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Abstract: The aim of this thesis is to study hybrid methods for solving ill-posed
linear inverse problems corrupted by white noise. These approaches are based on
the combination of iterative Krylov subspace methods and the Tichonov regu-
larization with a general regularization term. We explain the basic properties of
ill-posed problems, the idea of regularization, the role of the regularization term
to enforce desirable properties to the solution and the theoretical background of
Standard and General Tichonov minimization. Then we explain shift invariance
of Krylov subspaces. This allows us to describe a hybrid approach where the
full size problem is first projected onto a Krylov subspace of a smaller dimension
and then the Tichonov minimization is applied to the small projected problem.
We focus on the regularization based on the finite difference approximation of
derivatives of the solution. The well known regularization terms constructed
from forward differences for the first and the second derivative are summarized,
then we use the Taylor expansion to construct finite differences of higher orders
of precision. We incorporate different variants of boundary conditions. Then the
impact of the order of precision of the finite difference schemes on the quality of
the solution is studied. In the experiments we use the hybrid method combining
the LSQR with the General Tichonov regularization.
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Notation
N the set of natural numbers
R the set of real numbers
Rn the set of real n-dimensional vectors
Rm×n the set of real matrices of the dimension m × n
Ck the class of functions with k continuous derivatives on R
µe the noise level in b
xnaive the naive solution of an inverse problem
λ the regularization parameter
L the regularization matrix
dim(V ) the dimension of a vector space V
span{v1, . . . , vn} the linear span of vectors v1, . . . , vn

Kk(A, b) the k-th Krylov subspace for a matrix A and a vector b
rank(A) the rank of a matrix A
Im(A) the image of a matrix A, so-called column space
Ker(A) the kernel of a matrix A, so-called null space
det(A) the determinant of a matrix A
trace(A) the trace of a matrix A
sp(A) the spectrum of a matrix A
σ1, . . . , σr the singular values of a matrix with the rank r
AT the transpose of matrix A
A−1 the inverse of a matrix A
I the identity matrix
diag(a1, . . . , an) the diagonal matrix with diagonal elements a1, . . . , an

vec(A) the vectorization of a matrix A
∥v∥ the euclidean norm of a vector v
∥v∥1 the 1-norm of a vector v
∥v∥p the p-norm of a vector v
∥v∥A the vector A-norm for A symmetric positive definite
∥A∥F the Frobenius norm of a matrix A
A ⊗ B the Cronecker product of matrices A and B
f ′, f ′′, f ′′′ the first, second and third derivative of f , respectively
α the approximate noise level for the Discrepancy principle
ξ the safety factor for the Discrepancy principle
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Introduction
In this thesis we deal with methods for solving linear inverse problems, which
arise naturally in many fields as geoscience, medicine, engineering, astronomy or
image processing. We focus on problems in the form

Ax ≈ b, A ∈ Rm×n, x ∈ Rn, b ∈ Rm,

where the task is to arrive at a reconstruction of the unknown data x from the
measurement b corrupted by noise. We restrict ourselves with the assumption,
that the noise is only included in the right hand side b and that the matrix A is
known precisely. The noise is assumed to be white, since white noise makes a good
model for random errors. There have been many papers and books written on the
difficulties of solving inverse problems, see for example [1, Chapter 2 and Chapter
4], [2, Chapter 1], [3], [4, Chapter 2], [5, Chapter 1], [6], [7], [8]. The main factors
that play a role here are the fact that the matrix A often has ill-determined rank,
the problem is sensitive to (especially high-frequency) perturbations present in
the vector b. Linear inverse problems described above are often called ill-posed.
It is well known that they cannot be solved by classical least squares techniques,
since such solutions are dominated by amplified noise.

One of the well known methods for solving inverse problems is the Tichonov
regularization (see [6], [7], [1, Chapter 4.4]) that incorporates the so-called regu-
larization term to enforce some desirable properties (such as smoothness) to the
solution. But when using the Tichonov method, which minimizes a linear combi-
nation of the residual norm and the regularization term, we encounter a difficulty.
Usually the matrix A is sparse and large and sometimes it is not available ex-
plicitly, but only as a function handle that allows matrix-vector multiplication.
Therefore it is often beyond the computational possibilities to apply the Tichonov
regularization to the full size problem. However, according to the result published
by Per Christian Hansen in [1, Chapter 6.4] based on the shift invariance of Krylov
subspaces, it is possible to first project the full size problem onto a Krylov sub-
space of a smaller dimension and then apply the Tichonov minimization to the
small projected problem. The constructed iterations will converge to the solu-
tion of the original Tichonov minimization problem, see [1]. In this setting we
do not need the matrix A explicitly since the projection onto a Krylov subspace
only requires evaluation of matrix-vector multiplications with A and possibly AT .
We arrive at a procedure that incorporates dual regularization - the regulariza-
tion by projection onto a Krylov subspace and Tichonov regularization. Such
combination is usually called a hybrid approach [5, Chapter 3], [1, Chapter 6.4].

In the thesis we describe properties of inverse problems and the difficulties that
occur when solving them. We select particular iterative Krylov subspace methods
(see [5, Chapter 2.2], [1, Chapter 6.3]) and combine them with the Standard
Tichonov minimization. We proof the interchangeability of the two approaches
first regularize, then project and first project, then regularize and we describe
a general way of constructing a hybrid method. Regularization parameters, which
control the strength of the regularization, will be selected by the Discrepancy
principle [1, Chapter 5.2], [2, Chapter 7.2].

We further describe the Tichonov regularization with a general regulariza-
tion term and we mention two known ways of its transformation to the Standard
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Tichonov formulation, see [9] and [1, Chapter 8.4]. It is well known that regu-
larization terms can be constructed as a penalization by the finite difference for
approximating derivatives. Well studied are especially the variants using forward
difference for the first and sometimes the second derivative, see [1, Chapter 8]. We
describe these terms and then we focus on the use of the Taylor expansion to con-
struct regularization terms for approximating derivatives for 1D and 2D examples
with higher orders of precision than the ones used traditionally. We also incor-
porate different variants of boundary conditions. Then we study whether the
regularization terms that approximate derivatives with higher orders of precision
can offer better approximations of the solution. We perform experiments to test
the studied methods with different regularization terms on 1D and 2D examples
with various levels of noise.
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1. Inverse problems and
regularization

1.1 Inverse problem
Consider inverse problem in the form

Ax ≈ b, A ∈ Rm×n, x ∈ Rn, b ∈ Rm, (1.1)

where A and b are given nontrivial data and x is an unknown vector. For sim-
plicity we concentrate on the problem with noise included only in the right hand
side vector b, and we therefore assume that A is given exactly.

There are many ways how noise can get into the problem, for example, errors
can arise during physical measurements, discretization process, limited storage
space, rounding errors and so on. For our simulations we consider only additive
white noise. We will therefore denote

b = b̃ + e, (1.2)

where e, sometimes referred to as a perturbation or error, stands for the noise
and b̃ is the unknown precise part of the right hand side b satisfying

Ax̃ = b̃, (1.3)

where x̃ stands for the precise solution of the problem without noise. By saying
that the noise is white we mean that all the components of the vector e come
from the same normal distribution with zero mean. The reason for this choice is
that white noise makes a good model for random errors.

Other way to describe white noise is to say, that all the frequencies occur
with the same probability. It can be seen in Figure 1.1, where we compare the
cosine Fourier coefficients of random white noise vector and a typical observation
b coming from an inverse problem, both scaled to one. We can see that all the
coefficients for the white noise vector are at similar level, unlike the coefficients
for the vector b, which tend to be large at the left side of the spectrum, where
the coefficients represent very low frequencies, and small or zero on the rest of
the plot, where the coefficients correspond to higher frequencies.

There exist many other types of noise, such as signal-correlated noise and
Poisson noise. Some of them are studied and explained in [1, Chapter 3.6].

For further needs we present the following definition of the noise level in b.

Definition 1 (The noise level in b). Given the right hand side vector b of an
inverse problem (1.1) satisfying the equality (1.2), we define

µe = ∥e∥
∥b∥

the noise level in b.

Our goal when dealing with an inverse problem given by (1.1) is to arrive to
some approximation x that is close enough to the vector x̃.
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Figure 1.1: Comparison of cosine Fourier coefficients for two vectors scaled to
one. Only the left half of the coefficients is shown, since the Fourier coefficients
are symmetric. The random white noise vector coefficients are on the left, the
coefficients of a typical observation b coming from an inverse problem are on
the right. It can be seen that the sizes of the coefficients for white noise are
comparable. On the contrary, in b we can see the large coefficients only in low
frequencies. In general, frequency distributions in x and b are strongly problem
dependent.

1.2 Introducing examples
For the purpose of demonstration of the results and ideas in this thesis we use
the functions and scripts involved in the Matlab packages [10] (2D examples and
methods) and [11] (1D examples). We introduce two 2D problems that are used
in this thesis. I chose examples that represent image deblurring problems, that
are generally more illustrative compared to other types of problems.

Before introducing concrete examples we will describe how we can transform
an image deblurring problem into a problem in the form (1.1), more information
regarding this topic can be found in [12, Chapter 1]. We will only consider images
in the shades of grey. An image deblurring problem aims to reconstruct an image
X ∈ Rp×q from blured and noisy observation B ∈ Rp×q, where the values in the
matrices represent the shape of grey of the corresponding pixel. In the setting of
an image deblurring problem we also assume to know the blurring process, which
can be for example represented by a point spread function, that determines the
way how the information is spread from one pixel to its neighbourhood. In order
to introduce an inverse problem in the form (1.1), we need to transform both the
matrices X and B into vectors. This can be done by the so-called vectorization
of a matrix.

Definition 2 (The vectorization of a matrix). Let us have a matrix

B = (b1, . . . , bq) ∈ Rp×q.
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Then we define the vectorization of a matrix B as

vec(B) =

⎛⎜⎜⎜⎜⎝
b1
b2
...
bq

⎞⎟⎟⎟⎟⎠ ∈ Rpq.

We now denote x = vec(X) ∈ Rpq and b = vec(B) ∈ Rpq. Note that we
further identify the vector and matrix versions of the original image X and the
observation B and we write only the vector versions x and b even when talking
about the images.

It remains to introduce a matrix A in this problem. The matrix represents
a linear model of the bluring process and it is constructed from the so-called point
spread function that discribes how one pixel affects its neighbouhood in such
a way, that it suits the vectorized nature of the picture. Therefore we can write
the image deblurring problem as an inverse problem of the type (1.1).

In both test problems we need to add noise to the right hand side. To do so, we
use the predefined function PRnoise from the toolbox [10]. We call the function
with parameters v, which is any vector, and µ > 0. It generates a vector e of
random numbers from the same normal distribution with mean at zero computed
using the Matlab function randn, so that it satisfies the condition

∥e∥ = µ ∗ ∥v∥.

Parameter µ is the desired level of noise. In the case of calling PRnoise without
the second parameter, the µ is set to 0.01. The function then returns new vector
computed as a sum of v and e. We can see that if we use this function to a precise
right hand side b̃, we obtain new right hand side that has the predefined noise
level.
Example 1 (Construction of the first 2D example problem in Matlab). The first
example is an image deblurring problem generated by a function PRblur from
the Matlab toolbox [10]. In the following frame we show the related code used
for generating the problem.

1 function [A, b tilde, x, ProbInfo, b, NoiseInfo] = DT PR1
2 p = 256;
3 optblur.trueImage = 'satellite';
4 optblur.PSF = 'shake';
5 optblur.BlurLevel = 'severe';
6 [A, b tilde, x, ProbInfo] = PRblur(p, optblur);
7 [b,NoiseInfo] = PRnoise(b tilde);
8 end

Here the vector x represents the vectorized version of a satellite test image
which can be seen in Figure 1.2. The original image is squared of the size p × p.
The matrix A ∈ Rp2×p2 is derived from a random, shaking motion point spread
function. The level of blur is set to ’severe’. The vector b tilde is a vector
corresponding to b̃ in (1.3). The vector b is the right hand side of the problem,
containing errors added using the function PRnoise, with noise added automa-
tically at the level 0.01. We can see comparison of the true solution, precise,
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Figure 1.2: The first example problem from Example 1. The precise image x̃ on
the left, precise right hand side b̃ in the middle and the unprecise right hand side
b on the right. The images b̃ and b are both smooth compared to the original
vector x̃.

but shaked right hand side and unprecise right hand side in Figure 1.2. The
observations in real problems tend to be smooth, as we can see for b in the figure.
This same fact can be also observed in Figure 1.1, which shows that b is dominated
by low frequencies. More information regarding this test problem can be found
directly in the comments of the source code of the function PRblur in [10].

Example 2 (Construction of the second 2D example problem in Matlab). Second
example is of the same type as the first one, obtained using the same function
PRblur from toolbox [10]. We get all the problem components using the function
defined by the Matlab code below.

1 function [A, b tilde, x, ProbInfo, b, NoiseInfo] = DT PR2
2 p = 256;
3 optblur.trueImage = 'pattern1';
4 optblur.PSF = 'gauss';
5 optblur.BlurLevel = 'severe';
6 [A, b tilde, x, ProbInfo] = PRblur(p, optblur);
7 noise level = 1e-6;
8 [b,NoiseInfo] = PRnoise(b tilde, noise level);
9 end

The vector x is a vector representation of a simple image that is shown in
Figure 1.3. The size of the image is p × p. On the same figure we can see also the
precise right hand side b̃ and noisy right hand side b. The matrix A in this case
comes from a gaussian point spread function. The level of blur is set to ’severe’.
The noise level (10−6) is much lower than in the previous case. More information
about this test problem can be also found in the comments of the source code of
the function PRblur in [10].

1.3 Sensitivity of the solution
It is well known that many inverse problems have certain properties that make
them difficult to be solved by classical methods without regularization, see [1],
[4]. E.g., they are usually sensitive to small perturbations in data, the matrix
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Figure 1.3: The second example problem from Example 2. The precise image x̃
on the left, precise right hand side b̃ in the middle and the unprecise right hand
side b on the right. The images b̃ and b are both smooth compared to the original
vector x̃.

A is ill-conditioned and has ill-determined rank, which means that its singular
values decay without any significant gap.

Such properties complicate the process of finding a solution to an inverse
problem. In this chapter we explain why, and to do so, we first need to take
closer look on the problem itself and present few definitions and results.

One important result is the Singular Value Decomposition Theorem. Proof,
detailed derivation and other details can be found in [13] and [14, Chapter 2.5].

Theorem 1 (The Singular Value Decomposition Theorem). Assume that A ∈
Rm×n, where m, n ∈ N, is a matrix with the rank r. Then there exists a final se-
quence of numbers σ1, . . . , σr and orthogonal matrices U = (u1, . . . , um) ∈ Rm×m

and V = (v1, . . . , vn) ∈ Rn×n satisfying

A = UΣV T =
r∑︂

i=1
σiuiv

T
i , (1.4)

where
Σ =

(︄
Σr 0
0 0

)︄
∈ Rm×n, Σr = diag(σ1, . . . , σr) ∈ Rr×r.

Without loss of generality we can assume that the numbers σ1, . . . , σr are
sorted in the descending order. Then the condition σ1 ≥ σ2 ≥ · · · ≥ σr > 0
holds. We call the columns of U left singular vectors of A, the columns of V
right singular vectors of A and the numbers σ1, . . . , σr singular values of A. The
relation (1.4) is well known as the singular value decomposition of A.

Assuming that the matrix A in (1.1) is square and nonsingular, there is a sim-
ple way to express the solution to the problem using its inverse as

xnaive = A−1b.
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Figure 1.4: The comparison of the exact solution x̃ and the naive solution xnaive

for the problem from Example 2. The inverted noise in the naive solution com-
pletely destroys the result. The euclidean norms for both vectors are 133.9104
and 6.8516 ∗ 103, respectively.

Here we assume that the inverse of A is available even though this assumption is
usually not satisfied in real problems, either because the inverting process would
be too expensive or because we do not have access to the whole matrix and its
components.

In Figure 1.4 we can see the result of the computation of xnaive for the example
from Examle 2 compared to the exact solution x̃. It is obvious that the result is
not satisfactory and does not offer a good approximation to the exact solution x.
Moreover, the comparison of the norms of the true solution and xnaive, as we can
see in the same figure, is alarming. The norm of the naive solution is of different
order than the norm of the exact solution.

Having the singular value decomposition defined, we can use it to rewrite the
formula for xnaive and explain the reasons for such a bad results. Inverting the
expression (1.4) and applying the inverse to b we get

xnaive = A−1b = (UΣV T )−1b = V Σ−1UT b =
n∑︂

i=1

uT
i b

σi

vi. (1.5)

Using the relation (1.2) we can split the above expression, and therefore the
vector xnaive itself, into two parts, the true solution x and a vector of inverted
noise. We have

xnaive =
n∑︂

i=1

uT
i
˜︁b

σi

vi +
n∑︂

i=1

uT
i e

σi

vi. (1.6)

In this expression for xnaive, we can see, that the first sum on the right hand side
is the exact solution x̃, that we seek to find. The second part of the expression
is the inverse of A applied to the vector e. We will now explain, why we observe
such amplification of noise e in this process.

Let us have a closer look at the properties of the matrix A and especially on
its singular value decomposition UΣV T . In Figure 1.5 we can see the first ten left
singular vectors of the matrix A in our example. As the index gets higher, the
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Figure 1.5: The first ten left singular vectors u1, . . . , u10 of the matrix A from
Example 2. First vectors are very smooth. As we go further, the vectors tend to
change the sign more often.

vectors tend to change the sign more often, therefore we call them high frequency
vectors.

We can see in Figures 1.2 and 1.3, that the right hand sides b̃ of the inverse
problems are smoother than the original vectors x̃. This phenomena is really
common in real world problems, it is caused by the so called smoothing property
of the matrix A. The explanation follows from the Riemann-Lebesgue lemma that
states the same phenomena for kernel in the continuous version of our problem,
the integral equation, see [1, Chapter 2.2]. In the process of multiplying a vector
by the matrix A, the high frequencies in the vector are dumped, unlike the small
frequencies.

Looking at the equation (1.6), this implies, that the coefficients uT
i b̃ will be-

come smaller in size with higher indices. On the contrary, the coefficients uT
i e do

not satisfy the same condition, the vector e is random noise and its projections
to the left singular vectors are likely to be similarly large throughout the whole
spectrum. The problem comes, when we divide these two sets of coefficients with
singular values σi while computing the naive solution xnaive.

As have been said, the projections of the exact right hand side b̃ are likely to be
large only for the first left singular vectors and then they decay. Usually the decay
of the coefficients is so fast that the sizes of projections with the corresponding
indices are smaller than the singular values, as we can see in the figure. We say,
that the exact right hand side b̃ satisfies the Discrete Picard condition. It follows,
that the coefficients uT

i b̃/σi will decay as the index i rises.
Because of the nature of e, the projections uT

i e tend to be at the similar level
throughout the whole spectrum of left singular values, e.g. the noise level in b.
It is therefore obvious that, starting from some index, the singular values are
smaller than the corresponding projections. The vector e, neither b satisfy the
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Figure 1.6: The Picard plot for the test problem from Example 2. The blue line
represents the singular values σi, that decay quickly and without any significant
gap to the machine precision. The numerical rank of the matrix A is not well
defined. The red crosses represent sizes of the projections of the right hand side
b to the left singular vectors. From the index approximately 10 000 onwards the
projections are all larger than the corresponding singular values.

Discrete Picard condition. Therefore the sizes of coefficients uT
i e/σi will rise as the

index i rises.
The result of these facts is, that as the index i grows, the coefficient uT

i b/σi

becomes more and more dominated by the part uT
i e/σi. The members of the sum

defining xnaive are for higher indices dominated by the error part of the sum. We
can see this behaviour in Figure 1.6.

Even small perturbation e added to the right hand side makes such a big
difference in the naive solution, that the result is completely useless. The fact that
small changes in data make a huge impact on the solution (so called sensitivity)
is typical for a huge class of problems called ill-posed problems. Note that if A is
rectangular, analogous derivations can be performed for

xnaive =
r∑︂

i=1

uT
i b

σi

vi,

where r = rank(A), i.e. for the well-known least squares solution to (1.1).

1.4 Methods dealing with ill-posedness
It is obvious that one has to incorporate knowledge about the properties of the
particular problem in order to come up with a suitable approximate solution.

Different types of techniques and methods for dealing with ill-posed problems
are covered by the term regularization. The goal of regularization is to overcome
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the sensitivity to small perturbations in data. Fore more general information, see
[1, Chapter 4].

The basic idea of regularization is to replace the sensitive problem (1.1) by
a different problem, that is more stable. Regularization methods can be divided
into two groups: variational and iterative, see [5, Chapter 1.2].

• Variational methods modify the problem (1.1) into the following setting:

min
x∈C

{J (Ax − b) + λ2R(x)},

where C stands for a space in which we search for the solution, J is a loss
function, and R is a regularization operator, which incorporates some con-
straints, which we want to put on the solution, λ is a parameter that sets
the strength of the regularization.
Well known example of a variational method is the Tichonov regularization,
which is in the standard form formulated with C = Rn, J (Ax − b) =
∥Ax − b∥2 and R(x) = ∥x∥2. As we saw in the previous section, in some
cases it makes sense to restrict the norm of an approximate solution, since
the naive solution tends to have a huge norm. Therefore we will focus on
this particular method in the next chapter.

• Iterative methods consist of applying some iterative solver to a problem

min
x∈C

J (Ax − b),

where we take the number of computed iterations as a regularization pa-
rameter.
One class within these methods is based on the singular value decomposition
(1.4). One for all we mention the Truncated SVD (see [1, Chapter 4.2], [12,
Chapter 6.1] and [2, Chapter 3.2]), which solves the problem of inverted
noise by omitting the parts of the sum (1.5) defining the naive solution,
that are dominated by inverted noise.
Other huge class of iterative regularization methods are Krylov subspace
methods, see [5, Chapter 2.2] and [1, Chapter 6.3], which incorporate the
idea of searching the solution in a smooth subspace with smaller dimension,
taking the growing dimension of a Krylov subspace as a regularization pa-
rameter. The Krylov space also carries some additional information about
the problem itself, which makes the method usually even more effective.

• Special group of methods are hybrid methods, see [5] and [2, Chapter 6.6],
that combine both approaches mentioned above. The methods usually
introduce more than one regularization parameter, which makes it more
difficult when trying to find optimal combination of the parameters. On
the other hand, well built hybrid method brings the advantages of both
variational and iterational approache, leading to better solution for some
problems. The hybrid methods, namely methods combining Tichonov re-
gularization and different iterative approaches, are the subject of the study
in this thesis, therefore we will be dealing with hybrid methods in future
chapters.

13



2. Tichonov regularization
As we could see in the end of the previous chapter, when solving the so called ill-
posed problems, it is desirable, if not necessary, to incorporate some techniques
to overcome the sensitivity. We have also noticed, that the norm of the naive
solution for inverse problems tends to be large, therefore it might be reasonable
to introduce a method, that penalizes large norms in the approximate solution. In
the next subsection we concentrate on the formulation of the Standard Tichonov
regularization method, which offers an alternative to the naive solution.

2.1 Standard Tichonov method
Standard Tichonov regularization (see [6], [7] and [1, Chapter 4.4]) is a variational
method formulated as follows:

min
x∈Rn

{∥Ax − b∥2 + λ2∥x∥2}, (2.1)

where the first term is the resuidual norm, which, if standing alone, defines the
least squares minimization, and the second term represents the penalization for
the solution norm, while the parameter λ > 0 sets the balance between these two
terms.

We get the original least squares formulation from the setting (2.1) by putting
λ = 0. It is obvious that, as λ rises, the emphasis shifts to the penalization term
∥x∥2, we get smoother solution, that fits the data less. In other words λ plays the
role of the regularization parameter. We can see the results for different values of
λ in Figure 2.1. If the parameter is too small, we get a result close to the naive
solution, in other words, the result is undersmoothed. On the contrary, when
putting λ too large, the emphasis on the penalization term is too strong, it spoils
the effect of the residual minimization, and the result is oversmoothed.

As we can see in the following table, λ determines the ratio between the
residual norm and the norm of the solution, the last column corresponds to the
naive solution.

Table 2.1: The residual norms ∥rλ∥ and the solution norms ∥xλ∥ for different
values of λ for the problem from Example 2

λ 10 1 ∗ 10−2 1 ∗ 10−6 1 ∗ 10−8 0
∥xλ∥ 1.1616 131.5545 132.8067 612.7474 6.8516 ∗ 103

∥rλ∥ 121.0206 0.0601 1.2550 ∗ 10−4 1.1675 ∗ 10−4 1.2791 ∗ 10−4

2.1.1 Analysis using SVD
Recall that the least squares problem in the form

min
x∈Rn

∥Ax − b∥
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Figure 2.1: The solutions of the Standard Tichonov regularization (2.1) for two
different values of λ for the problem from Example 2. On the left we can see the
result for λ = 10. The resulting picture is oversmoothed, the regularization is too
strong. On the right there is the result for λ = 10−8. The regularization is weak,
the solution is undersmoothed and very close to the naive solution.

is equivalent to solving the normal equations corresponding to (1.1),

AT Ax = AT b. (2.2)

In this section we show that the Standard Tichonov formulation can be ex-
pressed as a least squares problem with a modified data and then we use the
singular value decomposition of A and the corresponding normal equations to
clarify the behaviour of this method. Note that this analysis is only suitable
to express the general properties of the Standard Tichonov method in theory.
By no means is the following equivalent expression appropriate to use for real
computations, because it would be highly ineffective.

Let us reformulate the criterion function in (2.1) as follows:

∥Ax − b∥2 + λ2∥x∥2 = (Ax − b)T (Ax − b) + (λx)T (λx)

=
(︄

Ax − b
λx

)︄T (︄
Ax − b

λx

)︄

=
⃦⃦⃦⃦
⃦
(︄

Ax − b
λx

)︄⃦⃦⃦⃦
⃦

2

=
⃦⃦⃦⃦
⃦
(︄

A
λI

)︄
x −

(︄
b
0

)︄⃦⃦⃦⃦
⃦

2

.

(2.3)

We can substitute this to (2.1). Then the Standard Tichonov takes the form

min
x∈Rn

⃦⃦⃦⃦
⃦
(︄

A
λI

)︄
x −

(︄
b
0

)︄⃦⃦⃦⃦
⃦

2

, (2.4)

which is a least squares problem with modified data, that can be also written in
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the form of the normal equations(︄
A
λI

)︄T (︄
A
λI

)︄
x =

(︄
A
λI

)︄T (︄
b
0

)︄
.

Equivalently,
(AT A + λ2I)x = AT b, (2.5)

which has a solution, denoted for particular λ as xλ, in the form

xλ = (AT A + λ2I)−1AT b.

Suppose now that we have a singular value decomposition (1.4) of the matrix
A and recall that V V T = I. We can write

xλ = (AT A + λ2I)−1AT b

= (V ΣUT UΣV T + λ2V V T )−1V ΣUT b

= (V Σ2V T + λ2V V T )−1V ΣUT b

= V (Σ2 + λ2I)−1V T V ΣUT b

= V (Σ2 + λ2I)−1ΣUT b,

and, therefore,

xλ =
n∑︂

i=1

σi

σ2
i + λ2 uT

i b vi

=
n∑︂

i=1

σ2
i

σ2
i + λ2

uT
i b

σi

vi,

assuming for simplicity of notation that rank(A) = n.
If we denote

φ
[λ]
i := σ2

i

σ2
i + λ2

the so-called filter factors, we can express xλ as

xλ =
n∑︂

i=1
φ

[λ]
i

uT
i b

σi

vi

which is very similar to the expression (1.5) of the naive solution, but with added
filter factors.

The filter factors are always smaller then 1 and they satisfy

φ
[λ]
i ≈

⎧⎨⎩σ2
i /λ2, σi ≪ λ,

1, σi ≫ λ.

It follows, and we can also see it in Figure 2.2, that for the lower indices, where
the singular values are large, the factors are almost one and therefore the low
frequency vectors vi are not damped in xλ. On the contrary, for very high indices,
for which the singular values are much lower than lambda, the factors are falling
to zero quickly enough to compensate the increasing factors uT

i b/σi, so that the
undesired high frequency vectors vi are damped or completely filtered out.

16



Figure 2.2: The first 6000 filter factors for the Standard Tichonov method for the
problem from Example 2. The horizontal axis represents the indices of the filter
factors. We can see, that the first few filter factors are almost one, but as the
index rises, the factors fastly decay.

It might also be interesting to take a look at the spectrum of the matrices
in the normal equations. The normal equations of the original problem without
regularization take the form (2.2). It can be seen that the spectrum of the matrix
AT A is the following:

sp(AT A) = {σ2
1, . . . , σ2

n}.

The singular values of the matrix A, as we could see in (1.6), decay quickly to
zero, and cause that the problem in this form is difficult to be solved and very
sensitive to perturbations. On the contrary, when using Tichonov regularization,
we replace the expression (2.2) by (2.5). Using the singular value decomposition
and the fact I = V V T = UT U , we can derive the statement

AT A + λ2I = V ΣT UT UΣV T + λ2V V 2

= V (ΣT Σ + λ2)V T ,

therefore the spectrum of the matrix from the problem (2.5) is

sp(AT A + λ2) = {(σ2
1 + λ2), . . . , (σ2

n + λ2)}.

Obviously, when we add λ to all the eigenvalues in the matrix, we do not have the
problem of dividing with very small numbers (similar or smaller than computer
accuracy), as we experienced in the previous chapter, and we obtain a formulation
that is less sensitive.

2.1.2 Selecting the regularization parameter
In previous sections we mentioned the importance of an appropriate choice of
a regularization parameter in different types of regularization methods. We now
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offer a brief discussion on some known parameter selection methods and then
we take a closer look on the Discrepancy principle, which we use further in the
computations. For more detailed analysis, see [1, Chapter 5], [2, Chapter 7], [5,
Chapter 3.3].

There are two groups of parameter choice methods. The first one contains
approaches that do not require any a-priori knowledge about the noise contained
in the right hand side b [5, Chapter 3.3.2]. One very popular method from this
group is the L-curve [3], which is based on the idea of balancing the residual
error norm and the solution norm. Another example from this same group is the
generalized cross-validation [15].

However, when there is a knowledge of the approximate noise level available,
it is convenient to use this estimate to find a fitting regularization parameter [5,
Chapter 3.3.1]. One example of such method is the above-mentioned Discrepancy
principle. The Discrepancy principle is based on the fact that, thanks to (1.2)
and (1.3), for the exact solution of the noise free problem it holds that

∥Ax̃ − b∥ = ∥Ax̃ − b̃ − e∥ = ∥e∥.

Therefore, if we have some estimate α ≈ ∥e∥, and a safety factor ξ > 1, we can
choose a regularization parameter so that the approximate solution x̂ satisfies

∥Ax̂ − b∥ = ∥r̂∥ ≈ ξα.

The safety factor is introduced to balance the uncertainty in the approximation
of the noise norm and it usually ranges between 1 and 1.5.

In the following chapters we will restrict ourselves to use only the Discrepancy
principle as a stopping criterion for our computations.

2.2 How to solve Tichonov problem
In the previous section, we derived some theoretical properties of the Standard
Tichonov regularization. In this section we will focus on the question that might
arise, which is how to solve some real world problem by the Tichonov method
numerically. Some notes on this topic can be found in [2, Chapter 5.1]. Des-
pite the advantage that the singular value decomposition gives us when trying
to understand the theoretical aspects, it is not that useful when it comes to
real computations. Usually for large scale problems, the computation of SVD
is expensive and inefficient, sometimes it is not available at all. We need to
introduce some ways to implement the method without using the SVD.

2.2.1 Projecting on a Krylov subspace
There are two different approaches to this task. It is possible to treat the problem
with methods for functional minimization, see [16], [17]. Second option is to
apply some iterative method to the equation (2.5). We will limit ourselves to
study only the second approach. In particular, we will consider Krylov subspace
methods applied implicitly on the equation (2.5). The principle of any Krylov
subspace method is to project the problem on a Krylov subspace, which makes it
simpler, and then solve the projected system in order to obtain an approximation
of the solution. We present the definition of a Krylov subspace.
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Definition 3 (The Krylov subspace). Let us have a square matrix P ∈ Rn×n,
a vector q ∈ Rn, and k ≤ n, k, n ∈ N. We define the k-th Krylov subspace
generated by P and q as

Kk(P, q) = span{q, Pq, . . . , P k−1q}.

It is obvious that dim(Kk(P, q)) ≤ k, for all further derivations we will assume
that the dimension is exactly k.

Note that the matrix AT A is symmetric semidefinite and assume for a moment
that it is also positive definite, i.e. rank(A) = n. We might then consider solving
(2.2) using some Krylov subspace method suitable for symmetric matrices, e.g.,
conjugate gradient method (CG), for details on CG see [14, Chapter 10.2-10.3],
[2, Chapter 6.3-6.4], [8, Chapter 15], [18, Chapter 7.4.1] and in particular [19].
Let us assume a problem

P ẑ ≈ q,

where P is symmetric positive definite, q ∈ Rn is an observation and ẑ ∈ Rn

represents the true solution. In general in iterative methods, one might also
consider an initial vector z0, but in this thesis for simplicity of exposition, we
assume that z0 = 0⃗. Then, for k ∈ N, the k-th CG approximation of ẑ is
determined by

∥zk − ẑ∥P = min
z∈Kk(P,q)

∥z − ẑ∥P ,

where ∥ · ∥P is the vector P -norm.
Since by our assumption AT A is symmetric and positive definite, the norm

∥ ·∥AT A is well defined. CG method applied on the normal equations (2.2) is then
formulated as

∥xk − xnaive∥AT A = min
x∈Kk(AT A,AT b)

∥x − xnaive∥AT A. (2.6)

It holds that

∥xk − xnaive∥2
AT A = ⟨(AT A)(xk − xnaive); xk − xnaive⟩

= ⟨Axk − Axnaive; Axk − Axnaive⟩
= ⟨Axk − b; Axk − b⟩
= ∥Axk − b∥2,

(2.7)

therefore the CG approximation actually minimizes the residual norm of the
approximate solution of (1.1) over Kk(AT A, AT b), which is also the first term
in (2.1). Different mathematically equivalent algorithms for computing the ap-
proximate xk are based either on the Symmetric Lanczos algorithm (sometimes
referred to as Lanczos tridiagonalization) applied on our problem, for general
form and more details see [20], or the Golub-Kahan iterative bidiagonalization,
see [5, Chapter 3.2.1], [21]. We will gradually introduce the basic ideas behind
these two approaches.

The Symmetric Lanczos algorithm applied on a symmetric square matrix P
and a vector q offers a three-term recurrence that iteratively constructs an or-
thonormal basis of the Krylov subspace Kk(P, q), usually called Arnoldi basis,
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that has interesting numerical properties. The process can be derived using the
Gram-Schmidt orthogonalization process on the Krylov basis

q, Pq, . . . , P k−1q

of the space Kk(P, q) in a specific way. For details see [22, Chapter 2.4]. We need
to use the Symmetric Lanczos algorithm for the setting P = AT A, q = AT b. In
the k-th iteration, the process returns a matrix Vk = (v1, . . . , vk) ∈ Rn×k with
orthonormal basis of Kk(AT A, AT b) in the columns, where v1 = AT b/∥AT b∥, and
a matrix

Tk =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

α1 β2
β2 α2 β3

β3
. . . . . .
. . . . . . βk

βk αk

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ∈ Rk×k

satisfying
V T

k (AT A)Vk = Tk. (2.8)
Denoting

Tk+1,k =
(︄

Tk

0 . . . 0 βk+1

)︄
∈ R(k+1)×k,

it holds

(AT A)Vk = Vk+1Tk+1,k

= VkTk + βk+1vk+1e
T
k .

We can use the relation (2.8) to derive the projected problem. Let’s start with
multiplying the normal equations (2.2) by V T

k . Denoting x̃k ∈ Kk(AT A, AT b) the
approximate we are searching for, we get

V T
k (AT A)x̃k = V T

k AT b.

Since x̃k ∈ Kk(AT A, AT b), we can substitute

x̃k = Vkỹk, ỹk ∈ Rk,

therefore
V T

k (AT A)Vkỹk = V T
k AT b.

Then, from (2.8), it follows that

Tkỹk = ∥AT b∥e1,

x̃k = Vkỹk.
(2.9)

We arrived at a form of the problem with tridiagonal symmetric matrix (so called
Jacobi matrix), so the problem in this form is easily solvable by backward sub-
stitution (the matrix Tk is nonsingular, since we assumed AT A to be positive
definite). This method sustaining of Lanczos tridiagonalization and subsequent
solution of the projected problem is referred to as CGLS method [1, Chapter 6.3.2]
for the problem (1.1). But there is one issue. Since we assumed to deal with the
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original normal equations (2.2), this process will, with increasing dimension of
the Krylov subspace, converge to the naive solution xnaive, which is not desirable.

We may apply similar process to the Tichonov normal equations (2.5) with
positive definite matrix AT A + λ2I, which leads to the minimization problem

∥x′
k − x̂∥AT A+λ2I = min

x∈Kk(AT A+λ2I,AT b)
∥x − x̂∥AT A+λ2I , (2.10)

where x̂ now represents the exact solution of the Tichonov normal equations (2.5).
Since we applied the Symmetric Lanczos process to a different matrix-vector pair,
we generally end up with different results. Denoting T ′

k, V ′
k the matrices from

Lanczos tridiagonalization of Kk(AT A + λ2I, AT b), equalities analogous to (2.8)
and (2.9) hold, thus

T ′
ky′

k = ∥AT b∥e1,

x′
k = V ′

ky′
k, y′

k ∈ Rk.
(2.11)

Note that while the matrix Tk bears only the information about the matrix AT A,
the matrix T ′

k incorporates the information about the regularization parameter λ
as well. Also, for λ > 0, the matrix AT A + λ2I is symmetric and positive defi-
nite, therefore T ′

k is a nonsingular matrix. This variant (also with more general
regularization terms) is studied in [23]. For a fixed λ, the approximation xk then
converges to the Tichonov solution xλ. Let’s note, that it is not necessary to con-
struct the matrix AT A+λ2I. Since we only need the matrix-vector multiplication
in every iteration for constructing the subsequent basis vector, it is possible to
compute AT Av + λ2v gradually.

But still, the need to use λ in every iteration is a big disadvantage, since we
may not be able to determine the regularization parameter a-priori and it would
be very inefficient to repeat the whole computation of Krylov subspace basis for
many variants of λ.

2.2.2 Shift invariance of Krylov subspaces
To our rescue comes the following lemma, that states the shift-invariance of
Krylov spaces, formulated for a concrete Krylov space Kk(AT A, AT b).

Lemma 2. Taking the matrix A ∈ Rm×n, the vector b ∈ Rn as above, for any
λ > 0 and k ≤ n it holds that the spaces Kk(AT A + λ2I, AT b) and Kk(AT A, AT b)
are equal.

Proof. Let us consider an arbitrary vector x ∈ Kk(AT A + λ2I, AT b). Then there
exist coefficients γ0, . . . , γk−1 ∈ R, so that, using the binomial theorem [24], we
can derive

x =
k−1∑︂
i=0

γi(AT A + λ2I)i(AT b)

=
k−1∑︂
i=0

γi

i∑︂
j=0

(︄
i

j

)︄
λ2(i−j)(AT A)j(AT b)

=
k−1∑︂
j=0

⎡⎣k−1∑︂
i=j

γi

(︄
i

j

)︄
λ2(i−j)

⎤⎦ (AT A)j(AT b),
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which implies that x ∈ Kk(AT A, AT b) and therefore Kk(AT A + λ2I, AT b) ⊂
Kk(AT A, AT b). We might use −λ to prove the opposite statement, therefore
the lemma holds.

It follows from the structure of the Symmetric Lanczos algorithm, that, in
precise arithmetic, the resulting basis v1, . . . , vk and v′

1, . . . , v′
k for the spaces

Kk(AT A, AT b) and Kk(AT A+λ2I, AT b), respectively, are identical. Thus Vk = V ′
k ,

while Tk ̸= T ′
k. However note that in finite precision, due to differences in the

computations, the resulting basis vectors can differ in particular in later itera-
tions.

Thanks to the Lemma 2 we can rewrite the minimization problem (2.10) equi-
valently as

∥x′
k − x̂∥AT A+λ2I = min

x∈Kk(AT A,AT b)
∥x − x̂∥AT A+λ2I .

It means that we can change the order of projection and Tichonov regularization
when solving the inverse problem (1.1), which allows us to compute the Symmetric
Lanczos algorithm only once for the Krylov subspace Kk(AT A, AT b) and use the
Tichonov regularization on the small projected problem (2.9). This results in
a problem

(Tk + λ2I)yk = ∥AT b∥e1,

xk = Vkyk,

or alternatively
min

yk∈Rk
{∥Tkyk − ∥AT b∥e1∥2 + λ2∥yk∥2},

xk = Vkyk

(2.12)

which is mathematically equivalent to (2.11), therefore xk = x′
k. We no longer

have the problem of using λ a-priori in every iteration of the Symmetric Lanczos
process, and it is therefore possible to try different variants of λ once we have the
projected problem computed. The possibility of changing the order of projection
and Tichonov regularization in the basic form was introduced by Per Christian
Hansen [1, Chapter 6.4].

2.2.3 Golub-Kahan iterative bidiagonalization
As we mentioned, there is an alternative way to accomplish the projection onto
a Krylov subspace based on the Golub-Kahan iterative bidiagonalization. This
process was introduced in [21] and, applied on the matrix A and the vector b, it
offers a three-term recurrence generating two sets of basis vectors for the Krylov
subspaces Kk(AT A, AT b) and Kk(AAT , b). The algorithm is introduced in the
Algorithm 1, see also [5, Algorithm 3.3]. Note that the algorithm stops whenever
one of the constants αi+1, βi+1 is zero and it means that the new computed vector
is almost linearly dependent on the previous vectors.

The bidiagonalization process returns the matrices Uk+1 = (u1, . . . , uk+1),
Vk+1 = (v1, . . . , vk+1), which contain the basis of the spaces Kk+1(AAT , b) and
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Algorithm 1 Golub-Kahan iterative bidiagonalization
Require: A ∈ Rm×n, b ∈ Rm, k ∈ N
Ensure: Uk+1, Vk+1, Bk

β1 = ∥b∥
u1 = b/β1
ṽ = AT u1
α1 = ∥ṽ∥
v1 = ṽ/α1
for i = 1, . . . , k do

ũ = Avi − αiui

βi+1 = ∥ũ∥
ui+1 = ũ/βi+1
ṽ = AT ui+1 − βi+1vi

αi+1 = ∥ṽ∥
vi+1 = ṽ/αi+1

end for

Kk+1(AT A, AT b), respectively, in the columns, and the matrix

Bk =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

α1
β2 α2

β3
. . .
. . . αk

βk+1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ∈ R(k+1)×k.

Denoting Bk,k ∈ Rk×k the matrix Bk without the last row, the following relations
hold

AVk = Uk+1Bk

= UkBk,k + βk+1uk+1e
T
k ,

AT Uk+1 = Vk+1B
T
k+1,k+1

= VkBT
k + αk+1vk+1e

T
k+1.

(2.13)

We can now consider the CG applied to normal equations, which is equivalent
to minimization of the residual norm as we have seen in (2.7). Then we can use
the relations (2.13) to modify the problem. Substituting

x̃k = Vkȳk, ȳk ∈ Rn

and using the fact that b = Uk+1β1e1 and that multiplying by Uk doesn’t change
the norm we can write

∥Ax̃k − b∥2 = ∥AVkȳk − Uk+1β1e1∥2

= ∥Uk+1Bkȳk − Uk+1β1e1∥2 =
= ∥Uk+1(Bkȳk − β1e1)∥2

= ∥Bkȳk − β1e1∥2.

We arrived at the following least squares problem form of the minimization (2.6)

Bkȳk = β1e1,

x̃k = Vkȳk,
(2.14)
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which is very similar to (2.9). This process of projecting the problem onto
Kk(AT A, AT b) via Golub-Kahan bidiagonalization process and solving the smaller
problem is called the LSQR method, see [25], [2, Chapter 6.3.1]. Note that CGLS
and LSQR methods are mathematically equivalent.

As in the case of CGLS method, we can apply the Tichonov regularizaion
directly to the projected problem (2.14), resulting with

(Bk + λ2I)yk = β1e1,

xk = Vkyk.

Note that using both the Conjugate gradient method for normal equations
(either the CGLS or LSQR variant) and the Tichonov regularization brought us
to a setting, where we have to deal with two parameters - the dimension of the
Krylov subspace k and the strength of Tichonov regularization λ. The resulting
method is, in fact, the so-called hybrid approach. We will get into details about
hybrid methods in the next section.

2.3 Hybrid regularization
In the previous section, when describing the possibilities to solve the Standard
Tichonov problem, we arrived at one example of a hybrid method [5], [1, Chapter
6.4]. In this section, we concentrate on the general setting. As was mentioned
in Section 1.4, hybrid methods combine the variational and iterative methods to
achieve even better results. We mentioned Lemma 2, that revealed the enjoyable
fact that, for concrete combination of methods and fixed parameters, there is no
difference in the two approaches first project, then regularize and first regular-
ize, then project. In fact, this holds for many hybrid settings [5, Chapter 1.3],
therefore it is not a disadvantage to restrict ourselves to the first project, then
regularize setting. It is convenient for large-scale problems, since solving the pro-
jected problem of small dimension is cheaper, allowing us to try more variants
of regularization parameter for one projection iteration. The general algorithmic
approach of a hybrid method is introduced in the Algorithm 2, similar algorithm
can be found in [5, Chapter 3].

Algorithm 2 Hybrid approach
Require: A, b, k = 0, projection method, variational method for solving the

projected problem, parameter selection methods, stopping criterion
Ensure: approximate solution xλ

k

while stopping criterion not satisfied do
Compute next basis vector to expand the projection space Vk;
Construct the problem projected to the space Vk;
Select the parameter λ for inner regularization;
Compute the solution xλ

k of the projected and regularized problem;
Increase the dimension k

end while

In this thesis, we concentrate on the sort of hybrid methods that combine
Krylov subspace methods with General Tichonov regularization. Using the CGLS
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Figure 2.3: The comparison of the relative residual norms and the relative error
norms for the CGLS method without Tichonov regularization for the problem
from Example 2. On the left we can see that the relative residual norm is de-
creasing as we proceed with the computation. On the contrary, on the right
we can see the relative error norm that decreases in the first part of the graph,
but shortly after 2000th iteration it starts to increase again. This behaviour is
called semiconvergence and it is typical for iterational methods as Krylov sub-
space methods. The semiconvergence causes the proces of choosing the suitable
parameter k to be difficult.

Figure 2.4: The values of the inner parameter λ computed during the hybrid
LSQR method and the relative error norms during iterations for the problem from
Example 2. The inner parameter (on the left) was chosen using the Discrepancy
principle using the real noise level µe of the problem and a safety factor ξ = 1.01.
We can see that the parameter λ settles after some iterations, which indicates,
that the optimal value was found and the iterations can be stopped. The relative
error (on the right) decreases during the whole process and we do not see any
semiconvergence.
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Figure 2.5: The comparison of the relative residual norms and the relative error
norms for the LSQR method without Tichonov regularization for the problem
from Example 1. On the left we can see that the relative residual norm is de-
creasing as we proceed with the computation. On the contrary, on the right we
can see the semiconvergence of the relative error norm. When compared to the
case of Example 2 we can see that the semiconvergence occured much earlier, due
to the higher noise level.

Figure 2.6: The values of the inner parameter λ and the relative error norms
from the hybrid LSQR method applied on Example 1. We used the Discrepancy
principle with the real noise level µe and a safety factor ξ = 1.01 as parameters.
The regularization parameter λ settles after less than 10 iterations which is much
earlier than in the case with Example 2 due to the higher noise level in b. The
relative error also settles after some iterations and we do not experience the
semiconvergence.
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or LSQR, the problem (1.1) is projected on the space Kk(AT A, AT b) of increasing
dimension, and then the projected problem is regularized with Tichonov method
and solved. The use of parameter choice methods based on the SVD is possible for
the projected problem, since the computation of the SVD of the projected matrix
is usually cheaper comparred to the computation of matrix-vector multiplication
with A or AT during the projection process [5, Chapter 3.3]. The Tichonov
method with general regularization term is described in the next chapter.

We can see an illustration of a behaviour of a hybrid method compared to
use of a solo Krylov subspace method in Figures 2.3 and 2.4. In Figure 2.3 we
can see the relative residual norms and the relative error norms for the problem
from Example 2, which are results of a CGLS method. The CGLS is an imple-
mentation of the approach, when the Conjugate gradient method is applied to
the normal equations, introduced in Section 2.2. The relative error decreases for
many iterations, as we get closer to the exact solution, but after some iterations,
the error starts to increase very quickly, as the noisy components enter the ap-
proximate solution. This behaviour is called semiconvergence and it is typical for
these types of methods. It is not easy to set the parameter k ideally, so that the
error is minimal, since we do not have the knowledge of the real error in the real
computations and the residual continues to decrease even when we actually get
far from the exact solution.

The situation with hybrid methods is different. In Figure 2.4 we can see the
development of the regularization parameter λ and the relative error norms for
the problem from Example 2, which are results of a hybrid LSQR method. The
problem is projected onto a Krylov subspace of a smaller dimension, which in-
creases in every iteration and then the Tichonov regularization is applied to the
projected problem, which is again mathematically the same process of CG applied
to normal equations as we introduced in Section 2.2. We used the Discrepancy
principle as a parameter choice method for the inner regularization, with the real
noise level µe and a safety factor ξ = 1.01. The regularization parameter λ stabi-
lized after some iterations and we do not see any semiconvergence in the process.
The fact, that the inner regularization parameter stabilizes can be interpreted as
that the value of the parameter is already sufficient even for the large-scale prob-
lem without projection, see [5, Chapter 3.3], [26]. Also the use of both projection
and regularization has the effect that we get rid of the semiconvergence and the
error decreases during the iterations, therefore we do not have to take such a good
care about the outer parameter k and we can stop the iterations once the inner
parameter λ stabilizes.

In Figures 2.3 and 2.4 we can see, that it took lots of iterations to encounter
the semiconvergence in CGLS and the stabilization of the parameter λ in the
hybrid LSQR. This is due to the fact that the noise level in Example 2 is really
low (µe = 10−6). We can see similar illustrations for Example 1 that has much
higher noise level in b (µe = 10−2) in Figures 2.5 and 2.6. In this case we used the
LSQR and hybrid LSQR methods for computations. We can see that both the
semiconvergence in LSQR and the stabilization of λ in hybrid LSQR appeared
much quicker, in less then 100 iterations.
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3. Tichonov regularization with
general regularization term
Until now we have considered only the Standard Tichonov regularization in the
form (2.1). It allowed us to control the norm of an approximate solution. How-
ever, according to some a-priori information, we might want to include some other
information about the smoothness of the sought solution, therefore it is conve-
nient to consider more general regularization terms. The Tichonov regularization
in the general form can be formulated as

min
x∈Rn

{∥Ax − b∥2 + λ2R(x)}. (3.1)

There are several variants of regularization terms studied in literature. We de-
scribed the variant with the 2-norm of an approximate solution in the previous
chapter. We will further concentrate on studying methods that contain regulariza-
tion term in the form R(x) = ∥Lx∥2, where L ∈ Rp×n, p ∈ N, is a regularization
matrix. Such variant of a problem (3.1) is often called the General Tichonov
problem [5, Chapter 4.1]. It takes the form

min
x∈Rn

{∥Ax − b∥2 + λ2∥Lx∥2}. (3.2)

3.1 Transformation to the Standard form
The formulation (3.2) can be transformed to Standard Tichonov form. As was
demonstrated in [9], we can proceed as follows. We assume that the null spaces
of A and L intersect trivially (Ker(A) ∩ Ker(L) = {0}), therefore the resulting
problem (3.2) has a unique solution.

We denote
r =

(︄
A
λL

)︄
x −

(︄
b
0

)︄
.

Then (3.2) is clearly equivalent to minimization of ∥r∥. Now assume that L has
full row rank and it is possible to compute the QR factorization [24, Chapter
8.4.3]

LT =
(︂
P1 P2

)︂(︄R1
0

)︄
,

where P =
(︂
P1 P2

)︂
∈ Rn×n, R1 ∈ Rp×p are nonsingular, P is orthogonal and R1

is upper triangular, P1 ∈ Rn×p, P2 ∈ Rn×{n−p}. Since in practice L is typically
a band matrix, the computation of this QR factorization can be done efficiently.

First assume that p = n = rank(L). Than the matrix PR−T
1 is nonsingular,

so we can safely use a substitution x = PR−T
1 x̂, x̂ ∈ Rn to get

r =
(︄

APR−T
1

λLPR−T
1

)︄
x̂ −

(︄
b
0

)︄

=
(︄

APR−T
1

λ(P T LT )T R−T
1

)︄
x̂ −

(︄
b
0

)︄

=
(︄

APR−T
1

λI

)︄
x̂ −

(︄
b
0

)︄
,
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and we obtained a reformulation of (3.2) to the standard form

min
x̂∈Rn

⃦⃦⃦⃦
⃦
(︄

APR−T
1

λI

)︄
x̂ −

(︄
b
0

)︄⃦⃦⃦⃦
⃦ . (3.3)

Now assume p < n, then we may use a substitution x = Py = P1y1+P2y2, y1 ∈
Rp, y2 ∈ Rn−p, and write

r =
(︄

AP1 AP2
λRT

1 0

)︄(︄
y1
y2

)︄
−
(︄

b
0

)︄
. (3.4)

Since Ker(P1) = Ker(L), it follows that rank(AP2) = n − p, therefore we can
compute a QR factorization of AP2:

AP2 =
(︂
Q1 Q2

)︂(︄R2
0

)︄
,

where Q =
(︂
Q1 Q2

)︂
∈ Rm×m, R2 ∈ R{n−p}×{n−p}, R2 is nonsingular. We can

multiply the first m components of (3.4) by QT and obtain a modified

r̃ =

⎛⎜⎝r̃1
r̃2
r̃3

⎞⎟⎠ =

⎛⎜⎝QT
1 AP1 R2

QT
2 AP1 0
λRT

1 0

⎞⎟⎠(︄y1
y2

)︄
−

⎛⎜⎝QT
1 b

QT
2 b
0

⎞⎟⎠ .

Note that both r̃1 and r̃3 are independent of y2 and we can therefore compute y2
so that r̃1 = 0, and we can split the above expression into

min
y1∈Rp

⃦⃦⃦⃦
⃦
(︄

QT
2 AP1
λRT

1

)︄
y1 −

(︄
QT

2 b
0

)︄⃦⃦⃦⃦
⃦ ,

y2 = R−1
2 QT

1 (b − AP1y1).

Finally, changing the variable x̄ = RT
1 y1 we obtain a problem

min
y1∈Rp

⃦⃦⃦⃦
⃦
(︄

QT
2 AP1R

−T
1

λI

)︄
x̄ −

(︄
QT

2 b
0

)︄⃦⃦⃦⃦
⃦ (3.5)

in the standard form, from which, after obtaining the approximate solution x̄,
the solution of the original problem (3.2) can be computed as

x = P1R
−T
1 x̄ + P2R

−1
2 QT

1 (b − AP1R
−T
1 x̄).

The question is how to solve the modified problem (3.3) or (3.5). We might
simply apply some iterative solver as CGLS or LSQR to obtain an approximate
solution. Of course the matrix of the problem is not necessary to be constructed
explicitly, we can perform the matrix vector multiplication gradually. The for-
mulation already incorporates the regularizing effect of λ and L. But again we
arrived at a problem that this approach requires to know the regularization pa-
rameter λ a-priori, which is inconvenient. But we can notice that the transformed
problem is in the same form as (2.4) and therefore we might repeat the derivation
(2.3). E.g. for (3.5), denoting Ā = QT

2 AP1R
−T
1 and b̄ = QT

2 b we can arrive at

min
x̃∈Rp

{∥Āx − b̄∥2 + λ2∥x̄∥2}
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and we can apply the same procedure as described in Sections 2.2 and 2.3, which
allows us to first project, then regularize as is the common setting in hybrid me-
thods.

Alternatively we might use a different transformation to the standard form than
the one performed above. The transformation can be found in [1, Chapter 8.4]
and it allows the user to transform the derivative matrix L to a preconditioner.
It suggests to use the so-called oblique pseudoinverse of L that can be expressed
as

L# = (I − WL(AWL)†A)L†,

where WL has a base of Ker(L) in the collumns and the symbol † denotes the
pseudoinverse of a matrix. In the case, where L is square and invertible, the
oblique pseudoinverse is equal to the inverse of a matrix. Assuming that L has
a full row rank and the exact solution x̃ does not have a part in Ker(L), we can
substitute

A = AL#, x = L#x

to (3.2). We end up with a modified problem

min
x

{∥Ax − b∥ − λ2∥x∥},

on which we can apply the conjugate gradient method, searching for xk in

Kk(A
T
A, A

T
b) = Kk((AL#)T (AL#), (AL#)T b)

= Kk((L#)T AT AL#, (L#)T AT b).

We can write
xk =

k∑︂
i−1

[︂
(L#)T AT AL#

]︂i
(L#)T AT b

and therefore
xk = L#xk

=
k∑︂

i−1

[︂
L#(L#)T AT A

]︂i
L#(L#)T AT b

=
k∑︂

i−1

[︂
MAT A

]︂i
MAT b,

where we denoted M = L#(L#)T . Then xk ∈ Kk(MAT A, MAT b) and M is in
fact a preconditioner.

This second approach is implemented in the toolboxes [10] and [11].

3.2 Regularization by derivative penalization
As we have seen in the previous section, it is possible to transform the General
Tichonov regularization into the standard form. In this section we offer some
examples of the regularization matrices L for one dimensional and two dimen-
sional problems. Detailed description of the problematics of choosing the right
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regularization matrix can be found in [27]. In order to get a smoother solu-
tion, it is often useful to take such L that would penalize non-smooth solutions.
Therefore the frequent choices of L are discrete approximations of differential
operators, which will be described in the following subsections. First we discuss
approximations of function derivative in general.

3.2.1 Approximating derivatives by finite differences
The common method of approximating a derivative of a function is the finite-
difference method, see [28]. Consider a real function f : R → R. Recall that the
derivative of f in a point t ∈ R is defined by the relation

f ′(t) = lim
h→0

f(t + h) − f(t)
h

. (3.6)

Therefore, if we fix some h > 0, we can approximate the derivative f ′(t) by the
expression

f ′(t) ≈ f(t + h) − f(t)
h

, (3.7)

which is called a forward difference. From (3.6) it is obvious that, if the function
f has a derivative on some neighbourhood of t, the forward difference (3.7) will
converge to f ′(t) when h → 0. Taking −h we get a backward difference

f ′(t) ≈ f(t) − f(t − h)
h

, (3.8)

which also approximates the derivative (3.6), since the limits when h → 0 are
equal for both the differences. By computing the average of (3.7) and (3.8) we
arrive at a centered difference

f ′(t) ≈ f(t + h) − f(t − h)
2h

. (3.9)

We can observe the behaviour of the forward and centered difference for the first
derivative on a simple example of the cosine function in Figure 3.1.

Let us have a look at the accuracy of the approximations (3.7), (3.8) and
(3.9). Assuming f ∈ C2, we can use the Taylor expansion of f in the point t + h
with respect to the point t and write

f(t + h) = f(t) + hf ′(t) + h2

2 f ′′(t) + O(h3), (3.10)

therefore
f ′(t) = f(t + h) − f(t)

h
+ O(h)

and the forward difference is a first-order approximation of f ′(t). Here O(·)
denotes the big O of a function. The same result holds for the backward difference
when taking the Taylor expansion of f in t − h with respect to t, so

f(t − h) = f(t) − hf ′(t) + h2

2 f ′′(t) + O(h3), (3.11)
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Figure 3.1: The comparison of the true derivative (blue line), the forward differ-
ence (red line) and the centered difference (violet line) of the function cosinus on
the interval (0, 2 ∗ π) divided into an equidistant grid of 22 points. Note that we
only drew the values for 20 inner points of the grid.

and
f ′(t) = f(t) − f(t − h)

h
+ O(h)

By averaging the relations for f ′(t) from the Taylor expansions (3.10) and (3.11)
we get

f ′(t) = f ′(t) + f ′(t)
2 = f(t + h) − f(t − h)

2h
+ O(h2),

so the centered difference is a second-order approximation of f ′(t).
For a second derivative, if f ∈ C3, let us sum the Taylor expansions

f(t + h) = f(t) + hf ′(t) + h2

2 f ′′(t) + h3

3! f ′′′(t) + O(h4),

f(t + h) = f(t) − hf ′(t) + h2

2 f ′′(t) − h3

3! f ′′′(t) + O(h4),

resulting with

f(t + h) + f(t − h) = 2f(t) + h2f ′′(t) + O(h4),

therefore
f ′′(t) = f(t + h) − 2f(t) + f(t − h)

h2 + O(h2)

and the centered difference defined as

f ′′(t) ≈ f(t + h) − 2f(t) + f(t − h)
h2 (3.12)

approximates the second derivative with second order of precision.
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Taking more components in the Taylor expansions in the case f ∈ Ck, where
k ∈ N is high enough, it is possible to arrive at a finite-difference approximations
to higher derivatives. The corresponding formulas for higher derivatives require
more grid points.

3.2.2 Discrete derivative matrices
In the previous section we summarized the most common finite-difference ap-
proximations of derivatives for continuous functions. Now we arrive at a question
how to use these schemes in a discrete setting. For that purpose we consider
vectors to be samples of continuous functions on some domain. Depending on
the dimension we are in, there are different variants how to approach this, so we
split into the two following sections.

Discrete derivatives in 1D

Let (1.1) be a model of some one dimensional inverse problem. Consider that
a vector x = (x1, . . . , xn)T ∈ Rn actually consists of samples of a continuous
function f(t) on an equidistant grid 0 = t1 < · · · < tn = 1 with the grid size
h = 1/(n−1), thus f(ti) = xi. It is possible to apply the finite-difference schemes
to the function f(t), that allows us to work on the grid only. We consider the
finite-difference approximations of the first and second derivative of f , see [1,
Chapter 8]. For the first derivative in a point ti, i ∈ {2, . . . , n}, we get the
approximation (1/h) ∗ [f(ti) − f(ti−1)] = (1/h) ∗ [xi − xi−1]. If we define the
matrix

L′ =

⎛⎜⎜⎝
−1 1

. . . . . .
−1 1

⎞⎟⎟⎠ ∈ R(n−1)×n,

then the vector (1/h) ∗ L′x contains the backward difference approximations of
the first derivatives of f in the grid points. Note that, since we use Tichonov
regularization for the solution of (1.1), we can include the constant (1/h) to the
parameter λ, therefore we can omit it. Thus the matrix L′ represents a discrete ap-
proximation of the first derivative, its null space is Ker(L′) = span{(1, . . . , 1)T }.
Similarly we can derive a common discrete approximation of the second derivative
by the centered difference

L′′ =

⎛⎜⎜⎝
1 −2 1

. . . . . . . . .
1 −2 1

⎞⎟⎟⎠ ∈ R(n−2)×n.

The matrix L′′ has a null space Ker(L′′) = span{(1, . . . , 1)T , (1, 2, . . . , n)T }.
In some cases it might be reasonable to include some boundary conditions

to the discrete derivatives. For a zero boundary condition, we end up with the
modified matrices

L′
0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
−1 1

. . . . . .
−1 1

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ∈ R(n+1)×n
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and

L′′
0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ∈ Rn×n.

One advantage of the matrices L′
0 and L′′

0 is that its null spaces are empty,
therefore we do not have to care whether they intersect with the null space of
A. In the case of a reflective boundary condition, the matrix of the discrete
first derivative is L′

R = L′, see [1, Chapter 8.2], while the corresponding discrete
second derivative matrix takes the form

L′′
R =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−1 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ∈ Rn×n

with Ker(L′′
R) = span{(1, . . . , 1)T }.

In Figures 3.2 and 3.3 we can see the results of the use of different variants
of regularization matrices on one-dimensional problems. Both problems were
generated using the toolbox [11] by calling the functions gravity(256,1) and gra-
vity(256,2). These functions give us the matrix A, the exact solution x̃ and the
exact observation b̃ as outputs. To construct (1.1), we added noise at the level
µe = 5 ∗ 10−3 using the function PRnoise. Then the noisy problem (1.1) was
solved by the General Tichonov (3.2) computed by the hybrid LSQR method,
see Section 2.3. In both cases it was useful to introduce a regularization ma-
trix than enforced the zero boundary condition (see the exact solutions x̃ on
the bottom right). For the first problem in Figure 3.2 we were able to achieve
a nice approximation with L′′

0. For the second example in Figure 3.3 we can
see that all the solutions were too smooth and none of the tested matrices led
to a perfect approximation. The use of more general regularization terms could
help to find some better approximation to a non-smooth solution, see Section 3.3.

In Section 3.2.1 we discussed the orders of accuracy for finite difference schemes.
We clarified that both the forward and backward differences for approximating
the first derivative are of the first order. We introduce also the matrices

L′
cent =

⎛⎜⎜⎝
−1 0 1

. . . . . . . . .
−1 0 1

⎞⎟⎟⎠ ∈ R(n−2)×n,

L′
0,cent =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1
−1 0 1

. . . . . . . . .
−1 0 1

−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ∈ Rn×n,

that represent the centered difference approximation of the first derivative without
boundary conditions and with zero boundary conditions, respectively, in order to
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Figure 3.2: The hybrid LSQR solutions for different variants of L for a one
dimensional problem from the toolbox [11]. The problem was constructed using
the function call gravity(256,1) and noise was added at the level µe = 5∗10−3. The
hybrid LSQR was called with the estimate of the level of noise α = 1.1 ∗ µe and
the safety factor ξ = 1.2. We can see that the approximations for L ∈ {I, L′, L′′}
could not capture the zero values on the boundary correctly and the left sides
of the plots differ from the true solution x̃ (bottom right). The use of the zero
boundary condition led to a more accurate approximation of the solution near
the boundaries. The best variant of the regularization matrix was L′′

0.

Figure 3.3: The same comparison as in Figure 3.2, for a problem generated by
a call gravity(256,2) using the parameters α = 1.1∗µe, ξ = 1.5. We can see similar
results for the approximation near the boundary. These variants of L were not
suitable to enforce a non-smooth solution. Better results might be achieved using
more general regularization terms.
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verify whether the higher order scheme has better regularization effect in the
Tichonov setting. The null space of L′

cent is

Ker(L′
cent) = span{(1, 0, −1, 0, . . .)T , (0, 1, 0, −1, . . .)T }.

The null space of L′
0,cent depends on n. If n is even, then the null space is trivial.

For n odd the null space equals

Ker(L′
0,cent) = span{(1, 0, −1, 0, . . .)T }.

There are many other variants of discrete derivative matrices with various
boundary conditions, since we may consider finite difference approximations of
higher derivatives or schemes of higher order as we mentioned in the previous
section. If there is a need to include more than one variant of a smoothing
regularization matrix, one can also consider using a combination of different ope-
rators by simply putting the corresponding matrices below each other to form
one matrix.

Discrete derivatives in 2D

In the previous section we introduced few examples of the regularization matri-
ces based on the finite differences that served as the discrete approximations of
derivatives in one dimension. However the situation in two dimensions is a bit
more complicated, see [12, Chapter 7.3]. Consider (1.1), where b = vec(B) and
B is an image, see Section 1.2. Now we need to work with partial derivatives.
Let us denote X ∈ Rp×q the matrix version of an image stored in the vector x
(therefore n = p∗q). We can consider X to be a matrix of samples of a continuous
function f(s, t), where the variables s, t are taken on equidistant grids with the
step size h, so that si = i ∗ h, i ∈ {1, . . . , p} and tj = j ∗ h, j ∈ {1, . . . , q}. We can
write Xi,j = f(si, tj).

If we want to ensure the smoothness of the solution in both space directions,
we need to consider partial derivatives with respect to both the variables s and
t (vertical and horizontal direction, respectively). To that aim we will derive the
approximations of ∂f/∂s and ∂f/∂t on the grid points. Consider a fixed grid point
[si, tj]. Then the forward difference approximation of the derivative with respect
to s is

(1/h) [f(si+1, tj) − f(si, tj)] = (1/h) [Xi+1,j − Xi,j] .

Note that, as in the one-dimensional case, we can get rid of the constant (1/h)
by including it in λ. Now, when we want, for example, zero boundary condition,
we can apply the matrix L′

0 to X. Clearly the matrix L′
0X contains the finite

differences with respect to the variable s and zero boundary conditions on the
grid. Similarly we can obtain the finite differences in the direction t when we
apply L′

0 to the rows of X by computing X(L′
0)T . To achieve the regularization

in both directions, we can combine these two results in one regularization term

R(x) = ∥L′
0X∥2

F + ∥X(L′
0)T ∥2

F

= ∥(Iq ⊗ L′
0)x∥2

2 + ∥(L′
0 ⊗ Ip)x∥2

2

=
⃦⃦⃦⃦
⃦
(︄

In ⊗ L′
0

L′
0 ⊗ Im

)︄
x

⃦⃦⃦⃦
⃦

2

2
,

(3.13)
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Figure 3.4: The hybrid LSQR solutions for different variants of L for the problem
from Example 1. The method was called with the estimate of the level of noise
α = 1.1 ∗ µe and the safety factor ξ = 1.5 and maximum number of iterations
2000. The variant with L′′

0 did not satisfy the stopping criterion and stopped
after 2000 iterations. The variant with L′

0 offers a better approximate solution
then the identity I, since L′

0 enforces a smoother solution.

where ∥ · ∥F is a Frobenius norm of a matrix and the symbol ⊗ denotes the
Kronecker product of two matrices. This term is in fact a discrete variant of
a weighted Sobolev norm. The null space of the regularization matrix in (3.13)
is empty, because of how the Kronecker product works and the fact that the null
space of the matrix L′

0 is empty.
The variants of this term for other combinations of finite-difference matrices

that were described in Section 3.2.2 can be obtained in a similar way, but we
need to be careful about the corresponding null spaces. When working with the
second derivative one can also consider using a discrete variant of the Laplacian
operator

R(x) = ∥(Iq ⊗ L′′
0 + L′′

0 ⊗ Ip)x∥, (3.14)
that also has an empty null space. This variant of a regularization matrix is
available in the toolbox [10].

We can see the example of using the 2D variants of regularization matrices
in Figure 3.4 on the problem from Example 1. The Tichonov problem was again
solved by the hybrid LSQR method. We can see that the approximate solution
computed using the Standard Tichonov regulariation (L = I) is not smooth
enough. Better approximation was computed with regularization matrix L′

0, the
computation with matrix L′′

0 terminated after it reached the maximum number of
iterations (2000). Note that we only tried the variants of regularization matrices
with zero boundary conditions, since the picture has a black background and so
the zero boundary condition is a clear choice. The reflective boundary conditions
would give the same results for a picture with a black background. The 2D
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variant of L′
0 was computed as the matrix in (3.13) and the 2D variant of L′′

0 was
implemented as in (3.14).

3.3 The use of different norms
As we already mentioned, we restricted ourselves to study the Tichonov method in
the form (3.2). In this section we want to give a brief summary of other variants
of regularization terms for Tichonov regularization, since they sometimes offer
a more suitable regularization for certain problems [5, Chapter 4.3]. In the end,
the choice of a suitable regularization depends on the properties of the particular
problem.

In the case where one expects a sparse solution, it can be useful to introduce
a regularization term in the form

R(x) = ∥x∥p
p,

where p ∈ (0, 1), see [29], [30].
Other variant is the use of the total variation, which takes in the discrete

setting the form
R(x) = ∥L′x∥1,

as a regularization term. This variant of the regularization term does not penalize
steep gradients in the solution as strongly as the 2-norm, therefore it is more
suitable when reconstructing vectors that are piecewise smooth, such as bar codes,
see [1, Chapter 8.6], [31].

However, note that regularization terms defined by different norms than the
2-norm make the problem more complicated and it is usually necessary to employ
different approaches when solving the corresponding General Tichonov problem
than the ones introduced in this thesis.
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4. Numerical experiments
In this chapter we focus on some numerical experiments. All the computations
were performed on a computer Lenovo ThinkPad E14 (Gen 2, Type 20T6). The
machine is equipped with AMD Ryzen 7 4700U processor with Radeon Graphics
(2.00 GHz) and 8 cores. The size of RAM memory is 16 GB. Matlab R2020B was
used with the toolboxes IR Tools [10] and Regularization Tools [11]. The scripts
to create the experiments were newly defined as well as the functions for creating
most of the regularization matrices, with the exception of discrete representations
of Laplacian in 1D and 2D.

Let us denote
errrel = ∥x̃ − xk∥

∥x̃∥
the relative true error norm of an approximate xk for simplicity. Note that x̃ is
the exact solution of the problem without noise (1.3).

In the following experiments we often use the function hybrid LSQR from the
toolbox [10] with the predefined parameter option.RegParam =′ discrep′ which
specifies that the inner parameter λ should be computed via the Discrepancy
principle. Nevertheless the function actually uses a sophisticated way of approxi-
mating the discrepancy principle in the hybrid setting, that is based on the secant
method, computing the current parameter from the previous one. Therefore one
needs to pass on an initial parameter λ, that we hereafter denote λ0. The details
on how the function computes the inner parameter can be found in [10] and [32].

4.1 The dependence of the optimal regulariza-
tion parameter on the level of noise

In this section we illustrate how the optimal regularization parameter depends
on the level of noise µe and how well does the Discrepancy principle approximate
the optimal value λ. We took the model problem gravity(256,1) from the toolbox
[11] and added different levels of noise µe. Then we computed the results of the
hybrid LSQR method on these variants of the problem for various regularization
parameters λ in order to find the optimal one and compared with the results
of the hybrid LSQR algorithm with the Discrepancy principle as the parameter
choice method in the inner iteration. In the second case for the Discrepancy
principle the approximate noise level α = 1.1 ∗ µe was used in order to simulate
a 10% error in the estimate of the noise level µe, the safety factor ξ = 1.5 and
λ0 = 1 were set.

In Figure 4.1 we can see the results. On the left column there are the ap-
proximate solutions for optimal parameter λ. On the right column we plot the
results when calling the method with the integrated Discrepancy principle. We
can observe that the approximate solutions are better for lower levels of noise
µe, which illustrates the fact that with higher level of noise the problem becomes
harder to solve. It is also visible when we take a look on Table 4.1, where we give
relative errors.

The optimal λ for high µe is higher, which corresponds to the fact that there
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Figure 4.1: The comparison of the approximate solutions computed by the hybrid
LSQR algorithm for the test problem gravity(256,1) with different levels of noise
µe ranging from 10−1 to 10−10. The function was called with parameters α =
1.1 ∗ µe, ξ = 1.5, λ0 = 1. The results for optimal λ used as a constant are on the
left. The results from the adaptive Discrepancy principle in the inner iteration
are on the right. We can see that for higher levels of noise it is more difficult
to compute a suitable reconstruction of the exact solution. The corresponding
relative error norms are stated in Table 4.1.
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Table 4.1: The comparison of the quality of solution depending on the level of
noise µe for the test problem gravity(256,1). Two variants of the hybrid LSQR
method were used, first for the optimal λ set as a constant parameter, second for
the Discrepancy principle (DP).

µe opt. λ errrel for opt. λ λ from the DP errrel for DP
10−1 0.7 0.0537 2.2555 0.2190
10−3 0.05 0.0154 0.1521 0.0269
10−5 0.003 0.0025 0.0011 0.0076
10−7 0.0001 4.88 ∗ 10−4 4.74 ∗ 10−4 0.0014
10−10 5 ∗ 10−6 1.01 ∗ 10−4 4.90 ∗ 10−6 1.19 ∗ 10−4

is more uncertainty in the problem, therefore there is a greater need to regularize.
On the contrary, for very low level of noise µe the need of regularization is not so
strong and therefore the values of optimal λ are much smaller. Also the relative
error errrel is lower, which means that a problem with lower noise level allows us
to compute a better approximation of the solution.

Similar trends also apply for λ and corresponding errrel computed using the
Discrepancy principle, although the results are generally worse, because the cri-
terion only works with limited information about the noise level µe. In the last
column of Table 4.1 we can observe that for lower noise levels the criterion is able
to approximate the optimal λ very well, but for high levels of noise the quality
of the approximations is declining, resulting with higher errrel than in the case
with optimal λ. However in Figure 4.1 we can see that the reconstructions are
acceptable. Notice that for µe = 10−1 it is not possible to capture the zero on
the boundary, not even when optimal λ is chosen. It shows that the problem is
too spoiled.

4.2 Choosing suitable boundary conditions
The aim of this experiment is to illustrate the possible impacts of using boundary
conditions that are not suitable for the specific problem we are solving. We
took the test problem PRblur(256,options) from the toolbox [10], where we chose
a particular image by setting options.TrueImage=’ppower’. Then we added noise
on the level µe = 10−2. Further we computed the hybrid LSQR solutions for
different variants of the regularization matrix L and compared the results. In the
inner iteration the Discrepancy principle was used with an approximate level of
noise α = 1.1 ∗ µe that simulates the error in the noise estimate, the safety factor
ξ = 1.5 and initial λ0 = 1.

Figure 4.2 shows the computed approximate solutions. In the cases where
the zero boundary condition was chosen we can observe that the light parts of
the image are disturbed by some black shadows. We do not see this problem in
the restorations where the reflective boundary condition was used. Also when we
look at the relative error norms errrel in Table 4.2, we can see that the reflective
boundary condition allowed us to compute a solution that was closer to the exact
solution x̃ of the problem (1.3) without noise.

It follows from the observations that it is very important to choose the boun-

41



Figure 4.2: The comparison of the exact solution x̃ (bottom left), the blurred and
noisy b (bottom right) and the solutions of hybrid LSQR for different variants
of the regularization matrix L. We can see that the approximate solutions on
the left, computed using regularization matrix with zero boundary conditions,
offer worse approximations than the ones on the right, where L with reflective
boundary conditions was used. The light spots in the image are disturbed by the
black color that corresponds to the zero value. It is obvious that the reflective
boundary condition is more suitable to restore the light parts of the tested image.
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Table 4.2: The comparison of the relative error norms errrel and the computed
values of the regularization parameter λ of the approximate solutions from the
hybrid LSQR method with the for zero and reflective boundary conditions.

zero BC reflective BC
λ from the DP errrel λ from the DP errrel

L′ 0.1053 0.1972 0.2724 0.1768
L′′ 0.1356 0.2047 0.6545 0.1766

dary conditions wisely, considering the information we have about the solution
that is to be reconstructed. Notice that for the correct boundary condition the
relative error norm of the reconstruction with L′′

R was lower than the relative
error norm for L′

R. Also the parameter λ is larger for L′′
R than for L′

R, which is
not surprising, since we absorbed the constants depending on h from the discrete
derivatives into the parameter λ, see Section 3.2.2.

4.3 Centered and forward difference for the first
derivative in 1D

When we introduced the concept of finite differences in Section 3.2.1, we also
derived that the centered difference has higher order of precision than the forward
difference for the first derivative. One might ask a question whether the schemes
with higher orders of precision will offer better approximate solutions in the hybrid
LSQR setting. Therefore we compute and compare the results of hybrid LSQR
when using the regularization matrices L′

0 and L′
0,cent to verify this statement in

the case of the first derivative. Note that from the comparison of finite difference
schemes (3.7) and (3.9) it follows that to perform a fair comparison, one should
set λ for use with L′

0,cent to be half of the λ for use with L′
0. For this reason we

introduce an auxiliary coefficient τ and then compare the results computed for
λ = τ and λ = τ/2, respectively.

As a test problem we chose gravity(256,1) from the toolbox [11], with noise
added on the level µe = 10−3. We computed the results of hybrid LSQR for three
values of the parameter τ .

The results of the computations for τ = 0.1, τ = 0.05 and τ = 0.01 can be
seen in Figures 4.3 and 4.4. In all of the cases the centered difference L′

0,cent

brings worse approximation than the forward difference L′
0. We can see that all

the solutions for L′
0,cent suffer from oscillations. The conclusions from the Figures

are also supported by the comparison of relative error norms in Table 4.3. The
table shows that for all three variants of τ the error for centered difference L′

0,cent

is higher than the error for L′
0.

The experiment did not fulfill our expectations on the effect of the order of
precision of the finite difference on the quality of the solution. The effect of the
centered difference matrix L′

0,cent to bring oscillations to the solution might be
hidden in the shape of the centered difference. When we look at the shape of
L′

0,cent (see Section 3.2.2) we may realize that multiplication by this matrix com-
pares the even and the odd components of the solution separately. When we take
a closer look at the approximate solutions, they oscillate between each neighbor-
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Figure 4.3: The comparison of the results of hybrid LSQR when using forward and
backward difference schemes to approximate the first derivative. The solutions
were computed with constant λ computed from the constant τ = 0.1 according
to Table 4.3. We can see that the solution for L′

0,cent is oscillating. On the top
we can see the precise x̃ and the right hand side b.

Figure 4.4: The same comparison as in Figure 4.3, but for the values τ = 0.05
(in the first row) and τ = 0.01 (in the second row). We observe similar results.
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Figure 4.5: The odd and even components of the solution for τ = 0.01 with L′
0,cent

from the figure 4.7. We can see that both the odd and even components form a
vector that does not suffer from oscillations.

Table 4.3: The comparison of the relative error norms errrel for more variants of
the parameter τ and two regularization matrices L′

0 and L′
0,cent.

τ = 0.1 τ = 0.05 τ = 0.01
errrel errrel errrel

L′
0 λ = τ 0.0196 0.0338 0.1998

L′
0,cent λ = τ/2 0.0380 0.0404 0.2638

hood component, as we can see in Figure 4.5, which supports our presumption.
In the next section we offer a second experiment with similar goal that studies
this question on a 2D example.

4.4 Centered and forward difference for the first
derivative in 2D

In this experiment we want to study, whether the central difference provides
better approximate solutions in 2D than we observed in the previous section in
1D. Since in 2D the regularization term requires comparing the components of the
approximation in two directions, we expect that the oscillations will not appear
here. Again we used different parameters λ to ensure a fair comparison.

We use the problem PRblur(256, options) with options.TrueImage=’hst’ and
we added noise at the level µe = 5∗10−3. For this problem we computed a hybrid
LSQR solution for both 2D versions of L′

0 and L′
0,cent for three variants of the

auxiliary coefficient τ .

Table 4.4: The comparison of the relative error norms errrel for more variants of
the parameter τ and two regularization matrices L′

0 and L′
0,cent.

τ = 1.5 τ = 1.0 τ = 0.1 τ = 0.01
errrel errrel errrel errrel

L′
0 λ = τ 0.2701 0.2588 0.2182 0.2020

L′
0,cent λ = τ/2 0.2699 0.2586 0.2179 0.2052

The approximate solutions can be seen in Figures 4.6 and 4.7. We do not see
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Figure 4.6: The comparison of the results of hybrid LSQR when using forward and
backward difference schemes for approximating the first derivative. The solutions
were computed with the constant λ set according to Table 4.4 with τ = 1. The
reconstructions for both matrices L′

0 and L′
0,cent are similar, the solution for the

central derivative has slightly lower relative error norm as we can see in Table
4.4. In the top row we can see the precise image x̃ and the right hand side b.

Figure 4.7: The same comparison as in Figure 4.6, but for the values τ = 0.1 (in
the first row) and τ = 0.01 (in the second row). Again, the reconstructions are
very similar. The relative error norm for τ = 0.1 is slightly lower for L′

0,cent, the
result for τ = 0.01 is opposite, as we can see in Table 4.4.
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any oscillations as in the 1D case. In the cases τ = 1.5, τ = 1 and τ = 0.1 the
relative error norm was lower when we used L′

0,cent, in the last case the relative
error norm was lower for L′

0, see Table 4.4. Note that τ = 1.0 is too large and thus
the solutions in Figure 4.6 are overregularized. The reconstruction for τ = 0.1 is
visually favourable.

The results suggest that in some cases the central difference approximation
of the first derivative in 2D can lead to better results than the forward difference
approximation. In particular, in cases where more regularization is needed, i.e.,
λ is larger.

4.5 Higher order scheme for the second deriva-
tive

Based on the observations in the previous experiment we decided to take a look
at a similar comparison for the second derivative. We tested the schemes of the
second and the fourth order of precision. The first was introduced in Section
3.2.1, the second takes the form

f ′′(t) ≈ −f(t + 2h) + 16f(t + h) − 30f(t) + 16f(t − h) − f(t − 2h)
12h2 . (4.1)

The corresponding matrix L′′
0 (4th order) can be derived similarly as in Section

3.2.2.

Figure 4.8: The comparison of the results of hybrid LSQR for the problem gravi-
ty(256,1) with noise added at the level µe = 10−3 when using the finite difference
schemes for second derivative of the second and the fourth order of precision.
The optimal parameter λ was chosen in each case separately, see the values in
Table 4.5. The reconstructions for both schemes look similar, the solution for L′′

0
(4th order) has slightly lower relative error norm. In the top row we can see the
precise vector x̃ and the right hand side b.
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Figure 4.9: The same comparison as in Figure 4.8, but for the test problem from
Example 1. Again, the values of λ can be seen in Table 4.5. The reconstruction
computed with L′′

0 (4th order) is visually better than the one computed with L′′
0

(2nd order). This observation corresponds to the comparison of the relative error
norms in Table 4.5.

Figure 4.10: The same comparison as in Figure 4.8, but for the test problem from
Example 2 with the noise level changed to µe = 10−2. The values of λ can be seen
in Table 4.5. The reconstructions for both schemes look similar. The solution for
L′′

0 (2nd order) has slightly lower relative error norm, see Table 4.5.
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We use three test problems. One is gravity(256,1) from the toolbox [11] with
noise added at the level µe = 10−3, second is the problem from Example 1, third
is based on Example 2, but with the noise level changed to µe = 10−2. The
solutions were computed by the hybrid LSQR with constant λ. The parameter
was chosen manually for the particular cases by computing the solutions for many
variants of λ and choosing the optimal one. This way we could perform a fair
comparison.

Table 4.5: The comparison of the relative error norms errrel for two regularization
schemes L′′

0 of 2nd and 4th order for three test problems. The optimal parameter
λ was chosen in the particular cases.

gravity PR1 PR2, µe = 10−2

opt. λ errrel opt. λ errrel opt. opt. λ errrel

L′′
0, 2nd order 21 0.0026 5 ∗ 10−3 0.1538 4 ∗ 10−2 0.1812

L′′
0, 4th order 2 0.0023 6 ∗ 10−4 0.1262 4 ∗ 10−3 0.1814

The results are visualized in Figures 4.8, 4.9 and 4.10. For the first two
examples the reconstructions computed with the scheme with the fourth order of
precision have lower relative error norms, in the third case it is the opposite, see
Table 4.5. In Figure 4.9 we can see that the variant with L′′

0 (4th order) led to
visibly better restoration. Notice that the proportion of the optimal parameters
λ for the two finite difference schemes is of the same order as the proportion of
the constants in (3.12) and (4.1) that were absorbed to λ.

As in the previous section, the results suggest that the higher order schemes for
the second derivative can lead to better approximations in some cases. A possible
problem is the choice of a suitable regularization parameter, because the interval
for the optimal λ differs from scheme to scheme.
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Conclusion
The aim of this thesis was to study the behaviour of hybrid regularization methods
combining Krylov subspace iterations and the Tichonov regularization with gene-
ral regularization terms. We described inverse problems and illustrated the need
to regularize. We proved the equivalence of the two approaches first regularize,
then project and first project, then regularize in the hybrid setting. We focused
on the Tichonov regularization with general regularization terms, summarized
their well known variants based on finite differences and introduced variants with
higher orders of precision for various boundary conditions.

Further on, we performed experiments using the hybrid method combining
LSQR and Tichonov minimization. We illustrated the well known dependence of
the regularization parameter on the level of noise and the importance of appro-
priate choice of the boundary conditions. We observe that an optimal parameter
λ for the forward scheme for the second derivative is higher than for the first
derivative, which corresponds to the constants from finite difference schemes that
we absorbed to λ.

Then we studied, whether the centered difference for approximating the first
derivative with a higher order of precision can lead to better results in the hybrid
LSQR than the widespread forward difference. The results in 1D show that the
approximate solutions computed with the centered difference slightly oscillate,
resulting in larger relative true error. This can be caused by the shape of the
centered difference matrix L′

0,cent. It can be seen that the regularization term
with the centered difference measures the relations between the odd and the even
components separately and does not relate these two groups of components at
all.

For 2D problems oscillations do not appear. We suppose that this is caused by
the fact that each component of the approximate solution is compared with other
components in two space directions, which puts more requirements on the parti-
cular component compared to the 1D case. Here the centered difference leads to
better approximations in some cases. Note that the use of the centered difference
does not increase the computational costs of the regularization process, since the
corresponding finite difference matrix is sparse as is the matrix corresponding to
the forward difference.

Experiments with the finite difference scheme of the fourth order of precision
for the second derivative in 1D and 2D were also performed. In some cases, it
resulted in better approximations of the solution compared to the finite difference
scheme of the second order of precision. Nevertheless, we observed that the choice
of an optimal regularization parameter is more difficult with the higher order
schemes.

In summary, particular choice of appropriate regularization term is strongly
problem dependent.
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2012.

51



[14] G. H. Golub and Ch. F. Van Loan. Matrix Computations. Johns Hopkins
Studies in the Mathematical Sciences. Johns Hopkins University Press, 1996.

[15] G. H. Golub, M. Heath, and G. Wahba. Generalized Cross-Validation as a
Method for Choosing a Good Ridge Parameter. Technometrics, 21(2):215–
223, 1979.

[16] R. Ramlau. A Steepest Descent Algorithm for the Global Minimization of
the Tikhonov Functional. Inverse Problems, 18(2):381–403, 2002.

[17] R Griesse and D A Lorenz. A Semismooth Newton Method for Tikhonov
Functionals with Sparsity Constraints. Inverse Problems, 24(3):035007, 2008.
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[31] S. Gazzola and M. Sabaté Landman. Flexible GMRES for Total Variation
Regularization. BIT Numerical Mathematics, 59(3):721–746, 2019.

[32] S. Gazzola and P. Novati. Automatic Parameter Setting for Arnoldi-
Tikhonov Methods. Journal of Computational and Applied Mathematics,
256:180–195, 2014.

53


	Notation
	Introduction
	Inverse problems and regularization
	Inverse problem
	Introducing examples
	Sensitivity of the solution
	Methods dealing with ill-posedness

	Tichonov regularization
	Standard Tichonov method
	Analysis using SVD
	Selecting the regularization parameter

	How to solve Tichonov problem
	Projecting on a Krylov subspace
	Shift invariance of Krylov subspaces
	Golub-Kahan iterative bidiagonalization

	Hybrid regularization

	Tichonov regularization with general regularization term
	Transformation to the Standard form
	Regularization by derivative penalization
	Approximating derivatives by finite differences
	Discrete derivative matrices

	The use of different norms

	Numerical experiments
	The dependence of the optimal regularization parameter on the level of noise
	Choosing suitable boundary conditions
	Centered and forward difference for the first derivative in 1D
	Centered and forward difference for the first derivative in 2D
	Higher order scheme for the second derivative

	Conclusion
	Bibliography

