.
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3. Miscellaneous topics
In the previous chapters, we introduced the EM algorithm, however in order
to perform this algorithm in practice, we need to deal with several issues. In
the first section, we address the problem of the unknown number of Gaussian
components. Next, we look into the initialization of the EM algorithm. In
the last section, we mention several possibilities on how to define the stopping
criterion for the EM algorithm.

Topics in this chapter are often discussed when dealing with the EM algorithm,
however not specifically for the truncated Gaussian mixtures. Our aim is to adopt
known methods and try to use them for our issue. Then evaluate them and decide
which approach to each subtopic is the most convenient.

3.1 Unknown number of components
In the previous chapter, we described the EM algorithm for truncated Gaussian
mixture. We assumed that we know the number of clusters (K in Definition 1).
However, as stated before, this number is often unknown and before proceeding
to the algorithm itself, we need to estimate it. Denote MK the class of all
possible K-component truncated Gaussian mixtures. We are not able to estimate
the unknown value of K via the EM algorithm itself as the classes MK+1 and MK

are nested, that is MK ⊆ MK+1. Then the function h(K) = supΘ∈Θ ℓobs(θ; K)
is a non-decreasing function of K.

3.1.1 Likelihood ratio test statistics
One way how to estimate the number of components is to start with some
reasonably small number of components, run the EM algorithm, then add one
component and again run the EM algorithm. With those two runs we perform
the likelihood ratio test, see more at McLachlan and Rathnayake [2014]. We test
the null hypothesis H0 : k = k0 against the alternative hypothesis HA : k = k0+1.

The likelihood ratio λ is defined as

λ = L(θ̂(k0 + 1))
L(θ̂(k0))

where L(θ̂(ki)) is the observed likelihood function assuming ki Gaussian compo-
nents evaluated at the EM algorithm estimate of the mixture parameters θ̂(ki).
The likelihood ratio test statistic is −2 ln λ which can be rewritten as

LRTS = −2 ln λ = 2
[︂
ℓobs(θ̂(k0)) − ℓobs(θ̂(k0 + 1))

]︂
.

The higher LRTS the higher the evidence against the null hypothesis. We keep
adding one component until the increase in the log-likelihood starts to fall or
the evidence against the null hypothesis is not evident.
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3.1.2 Information criteria
Often, a deterministic method for determining the number of components is used.
We select set of possible number of components K. The estimated number of
components is then obtained as

ˆ︂K = arg min
K

{︂
C(θ̂(K); K); K ∈ K

}︂
where C(θ̂(K); K) is some criterion as a function of the number of components K

and the EM algorithm estimate of the mixture parameters θ̂ while assuming K
components. The criterion C should penalize higher values of k in order to avoid
the over-fitting while taking into account the value of the observed log-likelihood
ℓobs(θ̂(K)).

First criterion to mention would be Akaike’s information criterion (AIC for short),
see the original paper Akaike [1974]. It is defined as

AIC(θ̂(K); K) = −2ℓobs(θ̂(K)) + 2p

where p stands for the number of unknown parameters. It can be shown that by
minimizing AIC, we minimize the estimate of the Kullback-Leibler divergence,
see for example Cavanaugh and Neath [2019].

Second criterion is Bayesian information criterion (BIC for short) defined as

BIC(θ̂(K); K) = −2ℓobs(θ̂(K)) + p ln N

where p is again the number of unknown parameters and N is the sample size.
As the name suggests, it is a criterion based on Bayesian statistics. More on this
criteria can be found in the original paper Schwarz [1978] where this criteria has
been introduced.

In both cases, we will select model with lower value. As stated in Panić et al.
[2020] or Biernacki et al. [2003] we can observe that AIC favours complex models
with a higher number of components due to the small penalization term. BIC on
the other hand penalizes a higher number of components more heavily. So when
the number of observations is large, the penalization term in AIC is negligible
and the criterion favours model with high number of components which can lead
to over-fitting. So we would like to avoid AIC criterion in such situations. On
the other hand, the penalization term in BIC increases with increasing number
of observations so it can be used with large number of observations without fear
of over-fitting.

For small sample size, Hurvich and Tsai proposed the corrected AIC (AICc) which
is defined as

AICc(θ̂(K); K) = −2ℓobs(θ̂(K)) + 2p + 2p(p + 1)
N − p − 1

where p and N are defined as above.
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3.1.3 Adaptive EM algorithm
Another way how to select the number of Gaussian components is to implement
the selection process into EM algorithm itself via the adaptive EM algorithm.
Instead of using the classical log-likelihood function and respective Lagrange
function, we subtract from the defined Lagrange function (2.16) during M-step
the penalization

d

2 ln N + T

2

K∑︂
k=1

ln ηk

where d is the total number of unknown parameters and T = D(D+3)
2 with D being

the dimension. By taking the partial derivative of such function with respect to
the mixing weights, we obtain

η̂new
k =

∑︁N
n=1⟨zn,k⟩ − T

2
N − T K

2
, k = 1, . . . , K.

In the case when ∑︁N
n=1⟨zn,k⟩ ≤ T

2 , it indicates that the k-th component should be
killed. The whole algorithm is as follows.

Initialization: Choose the initial number of components K together with
the vector of all unknown parameters θinit and then proceed to E step.

E-step: Calculate E θ̂old [ℓ(θ)|Y ].

M-step: Calculate the updated weights as

η̂new∗
k = max

(︄∑︁N
n=1⟨zn,k⟩ − T

2
N − T K

2
, 0
)︄

, k = 1, . . . , K.

If η̂new∗
k = 0 then the k-th component should be dropped, K is decreased by

one and µ̂k = 0 and Σ̂k = 0, otherwise the updated values are found as in
the standard EM algorithm procedure. Then the component’s weight should be
renormalized as

η̂new
k = η̂new∗

k∑︁K
k=1 η̂new∗

k

.

Stopping criterion: Check if the stopping criterion is satisfied. If not, con-
tinue with the updated value to the E-step where θ̂new from the current iteration
becomes θ̂old in the next iteration. If yes, the algorithm ends. Because of the pe-
nalization term, the moments of the observed data are not conserved so after
the stopping criterion is satisfied, we perform one standard EM iteration.
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3.2 Initialization
Now, let us assume we know the number of Gaussian components (or at least
we have a reasonable estimate, see Section 3.1), denote it K. The EM algo-
rithm is very sensitive to the choice of the initial distribution, especially when
dealing with truncation as we need to use the optimization to find the local max-
imum likelihood because we have no analytic solution to the system of equations.
The convergence of this non-linear optimization problem is not guaranteed for
arbitrary initial parameters so it is important to find a reasonable initial value
for the unknown vector of parameters. Moreover, only the convergence of the log-
likelihood function to a local maxima is guaranteed so the initial values should be
close enough to the desired solution in order to avoid the convergence to the wrong
local maxima. In some practical situations it could be reasonable to run the EM
algorithm with set of different initial values and then select the solution which
makes most sense in given case.

3.2.1 Random initialization
The simplest way to initialize the EM algorithm is to randomly choose K compo-
nent means located reasonably in the observed window or not far away from it.
Then each point from our random sample assign to the closest component mean.
Then for each component mean calculate the sample variance from assigned data
points. The weights are calculated as the ratio of the number of assigned data
points and the total number of data points. The simplicity of this approach has
its fly in the ointment. There is a risk that the initial choice of parameters will
lead to a local maximum which is not the global maximum.

3.2.2 Previous short runs of EM
More sophisticated method would be to select some set of possible initial parame-
ters θ ∈ Θ0. Then perform predefined small number n1 of iterations and compare
the values of the observed log-likelihood function evaluated at the n1th updated
parameter estimates. Select such initial parameter θselected ∈ Θ0 which leads to
the highest value of the log-likelihood function.

3.2.3 K-Means
K-means clustering is well known unsupervised machine learning algorithm. We
briefly introduce this algorithm based on Sun et al. [1994]. The beauty of this
algorithm lies in its simplicity, yet it is an extremely powerful algorithm in many
cases. The algorithm runs as follows.

1. Choose the number of clusters K.

2. Select K random data points as centroids.

3. Assign all other points to the closest centroid which will form clusters.

4. Select the new centroids as the middle point of clusters.

5. Repeat steps 3. and 4. until predefined stopping criteria is satisfied.
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Figure 3.1: Example of K-means clustering algorithm. In each step, the red
points representing cluster means were selected. Then the rest of points were
coloured (blue or green) based on the closest cluster point. In total, 4 iterations
are shown.

The weights are calculated as for the random initialization, it is as the ratio
of the number of assigned data points and the total number of data points.
An example of K-Mean algorithm is in Figure 3.1.

3.3 Stopping criteria
We discussed how to initialize the EM algorithm and now it is time to talk
about how to stop such algorithm. This section is in addition to those listed
next based on article Abbi et al. [2008] In theory, the log-likelihood function
is guaranteed not to decrease each iteration until complete convergence. In
order to reduce the computational time, we often stop the algorithm before
its complete convergence using some heuristic approach. Usually, the relative
change of the log-likelihood function or estimated parameters is used together
with setting a fixed lower bound and when the relative change is smaller than
this bound, the EM algorithm stops. When the EM algorithm is stopped using
this criteria, it tells us that the progress is negligible.

3.3.1 Number of iterations
One approach is to set a fixed number of iterations and stop the EM algorithm
after this number of steps is reached. It is necessary to select a reasonable large
number of steps in order to guarantee a solution close to the local maxima.
The disadvantage of such approach is that it is highly dependable on the given
dataset. We can have a dataset where complete convergence occurs after 10 steps
and another dataset where this convergence occurs after 103 steps. It would be
time consuming to select one large number of steps and apply it to all cases.
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3.3.2 Difference in log-likelihood function
Another quite straightforward approach is to watch the change of the observed
log-likelihood function after each step.

We can consider the absolute change(︂
ℓobs (θnew) − ℓobs

(︂
θold

)︂)︂
< δ

or the relative change

ℓobs (θnew) − ℓobs

(︂
θold

)︂
|ℓobs (θold)| < δ

for some predefined small δ. If the above condition is met, the algorithm is
stopped.

3.3.3 Difference in estimated parameters
Next we can observe the change in the estimated parameters. Here we have
several options however it seems to be the best approach to consider the change
in the covariance matrix (or the variance in the one-dimensional case).

3.3.4 Aitken acceleration-based stopping criterion
Both the change in the log-likelihood function or in the estimated parameters
are measures of lack of progress rather than of actual convergence, see Lindstrom
and Bates [1988]. Here we introduce a criterion based on the estimate of the log-
likelihood limit point. the following is mainly based on Geoffrey J. McLachlan
[2000]. From Theorem 2 we know that there exists ℓ∗ such that the sequence of
the observed log-likelihood

{︃
ℓ(θ̂(k))

}︃
converges monotonically to this value. For

the simplicity of notation we denote

ℓ(θ̂(k)) = ℓ(k).

Moreover, the rate of convergence is linear, see Section 1.2.1, so we can write

ℓ(k+1) − ℓ∗ ≈ c (ℓ(k) − ℓ∗)

for all k and some c, 0 < c < 1. We can rewrite such relationship as

ℓ(k+1) − ℓ(k) ≈ (1 − c)(ℓ∗ − ℓ(k)).

From this we can see that the small increment in the log-likelihood does not have
to mean the same distance of the log-likelihood in the kth step and the limit l∗.
From here, we express the limit

ℓ∗ ≈ ℓ(k) + 1
1 − c

(ℓ(k+1) − ℓ(k)).
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Since the parameter c is unknown, we use its estimate

c(k) = ℓ(k+1) − ℓ(k)

ℓ(k) − ℓ(k−1) .

Altogether, Aitken accelerated estimate of ℓ∗ is

ℓ
(k+1)
A = ℓ(k) + 1

1 − c(k) (ℓ(k+1) − ℓ(k)).

The algorithm is stopped when ⃓⃓⃓
ℓ

(k+1)
A − ℓ

(k)
A

⃓⃓⃓
< δ

for some predefined small δ.

3.4 Implementation
The whole EM algorithm for truncated Gaussian mixtures was implemented
in Python, as of now compatible with the version 3.10.4. It can be found
on author’s personal Github repository, https://github.com/NguyenAdela/
EM-algorithm-for-truncated-Gaussian-mixtures.

We are also using R, version 4.1.3, and its library truncnorm. The most impor-
tant packages used in Python are scikit-learn version 1.0.2, scipy version
1.8.0, numpy version 1.22.3 and for the visualisation mainly matplotlib
version 3.5.1 and plotly version 5.6.0. We use the Python interface to R
lanugage with the help of library PypeR version 1.1.2.

In order to solve the find the updated parameters in M step, we use
the Nelder–Mead method implemented in scipy.

For more details on the implementation, please visit the provided link to
the Github repository.
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4. Application

4.1 Synthetic data
We are going to apply the EM algorithm to synthetic data generated from
a known distribution in order to verify whether the proposed algorithm in this
diploma thesis (hereinafter thesis algorithm) will perform better than in the men-
tioned article Lee and Scott [2012] (hereinafter article algorithm) where the used
algorithm is simplified by heuristic arguments but not mathematically justified.

To generate data, we use the algorithm implemented in R package truncnorm.
We run the calculation on a standard personal computer with processor Intel®
CoreTM i5. For both approaches, we use the same initialization, K-means
initialization with the same seed used by the random number generator (which
leads to the identical initial parameters), and the same stopping criteria based
on the difference in the observed log-likelihood function. Our selected threshold
for stopping criteria is δ = 10−8.

In subsection 4.1.2 we define the Kullback-Leibler divergence score which will be
one of the criteria helping us evaluate the models’ performance. We will also be
interested in the number of iterations until the stopping criterion is met together
with the time of the whole calculation.

4.1.1 Generating data from GMM
One way how to generate a sample from a truncated Gaussian mixture is to
generate data from a Gaussian mixture and then perform the truncation. This
is often the case when dealing with a real dataset when it follows a Gaussian
mixture distribution but the observation window is restricted. The only problem
with such an approach is that we are not able to generate a given number of
points in a predefined number of steps.

The second approach would be the mixed rejection algorithm for univariate
sampling and the Gibbs algorithm for multivariate sampling. Those algorithms
are well described in the article Geweke [1998] and implemented in R package
truncnorm which we will use in our experiments.

Another possibility is to generate a sample from the multinomial distribution
with n trials and with probabilities given by the cluster weights which provides
us with a number of data points for each cluster and then generate a respective
number of points for each cluster.

4.1.2 Evaluation
In order to evaluate how the estimate produced by the EM algorithm performs
we will calculate Kullback–Leibler divergence (KL) score which in layman’s terms
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quantifies the difference between two probability distributions. The theory behind
KL score can be found in Thomas M. Cover and Thomas [2006], among others.
The formal definition from Taboga [2021] follows.

Definition 2. Let X and Y be two continuous random variables with supports
RX and RY and probability density function fX and fY such that∫︂

A
fX(x) dx ̸= 0 ⇒

∫︂
A

fY (x) dx ̸= 0

for any measurable set A ⊆ RX . Then the Kullback-Leibler (KL) divergence of
fY from fX is defined as

DKL(fX ||fY ) = −
∫︂

x∈RX

fX(x) ln fY (x)
fX(x) dx.

In practice fX would be the known true distribution and fY its estimate. In order
to calculate KL score, we generate NC data points drawn from the known true
distribution fX and use the following approximation

DKL(p||q) = Ep [ln fX − ln fY ] ≈ 1
NC

NC∑︂
n=1

[ln fX(xn) − ln fY (xn)] (4.1)

where xn are the generated data points. As KL score quantifies the difference
between the true distribution and its estimate, the lower the value of KL score,
the better.

4.1.3 One-dimensional case
Let us consider one-dimensional data. We fix the observation window for
all examples in this subsection to the interval [s, t] = [0, 40]. For most of
the experiments, we calculate the KL score where we fix NC = 2000 in equation
(4.1). In addition to the overall estimate of the distribution, we will be interested
in the estimates of parameters themselves, especially in the cluster means.

We start with the simplest examples with one cluster in the middle of the obser-
vation window (Experiment 1), then shift the cluster mean close to the border
of the window (Experiment 2) and finally outside the observation window
(Experiment 3).

Third experiment leads us to the next two experiments. In Experiment 4 we
explore the behaviour of estimates depending on the number of simulated data
points. Single-cluster experiments in one dimension end with a simulation study,
Experiment 5, where we generate 500 datasets drawn from the same distribution
and look into distributions of estimates.

In the last one-dimensional experiment, Experiment 6, we explore the behaviour
for two clusters based on the size of their overlap.
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N = 150, K = 1, µ1 = 20, σ2
1 = 25, s = 0, t = 40

Thesis algorithm µ̂1 = 19.8391, σ̂2
1 = 21.3388

Article algorithm µ̂1 = 19.8391, σ̂2
1 = 21.3388

No. iterations Time Log-likelihood KL
Thesis algorithm 2 1.8652 s -442.3556 0.0077
Article algorithm 3 1.5296 s -442.3556 0.0077

Table 4.1: Summary of Experiment 1.

Experiment 1.

One cluster with mean in the middle of the observation window

We start with the simplest example, one cluster centered in the middle of
the observation window, with variance low enough for the truncation to be
negligible. We expect both algorithms perform similarly well since the integral
in (2.5) will be close to 1, and so we can use the standard EM algorithm for
Gaussian mixtures because mk and Hk defined in (2.18) will be negligible.

Figure 4.1 shows the results of such experiment. We have one cluster with mean
µ = 20. The variance is σ2 = 25. In total, 150 data points were simulated. At
the top of the figure, we have a histogram of the simulated dataset together with
the true and the estimated means. At the bottom, the observed log-likelihood
function calculated after each iteration for both approaches is shown. We can see
that both approaches perform really well in terms of finding an accurate mean
estimate. The change in the log-likelihood function is minimal and the algorithm
is stopped after 2 iterations in case of the thesis algorithm, respectively 3
iterations for the article algorithm.

In Table 4.1, we summarized the experiment’s results. We compare the time of
the calculation, as well as the number of iterations. Even with one iteration more,
the article algorithm is 0.3 seconds faster than the thesis algorithm. Neverthe-
less, in terms of complete-data log-likelihood or KL score, we see no noticeable
difference.

Such results are not surprising as we mentioned at the beginning of the exper-
iment. Moreover, even K-means algorithm itself performs quite well, its results
(i.e. the initial parameters for the EM algorithm) are

µ̂1,init = 19.8392, σ̂2
1,init = 21.4756.

It is thus safe to use the article algorithm or even K-means algorithm, which
in the case of a single cluster reduces to just sample mean and sample variance
estimation, when the truncation is clearly negligible.
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Figure 4.1: The experiment with one-dimensional synthetic data. Data comes
from a Gaussian mixture truncated at interval [0, 40] with one component with
mean µ1 = 20 and variance σ2

1 = 25. In total, N = 150 data points were sim-
ulated. The histogram (top) of truncated data is shown together with the true
mean and the estimated means with the EM algorithm using the algorithm de-
scribed in this thesis versus the algorithm described in the article Lee and Scott
[2012]. At the bottom, we have graphs of the observed log-likelihood calcu-
lated at each iteration of the EM algorithm. The EM algorithm was stopped
when the difference in the observed log-likelihood function was lower than 10−8.
The horizontal axis indicates the number of iterations until the stopping criterion
was met.
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N = 150, K = 1, µ1 = 3, σ2
1 = 25, s = 0, t = 40

Thesis algorithm µ̂1 = 4.3738, σ̂2
1 = 11.9524

Article algorithm µ̂1 = 4.3738, σ̂2
1 = 11.9522

No. iterations Time Log-likelihood KL

Thesis algorithm 2 0.5758 s -363.6647 0.0493
Article algorithm 25 3.5965 s -363.6647 0.0493

Table 4.2: Summary of Experiment 2.

Experiment 2.

One cluster with mean close to the border of the observation window

A more interesting example is in Figure 4.2 where we have the same case as in
Experiment 1 with the only difference in the position of the cluster mean, here
set as µ = 3. In such case, the truncation plays a more significant role, we are
facing a problem of missing information. The summary of this experiment is
shown in Table 4.2.

For the thesis algorithm, the observed log-likelihood again converges to the lo-
cal maximum in only 2 iterations. The article algorithm requires 25 iterations
to converge. In terms of time, the thesis algorithm is more than three times faster.

Nevertheless, both approaches arrived at the same results. Both underestimate
the amount of truncation, they estimate the mean closer to the center than
the true mean and less than half of the true variance.

The initial parameters, obtained by K-means, clearly cannot capture the trunca-
tion, we have

µ̂1,init = 5.0644, σ̂2
1,init = 8.5114.

The initial and the final probability density functions (considering only the the-
sis algorithm, however for the article algorithm it would be very similar)
compared to the true density is captured in Figure 4.3. Loosely speaking,
the final estimate is somewhere between the initial and the true distribution.
However, we can see that the left tail of the final estimate is quite underestimated.
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Figure 4.2: The experiment with one-dimensional synthetic data. Data comes
from a Gaussian mixture truncated at interval [0, 40] with one component with
mean µ1 = 3 and variance σ2

1 = 25. In total, N = 150 data points were simulated.
The histogram (top) of truncated data is shown together with the true mean and
the estimated means with the EM algorithm using the algorithm described in
this thesis versus the algorithm described in the article Lee and Scott [2012].
At the bottom, we have graphs of the observed log-likelihood calculated at each
iteration of the EM algorithm. The EM algorithm was stopped when the differ-
ence in the observed log-likelihood function was lower than 10−8. The horizontal
axis indicates the number of iterations until the stopping criterion was met.
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Figure 4.3: The initial and the final estimated probability density function (con-
sidering the thesis algorithm) for Experiment 2 compared to the true density
which is a density of the truncated normal distribution with mean 3 and variance
25, truncated at the interval [0.40].

The article algorithm takes 23 iterations more untill the stopping criterion is met
compared to the thesis algorithm. We are interested in the estimate of the mean
using the article algorithm in case it is stopped after 2 iterations as in the thesis
algorithm. Figure 4.4 shows the estimates of the mean for each iteration with
the value at 2 iterations marked by a horizontal line. We can see that even after
only 2 iterations, the article algorithm estimates the mean quite well, however we
still need the value to move by 0.3 in order to get the final estimate.

Figure 4.4: The estimate of the mean for each iteration using the article algorithm.
The value at 2 iterations is highlighted for comparison with the thesis algorithm,
which takes 2 iterations to converge.
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N = 150, K = 1, µ1 = −8, σ2
1 = 25, s = 0, t = 40

Thesis algorithm µ̂1 = −14.6803, σ̂2
1 = 38.7838

Article algorithm µ̂1 = −14.6568, σ̂2
1 = 38.7368

No. iterations Time Log-likelihood KL
Thesis algorithm 2 0.4452 s -260.1273 0.0012
Article algorithm 1150 101.3453 s -260.1273 0.0012

Table 4.3: Summary of Experiment 3.

Experiment 3.

One cluster with mean outside the observation window

The last set of parameters with one cluster in one dimension is in Figure 4.5
where again we have the same situation as in the previous experiments, except
the mean which is located outside the observation window, specifically we have
µ = −8.

The results are in Table 4.3. Both approaches estimated that the mean is outside
the observation window (which was not the case for the standard algorithm, see
Figure 2.2). But what is more remarkable is that we again only need 2 iterations
until the thesis algorithm is stopped. Article approach is stopped after more
than 1000 iterations and it is more than a hundred times slower.

In Figure 4.6, we have plots of the squared Euclidean distances between the true
mean and its estimates calculated at each iteration of the EM algorithm. For
the thesis algorithm, it behaves expected, that is the distance is decreasing be-
tween the initial and the first iteration and then remains the same (and the al-
gorithm is stopped). This is not the case for the article algorithm. The distance
is decreasing up to iteration 86 where it almost reaches zero and then starts to
increase and reaches the same distance as the thesis algorithm. It could seem that
the article algorithm is able to achieve better results at some point, it estimates
the true mean almost perfectly. However, for a real problem, we do not know that
such situation occurs so we are unable to decide to stop the algorithm at that
point. Furthermore, we consider only one realisation of the respective random
sample, for different realisations this does not have to be the case.
As we see in the bottom right plot in Figure 4.5, the complete data log-likelihood
does not change a lot from iteration 86 to the final iteration, more accurately
the complete data log-likelihood after iteration 86 is 260.3031 which is about 0.18
less than the final log-likelihood. In this specific case, we could choose higher
threshold for stopping criteria, for example δ = 0.01, and then the algorithm
would stop with the estimate of the mean closer to the true mean, however we
need some general rule which is applicable for real problems which would be re-
ally hard to obtain. Moreover, it is not guaranteed that the algorithm would not
stop even earlier with the estimate even further from the true mean. Therefore,
this does not seem reasonable to do.
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Figure 4.5: The experiment with one-dimensional synthetic data. Data comes
from a Gaussian mixture truncated at interval [0, 40] with one component with
mean µ1 = −8 and variance σ2

1 = 25. In total, N = 150 data points were sim-
ulated. The histogram (top) of truncated data is shown together with the true
mean and the estimated means with the EM algorithm using the algorithm de-
scribed in this thesis versus the algorithm described in the article Lee and Scott
[2012]. At the bottom, we have graphs of the observed log-likelihood calcu-
lated at each iteration of the EM algorithm. The EM algorithm was stopped
when the difference in the observed log-likelihood function was lower than 10−8.
The horizontal axis indicates the number of iterations until the stopping criterion
was met.
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Figure 4.6: Convergence of the estimates of the mean for Experiment 3.

As in the previous experiments, the initial parameters, obtained by K-means,
cannot capture the truncation and the fact that the cluster mean is outside
the observation window. K-mean algorithm in general tries to estimate given
distribution with the density concentrated in the observation window, we have

µ̂1,init = 2.0918, σ̂2
1,init = 3.7241.

We again plot the initial and the final probability density functions (considering
only the thesis algorithm) compared to the true density, see Figure 4.7. In addi-
tion, the estimate using the standard EM algorithm is shown. Unlike the previous
experiment, when we had the center of the cluster inside the observation window,
now the density and especially its shape has changed radically from the initial
estimate to the final estimate. Let us look at the estimate using the standard
EM algorithm. It is obvious that in cases when the cluster mean is outside
the observation window, it would be really inappropriate to use the standard EM
algorithm, as the estimated density differs from the true density significantly.
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Figure 4.7: The initial and the final estimate of the probability density function
(considering the thesis algorithm) for Experiment 3 compared to the true density
which is a density of the truncated normal distribution with mean 8 and variance
25, truncated at the interval [0.40]. The grey dashed line shows the estimate
when standard EM algorithm is used.

Experiment 4.

One cluster with mean outside the observation window depending on
the number of simulated data points

From the previous three experiments, we can see that the more significant
truncation is, the worse the estimates we get. This leads us to the question if
the size of the dataset can improve those estimates. We take the parameters
from Experiment 3 with the difference that we will increase the number of
generated data points. We take N = 400 as the starting size of our dataset and
then increase N by 100 up to 2000. For each N we generate one dataset so
the datasets are mutually independent.

We are interested in how the estimates of a mean and a variance change with
increasing N . The results are summarized in Table 4.4. The first interesting
observation is that the number of iterations for the thesis algorithm remains
the same for all N , we only need 2 iterations until the stopping criterion is
met, whereas the article algorithm needs more than twice as many iterations for
N = 400 compared to the case with N = 2000.

Figures 4.8 and 4.9 shows the plots of the estimates depending on the number
of data points. We can observe that for a small dataset (up to 600 data points),
both algorithms tend to overestimate the variance and place the mean below
the true value. For more data points, the estimate of the mean remains above
the true mean. However it seems that it stays at a reasonable distance from
the true value. The same holds for the estimate of the variance (it stays below
the true variance but reasonably close).
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K = 1, µ1 = −8, σ2
1 = 25, s = 0, t = 40

Thesis algorithm Article algorithm
N No. iterations µ̂1 σ̂2

1 No. iterations µ̂1 σ̂2
1

400 2 −15.66 42.97 1279 −15.65 42.94
500 2 −12.04 33.91 1001 −12.03 33.9
600 2 −8.20 25.81 681 −8.20 25.80
700 2 −5.83 20.28 509 −5.82 20.27
800 2 −6.68 21.82 585 −6.68 21.81
900 2 −6.08 20.51 543 −6.08 20.51

1000 2 −5.26 19.07 477 −5.25 19.07
1100 2 −5.36 19.34 487 −5.36 19.34
1200 2 −4.51 17.65 423 −4.50 17.65
1300 2 −5.22 18.99 482 −5.22 18.99
1400 2 −5.76 20.15 526 −5.76 20.15
1500 2 −6.15 21.28 556 −6.15 21.27
1600 2 −5.81 20.35 533 −5.80 20.35
1700 2 −5.93 20.44 549 −5.93 20.43
1800 2 −5.54 19.62 518 −5.53 19.61
1900 2 −5.27 19.07 498 −5.27 19.07
2000 2 −4.64 17.82 449 −4.64 17.82

Table 4.4: Summary of Experiment 4.

We have to keep in mind that for each selected dataset with given number of
data points, we present only one realisation of the respective random sample, for
different realisations it could turn out differently. We will address this variability
for different realisations in Experiment 5.
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Figure 4.8: Estimates of the mean for Experiment 4 depending on the number of
simulated data points considering the article algorithm and the thesis algorithm.
The true value of the mean is also highlighted.

Figure 4.9: Estimates of the variance for Experiment 4 depending on the number
of simulated data points considering the article algorithm and the thesis algo-
rithm. The true value of the variance is also highlighted.

46



Experiment 5.

A simulation study of one cluster with mean outside the observation
window

We generate 500 datasets drawn from the same distribution, a Gaussian mixture
with one cluster on a bounded window [0, 40] with mean µ1 = −8 and variance
σ2

1 = 25. Each dataset contains 150 points. We will be interested in the behaviour
of the thesis and the article algorithms. In the previous two experiments, we
saw datasets where the results are reasonable and no issues occur. However this
is not always the case as we will see.

For 25 datasets, the thesis algorithm reached the point where it was unable
to find the solution for the updated parameters in M step (see (2.14)) after
10000 iterations of selected optimization algorithm. In 22 cases out of those
25, the optimization algorithm failed in the first iteration. The problem is
that the estimated mean converges to some negative number (smaller than
−120) with the estimated standard deviation between 14 and 25 and so
the integral in the denominator of density function

∫︁ 40
0 f(x; θ) dx is numerically

zero. The histogram of estimated means with thesis algorithm if we omit
mentioned 25 cases where the optimization failed is in Figure 4.10. The cor-
responding descriptive statistics are in Table 4.5. While some estimates of
the mean are unreasonably small, the average value of the estimated mean
is −10.4336 which is fairly close to −8, given that we only observe points above 0.

Let us take a look at the article algorithm. As mentioned in subsection 2.3.1,
the article algorithm cannot guarantee the estimate of variance to be a positive
value (or a positive semi-definite matrix in case of higher dimensions). We can
observe such pathological occurrences in this experiment too, for 8 datasets,
the final estimate of the variance is negative. For another 14 cases, the algorithm
was not able to deliver the final results, as it failed when the updated parameters
after M step are such that the integral in the denominator in equation (2.5)
is numerically zero. Figure 4.11 deptics the histogram of the estimated mean,
excluding the 25 cases where the optimization failed. The corresponding
descriptive statistics are in Table 4.6. We observe very similar results as for
the thesis algorithm.

As a summary of Experiment 5, we cannot say that one approach performs better
than the other one if we take pathological cases (whre we do not obtain the final
parameters or obtain unreasonable estimates) into account. In the cases where
the article algorithm delivered negative variances, the thesis algorithm failed to
find the solution when performing the optimization in M step so the outcome is
the same, we are unable to estimate the final distribution via the EM algorithm.
In conclusion, both approaches are not 100% reliable, however in most cases,
the results are good enough.
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count mean std min 25% 50% 75% max
475 -10.4336 13.5871 -124.5635 -11.9126 -6.4007 -3.2731 0.9529

Table 4.5: Experiment 5: Descriptive statistics of the estimated mean using the
thesis algorithm.

count mean std min 25% 50% 75% max
478 -10.5526 12.9910 -81.2337 -11.9777 -6.3977 -3.2782 0.9531

Table 4.6: Experiment 5: Descriptive statistics of estimated mean using the ar-
ticle algorithm.

Figure 4.10: Histogram of the estimated means using thesis algorithm.
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Figure 4.11: Histogram of the estimated means using the article algorithm.
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Experiment 6.

Two clusters with means inside the observation window depending
on the size of overlap.

Now we consider two clusters with means inside the observation window. We
investigate three possibilities depending on how much the probability densities
are overlapping. For all three cases, we fix σ2

1 = σ2
2 = 10, µ2 = 20 and the

weights for an untruncated mixture, π1 = 0.6, π2 = 0.4. Mixing weights ηk,
k = 1, 2, for a respective truncated mixture are calculated using equation (2.7).
For the first case, we choose µ1 = 5 which leads us to two clusters with an
insignificant overlap, see Figure 4.12. Next, we put µ1 = 10 such that the two
clusters have a visible overlap, see Figure 4.13. For the last case, we set µ1 = 15,
the two clusters have a significant overlap, see Figure 4.14.

We expect the last case to be more complicated for both algorithms because we
cannot easily separate clusters from each other. On the other hand, the first case
is similar to single-cluster examples. Simply said, we could separate the clusters,
i.e. assign each point to one of the cluster, and then perform single-cluster
EM algorithm for each cluster separately. We will not do that, it is just for
explanation, why it is not more interesting than Experiment 1.

The results are summarized in Table 4.7. Apparently, the more significant
the overlap is, the more complicated the estimation is. As expected, both
algorithms converge faster for the case with insignificant overlap. We can also
see that estimates of the weights are more accurate for this case, it is easier
for the EM algorithm to split the dataset more precisely. With increasing
overlapping area, both algorithms tend to overestimate the weight of the first
component which goes hand in hand with overestimating its mean and variance.
The higher the component weight, the higher the probability that a point
in the overlapping area belongs to that cluster. So these middle points in
the overlapping area move the mean of the first component to the right. With
that, the variance increases. Analogously, with decreasing weight of the second
component, the estimate of the variance is more and more underestimated and
the mean is moving to the right bound.

In general, we are not able to tell which of these two overlapping clusters
will be preferred by the algorithm (i.e. assign the higher weight to it). In
Experiment A1 listed in Appendix we have a similar situation with µ1 = 15
where both algorithms still favour the first component. However the opposite
situation when the estimates of the means will be both shifted to the left can oc-
cur as well, see Experiment A2 also listed in Appendix, where we set with µ1 = 18.

We can see more examples with two clusters in Appendix.
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N = 500, K = 2, µ2 = 20, s = 0, t = 40, σ2
1 = 10, σ2

2 = 10

µ1 = 5, η1 = 0.5859, η2 = 0.4141

Thesis algorithm µ̂1 = 5.2311, σ̂2
1 = 7.9037, η̂1 = 0.5941

µ̂2 = 19.8622, σ̂2
2 = 8.4719, η̂2 = 0.4059

Article algorithm µ̂1 = 5.2311, σ̂2
1 = 7.9037, η̂1 = 0.5941

µ̂2 = 19.8622, σ̂2
2 = 8.4719, η̂2 = 0.4059

No. iterations Time Log-likelihood KL
Thesis algorithm 12 21.9929 s -1533.4939 0.0086
Article algorithm 17 29.8616 s -1533.4939 0.0086

µ1 = 10, η1 = 0.5998, η2 = 0.4002

Thesis algorithm µ̂1 = 10.3411, σ̂2
1 = 10.3826, η̂1 = 0.6479

µ̂2 = 20.3790, σ̂2
2 = 6.5891, η̂2 = 0.3521

Article algorithm µ̂1 = 10.3411, σ̂2
1 = 10.3826, η̂1 = 0.6479

µ̂2 = 20.3791, σ̂2
2 = 6.5891, η̂2 = 0.3521

No. iterations Time Log-likelihood KL
Thesis algorithm 85 153.8340 s -1523.7437 0.0104
Article algorithm 87 135.5842 s -1523.7437 0.0104

µ1 = 15, η1 = 0.6, η2 = 0.4

Thesis algorithm µ̂1 = 15.5909, σ̂2
1 = 9.9131, η̂1 = 0.7577

µ̂2 = 21.2226, σ̂2
2 = 4.6477, η̂2 = 0.2423

Article algorithm µ̂1 = 15.5911, σ̂2
1 = 9.9137, η̂1 = 0.7577

µ̂2 = 21.2228, σ̂2
2 = 4.6473, η̂2 = 0.2423

No. iterations Time Log-likelihood KL
Thesis algorithm 349 464.1091 s -1373.2374 0.0156
Article algorithm 369 402.9779 s -1373.2374 0.0156

Table 4.7: Summary of Experiment 6.
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Figure 4.12: The experiment with one-dimensional synthetic data. Data comes
from a Gaussian mixture truncated at interval [0, 40] with two components with
means µ1 = 5, µ2 = 20, weights π1 = 0.6, π2 = 0.4 and common variance σ2 = 10.
In total, N = 500 data points were simulated. The histogram (top) of truncated
data is shown together with the true mean and the estimated means with the EM
algorithm using the algorithm described in this thesis versus the algorithm de-
scribed in the article Lee and Scott [2012]. At the bottom, we have graphs
of the observed log-likelihood calculated at each iteration of the EM algorithm.
The EM algorithm was stopped when the difference in the observed log-likelihood
function was lower than 10−8. The horizontal axis indicates the number of itera-
tions until the stopping criterion was met.
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Figure 4.13: The experiment with one-dimensional synthetic data. Data comes
from a Gaussian mixture truncated at interval [0, 40] with two components with
means µ1 = 10, µ2 = 20, weights π1 = 0.6, π2 = 0.4 and common variance
σ2 = 10. In total, N = 500 data points were simulated. The histogram (top) of
truncated data is shown together with the true mean and the estimated means
with the EM algorithm using the algorithm described in this thesis versus the al-
gorithm described in the article Lee and Scott [2012]. At the bottom, we have
graphs of the observed log-likelihood calculated at each iteration of the EM algo-
rithm. The EM algorithm was stopped when the difference in the observed log-
likelihood function was lower than 10−8. The horizontal axis indicates the number
of iterations until the stopping criterion was met.
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Figure 4.14: The experiment with one-dimensional synthetic data. Data comes
from a Gaussian mixture truncated at interval [0, 40] with two components with
means µ1 = 15, µ2 = 20, weights π1 = 0.6, π2 = 0.4 and common variance
σ2 = 10. In total, N = 500 data points were simulated. The histogram (top) of
truncated data is shown together with the true mean and the estimated means
with the EM algorithm using the algorithm described in this thesis versus the al-
gorithm described in the article Lee and Scott [2012]. At the bottom, we have
graphs of the observed log-likelihood calculated at each iteration of the EM algo-
rithm. The EM algorithm was stopped when the difference in the observed log-
likelihood function was lower than 10−8. The horizontal axis indicates the number
of iterations until the stopping criterion was met.
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4.1.4 Two-dimensional case
Let us now consider two-dimensional data. We fix the observation win-
dow for all examples in this subsection to a bounded rectangle window
[s, t] = [(0, 0), (25, 25)]. For each experiment, we calculate the KL score
with NC = 2000 in equation (4.1). As in the previous section concernin
one-dimensional data, we will be interested not only in the estimate of the dis-
tribution itself, but in the estimates of parameters, focusing on the cluster means.

In Experiment 7, we have a simple example with the mean located in the middle
of the observation window. We will compare the case with a spherical covariance
matrix and the case where a correlation between the cluster components is as-
sumed. Then we shift the cluster mean to the edge of the observation window
in Experiment 8. We end the single-cluster examples with the cluster having
the mean outside the observation window in Experiment 9. Finally, we show
an example of a pathological case, see Experiment 10.
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Experiment 7.

One cluster with mean in the middle of the observation window

We again start with the simplest example, one cluster with the mean located in
the middle of the observation window, µT

1 = (12.5, 12.5). With the additional
dimension, we have the possibility to consider, in addition to the variance, also
the correlation between the variable’s dimensions, which will change the shape of
the distribution. For illustrative purposes, let us choose two different posibilities
for the covariance matrix Σ1. The first one will be an isotropic (spherical)

covariance matrix,
(︄

20 0
0 20

)︄
, the second will have correlated components,(︄

20 −12
−12 20

)︄
. Analogously as for one-dimensional case, see Experiment 1, we do

not expect to see any significant differences between the thesis and the article
algorithm, for the isotropic as well as the correlated covariance matrix, both algo-
rithms should get equally good results as when using the standard EM algorithm.

Figure 4.15 shows the results for the isotropic case, in Figure 4.16 is its correlated
version. For both simulations, 100 data points were simulated. Let us remind
again that we generate the exact amout of data points located in the observation
window using R library truncnorm with unknown number of data points outside
the observation window, these data were truncated. At the top of the figures,
we have scatter plots of our simulated data together with the true mean (left),
the estimated mean using the thesis algorithm (middle) and using the article
algorithm (right). In addition to the true and the estimated means, we show
the true, respectively the estimated, 95% confidence covariance ellipses. At
the bottom of both plots, the observed log-likelihood function calculated after
each iteration in the thesis and in the article algorithm is plotted. What is
worth to mention is that the log-likelihood decreases each iteration of the article
algorithm. As we mentioned before, we do not have any theory behind the article
algorithm as for the thesis algorithm so we are unable to ensure increasing
(respective non-decreasing) log-likelihood in each iteration and this experiment
is its example where the log-likelihood does not behave as in the EM algorithm
theory, see Theorem 1. However, in terms of how the algorithm estimates
the final parameters, this decrease in the log-likelihood does not cause any
significant deviation from the parameters, both algorithms perform really well in
finding the true distribution.

The summarized results are shown in Table 4.8 for uncorrelated case and in
Table 4.9 for its correlated version. For both versions of covariance matrix,
the article algorithm needs more steps in order to met the stopping criterion,
namely 9 iterations in the isotropic version and 11 iterations in the correlated
version. The thesis algorithm is stopped after 2, respectivelly 3 iterations.
However, from the time point of view both algorithms spend only about 1 s with
the computation.

Let us think about the reasons why the article algorithm worsen the log-likelihood.
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As we saw in one-dimensional experiments, the decreasing in the log-likelihood did
not happen so we assume this is some pathological example. Assume the isotropic
case for now. The initial estimate of the mean, produced by the K-means algo-
rithm, is

µ̂T
1,init = (12.1143, 12.5392)

which is already a truely good estimate. The Euclidean distance between
the initial value of the mean estimate and the true mean is 0.3877. The distance
between the final estimate using the article algorithm and the true mean is
0.3991. So the article algorithm slightly worsen the initial estimate of the mean
which goes hand in hand with decreasing log-likelihood. From the theory
of the EM algorithm we know that we do not have ensured the convergence
to the global maxima and it could happen that for some initial parameters,
we can obtain estimates which do not correspond to the global maxima of
the log-likelihood. However, this is obviously not the case as for the thesis
algorithm we do not observe such behaviour of the log likelihood.The distance
between the final estimate of the mean using the thesis algorithm and the true
mean is 0.3776 so the thesis EM algorithm does help to improve the estimate
of the mean. So in this case, the article algorithm demonstrates poor behaviour
compared to the thesis algorithm.
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N = 100, K = 1, µT
1 = (12.5, 12.5), Σ1 =

(︄
20 0
0 20

)︄

Thesis algorithm µ̂T
1 = (12.1263, 12.5542), Σ̂1 =

(︄
17.2416 −1.6026

−1.6026 16.7910

)︄

Article algorithm µ̂T
1 = (12.103, 12.5412), Σ̂1 =

(︄
17.5729 −1.6541

−1.6541 17.0078

)︄

No. iterations Time Log-likelihood KL
Thesis algorithm 2 0.6643 s -565.4234 0.0010
Article algorithm 9 1.1941 s -565.4381 0.0009

Table 4.8: Summary of Experiment 7 with a spherical covariance matrix.

N = 100, K = 1, µT
1 = (12.5, 12.5), Σ1 =

(︄
20 −12

−12 20

)︄

Thesis algorithm µ̂T
1 = (12.1238, 12.6717), Σ̂1 =

(︄
18.3338 −12.0244

−12.0244 17.9838

)︄

Article algorithm µ̂T
1 = (12.1053, 12.6724), Σ̂1 =

(︄
18.8285 −12.4279

−12.4279 18.3852

)︄

No. iterations Time Log-likelihood KL
Thesis algorithm 3 0.8594 s -543.0206 0.0027
Article algorithm 11 1.2627 s -543.0410 0.0026

Table 4.9: Summary of Experiment 7 with correlated components.
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Figure 4.15: The experiment with two-dimensional synthetic data. Data comes
from a Gaussian mixture truncated in each dimension at interval [0, 25] with one

component with mean µT
1 = (12.5, 12.5) and variance matrix Σ1 =

(︄
20 0
0 20

)︄
. In

total, 100 data points were simulated. The scatter plot (top) of truncated data is
shown together with the true mean and the estimated means with the EM algo-
rithm using the algorithm described in this thesis versus the algorithm described
in the article Lee and Scott [2012]. At the bottom, we have graphs of the ob-
served log-likelihood calculated at each iteration of the EM algorithm. The EM
algorithm was stopped when the difference in the observed log-likelihood function
was lower than 10−8. The horizontal axis indicates the number of iterations until
the stopping criterion was met.
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Figure 4.16: The experiment with two-dimensional synthetic data. Data comes
from a Gaussian mixture truncated in each dimension at interval [0, 25] with one

component with mean µT
1 = (12.5, 12.5) and variance matrix Σ1 =

(︄
20 −12

−12 20

)︄
.

In total, 100 data points were simulated. The scatter plot (top) of truncated data
is shown together with the true mean and the estimated means with the EM algo-
rithm using the algorithm described in this thesis versus the algorithm described
in the article Lee and Scott [2012]. At the bottom, we have graphs of the ob-
served log-likelihood calculated at each iteration of the EM algorithm. The EM
algorithm was stopped when the difference in the observed log-likelihood function
was lower than 10−8. The horizontal axis indicates the number of iterations until
the stopping criterion was met.
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N = 200, K = 1, µT
1 = (25, 23), Σ1 =

(︄
20 −6

−6 20

)︄

Thesis algorithm µ̂T
1 = (26.6097, 21.9138), Σ̂1 =

(︄
23.4305 −8.9496

−8.9496 23.767

)︄

Article algorithm µ̂T
1 = (26.6085, 21.9145), Σ̂1 =

(︄
23.4261 −8.9476

−8.9476 23.7668

)︄

No. iterations Time Log-likelihood KL
Thesis algorithm 2 1.2262 s -881.334 -0.0005
Article algorithm 229 36.2994 s -881.334 -0.0005

Table 4.10: Summary of Experiment 8.

Experiment 8.

One cluster with mean at the borders of the observation window

Now we consider an example with the mean located at the border of the ob-
servation window, specifically we set µT

1 = (25, 23). As we saw in Experiment
7, having a correlated covariance matrix does not change the course of the EM
algorithm so from now on we consider only the correlated covariance ma-
trix, the corresponding isotropic examples can be found in 4.2. We choose

Σ1 =
(︄

20 −12
−12 20

)︄
and generate 200 data points.

Analogously to the one-dimensional case (Experiment 2) the truncation makes it
more difficult for the article algorithm to converge. However, we do not observe
anything unexpected with one-dimensional example. The results are shown in
Figure 4.17 and in Table 4.10.
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Figure 4.17: The experiment with two-dimensional synthetic data. Data comes
from a Gaussian mixture truncated in each dimension at interval [0, 25] with one

component with mean µT
1 = (25, 23) and variance matrix Σ1 =

(︄
20 −6

−6 20

)︄
. In

total, 200 data points were simulated. The scatter plot (top) of truncated data is
shown together with the true mean and the estimated means with the EM algo-
rithm using the algorithm described in this thesis versus the algorithm described
in the article Lee and Scott [2012]. At the bottom, we have graphs of the ob-
served log-likelihood calculated at each iteration of the EM algorithm. The EM
algorithm was stopped when the difference in the observed log-likelihood function
was lower than 10−8. The horizontal axis indicates the number of iterations until
the stopping criterion was met.
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N = 250, K = 1, µT
1 = (30, 12.5), Σ1 =

(︄
20 12
12 20

)︄

Thesis algorithm µ̂T
1 = (32.3202, 12.6368), Σ̂1 =

(︄
24.4978 10.9871
10.9871 16.8278

)︄

Article algorithm µ̂T
1 = (32.8516, 13.2679), Σ̂1 =

(︄
26.1228 13.0533
13.0533 19.3531

)︄

No. iterations Time Log-likelihood KL
Thesis algorithm 2 2.0256 s -1107.6211 -0.0014
Article algorithm 825 234.3416 s -1108.2365 -0.0016

Table 4.11: Summary of Experiment 9.

Experiment 9.

One cluster with mean outside the observation window

Let us consider an example with the mean located outside the observation win-

dow, specifically we put µT
1 = (30, 12.5) with Σ1 =

(︄
20 12
12 20

)︄
and generate 250

data points. The results are shown in Figure 4.18 and in Table 4.11.

µ̂T
1,init = (22.8131, 8.3729)

Again, this experiment does not bring any new observations when compared to
the one-dimensional case in Experiment 3.
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Figure 4.18: The experiment with two-dimensional synthetic data. Data comes
from a Gaussian mixture truncated in each dimension at interval [0, 25] with one

component with mean µT
1 = (30, 12.5) and variance matrix Σ1 =

(︄
20 12
12 20

)︄
. In

total, 250 data points were simulated. The scatter plot (top) of truncated data is
shown together with the true mean and the estimated means with the EM algo-
rithm using the algorithm described in this thesis versus the algorithm described
in the article Lee and Scott [2012]. At the bottom, we have graphs of the ob-
served log-likelihood calculated at each iteration of the EM algorithm. The EM
algorithm was stopped when the difference in the observed log-likelihood function
was lower than 10−8. The horizontal axis indicates the number of iterations until
the stopping criterion was met.
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Experiment 10

Annihilation of one of the two clusters

As our last commented experiment, we choose one pathological case that occured
during the investigation of various examples in two dimensions. Let µT

1 = (5, 15),

µT
2 = (10, 10), Σ1 =

(︄
20 0
0 5

)︄
, Σ2 =

(︄
5 0
0 20

)︄
and generate 500 data points.

The results can be seen in Figure 4.19 and in Table 4.12. We choose this
particular example because for the article algorithm, the estimate of the first
weight η1 converges to zero (and so the estimate of the second weight is one).
The complete-data log-likelihood for the article algorithm is increasing at first,
then it starts to decrease up to the iteration where the first cluster has vanished
which leads to a small increase in the complete-data log-likelihood. Afterwards,
it remains the same and the algorithm is stopped. This behavior does not
happen with the thesis algorithm which provides reasonable results.

We showed this example in order to illustrate the weak point of the article algo-
rithm: the complete-data log-likelihood is not guaranteed to be well-behaved as is
the case for the thesis algorithm. Our conclusion would be that the complete-data
log-likelihood might behave unexpectedly.

65



N = 500, K = 2 µT
1 = (5, 15), Σ1 =

(︄
20 0
0 5

)︄
, η1 = 0.6

µT
2 = (10, 10), Σ2 =

(︄
5 0
0 20

)︄
, η2 = 0.4

Thesis algorithm µ̂T
1 = (5.8074, 14.8263), Σ̂1 =

(︄
10.102 −0.817
−0.817 4.6529

)︄

η̂1 = 0.6240

µ̂T
2 = (10.5196, 10.0108), Σ̂2 =

(︄
4.3952 2.104
2.104 18.0839

)︄

η̂2 = 0.3760

Article algorithm µ̂T
1 = (−6.2156, 14.9474), Σ̂1 =

(︄
1.9461 −0.0365

−0.0365 0.0019

)︄

η̂1 = 0.0000

µ̂T
2 = (7.2926, 13.1321), Σ̂2 =

(︄
15.3476 −5.9657
−5.9657 15.7114

)︄

η̂2 = 1.0000

No. iterations Time Log-likelihood KL
Thesis algorithm 97 214.9704 s -2631.1575 0.0007
Article algorithm 282 290.8407 s -2711.7988 -0.0016

Table 4.12: Summary of Experiment 10.
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Figure 4.19: The experiment with two-dimensional synthetic data. Data comes
from Gaussian mixture truncated in each dimension at interval [0, 25] with two
components with means µT

1 = (5, 15), µT
2 = (10, 10), weights π1 = 0.6, π2 = 0.4

and covariance matrices Σ1 =
(︄

20 0
0 5

)︄
, Σ2 =

(︄
5 0
0 20

)︄
. In total, 500 data points

were simulated. The scatter plot (top) of truncated data is shown together with
true mean and estimated means with the EM algorithm using the algorithm
described in this thesis versus the algorithm described in the article Lee and
Scott [2012]. At the bottom, we have graphs of the observed log-likelihood cal-
culated at each iteration of the EM algorithm. The EM algorithm was stopped
when the difference in the observed log-likelihood function was lower than 10−8.
The horizontal axis indicates the number of iterations until the stopping criterion
was met.
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4.2 Real dataset
In this sub-chapter we discuss the real dataset California Redwoods Point
Pattern (Ripley’s Subset) provided in R library spatstat. Its subset we will
work with represents locations of 62 Californian redwood seedlings and saplings.
The observation window is after rescaling a bounded unit square. The plot of
this dataset is in Figure 4.20.

Figure 4.20: Redwood dataset: the location of 62 seedlings and samplings of
California Giant Redwood.

Number of clusters: We compare two before-mentioned information criteria
to determine the optimal number of clusters, it is AICc and BIC, see section
3.1.2. We choose the corrected version of AIC as the sample size is small, we
have only 62 data points. We run the algorithm with one up to seven clusters
and calculate these two criteria. The reason we do not run the calculation for
more than 7 clusters lies in its numerical instability. We have only 62 points,
each with the precision of 2 decimals places. This could quite easily lead to a
cluster with only two points for which will be the covariance matrix singular (or
numericaly almost singular and thus useless as a covariance matrix estimate).
In practice, we choose the number of components for which the one or the other
criterion reached the minimum value and/or it does not decrease a lot (relatively
to the rest of the values). It is not always easy to determine such number of
components.
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For the simulations for given number of clusters, we again choose the same initial
parameters for each of the three approaches (standard EM algorithm, thesis
EM algorithm and article algorithm) obtained by K-means algorithm. The final
results are not sensitive to changing the initial random seed, we run the al-
gorithms with different seeds and looked at the initial parameters, as well as
the final parameters and basically there were no differences. We use the stopping
criterion based on the difference between the observed log-likelihood function
with threshold δ = 10−6.

The resulting values of both criteria for each approach are shown in Figure 4.2.
Using the corrected AIC, we have an obvious match for both, the thesis
algorithm and the article algorithm, in determining the number of clusters, we
choose K = 4. For the standard EM algorithm, we would probably choose
K = 5. For BIC, the decision is not that obvious. Presumably, for the thesis
algorithm, we choose again K = 4, for the article and the standard EM algorithm
we may choose K = 5.

In Figure 4.2 and Figure 4.2, we have the final estimates of cluster means and
95% confidence ellipses using the standard EM algorithm, the thesis algorithm
and the article algorithm depending on the number of clusters.
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Figure 4.21: The values of AIC (top) and BIC (bottom) depending on the number
of clusters for Redwood dataset using the standard EM algorithm, the algorithm
described in this thesis and the algorithm described in the article Lee and Scott
[2012].
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Figure 4.22: Real dataset: scatter plots together with estimates of means and
95% confidence ellipses using the standard EM algorithm, the thesis algorithm
and the article algorithm for different number of clusters (upper: K = 2, middle:
K = 3, bottom: K = 4).
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Figure 4.23: Real dataset: scatter plots together with estimates of means and
95% confidence ellipses using the standard EM algorithm, the thesis algorithm
and the article algorithm for different number of clusters (upper: K = 5, middle:
K = 6, bottom: K = 7).
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Conclusion
This thesis introduced the application of the EM algorithm to the Gaussian
mixture distribution when we are restricted to a bounded rectangle observation
window. While there are numerous publications on the EM algorithm for
Gaussian mixtures, this is not the case for its truncated version.

With the help of the EM algorithm, we can get an important insight on
the process of interest. We have studied the article Lee and Scott [2012] in detail
as it is one of the few resources on this topic available. However, the proposed
method in the mentioned article has a weak point, it is not based on the general
theory of the EM algorithm and thus we cannot rely on it. As we saw in the last
chapter of this thesis, in the more complex and complicated examples, this
simplified version of the EM algorithm does not give us faster convergence, nor
better results than the proposed algorithm in this thesis. We therefore find it
preferrable to use the algorithm based on the general EM-algorithm theory,
described in this thesis.

We can extend the work done in this thesis in multiple ways. From the practical
point of view, the algorithm derived in this thesis could be used in a real appli-
cation, such as the flow cytometry dataset analysed in Lee and Scott [2012]. The
library written for this thesis could also be released as as an open-source library,
or utilized for a contribution into an existing library.
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Appendix
Theorem 3. Assume that the random vector X = (X1, . . . , Xd)T has d-
dimensional normal distribution with mean µ = (µ1, . . . , µd)T and covariance
matrix Σ. For K ⊂ {1, . . . , d}, divide the vector X into X{k∈K} and X−{k∈K}
where X{k∈K} has elements Xi, i ∈ K and X−{k∈K} has elements Xj for
j ∈ {1, . . . , d} \ K. In the same way, divide the vector µ into µ{k∈K} and
X−{k∈K} and the matrix Σ into four sub-matrices Σ{k∈K},{k∈K}, Σ−{k∈K},−{k∈K},
Σ−{k∈K},{k∈K}, Σ{k∈K},−{k∈K}. Then the conditional distribution of X{k∈K} given
X−{k∈K} is the k-dimensional normal distribution with mean

µ{k∈K} + Σ{k∈K},−{k∈K}Σ−1
−{k∈K},−{k∈K}(X−{k∈K} − µ−{k∈K})

and covariance matrix

Σ{k∈K},{k∈K} − Σ{k∈K},−{k∈K}Σ−1
−{k∈K},−{k∈K}Σ−{k∈K},{k∈K}.

Proof. See Anděl [2007].
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Experiment A1.

Two clusters, with mean in the middle of the observation window

N = 500, K = 2, s = 0, t = 40

µ1 = 15, σ2
1 = 10, η1 = 0.6

µ2 = 20, σ2
2 = 10, η2 = 0.4

Thesis algorithm µ̂1 = 15.5909, σ̂2
1 = 9.9131, η̂1 = 0.7577

µ̂2 = 21.2226, σ̂2
2 = 4.6477, η̂2 = 0.2423

Article algorithm µ̂1 = 15.5911, σ̂2
1 = 9.9137, η̂1 = 0.7577

µ̂2 = 21.2228, σ̂2
2 = 4.6473, η̂2 = 0.2423

No. iterations Time Log-likelihood KL
Thesis algorithm 349 464.1091 s -1373.2374 0.0151
Article algorithm 369 402.9779 s -1373.2374 0.0151

Table 4.13: Summary of Experiment A1.
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Figure 4.24: The experiment with one-dimensional synthetic data. Data comes
from Gaussian mixture truncated at interval [0, 40] with two components with
means µ1 = 15, µ2 = 20, weights π1 = 0.6, π2 = 0.4 and common variance
σ2 = 10. In total, N = 500 data points were simulated. The histogram (top)
of truncated data is shown together with real mean and estimated means with
the EM algorithm using the algorithm described in this thesis versus the algo-
rithm described in the article Lee and Scott [2012]. At the bottom, we have graphs
of the observed log-likelihood calculated at each iteration of the EM algorithm.
The EM algorithm was stopped when the difference in the observed log-likelihood
function was lower than 10−8. The horizontal axis indicates the number of itera-
tions until the stopping criterion was met.
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Experiment A2.

Two clusters, with mean in the middle of the observation window

N = 500, K = 2, s = 0, t = 40

µ1 = 18, σ2
1 = 10, η1 = 0.6

µ2 = 20, σ2
2 = 10, η2 = 0.4

Thesis algorithm µ̂1 = 13.7156, σ̂2
1 = 2.2846, η̂1 = 0.0825

µ̂2 = 19.1853, σ̂2
2 = 7.6779, η̂2 = 0.9175

Article algorithm µ̂1 = 13.7154, σ̂2
1 = 2.2843, η̂1 = 0.0825

µ̂2 = 19.1852, σ̂2
2 = 7.6782, η̂2 = 0.9175

No. iterations Time Log-likelihood KL
Thesis algorithm 669 893.8064 s -1269.2279 0.0169
Article algorithm 683 789.0853 s -1269.2279 0.0169

Table 4.14: Summary of Experiment A2.
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Figure 4.25: The experiment with one-dimensional synthetic data. Data comes
from Gaussian mixture truncated at interval [0, 40] with two components with
means µ1 = 18, µ2 = 20, weights π1 = 0.6, π2 = 0.4 and common variance
σ2 = 10. In total, N = 500 data points were simulated. The histogram (top)
of truncated data is shown together with real mean and estimated means with
the EM algorithm using the algorithm described in this thesis versus the algo-
rithm described in the article Lee and Scott [2012]. At the bottom, we have graphs
of the observed log-likelihood calculated at each iteration of the EM algorithm.
The EM algorithm was stopped when the difference in the observed log-likelihood
function was lower than 10−8. The horizontal axis indicates the number of itera-
tions until the stopping criterion was met.
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Experiment A3.

Two clusters, first one with mean at the border, second one with mean
inside the observation window

N = 500, K = 2, s = 0, t = 40

µ1 = 0, σ2
1 = 10, η1 = 0.4286

µ2 = 20, σ2
2 = 10, η2 = 0.5714

Thesis algorithm µ̂1 = −0.9608, σ̂2
1 = 10.4582, η̂1 = 0.4199

µ̂2 = 19.9374, σ̂2
2 = 8.9120, η̂2 = 0.5801

Article algorithm µ̂1 = −0.9602, σ̂2
1 = 10.4569, η̂1 = 0.4199

µ̂2 = 19.9374, σ̂2
2 = 8.912, η̂2 = 0.5801

No. iterations Time Log-likelihood KL
Thesis algorithm 5 12.4640 s -1442.5232 0.0093
Article algorithm 170 261.8069 s -1442.5232 0.0093

Table 4.15: Summary of Experiment A3.
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Figure 4.26: The experiment with one-dimensional synthetic data. Data comes
from Gaussian mixture truncated at interval [0, 40] with two components with
means µ1 = 0, µ2 = 20, weights π1 = 0.6, π2 = 0.4 and common variance σ2 = 10.
In total, N = 500 data points were simulated. The histogram (top) of truncated
data is shown together with real mean and estimated means with the EM algo-
rithm using the algorithm described in this thesis versus the algorithm described
in the article Lee and Scott [2012]. At the bottom, we have graphs of the ob-
served log-likelihood calculated at each iteration of the EM algorithm. The EM
algorithm was stopped when the difference in the observed log-likelihood function
was lower than 10−8. The horizontal axis indicates the number of iterations until
the stopping criterion was met.
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Experiment A4.

Two clusters, first one with mean outside the observation window,
second one with mean inside the observation window

N = 500, K = 2, s = 0, t = 40

µ1 = −3, σ2
1 = 10, η1 = 0.2045

µ2 = 20, σ2
2 = 10, η2 = 0.7955

Thesis algorithm µ̂1 = −1.0908, σ̂2
1 = 6.2728, η̂1 = 0.198

µ̂2 = 19.9627, σ̂2
2 = 8.7363, η̂2 = 0.802

Article algorithm µ̂1 = −1.0900, σ̂2
1 = 6.2715, η̂1 = 0.1980

µ̂2 = 19.9627, σ̂2
2 = 8.7363, η̂2 = 0.8020

No. iterations Time Log-likelihood KL
Thesis algorithm 4 9.8523 s -1397.9866 0.0049
Article algorithm 185 284.7992 s -1397.9866 0.0049

Table 4.16: Summary of Experiment A4.
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Figure 4.27: The experiment with one-dimensional synthetic data. Data comes
from Gaussian mixture truncated at interval [0, 40] with two components with
means µ1 = −3, µ2 = 20, weights π1 = 0.6, π2 = 0.4 and common variance
σ2 = 10. In total, N = 500 data points were simulated. The histogram (top)
of truncated data is shown together with real mean and estimated means with
the EM algorithm using the algorithm described in this thesis versus the algo-
rithm described in the article Lee and Scott [2012]. At the bottom, we have graphs
of the observed log-likelihood calculated at each iteration of the EM algorithm.
The EM algorithm was stopped when the difference in the observed log-likelihood
function was lower than 10−8. The horizontal axis indicates the number of itera-
tions until the stopping criterion was met.
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Experiment A5.

One cluster with mean at the borders of the observation window

N = 200, K = 1, µT
1 = (25, 23), Σ1 =

(︄
20 0
0 20

)︄

Thesis algorithm µ̂T
1 = (24.9409, 23.7676), Σ̂1 =

(︄
17.5992 −0.0516

−0.0516 24.7631

)︄

Article algorithm µ̂T
1 = (24.9404, 23.7682), Σ̂1 =

(︄
17.5977 −0.0515

−0.0515 24.7666

)︄

No. iterations Time Log-likelihood KL
Thesis algorithm 3 1.3232 s -918.58 0.0001
Article algorithm 115 18.0086 s -918.58 0.0001

Table 4.17: Summary of Experiment A5.
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Figure 4.28: The experiment with two-dimensional synthetic data. Data comes
from Gaussian mixture truncated in each dimension at interval [0, 25] with one

component with mean µT
1 = (25, 23) and variance matrix Σ1 =

(︄
20 0
0 20

)︄
. In

total, 200 data points were simulated. The scatter plot (top) of truncated data
is shown together with true mean and estimated means with the EM algorithm
using the algorithm described in this thesis versus the algorithm described in
the article Lee and Scott [2012]. At the bottom, we have graphs of the observed
log-likelihood calculated at each iteration of the EM algorithm. The EM algo-
rithm was stopped when the difference in the observed log-likelihood function
was lower than 10−8. The horizontal axis indicates the number of iterations until
the stopping criterion was met.
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Experiment A6.

One cluster with mean outside the observation window

N = 250, K = 1, µT
1 = (30, 12.5), Σ1 =

(︄
20 0
0 20

)︄

Thesis algorithm µ̂T
1 = (32.3253, 11.7747), Σ̂1 =

(︄
26.0491 −2.1302

−2.1302 17.7105

)︄

Article algorithm µ̂T
1 = (32.3177, 11.7447), Σ̂1 =

(︄
26.0285 −2.1596

−2.1596 17.9893

)︄

No. iterations Time Log-likelihood KL
Thesis algorithm 2 1.3003 s -1165.1878 -0.0005
Article algorithm 474 101.3228 s -1165.2047 -0.0005

Table 4.18: Summary of Experiment A6.
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Figure 4.29: The experiment with two-dimensional synthetic data. Data comes
from Gaussian mixture truncated in each dimension at interval [0, 25] with one

component with mean µT
1 = (30, 12.5) and variance matrix Σ1 =

(︄
20 0
0 20

)︄
. In

total, 250 data points were simulated. The scatter plot (top) of truncated data
is shown together with true mean and estimated means with the EM algorithm
using the algorithm described in this thesis versus the algorithm described in
the article Lee and Scott [2012]. At the bottom, we have graphs of the observed
log-likelihood calculated at each iteration of the EM algorithm. The EM algo-
rithm was stopped when the difference in the observed log-likelihood function
was lower than 10−8. The horizontal axis indicates the number of iterations until
the stopping criterion was met.
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Experiment A7.

Two clusters with means inside the observation window with signifi-
cant overlap

N = 250, K = 2, µT
1 = (16, 16), Σ1 =

(︄
20 0
0 5

)︄
, π1 = 0.4

µT
2 = (12.5, 12.5), Σ2 =

(︄
5 0
0 20

)︄
, π2 = 0.6

Thesis algorithm µ̂T
1 = (15.682, 15.8094), Σ̂1 =

(︄
4.4594 −1.0568

−1.0568 19.9229

)︄

µ̂T
2 = (12.0637, 12.8596), Σ̂2 =

(︄
15.6636 −0.1046

−0.1046 3.4416

)︄

Article algorithm µ̂T
1 = (15.6413, 15.7912), Σ̂1 =

(︄
4.4362 −1.1430

−1.1430 20.6881

)︄

µ̂T
2 = (12.0464, 12.7972), Σ̂2 =

(︄
15.5915 −0.0502

−0.0502 3.4728

)︄

No. iterations Time Log-likelihood KL
Thesis algorithm 77 88.2472 s -1302.9344 0.0027
Article algorithm 138 53.219 s -1302.9615 0.0027

Table 4.19: Summary of Experiment A7.
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Figure 4.30: The experiment with two-dimensional synthetic data. Data comes
from Gaussian mixture truncated in each dimension at interval [0, 25] with two
components with means µT

1 = (16, 16), µT
2 = (12.5, 12.5), weights π1 = 0.6,

π2 = 0.4 and covariance matrices Σ1 =
(︄

20 0
0 5

)︄
, Σ2 =

(︄
5 0
0 20

)︄
. In total, 250

data points were simulated. The scatter plot (top) of truncated data is shown
together with true mean and estimated means with the EM algorithm using the al-
gorithm described in this thesis versus the algorithm described in the article Lee
and Scott [2012]. At the bottom, we have graphs of the observed log-likelihood
calculated at each iteration of the EM algorithm. The EM algorithm was stopped
when the difference in the observed log-likelihood function was lower than 10−8.
The horizontal axis indicates the number of iterations until the stopping criterion
was met.
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Experiment A8.

Two clusters with means inside the observation window with insignifi-
cant overlap

N = 250, K = 2, µT
1 = (17, 16), Σ1 =

(︄
20 0
0 5

)︄

µT
2 = (5, 10), Σ2 =

(︄
5 0
0 20

)︄

Thesis algorithm µ̂T
1 = (16.763, 16.1075), Σ̂1 =

(︄
16.5389 −0.7923
−0.7923 4.4812

)︄

µ̂T
2 = (4.9546, 10.2439), Σ̂2 =

(︄
4.1754 −0.6962

−0.6962 15.2654

)︄

Article algorithm µ̂T
1 = (16.7738, 16.111), Σ̂1 =

(︄
16.4494 −0.8194
−0.8194 4.4660

)︄

µ̂T
2 = (4.9076, 10.2015), Σ̂2 =

(︄
4.5166 −0.7421

−0.7421 15.9203

)︄

No. iterations Time Log-likelihood KL
Thesis algorithm 20 79.0723 s -1390.1911 0.0014
Article algorithm 42 49.762 s -1390.4235 0.0010

Table 4.20: Summary of Experiment A8.
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Figure 4.31: The experiment with two-dimensional synthetic data. Data comes
from Gaussian mixture truncated in each dimension at interval [0, 25] with two
components with means µT

1 = (17, 16), µT
2 = (5, 10), weights π1 = 0.6, π2 = 0.4

and covariance matrices Σ1 =
(︄

20 0
0 5

)︄
, Σ2 =

(︄
5 0
0 20

)︄
. In total, 250 data points

were simulated. The scatter plot (top) of truncated data is shown together with
true mean and estimated means with the EM algorithm using the algorithm
described in this thesis versus the algorithm described in the article Lee and
Scott [2012]. At the bottom, we have graphs of the observed log-likelihood cal-
culated at each iteration of the EM algorithm. The EM algorithm was stopped
when the difference in the observed log-likelihood function was lower than 10−8.
The horizontal axis indicates the number of iterations until the stopping criterion
was met.
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