
Machine code disassembling is a process of transforming binary machine code into
assembly code. The main purpose of this process is to help people to understand the
purpose of the program without knowing its source code. Unfortunately, the machine
code produced by compilers is quite hard to read due to numerous optimizations applied
to it. One substantially problematic optimization is instruction scheduling which mangles
instruction order to increase final performance.

The goal of this thesis is to implement a disassembler capable of reordering individual
instructions. This would allow the user to restructure the machine code into a more read-
able form. To provide such functionality, the disassembler has to be able to understand
the meaning of machine code instructions. For this reason, we will design a platform-
independent internal representation of machine code and we will translate any machine
code into it. This representation will be then used to analyze dependencies between in-
structions which can be further used in instruction reordering algorithm. At the very
end, we will discuss the possibility of platform-independent program emulation based on
internal disassembler representation.

1


