
MASTER THESIS

Karel Maděra

Accelerating cross-correlation with
GPUs

Department of Distributed and Dependable Systems

Supervisor of the master thesis: doc. RNDr. Martin Krulǐs, Ph.D
Study programme: Computer Science

Study branch: ISS

Prague 2022

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

ii

I would like to give thanks to my thesis supervisor doc. RNDr. Martin Krulǐs,
Ph.D for his unending patience and constructive criticism, which were both crucial
for the creation of this thesis. I would like to thank my parents for their support
throughout my studies. Finally I would like to give thanks to all those I have
met throughout my journey at the Faculty of Mathematics and Physics.

iii

iv

Title: Accelerating cross-correlation with GPUs

Author: Karel Maděra

Department: Department of Distributed and Dependable Systems

Supervisor: doc. RNDr. Martin Krulǐs, Ph.D, Department of Distributed and
Dependable Systems

Abstract: Cross-correlation is a commonly used tool in the field of signal pro-
cessing, with applications in pattern recognition, particle physics, electron to-
mography, and many other areas. For many of these applications, it is often
the limiting factor on system performance due to its computational complexity.
In this thesis, we analyze the cross-correlation algorithm and its optimization
and parallelization possibilities. We then implement several optimizations of the
definition-based algorithm, mainly focused on parallelization using the Graphi-
cal processing unit (GPU). Even though the definition-based algorithm provides
many possibilities for parallelization, the implementation needs to solve several
problems, such as the algorithm’s low arithmetic intensity. Furthermore, the
problems differ between computation types, which include cross-correlating a pair
of inputs, one input with many other inputs, or many inputs with many other
inputs. Lastly, we compare the optimizations of the definition-based algorithm
with the asymptotically faster and commonly used algorithm based on the Fast
Fourier Transform. Depending on the total size of the data, we achieve parity
between the two algorithms for matrix sizes ranging from 60x60 to 150x150, al-
lowing performance improvements for systems using matrices smaller than these
sizes.

Keywords: cross-correlation GPU parallelization optimization

v

vi

Contents

Introduction 3

1 Cross-correlation 5
1.1 Definition . 5
1.2 Computation using discrete Fourier Transform 6
1.3 Definition based optimizations . 8

1.3.1 Data parallelism . 8
1.3.2 Forms of cross-correlation 8

1.4 Post-processing . 9

2 GPU 11
2.1 Fundamentals . 11
2.2 CUDA Programming model . 11

2.2.1 Running the device code 12
2.2.2 Thread hierarchy . 13
2.2.3 Thread cooperation . 13
2.2.4 Cooperative groups . 15
2.2.5 Memory hierarchy . 16
2.2.6 Hardware details . 17
2.2.7 Versioning . 18

2.3 Code optimizations . 19
2.3.1 Occupancy . 20
2.3.2 Pipeline saturation . 20
2.3.3 Global memory access . 21
2.3.4 Shared memory access . 21
2.3.5 General recommendations 22

3 Implementation 25
3.1 Parallelization . 25

3.1.1 Two matrices . 26
3.1.2 Many matrices . 27

3.2 Data reuse . 29
3.2.1 Overlap . 29
3.2.2 Row group and column group 30
3.2.3 Workers . 32
3.2.4 List of implementations 32

3.3 Basic algorithm . 33
3.4 Warp shuffle algorithm family . 35

3.4.1 Algorithm steps . 36
3.4.2 Work distribution . 38
3.4.3 Utilizing multiple right matrices 42
3.4.4 Multiple rows from the right matrix 45
3.4.5 Multiple left matrices . 47
3.4.6 Multiple rows from both matrices 49
3.4.7 Summary . 50

1

3.5 Warp per shift algorithm family 52
3.5.1 Base implementation . 53
3.5.2 Simplified indexing . 54
3.5.3 Shared memory . 57
3.5.4 Shared memory with multiple right matrices 61
3.5.5 Shared memory with single column group per block 62
3.5.6 Work distribution . 63

3.6 Further increasing worker size . 64
3.6.1 Summary . 64

4 Results 67
4.1 Experiments . 67

4.1.1 Code instrumentation . 67
4.1.2 Experiment setup . 68
4.1.3 Result validation . 69

4.2 Comparing definition-based algorithms 69
4.2.1 Warp shuffle optimizations with the one-to-one input . . . 70
4.2.2 Warp shuffle optimizations with the one-to-many input . . 71
4.2.3 Warp shuffle optimizations with the n-to-mn input 73
4.2.4 Warp shuffle optimizations with the n-to-m input 75
4.2.5 Warp per shift optimizations with the one-to-one inputs . 77
4.2.6 Comparison with Basic algorithm 78

4.3 Comparison with existing implementations 80
4.3.1 FFT-based implementation 80
4.3.2 SciPy . 84
4.3.3 Matlab . 85

Conclusion 89
4.4 Future work . 90

Bibliography 91

A Local array optimization 95
A.1 Advanced optimizations and local arrays 95

B Attachments 99

2

Introduction
The field of signal processing is present everywhere in today’s world. From image
processing through seismology to particle physics, the need to analyze, modify
or synthesize signals such as sound, images, and other scientific measurements
is shared across many fields. One of the commonly used algorithms in signal
processing is cross-correlation, which will be the subject of this thesis. The aim
is to analyze, implement and evaluate possible methods of optimization and par-
allelization of the definition-based cross-correlation algorithm. The implementa-
tions will then be further compared to the generally used implementation based
on the Fast Fourier transform.

Motivation
Cross-correlation is one of the key operations in both analog and digital signal
processing. It is widely used in image analysis, pattern recognition, image seg-
mentation, particle physics, electron tomography, and many other fields [5]. For
many of these applications, the computation time of cross-correlation is often the
limiting factor in the data processing pipeline. The amount of input data com-
bined with the computational complexity makes simple sequential CPU-based
implementations and even more advanced parallel CPU-based implementations
inadequate.

Algorithms based on the definition of cross-correlation or on the Fast Fourier
transform (FFT) can take advantage of the inherent high degree of data paral-
lelism in the definition of cross-correlation or FFT, respectively. This parallelism
allows them to utilize the high throughput and large amounts of computational
power provided by the massively parallel systems in the form of Graphical pro-
cessing units (GPU).

This thesis is a continuation of the thesis ”Employing GPU to Process Data
from Electron Microscope” [1], which uses both a basic definition-based cross-
correlation algorithm and one based on FFT. The aim is to compare the asymp-
totically faster FFT-based algorithm with the asymptotically slower definition-
based algorithm and provide an optimized implementation of the definition-based
algorithm, which, for the input sizes used by the original thesis, should be faster
than the FFT-based implementation.

Objective
This thesis aims to analyze the possibilities for optimization and parallelization
of the definition-based algorithm and provide detailed measurements and com-
parisons with the FFT-based algorithm for a range of input forms and sizes. The
optimizations and parallelization of the definition-based algorithm will utilize ca-
pabilities provided by the CUDA platform.

The main contributions of this thesis are:

• a family of optimized definition-based implementations utilizing the CUDA
platform,

3

• comparison of the definition-based implementations with one based on the
Fast Fourier Transform,

• measurements of the behavior of these implementations and its dependence
on input size and type.

Thesis outline
The contents of this thesis are ordered as follows:

• description of cross-correlation algorithm;

• introduction to computations utilizing GPU hardware and the CUDA plat-
form;

• analysis of the optimizations of the definition-based algorithm, focused on
parallelization using the CUDA platform,

• measurement of the behavior of both the optimized definition-based algo-
rithm and the algorithm based on the Fast Fourier transform.

4

1. Cross-correlation
In this chapter, we define cross-correlation and describe algorithms for its com-
putation. We first define one-dimensional cross-correlation, extending it into
multiple dimensions and introducing circular cross-correlation. We then illus-
trate how circular cross-correlation is used to compute cross-correlation using
discrete Fourier transform. Lastly we list the possibilities for optimization and
parallelization of cross-correlation, with real-world usage examples of where these
optimizations can be utilized.

1.1 Definition
Cross-correlation, also known as sliding dot product or sliding inner-product, is a
function describing similarity of two series or two functions based on their relative
displacement [19]. Cross-correlation of functions f, g : C → R, denoted as f ⋆ g,
is defined by the following formula:

(f ⋆ g)(τ) =
∫︂ ∞

−∞
f(t)g(t + τ) dt,

where f(t) denotes the complex conjugate of f(t) and τ is the displacement
of the two functions f and g. In simpler words, the value (f ⋆ g)(τ) tells us how
similar the function f is to g when g is shifted by τ , with a higher value repre-
senting higher similarity. Figure 1.1 shows the cross-correlation of two example
functions.

f ⋆ gg ⋆ f

f

g

Figure 1.1: Cross-correlation of two functions. [18]

For two discrete functions, as will be used in our case, cross-correlation of
functions f, g : Z → R is defined by the following formula:

(f ⋆ g)[m] =
∞∑︂

i=−∞
f [i]g[i + m],

This definition of cross-correlation can be extended for use in two dimensions,
as is required, for example, in image processing. For two discrete functions f, g :
Z2 → R, cross-correlation is defined as:

5

(f ⋆ g)[m, n] =
∞∑︂

i=−∞

∞∑︂
j=−∞

f [m, n]g[m + i, n + j],

Even though cross-correlation is defined on the whole Z for one dimension
and Z2 for two dimensions, most use cases of cross-correlation work only on finite
inputs, such as image processing working on finite images. The only values we
are interested in are those where the two images overlap, which restricts the
computation to (w1 + w2 − 1) ∗ (h1 + h2 − 1) resulting values, where wi denotes
width of the image i and hi denotes the height of the image i.

This limits the part of the output we are interested in and leads us to the time
complexity of the definition based algorithm, or naive algorithm as it is called in
the code attached to this thesis. For each of the (w1 + w2 − 1) ∗ (h1 + h2 − 1)
output values, we need to multiply the overlapping pixel values and sum up
all the multiplication results. There will be at most min(w1, w2) ∗ min(h1, h2)
overlapping pixels. For simplicity, let us work with two images of size wi ∗ hi.
Then the time complexity of the definition based algorithm is ((2 ∗ wi − 1) ∗ (2 ∗
hi − 1) ∗ (wi ∗ hi)), which gives us asymptotic complexity of O(w2

i ∗ h2
i).

1.2 Computation using discrete Fourier Trans-
form

In this section, we describe an algorithm which uses the discrete Fourier trans-
form to compute the cross-correlation of two finite two-dimensional series. The
asymptotic complexity of this algorithm will be O(wi ∗ hi ∗ log2(wi ∗ hi)), where
wi is the width of each series and hi the height of each series. This improves on
the asymptotic complexity O(w2

i ∗h2
i) of the definition based algorithm described

in the previous section 1.1.
Discrete Fourier transform can only be used to compute a special type of

cross-correlation, the so called circular cross-correlation. For a finite series N ∈
N{x}n = x0, x1, ..., xN−1, {yn} = y0, y1, ..., yN−1, circular cross-correlation is de-
fined as:

(x ⋆N y)m =
N−1∑︂
i=0

xmy(m+i)modN ,

where xm denotes the complex conjugate of xm.
Based on the Cross-Correlation Theorem [17], circular cross-correlation (x ⋆N

y)m can be computed using discrete Fourier Transform according to the following
formula:

(x ⋆N y)m = F−1(F(x) ∗ F(y))

where F(x) and F(y) denote discrete Fourier Transform of series x and y
respectively, F(x) denotes the complex conjugate of the discrete Fourier Trans-
form, ∗ denotes element-wise multiplication of two series and F−1 denotes inverse
discrete Fourier Transform.

As described by Bali [1], to compute non-circular (linear) cross-correlation of
non-periodic series of size N, we pad both series with N zeros to the size 2N, as

6

can be see in Figure 1.2. The results of circular cross-correlation are then the
results of linear cross-correlation, only circularly shifted by N − 1 places to the
left with one additional 0 value at index N .

2 3 4 5

6 7 8 9

30 59 8611074 43 18

2 3 4 5

6 7 8 9

30 59 8611074 43 18

0 0 0 0

0 0 0 0

0

a

b

a ⋆ b x ⋆ y

x

y

Figure 1.2: Comparison of linear and circular cross-correlation [1].

This process can be expanded into two dimensions, where the matrices are
padded with N rows and N columns of zeros before being passed through 2D
discrete Fourier transform. Here the circular shift of the results can be inverted
by swapping the quadrants of the results while discarding row N and column N,
which will be filled with zeros [1], as shown by Figure 1.3.

N

N

N - 1

N - 1 2N - 1

2N - 1

Figure 1.3: Result quadrant swap.

Based on this description, we can deduce the time complexity of the algorithm.
For two matrices a, b ∈ Rh×w, the steps of the algorithm are:

1. Padding ap, bp ∈ R2h×2w of a and b with h rows and w columns of zeros in
O(h ∗ w);

2. Discrete Fourier Transform A, B ∈ C2h×2w of ap and bp in O(h ∗ w ∗ log2(h ∗
w));

3. Element-wise multiplication, also known as the Hadamard product, C ∈
C2h×2w : C = A ◦ B, where A the denotes complex conjugate of A, in
O(wi ∗ hi);

4. Inverse Discrete Fourier Transform c ∈ R2h×2w of C in O(h∗w∗ log2(h∗w));

5. Quadrant swap in O(h ∗ w)

Put together, the steps described above give us an algorithm with asymptotic
time complexity of O(h ∗ w ∗ log2(h ∗ w)).

7

1.3 Definition based optimizations
In the original thesis by Bali [1], and in the field of image processing in general,
2D version of cross-correlation is mostly used to find a grayscale image or a piece
of a grayscale image represented as an integer or floating point matrix in another
image, also represented as such a matrix. This can be done to, for example, find
the displacement of a certain point of interest between images taken at different
times, as is done in Bali [1] and Zhang et al. [22].

This thesis will implement cross-correlation of integer and floating point ma-
trices, which encompasses the usage in the previously mentioned works. These
implementations will be optimized to take advantage of different forms of cross-
correlation input, such as the cross-correlation of one matrix with many other
matrices, different sizes of input matrices etc.

1.3.1 Data parallelism
The definition based algorithm for computing cross-correlation is highly data par-
allel. Not only can every element in the result matrix be computed independently,
but also the computation of each element can parallelized with a simple reduction
of the final results.

When using the definition based algorithm, each element of the resulting
matrix corresponds to an overlap of the two cross-correlated matrices. Every two
overlapping elements of the two input matrices are multiplied and the results of
these multiplications are then summed up to get the final value for the given
overlap.

For each overlap, there is ho ∗ wo multiplications, where ho and wo describe
the number of rows and columns that overlap. The following formula describes
the total number of multiplications for all overlaps:

(h ∗ (h + 1) − 1) ∗ (w ∗ (w + 1) − 1)

.
All these multiplications can be done independently in parallel. Afterwards,

each overlap has to compute a sum of the ho ∗ wo intermediate results to produce
the final result.

1.3.2 Forms of cross-correlation
In works using cross-correlation, there are several forms of computation which
allow for different types of optimizations, such as data caching and reuse, batch-
ing, and precomputing. These forms differ in the number of inputs and in the
way cross-correlation is computed between the inputs. The four basic forms are,
as shown in Figure 1.4:

1. one left input with one right input, in the rest of the thesis referred to as
one-to-one and depicted in Figure 1.4a;

2. one left input with many right inputs, referred to as one-to-many and de-
picted in Figure 1.4b;

8

3. n left inputs, each cross-correlated with m different right inputs, referred
to as n-to-mn and depicted in Figure 1.4c (used by Bali [1], Zhang et al.
[22], Kapinchev et al. [5]);

4. n left inputs, each cross-correlated with all m right inputs, referred to as
n-to-m and depicted in Figure 1.4d (used by Clark et al. [3]).

While each pair of input matrices can always be computed independently,
the one-to-many, n-to-mn and n-to-m types allow for the reuse of the left input
matrix data for computation with multiple right input matrices. Additionally,
the n-to-m makes it possible to reuse data from the right matrix for computation
with multiple left input matrices.

For the same size of input data, i.e. x left input matrices and y right input
matrices, the n-to-m requires computation of x∗y pairs of matrices, compared to
the n-to-mn type which results in only y pairs. The increased level of parallelism
and increased arithmetic intensity allow for additional optimizations of the n-to-
m computation type compared to the n-to-mn type. The one-to-one and one-
to-many types are described separately, as compared to the general n-to-mn or
n-to-m implementation, their implementations can more aggressively cache and
reuse the left input matrix .

Implementations of the two simpler types one-to-one and one-to-many can be
used to implement either n-to-m or n-to-mn by running the simpler type of cross-
correlation multiple times, possibly in parallel. Inversely, any implementation
of either n-to-m or n-to-mn can be used to implement the two simpler types.
Another type which we could consider is the computation of a large number
of pairs, which can be implemented by n-to-mn with m equal to one. The large
number of pairs type is not discussed further as it does not provide any additional
opportunity for optimization compared to running the one-to-one several times
in parallel.

1.4 Post-processing
In most use cases, the cross-correlation itself is not the final output, but the results
are used for further processing. It is often used to find the position of a smaller
signal in a larger signal, for example in the field of Digital image processing
for template matching, image alignment etc. In these applications, the only
information of interest is the maximum value in the result matrix.

In Digital Image correlation, we are also interested in finding the maximum,
but this time with a subpixel precision. This requires us to find the maximum
value and use the results in an area around it to interpolate a function [22] [1].

In the field of Seismology, cross-correlation is used for picking, ambient noise
monitoring, waveform comparison, and signal, event and pattern detection [15].

In optical coherence tomography, the whole result the of cross-correlation is
summed up to compute the intensity of each pixel [5].

Although post-processing is often also a good candidate for optimization and
parallelization, it is outside the scope of this thesis. The cross-correlation results
will be taken as they are and validated against a preexisting cross-correlation
implementations.

9

(a) One to one.

(b) One to many.

n = 2
m = 3

m ∗ n = 6

(c) N to MN.

n = 2
m = 3

(d) N to M.

Figure 1.4: Forms of cross-correlation.

10

2. GPU
This chapter describes the graphics processing unit (GPU) hardware and its pri-
mary advantages and disadvantages compared to the Central processing unit
(CPU). Next, we introduce Compute Unified Device Architecture, better known
by its acronym CUDA, a ”general purpose parallel computing platform and pro-
gramming model” [11], which will be used in this thesis. Lastly, we list several
key points which need to be addressed for optimal code performance, mainly in
CUDA, but also applicable when working with GPUs of other vendors or when
using GPUs for graphics.

2.1 Fundamentals
The graphics processing unit (GPU) is optimized for the throughput of a single
stream of instructions working on many streams of data. This allows GPU hard-
ware design to make trade-offs not available for Central processing unit (CPU)
hardware. CPUs are optimized to process a single stream of instructions working
on a single stream of data as fast as possible. This goal requires CPU design to
minimize instruction latency, which is achieved using branch predictions, multi-
ple levels of caching, and other such mechanisms. On the other hand, the single
stream of instructions is executed many times in parallel in a GPU, allowing the
GPU hardware to hide high latency operations by switching to other threads
instead of optimizing for lower latency of each instruction. Furthermore, the
thread switching is made instantaneous by keeping the execution context, such
as registers, of all threads resident at all times. Compare this with CPU context
switching, where the state of all registers has to be offloaded into memory and the
state of another thread loaded from memory each time a CPU switches threads.

Another defining characteristic of the GPU hardware is separate memory
space. Code running on the GPU device cannot directly access the same memory
as code running on the CPU. Instead, all data processed on the GPU must first be
moved across the bus connecting the GPU to the host system, most commonly a
PCIe bus. Similar to the GPU execution units, the separate GPU device memory
is optimized for high throughput at the cost of higher latency compared to the
host memory. The device memory is further optimized for specific access patterns
by groups of threads running on the GPU, with the Nvidia GPU version of the
optimization described in Section 2.3.3.

2.2 CUDA Programming model
Compute Unified Device Architecture, better known by its acronym CUDA, is
a ”general purpose parallel computing platform and programming model” [11],
which allows simplified utilization of NVIDIA Graphics processing units (GPU)
for solving complex computational problems.

CUDA distinguishes two parts of the system running two types of code. First
is the host code running on the host part of the system. This is a standard C++
program running on the CPU, accessing system memory and calling the operating

11

system, as any other standard C++ program would. The second part is the device
code, running on a device or multiple devices. Each device corresponds to a single
GPU 1.

Both parts of the code are programmed in the same language, CUDA C++,
an extension of the C++ language. This extension places some restrictions on the
device code, while some parts of the language are only usable in the device code.
One of the important things CUDA C++ introduces are the function execution
space specifiers. These specifiers are attributes added to a function declaration
that specify if the given function is part of the host code, device code or if it should
be compiled both for host and device code. The available function execution space
specifiers are:

• global , which declares the function as being a kernel, callable from host
code and executed on the device,

• device , which declares the function as executed on the device, callable
by another device or global function,

• host , which declares the function as executed on the host, callable from
the host only.

Without any specifiers, a function is compiled as part of the host code. Kernel
is a function with the global specifier, which is callable from the host code
but is executed on a device. Kernels serve as entry points that the host code uses
to offload computation to the device. Kernel invocation is asynchronous, where
the function call to the kernel in host code does not wait for the kernel on the
device to finish but returns immediately after the kernel is submitted.

When invoking a kernel, the host code specifies the number of threads that
are to run the device code. A basic description of how the device code is run on
the GPU is provided in Section 2.2.1. A detailed description of the abstraction
defining the behavior of the device code called the SIMT execution model is given
in Section 2.2.6.

2.2.1 Running the device code

The device code, written in CUDA C++ as a part of a global or a device function,
describes the behavior of a single thread running on the device. Compared to the
host code running on the CPU, the device code is always run by many threads
simultaneously. On the surface, the device code is very similar to the host code
written for the CPU and will most likely work correctly if written as if for the
CPU. The number of threads running the device code is determined by the argu-
ments provided to the kernel function. The threads are hierarchically grouped on
several levels. These groups define scheduling behavior, access to different kinds
of memory, and primitives for cooperation.

To maximize performance, one must structure the code and the overall algo-
rithm according to details provided in Section 2.2.6.

1Since Compute Capability 8.0 Ampere, a device can represent a GPU slice.

12

2.2.2 Thread hierarchy
Threads on the device are grouped into Cooperative Thread Arrays (CTA), also
known as thread blocks. Thread blocks can be one-dimensional, two-dimensional,
or three-dimensional, which provides an easy way to distribute work when pro-
cessing arrays, matrices, or volumes. Thread blocks are further organized into a
one-dimensional, two-dimensional, or three-dimensional grid, as shown in Figure
2.1. When launching a kernel, we specify the thread block size and the grid size,
which combined give us the number of threads executing the given kernel.

Figure 2.1: Thread hierarchy [11].

Each thread is assigned an index, accessible through threadIdx built-in vari-
able. Each thread can also access the index of the thread block it is part of
through blockIdx, the block size through blockDim and the grid size through
gridDim. All of these variables are three-dimensional vectors, with dimensions
unused during kernel launch set to zero for indices and one for dimensions. Us-
ing these built-in variables, we can distribute work between threads, most often
assigning each thread a part of the input to process.

Due to hardware details described in Section 2.2.6, every 32 threads of a
thread block are grouped into a warp. Warps are used for scheduling and close
cooperation of threads.

2.2.3 Thread cooperation
CUDA provides several mechanisms for thread cooperation. Threads can coop-
erate on the following levels of thread hierarchy, with increasing levels of speed
and capability:

13

• grid level,

• thread block level,

• warp level.

The rest of this subsection describes the older API using intrinsic functions.
The newer Cooperative Groups API, a superset of the older API, is described in
Subsection 2.2.4.

Grid level

On the grid level, the only available tools for cooperation are atomic operations on
the global memory. These operations can be used to perform read-modify-write
on a 32-bit or 64-bit word in global memory without introducing race conditions.

Thread block level

On a thread block level, threads can use two mechanisms for cooperation:

• shared memory,

• synchronization barrier.

As per the CUDA C++ programming guide: ”the shared memory is expected
to be a low-latency memory near each processor core (much like an L1 cache)
and syncthreads() is expected to be lightweight” [11].

Shared memory is a small memory close to the execution cores, described in
more detail in Section 2.2.5. Each thread block receives a slice of shared memory
accessible only from the threads of the given thread block. Shared memory can
be used as software managed cache or to share results between threads of the
thread block.

To synchronize threads of a single thread block, for example, to communicate
through shared memory, we use synchronization barrier syncthreads(). All
threads in the block must execute the call to syncthreads() before any of the
threads can proceed beyond the call to syncthreads(). The syncthreads()
function also serves as memory barrier.

Warp level

Threads of the warp, or lanes as they are referred to in the documentation, can
utilize intrinsic functions to exchange data without the use of shared memory and
perform simple hardware accelerated operations.

For data exchange between lanes of a warp, the CUDA framework provides
the following warp shuffle functions: shfl sync, shfl up sync, shfl down sync,

shfl xor sync. These functions differ in how they interpret the provided index,
either using it directly as lane index, adding or subtracting from the current lane
index, or executing xor with the current lane index. The data exchange does not
have to span the whole warp. Shuffle operations allow the warp to be subdivided
into groups with a width of a power of 2. These operations can be used for

14

different data exchange patterns, such as the obvious shuffle up or down, data
rotation across lanes, broadcast of a value from a single lane, etc.

Warps can perform the following types of operations:

• vote operations (any sync, all sync, ballot sync) determine if any or all
threads provided non-zero value or return a mask of threads which provided
non-zero value respectively;

• match operations (match any sync, match all sync) return a mask of
threads that provided the same value or determine if all threads provided
the same value;

• reduce operations (reduce [op] sync) execute one of the following opera-
tions on values provided: add, max, min, and, or, xor.

The API described in this subsection forms the basis of the thread cooperation
in CUDA. Most of this API has been available since the early versions of CUDA.
Subsection 2.2.4 will describe the newer Cooperative groups API, which builds
on top of and extends the API described in this subsection.

2.2.4 Cooperative groups
Cooperative Groups API, introduced with CUDA 9, is an extension to the CUDA
programming model for organizing groups of communicating threads [11]. The
API introduces data types representing groups of cooperating threads, be it a
warp, a part of a warp, a thread block, a grid, or even a multigrid2.

The API distinguishes two types of groups. First are the implicit groups,
which are present implicitly in each CUDA kernel. These are:

• thread block,

• grid,

• multigrid.

The API provides functions to create objects representing the implicit groups.
The other type is the explicit groups, which must be explicitly created from one
of the implicit groups. The two explicit groups are:

• thread block tile,

• coalesced group.

Both of these groups represent a warp or a subwarp size grouping of threads.
Thread block tile can be created from a thread block or from another thread
block tile, representing a warp or a part of a warp of size of a power of 2. The
warp level operations described in Section 2.2.3 are available as methods on the
object representing this group, with mask and width arguments of the built-in
functions implicitly derived from the properties of the group.

2Multigrid represents multiple grids each running on a separate device.

15

Coalesced group contains threads of a warp that are currently active, i.e., not
masked.

Creating an object representing an implicit group is a collective operation
in which all threads of the group must participate. Creating the object in a
conditional branch may lead to deadlocks or data corruption. It may also in-
troduce unnecessary synchronization points, limiting concurrency. Similar to the
implicit group object creation, partitioning groups is a collective operation that
all threads of the parent group must execute and may introduce synchroniza-
tion points. Therefore, it is recommended to create objects representing implicit
groups and do all partitioning at the start of the kernel and pass const references
throughout the code [11].

2.2.5 Memory hierarchy
Each CUDA device has its own DRAM memory, so-called device memory or
VRAM, which is separate from the host system memory and the device memory
of all other devices. Physically, device memory can be seen on most GPU boards
as DRAM chips separate from the main silicon chip.

Data transferred between the host and device memory has to cross over the
PCI-e bus, either explicitly by calls to cudaMemcpy in the host code or by map-
ping parts of host memory to the device memory address space using the Unified
Memory system, which then handles the data transfers in the background auto-
matically.

From the point of view of a CUDA thread, several types of memory are avail-
able, as can be seen in Figure 2.2. For this thesis, the main types are:

• global memory,

• shared memory,

• registers,

• local memory.

Global memory is part of the device memory. It is shared by all threads
of a grid, and as such, any access which could lead to a race condition must
be synchronized using atomic operations, as described in Section 2.2.3. Global
memory is allocated by the host code using the cudaMalloc family of functions.
When the host code transfers data to the device using cudaMemcpy or any other
means, global memory is the part of device memory this data will be transferred
to. The pointers returned by cudaMalloc and possibly used in cudaMemcpy are
then passed as arguments to the kernel. The device code can then use these to
access the global memory.

Shared memory, as mentioned in the section 2.2.3, is expected to be a
low-latency memory near each processor core (much like an L1 cache). The re-
lation with the L1 cache can be seen in the fact that each kernel can configure
the proportion between hardware allocated to the L1 cache and to Shared mem-
ory, which means these memories share the same underlying hardware. Shared
memory can be allocated either dynamically by declaring an array type variable

16

GPU device

DRAM

SM SM

Register file Register file

Shared memory

Grid

Shared memory

Block Block Block Block

Thread Thread Thread Thread Thread Thread Thread Thread

Global memory

Local memory

Host

Figure 2.2: Memory types on a CUDA device.

with the memory space specifier shared and providing the size to be allocated
during kernel launch, or statically by defining the variable with a static size.

Registers are the fastest memory available for the device code. Compared to
CPUs, GPUs provide a large number of registers. For all recent GPU generations,
the register file provides 65536 32bit registers. All variables used by the kernel
code are stored in registers. If a kernel requires more registers than available, the
data is spilled into Local memory.

Local memory is part of device memory private for each thread, allocated
automatically based on the requirements of the CUDA compiler. This type of
memory is used for register spilling, arrays with non-constant indexing, and large
structures or arrays which would consume too much register space.

2.2.6 Hardware details
The abstraction defining the behavior of the device code is called the Single
Instruction, Multiple Threads(SIMT) execution model. In this execution model,
threads on the device are split into groups of 32, called warps. Each warp of
threads is scheduled together, starting at the same program address and executing
in lockstep.3

If branching occurs, as shown in Figure 2.3, any branch taken by at least a
single thread of a warp is executed by the whole warp, masking out any threads
that did not take the given branch. When masked, the thread does not execute

3Since Compute Capability 7.0 Volta, threads of a warp can be scheduled more independently
and do not execute strictly in lockstep [10].

17

any reads or writes but still has to continue execution with other threads in the
warp. This is most apparent in loops, where a single thread of a warp executing
the loop a thousand times will result in the whole warp executing the loop a
thousand times, even if other threads are masked and do nothing for most of the
loops. This cuts the theoretical throughput by a factor of 32, as only one of the
32 threads does useful work.

Figure 2.3: Branching in device code [11].

On the other side of the spectrum, the SIMT execution model can be compared
to the Single Instruction, Multiple Data (SIMD) execution model, where the
number of elements processed by a single instruction is directly exposed in the
user code. This can be compared to the SIMT model, where the user code itself
describes the behavior of a single thread, and the grouping of threads is abstracted
by the platform.

To maximize performance, one must keep in mind the SIMT model, grouping
into warps, thread divergence when branching, coalesced memory accesses, etc.

NVIDIA GPUs are built around an array of Streaming Multiprocessors (SM).
SM of a GPU is similar to a core of a multicore CPU. Each SM has separate exe-
cution units, schedulers, register file, shared memory, and L1 cache. An example
of an SM is shown in Figure 2.4. Each SM can have multiple schedulers, each
scheduling up to one warp per cycle.

Each thread block is assigned to a single SM exclusively, and each SM can
run multiple thread blocks at once. Warps of all thread blocks resident on the
given SM are scheduled regardless of the thread block the warps belong to.

2.2.7 Versioning
When working with CUDA, there are two main parts of the platform which are
versioned separately:

• CUDA Toolkit,

• GPU Compute Capability.

The CUDA toolkit represents the software development part of the CUDA
platform, encompassing the CUDA runtime library, the nvcc compiler, and other
tools for software development.

GPU Compute Capability (CC) represents the features provided by the hard-
ware. These features include the number of registers, memory sizes, set of in-
structions, etc. Generally, each consumer GPU generation corresponds to a new
CC, such as GTX 1000 cards corresponding to CC 6.0 Pascal and RTX 3000 cards

18

Figure 2.4: Streaming multiprocessor [10].

corresponding to CC 8.0 Ampere. An example of an exception to this rule is CC
7.0 Volta which has enterprise cards. With each release of new Compute Capa-
bility cards, there is generally an accompanying CUDA Toolkit release providing
access to the new features provided by the hardware.

Compute Capabilities are backwards compatible, so code created for an older
generation of cards can be run on newer cards, even though it may not take
advantage of new hardware features and may be inefficient on the newer cards.

2.3 Code optimizations

This section introduces basic principles for producing performant CUDA code.
The observations and recommendations provided in this section are based on the
principles and properties described in the previous section 2.2.

19

2.3.1 Occupancy
The GPU design prioritizes high instruction throughput of many concurrent
threads over single thread performance at the cost of high latency of each instruc-
tion. To hide the high latency between dependent instructions, each scheduler
keeps a pool of warps between which it switches, possibly on each instruction.
Warps in a scheduler pool are called active warps. Each cycle, there may be mul-
tiple warps that have instructions ready to be executed. Such warps are called
eligible warps. Each cycle, a warp scheduler can select one of the eligible warps
as issued warp, issuing its instruction to be executed.

For optimal performance, we want to have enough active warps so that there
is at least one eligible warp each cycle to enable the GPU to hide the high latency
of each instruction. As described in Section 2.2.6, the number of warps resident
on an SM depends on the number and size of thread blocks resident on an SM.

The number of thread blocks assigned to an SM is limited by three factors:

• hardware limit,

• register usage,

• shared memory usage.

The hardware limit differs but is either 16 or 32 for all currently supported
Compute Capabilities.

To enable execution context switching with no cost, the whole execution con-
text (program counters, registers, etc.) for all warps is kept on the SM for the
whole lifetime of each warp.

The number of registers used by all warps of all blocks which reside on the
given SM must be smaller than or equal to the number of registers in the register
file. For example, for an SM with 65536 registers, and code using 64 registers per
thread and 512 threads in a block, there can only be two blocks resident on the
SM, as 2 ∗ 512 ∗ 64 = 65536. If the code requires a single additional register, only
a single block will be resident on each SM.

The total amount of shared memory required by all blocks residing on an SM
must be smaller than or equal to the size of shared memory provided by the SM.

2.3.2 Pipeline saturation
Other than occupancy, there are other possible reasons why no warp may be
eligible in a given cycle. Pipeline saturation is one of such reasons. GPU hardware
has several pipelines, each implementing a different part of the instruction set.
As an example, for the RTX 2060 card, these include[13]:

• Load Store Unit (LSU),

• Arithmetic Logic Unit (ALU),

• Fused Multiply Add/Accumulate (FMA),

• Transcendental and Data Type Conversion Unit (XU).

20

Each instruction has a Compute Capability specific throughput. If exceeded,
the pipeline implementing the instruction becomes saturated and is unable to
execute additional instructions. This becomes a problem when, for example,
many or all warps often execute the same low throughput instruction, such as
sine, cosine, or inverse square root, which are implemented by the XU pipeline.
Even for simpler operations implemented by the ALU or FMA, if all warps execute
the same instruction, the pipelines may become saturated, and warps which are
waiting to execute more of the given instruction will not be eligible to be issued.

High LSU utilization reflects that the program may be memory bound, waiting
for data from global or shared memory, or that the program executes many warp
shuffle instructions, which are also implemented by the LSU pipeline. Due to
this, the usage of shared memory together with warp shuffles is not advisable, as
they both utilize the same pipeline and compete for resources.

2.3.3 Global memory access
As shown in Figure 2.5, each access to the global memory is grouped into 128 B
naturally aligned chunks, where any chunk accessed by any of the threads of a
warp has to be transferred from the global memory. The maximum performance
is achieved when access to memory is aligned and coalesced, i.e., all threads of a
warp access elements in the same 128 B chunk, which is aligned to 128 B. Any
other form of access introduces overhead in the form of unnecessary data being
transferred from global memory.

When accessing data larger than 32 bits, the access is split into two half-
warp transactions for 64-bit or four quarter-warp transactions for 128-bit values,
which are then processed independently, again reading any 128 B chunk any of
the accesses.

Access to global memory goes through at least one level of cache. On older
architectures, global memory accesses are by default only cached in the L2 cache,
with the L1 cache utilized only for local memory access to speed up register spills.
Special instructions can be used to cache data in L1 explicitly. For Compute
Capabilities 5.0 or newer, the compiler can generate an instruction to load read-
only data, such as the two input matrices in cross-correlation, and cache it in the
L1 cache. The L1 cache, with a cache line size of 128 B, is local to each SM and
shares hardware with shared memory described in the following section. The L2
cache, with a cache line size of 32 B, is still on-chip but is shared by all SMs.
Each 128 B memory transfer is either served by single L1 cache access or split
into four 32 B L2 cache accesses.

2.3.4 Shared memory access
To achieve high bandwidth, shared memory is divided into 32 banks. The op-
timal access pattern the shared memory is designed for is for each thread of a
warp to access a different bank. To enable this access pattern, successive 32-bit
words are mapped to successive shared memory banks. The simplest pattern is
that the 32 threads of a warp access 32 consecutive 32-bit items from an array
in shared memory, shown in the left column of Figure 2.6. If multiple threads
access different addresses mapped to the same bank, as shown in the middle col-

21

Figure 2.5: Global memory access [11].

umn of the figure, their accesses are serialized, the throughput of shared memory
being divided by the maximum number of different addresses accessed in any of
the banks. This is called a bank conflict. Read access of the same address by
multiple threads does not lead to a bank conflict, resulting instead in a broad-
cast of the value between the threads. Writes to the same address by threads
without synchronization result in a data race and an undefined behavior, as does
unsynchronized read and write access.

2.3.5 General recommendations
We can summarize the information in previous subsections into a few simple rules
[11]:

1. Maximize parallel execution by ensuring that the workload is distributed
between a large enough number of threads, where each thread requires a low
enough number of registers and each thread block requires a small enough
part of shared memory so that enough thread blocks fit onto an SM;

2. Optimize memory usage by minimizing transfers from lower bandwidth
memory by reusing data in hardware cache or manually moving data to
shared memory. When accessing global memory, utilize coalesced accesses
to minimize unnecessary data transferred. When accessing shared memory,
minimize bank conflicts;

3. Optimize instruction usage by minimizing the use of low throughput in-
structions such as sine, cosine, or inverse square root. When working with

22

Figure 2.6: Shared memory access patterns [11].

floating point numbers, use 32-bit numbers if precision is not crucial. Min-
imize thread divergence to ensure all threads in a warp execute useful in-
structions.

These rules are used in the design of the optimized definition-based cross-
correlation implementations described in the following chapter.

23

24

3. Implementation
In this chapter, we first give a high level overview of the possibilities for paralleliza-
tion and data reuse in the implementation of the definition-based cross-correlation
algorithm, introduced in section 1.1. We then describe a basic implementation
of the definition-based algorithm with all its problems. Next, we try to mitigate
these problems by introducing a simple implementation based on the warp shuffle
instructions. We continue with several optimizations and create a family of imple-
mentations based on the warp shuffle instructions. Lastly we introduce a second
family of optimizations designed to solve the problems with low occupancy, based
on the assignment of the computation of a single job to a larger group of threads.

The definition-based algorithm has several properties which allow for paral-
lelization, optimization through data reuse and distribution of work. Figure 3.1
depicts an output matrix with the corresponding relative shifts of the two input
matrices for each output matrix element. This shift defines the overlap of the
two input matrices which needs to be computed for given output matrix element.
As described in Section 1.3, each element of the output matrix can be computed
independently in parallel.

[-3,-3][-2,-3][-1,-3] [0,-3] [1,-3] [2,-3 [3,-3]

[-3,-2][-2,-2][-1,-2] [0,-2] [1,-2] [2,-2] [3,-2]

[-3,-1][-2,-1][-1,-1] [0,-1] [1,-1] [2,-1] [3,-1]

[-3,0] [-2,0] [-1,0] [0,0] [1,0] [2,0] [3,0]

[-3,1] [-2,1] [-1,1] [0,1] [1,1] [2,1] [3,1]

[-3,2] [-2,2] [-1,2] [0,2] [1,2] [2,2] [3,2]

[-3,3] [-2,3] [-1,3] [0,3] [1,3] [2,3] [3,3]

Left input matrix

Right input matrix

Overlap

Output matrix

Figure 3.1: Result matrix with corresponding relative shifts.

Each overlap defines a unique set of element pairs which are to be multiplied.
Each of these pairs of overlapping elements belongs to exactly one overlap of the
two matrices.

3.1 Parallelization
In this section, we highlight the independent parallel tasks in the definition-based
cross-correlation algorithm.

The partitioning of the problem into tasks is inspired by Khalil [6], who dis-
tributes the computation of a one dimensional cross-correlation of two signals
between nodes in a local network. The range of possible delays between the two

25

signals is split between nodes. In this thesis, we talk about shifts instead of de-
lays as we are computing different ways two matrices overlap. We go further and
instead of assigning ranges of shifts, we partition the problem into single shifts
or even further, assigning part of a shift computation as a job.

The partitioning is also similar to the problem studied by Honzátko and Krulǐs
[4], as the problem of 2D cross-correlation is very close to the problem of block-
matching in the type of independent parallel tasks it can be partitioned into.
Block-matching takes a submatrix, called reference patch, and goes through all
submatrices (patches) of the same size in a neighborhood around the reference
patch, computing the distance between them and the reference patch using some
distance function and giving as output patches with distance lower than some
threshold. As described by Honzátko and Krulǐs [4]: ”The block-matching al-
gorithm offers many opportunities for employing data parallelism. Multiple ref-
erence patches can be processed concurrently, distances between reference patch
and patches in its neighborhood (the n × n window) can be computed concur-
rently, and even the L2 distance function itself can be parallelized internally.”

Definition-based computation of 2D cross-correlation provides similar possi-
bilities for parallelization, where multiple pairs of input matrices can be processed
concurrently, each possible overlap of two input matrices can be computed concur-
rently and even each pair of overlapping items in given overlap can be processed
independently and in parallel.

3.1.1 Two matrices

When we focus on the computation of the cross-correlation between two matrices,
called one-to-one in the rest of the thesis, we can reformulate the definition-based
algorithm as a problem with two levels of independent parallel tasks, as shown in
Figure 3.2. The top level represents the single output matrix, which with only two
input matrices is the result of the whole computation. The second level of tasks,
represented by orange boxes, contains one box for each relative shift of the two
input matrices. In other words each orange box corresponds to a single element
of the output matrix. Each shift defines an overlap of the two input matrices,
which in turn defines a set of independent subtasks, each subtask representing
an overlapping pair of elements of the two input matrices. In Figure 3.2, the
subtasks representing pairs of overlapping elements are represented by yellow
boxes. Every such subtask belongs to exactly one second level task, creating a
tree structure. The set of subtasks which are the children of the same orange box
defines a submatrix in both input matrices, as shown in Figure 3.1.

When we look at the operations, every yellow box represents a single mul-
tiplication and every orange box represents the sum of the results of all of its
children.

The goal is to distribute these tasks between workers in such a way that we
maximize parallelism, maximize data reuse and minimize the need for communi-
cation and synchronization between workers.

26

[-3,-3] [-2,-3] [-1,-3] [0,-2]

Output matrix

Output matrix elements

Overlapping input elements

Input matrices

Figure 3.2: Tasks hierarchy in definition-based one-to-one cross-correlation.

3.1.2 Many matrices
With more than two matrices, we add additional tasks to the top level of the task
hierarchy shown in Figure 3.2, creating a forest of trees. As described in Section
1.3.2, there are several forms of cross-correlation between multiple matrices. For
us, the most important of these are:

1. one-to-many (Figure 3.3b, for example comparing deformation changes in
images taken over time),

2. n-to-mn (Figure 3.3c, for example comparing deformations in time of mul-
tiple parts of a single large object),

3. n-to-m (Figure 3.3d, also called all-to-all).

The one-to-many type together with the one-to-one type, shown in Figures
3.3b and 3.3a respectively, are subtypes of the n-to-mn type and n-to-m, as the
implementations of both of these general types can be used to compute the two
simpler types. We separate the one-to-one and one-to-many types as they offer
a greater possibility for caching the single left input matrix.

All of the described types can be partitioned into many one-to-one cross-
correlations, as shown in Figure 3.4. For both n-to-mn and n-to-m types, the
number of green top level tasks, corresponding to the number of result matrices,
is equal to n ∗ m. To reiterate, the difference between the n-to-mn and n-to-m
types is that in the n-to-mn type, each of the n left input matrices is cross-
correlated with a different set of m right input matrices, whereas in the n-to-m
type, all n left input matrices are cross-correlated with the same m right input
matrices. Based on this, the n-to-m type allows for greater data reuse, as each
right input matrix is used multiple times compared to being used just once in the
n-to-mn type.

As in the case of one-to-one type, the meaning of the boxes is as follows:

• Each green box represents a pair of input matrices, or equivalently a single
output matrix;

• Each orange box represents an element in the output matrix, or equivalently
a relative shift of the two input matrices;

27

(a) One to one.

(b) One to many.

n = 2
m = 3

m ∗ n = 6

(c) N to MN.

n = 2
m = 3

(d) N to M.

Figure 3.3: Forms of cross-correlation.

Figure 3.4: Task hierarchy of types with many matrices.

• Each yellow box represents a pair of overlapping elements from the two
input matrices.

All boxes on a given level can be processed completely independently. Results
of the orange boxes have to be written into the output matrix represented by their
green box parent. Each orange box represents a different element of the parent
matrix, which allows the writes corresponding to different orange box tasks to
be executed without any collisions. All results of the yellow box children of an
orange box have to be added together, corresponding to a reduce operation.

As the number of tasks cannot be reduced, the only directions for optimiza-
tion are parallelization and data reuse. Even through tasks can be processed
independently and in parallel, many of them can share and reuse data from other
tasks. For example, orange boxes from different subtrees representing the same
shift between input matrices and sharing the same left input matrix can be com-
puted by reusing the data from the left matrix. Relationships such as this can
be used to group tasks into jobs for workers. This grouping then allows each
worker to reuse data for multiple computations, or pass data directly to other
neighboring workers. Both of these optimizations reduce the required memory
throughput and keep data closer to the execution units.

28

3.2 Data reuse
To fully utilize the GPU hardware, we cannot rely on parallelization alone, but
must keep the data as close as possible to the execution units for fast access. To
achieve this goal, we have to group tasks defined in Section 3.1 into cooperating
groups, mostly for sharing input data. We call these groups jobs.

The two basic levels on which tasks are grouped into jobs in our implementa-
tions are:

• overlap, grouping one or more orange boxes (output matrix elements) into
a single job;

• row group or column group, grouping the yellow boxes from a single overlap
by rows or columns into jobs.

The following subsections describe groupings based on each of these units.
This grouping is inspired by Bednárek et al. [2], who implement the computa-

tion of Levenshtein edit distance on many parallel accelerators, including a GPU.
They also solve a slightly different problem in terms of data reuse, as they share
intermediate results between threads, whereas we try to reduce the overhead of
fetching input data from device memory by passing them between threads to re-
duce the impact of low arithmetic intensity of each task described in Section 3.1,
but the principles employed by Bednárek et al. [2] can be utilized for both.

3.2.1 Overlap
When tasks are grouped on the level of overlaps, i.e. orange boxes in the task
hierarchy in Figure 3.4, into jobs, we call that the overlap basic job size. With
this job size, each job computes one or more elements of the output matrix. The
job contains all tasks in the subtree with the assigned orange box as its root, or
in all subtrees of all assigned orange boxes if multiple overlaps are grouped into
a single job.

Multiple overlaps can be grouped into a single job in several ways. First is
the multimat overlap job size, where multiple overlaps (orange boxes) from
different output matrices (green boxes) are grouped into a single job. To enable
data reuse, overlaps representing the same shift between different matrices are
grouped, as shown in Figure 3.5. There are two versions of this optimization:

• multimat-right, designed for the n-to-mn computation type, where each job
contains overlaps with the same shift between a single left input matrix and
multiple right input matrices, shown in Figure 3.5a;

• multimat-both, designed for the n-to-m computation type, where each job
contains overlaps with the same shift between multiple left input matrices
and multiple right input matrices, shown in Figure 3.5b.

Another way to reuse data is to compute multiple overlaps which are close
to each other in a single output matrix. We call this the multirow overlap
job size. As neighboring elements of the output matrix correspond to similar
shifts between the input matrices, they share most of the input matrix required
for their computation, as shown in Figure 3.6. This grouping is also shown in

29

Figure 3.5. Our implementation groups overlaps from multiple consecutive rows
of a single column of the output matrix into a single job. The reasons for this
grouping choice are further expanded on in Section 3.4.4. The multimat and
multirow optimizations can be combined as shown in Figure 3.5.

Output matricesInput matrices

single multirow

multimat-right
multimat-right multirow

(a) Grouping in n-to-mn type.

multimat-both
multimat-both multirow

Input matrices Output matrices

(b) Grouping in n-to-m type.

Figure 3.5: Grouping of overlaps into jobs.

Overlap [0,1] Overlap [0,2]

Left input matrix
Right input matrix
Overlapping inputs

Output matrix
Shared overlapping inputs

Showcased overlaps

Figure 3.6: Input data shared between neighboring overlaps.

3.2.2 Row group and column group
With overlaps as the tasks grouped into jobs, load balancing becomes a problem.
The amount of work required by each job may differ massively, as illustrated by
the two overlaps in Figure 3.7. This leads to problems with occupancy once jobs
with small amount of work are finished.

We implement an alternative where instead of grouping overlaps into jobs,
we go one step lower in the task hierarchy and group the individual tasks repre-
senting multiplication of one overlapping pair of input elements (yellow box) into
jobs. This change results in the computation of a single overlap being split into
several smaller jobs, improving load balancing between jobs while also increasing
parallelism. A disadvantage of this change is the required final reduce operation
to consolidate the results of all the jobs which are computing parts of the same
overlap.

To enable additional optimizations described in the following sections of this
chapter, we choose to group the yellow box tasks into jobs by whole rows of the
overlap. The number of rows grouped into a single job is configurable through an

30

algorithm argument. This grouping is illustrated in Figure 3.7, where Max job
rows is the argument of the algorithm. Each overlap with r overlapping rows of
the two input matrices is split into ⌈ r

max job rows
⌉ jobs, with each job containing

at most max job rows consecutive rows. With this distribution of tasks into jobs,
the tasks assigned into a single job form a submatrix of the overlap. As we are
assigning whole rows, the submatrix has the same number of columns as the
original overlap. This distribution also ensures that all overlaps with the same
number of rows will be split into the same number of jobs.

For data reuse, one important observation is that jobs from the same overlap
do not share any input data, but jobs with the same ID from overlaps neighboring
in the same row of the output matrix will share most of the input data, as shown
in Figure 3.8. If they are direct neighbors, the difference will be a single column
of the overlap.

Max job rows
1 2 3 4

0

1

2

3

0

1

0

1

0

0

1

2

0

1

0 0

Overlaps

Job ID

Jobs

Figure 3.7: Grouping of rows of tasks into jobs.

Job 0 Job 0

Overlap [0,-1] Overlap [1,-1]

Left input matrix
Right input matrix
Overlapping inputs

Output matrix
Shared overlapping inputs

Showcased overlaps

Job 1 Job 1

Figure 3.8: Data shared between jobs with the same ID from neighboring overlaps.

For some optimizations, it is better to group tasks by columns instead of
rows. From the data reuse point of view, it is symmetrical to the grouping by
rows. Again, column groups from the same shift do not share any input data,
but column groups with the same ID from two neighboring overlaps in the same
column of the output matrix share most of their input data.

31

The multimat optimization introduced in Section 3.2.1, which groups overlaps
from multiple output matrices into a single job, can also be used with both row
group and column group task grouping. The multirow optimization, which groups
multiple overlaps from a single output matrix into a single job, is unfortunately
incompatible with both row group and column group task grouping.

3.2.3 Workers

Jobs defined in the previous section are assigned to one level of the CUDA thread
hierarchy, described in Section 2.2.2. From the CUDA thread hierarchy we utilize
the following groups of threads as workers:

1. thread,

2. warp,

3. thread block.

As we will see in Section 3.6, a thread block is already too large to properly
utilize the GPU threads our job sizes, which is the reason grid is not utilized here.
We call each member of the chosen thread hierarchy level, i.e. the thread, warp,
or thread block, a worker. Each worker is assigned at most one job, with some
workers possibly unused as the number of jobs may not be multiple of warp size
or thread block size. Based on the choice of worker size, we can utilize smaller
groups in the hierarchy to compute tasks in the assigned job, and primitives
provided by larger groups to exchange input data or combine results with other
workers.

Similar choice is done by Bednárek et al. [2], who provide two implementations
of the Levenshtein edit distance, one assigning stripes (their unit of job size) to
warps and one assigning stripes to thread blocks. The warp version utilizes warp
shuffle instructions to exchange intermediate results between threads, whereas
the thread block version exchanges data through shared memory. Even though
we are not exchanging intermediate results but instead trying to reuse input data
loaded from device memory, we will see that these principles can also be used for
this purpose.

3.2.4 List of implementations

Different implementations of the definition-based cross-correlation utilize different
job sizes, worker types, and different ways of assigning jobs to workers. The
chosen parameters then lead to different ways of cooperation, communication,
synchronization, work distribution, and load balancing. Following is the list of
algorithms implemented in this thesis with their choice of job size and worker
type. Each algorithm is described in more detail in the following sections of this
chapter.

32

Algorithm Job size Worker type
Basic overlap thread

Warp shuffle

overlap

thread

multimat overlap
multirow overlap

multimat multirow overlap
row group

multimat row group

Warp per shift overlap warprow group
Warp per shift
with shared
memory

overlap
warpcolumn group

multimat column group
Block per shift overlap thread block

Algorithms with multiple job sizes are provided in multiple implementations,
each implementing different optimization for data reuse.

3.3 Basic algorithm
A basic implementation of the definition-based cross-correlation of two input
matrices, in our naming scheme corresponding to the one-to-one type, utilizes
a two dimensional grid of two dimensional thread blocks to start one thread for
each element of the output matrix. The overlap to be computed by a given thread
is derived from the position of the output matrix element, as shown in Figure 3.9.
The thread then iterates over the overlapping parts of the two input matrices,
multiplying the pairs of overlapped elements and accumulating the result of these
multiplications which is then written to the assigned output matrix element. The
code for this implementation can be found in the attachments of this thesis as
the cross corr naive original kernel.

[-3,-3][-2,-3][-1,-3] [0,-3] [1,-3] [2,-3 [3,-3]

[-3,-2][-2,-2][-1,-2] [0,-2] [1,-2] [2,-2] [3,-2]

[-3,-1][-2,-1][-1,-1] [0,-1] [1,-1] [2,-1] [3,-1]

[-3,0] [-2,0] [-1,0] [0,0] [1,0] [2,0] [3,0]

[-3,1] [-2,1] [-1,1] [0,1] [1,1] [2,1] [3,1]

[-3,2] [-2,2] [-1,2] [0,2] [1,2] [2,2] [3,2]

[-3,3] [-2,3] [-1,3] [0,3] [1,3] [2,3] [3,3]

Left input matrix

Right input matrix

Overlap

Output matrix

Figure 3.9: Examples of overlaps corresponding to output matrix elements.

33

This implementation allows for a great amount of parallelism, as each element
of the output matrix is computed independently. The disadvantages, on the
other hand, are no data reuse, thread divergence, and a large difference between
workloads assigned to each thread.

The problem with no data reuse is illustrated in Figure 3.10. The figure shows
elements of the left input matrix (in blue) and right input matrix (in red) accessed
by thread 0 and thread 1 in iterations 0 to 11. As memory accesses are done in
units of 32 threads, also known as the warp, when we extrapolate this example,
the 32 values loaded from the left input matrix in global memory will contain
31 values read in the previous iteration by the threads of this warp. In other
words, we are moving a window of 32 elements across each row of the left matrix
1 element per iteration and reading the window from global memory in each iter-
ation. Even though these global memory accesses will most likely be served from
L2 or L1 cache, the cache access still carries with it additional latency compared
to accessing registers, even though 31 of the 32 items are already in registers of
threads of the warp. This problem is exacerbated when the x component of the
thread block size is not a multiple of warp size. In this situation, the threads
of a warp are assigned overlaps from different rows of the output matrix. These
overlaps differ in the number of rows they contain, and consequently in the rows
of the input matrices which are read in the given iteration. This means that the
threads of a single warp access two or more different rows of the left input matrix
in each iteration, leading to non-coalesced loads.

In the right input matrix, all threads of the warp will read the same value
from global memory in each iteration, resulting in 32 reads of the same block of
global memory when reading 32 bit values.

The exact pattern of reads from global memory differs based on the overlaps
processed by the threads of the warp, but will always result in repeated reads of
the same block of global memory.

The problem of thread divergence is illustrated in Figure 3.10 with iterations
3, 7 and 11. The basic implementation of looping over a two dimensional matrix
with two nested for loops results in thread 0 reading an element from each input
matrix, computing multiplication and accumulating the result in these iterations,
while thread 1 has no data to process on this row and as such is masked during
the execution of the inner for loop due to the range condition being false. While
we show only two threads in Figure 3.10, the situation is much worse, as 31 of
the 32 threads of the warp will be masked and not doing anything in the last
iteration. All threads of the warp will go through both for loops based on the
size of the largest overlap in the given axis processed by any thread of the warp.

Last significant problem of the Basic algorithm, largely connected with the
previous problem, is that overlaps differ in size. From overlaps containing one
element from each input matrix to the overlap of the whole input matrices, this
difference in workload size means that some threads will finish rather quickly,
while a small number of threads computing the largest overlaps will keep execut-
ing much longer. For example, warps of threads assigned overlaps in the first or
last row of the output matrix will only read a single row of each input matrix,
and finish quickly, while warps assigned overlaps in the middle of the output ma-
trix will read most elements of each input matrix and run for much longer. This
results in problems with occupancy of the GPU.

34

A slight modification of this algorithm to allow for an n-to-mn computation
is implemented by the original thesis by Bali [1].

1 2 30
5 6 74
9 10 118

0 1 2 3
4 5 6 7
8 9 10 11

0 1 2
4 5 6
8 9 10

0 1 2
4 5 6
8 9 10

Thread 0

Thread 1

Left input matrix

Right input matrix

Overlap

i Element accessed in iteration i

Figure 3.10: The iteration in which each input matrix element is accessed by two
neighboring threads.

3.4 Warp shuffle algorithm family
This section describes the implementation of definition-based cross-correlation
utilizing warp shuffle instructions, which tries to fix the problems of the Basic
algorithms described in the previous section. We first introduce a simple version of
the implementation, later improving it step by step with optimizations evaluated
in Section 4.2.

This implementation is based on the warp based implementation of Leven-
shtein distance by Bednárek et al. [2], which utilizes the warp shuffle instructions
to exchange intermediate results between threads of a warp. In our implementa-
tion, we do not share intermediate results, instead utilizing registers as L0 cache
to keep input data loaded from the global memory as close to the execution units
as possible.

In the simplified implementation, warp shuffle instructions are utilized to shuf-
fle data loaded from the left input matrix and broadcast data loaded from the
right input matrix between the threads of a warp. As shown in Section 3.2.4,
each CUDA thread is assigned a single overlap to compute, which is exactly as
was done in the Basic algorithm. The difference from the Basic algorithm is only
in the reuse of input data once it is loaded into registers. The code for this im-
plementation can be found in the attachments of this thesis as the ccn shuffle
kernel.

The main idea behind this algorithm is illustrated in Figure 3.10. The two
threads computing overlaps with shifts [0, 1] and [1, 1] process elements of the
two input matrices in the indicated iterations of a for loop in the code.

The element from the left matrix read by the thread processing shift [x, y]
in iteration i is required by the thread processing shift [x + 1, y] in iteration i
+ 1. This fact holds for any two neighboring shifts and maps exactly onto the
warp shuffle down function, described in Section 2.2.3. When looking at the right
matrix in any given iteration, both shifts require the exact same element from the

35

right matrix. This broadcast can be implemented using the general warp shuffle
function with direct source lane indexing. Iterations 3, 7, and 11 are skipped by
thread 1 to preserve this property.

To utilize this relationship, threads of a single warp process 32 consecutive
elements in a row of the output matrix, as shown in Figure 3.11. The number
of warps per thread block is configurable using a run-time algorithm argument.
The grid size is set so that there is at least one thread started for each element of
the output matrix. Any unused threads do not write to the output matrix and
during computations are handled by the bound checked reads described next.

The problem of iterations 3, 7, and 11 in Figure 3.10, in which thread 1 does
not have any value to compute, can be solved in several ways. If we were creating
a program to run on a CPU, we would give the two for loops implementing the
two worker threads different bounds so that the second worker would stop earlier.
A more GPU friendly implementation needs to prevent thread divergence. This
is achieved by executing the range check only once when loading the data from
the left matrix into a register of the thread. If the thread is loading a value
outside the matrix, it loads 0 instead. This makes the result of the multiplication
performed in each step 0, which is then added to the sum, effectively skipping the
iteration while preventing thread divergence and allowing further optimizations
such as loop unrolling. There will most often be additional work introduced by
loading 0 and executing all iterations instead of doing checks in the for loop and
utilizing thread divergence. This additional work is balanced out by the ability
to unroll the loop, as it has fixed number of iterations. This also handles any
extra threads introduced due to the fixed size of a thread block and overlap sizes
not divisible by warp size.

Output matrix

Block [0,0], Warp 0

Block [1,0], Warp 0
Block [0,0], Warp 1

Block [0,1], Warp 0

Unused threads

Figure 3.11: Distribution of overlaps in a 7 by 59 output matrix between threads
of thread blocks and warps.

3.4.1 Algorithm steps
The following description assumes warp size to be 32, as is the case for all cur-
rently existing Nvidia GPUs. The actual value of this constant is not important
for our algorithms and is defined as a constant in our code. To utilize coalesced
loading from global memory, the buffer that is shuffled between the threads of
a warp, containing data from the left input matrix, is split into two parts of 32
items each, which together function as a single 64 item ring buffer. We call the

36

parts the top and the bottom, where new data is always loaded to the top part
and then shuffled towards the bottom part, as shown in Figure 3.12. As described
above, any out of bounds loads are range checked and instead of trying to load
from the global memory return value 0. This is done by the following code:

template<typename T>
__device__ T load_with_bounds_check(const T* source, int idx,

size_t size) {
return (idx >= 0 && idx < size) ? source[idx] : 0;

}

When loading a buffer, bound checked load shown above is used to load 32
consecutive values (or load 0 if out of bounds), storing one item per thread into
a register. This is implemented by the following code:
T thread_left_bottom = load_with_bounds_check(

left_row,
warp_x_left + warp.thread_rank(),
matrix_size.x

);

The values of the buffer are held in two variables in each thread. The bottom
part of the buffer is held in the variable thread left bottom and the top part
in the variable thread left top. This creates a 64 item ring buffer distributed
between threads of a warp, which is shuffled using the warp shuffle instructions
as shown in Figure 3.12.

Bottom part Top part

Thread 0 Shuffle direction

Thread 31 Thread 0

Thread 31

Figure 3.12: Shuffling of the left buffer.

For the data loaded from the right matrix, which we use for broadcasting, we
require only a single value per thread. In the 32 iterations of the innermost loop,
we will broadcast only these 32 values, whereas we need 64 from the left matrix
as the 32 values loaded into the top part will be shifted all the way to the bottom
part.

The core of the implementation is illustrated in Listing 3.1. The 32 threads
of a warp are assigned 32 consecutive overlaps in a row of the output matrix.
Each overlap is defined by the shift between the two input matrices, with the
overlap assigned to thread 0 of the warp having shift warp min shift and overlap
assigned to thread 31 (or the last used thread if some of the threads have no jobs
assigned to them) having shift warp max shift. Overlap assigned to thread i then
has shift [warp min shift.x + i, warp min shift.y], with warp max shift equal
to [warp min shift.x + 31, warp max shift.y] if there are no unused threads,
otherwise the x component is clamped to the maximum shift defined by the
output matrix. The warp min shift and warp max shift define a submatrix of
both input matrices which contain elements required by any thread in the warp,
shown in Figure 3.13. We call this the warp submatrix.

37

The outer and middle loop then iterate over the warp submatrix in the right in-
put matrix, outer loop iterating over rows of the submatrix with the warp y right
variable and the inner loop iterating in buffer load size steps over the columns
of the submatrix with the warp x right variable. Bounds of the for loops are
computed using the warp min shift and warp max shift variables defining the
warp submatrix. As described above, we have two buffers. The buffer holding
data from the right matrix is made up of 32 registers, one per each thread rep-
resented by the variable thread right. The buffer holding data from the left
matrix is made up of 64 registers with 2 registers per thread, represented by the
variables thread left bottom and thread left top. Both buffers are loaded 32
items at the time to allow for coalesced loads, with the left buffer loading into
the top part.

The innermost loop then does 32 (warp size) iterations. In iteration i we
broadcast the value stored in the part of the right buffer owned by the thread
i. This value is then multiplied by each thread with the value from the bottom
left buffer stored by given the thread. We then shuffle the whole left buffer one
step towards the index 0 of the bottom part of the buffer using two warp shuffle
instructions. After the 32 steps, the top part of the left buffer is now in the
bottom part of the left buffer and all the values from right buffer have been
broadcast.

The next iteration of the middle loop then loads 32 values to the top part
of the left buffer and 32 values to the right buffer which are then processed by
the main loop. This is repeated until the whole row of the warp submatrix is
processed, where we continue to next iteration of the outer loop and process the
next row. This is repeated until the whole warp submatrix is processed.

Min shift Max shift

Left input matrix
Right input matrix

Overlap
Output matrix

Example warp Warp submatrix

Figure 3.13: Submatrix of input data used by any thread in the warp.

3.4.2 Work distribution
The work distribution optimization changes job size from a whole overlap used
by the simplified implementation to a row group, as described in Section 3.2.2.
Each job is still assigned to a single thread, with jobs of the same ID from

38

// Compute bounds of the overlaps processed by warp
// Comput thread output position

T sum = 0;
/* for each overlapping row in the right input matrix */
for (size_t warp_y_right ...) {

// Corresponding row in the left input matrix
int warp_y_left = warp_y_right + warp_min_shift.y;

// First column in the left input matrix
// corresponding to the first column in the right input matrix
int warp_x_left = warp_x_right_start + warp_min_shift.x;

// Preload 1 value to each thread from the input left matrix
T thread_left_bottom = load_with_bounds_check(left_matrix, ...);

for (size_t warp_x_right ...; warp_x_right += warp.size()) {
int warp_x_left = warp_x_right + warp_min_shift.x;

T thread_left_top = load_with_bounds_check(left_matrix, ...);
T thread_right = load_with_bounds_check(right_matrix, ...);

for (size_t i = 0; i < warp.size(); ++i) {
// Broadcast right buffer
auto right_val = warp.shfl(thread_right, i);
sum += thread_left_bottom * right_val;

// Shift left buffer
// General shuffle does module on source lane argument
// Thread 0 needs to connect the top buffer to the bottom

buffer
thread_left_bottom = warp.shfl(

warp.thread_rank() != 0 ? thread_left_bottom :
thread_left_top,

warp.thread_rank() + 1
);
thread_left_top = warp.shfl_down(thread_left_top, 1);

}
}

}

if (/* thread output not out of bounds */) {
out_matrix[output_offset] = sum;

}

Listing 3.1: Core of the Simple warp shuffle based implementation

39

32 consecutive overlaps in a row of the output matrix assigned to threads of
a single warp. This enables us to again compute the warp submatrix of the
right input matrix containing elements used by all threads of the warp and reuse
the core computation code of the simplified implementation described in the
previous section without any change by just providing different bounds to the
outer and middle for loops. The code of this implementation can be found in the
attachments as the ccn shuffle work distribution.

As there are multiple workers computing single element of the output matrix,
we need to add all their results together. Because it is only a single write of a single
value per worker, utilizing the atomicAdd [9] operation on the output matrix in
global memory is sufficient. It also allows us greater freedom of assigning tasks
to workers across the whole grid compared to grouping workers for the given
overlap into a thread block, which would be required to utilize shared memory
for communication. The maximum number of rows in a task is provided as a run-
time argument to the algorithm, and influences the number of workers created.

In the simplified algorithm, the output matrix was covered by a two dimen-
sional grid of two dimensional thread blocks. With this optimization, we cover
the output matrix multiple times by increasing the number of thread blocks in
the grid, assigning each overlap to multiple threads. Each of the threads assigned
to the given overlap is then assigned a single row group as a job. The number
of blocks is increased in the y axis of the grid size. The overlap is then assigned
using the x axis of thread rank the same way it is done in Simplified algorithm
and y axis thread rank is used to assign both the overlap and the job within
the overlap jobs. In the simplest work distribution we call Rectangle the y axis
of thread rank modulo output matrix size gives us the overlap and divided by
output matrix size gives us the Job ID. Thanks to the unchanged use of the x
axis rank, all threads of a warp will be mapped to 32 consecutive overlaps in a
row of the output matrix same as in the simplified algorithm, but also to the job
with the same ID in each of the overlaps as they all share the same y axis thread
rank.

We provide several algorithms to derive the number of workers started (how
much to increase the number of thread blocks started) for given total number of
jobs and the mapping from worker ID to the overlap and the job ID. The provided
algorithms are:

• None,

• Rectangle,

• Triangle.

The algorithms are illustrated in Figure 3.14. The purple boxes represent
number of jobs for each overlap in the given row of the output matrix. As row
groups are made up of rows and all overlaps in a given row of the output matrix
have the same number of rows, they will also have the same number of jobs.

None distribution

The None distribution behaves exactly the same as simplified implementation
introduced in Section 3.4.1. Each overlap is assigned only to a single thread

40

[x,-3]

[x,-2]

[x,-1]

[x,0]

[x,1]

[x,2]

[x,3]

0

1 8

2 9 16

3 10 17 24

18114

125

6

9

10 4

11 5 1

12 6 2 0

3713

814

1513 20 27

19 26

25

23

22

21147

15

0

1

2

3

4

5

6

Column of the output matrix

Numbef of jobs for given overlap

None

Rectangle

Triangle

i Worker with ID i

Redundant worker

(a) Mapping with maximum of 1 row per job.

0

1

2 9

3 10

114

5

6

[x,-3]

[x,-2]

[x,-1]

[x,0]

[x,1]

[x,2]

[x,3]

3

4

5 0

6 1

27

8

9

8

7

12

13

0

1

2

3

4

5

6

Column of the output matrix None Triangle

Numbef of jobs for given overlap Rectangle

i Worker with ID i

Redundant worker

(b) Mapping with maximum of 2 rows per job.

Figure 3.14: Mapping of a column of workers onto a column of the output matrix.

which then has to compute the whole overlap alone. Grid covers the whole output
matrix to start one thread per output matrix element and the y axis of the thread
rank is used to assign the row of the output matrix, as is done in the simplified
implementation. This distribution is provided mainly to measure the overhead of
the code changes required to implement work distribution.

Rectangle distribution

The Rectangle distribution computes m, the maximum number of jobs any overlap
will be split into. The maximum number of jobs is always required for the overlap
in which both matrices are exactly aligned over each other in the y axis, covering
all rows. We increase the number of thread blocks so that there are at least m
times as many threads as there are elements in the output matrix. Each element
is then assigned m workers which are then further assigned one of the at most m
jobs the given overlap is split into. As m is maximum, in Figure 3.14a equal to
4, we see that most overlaps will not be split into that many jobs. The unused
workers are then stopped. The number of thread blocks is increased in the y axis

41

of the grid size, with the y axis of thread index used to assign row of the output
matrix using thread index modulo number of rows in the output matrix and job
ID using thread index divided by the number of rows in the output matrix. As it
is all done based on the y axis of the thread index, the threads of a single warp
are again assigned consecutive overlaps in the output matrix, with all threads
being assigned the job with the same ID from the given overlap. This enables us
to stop the whole warp, as either all threads will be assigned work or no threads
will be assigned work, leading to no thread divergence.

Triangle distribution

The Triangle distribution extends the grid by increasing the number of thread
blocks to start the exact number of threads required for the total number of jobs
in all overlaps. Due to the user configured size of thread block, there will most
often still be some unused workers, but always less than one row of thread blocks
worth of workers.

The y axis of the thread rank is then used to assign row of the output matrix
and job ID as seen in the 3.14. The values of the y axis of the thread index are
mapped to the triangle we see in the figures from left to right, in each column
from top to bottom. The output matrix row is then derived from the vertical
position and job ID from the horizontal position.

The computation of row and column in the triangle is based on Triangular
numbers [21], which we extended to work with triangles growing by more than
one item per row. The disadvantage of this distribution is the complex com-
putation required to assign overlaps and job IDs to workers. This computation
includes many multiplications, divisions and most importantly a low throughput
square root instruction. For small job sizes the overhead of triangle distribution
may be greater than any gains provided by better load balancing and increased
occupancy.

As with the rectangle distribution, output matrix row and job ID are derived
only from the y component of the thread rank, so all threads of a warp will again
be assigned consecutive overlaps on a single row of the output matrix, with each
thread of the warp assigned the same job ID within its overlap. This again enables
us to stop any unused worker right after job assignments, as only whole warps
may be unused, and reuse the simple warp shuffle implementation code with only
changes being the different bounds of the outer and the middle loop.

3.4.3 Utilizing multiple right matrices
Another problem of the simplified implementation not solved by work distribution
described in Section 3.4.2, is the ratio of warp shuffle instructions to arithmetic
instructions. In the simplified algorithm, for each multiplication and addition rep-
resented by a single yellow box, we must execute three warp shuffle instructions.
This makes warp shuffle instructions the bottleneck in the simplified implemen-
tation, as shown in Figure 3.15a. The warp shuffle instructions (SHFL) dominate
the executed instruction mix, which results in 97% utilization of the LSU pipeline
implementing the shuffle instructions, as shown in Figure 3.15b. Compare this to
the fused multiply-add instructions (FFMA) implementing the multiplication and

42

addition, which are executed by the FMA pipeline with less than 10% utilization
for the simplified algorithm.

(a) Executed instruction mix.

(b) Pipeline utilization.

Figure 3.15: Comparison of one-to-many simplified algorithm with the multiple
right matrix optimization.

There are several ways to improve the ratio of SHFL instructions to FFMA
instructions. The one with easiest changes to the code of the Simple warp shuffle
implementation is to utilize the one-to-many type of computation, and let each
worker compute cross-correlation between one left matrix and many right matrices
at once, as described in section 3.2.1 under the name multimat. We call this exact
implementation usable for one-to-many and n-to-mn types the multimat right
optimization, as each job contains multiple overlaps of a single left matrix with
multiple right matrices. The obvious advantage is data reuse, as the data from the
left matrix is used to compute multiple results. The main advantage is that each
additional right matrix only adds a single SHFL instruction, while also adding
one FFMA instruction. The ratio of SHFL to FFMA instructions can then be
expressed as 2 + r : r, where r is the number of overlaps (from r right matrices)
computed by each worker, which for larger values of r significantly improves the
3 : 1 ratio of the simplified warp shuffle algorithm.

The code changes required to implement this are very straightforward, and can
be found in the attachments of this thesis in the ccn shuffle multimat right
kernel. The kernel ccn shuffle multimat right work distribution then im-
plements a combination of this optimization and the work distribution optimiza-
tion described in Section 3.4.2.

As each job contains the same overlap between one left matrix and multiple
right matrices, the three for loops and their bounds described in Section 3.4.1

43

template<size_t NUM_RIGHTS, typename T>
__device__ void warp_shuffle_multimat_right_impl(...) {

...
T sum[NUM_RIGHTS];
for (size_t r = 0; r < NUM_RIGHTS; ++r) {

sum[r] = 0;
}
...
T thread_right[NUM_RIGHTS];
for (size_t r = 0; r < NUM_RIGHTS; ++r) {

thread_right[r] = load_with_bounds_check(...);
}
...
for (dsize_t r = 0; r < NUM_RIGHTS; ++r) {

// Broadcast right buffer
auto right_val = warp.shfl(thread_right[r], i);
sum[r] += thread_left_bottom * right_val;

}
}

Listing 3.2: Changes for multimat right implementation

are left unchanged. The main difference is that the sum and the thread right
variables in each thread are changed into arrays, utilizing the CUDA local array
optimization described in Appendix A. This increases the amount of data present
in registers and allows us to reuse data loaded from the left matrix with data from
multiple right matrices. The code changes are illustrated in Listing 3.2.

We introduce the term matrix group, describing the right input matrices from
which overlaps are grouped into a single job. As the size of the matrix group must
be known at compile time to utilize the CUDA local array optimization, the device
function implementing the algorithm needs to be compiled for each supported
matrix group size in the NUM RIGHTS template argument. This introduces a trade-
off between compilation time, generated code size and the number of required
registers on one hand and possible gains during run-time on the other. The
actual matrix group size used during run-time is specified as run-time argument
for the algorithm, which then chooses the correct implementation. If the number
of matrices is not divisible by the matrix group size, the last few matrices will form
a smaller matrix group which will choose the implementation based on its size.
The maximum supported matrix group size is configurable during compile-time.

The number of thread blocks is increased to start enough workers to process
all jobs. Threads of each thread block are assigned jobs from a single matrix
group, again assigning jobs containing 32 consecutive overlaps in each output
matrix of the matrix group to threads of a single warp. This allows us to reuse
most of the Simple warp shuffle algorithm code.

The effects of this optimization shown in Figure 3.15, which compares the sim-
plified algorithm against the optimized algorithm using 8 right matrices grouped
into a single job (which is a default maximum group size to keep compile times
and executable size manageable) with input of size 256x256 with 1 left matrix and

44

16 right matrices, which are enough to saturate the RTX 2060 used for profiling.
In this profiling, the LSU pipeline is still a bottleneck even for the optimized al-
gorithm, but the utilization of the FMA pipeline, which does the useful part of the
computation, has increased from 9% to 20%. The most visible change is in the
mix of the executed instructions, where we see a very noticeable improvement in
the ratio of shuffle instructions (SHFL) to the floating point fused multiply-add
instructions (FFMA). As expected, the ratio improves from 3 : 1 to 10 : 8, with
3019898880 : 2415919104 SHFL to FFMA instructions. The relatively small im-
provement in the LSU pipeline utilization can be explained by the low throughput
of the SHFL instructions compared to the FFMA instructions. This is exacer-
bated by our use of Compute Capability 7.5 card for profiling, which has half the
warp shuffle throughput of all other Compute Capabilities.

3.4.4 Multiple rows from the right matrix
Another way to improve the instruction ratio is to process multiple overlaps
from the same output matrix, which can be used even for the one-to-one type
of computation. We call this the multirow right optimization, as we compute
overlaps from multiple consecutive rows of a single column of the output matrix as
shown in Figure 3.16, where we see two different jobs, each containing 4 overlaps,
i.e. job size is 4. We call it multirow right as it loads multiple rows from the right
matrix at once to compute the assigned overlaps. This optimization provides
us a different way to improve the ratio of warp shuffle to fused multiply-add
instructions, independent of the changes in multimat right. Thanks to this it can
be combined with multimat right. It is not however able to be combined with
the work distribution optimization. The code of this optimization can be found
in the attachments of this thesis as the ccn shuffle multirow right kernel.

[-3,-3] [-2,-3] [-1,-3] [0,-3] [1,-3] [2,-3 [3,-3]

[-3,-2] [-2,-2] [-1,-2] [0,-2] [1,-2] [2,-2] [3,-2]

[-3,-1] [-2,-1] [-1,-1] [0,-1] [1,-1] [2,-1] [3,-1]

[-3,0] [-2,0] [-1,0] [0,0] [1,0] [2,0] [3,0]

[-3,1] [-2,1] [-1,1] [0,1] [1,1] [2,1] [3,1]

[-3,2] [-2,2] [-1,2] [0,2] [1,2] [2,2] [3,2]

[-3,3] [-2,3] [-1,3] [0,3] [1,3] [2,3] [3,3]

[-3,-3]

[-3,-2]

[-3,-1]

[-3,0]

[0,-3]

[0,-2]

[0,-1]

[0,0]

Left input matrix

Right input matrix

Overlap

Output matrix

job for thread 0 job for thread 3

Figure 3.16: Overlaps grouped into two different jobs by the multirow right algo-
rithm with 4 overlaps per job.

The core of the implementation is similar to the simplified algorithm. We
compute the warp submatrix of the right input matrix containing all elements

45

used by any of the overlaps in jobs assigned to the threads in the given warp.
We then iterate over this submatrix, computing all job size overlaps in a single
pass. This reduces parallelism, as simplified algorithm would have split these
overlaps into different jobs and computed them in parallel, but allows for data
reuse, which is advantageous when the GPU is already saturated.

As each overlap in a given job has different shift in the y axis, each overlap
will contain different number of rows as shown in Figure 3.16, but thanks to the
column-wise grouping of overlaps, corresponding overlaps in each job assigned to
threads of a single warp will contain the same group of rows. This again allows
us to reuse much of the simplified implementation code, which expects a warp to
process overlaps with the same number of rows.

The problem experienced by this optimization is in its nature similar to the
one shown in the Simple warp shuffle implementation, where some of the threads
need to execute the first few and the last few iterations of the innermost loop by
adding zero to their sum thanks to bound checked loads. This is caused by the
different shifts of the overlaps assigned to threads of a single warp, where some
of the overlaps do not use whole warp submatrix, which contains input data used
by any of the overlaps assigned to the threads of the warp.

As we now group several overlaps into a single job computed by a single
thread, the same problem arises where only a subset of the overlaps has the first
few rows and last few rows of the warp submatrix as inputs. More precisely, some
of the first 0 to job size − 1 and the last 0 to job size − 1 rows are only required
by some of the overlaps assigned to the given thread, and as all threads of a warp
are assigned overlaps from the same rows of the output matrix in 32 consecutive
columns, the subset of overlaps to which each row of warp submatrix is an input
is the same for all threads of a warp.

To solve this problem, we split the outermost loop going over the rows of
the warp submatrix into three parts. First few iterations are separated into
Init iterations, which compute only the subset of overlaps which actually require
the rows of the warp submatrix as input. Then we have the Main loop, which
computes all overlaps assigned to the thread. Lastly we have several Finish
iterations, which again compute only the subset of overlap which require the
given warp submatrix row as input. This partitioning is illustrated in Figure
3.17. The number of Init and Finish steps depends on the exact shift of the
overlaps grouped into a job.

Code changes for this implementations are similar to the changes for the
multimat right from Section 3.4.3, again using Local array optimization described
in Appendix A. We again compute multiple results in each thread, iterating over
multiple rows from a single right matrix where multimat right loaded the different
rows from multiple separate right matrices. The only other major change is the
partitioning of the outermost loop as described above. The similarity of the
changes is utilized when combining multirow right and multimat optimizations.

One of the disadvantages of this algorithm is the repeated reading of right
input matrix rows by each worker. As warp shuffle is already utilized for data
reuse in the given row, there is no simple mechanism to reuse data between rows
as we traverse the warp submatrix from top to bottom. With 3 overlaps grouped
into a job, each row of the right input matrix processed by the main loop is read
3 times by the worker, once for each of the overlaps assigned to the worker. Each

46

Init 1 Init 2 Main loop 0 Main loop 1
Left input matrix Right input matrix Accessed elements

Overlaps computed in given iteration

(a) Complete computation of the multirow right algorithm with job size 3 for overlaps
with shifts [1, 1], [1, 2], [1, 3] showcasing Init steps.

Main loop 0 Main loop 1 Finish 2 Finish 1

Left input matrix Right input matrix Accessed elements

Overlaps computed in given iteration

(b) Complete computation of the multirow right algorithm with job size 3 for overlaps
with shifts [1, −3], [1, −2], [1, −1] showcasing Finish steps

Figure 3.17: Illustration of Init and Finish steps of the multirow right algorithm
with overlaps processed in each step displayed above the step.

time, it is used with different left row. This can be improved by also utilizing
multiple rows from the left input matrix, computing multiple iterations of the
current main loop at once. This implementation, named multirow both as we
read multiple rows in each iteration from both input matrices, is described in
Section 3.4.6.

When profiling this optimization, as shown in Figure 3.18, we see similar
improvements as with the previous multimat right optimization. We have to
keep in mind that the multirow right algorithm improves the one-to-one type of
computation, which cannot be improved by the previous optimization. These
two optimizations can also be combined, which is described in Section 3.4.7.
As before, the LSU pipeline remains a bottleneck, but the utilization of FMA
pipeline is improved from 9% to 17%. With 4 overlaps per job, the ratio improves
from 3 : 1 to 6 : 4 as expected from the 2+r : r theoretical ratio with 227367936 :
150994944 SHFL to FFMA instructions. As this optimization improves the one-
to-one computation, it is more sensitive to occupancy reduction when workers
process more than one overlap, mainly due to the smaller input size compared to
the one-to-many computation.

3.4.5 Multiple left matrices
This optimization is an extension of the multimat right aiming at the reuse of
data from the right input matrix to compute cross-correlation with multiple left
input matrices. As we now reuse data from both left and right input matrices,

47

Figure 3.18: Comparison of one-to-one simplified algorithm with the multi-
row right optimization.

we call this the multimat both optimization. This optimization is only usable for
the n-to-m computation type, as the one-to-one, one-to-many, and n-to-mn types
correlate each left matrix with a different set of right matrices.

Similarly to the multimat right optimization, we group overlaps represented
by elements at the same index in multiple output matrices into a single job.
These overlaps represent the same shift between the input matrices, with each
representing an overlap of a different pair of input matrices. Whereas the mul-
timat right output matrices represented cross-correlation between a single left
input matrix and multiple right matrices, with multimat both the output matri-
ces represent cross-correlations of the n-to-m (all-to-all) type between multiple
left and multiple right matrices, as explained in Section 3.2.1

The implementation of this optimization can be found in the attachments of
this thesis as the ccn shuffle n to m multimat both work distribution ker-
nel. As the name suggests, this optimization can be combined with the work
distribution optimization. To measure the performance without work distribu-
tion, we use the None distribution type described in Section 3.4.2.

The changes to the multimat right optimization code to implement multi-
mat both again utilize the Local array optimization described in Appendix A,
changing the variable representing the left buffer in each thread into an array
representing multiple buffers.

Similarly to the multimat right optimization, we group input matrices into
matrix groups, this time separately grouping left matrices into left matrix groups
and right matrices into right matrix groups. Each pairing of l left matrix group
with r right matrix group defines a set of l ∗ r output matrices due to the n-to-m
computation type. Elements in column x and row y from all of these l∗r matrices

48

are grouped into a single job, computed by a single thread.
The number of matrices in a left matrix group is configured independently

of the number of matrices in a right matrix groups. The maximum size of left
matrix group and right matrix group has to be known at compile time so that
we can generate the implementing device function for all combinations of these
values from 1 to the configured maximum, as the arrays must have a size known
at compile time. At run-time, the implementation chooses the correct method.
The last matrix groups from both left and right input matrices may be smaller as
the number of left or right matrices may not be divisible by the value of the run-
time argument. The implementation then chooses the function with the correct
matrix group size, which is why we must generate the implementing function for
possible matrix group sizes.

For each pairing of left matrix group and right matrix group, we start enough
thread blocks to process all jobs defined by this pair of thread groups. Threads
of a single thread block process jobs from a single pairing of left matrix group
and right matrix group. This again allows us to minimize the required changes
to the code of multimat right optimization when implementing multimat both.

The multimat both optimization can be combined with either work distribution
or multirow right optimizations. It can also be combined with multirow both
optimization introduced in the following section.

This optimization improves the ratio of warp shuffle (SHFL) to fused multiply-
add (FFMA) instructions to 2 ∗ l + r : l ∗ r, where l is the number of left matrices
in the left matrix group and r the number of right matrices in the right matrix
group. This is to be compared to the 3 : 1 ratio of the Simple warp shuffle
implementation, 2 + r : r of the multimat right optimization, and slightly worse
than 2 + r : r multirow right with r representing number of rows instead of
matrices grouped into a single job. As with these previous optimizations, this
improvement comes at the cost of parallelism, as all overlaps grouped into a single
job would be executed in parallel without this optimization. For larger input
matrices and larger numbers of input matrices, this reduction in parallelism is
more than compensated by the improved throughput of each thread thanks to the
improved instruction ration. For smaller input sizes, the reduction in parallelism
can be compensated for by combining this optimization with work distribution
optimization.

The ratio of SHFL to FFMA instructions is shown in Figure 3.19. The profil-
ing was executed with both matrix group sizes set to 4 on input of 4 left matrices
and 16 right matrices of size 256x256 elements. The expected ratio is 12 : 16,
which is exactly what we see in the measurements with 7247757312 : 9663676416
SHFL to FFMA instructions. This improved ratio also results in improved uti-
lization of the FMA pipeline, which is now utilized to 31.2% of its maximum
throughput. Comparison of the effects on execution time is provided in Section
4.2.

3.4.6 Multiple rows from both matrices
When improving the one-to-one computation using the multirow right optimiza-
tion described in Section 3.4.4, which processes multiple overlaps from consecutive
rows of a single column of the output matrix, we hinted at a further improvement

49

Figure 3.19: Three most often executed instructions by the Warp shuffle algorithm
with multimat both optimization.

using multiple rows from the left matrix in the main loop. This not only improves
the ratio of warp shuffle to fused multiply-add instructions, but also reduces the
number of times every row from the right input matrix is read.

The main change to the code of multirow right optimization is that the main
loop now advances by multiple left input matrix rows instead of a single row.
This new implementation can be found in the attachments of this thesis as the
ccn shuffle multirow both kernel.

The exact number of left rows to advance by in each iteration is configured by
an algorithm argument. An additional stage between this multistep main loop
and Finish is also needed to compute the remaining rows from the left input
matrix when the total number of left input matrix rows is not divisible by the
main loop step. This stage utilizes the original single step main loop. The Init
and Finish parts are left unchanged.

The ratio of warp shuffle instructions (SHFL) to fused multiply-add instruc-
tions (FFMA) for this optimization is l +(o−1+ l) : l ∗o in the main loop, where
l is the number of left rows processed by each iteration of the main loop and o
is the number of overlaps grouped into a single job. The Init, single step main
loop and Finish parts share the original ratio of the multirow right implementa-
tion, which is 2 + o : o. This ratio is also apparent in Figure 3.20. The profiling
is done for cross-correlation of two 256x256 matrices with both number of left
rows per iteration l and number of overlaps grouped into a job o set to 4. The
expected ratio of SHFL to FFMA instructions is 11 : 12, which is almost exactly
what we see with 140006752 : 150994994 total SHFL to FFMA instructions. This
improved ratio also results in additional utilization of the FMA pipeline, which
utilizes 23.9% of its total throughput, compared to 10% utilization by the Simple
warp shuffle implementation and 17% by multirow right optimization.

3.4.7 Summary
In this section, we have implemented a family of Warp shuffle based implemen-
tations with the following optimizations:

• work distribution (Section 3.4.2),

• multimat right (Section 3.4.3),

• multirow right (Section 3.4.4),

50

Figure 3.20: Three most often executed instructions by the Warp shuffle algorithm
with multirow both optimization.

• multimat both (Section 3.4.5),

• multirow both (Section 3.4.6).

The Warp shuffle family utilizes warp shuffle instructions to reuse data al-
ready loaded into registers by multiple threads of a warp, reducing the required
number of load operations from global memory. The optimizations then improve
occupancy through splitting work into smaller jobs, improve ratio of warp shuffle
instructions to fused multiply-add instructions or improve data reuse once loaded
into registers.

The work distribution, multimat right, and multirow right are implemented
by improving the Simple warp shuffle implementation. The multimat both and
multirow both optimizations are implemented as extensions to the multimat right
and multirow right optimizations respectively.

All of the optimizations listed above can be combined with the following
restrictions:

1. multirow optimizations cannot be combined with work distribution,

2. multimat both can only be used to optimize the n to m computation.

With the multirow optimization, each job contains several different overlaps
of the two input matrices, where each overlap has different number of rows. As
our work distribution optimization is based on the number of rows of the overlap,
the current implementation cannot be easily reused. This is not a problem with
the multimat optimizations, in which each thread computes the same overlap in
multiple output matrices.

The n to m computation type is the only type where multiple left matrices
share the same right matrix, which makes it possible to reuse the data from the
left matrices.

With these restrictions in mind, we have implemented the following versions
of the warp shuffle algorithm:

• multimat right,

• multimat right work distribution,

• multimat both work distribution,

51

• multirow right,

• multirow right multimat right,

• multirow both,

• multirow both multimat right,

• multirow both multimat both.

Both multimat optimizations were already prepared for combination with
work distribution, as hinted at in their respective sections. The core compu-
tation code does not change, the only difference is that we split the original
warp submatrix the same way we did when implementing work distribution for
simplified warp shuffle algorithm, described in Section 3.4.2.

Combination of multimat and multirow optimizations takes the implementa-
tion of multimat optimization, separates the middle and inner loop as is done to
the simplified implementation in the implementation of multirow and splits the
outer loop iterations into Init, multistep main loop, single step main loop, and
Finish parts.

The measurement and comparison of these implementations is presented in
Section 4.2.

3.5 Warp per shift algorithm family
For small inputs, processing a single overlap or a row group per thread may
not split the computation into enough jobs to saturate the whole GPU, leading
to low occupancy. As described in Section 2.3.1, low occupancy prevents the
full utilization of the throughput of the GPU hardware, while also preventing
the GPU from hiding the high latency of each instruction, resulting in poor
performance. To increase the number of threads started for smaller inputs, we
increase the size of each worker from a single thread to a whole warp. This
increase in number of threads in combination with the small input data size
leads to a need of balancing the overhead of each thread, which consists mainly
of scheduling, repeated data reads, and computation of array indexes for each
access, with the reduced workload.

In this section, we first introduce a base implementation of the warp per shift
algorithm utilizing whole warps as workers with each job containing a single over-
lap, also called shift. We then introduce several improvements of this algorithm,
first by using shared memory and then by further increasing the number of jobs
using work distribution optimization

This algorithm family is inspired by Bednárek et al. [2], who also choose to
assign their unit of work to larger groups in the CUDA thread hierarchy. The
work presents two implementations, first one where each stripe (their unit of
work) is processed by a single warp which exchange data through warp shuffle
instructions, which inspired our Warp shuffle algorithm family presented in Sec-
tion 3.4. The warp per shift algorithm family described in this section is based
on the second implementation where each strip is processed by a whole thread
block with threads exchanging data using shared memory.

52

In this section, we first introduce a base implementation assigning each ele-
ment of the output matrix to a separate warp without any cooperation between
warps. We then take inspiration from Bednárek et al. [2] and use shared mem-
ory to cache input data used by warps of each thread block. We then further
increase the number of jobs using work distribution optimization, adapted from
the implementation described in Section 3.4.2.

3.5.1 Base implementation
Implementation of the Warp per shift algorithm is very simple compared to the
warp shuffle-based algorithm described in Section 3.4. The basic implementation
utilizes whole warps as workers and assigns each worker a job consisting of a
single overlap. Each overlap is uniquely identified by the shift of the two input
matrices, and the shift is what is stored and propagated throughout the code.
This is why we call this the warp per shift algorithm family.

[-3,-3][-2,-3][-1,-3] [0,-3] [1,-3] [2,-3 [3,-3]

[-3,-2][-2,-2][-1,-2] [0,-2] [1,-2] [2,-2] [3,-2]

[-3,-1][-2,-1][-1,-1] [0,-1] [1,-1] [2,-1] [3,-1]

[-3,0] [-2,0] [-1,0] [0,0] [1,0] [2,0] [3,0]

[-3,1] [-2,1] [-1,1] [0,1] [1,1] [2,1] [3,1]

[-3,2] [-2,2] [-1,2] [0,2] [1,2] [2,2] [3,2]

[-3,3] [-2,3] [-1,3] [0,3] [1,3] [2,3] [3,3]

Left input matrix

Right input matrix

Overlap

Output matrix

(a) Output matrix and the corresponding over-
laps.

Block [0,0], Warp 0 Block [1,0]

Block [0,0], Warp 1 Block [0,1]

Output matrix

Redundant warp

(b) Distribution of overlaps in a 3
by 7 output matrix between thread
blocks and their warps.

Figure 3.21: Output matrix and its distribution between warps.

As in the Basic cross-correlation algorithm, introduced in Section 3.3, this
implementation uses two dimensional grid of two dimensional thread blocks to
assign elements of the output matrix to workers. The difference is in how we use
each dimension to map threads to overlaps, this time based on which warp and
thread block they are part of. All threads of a warp are assigned the same overlap
and they cooperate to compute all the tasks (yellow boxes) which belong to this
overlap. The mapping from thread blocks and warps to overlaps of the output
matrix is illustrated by Figure 3.21b. Warps of each thread block are assigned
consecutive overlaps in a row of the output matrix. The number of warps per
thread block is configurable by algorithm argument.

Each thread of a warp is assigned subset of the multiplication tasks (yellow
boxes), as shown in Figure 3.22, which it computes and holds the sum in local
variable. This distribution is done using the code in Listing 3.3, which is a snippet
of the kernel ccn warp per shift found in thesis attachments.

53

for (
size_t i = warp.thread_rank();
i < total_items;
i += warp.size()

) {
size_t overlap_row = i / overlap_size.x;
size_t overlap_row_offset = i % overlap_size.x;

size_t right_idx = ...;
size_t left_idx = ...;

sum += left[left_idx] * right[right_idx];
}

Listing 3.3: Main loop of the Base warp per shift implementation

0 1 2
3 0 1
2 3 0

i

Left input matrix

Right input matrix

Overlapping elements processed by thread i

Figure 3.22: Thread computing given task with basic indexing (example warp
size 4).

This distribution of tasks minimizes thread divergence but may lead to unco-
alesced global memory access. Another possible disadvantage of this implemen-
tation is the division and the modulo instruction in each loop iteration, which is
used to determine the position in the overlapping submatrix to be computed by
the current thread.

The distribution is based on the cooperative distance calculations by Honzátko
and Krulǐs [4]. In their work, warps of a thread cooperate to compute distance
between neighboring overlapping patches of an image. Each thread computes a
subset of columns and stores the results to shared memory. After all threads
compute their assigned columns, each thread picks the results corresponding to
its assigned patch.

Our base warp per shift implementation utilizes slightly easier approach. In-
stead of assigning columns, the whole overlapping part of the input matrices is
serialized in row major order and iterated over using the for loop illustrated above.

The sums computed by each thread of the warp are then combined using the
cooperative groups::reduce function, which may even be hardware acceler-
ated if running on the newest Ampere GPUs. The final result is then written by
thread with warp rank 0 to the output matrix.

3.5.2 Simplified indexing
The Simplified indexing is an attempt to solve the problems highlighted in the pre-
vious section, namely the uncoalesced global memory access and the low through-
put division instruction in the main loop. To fix these problems, we change the

54

distribution of tasks between threads as shown in Figure 3.23, which is much
closer to the task distribution done by Honzátko and Krulǐs [4], but still not
exactly the same. Compared to their implementation, each row of the overlap
is processed independently and fully before continuing to the next row. Code
of this implementation can be found in the attachments of this thesis as the
ccn warp per shift simple indexing kernel.

Compared to Basic indexing described in the previous section, this assures
coalesced access to the global memory, but leads to thread divergence if the row
size of the overlap is not a multiple of warp size, as is the case in Figure 3.23.

0 1 2
0 1 2
0 1 2

3 0 1
3 0 1
3 0 1

0 1 2
2 3 0
0 1 2

3 0 1
1 2 3
3 0 1

Basic indexing Simplified indexing

i

Left input matrix Right input matrix

Overlapping elements processed by thread i

Figure 3.23: Comparison of task assignment with basic and simplified indexing
(example warp size 4).

Thread divergence is the major problem of this implementation. Based on
our profiling, the simplified indexing leads to an average of only 15.31 of the
32 threads executing each instruction and not being predicated (masked by a
predicate). With basic indexing on the same input and on the same hardware, this
average improves to 26.85, which is almost twice the work done per instruction.
The main reason for this difference is shown in Figure 3.24. This figure shows the
worst case scenario, where simplified indexing leads to the rows being processed
sequentially, whereas basic indexing executes this in a single iteration. Overlaps
such as this make up a sizable part of every cross-correlation computation. For
larger input matrix sizes, the proportion of overlaps such as the ones shown in
Figure 3.24 which should increase the average of threads which are not masked
during instruction execution, but based on our measurements in Section 4.2.5,
simplified indexing does not improve execution time for inputs where increased
occupancy due to the warp per shift algorithm family is more advantageous than
the reduced number of global memory accesses by Warp shuffle family.

0
0
0
0

0
1
2
3

Basic indexing Simplified indexing

i

Left input matrix Right input matrix

Overlapping elements processed by thread i

Figure 3.24: Task assignment with basic and simplified indexing to showcase
thread divergence when using simplified indexing.

One possible cause is that even though simplified indexing should theoretically

55

lead to better coalescing of global memory access, the opposite seems to be the
case as illustrated by Figure 3.25a. This may be highly dependent on Compute
Capability of the underlying hardware, but on CC 7.5 of RTX 2060, we observe
a 47% increase in the number of global memory requests when using simplified
indexing. This corresponds to high LSU pipeline usage of 88% visible in Figure
3.25b, which becomes a bottleneck. The profiling was done on input matrices of
size 64 by 64 containing 32bit floating point numbers. In these matrices, each
row is 256B long. In many overlaps, the last item of each row will be less than
128B (global memory transaction size) from the first item in the next row. This
leads to coalescing of the global memory read with basic indexing but results in 2
separate accesses with simplified indexing, which may explain the 47% difference
in global memory requests.

Another visible difference in Figure 3.25a is the increase in number of in-
structions across the board, most visible with branching (BRA) and barrier syn-
chronization (BSYNC) instructions. This is caused by the increase in number of
iterations each warp executes to process the same data. Even with the increase in
number of instructions, the ALU and FMA pipelines are less utilized than with
basic indexing. This is caused by warps waiting for warp recombination on the
barrier synchronization points and loads from global memory.

(a) Executed instruction mix.

(b) Pipeline utilization.

Figure 3.25: Comparison of basic and simplified indexing.

The effects of different pipeline utilization can also be seen in Figure 3.26.
Warps of basic indexing algorithm are mostly stalled due to not being selected,
i.e. there are multiple eligible warps and only one of them can be issued. This
indicates that there may be too many warps for the size of the GPU. As these
benchmarks were run on a RTX 2060 mobile, which is a rather small GPU, this

56

was to be expected. The other main reason of warp stall is Stall Math Pipe
Throttle, which is caused by the high utilization of ALU and FMA pipelines.
These pipelines are responsible for computing the indices and the actual results
of cross-correlation, which represents the useful work done by the GPU.

Simple indexing warps on the other hand are more often stalled on the Stall
Wait, which represents warps waiting for a fixed latency execution dependency,
i.e. a data dependency between two instructions or an instruction dependency on
predicate computation. We can also see noticeable increase in stalls due to access
to global memory (Stall Long Scoreboard and Stall LG Throttle) together
with stalls due to branching. This is consistent with the properties of simple
indexing described above.

Figure 3.26: Comparison of warp stall reasons between the basic and simplified
indexing.

3.5.3 Shared memory
This optimization of the Base warp per shift implementation is based on the work
by Tomiyama and Suda [14], who evaluate the impact of global memory access,
occupancy and other parameters on execution time of a CUDA implementation
of Levenshtein edit distance. Their implementation loads input data into shared
memory to reduce the number of accesses to global memory, which is exactly
what we want to achieve here.

We also take inspiration from the warp shuffle algorithm and its multirow
optimization. Instead of sharing input values by shuffling and broadcasting across
threads of a warp, we load input values into shared memory and reuse them by
all warps of the thread block.

Similarly to the warp shuffle algorithm, we utilize two alternating parts form-
ing a ring buffer for data from the left input matrix and a single buffer for data
from the right input matrix. Compared to the warp shuffle algorithm, the buffers
are placed in the shared memory and are shared by all warps of each thread block.
The data is not shuffled across threads as was done by warp shuffle, instead stay-
ing in place until overwritten by next load of the buffer, with each warp accessing
the subset of the buffer it requires. The windows of the input data loaded into
buffers are not moved along the rows of the input matrices, but along a group of
columns from top to bottom, processing the whole columns group before moving
onto the next column group, as shown in Figure 3.27a. This access pattern is

57

based on the work of Honzátko and Krulǐs [4], who access the columns between
overlapping patches in similar way.

With appropriately sized column groups, this enables us to maximize the
throughput when loading data from global memory using coalesced loads. The
appropriate size here is a multiple of 32, i.e., warp size. We call the variable hold-
ing the width of the column group the shared mem row size, as it also determines
the size of each row of the shared memory buffers. The number of rows in each of
the three shared memory buffers (two for data from the left matrix and one for
data from the right matrix) is a run-time algorithm argument and stored in vari-
able shared mem num rows. Another reason we choose column groups instead of
row groups is because of the way we assign overlaps to warps of a thread block.
To prevent bank conflicts when accessing shared memory, we assign consecutive
overlaps from a single column of the output matrix to the warps of a single thread
block. This is explained in more detail further in this section.

As warp shuffle algorithm had warp submatrix, i.e. submatrix of each of the
input matrices containing elements required by any of the threads of the given
warp, this algorithm computes thread block submatrix containing elements of
the input matrices required by overlaps assigned to any of the warps of the given
thread block . This thread block submatrix is what we partition into column
groups and what we iterate over and load into the shared memory buffers.

The implementation is again made up of three nested for loops, which can be
found in the attachments of this thesis as the ccn warp per shift shared mem
kernel. The outer loop iterates over column groups while the middle loop iterates
over rows of the column group in shared mem num rows sized steps. These loops
are shown in Listing 3.4. Threads of the whole thread block go through these
two loops synchronously to allow cooperation when loading data to the shared
memory buffers.

When loading the bottom part of the left shared memory buffer in the outer
loop, we need to limit which rows are loaded to the buffer and offset the loaded
rows, as shown in Figure 3.27a. If we were to just load the full buffer as shown
in Figure 3.27b, we would encounter a situation where rows loaded in the sec-
ond iteration of the middle loop into the right buffer overlap rows which were
loaded during the first load of bottom left buffer, which at that point is already
overwritten.

In each iteration, we compute the rows in the right buffer which overlap with
rows in the given part of the left buffer in the overlap assigned to the current
warp. The reason we have two parts of the left buffer is that different warps of a
thread block will be computing different overlaps, as shown in the right column
in Figure 3.27a. For r rows loaded into right buffer, w warps of a thread block
will access r + w − 1 different rows from the left buffer based on the shift each
warp is computing. The w − 1 rows will then be accessed by different warps in
the following iteration as they compute shifts which overlap these rows of the left
input matrix with rows of the right input matrix loaded into the right buffer in
the following iteration.

This innermost loop, shown in Listing 3.5, iterates over the rows from the
two shared memory buffers which are overlapped in the overlap assigned to the
current warp. Shared memory accesses in this loop are without bank conflicts
thanks to way we assign overlaps between warps of a thread block. If we were

58

T thread_sum = 0;
for (

size_t column_group_start_x = block_matrix_start.x;
column_group_start_x < block_matrix_end.x;
column_group_start_x += shared_mem_row_size

) {
// Bottom part of the left shared memory buffer
left_bottom_s.load_submatrix(...);

for (
size_t right_buffer_start_row = block_matrix_start.y;
right_buffer_start_row < block_matrix_end.y;
right_buffer_start_row += shared_mem_num_rows

) {
left_top_s.load_submatrix(...);
right_s.load_submatrix(...);

__syncthreads();
compute_from_shared_mem_buffers(left_bottom_s, right_s, ...);
compute_from_shared_mem_buffers(left_top_s, right_s, ...);
swap(left_bottom_s, left_top_s);
__syncthreads();

}
}

Listing 3.4: Outer and middle loop of the Warp per shift with shared memory
optimizations

__device__ void compute_from_shared_mem_buffers(...) {
// Offset in shared memory buffer
int warp_right_start_offset = ...;
int warp_right_end_offset = ...;
// Offset between buffers
int buffer_offset = ...;
for (

int right_idx = warp_right_start_offset + warp.thread_rank();
right_idx < warp_right_end_offset;
right_idx += warp.size()

) {
l = left_buffer[right_idx + buffer_offset];
r = right_buffer[right_idx];
thread_sum += l * r;

}
}

Listing 3.5: Inner loop of the Warp per shift with shared memory optimizations
accessing the shared memory buffers

59

Thread block submatrix

Column group

Middle loop iteration 0

Middle loop iteration 1

Thread block overlaps

Overlap assigned to warp 0, buffer rows processed together by wa...
Overlap assigned to warp 3, buffer rows processed together by wa...

Left input matrix Right input matrix
Overlapping parts

Shared memory buffers

Empty part of shared memory buffer
Row loaded into shared memory
Row kept in shared memory from previous iterati...

(a) Computation of a single column group showcasing different warp offsets and left
bottom buffer preload offset.

Middle loop iteration 0

Middle loop iteration 1

Without first buffer offsetAs used above

Buffer rows processed together by warp 0
Empty part of shared memory buffer
Row loaded into shared memory
Row kept in shared memory from previous iterati...

(b) Cross-iteration dependency when the bottom part of the left buffer is not loaded
with an offset during the first load.

Figure 3.27: Processing of a column group by the Warp per shift algorithm with
shared memory optimization.

to assign overlaps from a single row of the output matrix to warps of a thread
block, as is done by the basic implementation of warp per shift algorithm, we
would encounter a problem illustrated in Figure 3.28a. For the purposes of this
example, we work with warps of 4 threads, shared memory with 4 banks and
assume each input matrix fits into one shared memory buffer. The figure shows
the left and right input matrix and how their elements map into banks of shared
memory when loaded by the thread block. For simplicity, we have chosen a thread
block whose thread block submatrix contains whole input matrices as one of the
overlaps computed by the thread block is the overlap with shift [0, 0]. When
warps of a given thread block are assigned overlaps along a row of the output
matrix, the overlaps differ in the number of columns. This leads to an access
pattern with different stride in each warp. The strides for warps 1 and 2 result in
2-way bank conflicts, the stride for warp 0 results in 4-way bank conflict. With

60

32 threads per warp, this type of access would cause up to 32-way bank conflict,
which would severely limit the shared memory throughput.

Due to this, we choose to assign overlaps from a single column to warps of a
thread block. This assignment leads to access illustrated in Figure 3.28b. This
figure depicts two iterations of the innermost loop, with the same simplifications
as the previous figure. As the overlaps differ in the number of rows, not columns,
the access to shared memory has different starting and ending offset, but between
these the access is perfectly linear and coalesced, each thread accessing different
bank. Left buffer is accessed independently of the right buffer, so sharing banks
between these buffers does not lead to bank conflicts.

0
0
0
0

1
1
1
1

2
2
2
2

3
3
3
3

0
0
0
0

1
1
1
1

2
2
2
2

3
3
3
3

0
0
0
0

1
1
1
1

2
2
2
2

3
3
3
3

0
0
0
0

1
1
1
1

2
2
2
2

3
3
3
3

0
0
0
0

1
1
1
1

2
2
2
2

3
3
3
3

0
0
0
0

1
1
1
1

2
2
2
2

3
3
3
3

0
0
0
0

1
1
1
1

2
2
2
2

3
3
3
3

0
0
0
0

1
1
1
1

2
2
2
2

3
3
3
3

Iteration 1

Warp 0

Warp 1

Warp 2

Warp 3

Assigned overlap

i

Left input matrix Right input matrix

Accessed element in shared memory bank i

(a) Iteration 1 when job
contains overlaps from a
row of the output matrix.

0
0
0
0

1
1
1
1

2
2
2
2

3
3
3
3

0
0
0
0

1
1
1
1

2
2
2
2

3
3
3
3

0
0
0
0

1
1
1
1

2
2
2
2

3
3
3
3

0
0
0
0

1
1
1
1

2
2
2
2

3
3
3
3

0
0
0
0

1
1
1
1

2
2
2
2

3
3
3
3

0
0
0
0

1
1
1
1

2
2
2
2

3
3
3
3

0
0
0
0

1
1
1
1

2
2
2
2

3
3
3
3

0
0
0
0

1
1
1
1

2
2
2
2

3
3
3
3

0
0
0
0

1
1
1
1

2
2
2
2

3
3
3
3

0
0
0
0

1
1
1
1

2
2
2
2

3
3
3
3

0
0
0
0

1
1
1
1

2
2
2
2

3
3
3
3

0
0
0
0

1
1
1
1

2
2
2
2

3
3
3
3

0
0
0
0

1
1
1
1

2
2
2
2

3
3
3
3

0
0
0
0

1
1
1
1

2
2
2
2

3
3
3
3

Iteration 1 Iteration 2

Warp 0

Warp 1

Warp 2

Warp 3

Assigned overlap

i

Left input matrix Right input matrix

Accessed element in shared memory bank i

(b) The first two iterations when job con-
tains overlaps from a column of the output
matrix.

Figure 3.28: Input matrices with numbers designating their mapping to shared
memory banks and how they are accessed by 4 different warps of a single thread
block.

Even with the throughput of shared memory, the load from shared memory
LDS instructions become a bottleneck, as shown in Figure 3.29. The memory
input/output stall is caused by the memory input/output queue being full. This
queue handles special math instructions, dynamic branches and most importantly
for us the shared memory access instructions. Even with this bottleneck, the
reduction in number of global memory accesses allows the warp per shift algorithm
with shared memory optimization to be usable even for larger inputs, as will be
shown in Section 4.2.

3.5.4 Shared memory with multiple right matrices
Similarly to the warp shuffle algorithm, we can increase the ratio of arithmetic
instructions to shared memory loads by computing the same shift between a
single left matrix and multiple right matrices. This improvement of the shared
memory optimization is limited by the size of shared memory, as we need to fit
multiple right shared memory buffers described in the previous section into shared
memory at once. The code changes are very similar to the warp shuffle changes.

61

Figure 3.29: Memory input/output (MIO) stall caused by excessive shared mem-
ory access.

We again utilize the Local array optimization described in Appendix A, caching
data in registers for reuse. We are computing overlaps with the same shift from
different output matrices, as is done by the multimat right optimization of the
Warp shuffle family in Section 3.4.3. Thanks to the same shift of all overlaps
computed by given worker, any loop bounds computed hold for all the overlaps.

The effects of this optimization are shown in Figure 3.30. The profiling shows
the difference between running the original shared memory optimization and run-
ning the shared memory optimization computing overlaps from multiple matrices
at once. The profiling was done on 256 × 256 matrices, with one left input
matrix and 16 right input matrices. The original shared memory optimization
computes one overlap per warp, whereas the optimized version was run comput-
ing overlaps from eight matrices at once. The total number of shared memory
load instructions (LDS) and memory access index computations using the integer
multiply-add (IMAD) is significantly reduced, as the data from the left matrix
once loaded into register is reused with data from eight right input matrices.
Even with this reduction in the number of LDS instructions, the utilization of
the LSU pipeline is still a bottleneck, most likely due to the reduced throughput
of shared memory in the Compute Capability 7.5 we use for profiling. The higher
utilization of FMA pipeline hints at better performance, which will be shown in
Section 4.2.5.

3.5.5 Shared memory with single column group per block
As described in Section 3.5.3, the thread block matrix is split into column groups.
Each of these column groups can be processed independently, with the partial re-
sult added to the final result using atomicAdd instruction as was done for the
Work distribution optimization of the Warp shuffle algorithm family, introduced
in Section 3.4.2. This improves the occupancy of the Warp per shift with shared
memory optimization, possibly offsetting the reduced occupancy caused by over-
laps from multiple overlaps grouped into each job introduced in Section 3.5.4. The
optimization further borrows from the rectangle work distribution, first comput-
ing the maximum number of column groups m any overlap can be split into,
and then starting m workers for each overlap. As m is the maximum number of
column groups an overlap can be split into, most overlaps will be split into fewer
column groups.

This change should allow for additional parallelization as each column group

62

(a) Executed instructions.

(b) Pipeline utilization.

Figure 3.30: Profiling of the effects of multiple right matrices on shared memory
optimization.

is processed independently. The only change in terms of code of the CUDA
kernel is the different computation of loop bounds and final store of the result
using atomicAdd, otherwise the code of the original implementation of the shared
memory optimization can be reused without any changes. The effects of this
change are evaluated in Section 4.2.5.

3.5.6 Work distribution

As described in Section 3.4.2 with the warp shuffle algorithm, there are massive
differences between work done by different workers in the basic algorithm. This
optimization can only be applied to the base Warp per shift algorithm, as the use
of Column groups by the shared memory optimization cannot be combined with
Row groups used with work distribution. The implementation shares much of the
code with the warp shuffle algorithm, only difference being the size of workers. We
can choose from the triangle or rectangle distributions and set the maximum
number of rows processed by a worker. The code of this optimization can be found
in the attachments as the ccn warp per shift work distribution kernel.

This optimizations improves occupancy, further improving the main benefit
of the Warp per shift family of algorithms. As described above, it also improves
load balancing by reducing the differences between workloads of different workers.
The disadvantage of this optimization is the reduced workload of each worker,
which has to be balanced with the overhead of each worker such as scheduling,
index calculations, atomic instructions to combine results from multiple workers
etc. The optimization should provide improvements until the GPU is saturated.
Additionally, without the use of shared memory described in Section 3.5.3, the
added strain onto global memory due to no data reuse between workers limits
the performance of this optimization.

63

3.6 Further increasing worker size
Another possible way to further increase occupancy is to switch from warps as
workers to whole thread blocks as workers. This can massively increase the num-
ber of threads started for given size of input, saturating the GPU even for smaller
inputs. This optimization is again inspired by the work of Bednárek et al. [2],
who assign stride, which is their unit of work, to be processed by a whole thread
block. In our case, the implementation is rather simple. The thread block in-
dex directly maps to the position in the output matrix and consequently to the
overlap computed by given thread block. This is why we call this the Block per
shift optimization. We then compute the bounds of the overlapping submatrix
and iterate over the overlapping elements using block stride loop. We then uti-
lize reduce function provided by Cooperative Groups API to sum results in each
warp, which are then stored into shared memory and reduced again by warp 0
[9]. The final result is then stored into the output matrix.

This implementation should further improve occupancy, but at the cost of
lower workload per thread, unbalanced workloads between workers and no data
reuse. Based on our measurements presented in Section 4.2.5, this implementa-
tion does not improve run time over the Base warp per shift algorithm even for
small input matrices. This is most likely caused by the simple warp per shift algo-
rithm already saturating the GPU. Even for more powerful GPUs, the improved
occupancy does not offset the problems listed above.

3.6.1 Summary
In this section, we have introduced the Warp per shift algorithm family and
presented the following optimizations of this family:

• simplified indexing (Section 3.5.2),

• shared memory (Section 3.5.3),

• shared memory with multiple right matrices (Section 3.5.4),

• shared memory with column group per worker (Section 3.5.5),

• work distribution (Section 3.5.6).

The Warp per shift algorithm increases the worker size, utilizing whole warp
to compute each job. The main goal of this family is to improve occupancy,
saturating the GPU and utilizing its full throughput even for smaller inputs. The
optimizations listed above then try to reduce overhead of the code caused by
array indexing, introduce data reuse by loading data into shared memory and
using them from multiple workers or further improve occupancy.

Using these optimizations, we have implemented the following versions of the
Warp per shift algorithm:

• base Warp per shift,

• Warp per shift with work distribution,

• Warp per shift with shared memory (combining all three optimizations).

64

We have also introduced one additional algorithm further optimizing for oc-
cupancy, the Block per shift algorithm. Measurements and comparison of these
algorithms and their implementations is presented in Section 4.2.5.

65

66

4. Results
In this chapter, we first describe our setup for measurement and validation of
the implementations described in the previous chapter. We then compare the
definition-based cross-correlation implementations against each other before com-
paring them with an FFT-based CUDA implementation. Finally, we compare the
definition-based implementations with existing real-world cross-correlation imple-
mentations in the Python SciPy library and in Matlab.

4.1 Experiments
As the main aim of this thesis is to compare implementations of an algorithm, the
code is heavily instrumented to enable measurements and comparisons of different
parts of the implementation. This instrumentation is designed to limit its impact
and to allow measurements that minimize background noise and imprecision of
the time measurement tools provided by the CUDA C++ language.

As part of this thesis, we have also developed a benchmarking tool that allows
the use of a declarative description of the set of benchmarks to be executed. The
tool generates input and validation data, runs the benchmarks for all inputs and
with all argument combinations specified, and records the times and validation
results. As such, the tool is used both for measurements and for validation of the
implementation.

To simplify the implementation of the definition-based algorithm optimiza-
tions, we have placed several restrictions on the input matrices and the compu-
tation:

• both input matrices are of the same size,

• whole output matrix is computed.

Both restrictions are used to simplify the implementation and reduce the
number of variables when measuring. Both restrictions could be removed in
production-grade implementation but would make the optimizations unnecessar-
ily harder to implement.

4.1.1 Code instrumentation
All implementations, including definition-based, FFT-based, and CPU-based, are
split into the following steps:

• Load loads the input matrices into host memory,

• Prepare allocates device memory and precomputes things derived from the
input data size,

• Transfer moves data from host to device memory,

• Run executes the computation,

• Finalize moves data from device to host memory,

67

• Free releases resources allocated in the Prepare step,

• Store stores results from host memory.

Each of these steps can be individually measured and compared. The main
focus of this thesis is the Run step, but to properly compare the behavior of the
FFT-based implementations with definition-based implementations, we will have
to compare other steps as well.

We also provide simple CPU-based single-threaded definition-based imple-
mentation, for which most of these steps are empty. This implementation is
provided for the basic validation of results and of the benchmarking infrastruc-
ture.

The code instrumentation allows us to measure the algorithms with three
different levels of granularity:

• Compute measuring the duration of the Prepare, Transfer, Run, Finalize,
and Free steps together;

• CommonSteps measuring every step separately;

• Algorithm measuring algorithm-specific parts such as individual kernels or
library calls.

For parts that can be executed repeatedly, such as computations and data
transfers, we utilize measurement with an adaptive iteration count. The number
of iterations is automatically increased until the measured duration is longer
than a configured minimum, most often a second. This type of measurement
should mitigate background noise and get around problems with minimum clock
resolution for very short steps. It is used for the Compute measurement, for
measuring the Run step, and for measuring kernel and function call durations in
each algorithm.

For timing the SciPy implementation, we use the perf counter ns function
provided by the Python standard library. For Matlab, the pair of functions named
tic and toc is used to measure the execution time. For both implementations,
we also utilize the adaptive iteration count. For both, we measure with only the
Compute granularity.

4.1.2 Experiment setup
Experiments were run on two systems:

• Intel Xeon Silver 4110 with 256GB of RAM and NVIDIA Tesla V100 PCIe
16 GB (gpulab), running Rocky Linux 8.5, gcc 11.2, CUDA 11.6, and nvidia
driver 510.47.03;

• AMD Ryzen 5 4600H with 16GB of RAM and NVIDIA GeForce RTX 2060
(laptop), running Ubuntu 20.04, gcc 9.4.0, CUDA 11.4, and nvidia driver
470.129.06.

The two systems allow us to evaluate our implementations on two different
classes of GPU hardware, gpulab representing the enterprise server systems with

68

Tesla GPU and Xeon CPU, and laptop representing consumer hardware with
gaming GeForce card and Ryzen CPU. The two systems also allow us to com-
pare two different GPU generations, Compute Capability 7.0 for the V100 and
Compute capability 7.5 for the RTX 2060. Unless stated otherwise, the results
showcased in this text are measured on gpulab. Laptop results will be added only
when the behavior significantly differs from that of gpulab, as the algorithms are
in no way optimized for any of the two cards and should run similarly in both
cases.

Most showcased results are collected using the adaptive iteration count. The
timing is done using CUDA events when measuring the run time of CUDA kernels
or the high-resolution clock provided by the C++ standard library for all other
measurements. The resulting value shown is the total measured time divided by
the number of iterations. To further remove noise, all measurements are repeated
20 times, and the mean of these measurements is taken as the final result, as
there are no significant outliers that would skew the mean.

4.1.3 Result validation
When validating the results of a computation, we compare them to valid results
computed using SciPy, Matlab, or our simple CPU definition-based implementa-
tion. The output matrix is compared element by element with the valid result,
computing a matrix of differences using formula 4.1 [20].

Relative difference(a, b) = |a − b|
max(|a| , |b|) (4.1)

The maximum element in the matrix of differences is then taken as the error
of the output matrix.

4.2 Comparing definition-based algorithms
In this section, we first measure and compare the members of the Warp shuffle
algorithm family, described in Section 3.4, against each other. Next, we compare
the members of the Warp per shift algorithm family, introduced in Section 3.5.
Lastly, we compare the best optimizations from both algorithm families with the
Basic definition-based implementation.

Each of the one-to-one, one-to-many, n-to-mn, and n-to-m input types is com-
pared separately, as it allows for different optimizations and may benefit certain
implementations better than others. In the following sections, we list and use
only the best-performing arguments for each implementation. The benchmarks
measuring behavior with different argument values which were used to choose
these optimal arguments are available in the thesis attachments in the directory
code/benchmarking/args test. The results were left out of the text of the thesis
for brevity, as they closely follow the descriptions of each optimization.

When comparing the definition-based algorithms, we measure only the kernels
in the Run step, as the implementation of this step is the only difference between
the algorithms. As such, the speedup reported in this section represents only
the change in execution time of the Run step, i.e., the computation itself, not
including allocations, loading from disk, transfers to GPU, etc.

69

Implementations utilizing warp shuffle instructions are usable across a range
of input sizes. We measure their behavior for input matrix sizes ranging from
16x16 to 512x512 elements. These input matrix sizes were chosen as the larger
input sizes are faster computed using the FFT-based implementation, and as such
the speed of the optimizations of the definition-based implementation is irrelevant
for the larger sizes. Based on the input type, we also measure with a different
number of left and right input matrices to gauge the changes in the behavior of
the implementations with a changing number of input matrices.

4.2.1 Warp shuffle optimizations with the one-to-one in-
put

For this input type, we have the following four implementations with these argu-
ments:

Implementation Argument Value
Simple Warps per thread block 4

Simple with work distribution
Warps per thread block 8
Rows per thread 1
Distribution type triangle

Multirow right Warps per thread block 4
Right rows per thread 8

Multirow both
Warps per thread block 4
Shifts per thread 8
Left rows per iteration 4

(a) gpulab (b) laptop

Figure 4.1: Speedup of one-to-one warp shuffle optimizations.

The results displayed in Figure 4.1 show the speedup of each optimization com-
pared to the Simple warp shuffle implementation. For smaller inputs on gpulab,
the multirow optimizations are slower, up to 31% slower for the multirow both and
up to 68% slower for the multirow right than the Simple implementation. This
slowdown is caused by the reduction in the number of threads and correspond-
ingly reduced occupancy of the GPU. Due to the smaller size of the laptop GPU,

70

the reduced number of threads has a much lower effect. For multirow right, this
is combined with each thread reading each row of the right input matrix multiple
times, adding global memory access latency, which the GPU is unable to hide
due to the low occupancy. This problem is mitigated in the multirow both opti-
mization, which is reflected here in better performance for all input sizes when
compared with the multirow right optimization. For larger input sizes, the better
ratio of warp shuffle to fused multiply-add instructions of these two optimizations
allows them to overtake the Simple implementation. This is above 128x128 for
multirow both and above 320x320 for multirow right on gpulab. For laptop, the
lower performance of the GPU increases the effect of the optimizations, overtaking
the Simple implementation sooner.

The behavior of work distribution optimization tells us that the gpulab GPU
is not fully saturated by the Simple implementation up until the 320x320 input
matrix size. Again due to the smaller size of the laptop GPU, it is saturated
much sooner. Low occupancy is an expected problem with the one-to-one input
type. On gpulab for inputs smaller than 320x320, the large number of additional
threads allows us to fully utilize the GPU, making the work distribution opti-
mization more than four times faster than the Simple implementation without
work distribution for certain input matrix sizes. As we increase the input size, the
benefit of additional threads diminishes, completely disappearing above 320x320
input size, where the overhead introduced by the additional threads negates the
increased GPU saturation.

The maximum absolute time improvement is for the 512x512 input size, im-
proving from 67.18 ms to 24.08 ms on gpulab and from 303 ms to 72 ms on
laptop.

4.2.2 Warp shuffle optimizations with the one-to-many in-
put

This input type has six implementations with the following arguments:

Implementation Argument Value
Simple Warps per thread block 4

Multimat right Warps per thread block 4
Right matrices per thread 8

Multimat right with work distribution

Warps per thread block 8
Right matrices per thread 8
Rows per thread 1
Distribution type triangle

Multirow right multimat right
Warps per thread block 4
Right rows per thread 2
Right matrices per thread 4

Multirow both multimat right

Warps per thread block 4
Shifts per right matrix 4
Right matrices per thread 4
Left rows per iteration 4

71

Figure 4.2: Speedup of one-to-many warp shuffle optimizations on gpulab.

From the results in Figure 4.2, we see that most optimizations are more than
50% slower than the Simple implementation for small input sizes and small num-
bers of matrices. This is caused by lower occupancy of the GPU, as both multimat
and multirow group multiple overlaps into each job, reducing the total number of
jobs and decreasing the total number of workers. The exception is Multimat right
with work distribution, where the work distribution optimization is specifically
designed to solve the problem of low occupancy by splitting each overlap into
several jobs. This results in the 4 times speedup we see for the input 32x32 with
two right input matrices. However, with increasing total input size, be it the size
of each matrix or the total number of matrices, the need to increase occupancy
diminishes, and the speedup provided by work distribution is lower.

For larger input sizes, the improved ratio of warp shuffle instructions to fused
multiply-add instructions balances out the decreased occupancy. The combina-
tion of multimat right and multirow right is slightly better than the multimat
right optimization alone but is hampered by the increased number of reads from
global memory as each row from the right input matrix is reread two times by
each worker. This is also the reason why the argument right rows per thread is
best when set to 2, as increasing the value of this argument increases the num-
ber of times each row is read by the given worker. This is the reason why for
larger inputs, the multimat right and its combination with multirow right provide
similar speedup, as any improvement of the instruction ratio is balanced by the
increased number of reads.

72

(a) gpulab (b) laptop

Figure 4.3: Comparison of the input with 8 right matrices on gpulab and laptop.

The best improvement for the input sizes we are interested in is provided by
the combination of multimat right with multirow both. This combination removes
the disadvantage of multiple reads of the multirow right, leaving just the improved
instruction ratio.

When we compare behavior on gpulab and laptop in Figure 4.3, we see that
the change is very similar to the one shown in Section 4.2.1. The optimizations
improving occupancy are not as effective, while the optimizations reducing the
number of warp shuffle instructions and global memory accesses significantly im-
prove the performance. The measurement in Figure 4.3b, computing input with
8 right matrices, are very similar to the results from Figure 4.2 with 16 input
matrices, i.e., with twice the input data size. This shows the effects of the lower
performance and smaller size of the GPU.

The maximum absolute improvement is for the 512 × 512 matrix size with
1024 right matrices, where we see a decrease from 67 s to 16.8 s on gpulab and
from 308 s to 67 s on laptop.

4.2.3 Warp shuffle optimizations with the n-to-mn input

This input type shares implementations with the one-to-many type, as it does
not provide any additional possibilities for data reuse because each left input
matrix is cross-correlated with a different set of m right input matrices. This
means that each implementation of n-to-mn type just executes the one-to-many
implementation kernel n times in parallel, once for each left input matrix. Due
to this, the main factor here is how many of the one-to-many kernels can we run
in parallel, or more precisely, how many thread blocks from these kernels can fit
on a single SM.

The arguments differ slightly due to the higher GPU utilization:

73

Implementation Argument Value
Simple Warps per thread block 4

Simple with work distribution
Warps per thread block 4
Rows per thread 1
Distribution type triangle

Multimat right Warps per thread block 4
Right matrices per thread 8

Multimat right with work distribution

Warps per thread block 4
Right matrices per thread 8
Rows per thread 1
Distribution type triangle

Multirow right multimat right

Warps per thread block 4
Right rows per thread 2
Right matrices per thread 4
Number of CUDA streams 16

Multirow both multimat right

Warps per thread block 4
Shifts per right matrix 4
Right matrices per thread 4
Left rows per iteration 4
Number of CUDA streams 16

Figure 4.4: Speedup of n-to-mn warp shuffle optimizations on gpulab.

These measurements are very similar to the measurements for the one-to-
many type. The differences in measurements between the same implementation

74

used in these two input types reflect the total resources required by the kernel,
i.e., how many kernels can run in parallel.

The results in Figure 4.4 show that for a small number of small input matrices,
the work distribution optimization is still necessary to balance out the occupancy
reduced by other optimizations. The arguments of the implementations using
work distribution are optimized for the smallest input sizes. To run with the
same arguments for input matrices of size 512x512 would require the CUDA grid
size of 65536 in the y axis, which is just above the 65535 maximum limit. The
same implementations did run for the 512x512 input size in one-to-many as they
were run with eight warps per thread block, which reduces the required grid
size, and for one-to-many was faster than four warps per thread block. In the
measurements for n-to-mn type, the version with four warps per thread block
came out faster. As work distribution is only faster for the smaller input sizes,
we choose to use the four warps per thread even if it cannot run the whole range
of input sizes, as we try to optimize the speedup for each size separately.

The explanation of the performance of the multimat right, the multirow right
multimat right and the multirow both multimat right optimizations is the same
as for the one-to-many type, as is the effect of running the benchmarks on gpu-
lab when compared to laptop. The occupancy improving optimizations are less
effective, while the efficiency improving optimizations are more effective. The
maximum absolute improvement is for the 512 × 512 matrix size with 100 left
matrices to 1000 right matrices, where we see decrease from 65.43 s to 17.29 s on
gpulab and from 303 s to 69.49 s on laptop.

4.2.4 Warp shuffle optimizations with the n-to-m input

The final input type has a group of implementations specifically optimized for
this type, the multimat both optimization and its combinations with other opti-
mizations. We also reuse some one-to-many implementations, running them n
times in parallel, once for each left input matrix, this time all with the same set
of right input matrices.

Again, Figure 4.5 shows that work distribution is advantageous for smaller
inputs, but is not required for larger inputs. As expected, the multimat both
optimization specifically designed for this input type gives the best performance.
For smaller inputs, it is best when combined with work distribution. For medium
and large inputs, it is best when combined with multirow both optimization. As
multimat right improvement does not reuse data from the left input matrices, it
falls behind the multimat both.

The maximum absolute improvement is for the 512 × 512 matrix size with
50 left matrices to 50 right matrices, where we see a decrease from 163.95 s to
31.66 s on gpulab. For laptop, the input with 512 × 512 and 50 left matrices and
50 right matrices does not fit into GPU memory. As such, the maximum absolute
improvement is for the size 256 × 256 with 50 and 50 matrices, decreasing from
49 s to 14 s.

75

Figure 4.5: Speedup of n-to-m warp shuffle optimizations on gpulab.

Implementation Argument Value

Simple Warps per thread block 4
Number of CUDA streams 8

Multimat right
Warps per thread block 4
Right matrices per thread 8
Number of CUDA streams 8

Multimat right with work distribution

Warps per thread block 4
Right matrices per thread 8
Rows per thread 1
Distribution type triangle
Number of CUDA streams 8

Multimat both
Warps per thread block 4
Left matrices per thread 4
Right matrices per thread 4

Multimat both with work distribution

Warps per thread block 4
Left matrices per thread 4
Right matrices per thread 4
Rows per thread 1
Distribution type triangle

Multirow both multimat both

Warps per thread block 4
Left matrices per thread 4
Right matrices per thread 4
Shifts per right matrix 4
Left rows per iteration 4

76

4.2.5 Warp per shift optimizations with the one-to-one
inputs

Occupancy is mainly a concern when working with the one-to-one input type
and small input matrices. Because of this, we implement the algorithms from
this family mostly for the one-to-one input type and will compare them only for
this input type.

The following table lists the Warp per shift algorithm family implementations,
together with the Block per shift algorithm implementation, with the arguments
used for their measurement:

Implementation Argument Value
Warp per shift Shifts per thread block 16

Warp per shift with work distribution
Shifts per thread block 8
Rows per warp 10
Distribution type triangle

Warp per shift with shared memory

Shifts per thread block 16
Shared memory row size 128
Load with stride True
Column group per block True

Block per shift Block size 256

From the results in Figure 4.6, we see that the base Warp per shift implemen-
tation is enough to saturate the GPU. Due to this, the Block per shift algorithm
and Work distribution optimization do not improve the run time. While still
slower than the base Warp per shift implementation, the increasing speed of
work distribution with increasing input size is most likely caused by the increas-
ing size of each job and correspondingly decreasing proportion of the overhead
caused by distributing the jobs and collecting the results.

(a) gpulab (b) laptop

Figure 4.6: Relative speed of warp per shift optimizations.

The shared memory optimization is not beneficial for inputs smaller than
64x64, mostly due to adding synchronization overhead between warps of a thread
block when loading data into shared memory. For larger input data sizes, the

77

reduced number of global memory accesses gives this optimization an advantage
over the base Warp per shift implementation.

The largest absolute improvement in run time is for the 512×512 input matrix
size from 0.158 s to 0.074 s.

4.2.6 Comparison with Basic algorithm
Now that we have compared the optimizations of both families separately, we
now compare the best of these optimizations against the Basic definition-based
implementation described in Section 3.3. As the implementations still differ only
in the GPU kernel, we again compare only the time taken by the Run step.

(a) One to one. (b) One to many.

(c) N to MN. (d) N to M.

Figure 4.7: Speedup of the best optimized implementation compared to Basic
implementation on gpulab.

Figure 4.7 shows the achieved speedup for each of the four input types by the
best optimization when compared to the Basic implementation. We see inputs
for which our implementations are up to 80 times faster. For large inputs, the
speedup is around five times, i.e., the computation requires one-fifth of the time
required by the Basic implementation.

For the one-to-one input type shown in Figure 4.7a, we separate the Warp
shuffle and Warp per shift based optimizations. As Warp per shift optimizations

78

are designed to improve occupancy, they are generally only relevant for the one-to-
one input type, as the total size of input data is not enough to saturate the GPU
using Basic implementation and simple Warp shuffle implementation. But as we
see in the results, Warp shuffle combined with the work distribution optimization
is almost as fast as Warp per shift. For inputs larger than 200x200, we see that
the occupancy is not a limiting factor and the data reuse provided by Warp shuffle
optimizations becomes more relevant. The maximum absolute time improvement
is from 0.072s to 0.024s. For all following input types, we use only Warp shuffle
implementations as they are always better than Warp per shift implementations.

The one-to-many input type shown in Figure 4.7b of up to 80 times when
computing one left matrix against 1024 right matrices of size 32x32, achieving
the highest speedup. For smaller matrix sizes, increasing the number of right
matrices improves speed, which indicates that the GPU is not fully utilized. For
larger matrix sizes, the difference between speedups for the different number
of matrices becomes negligible, with all converging around a speedup of 5. This
seems to be the speedup of our best implementations when GPU is fully saturated.
The maximum absolute time improvement is from 86.21s to 16.83s.

The n-to-mn input type shown in Figure 4.7c shows different behavior to the
one-to-many type. The speedup spike for smaller matrix sizes caused by work
distribution is also present, but now with the increasing number of matrices we get
a smaller speedup. Above matrix size of 200x200, optimizations with improved
data reuse become prominent, causing the improving speedup for larger matrix
sizes. The maximum absolute time improvement is from 83.42s to 17.29s.

The n-to-m input type shown in Figure 4.7d shows similar characteristics to
the n-to-mn type. We again see the work distribution spike for small matrix
sizes, transitioning to optimizations providing better data reuse. The maximum
absolute time improvement is from 203.28s to 31.66s.

(a) One to one. (b) N to MN.

Figure 4.8: Speedup of the best optimized implementation compared to Basic
implementation on laptop.

Two two input types that show a significant difference between gpulab and
laptop are shown in Figure 4.8. The one-to-one type again shows the quick
falloff of occupancy improving optimizations, which become slower than ones
improving the instruction ratio or memory accesses with input matrix size 64x64.

79

We see a similar effect on the n-to-mn type, where the initial spike for small
inputs caused by occupancy improving optimizations is completely gone. The
maximum absolute time improvement is from 351s to 69s.

4.3 Comparison with existing implementations
In this section, we compare the best of our definition-based implementations
as measured in Section 4.2, with existing 2D cross-correlation implementations.
First, we make a comparison against the FFT-based CUDA implementation.
Next, we take two existing tools/libraries in the form of Python SciPy Virta-
nen et al. [16] library and Matlab [7] which implement 2D cross-correlation, and
compare them with our definition-based algorithms.

We have chosen the Python SciPy library as a generally used CPU implemen-
tation of 2D cross-correlation, and Matlab with Parallel Computing Toolbox for
GPU accelerated 2D cross-correlation. Due to licensing limitations, Matlab will
only be compared on the RTX 2060 system.

The methods for time measurement of all three implementations are described
in Section 4.1.1. For each input size (combination of matrix size and the number
of matrices), we choose the fastest implementation provided by this thesis. Gener-
ally, for smaller inputs, the implementations with work distribution optimization
will be chosen, whereas for larger inputs, the implementations optimizing for ef-
ficiency through reduced global memory accesses, improved instruction ratios,
etc., will be chosen. The comparison of the definition-based implementations and
which of them are the fastest for a given input is presented in Section 4.2.

4.3.1 FFT-based implementation
The FFT-based implementation used in this thesis is adapted from the one used
by Bali [1]. It uses the cuFFT library for the Fast Fourier Transform and a
custom kernel for Hadamard multiplication.

Before comparing this FFT-based implementation with the definition-based
implementations, we first show a few properties of this implementation caused
by the use of the Fast Fourier transform in general and of the cuFFT library in
particular. First is the dependency between the precise size of the input matrix
and computation time. As described in the cuFFT library documentation, cuFFT
provides ”Algorithms highly optimized for input sizes that can be written in the
form 2a ∗ 3b ∗ 5c ∗ 7d. In general, the smaller the prime factor, the better the
performance, i.e., powers of two are fastest.” [12]. From our measurements, we
see up to 30% slowdown between the power of two input sizes and input sizes one
smaller.

Another feature is illustrated in Figure 4.9, where we show computation time
for inputs smaller than 128x128. From these measurements, we see that the
cuFFT library computes inputs with matrix size up to 96x96 faster in double
precision than in single precision, even though the double precision version works
with twice the amount of data and uses operations with lower throughput. The
cause is the Prepare step, which allocates device memory and in this implemen-
tation runs the cufftPlan* functions. Based on our measurements, the Prepare
step is slower for single precision computation than for double precision. Due to

80

Figure 4.9: Comparison of FFT-based computation in single and double precision
for small inputs.

the closed source of the cuFFT library, we can only speculate on the cause, but it
is most likely due to some additional precomputation done for the single version.

When comparing the FFT-based implementation with the definition-based
implementations, we are mostly interested in the input matrix size where the
definition-based and FFT-based implementations are equal and how that size
differs between the Basic algorithm and the best of our optimizations, which we
now collectively call the Optimized algorithm. We call such matrix size the equal-
ity point, as it is represented by a point where the graphs of the implementations
intersect in the diagram. The Optimized implementation is chosen for each input
(i.e., a combination of input matrix size and number of input matrices) separately.
In this section, we measure the whole computation, including allocation, transfer
to the GPU, kernel execution, transfer from the GPU, and deallocation. This
is because the FFT-based algorithm differs from the definition-based algorithm
in all of these stages. Most importantly, we need to include the overhead of the
Prepare step that has a major impact on the total run time as described in the
previous paragraph.

First, we measure with the same matrix sizes as in previous sections, as
shown in Figure 4.10. The figure shows the speedup of the Basic and Optimized
definition-based algorithm compared to the FFT-based implementation, which is
used as a baseline. As described above, cuFFT library used by the FFT-based
implementation is optimized for certain input sizes, with powers of two being the
fastest. As such, measurements in Figure 4.10 are optimal for the FFT-based
implementation. The figure shows an improvement in the position of the equality
point for all input types.

The most noticeable change between Basic and Optimized implementation
is in the one-to-one type, shown in Figure 4.10a. Due to the small input data
size, the GPU cannot be fully saturated by the FFT-based implementation. Even
though this change is the most noticeable, it is the least important, as the total
execution time is very low for all implementations of this input type.

For the one-to-many type in Figure 4.10b, the results again show great im-
provement for small input data sizes, here represented by small number of right
input matrices. For these sizes, the Basic implementation often did not reach the
speed of the FFT-based algorithm for any measured input matrix size, whereas
the optimized implementation has its equality point above the matrix size of
100x100. For inputs with a large number of right input matrices, we see that the
equality point moves to around 64x64 input matrices.

81

(a) One to one. (b) One to many.

(c) N to MN. (d) N to M.

Figure 4.10: Speedup of the Basic definition-based implementation and best
definition-based optimized implementation compared to FFT-based implemen-
tation on gpulab.

The n-to-mn type in Figure 4.10c again displays great similarity to the one-
to-many type due to the way it is implemented. The equality points are at similar
positions, being slightly below 64x64 for the largest input.

The n-to-m type in Figure 4.10d shows surprisingly good performance even for
the Basic implementation. For inputs with a small number of matrices, optimized
equality points are all above 120x120 matrix size. For inputs with a large number
of matrices, the equality point is just below 80x80.

When we compare the behavior between gpulab and laptop, as shown in
Figure 4.11, we see that the FFT-based implementation suffers massively with
low occupancy. For smaller input sizes, we see over 100 times improvement for
both the one-to-one type and for small number of matrices in the n-to-mn type.
Once the input size becomes large enough, as shown by the 100 to 1000 input for
the n-to-mn type, the behavior is very similar to that of gpulab, but with much
bigger improvements for smaller input matrix sizes.

The second set of results, shown in Figure 4.12, changes the matrix sizes
for which we measure the implementations. We take the matrix sizes used to
measure the original results in Figure 4.10 and find the closest prime number. For
example 64x64 becomes 61x61, 128x128 becomes 127x127 and 256x256 becomes

82

(a) One to one. (b) N to MN.

Figure 4.11: Speedup of the Basic definition-based implementation and best
definition-based optimized implementation compared to FFT-based implemen-
tation on laptop.

257x257. This should make the FFT-based implementation slower, making the
improvements provided by our optimizations of definition-based implementation
greater as the definition-based implementation is not that closely dependent on
the precise size of the input matrices.

We see a major change in the behavior of one-to-one type, shown in Figure
4.12a. The equality point moves beyond the 256x256 matrix size, and we see two
peaks in the improvement as the FFT-based implementation becomes faster for
the 127x127 input before slowing down again for the 157x157 matrix size.

For other input types, we also see an improvement compared to the previous
measurements, even if not as significant as for the one-to-one type. The speedup
values are better across the board, with equality points moving to larger matrix
sizes. A similar change is visible when comparing the two measurements on
laptop.

Due to the many iterations of the algorithm which are measured together,
the measured time reflects many repeated computations on the same input data.
This results in caches being fully populated and allows the cuFFT library possible
internal caching. Figure 4.13 shows a measurement of a single iteration which
limits or possibly even removes the ability for internal caching in the cuFFT
library and populating of any caches, measuring warm-up performance instead
of sustainable performance. This type of measurement better reflects the usual
usage of a cross-correlation computing function, as it is not useful to compute
cross-correlation for the same input multiple times.

This measurement can only be done for large input sizes, as the background
noise when measuring smaller input sizes would make any measured results use-
less. In Figures 4.13a and 4.13b we see that the equality point is around 90x90,
which is an improvement compared to previous measurements. This hints at some
internal caching done by the cuFFT library between computations. The equality
point in Figure 4.13c is also improved, now just below 60x60.

83

(a) One to one. (b) One to many.

(c) N to MN. (d) N to M.

Figure 4.12: Speedup when measured in matrix sizes which are prime numbers.

4.3.2 SciPy

We compare the best of the implementations provided by this thesis with Scipy in
Figure 4.14. Even though SciPy uses multithreaded FFT-based implementation,
for any input with an input matrix size above 8x8, the definition-based CUDA
C++ implementation is many times faster. We see the speedup increasing with
increasing input size for all input types, showcasing the much higher throughput
of the GPU. In terms of speedup, we see the one-to-one achieving the lowest
speedup due to limited occupancy due to small input size, with all other input
types achieving up to 3000 times speedup for the largest input sizes. In terms of
absolute times, which range from 0.13 s for the one-to-one type to 2.03 s for the
n-to-m type for SciPy, we see improvement to 0.32 ms and 0.66 ms respectively.

One figure that stands out is Figure 4.14d, where the maximum speedup is
not achieved for the largest input in terms of the number of matrices but for a
smaller with 4 to 4 matrices. We also see that the speedup does not increase
linearly with increased input matrix size apart from the input with 4 to 4 input
matrices. This is caused by the algorithm with multimat both and work distribu-
tion optimizations being the fastest for the small input sizes. Once the GPU is
sufficiently saturated, another algorithm, this time with both multimat both and
multirow both optimizations, achieves the highest speedup, which increases at a

84

(a) One to many. (b) N to MN.

(c) N to M.

Figure 4.13: Speedup of the Basic definition-based implementation and best
definition-based optimized implementation compared to FFT-based implemen-
tation.

different rate than for the first algorithm.
For comparison, we show the n-to-mn and n-to-m input types measured on

laptop in Figure 4.15. As expected, the behavior is generally the same as on
gpulab, only with a smaller total speedup due to the lower performance of the
laptop GPU.

In summary, the results are as expected, with SciPy being faster for the small-
est inputs as the latency of data transfer and kernel to and from the GPU and
the overhead of kernel start are independent of the data size and will result in a
slower total speed of the GPU implementation. For all larger inputs, the gener-
ally slow speed of Python and limited parallelism of the CPU results in the GPU
CUDA C++ implementation being faster.

4.3.3 Matlab
In this section, we compare the best of the implementations provided by this
thesis with Matlab. The results of the comparison are shown in Figure 4.16. As
the Matlab implementation of 2D cross-correlation we measure against utilizes a
GPU, the total speedup compared to the speedup seen in the previous section is

85

(a) One to one. (b) One to many.

(c) N to MN. (d) N to M.

Figure 4.14: Speedup of the best definition-based implementation in this thesis
compared to SciPy on gpulab.

much lower. As Matlab only implements the one-to-one type of cross-correlation,
the best comparison between the implementations is in Figure 4.16a, where we
see that our implementation gets progressively faster. As we expect Matlab to
utilize FFT-based implementation, the speedup should decrease for larger input
sizes. Unfortunately, due to time constraints, we were unable to measure where
the equality point is.

For other input types, we sequentially execute the one-to-one input type for
each pair of input matrices to be cross-correlated. As expected, this makes Matlab
much slower for the smaller input matrix sizes, as it cannot saturate the GPU.
For larger input sizes, the execution of each cross-correlation starts saturating
the GPU, achieving almost parity with our implementation.

86

(a) N to MN. (b) N to M.

Figure 4.15: Speedup of the best definition-based implementation in this thesis
compared to SciPy on laptop.

(a) One to one. (b) One to many.

(c) N to MN. (d) N to M.

Figure 4.16: Speedup of the best definition-based implementation in this thesis
compared to Matlab on laptop.

87

88

Conclusion
In this thesis, we have analyzed the definition-based cross-correlation algorithm,
searching for parallelization and optimization possibilities based on the input
matrix size and input type. Based on this analysis, we have implemented two
algorithm families, each with many implementations employing different combi-
nations of the optimization and parallelization strategies. The implementations
are based on the CUDA framework.

The optimizations target many algorithm properties, from caching and data
reuse with the goal of reducing the number of accesses to slower memory types,
to the amount of parallelism available to fully saturate the GPU and utilize the
full throughput provided by the hardware. Each optimization was rigorously
profiled and measured for different input sizes and input types, some trying to
optimize across all inputs and some targeting specific combinations of input sizes
and types.

The first algorithm family presented by this thesis was the Warp shuffle family,
which utilized warp shuffle instructions to share input data between threads of
a warp, significantly reducing the number of accesses to global memory. The
family includes further optimizations, which reduce the total number of warp
shuffle instructions required. This is achieved by computing cross-correlation
between one matrix and many other matrices at once or by computing multiple
results from the same cross-correlation at once. Another optimization employed
by this family improves parallelization and load balancing.

The second algorithm family was the Warp per shift family, which improved
occupancy by utilizing a whole warp to compute a single element in the output
matrix. This family includes optimizations for data reuse and cooperation of
warps through shared memory, together with further improvements to occupancy
by utilizing multiple warps per single output matrix element.

We then compared the implementations introduced in this thesis against sev-
eral other cross-correlation implementations. First, we compared our optimized
implementations against a Basic definition-based CUDA implementation. Next,
we compared them against an implementation based on the Fast Fourier Trans-
form algorithm also using CUDA. Lastly, we compared our implementations with
cross-correlation from production-grade libraries and toolkits, namely with the
CPU-based implementation provided by the Python Scipy library and the GPU
implementation provided by Matlab.

When compared with the Basic definition-based CUDA implementation, our
optimized implementation achieves at least 5 times speedup for most inputs and
up to 10 to 80 times speedup for certain input sizes. When compared with the
FFT-based implementation, we achieve speed parity for input matrix sizes over
100x100 for a smaller number of input matrices, decreasing down to 60x60 for a
larger number of matrices. In comparison with the CPU-based SciPy library, our
implementations achieve 50 times speedup for small input sizes and up to 3000
times speedup for larger input sizes. When compared with Matlab, we achieve
around 5 times speedup for small input sizes.

89

4.4 Future work
Although the optimized implementations provided in this thesis are useful and
achieve the speedups listed above, they are mostly designed for easy instrumen-
tation and benchmarking. This results in several restrictions on the size and form
of the input data, long build times, and a giant executable. In the future, the
implementation could be streamlined and the limitations removed.

This thesis also focused heavily on utilizing the CUDA platform for the im-
plementation of the optimized definition-based algorithms. Future work could
be aimed at an implementation using other, currently less common tools such as
OpenCL.

Next, the implementations in this thesis utilize only a single GPU. In the
future, the implementation could be expanded to utilize more GPUs on a single
system or even further to utilize GPUs over multiple systems. Based on the inher-
ent parallelism in the definition-based cross-correlation described in this thesis,
the implementation of a distributed version could build on the work provided in
this thesis very easily.

To further speed up the definition-based cross-correlation, additional proper-
ties of the input data could be used. This includes utilizing non-negative input
data and terminating the parts of the computation which cannot reach the current
maximum or computing a submatrix of the full cross-correlation matrix.

90

Bibliography
[1] Michal Bali. Employing gpu to process datafrom electron microscope. Mas-

ter’s thesis, Charles University, 2020.

[2] David Bednárek, Michal Brabec, and Martin Krulǐs. Improving matrix-
based dynamic programming on massively parallel accelerators. Information
Systems, 64:175–193, mar 2017. doi: 10.1016/j.is.2016.06.001.

[3] M. A. Clark, P. C. La Plante, and L. J. Greenhill. Accelerating radio astron-
omy cross-correlation with graphics processing units. July 2011.

[4] David Honzátko and Martin Krulǐs. Accelerating block-matching and 3d
filtering method for image denoising on GPUs. Journal of Real-Time Image
Processing, 16(6):2273–2287, nov 2017. doi: 10.1007/s11554-017-0737-9.

[5] Konstantin Kapinchev, Adrian Bradu, Frederick Barnes, and Adrian
Podoleanu. Gpu implementation of cross-correlation for image generation
in real time. pages 1–6, Cairns, QLD, Australia, 2015. IEEE. ISBN 978-1-
4673-8117-8. doi: 10.1109/ICSPCS.2015.7391783.

[6] M.I. Khalil. Accelerating cross-correlation applications via parallel comput-
ing. International Journal of Image, Graphics and Signal Processing, 5(12):
26–31, oct 2013. doi: 10.5815/ijigsp.2013.12.04.

[7] MATLAB. 9.10.0.1684407 (R2021a Update 3). The MathWorks Inc., Nat-
ick, Massachusetts. URL https://www.mathworks.com/help/signal/ref/
xcorr2.html?s_tid=mwa_osa_a.

[8] Maxim Milakov. GPU Pro Tip: Fast Dynamic Indexing of Pri-
vate Arrays in CUDA. https://developer.nvidia.com/blog/
fast-dynamic-indexing-private-arrays-cuda/, February 2015. URL
http://web.archive.org/web/20210724011254/https://developer.
nvidia.com/blog/fast-dynamic-indexing-private-arrays-cuda/.

[9] NVIDIA. Faster Parallel Reductions on Kepler. https://developer.
nvidia.com/blog/faster-parallel-reductions-kepler/, February
2014. URL http://web.archive.org/web/20220406040954/https:
//developer.nvidia.com/blog/faster-parallel-reductions-kepler/.

[10] NVIDIA. Nvidia tesla v100 gpu architecture: The world’s most advanced
data center gpu. Technical report, NVIDIA, 2017.

[11] Nvidia. CUDA C++ Programming Guide. https://docs.nvidia.com/
cuda/cuda-c-programming-guide/index.html, 2022.

[12] NVIDIA. cuFFT. https://docs.nvidia.com/cuda/cufft/index.html,
2022. URL http://web.archive.org/web/20220624091956/https://
docs.nvidia.com/cuda/cufft/index.html.

91

https://www.mathworks.com/help/signal/ref/xcorr2.html?s_tid=mwa_osa_a
https://www.mathworks.com/help/signal/ref/xcorr2.html?s_tid=mwa_osa_a
https://developer.nvidia.com/blog/fast-dynamic-indexing-private-arrays-cuda/
https://developer.nvidia.com/blog/fast-dynamic-indexing-private-arrays-cuda/
http://web.archive.org/web/20210724011254/https://developer.nvidia.com/blog/fast-dynamic-indexing-private-arrays-cuda/
http://web.archive.org/web/20210724011254/https://developer.nvidia.com/blog/fast-dynamic-indexing-private-arrays-cuda/
https://developer.nvidia.com/blog/faster-parallel-reductions-kepler/
https://developer.nvidia.com/blog/faster-parallel-reductions-kepler/
http://web.archive.org/web/20220406040954/https://developer.nvidia.com/blog/faster-parallel-reductions-kepler/
http://web.archive.org/web/20220406040954/https://developer.nvidia.com/blog/faster-parallel-reductions-kepler/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cufft/index.html
http://web.archive.org/web/20220624091956/https://docs.nvidia.com/cuda/cufft/index.html
http://web.archive.org/web/20220624091956/https://docs.nvidia.com/cuda/cufft/index.html

[13] NVIDIA. Kernel Profiling Guide. https://docs.nvidia.com/
nsight-compute/ProfilingGuide/index.html, 2022. URL https:
//web.archive.org/web/20220514025303/https://docs.nvidia.com/
nsight-compute/ProfilingGuide/index.html.

[14] Ayumu Tomiyama and Reiji Suda. Automatic parameter optimization
for edit distance algorithm on GPU. In Lecture Notes in Computer Sci-
ence, pages 420–434. Springer Berlin Heidelberg, 2013. doi: 10.1007/
978-3-642-38718-0 38.

[15] Sergi Ventosa, Martin Schimmel, and Eleonore Stutzmann. Towards the
processing of large data volumes with phase cross-correlation. Seismological
Research Letters, May 2019. doi: 10.1785/0220190022.

[16] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,
Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, War-
ren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett,
Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson,
Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng,
Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert
Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M.
Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, Aditya
Vijaykumar, Alessandro Pietro Bardelli, Alex Rothberg, Andreas Hilboll,
Andreas Kloeckner, Anthony Scopatz, Antony Lee, Ariel Rokem, C. Nathan
Woods, Chad Fulton, Charles Masson, Christian Häggström, Clark Fitzger-
ald, David A. Nicholson, David R. Hagen, Dmitrii V. Pasechnik, Emanuele
Olivetti, Eric Martin, Eric Wieser, Fabrice Silva, Felix Lenders, Florian Wil-
helm, G. Young, Gavin A. Price, Gert-Ludwig Ingold, Gregory E. Allen,
Gregory R. Lee, Hervé Audren, Irvin Probst, Jörg P. Dietrich, Jacob Sil-
terra, James T Webber, Janko Slavič, Joel Nothman, Johannes Buchner,
Johannes Kulick, Johannes L. Schönberger, José Vińıcius de Miranda Car-
doso, Joscha Reimer, Joseph Harrington, Juan Luis Cano Rodŕıguez, Juan
Nunez-Iglesias, Justin Kuczynski, Kevin Tritz, Martin Thoma, Matthew
Newville, Matthias Kümmerer, Maximilian Bolingbroke, Michael Tartre,
Mikhail Pak, Nathaniel J. Smith, Nikolai Nowaczyk, Nikolay Shebanov,
Oleksandr Pavlyk, Per A. Brodtkorb, Perry Lee, Robert T. McGibbon, Ro-
man Feldbauer, Sam Lewis, Sam Tygier, Scott Sievert, Sebastiano Vigna,
Stefan Peterson, Surhud More, Tadeusz Pudlik, Takuya Oshima, Thomas J.
Pingel, Thomas P. Robitaille, Thomas Spura, Thouis R. Jones, Tim Cera,
Tim Leslie, Tiziano Zito, Tom Krauss, Utkarsh Upadhyay, Yaroslav O.
Halchenko, and Yoshiki Vázquez-Baeza and. SciPy 1.0: fundamental al-
gorithms for scientific computing in python. Nature Methods, 17(3):261–272,
feb 2020. doi: 10.1038/s41592-019-0686-2.

[17] Chen Wang. Kernel learning for visual perception. PhD thesis, Technological
University, Singapore, 2019.

[18] Wikimedia Commons contributors. Visual comparison of convo-
lution, cross-correlationand autocorrelation. https://commons.
wikimedia.org/w/index.php?title=File:Comparison_convolution_

92

https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html
https://web.archive.org/web/20220514025303/https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html
https://web.archive.org/web/20220514025303/https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html
https://web.archive.org/web/20220514025303/https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html
https://commons.wikimedia.org/w/index.php?title=File:Comparison_convolution_correlation.svg&oldid=607616339
https://commons.wikimedia.org/w/index.php?title=File:Comparison_convolution_correlation.svg&oldid=607616339
https://commons.wikimedia.org/w/index.php?title=File:Comparison_convolution_correlation.svg&oldid=607616339

correlation.svg&oldid=607616339, November 2021. URL https:
//commons.wikimedia.org/w/index.php?title=File:Comparison_
convolution_correlation.svg&oldid=607616339.

[19] Wikipedia contributors. Cross-correlation. https://en.wikipedia.
org/w/index.php?title=Cross-correlation&oldid=1065983922,
March 2022. URL https://en.wikipedia.org/w/index.php?title=
Cross-correlation&oldid=1065983922.

[20] Wikipedia contributors. Relative change and difference — Wikipedia,
the free encyclopedia. https://en.wikipedia.org/w/index.php?title=
Relative_change_and_difference&oldid=1085142584, 2022. [Online; ac-
cessed 18-July-2022].

[21] Wikipedia contributors. Triangular number — Wikipedia, the free ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Triangular_
number&oldid=1098260469, 2022. URL https://en.wikipedia.org/w/
index.php?title=Triangular_number&oldid=1098260469. [Online; ac-
cessed 16-July-2022].

[22] Lingqi Zhang, Tianyi Wang, Zhenyu Jiang, Qian Kemao, Yiping Liu, Zejia
Liu, Liqun Tang, and Shoubin Dong. High accuracy digital image correlation
powered by gpu-based parallel computing. Optics and Lasers in Engineering,
69:7–12, 2015. ISSN 0143-8166. doi: https://doi.org/10.1016/j.optlaseng.
2015.01.012. URL https://www.sciencedirect.com/science/article/
pii/S0143816615000135.

93

https://commons.wikimedia.org/w/index.php?title=File:Comparison_convolution_correlation.svg&oldid=607616339
https://commons.wikimedia.org/w/index.php?title=File:Comparison_convolution_correlation.svg&oldid=607616339
https://commons.wikimedia.org/w/index.php?title=File:Comparison_convolution_correlation.svg&oldid=607616339
https://commons.wikimedia.org/w/index.php?title=File:Comparison_convolution_correlation.svg&oldid=607616339
https://commons.wikimedia.org/w/index.php?title=File:Comparison_convolution_correlation.svg&oldid=607616339
https://en.wikipedia.org/w/index.php?title=Cross-correlation&oldid=1065983922
https://en.wikipedia.org/w/index.php?title=Cross-correlation&oldid=1065983922
https://en.wikipedia.org/w/index.php?title=Cross-correlation&oldid=1065983922
https://en.wikipedia.org/w/index.php?title=Cross-correlation&oldid=1065983922
https://en.wikipedia.org/w/index.php?title=Relative_change_and_difference&oldid=1085142584
https://en.wikipedia.org/w/index.php?title=Relative_change_and_difference&oldid=1085142584
https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1098260469
https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1098260469
https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1098260469
https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1098260469
https://www.sciencedirect.com/science/article/pii/S0143816615000135
https://www.sciencedirect.com/science/article/pii/S0143816615000135

94

A. Local array optimization
All multimat and multirow optimizations heavily rely on the ability of the CUDA
compiler to place arrays such as the following into registers:

template<size_t LENGTH>
__device__ void foo(...) {

...
float bar[LENGTH];
for (size_t i = 0; i < LENGTH; ++i) {

bar[i] = some_function(...);
}
...

}

If an array is small and only accessed using static indexing, where all indices
are known constants at compile time, the CUDA compiler places all elements of
the array into registers [8]. The array can also be accessed in small for loops with
known compile time bounds, which are unrolled by the compiler and again result
in static indexing. If for any access the index cannot be computed during compile
time, the whole array is placed into Local memory, described in Section 2.2.5.
Local memory is part of the device memory, and as such is the slowest memory
accessible from device code. Local memory access also utilizes the same pipeline
as warp shuffle instructions, competing for the throughput of this pipeline.

A.1 Advanced optimizations and local arrays
While implementing the multimat both and multirow both optimizations, which
are described in Sections 3.4.5 and 3.4.6 respectively, we encountered a problem
with the nvcc compiler not optimizing the local arrays into registers.

Using profiling and examining the SASS, we isolated the problem to the
thread left bottom and thread left top arrays. We further isolated it to the part of
the code, which in its original form shared by the simplified, multimat right and
multirow right is shown in Listing A.1.

To process multiple values from left input matrices, which is the basis of both
multimat both and multirow both optimizations, the code needs to be changed as
shown in Listing A.2

The nvcc compiler should be able to unroll this loop, and thanks to static in-
dexing, the thread left bottom and thread left top local arrays should be optimized

thread_left_bottom = warp.shfl(
warp.thread_rank() != 0 ? thread_left_bottom : thread_left_top,
warp.thread_rank() + 1

);
thread_left_top = warp.shfl_down(thread_left_top, 1);

Listing A.1: Base Warp shuffle implementation of left buffer shuffle

95

#pragma unroll
for (size_t l = 0; l < NUM_LEFTS; ++l) {

thread_left_bottom[l] = warp.shfl(
warp.thread_rank() != 0 ? thread_left_bottom[l] :

thread_left_top[l],
warp.thread_rank() + 1

);
thread_left_top[l] = warp.shfl_down(thread_left_top[l], 1);

}

Listing A.2: Multimat both and multirow both implementation of left buffer
shuffle

LDL R0, [R63+0x4]
SHFL.IDX PT, R8, R0, R57, 0x1f
SHFL.DOWN PT, R0, R32, 0x1, 0x1f
STL [R62], R8
STL [R61], R0

Listing A.3: SASS instructions without local array optimization

into registers. Unfortunately, as shown in Listing A.3, the compiler behaves as if
dynamic indexing was used and pushes the arrays into local memory. Due to the
closed source nature of the nvcc compiler, we can only speculate on the reasons
why the loop unrolling does not result in static indexing. One possibility, based
on the generated SASS instructions seen in Listing A.3, is that the ternary op-
erator is optimized into dynamic array indexing, which then prevents the local
array optimization. As there is no visible branching in the unrolled loop, the
base address of either the thread left bottom or the thread left top is loaded into
register R63, which is then reused in all loads, resulting in dynamic indexing.

We experimented with several solutions, with version in Listing A.4 compiling
into static indexing.

The only change is the expansion of the ternary operator into an equivalent
if statement. As shown in Listing A.5, the body of the updated loop results in a
single SEL instruction which selects the top or the bottom part of the buffer. This
version of the loop is used by the multimat both and multirow both optimizations
described in the following sections.

The difference is also noticeable when profiling, which shows additional local
memory store (STL) and load (LDL) instructions in both the multimat both and
multirow both without local array optimization. Apart from these additional
instructions, the number of remaining instructions is generally the same, with
some additional integer multiply-add instructions (IMAD) due to local memory
address computations.

Based on this observation, the measured speedup in Figure A.1 is caused solely
by the application of the local array optimization. The speedup for smaller inputs
is limited due to low occupancy, but is still present. As an example, Figure A.1a
shows that for input matrices of size 64 by 64, the solution without local memory
access is already 2 times faster. Figure A.1b shows that there is slightly smaller

96

#pragma unroll
for (size_t l = 0; l < NUM_LEFTS; ++l) {

T bottom_shift_val;
if (warp.thread_rank() != 0) {

bottom_shift_val = thread_left_bottom[l];
} else {

bottom_shift_val = thread_left_top[l];
}

thread_left_bottom[l] = warp.shfl(bottom_shift_val,
warp.thread_rank() + 1);

thread_left_top[l] = warp.shfl_down(thread_left_top[l], 1);
}

Listing A.4: Fixed multimat both and multirow both implementation of left buffer
shuffle

SEL R42, R52, R20, !P4
SHFL.IDX PT, R53, R48, R53, 0x1f
SHFL.DOWN PT, R52, R52, 0x1, 0x1f

Listing A.5: SASS instructions with local array optimization

improvement in the multirow both optimization compared to the multimat both.
This is most likely caused by higher general overhead due to the greater overall
complexity of the optimization.

97

(a) The multimat both optimization. (b) The multirow both optimization.

Figure A.1: Improvement of the two optimizations without local memory access.

98

B. Attachments
In the attachments to this thesis we include the source code of our CUDA C++
implementation and the benchmarking tool, together with the profiling and mea-
surement results and the Jupyter Notebooks used for visualization of the mea-
sured results. The attachments contain the following directories:

• src - Source code of the CUDA C++ program implementing the definition-
based and FFT-based algorithms for cross-correlation. Contains all the
kernels referenced in Chapter 3.

• benchmarking - The Benchmarking tool described in Section 4.1.

• existing - Code allowing the use of cross-correlation implementations in
Python SciPy and Matlab.

• visualization - Jupyter Notebooks and Python code used to process re-
sults generated by the Benchmarking tool and generate the diagrams shown
in this text.

• gpulab - Helper scripts for building and running the CUDA C++ applica-
tion and Benchmarking tool both locally and on the KSI Cluster gpulab.

• profiling - Results of profiling the CUDA C++ implementation using
NVIDIA Nsight Compute tool.

• sample app - A sample application showcasing the steps required to utilize
one of the implementations provided by this thesis in another application.

Detailed description is included in the attachments.

99

100

	Introduction
	Cross-correlation
	Definition
	Computation using discrete Fourier Transform
	Definition based optimizations
	Data parallelism
	Forms of cross-correlation

	Post-processing

	GPU
	Fundamentals
	CUDA Programming model
	Running the device code
	Thread hierarchy
	Thread cooperation
	Cooperative groups
	Memory hierarchy
	Hardware details
	Versioning

	Code optimizations
	Occupancy
	Pipeline saturation
	Global memory access
	Shared memory access
	General recommendations

	Implementation
	Parallelization
	Two matrices
	Many matrices

	Data reuse
	Overlap
	Row group and column group
	Workers
	List of implementations

	Basic algorithm
	Warp shuffle algorithm family
	Algorithm steps
	Work distribution
	Utilizing multiple right matrices
	Multiple rows from the right matrix
	Multiple left matrices
	Multiple rows from both matrices
	Summary

	Warp per shift algorithm family
	Base implementation
	Simplified indexing
	Shared memory
	Shared memory with multiple right matrices
	Shared memory with single column group per block
	Work distribution

	Further increasing worker size
	Summary

	Results
	Experiments
	Code instrumentation
	Experiment setup
	Result validation

	Comparing definition-based algorithms
	Warp shuffle optimizations with the one-to-one input
	Warp shuffle optimizations with the one-to-many input
	Warp shuffle optimizations with the n-to-mn input
	Warp shuffle optimizations with the n-to-m input
	Warp per shift optimizations with the one-to-one inputs
	Comparison with Basic algorithm

	Comparison with existing implementations
	FFT-based implementation
	SciPy
	Matlab

	Conclusion
	Future work

	Bibliography
	Local array optimization
	Advanced optimizations and local arrays

	Attachments

