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Abstract:  

In recent years, novel optical and magneto-optical devices have been proposed. This 

ranges from integrated photonic devices such as 3D holographic displays to magnetic 

recording, non-reciprocal photonic devices such as optical isolators and circulators or 

high-energy X-ray/gamma ray detectors. These devices, however, require suitable 

materials with tunable optical and magneto-optical properties. Presented thesis aims 

to systematically study such materials, namely GdxFe(100-x), magnetic garnets (Y3-

xBixFe5O12, Nd2BiFe(5-x)GaxO12, Nd0.5Bi2.5Fe(5-x)GaxO12) and Ce(0.95-x)HfxCo0.05O(2-δ). 

Systematic study is carried out by the combination of experimental methods of 

spectroscopic ellipsometry, magneto-optical Kerr effect spectroscopy and Faraday 

effect spectroscopy. Experimental data are confronted to theoretical calculations 

based on Yeh 4x4 matrix formalism. As a result, full permittivity tensor spectra of 

presented materials are derived and analyzed in terms of microscopic theory. This 

allows understanding and optimization of physical properties of studied materials 

which is important when increasing the application potential and suitability for 

variety of devices.  
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Introduction 

Recent decades have been characteristic by a massive technology development that 

completely transformed our society. Technology has become smaller, faster, and 

more effective than ever. However, there is still a room for improvement, which has 

been demonstrated by multiple novel devices proposed by scientific community. In 

this category, one can find a huge variety ranging from 3D holographic displays to 

magnetic recording, integrated non-reciprocal photonic devices such as optical 

isolators and circulators, high-energy X-ray/gamma ray detectors and many more. 

This kind of novel technology, however, usually operates in nanoscale which 

complicates the situation. The reason is that nanoscale materials are not only difficult 

to prepare but their physical properties may also significantly differ from physical 

properties of their bulk forms. Therefore, the knowledge from the bulk material 

research can be used only to some extent. What is more, physical properties of 

materials in nanoscale are significantly influenced by surrounding materials (for 

example in a multilayer). This goes hand in hand with the compatibility requirement 

with the current technology (usually Si compatibility) which is particularly 

important. In addition, the huge variety of proposed highly specialized devices 

requires materials with tunable optical, magnetic, and magneto-optical (MO) 

properties. This type of tuning is usually performed by doping, composition or/and 

application of strain. These mechanisms must therefore be also understood and 

thoroughly researched.  

To process all these inputs properly, one must come up with a parameter which 

characterizes optical and MO properties of studied materials completely. Moreover, 

this parameter must fully represent studied materials (together with the dimensions 

information) in any optical or MO calculation. This includes calculations of optical 

and MO response of complicated multilayered structures/nanostructures. Possibility 

to incorporate effect of the material on such a structure is especially important since 

structure represents proposed device. Therefore, the main advantage of such an 

approach would be possibility to design complicated optical and MO devices in the 

theoretical level before manufacturing any sample. As one can imagine, this can save 

a big amount of time, finances, and effort. The only parameter which meets all these 
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requirements is the permittivity tensor. Knowledge of the permittivity tensor spectra 

allows deep understanding of the optical and MO properties of the material. 

Furthermore, when combined with Yeh 4x4 matrix formalism, it allows calculations 

of interaction between electromagnetic radiation and multilayered structure.  

For all these reasons combined, we devoted present work to the full permittivity 

tensor determination and analysis. This was done for three groups of promising novel 

materials: GdxFe(100-x), magnetic garnets (Y3-xBixFe5O12, Nd2BiFe(5-x)GaxO12, 

Nd0.5Bi2.5Fe(5-x)GaxO12) and Ce(0.95-x)HfxCo0.05O(2-δ). To tune their physical properties 

properly, we investigated the influence of the material composition as well. 

Thesis is organized as follows: 

Chapter 1 focuses on the understanding of the full permittivity tensor and its relation 

to the optical and MO properties of material. This includes energy absorption 

mechanisms as well as microscopic theory.  

Chapter 2 discusses some basic facts about the polarization state of optical waves 

and shows how MO parameters measured in experiment are related to the Jones 

matrix of the sample.  

Chapter 3 explains the wave equation in special geometries. Moreover, it explains 

general Yeh 4x4 matrix formalism for description of the optical and MO interactions 

in multilayers, necessary for theoretical calculations.  

Chapter 4 is devoted to the experimental techniques used for measurements of 

optical and MO spectra.  

Chapter 5 presents techniques used for the sample’s preparation. 

Chapter 6 discusses obtained experimental and theoretical results. Based on the type 

of studied material, it is structured into three sub-chapters: GdxFe(100-x), magnetic 

garnets and Ce(0.95-x)HfxCo0.05O(2-δ).  

Finally, we devoted Chapter 7 to the main conclusions. 
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1. PERMITTIVITY 

Permittivity is a measure of proportionality that exists between electric displacement 

D and electric field E when forming an electric field in a medium. In simple terms, 

permittivity quantifies how an electromagnetic field affects, and is affected by a 

medium. 

 D E=  (1.1) 

   

1.1. Complex permittivity function 

If the medium is isotropic, the permittivity is a complex number. The reason behind 

this complexity is that response of the material to the external field depends on the 

field frequency ω. This means that response is not instantaneous but casual. 

Therefore, we can represent this response as a phase difference. Complex numbers 

allow specification of phase and magnitude. Therefore, the permittivity becomes 

complex function defined by 

 0 1 0( ) .i t i tD e E e  − −=  (1.2) 

Here E0 and D0 stand for the amplitude of electric displacement and the amplitude of 

electric field respectively; ε1(ω) is the complex permittivity function defined as  

 1 1 1( ) ( ) ( ).r ii     = −  (1.3) 

Here, ε1r refers to the real part that is related to the fraction of the energy dispersed 

by a medium. Consistently, ε1i refers to the imaginary part that is related to the 

absorption loss (if it is positive) or gain (if it is negative). To summarize, the 

complex permittivity function represents optical properties of a material in terms of 

how material responses to the applied field. However, optical properties of the 

material can be also represented in terms of how the electromagnetic wave 

propagates in a material. For this purpose, we use the representation of refractive 

index n and absorption coefficient k. Refractive index is inversely proportional to the 

length of wave propagation in the material (length after which the phase of the wave 

changes by 2π). Similarly, absorption coefficient is inversely proportional to the 

distance in which the amplitude of the propagating wave decays to 1/e of its original 

value. These constants are related by the equation 
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2

1 1 ( ) .r ii n ik − = −  (1.4) 

The real and imaginary parts of the complex permittivity are not independent 

quantities, nor are the refractive index and absorption coefficient. These are 

connected by the Kramers-Kronig relations. These relations results from the 

requirement that material cannot respond to the applied field prior to its application. 

 
' ( ')

( ) 1
'

d k
n P

 


  



−

= +
− , (1.5) 

   

   

 1 2 2

' ( ') '
( ) 1

'
r

d
P

   
 

  



−

= +
− . (1.6) 

We can derive complex permittivity and therefore all the optical functions of a 

material from spectroscopic ellipsometry (SE) measurements and analysis which will 

be discussed in more detail later in this work.  

1.1.1. Energy absorption mechanisms 

Types and strengths of optical absorption processes that occur in the material 

determine its optical properties and therefore its complex permittivity function 

completely. Material absorbs energy from a light beam by multiple mechanisms. The 

most important mechanisms are: 

a) Interband absorption refers to the case when an electron in a bound state in 

the material absorbs a single photon from the light beam and jumps to a higher 

energy level in the material.  

b) Intraband absorption refers to the case when an electron absorbs a photon 

from the light beam and jumps to a different energy state within the same band. 

This process usually requires photon emission or absorption. The only 

exception is when initial and final electron states occur at the same values of 

the crystal momentum. 

c) Free carrier absorption is a special case of the intraband absorption for 

conducting materials, which contain a gas of not bound, free carriers, which 

exhibit distinctive optical absorption. 
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1.1.2. Theoretical modeling of the complex permittivity function  

As mentioned already, the shape and amplitude of the complex permittivity function 

of the material depends fully on types and strengths of optical absorption processes. 

To model these processes theoretically, scientists developed multiple theoretical 

models (usually referred as oscillators or terms), each of which is a function of light 

beam photon energy E (eV). In this part of the thesis, we discuss theoretical models 

used to model the complex permittivity function in this work. 

a) Lorentz model 

This model is based on classical theory, which describes an interaction of an optical 

wave with harmonically bound classical electron having a finite relaxation time. 

Classic version of Lorentz model is  

 
. 

(1.7) 

Parameters E0, Amp, Br denote the center energy, amplitude and the broadening 

parameter respectively [1, 2]. The shape that this model creates in the complex 

permittivity spectra can be seen in Figure 1.1. 

b) Gaussian model 

Gaussian model produces Gaussian line shape in ε1i with Kramers-Kronig consistent 

line shape for ε1r [2, 3]. 

 

0 0

1_ 2 2

0 0exp exp

Gaussian

E E E E

Amp
E E E E

i

 


 

  − +    
 + +     
     

=  
    − +     − + −                    

, (1.8) 

   

 
2 ln(2)

Br
 = . (1.9) 

Parameters E0, Amp, Br and σ denote the center energy, amplitude, broadening and 

the conductance, respectively. The function Γ is a convergence series that produces a 

Kramers-Kronig consistent line shape for ε1r [2, 3]. As one can see from Figure 1.1, 

0
1_ 2 2

0

Lorentz

AmpBrE

E E i EBr
 =

− − 
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Gaussian model is particularly useful due to its ability to rapidly approach zero 

beyond the FWHM position.  

c) Tauc-Lorentz 

This model reproduces the complex permittivity function of many amorphous 

materials particularly well. Tauc-Lorentz model (Figure 1.1) produces shape in ε1i 

defined by equation 

 
0

1 _ 2 2 2 2 2

0

( ) 1

( )

g

i Tauc Lorentz g

AmpE Br E E
E E

E E Br E E
 −

− 
=   

− + 
 (1.10) 

   

 1 _ 0 .i Tauc Lorentz gE E − =   (1.11) 

Parameters E0, Amp, Br, Eg denote the center energy, amplitude, broadening and 

bandgap energy, respectively. Function ε1r is produced using Kramers-Kronig 

relations [2, 4]. 

d) Drude model 

This model is a special case of Lorentz model where the center energy E0 equals 

zero. This model was developed to describe the free carrier effect on the complex 

permittivity function behavior. The model assumes that the microscopic behavior of 

free carriers in a solid may be treated with a gas of constantly moving carriers 

bouncing and re-bouncing off heavier static positive ions. 

 

 

(1.12) 

Parameters N, μ, m* denote the carrier concentration, carrier mobility and carrier 

effective mass, respectively. The physical constants are ħ (Planck constant/2π), q 

(electron charge), ε0 (the vacuum dielectric constant) and me (the electron mass) [2, 

5]. The shape this model creates in the complex permittivity spectra can be seen in 

Figure 1.1. 

 

2 2

1_ 2

0 ( * )
Drude

e

q N

m m E iq E




 

−
=
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Figure 1.1: The calculated spectra of ε1r and ε1i for a) Lorentz, Gaussian, and Tauc-Lorentz 

oscillators; b) Drude term. 

 

e) Herzinger-Johs model 

This model combines highly functional shape with Kramers-Kronig consistent 

properties, and it is useful especially when reproducing complicated complex 

permittivity function shapes of crystalline materials. The importance of this model is 

shape of the complex permittivity function it generates; however, its internal 

parameters have no direct physical meaning. This model consists of four polynomials 

spline functions f1, f2, f3 and f4 connected smoothly end-to-end. Functions f1 and f3 are 

equal zero at the endpoints. Variable fit parameters are E0, Amp, Br, WL, WR, AL and 

AR that correspond to the center energy, amplitude, broadening, width of left side 

absorption region, width of right side absorption region, control point for left side 

and control point for right side respectively. The shape this model creates in ε1i 

spectra can be seen in Figure 1.2 [2, 6]. 
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Figure 1.2: The calculated spectra of ε1i for Herzinger-Johs model displaying polynomial spline 

functions f1, f2, f3 and f4, as well as endpoints and control points. 

 

1.2. Permittivity tensor 

When we insert the isotropic material into the magnetic field, the field breaks the 

symmetry of the system. Therefore, we must treat the isotropic material in the 

magnetic field as anisotropic (all the materials investigated in this work exhibit 

anisotropy due to a magnetic ordering). Anisotropic system is generally characterized 

by a different direction of its electric field E and the electric induction D intensity 

vectors (1.1). Permittivity ε in this system thus has a tensor character and we can 

express it as 

 .

xx xy xz

yx yy yz

zx zy zz

  

   

  

 
 

=  
 
 

 (1.13) 

Since the field acts as a small perturbation of the isotropic material, we can express 

the permittivity tensor in the Cartesian representation as follows 

 
0 .ij ij ijk k ijkl k lK M G M M = + +  (1.14) 

Here, 
0

ij  are components of the unperturbed permittivity, Mk are components of the 

magnetization vector; Kijk and Gijkl are the elements of the linear and quadratic MO 
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tensors responsible for linear and quadratic MO effects. In this work, we restrict 

ourselves to linear MO effects only. If we have magnetization parallel to the z-axis of 

the Cartesian coordinate system (the magnetic film-ambient interface is normal to the 

z-axis, light is propagating along the z-axis) we receive relations 

 1 ,xx yy zz   = = =  (1.15) 

 2 xy zxi  = − =  (1.16) 

Permittivity tensor thus simplifies to the form 

 

1 2

2 1

1

0

0 .

0 0

i

i

 

 



−  
 
 

 
 

 (1.17) 

All elements of the tensor have real and imaginary parts: 

 1 1 1 ,r ii  = −   (1.18) 

 2 2 2 .r ii  = −   (1.19) 

Off-diagonals ε2 are proportional to the magnetization in the sample. Therefore, if 

there is no magnetic field present, permittivity tensor reduces itself to a unit matrix of 

ε1. 

1.2.1. Microscopic theory 

Microscopic theory relates full permittivity tensor spectra to energy level splitting 

and transition probabilities. As mentioned earlier, when there is a magnetic field 

applied, off-diagonals of the permittivity tensor ε2 have finite values. From 

microscopic point of view, there are three distinct mechanisms producing these finite 

values: 

1) An unequal population of states related to the spin polarization of the ground 

state displays the opposite contributions to ε2.  

2) Variations in the energy differences between two states caused by:  

o Zeeman splitting of the energy levels when the external field acts on the 

orbital electronic motion 

o Spin-orbit splitting 
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3) Perturbations caused by spin orbit coupling effect on wave functions of 

occupied or unoccupied states or on the kinetic momentum operator. 

To summarize, finite values of the ε2 mean that there are new types of optical 

transitions in the material, MO transitions, which exist only when the magnetic field 

is applied. In this work, we will consider two types of these transitions: Dia and Para 

transitions.  

a) Dia transitions refer to spin and electric-dipole allowed transitions between 

an orbital singlet ground state and an excited state split by the combined effect of 

exchange field and spin-orbit coupling [7, 8]. These transitions can be described by 

an oscillator term, in which ε2 behaves as:  

 

2 2 2

0 0 0 0
2 2

2 2
0 0 0

( ) 2 ( )

2 ( )

p f L i    


  

 − − +  −
=

 − + 

 (1.20) 

Here Δ, ω0, Γ0 and f are the separation between the levels caused by spin-orbit 

coupling, center frequency, half width at half-height of the transition and the 

oscillator strength, respectively. L is the Lorentz-Lorentz local field correction 

defined as [(n2+2)/3]2, where n is the refraction index. Dia transition behavior in ε2 

close to the center frequency ω0 is schematically shown in Figure 1.3(a). We can 

observe a bell-shaped behavior for the real part ε2r and dispersive behavior for the 

imaginary part ε2i. At center frequency ω=ω0, ε2i=0; ε2r has a maximum value 

 

2

2 max 2

0 0

( )
2

p

r

f L





=


 (1.21) 

and ε1 shows a resonant behavior with maximum value of ε1i  

 

2

1 max

0 0

( )
2

p

i

fL



=


. (1.22) 

 

b) Para transitions 

In the case of Para transitions neither the ground state nor the final state is split. 

However, the oscillator strengths for right circularly polarized light f+ and left 
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circularly polarized light f- are different [7, 8]. These transitions can be described by 

an oscillator term, which in ε2 behaves as: 

 

2 2 2 2 2 2 2

0 0 0 0 0
2 2

2 2 2 2 2 2

0 0 0 0

( ) ( )

2 ( ) 4

p fdfL i     


   

− − −  + +
=

 + + +  

. (1.23) 

Here df is the fractional dichroism defined as 

 
f f

df
f f

− +

− +

−
=

+
. (1.24) 

Para transition behavior in ε2 close to the center frequency ω0 is schematically shown 

in Figure 1.3(b). In this case, we can observe dispersive behavior for ε2r and 

dissipative behavior for ε2i. At ω=ω0, ε2r=0; ε2i has a maximum value  

 

2

2 max 1 max

0

( ) ( ) .
p

i i

fdfL
df


 


= =  (1.25) 

 

Figure 1.3: The calculated spectra of e2r and e2i for a) Dia transition and b) Para transition. 
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2. LIGHT POLARIZATION, OPTICAL AND 

MAGNETOOPTICAL EFFECTS 

This chapter is a brief introduction to the light polarization and Jones vector 

formalism, which is a powerful tool when calculating polarization properties of light. 

Furthermore, we discussed in here SE and MO effects which are all based on the 

change in the polarization state of light upon reflection or transmission. 

2.1. Light polarization 

Light is understood as a general transverse electromagnetic radiation. Polarization of 

an electro-magnetic light wave is given by the time-dependent evolution of the 

electric field vector E. There are many ways to describe the polarization state of fully 

polarized electromagnetic waves. Since the electromagnetic light wave is generally 

elliptically polarized, we most often operate with the parameters of the polarization 

ellipse (Figure 2.1): azimuth θ, ellipticity e; and Jones vector formalism [9, 10]. 

▪ Azimuth, (‒π/2 ≤ θ < π/2) is an oriented angle between the x-axis of the 

Cartesian coordinate system and the semi-major axis of the polarization ellipse. In 

this work, we choose the positive sign of the azimuth for the counterclockwise 

orientation. 

▪ Ellipticity e, (‒1 ≤ e ≤ 1) is a proportion of minor a and b axes of the 

polarization ellipse. At the same time, we introduce variable ellipticity (ellipticity 

angle) ϵ. In this work, we choose the positive sign of the ellipticity for the clockwise 

orientation. 

 𝑒 = ±
𝑎

𝑏
= 𝑡𝑎𝑛 𝜖 (2.1) 

The polarization state of light waves can be completely determined by using 

parameters of the polarization ellipse. 
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Figure 2.1: The polarization ellipse and basic MO parameters. 

2.2. Jones vector formalism 

Jones vector formalism describes the polarization state of light by two-dimensional 

complex vector whose coordinates are given by the choice of the polarization base. If 

we choose the polarization base as two orthogonal polarization amplitudes a1 and a2, 

with a phase difference δ, and if we define an angle α as tanα = a2/a1, then we can 

express normalized Jones vector in a form 

 
cos

.
sin i

J
e 





 
=  
 

 (2.2) 

In the Cartesian-base of linear polarizations, we can express Jones vectors for linear 

and general elliptical polarizations as follows: 

▪ linear polarization along the x and y axis [10] 

 
1 0

, ,
0 1

x yE E
   

= =   
   

 (2.3) 

▪ general elliptical polarization [10] 

 𝐽𝑥𝑦 = [
𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜖 − 𝑖 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜖
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜖 + 𝑖 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜖

]. (2.4) 
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General complex Jones vector describes the polarization ellipse well, but it contains 

information of the initial phase and amplitude. However, this information is 

redundant for the description of the polarization state of light. For this reason, we 

introduce a complex number, complex polarization parameter χ, defined as a 

proportion of the first and second component of the Jones vector. Complex 

polarization parameter for the polarization ellipse expressed by the Jones vector (2.4) 

thus has following form [9] 

 𝜒𝑥𝑦 =
𝐸𝑦
𝐸𝑥

=
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜖 + 𝑖 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜖

𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜖 − 𝑖 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜖
=
𝑡𝑎𝑛 𝜖 𝜃 + 𝑖 𝑡𝑎𝑛 𝜖

1 − 𝑖 𝑡𝑎𝑛 𝜃 𝑡𝑎𝑛 𝜖
. (2.5) 

For small angles θ and ϵ, and after approximations tanθ=θ and tanϵ=ϵ (restricted to 

members of the first order), we can rewrite this expression as  

 .xy i  + ò  (2.6) 

Jones formalism in Cartesian representation enables simplified and effective 

description of the polarized light properties after reflection or transmission on the 

sample. In here we choose the base of Cartesian system defined by s (E in the plane 

of incidence) and p (E perpendicular to the plane of incidence) polarizations. In this 

base, it is possible to express the effect of sample on the polarization state of incident 

light beam upon reflection by a reflection matrix SR. Similarly, we can express the 

effect of sample on the polarization state of incident light beam upon transmission by 

a transmission matrix ST [9]. 

 ,
ss sp

R

ps pp

r r
S

r r

 
=  
 

 (2.7) 

   

 .
ss sp

T

ps pp

t t
S

t t

 
=  
 

 (2.8) 

In the first approximation, diagonal elements of SR and ST matrices correspond to 

Fresnel coefficients. On the other hand, off-diagonal elements (in the first 

approximation linear in magnetization) describe the interaction between s and p 

waves that is occurring in an anisotropic media. 



19 

 

Let us describe the incident wave by Jones vector Jin; reflected wave by Jones vector 

JR
out and transmitted wave by Jones vector JT

out. Using reflection and transmission 

matrices, we can define relations between these as follows [11] 

 , .R T

out R in out T inJ S J J S J=  =   (2.9) 

   

2.3. Spectroscopic Ellipsometry 

Spectroscopic ellipsometry is a very sensitive measurement technique that uses 

polarized light to characterize thin films, surfaces and material microstructures [12]. 

Ellipsometry is an useful technique which allows to determine material properties 

such as: film thickness, refractive index, complex permittivity function, conductance, 

absorption, surface roughness, interfacial regions, sample composition, film 

composition, crystallinity, optical anisotropy, uniformity, alloy ratio and depth 

profile of material properties. This technique measures the change in the polarization 

state of the reflected or transmitted light and compares it to a model (Figure 2.2).  

 

Figure 2.2: Geometry of an ellipsometry experiment 

 

It is possible to derive diagonal elements of the permittivity tensor from SE data 

analysis. We can express the change in the polarization state of a reflected beam by 

SE parameters: amplitude ratio ψ and phase difference Δ. These parameters are 

defined as 

 tan
ppi

ss

r
e

r
  = = . (2.10) 
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In this equation, tanψ is the magnitude of the reflectivity ratio and Δ is the phase 

change between s and p polarized light. The rpp and rss are amplitude reflection 

coefficients for s and p polarization measured from the alternating current signal [2]. 

The important part of SE analysis is the proper parametrization of the dispersion of 

unknown optical functions. For purposes of parameterization we use 

oscillators/terms defined in the subchapter 1.1.2 fitted to resulted optical functions 

spectra.  

2.4. Magnetooptical effects 

In this work, we use MOKE and MO Faraday effect to study the physical properties 

of magnetic materials and magnetic layered structures. These phenomena are 

characteristic by changes in the polarization state of the reflected or transmitted light 

caused by magnetic ordering [9]. In the MOKE experiment, we study these changes 

upon light reflection. Contrarily, in the MO Faraday effect experiment we study 

these changes upon light transmission. 

a) Magneto-optical Kerr effect 

We can categorize the MOKE based on: the mutual orientation of the incidence 

plane, the reflection plane of the sample and the magnetization vector M. Based on 

these parameters, we recognize three basic configurations: polar, longitudinal and 

transversal (Figure 2.3).  

 

Figure 2.3: Basic configurations for measuring the MOKE. 

Considering the geometry of these configurations, we can simplify the permittivity 

tensor to forms 

 

1 2

2 1

1

0

0 ,

0 0

P

i

i

 

  



− 
 

=
 
  

 (2.11) 
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1 2

1

2 1

0

0 0 ,

0

L

i

i

 

 

 

− 
 

=
 
  

 (2.12) 

 

1

1 2

2 1

0 0

0

0

T i

i



  

 

 
 

= −
 
  

. (2.13) 

where εP stands for permittivity tensor in the polar, εL in the longitudinal and εT in the 

transversal configuration. In these geometries, also reflection matrix SR defined by 

equation (2.7) takes different forms  

 _ _ _

0
, , .

0

ss sp ss ps ss

R polar R long R trans

ps pp ps pp pp

r r r r r
S S S

r r r r r

−     
= = =     
     

 (2.14) 

Physical meaning of SR matrix elements then allows defining of MO parameters, 

Kerr rotation θK and Kerr ellipticity ϵK, for s and p polarized waves as follows [9] 

 ,
ps

Ks Ks Ks

ss

r
i

r
 −   −ò  (2.15) 

 .
sp

Kp Kp Kp

pp

r
i

r
 −   ò  (2.16) 

In case of normal incidence of the light beam, given sign convention provides equal 

values of MO parameters ΦKs = ΦKp. 

b) Magneto-optical Faraday effect  

We usually measure the MO Faraday effect in the configuration shown in the Figure 

2.4.  

 

Figure 2.4: Basic configuration for measuring the Faraday effect. 

Considering the geometry of this configuration, we can simplify the permittivity 

tensor to the form  
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1 2

2 1

1

0

0 .

0 0

F

i

i

 

  



− 
 =
 
  

 (2.17) 

In this geometry are the transmission matrix ST elements defined by the equation 

(2.8). Therefore, we can define MO parameters, Faraday rotation θF and Faraday 

ellipticity ϵF, for s and p polarized waves as follows [9] 

 𝜃𝐹𝑠 − 𝑖𝜖𝐹𝑠 ≈ 𝛷𝐹𝑠 ≡ −
𝑡𝑝𝑠
𝑡𝑠𝑠

, (2.18) 

 𝜃𝐹𝑝 − 𝑖𝜖𝐹𝑝 ≈ 𝛷𝐹𝑝 ≡ −
𝑡𝑠𝑝
𝑡𝑝𝑝

. (2.19) 

In case of normal incidence of the light beam, given sign convention provides equal 

values of MO parameters ΦFs = ΦFp. 
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3. ELECTROMAGNETIC WAVES IN 

ANISOTROPIC MEDIUM 

In the previous chapter, we briefly introduced the description of the polarization state 

of light, SE and MO effects. However, for a deeper analysis of the optical and MO 

response of thin films and multilayers, we need a macroscopic analysis of the optical 

interaction of the polarized light with a substance. We will discuss this interaction in 

following paragraphs devoted to the behavior of polarized light in anisotropic media. 

3.1. Wave equation in anisotropic media  

We can describe the polarized monochromatic electromagnetic plane wave incident 

from the vacuum on the anisotropic environment without free charges by Maxwell's 

equations [9, 10]   

 0,
B

E
t


 + =


 (3.1) 

   

 0,D =  (3.2) 

   

 0,
D

H
t


 − =


 (3.3) 

   

 0,B =  (3.4) 

where material equations are  

 0 ,D E =  (3.5) 

   

 0 .B H =  (3.6) 

From Maxwell’s equations, we derive the wave equation in the traditional way 

 
2 2

( ) 0.
E

E E
c t

 
 − −   =


 (3.7) 

We are looking for its solution in the shape of a plane wave 

 
( )

0 .i t k rE E e  − =  (3.8) 

If we introduce a reduced wave vector N 
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 ,
c

N k


=  (3.9) 

we may rewrite the original wave equation into a matrix form [9] 

 

2 2

0

2

0

2

0

0.

xx y z xy xz x

yx yy z yz y z y

zx zy y z zz y z

N N E

N N N E

N N N E

  

  

  

 − −  
   − − =   
 − −    

 (3.10) 

In this derivation we assumed the plane of incidence perpendicular to the x-axis (Nx 

= 0), and thus the component of the reduced wave vector Ny (derived from a Snell's 

law) in shape  

 0 0sin ,yN N =  (3.11) 

Here, N0 is a real refractive index of the isotropic medium and φ0 is an angle of 

incidence of the electromagnetic wave. For the case of zero determinant, we can find 

a nontrivial solution of the equation (3.10) as a characteristic equation of 4-th order 

for Nz  

 

4 3

2 2 2

2

2 2

2 2

[ ( )]

[ ( ) ( ) ]

[( )( ) ]

[( )( ) ]

( ) ( ) 0.

z zz z y yz zy

z yy zz y zz xx y xz zx yz zy

y z xx y yz zy xy zx yx xz

yy xx y zz y xz zx

xy yz zz y yz zy xx y xy zx yz yx xz zy

N N N

N N N

N N N

N N

N N

  

       

      

    

           

+ + −

− − + − − − −

− − + − − +

+ − − − −

− − − − + + =

 (3.12) 

The roots of the characteristic equation (3.12) correspond to four proper modes of 

light propagation in anisotropic media Nzj. Two of these modes propagate with +k in 

the forward direction and two with -k in the reverse direction. Eigenvectors of these 

modes for the general permittivity tensor are 

 

2

2 2 2

2 2

( ) ( )

( )( ) .

( )( )

xy zz y xz zy y zj

j zz y xx y zj xz zx

xx y zj zy y zj zx xy

N N N

e N N N

N N N N

   

   

   

 − − + +
 

= − − − − 
 − − − − − 

 (3.13) 

Linear superposition of these four modes of light propagation in the anisotropic 

media gives a general solution of the wave equation 
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4 [ ( )]

0

1

.
y z j

j

i t N y N z
c

j

j

E E e e


 − +

=

=  (3.14) 

We can greatly simplify this solution when working with the general anisotropic 

medium in polar or longitudinal configuration. 

▪ In the polar configuration, we define the permittivity tensor by equation 

(2.11). In this case, wave equation leads to a simplified characteristic equation whose 

solutions correspond to the four proper modes of the light propagation Nzj [9] 

 1 2 3 4, , , ,z z z z z z z zN N N N N N N N+ + − −= = − = = −  (3.15) 

where  

 
2 2

1 2

1 1

( )(1 ).
( )

z y

y

N N
N




 
 = − 

−
 (3.16) 

 

▪ In the longitudinal configuration, we define the permittivity tensor by 

equation (2.12). In this case, wave equation leads to the characteristic equation with 

solutions Nzj [9] 

 1 2 3 4, , , ,z z z z z z z zN N N N N N N N+ + − −= = − = = −  (3.17) 

where  

 
2 2 22

1 1 2 2

1

( (4 ).
2

z y yN N N


   


 = − −  + −  (3.18) 

 

3.2. Yeh 4x4 matrix formalism 

Up to this point we have covered only the propagation of electromagnetic waves in 

anisotropic environment. However, for the evaluation of the MO experiments on 

multilayers, we must extend this description. The reason is that the interaction of 

light in a layered structure with sufficiently thin layers depends on all the layers 

contribution. This fact forces us to introduce a formalism that allows clear 
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description of the interaction of electromagnetic radiation with magnetic multilayer, 

Yeh 4x4 matrix formalism [13]. 

Figure 3.1: Anisotropic multilayered structure. The individual layers are characterized by 

electric permittivity ε(n) and the thickness t(n), n = 1, 2. . . n. Angle of incidence in the half-space 0 

is labeled φ0. Planar interfaces of layers are perpendicular to the z-axis, plane of incidence is 

perpendicular to the x-axis. 

Let us consider multilayer made of n layers with mutually parallel interfaces 

perpendicular to the z-axis (Figure 3.1). Neighboring isotropic half-spaces 0 and n + 

1 will be described by scalar electric permittivity ε(0) and ε(n + 1). Boundary 

conditions of continuity of vectors E and B tangential components on individual 

interfaces allow us to tie relations of electromagnetic fields in n and n + 1 layers. It 

can be done in the representation of linear transformations of proper modes, which 

can be expressed in matrix form as  

 
( 1) ( 1) ( ) ( ) ( )

0 0( 1) ( ).n n n n n

n nD E z D P E z− − − =  (3.19) 

Here P stands for a Propagation matrix  

 
( ) ( )exp( ),n n

ij ij zj nP i N t
c


=  (3.20) 
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where δij is a Kronecker delta and tn represents a thickness of the n-th layer. D 

represents a Dynamical matrix whose elements have form [9, 13, 14] 

 
( ) ( ) ( ) 2 ( ) ( ) ( )

1 ( ) ( ),n n n n n n

j xy zz y xz zy y zjD N N N   = − − + −  (3.21) 

   

 
( ) ( ) ( ) ( ) 2 ( ) ( ) ( )

2 [ ( ) ( )],n n n n n n n

j zj xy zz y xz zy y zjD N N N N   = − − + −  (3.22) 

   

 
( ) ( ) 2 ( ) 2 ( )2 ( ) ( )

3 ( )( ) ,n n n n n n

j zz y xx y zj xz zxD N N N   = − − − −  (3.23) 
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zj xz zx y zx xy
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  

   

= − − − + +

+ +
 (3.24) 

By modification of equation (3.19) it is possible to introduce the transfer matrix T, 

which ties up the field between (n-1) and the n-th layer.  

 
( 1) ( 1) 1 ( ) ( ) ( ) ( 1, ) ( )

0 1 0 0( ) ( ) ( ) ( ).n n n n n n n n

n n nE z D D P E z T E z− − − −

− = =  (3.25) 

By application of the equation (3.25) for each interface of the multilayer, it is 

possible to express relationship between the incident waves passing through the first 

interface and the wave passing through the n-th interface as 

 

1
(0) ( 1, ) ( 1) ( 1)

0 0 0 0

1

( ) ( ) ( ) ( ).
n

n n n n

n n

n

E z T E z ME z
+

− + +

=

= =  (3.26) 

Relation (3.26) defines a matrix of the multilayered structure M. This matrix can 

characterize any layered anisotropic structure, and it is sufficient to determine 

reflection coefficients of the structure. If we consider that the source of 

electromagnetic radiation is strictly in the upper half-space 0 (from lower half-space 

is not coming any radiation and so E02 and E04 are equal zero), we can express 

reflection coefficients by components of matrix M as [9, 13] 
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28 

 

   

 
(0)

001

(0)

02 0 11 23 21 13
32 (0)

03 0 11 33 13 31( ) 0

( )
.

( )
E z

E z M M M M
r

E z M M M M
=

  −
= = 

− 
 (3.30) 

Similarly, we can express transmission coefficients as [9, 13] 
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For linearly polarized modes, it is possible to define these coefficients as the 

elements of Jones reflection matrices SR and ST  
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 (3.36) 

and thus, determine the MO parameters θK, εK and θF, εF. 

3.3. Proper modes in isotropic media 

Permittivity of isotropic, in our case a non-magnetic environment, is a scalar and it is 

given by equation ε1= N(n)2. In this case, proper modes calculation procedure above 

leads to a solution with ej components equal zero. Therefore, we calculate here with 

constant Ny. This approach determines two possible directions of the wave vector  

 
( )

1,2 ,n

y y zN i Q i
c


  =    (3.37) 

where a parameter Q is calculated from  
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2( ) ( ) 2 .n n

yQ N N= −  (3.38) 

This approach allows constructing the Dynamical matrix for isotropic environment in 

form [9] 
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and its inverse  
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3.4. Effective medium approximation 

Interfaces and surfaces of real nanolayers are not perfect. Imperfections often 

contribute to the deviation between optical and MO experimental data versus 

theoretical models. The effective medium approximation method (EMA) can 

eliminate and quantitatively estimate this effect. The principle of this method lies in 

the consideration of the roughness or interface as a separate layer. This layer is 

constructed from two materials: the material of the first layer that forms interface and 

the material of the second layer that forms interface. Figure 3.2 shows geometric 

model of this approach. In this model is the material of the first layer dissolved in the 

form of spherical objects in the material of the second layer. 

  

Figure 3.2: Geometric model of the effective medium approximation method 
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Here, we define permittivity tensor of the first layer that forms interface ε1 by its 

diagonal elements ε11 and off-diagonal elements ε12 and we rewrite it to the form ε1 = 

ε11 – iε12. Similarly, we can define the permittivity tensor of the second layer that 

forms interface ε2 = ε21 – iε22 by diagonal elements ε21 and off-diagonal elements ε22. 

Now, we can use our geometric model (Figure 3.2) and define the interface layer 

permittivity tensor by diagonals εR1 and off-diagonals εR2 using transformation 

relations  
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(3.41) 
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(3.42) 

Coefficient f corresponds to the volume fraction of the second material forming the 

interface (for example, f = 0.5 corresponds to 50% of the second material in the 

mixture) [15]. 

For the case of the surface roughness calculations, we assume the second material to 

be void. If we rewrite the permittivity tensor of the layer material to the form ε1 = ε11 

– iε12 then we can calculate permittivity tensor of the surface roughness layer εR = εR1 

- iεR2 using equation 
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0 (1 )
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R R
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− −
= − +

+ +
 (3.43) 

In this formula, f denotes the volume fraction of the void in the mixture. 
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4. EXPERIMENTAL TECHNIQUES 

In this chapter we discuss briefly experimental techniques used for acquirement of 

experimental data in this work. We start this chapter with a brief introduction to 

spectroscopic ellipsometer, which is used for measurements of thin film optical 

properties and allows determination of thin film optical functions (complex 

permittivity tensor). Afterwards, we continue with an introduction to measurements 

of weak MO effects: MOKE and Faraday effect. Spectra of MO effects contain 

important information about electronic structure of thin films and allow 

determination of the full permittivity tensor.  

4.1. Spectroscopic ellipsometer 

As explained previously, SE measures changes in the polarization state of light upon 

reflection or transmission on the sample. In this sub-chapter, we discuss basic setup 

for this type of measurement. 

 

 

Figure 4.1: Scheme of the basic ellipsometry setup 

All spectroscopic ellipsometer arrangements start with a light source and end with a 

detector that converts light into voltage. It is an arrangement of the optical 

components between that defines the type of ellipsometer being used. In this work, 

we use Muller matrix ellipsometer Woollam RC2 with dual rotating compensators 
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and multichannel detection working in the photon energy range from 1.24 to 6.5 eV. 

Further details on this complicated device can be found in [2, 12]. However, for our 

purposes, here we discuss only the basic set-up of ellipsometer shown in the Figure 

4.1. It is constructed from a rotating polarizer that rotates on frequency ω, sample 

and analyzer. For this type of setup and general elliptical polarization, one can 

determine alternating current signal on detector I as  

 1 cos(2 ) sin(2 )I t t    +  +   (4.1) 

The two important quantities are α and β, which are normalized Fourier coefficients 

of the signal. One can represent these coefficients in terms of the ψ and Δ defined in 

the sub-chapter 2.2 and the known polarizer azimuthal angle P as follows (P=0° is in 

the plane of incidence) 
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Solution for ψ and Δ has therefore a form 
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These equations form the basis of the ellipsometry measurement with a rotating 

analyzer ellipsometer [12]. 

 For experimental data analyses, we use a CompleteEASE software. This software 

compares the data acquired by the ellipsometer with an advanced theoretical model 

of studied multilayer. Here, theoretical model describes the multilayer as a structure 

that consists of separate layers. These separate layers are determined by their optical 

functions (complex permittivity), thicknesses and by theirs positions in the 

multilayered structure.  
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In this work, we use “Multi Sample Analysis” (MSA) mode in the CompleteEASE 

software multiple times. MSA is an advanced mode that allows simultaneous fit of 

data from multiple samples. MSA enable to set some of fit parameters common to all 

samples and other parameters are allowed to vary (optical functions of materials, 

thicknesses, roughness, backside reflections, angle offset,…) [2]. Therefore, this 

CompleteEASE feature suppresses the fit error and allows more precise analysis. The 

MSA mode is especially useful, when combining the reflection and transmission 

data. In our case, we use MSA to fit one theoretical model to the ellipsometry and 

transmission data simultaneously. This approach is especially meaningful when 

fitting constants of transparent materials with a bandgap in the measured spectral 

range.   

4.2. Magneto-optical spectroscopy 

The simplest way to define MO spectroscopy is to say that it is SE performed in the 

magnetic field. Therefore, MOKE spectroscopy is basically SE which measures a 

change in the polarization state of light upon reflection on the sample in magnetic 

field. Similarly, Faraday effect spectroscopy is SE which measures a change in the 

polarization state of light upon transmission on the sample in magnetic field. These 

types of measurements are useful for non-destructive probing of magnetic properties 

of non-transparent (MOKE) or transparent (Faraday) magnetic materials and 

nanostructures. Since some materials have absorption edge within measured spectral 

range, it is a classical approach to combine these measurements for different parts of 

spectra.  

In this work, we measure MOKE by method of nearly crossed polarizers. Figure 4.2 

shows basic scheme of this method: the light beam is passing through the polarizer, 

reflecting on the sample in magnetic field, passing through the phase plate and 

finally through the analyzer to the detector. For this type of MOKE setup and general 

elliptical polarization, one can determine intensity on the detector I as 

 
22 2cos sin sin(2 ) ( )i

K KI e    +  +    (4.6) 

Here, γ is an angle between analyzer and polarizer with respect to the crossed 

position and δ is a phase shift of the phase plate. 



34 

 

 

 

Figure 4.2: Scheme of the basic MOKE setup 

If we restrict ourselves to effects linear in ΦK, and add constant C corresponding to a 

dark current in CCD, we can rewrite resulting dependence of detected intensity on 

the angle of analyzer α as  

 
2cos ( cos sin )sin 2K KI C     + + +ò  (4.7) 

Since it is complicated to measure Kerr rotation θK and Kerr ellipticity ϵK in one 

measurement, it is usually measured separately. This is done by removing a phase 

plate, which results in δ=0, therefore, we measure pure Kerr rotation. To extract 

ellipticity, we combine experiments with and without phase plate. For more details, 

one can see [16].  

The basic setup for Faraday effect measurement can be seen in Figure 4.3: the light 

beam is passing through the polarizer, through the sample in magnetic field and 

finally through the analyzer to the detector. For this type of setup, calculations lead 

to the same expression that it is for MOKE, except from the change in sign of term 

with MO effect. 
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Figure 4.3: Scheme of the basic Faraday effect setup. 
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5. THIN FILM PREPARATION 

TECHNIQUES 

In the previous chapter we discuss methods used for acquirement of experimental 

data. Correspondingly, we devote this chapter to techniques employed for the 

preparation of materials/samples studied in this work. These preparation techniques 

are relatively new, require advance technology and sometimes even allow 

preparation of bulk materials, thin films and nanostructures which do not normally 

exist in nature.  

5.1. Sputter deposition  

Sputter deposition is a thin films preparation method that involves bombardment of 

the material source (target) by energetic particles. This results in the sputtering of its 

atoms into the gas phase. Since these atoms are not in their thermodynamic 

equilibrium state, they tend to deposit on all surfaces in the vacuum chamber. 

Therefore, a substrate placed in the chamber is coated with a thin film.  

 

Figure 5.1: Sputter deposition. 

Direct Current or DC Sputtering [17] is the most basic and inexpensive technique 

for deposition of metals or electrically conductive coating materials. Major 

https://en.wikipedia.org/wiki/Particle
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advantages of this technique are easy control due to DC source and low cost (when 

preparing metallic films). The basic configuration of a DC Sputtering coating system 

is schematically shown in the Figure 5.1. It consists of the target material placed in a 

vacuum chamber parallel to the substrate. The vacuum chamber is evacuated to a low 

pressure and subsequently backfilled with a high purity inert gas. This inert gas is 

usually Argon with typical sputter pressure range from 0.5mTorr to 100mTorr. 

Argon is used due to its relative mass and ability to convey kinetic energy within 

high energy molecular collisions in the plasma. Afterwards a DC current is applied to 

the target which serves as a cathode or negative bias (point where electrons enter the 

system). Subsequently, a positive charge is applied to the substrate which serves as 

an anode or positive bias. Firstly, the electrically neutral argon gas atoms are ionized 

due to the collisions with the negatively charged target. This ejects atoms off into the 

plasma. Secondly, the ionized argon atoms are driven to the anode substrate, which is 

attracting ionized gas ions, electrons, and the most importantly vaporized target 

material atoms. Finally, these atoms condense into a thin film coating on the 

substrate. While DC Sputtering is a great choice for preparation of multiple 

conductive coatings, its main limitation lies in non-conducting dielectric insulating 

materials. These take on a charge over time which usually results in quality issues 

like arcing, poisoning of the target material with a charge and even in the complete 

cessation of sputtering. To overcome these limitations, several technologies such as 

radio frequency sputtering have been developed.  

Radio Frequency or RF Sputtering [17] is very similar to the DC sputtering 

technique. The difference lies in the alternating of the current electrical potential in 

the vacuum environment at radio frequencies. This is done to avoid a charge build up 

on certain types of target material. The charge buildup is cleaned every positive cycle 

when electrons are attracted to the target giving it a negative bias. During the 

negative cycle, ion bombardment of the target continues normally. The alternating of 

the current electrical potential is performed by a capacitor. The capacitor is a part of 

impedance-matching network. This network conveys the power transfer from the RF 

source to the plasma discharge. While RF Sputtering is extremely useful technique, it 

also has several disadvantages. For example, when using radio waves instead of DC 

current, deposition rates became considerably slower. Moreover, this technique 

requires significantly higher voltages (expensive power supplies requirement) to 
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achieve the same deposition results as with DC, and so overheating (advanced 

circuitry requirement) also becomes an issue.  

5.2. Metal Organic Decomposition  

Metal Organic Decomposition (MOD) is a technique for manufacturing of inorganic 

thin films. The major advantage of this technique is that manufacturing process does 

not involve processing in the vacuum or going through a gel or powder step [18]. 

The key to this method are metal-organic components. These are prepared by 

dissolving required element in an appropriate solvent. Metal-organic components are 

mixed in an appropriate ratio to give a metal-organic solution which results in 

desired cation stoichiometry for the final film. The simplified process of MOD can 

be seen in Figure 5.2. The first step is a deposition and spin coating of a metal-

organic solution on a substrate and therefore a production of a wet film. Afterwards, 

the film is heated multiple times (drying, pre-annealing). This is done to remove any 

solvent that did not evaporate during the deposition step and to decompose the metal-

organic compounds. At the end, this process results into inorganic film of some 

thickness. This thickness is constant when all the steps are performed under the same 

conditions. If the inorganic film produced by a single pass through the process is not 

thick enough, all the steps can be repeated as many times as necessary to produce a 

film of the required thickness. As soon as the desired film thickness is achieved, the 

film is heated one more time (annealing) to control features such as oxygen 

stoichiometry, grain size or preferred orientation.  

Metal organic decomposition is a very promising method since it has multiple 

advantages. First of all, it is inexpensive, guarantees highly uniform chemical 

composition and purity combined with a good chemical stability [19, 20]. 

Furthermore, it provides a good productivity, since it involves simple processes 

performed in the air. MOD also allows epitaxial growth of thin (mostly garnet) films 

on lattice constant mismatching substrates, which is not possible by techniques such 

as liquid phase. Finally, MOD ensures a possibility of a thin film formation over a 

large area. 
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Figure 5.2: Simplified process of MOD 

5.3. Pulsed laser deposition 

In principle, pulsed laser deposition [21, 22] is a simple technique schematically 

shown in Figure 5.3. This technique uses high-power pulsed laser beam (typically 

~108 Wcm-2) and focuses it into a vacuum chamber to strike a target of a deposited 

material. This striking event produces plasma plume that augment rapidly away from 

the target surface. The stroked material is then collected on a substrate where it 

condenses and grows as a thin film. This process usually occurs in ultra-high 

vacuum. However, sometimes a background gas, such as oxygen in used when 

depositing oxides to fully oxygenate the deposited films. In practice, there are 

multiple variables affecting properties of the film (laser flounce, background gas 

pressure, substrate temperature etcetera). Therefore, the process optimization 

requires a lot of time and effort. Application span of this technique is wide. It ranges 

from the production of superconducting and insulating circuit components to various 

medical applications. Unfortunately, the fundamental processes occurring during the 

transfer of material from target to substrate are still not clear and are consequently 

the focus of much research.  
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Figure 5.3: Pulsed laser deposition 

  



41 

 

6. RESULTS 

In this chapter, we discuss in detail multiple materials with application potential in 

several optical and MO devices. We structure this chapter in sub-chapters which are 

devoted to individual materials: GdxFe(100-x), magnetic garnets and Ce(0.95-

x)HfxCo0.05O(2-δ). At the beginning of every sub-chapter, we discuss the application 

potential of the material, its properties, samples preparation and samples structure. 

Afterwards, we focus on SE measurements and analysis. Finally, for magnetic 

materials, we focus on MO spectroscopy (MOKE and Faraday effect) measurements 

and analysis. 

6.1. GdxFe(100-x)  

Amorphous ferrimagnetic thin films composed of rare earth and transition metals 

attracted considerable attention because of their useful technological applications 

[23-26]. As one of theirs important representative, GdxFe(100-x) has significant 

advantages, such as large magnetization density, and possibility to adjust its 

compensation temperature, coercive and saturation magnetization by changing the 

composition [27-29]. Another valuable feature of GdxFe(100-x) is that it enables direct 

access to its spins through the electromagnetic interactions. Such feature makes this 

material subject of importance for future magnetic recording (such as heat assisted 

magnetic recording) and information processing technologies. Recent numerical 

atomic scale modeling simulations of the spin dynamic in Heisenberg GdxFe(100-x) 

ferrimagnet demonstrated that the rapid transfer of energy into the spin system leads 

to switching of the magnetization within a few ps without necessity of applied 

magnetic field. The experiment in GdFeCo alloys, which used linearly polarized fs 

laser pulse to produce the ultra-fast heating, confirmed this prediction [30-32]. 

Moreover, by using circularly polarized laser pulses, it is possible to take an 

advantage of the magnetic circular dichroic effect to record a magnetic domain in 

which the helicity of the laser pulse influences the final magnetization direction [30, 

32-34]. These mechanisms allow the GdxFe(100-x) magnetic domain light spin 

manipulation and hence coherent control of the magnetization precession at fluencies 

as low as 6 μJ/cm2 [35] and in rates of ps [32, 33, 36]. All of mentioned properties 

make GdxFe(100-x) substantial material for modern micro- and nano-electronic 
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research, where it is often used in domain wall junctions or magneto-optical (MO) 

memories [23, 25, 26].  

Recently, a novel concept of high speed MO spatial light modulator (MO-SLM) for 

holographic displays based on giant magnetoresistance with GdxFe(100-x) as a free 

layer was proposed [24]. This device is shown in Figure 6.1.1. As one can see, every 

pixel consists of the ‘free magnetization layer (FL)/ nonmagnetic spacer/ pinned 

magnetization layer (PL)’ structure. Free layer magnetization is controlled by spin 

polarized current. When the magnetizations of FL and PL are aligned, the 

polarization of the light reflected on the structure will rotate to the one direction. 

When magnetizations of FL and PL head against each other, the polarization of the 

light reflected on the structure will rotate to the opposite direction. Therefore, in the 

multi-pixel structure, we can create interference pattern crucial for holography, just 

by using a polarization filter. The main advantage of this approach is the response 

time in terms of 0.015 μs and pixel size in terms of 10 μm [37]. 

 

Figure 6.1.1: Concept of high-speed MO spatial light modulator for holographic displays based 

on GMR. 

When using GdxFe(100-x) for MO-SLM driven by spin transfer torque, it is particularly 

important that GdxFe(100-x) shows perpendicular anisotropy. This happens when the 

Fe concentration is close to the compensation concentration, which is for this 
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material about 75% [38] (this composition is also often used for MO applications 

such as MO disk storage [24]). Since in here GdxFe(100-x) acts as FL, it is especially 

important to control its composition precisely, since it significantly affects its 

magnetic switching property. Coercivity shows maxima when the GdxFe(100-x) 

composition is the compensation one, and it gets smaller when the composition 

becomes Fe rich (compared to the compensation composition). Spin-torque 

switching current of the spin MO-SLM is significantly reduced with an increase in 

Fe concentration and it shows very small switching current when composition is 

slightly Fe richer than the compensation one [37, 39]. Therefore, it is meaningful to 

investigate optical properties of the GdxFe(100-x) material around the compensation 

concentration.  

The main purpose of our investigation was the determination of complete 

permittivity tensors for GdxFe(100-x) thin films with various compositions (x=18.3, 20, 

24.7, 26.7). We were interested in the permittivity tensor spectra because it provides 

a deeper look into optical and MO properties of material. Moreover, the knowledge 

of the complete tensor allows the theoretical prediction of complex physical 

properties of complicated multilayered nanostructures containing GdxFe(100-x) layer. 

This is especially useful when designing complicated nanostructured device such as 

MO-SLM, because it allows proposal of desired structure without a necessity of 

preparing and measuring multiple samples.  

In this work is GdxFe(100-x) covered by a coating to avoid the oxidation process [40]. 

However, this fact complicates its analysis. Optical properties of coating materials 

(here Ru, SiO2) may slightly differ in dependence on material they are deposited on. 

The reason behind this behavior is usually the lattice mismatch between the film and 

substrate. This mismatch induces strains of various kinds [41-43]. To deal with this 

problem, we used 2 different coating materials. Such approach allowed more precise 

determination of GdxFe(100-x) permittivity tensors. SE analysis showed remarkably 

similar optical properties of individual GdxFe(100-x) compositions for both coatings, 

which demonstrated a good stability of GdxFe(100-x) layer.  

For the measurement of GdxFe(100-x) properties, we used SE at energies from 1.3 to 

5.5 eV and MO spectral measurements at energies from 1.5 to 5.5 eV. From SE data, 

we derived the diagonal permittivity tensor elements ε1r and ε1i spectra of GdxFe(100-x) 
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thin films. We examined MO properties by polar MOKE rotation and ellipticity 

measurements. From these data we determined the spectral dependence of the off-

diagonal GdxFe(100-x) permittivity tensor elements ε2r and ε2i. We also performed 

MOKE hysteresis measurements, which demonstrated changes in the magnetization 

in dependence on GdxFe(100-x) composition.  

For our samples, we used silicon substrate with thermally oxidized SiO2 layer. 

Afterwards, we deposited GdxFe(100-x) and Ru coating by direct current sputtering 

technique in Kr gas of pressure 8.7x10-2 Pa with a deposition rate of 3.6 nm/min. 

Finally, we deposited SiO2 coating by ion beam sputtering technique with radio 

frequency ion source. Theoretical model structures used for SE and MOKE analysis 

calculations are shown in Figure 6.1.2. 

Figure 6.1.2: Model structure of GdFe/Ru and GdFe/SiO2 samples used for SE and MOKE 

analysis calculations. 

 

a) Spectroscopic Ellipsometry 

We measured ellipsometry Psi and Delta parameters of the reflected light in the 

spectral range from 1.3 to 5.5 eV for incident angles 55°, 60° and 65°. Obtained 

experimental data were analyzed using CompleteEase software. To analyze SE 

experimental data of studied samples we fitted GdxFe(100-x) optical functions 

(diagonal elements of the permittivity tensor ε1r and ε1i) and nominal thicknesses to 

the structural models and experimental data. In order to avoid the false minima result 

of the fitting process, we used the MSA mode to derive the Gd18.3Fe81.7 and 

Gd24.7Fe75.3 optical functions from the experimental data for both coatings 
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simultaneously. In MSA mode, we set GdxFe(100-x) (x=18.3 or x=24.7) optical 

functions as the fit parameter common for both samples. We set optical functions of 

coating materials and thicknesses as fit parameters varying for each sample 

independently. Figure 6.1.3 shows that theoretical model describes both: 

Gd20Fe80/Ru and Gd20Fe80/SiO2 SE experimental spectra well.  

We parameterized obtained optical functions to ensure Kramers-Kronig consistent 

results. We used two Lorentz oscillators and one Drude term in the spectral range 

from 1.5 to 6 eV. We used Lorentz oscillators due to their ability rapidly approach 

zero beyond the FWHM position. We used Drude term to describe the free carrier 

effect on the dielectric response. We listed parameters of used parameterizations in 

the table 6.1.1. We determined constants of Si, SiO2 and Ru from SE measurements 

on individual samples. We listed derived thicknesses in the table 6.1.2. To confirm 

thicknesses of GdxFe(100-x) layers derived from SE, we also performed XRF 

measurements. We listed thicknesses of GdxFe(100-x) layers derived by XRF in the 

table 6.1.2. As you can see, values derived from SE and XRF correspond well. 

 

Figure 6.1.3: Measured variable angle SE Psi and Delta spectra of 

a)Gd20Fe/Ru and b) Gd20Fe/SiO2 samples compared to the theoretical model . 
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Table 6.1.1: Fitted parameters of Lorentz oscillators and Drude term used to 

parameterize optical functions of GdxFe(100-x) in the spectral range from 1.5 to 6 eV. 

In here, E stands for central energies of oscillators; Amp represents amplitudes 

and Br broadenings. For Drude model, N represents carrier concentration, μ 

carrier mobility and m* carrier effective mass. 

 

Lorentz  

(E = 1.89 eV) 

Lorentz  

(E = 2.57 eV) Drude term 

 Amp Br (eV) Amp Br (eV) N (cm-3) M (cm2V-1s-1) m* 

Gd18.3Fe 6.66 2.30 1.10 1.09 1.098*1023 0.354 0.514 

Gd20.0Fe 6.23 2.43 1.28 1.43 1.095*1023 0.352 0.533 

Gd24.7Fe 6.04 2.69 1.43 1.84 1.110*1023 0.340 0.564 

Gd26.7Fe 5.82 2.83 1.67 1.99 1.113*1023 0.332 0.573 

 

 

Table 6.1.2: Fitted thicknesses used for model of GdxFe(100-x) in SE and XRF in 

the spectral range from 1.5 to 6 eV. In here, t stands for thickness and r for 

roughness on top. 

 
tSiO2 (nm) 

SE 

tGgFe (nm) 

SE 

tGgFe (nm) 

XRF 

tRu (nm) 

coating 

tSiO2 (nm) 

coating 

r (nm)   

SE 

Gd18.3Fe/Ru 307 131.6 136.9 3.1 -- 2 

Gd18.3Fe/SiO2 307 130 136.9 -- 11.3 0.3 

Gd20.0Fe/Ru 307 103 99.6 2.9 -- 2 

Gd24.7Fe/Ru 307 95 87.7 2.7 -- 1.9 

Gd24.7Fe/SiO2 307 87.7 87.7 -- 10.5 0.7 

Gd26.7Fe /Ru 307 93.4 93.4 2.2 -- 1.9 

 

Figure 6.1.4 shows real parts of the diagonal permittivity tensor elements ε1r of the 

GdxFe(100-x) thin films. Figure 6.1.5 shows imaginary parts of the diagonal 

permittivity tensor elements ε1i of the GdxFe(100-x) thin films. Figure 6.1.6 shows 

theirs calculated absorption coefficient spectra. The ε1r spectra are characteristic by 

one global minimum at 2.9 eV while the ε1i amplitudes decrease their values with 

increasing energy in the measured spectral range for all the compositions. As 

expected, absorption coefficient spectra have increasing character with energy. All 

results show spectral behavior similar to previously published optical properties of  

Fe, Gd [44, 45] and GdxFe(100-x) films [28, 46]. The behavior in the spectral range 

from 1.5 to 3eV, where ε1r decreases its value for higher energies, differs from 
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typical Drude-like behavior (describing intra-band transitions) of metallic 

compounds, and is similar to the behavior of some transitions metals (including Cr, 

Gd, Ru, Ti [44, 45]). This behavior is caused by the Lorentz contribution centered 

near 1.9 eV. It most likely originates in the inter-band transition, which involves Fe 

3d and Gd 5d states. The Fe 3d state is located around 1.5 eV below Fermi energy, 

while Gd 5d states are located approx. 0.5 eV above the Fermi energy [47, 48]. The 

second Lorentz oscillator near 2.5 eV does not significantly modify the spectral 

dependence of Drude behavior. The reason is its small amplitude. This points on the 

origin of Gd d-d electron transition [47, 48], since this transition should be forbidden 

with small oscillator strength. Finally, we discuss the Gd substitution effect. The 

amplitude of the first Lorentz oscillator near 1.9 eV decreases with Gd content. This 

is visible in Figure 6.1.4 as a change of ε1r amplitude around 2.9 eV. Increasing Gd 

content means decreasing Fe density of states below Fermi energy. This results in the 

suppression of Fe 3d to Gd 5d transition probability. On the contrary, the increase of 

Gd content is increasing the amplitude of the second Lorentz oscillator centered near 

2.5 eV. Such behavior supports the assignment of the origin to Gd d-d transition.  
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Figure 6.1.4: Real parts of diagonal elements of the permittivity tensor of the 

GdxFe(100-x) thin films. 
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Figure 6.1.5: Imaginary parts of diagonal elements of the permittivity tensor of 

the GdxFe(100-x) thin films.  
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Figure 6.1.6: Calculated absorption coefficients of GdxFe100-x thin films. 
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b) MOKE spectroscopy 

We measured MO properties by MOKE spectroscopy. We obtained the MOKE 

rotation and ellipticity spectra in the polar configuration. We acquired all the spectra 

at the room temperature for nearly normal light incidence. Applied magnetic field 

was 1.2 T, which was enough for magnetic saturation of samples. Incident light was s 

polarized. We recorded data in the photon energy range from 1.5 to 5.5 eV.  We 

measured MOKE rotation hysteresis loops by differential intensity detection method 

at 2.38 eV. We performed all measurements in the polar geometry and at the room 

temperature. Field was ranging from -1.8 T up to 1.8 T, which was far beyond 

saturation point. 

We would like to start this section with polar MOKE hysteresis measurements shown 

in Figure 6.1.7. First thing to notice is that samples with higher Gd content exhibit 

square-like loops with sharp transition. This indicates out-of-plane easy axis of 

GdxFe(100-x) net magnetization for all the samples. As the composition approaches the 

compensation point, the coercivity increases. Below the composition value of x ≈ 25, 

the Fe moments become more dominant forcing the sample accommodate the in-

plane anisotropy. The higher net magnetization value results in stronger effects of 

dipolar interaction, inducing a complex multi-domain state in the sample with 

negligible coercivity. With lower Gd content, the hysteresis loop shape becomes 

more prolonged and together with the increase of the saturation field hints on tilted 

direction of the net magnetization to the OOP orientation [49]. Such state is 

described by complex butterfly-like shaped hysteresis loops shown in Figure 6.1.7 

for samples Gd18.3Fe and Gd20Fe. Further thing to discuss, is the opposite direction 

of the magnetization for samples with the Gd concentration x=24.7 (Gd24.7Fe/Ru 

and Gd24.7Fe/SiO2). Since this concentration is extremely close to the compensation 

point, it would be reasonable to assume that the dispersion of the Gd concentration 

during the film preparation process causes this behavior. However, we believe that in 

this case (based on experience), coating affects the Gd24.7Fe properties more than 

Gd concentration dispersion, since SiO2 may oxidize Gd selectively.  
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Figure 6.1.7: Hysteresis loops of examined samples with a) Ru and b) SiO2 coatings at 2.38 eV. 

 

Figure 6.1.8 shows MOKE rotation and Figure 6.1.9 MOKE ellipticity spectra. 

Firstly, both spectra are characteristic by increasing rotation and ellipticity 

amplitudes towards to smaller energies. Secondly, samples with SiO2 coating show 

much higher MO signal than samples with Ru coating (also possible to see from 

hysteresis loops measurements). We attributed this to multiple reflections in 

measured energy region for SiO2 coated samples. Furthermore, we can observe that 

substitution of Gd is increasing amplitudes of MOKE. Moreover, as expected, 

amplitudes of MOKE rotation and ellipticity changes the sign when Gd reaches the 

compensation concentration (x ≈ 25) and therefore when net magnetization direction 

changes. All the data correspond with the hysteresis loops measurements. 
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Figure 6.1.8: Polar MOKE rotation spectra of examined GdxFe(100-x) samples with Ru and SiO2 

coatings. 

 

 

 

Figure 6.1.9: Polar MOKE ellipticity spectra of examined GdxFe(100-x) samples with Ru and 

SiO2 coatings. 
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We used obtained MOKE spectra to calculate the off-diagonal elements of the 

GdxFe(100-x) permittivity tensors. For the off-diagonal elements calculations, we used 

the diagonal elements of the permittivity tensors and thicknesses determined by SE. 

Figure 6.1.10 shows calculated real parts of the off-diagonal elements ε2r. Figure 

6.1.11 shows calculated imaginary parts of the off-diagonal elements ε2i. Firstly, the 

ε2r spectra are characteristic by one global extreme around 2.5 eV while ε2i 

amplitudes decrease with energy in the measured spectral range. Amplitudes of 

GdxFe(100-x) off-diagonal permittivity elements spectra are smaller than amplitudes of 

Fe. This is the most probably caused by the presence of the Gd. To discuss the effect 

of Gd, it is also important to note, that Gd substitution decreases amplitudes of both, 

the real and imaginary part of the permittivity tensors. We attributed this to the fact 

that the magnetic moment of Fe is in this ferrimagnetic alloy stronger than the 

magnetic moment of Gd. Furthermore, change in the sign around the compensation 

point confirms change of the direction of the net magnetic moment in investigated 

samples. Apart from the sign change, the spectral behavior remains the same for all 

samples (it is clearly demonstrated by the same zero crossing near 1.8 eV in the 

Figure 6.1.10. This indicates only negligible changes in the electronic structure of 

GdxFe(100-x) with composition around the compensation point. The results are 

consistent with hysteresis loop measurements in Figure 6.1.7. 

 

Figure 6.1.10: Real parts of the off-diagonal elements of the permittivity tensors of GdxFe(100-x). 
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Figure 6.1.11: Imaginary parts of the off-diagonal elements of the permittivity tensors of 

GdxFe(100-x). 

We parameterized spectra of the off-diagonal elements of the GdxFe(100-x) 

permittivity tensor in terms of microscopic theory. For this purpose, we used one Dia 

transition term for all the compositions. Its parameters are listed in table 6.1.3. As 

one can see, increased Gd concentration is increasing amplitude of the transition 

only. From these results one can assume that the MO effect observed in MOKE 

spectra comes from different probabilities of transition between an orbital singlet 

ground state and excited state split by the combined effect of spin-orbit coupling and 

an exchange field and that Gd concentration is decreasing this splitting. 

Table 6.1.3: Fitted parameters of Dia and Para transitions used to parameterize off-diagonal 

elements of the GdxFe(100-x) permittivity tensor in the spectral range from 1.5 to 5.5 eV. Here, E0 

stands for central energy of the transition; Amp represents an amplitude of the transition and Γ0 

is a half-width in the half-height of the transition. 

 Dia tr. 1 

 E0 (eV) Amp Γ0 (eV) 

Gd18.3Fe 1 1.7 0.8 
Gd20.0Fe 1 1.9 0.8 

Gd24.7Fe 1 2.2 0.8 

Gd26.7Fe 1 2.4 0.8 
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6.2. Magnetic garnets   

Magnetic garnets are crystalline materials with a common structure shown in Figure 

6.2.1 and described by a general formula {A3+}3[B
3+]2(C

3+)3O12. In this formula, A 

stands for doubly positively charged metal ion (Y, Nd, Yb, Lu) surrounded by 8 

oxygen ions. B stands for metal ions with three or four positive charges (Fe, Bi, Ga, 

Al), surrounded by 6 oxygen ions and C for mostly ions with 4 negative charges (Fe, 

Bi, Ga, Al) surrounded by 4 oxygen ions [29]. 

These complex materials have recently attracted a considerable attention as they have 

high application potential. This is manly given by several magneto-electric, 

spintronic and MO phenomena, such as spin Seebeck effect [50], spin Hall magneto-

resistance [51] as well as high MOKE and Faraday effect in the visible-light region. 

In this sub-chapter we focus on bismuth substituted yttrium iron garnets Y3-

xBixFe5O12 (Bix:YIGs); as well as on bismuth and gallium substituted neodymium 

iron garnets Nd2BiFe(5-x)GaxO12 (Bi1:NIGxGs) and Nd0.5Bi2.5Fe(5-x)GaxO12 

(Bi2.5:NIGxGs). Both materials exhibit strong spin-orbit coupling enhanced by 6p 

orbitals of Bi. Furthermore, Bi1:NIGxGs and Bi2.5:NIGxGs exhibit strong out-of-

plane magnetic anisotropy achieved by Ga substitution and crystal orientation (111) 

of the GGG substrate. Currently, people use various techniques to grow magnetic 

garnet thin films of high optical and MO quality [52-65]. As explained in sub-chapter 

5.2, MOD has demonstrated to be a very promising method for this type of material.  

Figure 6.2.1: Atomic structure common to magnetic garnets. 
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All mentioned properties combined make studied garnets suitable for applications 

such as magnetic recording or non-reciprocal photonic devices (including optical 

isolators and circulators). Moreover, garnets are much desired material for various 

MO visualizers and microscopes [66, 67]. Figure 6.2.2 shows MOKE microscope 

which enable to visualize magnetic domains on the surface of magnetic materials. In 

this device, polarized light reflects on the magnetic sample (for example magnetic 

credit card) and passes through an analyzer (polarizing filter), before going through a 

regular optical microscope. When the polarized light reflects on the magnetic sample, 

MOKE causes different changes in the light polarization for differently oriented 

magnetic domains. These polarization changes are afterwards converted by the 

analyzer into the light intensity changes, which are visible. However, magnetic 

domains are not easily to observe for materials that exhibit small MO effects or 

materials that are covered by a non-transparent protecting layer (plastic layer in 

cards). Therefore, to make magnetic domains visible, MOKE microscope uses 

transparent MO imaging plate that exhibits huge MO effect (garnet film). This MO 

plate is put on the sample and it copies its magnetic field. Therefore, we do not 

observe MO effect on examined sample, but on MO plate with identical magnetic 

domains shape as the sample.  

 

Figure 6.2.2: MOKE microscope principle and magnetic response of MO imaging plate to a 

material with magnetic domains. 
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6.2.1 Y3-xBixFe5O12 

In this sub-chapter, we focused on the determination of complete permittivity tensors 

of Bix:YIGs thin films with various Bi concentrations. We used optical and MO 

spectral measurements at energies from 1.5 to 5 eV. We compared obtained results to 

the properties of investigated Bix:YIGs thin films prepared by MOD to properties of 

bulk-like Bix:YIGs with small Bi concentrations prepared by epitaxial growth [8, 

68]. We examined optical properties by SE supported by transmission intensity 

measurements. From these data we derived the diagonal permittivity tensor elements. 

We examined MO properties by spectroscopic MOKE and Faraday effect 

measurements and analysis. Using a combination of the SE and MO measurements 

we determined the spectral dependence of off-diagonal permittivity tensor elements. 

Finally, we parameterized obtained results in terms of microscopic theory which 

relates permittivity tensor spectra to the energy-level splitting and transition 

probabilities. 

We focused on Y3-xBixFe5O12 thin films (x= 1.5, 2, 2.5, 3) prepared on Gd3Ga5O12 

(GGG) (100) substrates. We listed compositions of garnet films in the table 6.2.1. 

The thin films were prepared by MOD method. MOD liquids for garnet films 

consisted of solutions made of Bi, Y, and Fe carboxylates. The total concentration of 

carboxylates was 3 – 4% [20, 69]. We prepared MOD liquids by mixing each 

solution to obtain desired chemical compositions. We spin-coated MOD liquids on 

GGG(100) substrates using 3000 rpm for 60 s. We followed this process by drying at 

100 °C for 30 minutes using a hot plate. Afterwards, we pre-annealed samples at 450 

°C for 30 minutes to decompose organic materials and obtain amorphous oxide 

films. We repeated procedure from spin coating to pre-annealing four or five times to 

obtain appropriate thicknesses. Nominal thicknesses of studied garnet films were 160 

and 200 nm (see table 6.2.1). We determined nominal thicknesses from the number 

of MOD cycles calibrated by X-ray measurements. Finally, we annealed samples for 

the crystallization in a furnace using 700 °C for 3 hours. We performed all thermal 

treatments in the air. For further information on garnet films prepared by MOD see 

Ref. [19]. Figure 6.2.3 shows theoretical model structure of Bix:YIGs samples used 

for SE, MOKE and Faraday effect analyses. 
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Table 6.2.1: Compositions and nominal thicknesses of examined 

garnet films. 

Film composition 
Indication in 

Figures and text 

Nominal thickness 

(nm) 

Bi3Fe5O12 Bi3IG 200 

Y0.5Bi2.5Fe5O12 Bi2.5YIG 160 

Y1Bi2Fe5O12 Bi2YIG 200 

Y1.5Bi1.5Fe5O12 Bi1.5YIG 200 

 

 

Figure 6.2.3: Model structure of Bix:YIGs samples used for SE, MOKE and Faraday analysis 

calculations. 

 

a) Spectroscopic Ellipsometry  

We performed SE measurements on a Mueller matrix ellipsometer Woollam RC2. 

We measured spectral dependence of ellipsometry parameters ψ and Δ in reflection 

and at incident angles 55°, 60° and 65°. We used the same equipment to measure the 

transmission spectra at the incidence angle 0°. All measurements were performed in 

the spectral range from 1.5 to 6.5 eV. We analyzed SE experimental data using a 

CompleteEase software provided by Woollam Co.. We used MSA mode to obtain 

optical functions spectra (diagonal elements of the permittivity tensor ε1r and ε1i) of 

GGG and Bix:YIGs materials. In MSA mode, we combined ellipsometry and 

transmission measurements for each material. We used transmission spectra because 

of the strong interference observed in ψ and Δ in the transparent spectra region below 

2.5 eV. We fitted the SE and transmission experimental data using model structure 

shown in Figure 6.2.3. Figure 6.2.4 shows that theoretical model describes both: SE 
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and transmission experimental spectra well. To ensure Kramers-Kronig consistent 

results we parameterized obtained optical functions. We parameterized optical 

functions of GGG substrate (Figure 6.2.5) by one Tauc-Lorentz oscillator in whole 

measured spectral range. We parameterized calculated optical functions of Bix:YIGs 

by three Gaussian oscillators (especially in the spectral range 3-5.5 eV) and one 

general Herzinger-Johns oscillator (especially below 3 eV). Since substrates were 

transparent and both-side polished, we considered back reflections in the SE analysis. 

We fitted all thicknesses (including roughness and interface layer) by the 

CompleteEase software and subsequently used them in MOKE and Faraday spectra 

analysis. Table 6.2.2 shows some parameters of used oscillators. Table 6.2.3 shows 

fitted thicknesses. 

 

Figure 6.2.4: Experimental data for Bi3YIG layer on GGG substrate compared to the 

theoretical model. a) Variable angle Psi and Delta SE data. b) Measured transmission intensity 

spectra. 

 

2 3 4 5 6
0

5

10

15

20

25

100

150

200

2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

a)

P
si

 a
n
d
 d

el
ta

 (
d
eg

)

E (eV)

 Psi (55
o
 ,60

o
 ,65

o
)

 Delta (55
o
 ,60

o
 ,65

o
)

 Theory

T
ra

n
sm

is
si

o
n
 I

n
te

n
si

ty
 (

a.
u
.)

E (eV)

 Experiment

 Theory

b)



59 

 

2 3 4 5 6
0

1

2

3

4

5

6

 

 

 
r a

n
d
 

1
i

E (eV)

 
1r

 
1i

 

Figure 6.2.5: Spectral dependence of diagonal elements ε1r and ε1i of the GGG (100) substrate 

permittivity tensor. 

 

Table 6.2.2: Fitted parameters of Gaussian and Herzinger-Johns functions used to 

parameterize optical functions of Bix:YIGs layers on GGG substrates in the spectral range 1.5 - 

6.5 eV. Here, E0 stands for central energy of the function; Amp represents amplitude of the 

function and Br is its broadening. 

 
Gaussian 1 Gaussian 2 Gaussian 3 

Herzinger-

Johns 

 

E0 

(eV) Amp 

Br 

(eV) 

E0 

(eV) Amp 

Br 

(eV) 

E0 

(eV) Amp 

Br 

(eV) 

E0 

(eV) Amp 

Bi3IG 3.27 1.64 0.81 4.36 3.4 1.65 6.27 5.05 3.09 2.60 2.33 

Bi2.5YIG 3.2 2.7 1.15 4.33 2.29 1.64 6.51 4.26 3.87 2.49 2.40 

Bi2YIG 3.04 1.15 0.77 4.25 1.56 1.68 6.36 2.98 2.37 2.53 1.86 
Bi1.5YIG 2.71 0.83 0.46 4.23 0.99 2.19 7.31 2.13 4.18 2.89 1.46 

 

Table 6.2.3: Fitted thicknesses and volume fractions used for model of Bix:YIGs layers on 

GGG substrate in the spectral range 1.5 - 6.5 eV. Here, TBi:YIG stands for Bi:YIG film 

thickness; Rrough represents film roughness with volume fractions frough; Rinterf represents 

thickness of film/GGG interface with volume fractions finterf. 

 TBi:YIG (nm) Rrough (nm) frough Rinterf (nm) finterf 

Bi3IG 177 7 0.5 4 0.5 

Bi2.5YIG 132 5 0.4 2 0.5 

Bi2YIG 165 12 0.6 3 0.5 

Bi1.5YIG 175 12 0.5 4 0.5 
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We performed transmission electron microscopy (TEM) measurement on Bi2.5YIG 

sample. We did this measurement to observe the film quality and to confirm 

thicknesses derived from SE. Figure 6.2.6 shows results of the TEM measurement. 

This measurement confirmed that the film was uniform and epitaxially grown on 

GGG. (This was expected since X-ray diffraction data of previously grown Bix:YIGs 

in our laboratory also revealed garnet structure [70].) TEM also revealed that the film 

thickness was around 132 nm, which is almost 30 nm less than the nominal 

thickness. Moreover, we can observe interfacial layer in the form of contrast layer 

between GGG and Bi2.5YIG. These observations are in a particularly good 

agreement with the SE analysis results (Table 6.2.3). Finally, we performed AFM 

roughness measurement on Bi1.5YIG sample. We did this measurement to verify 

relatively high roughness derived from SE. This measurement revealed roughness 11 

nm which is in a good agreement with SE result.  

 

Figure 6.2.6: a) TEM picture of the Bi2.5YIG sample. b) TEM picture of the interface between 

GGG and Bi2.5YIG layer. 

 

Figures 6.2.7 and 6.2.8 shows spectra of calculated optical functions ε1r and ε1i for all 

Bix:YIG samples. In case of ε1r we observed one global maximum around 2.4 eV and 

two local maxima around 3.2 and 4.4 eV. We also observed optical transitions 

around 2.5, 3.2 and 4.4 eV. The absorption edge near 2.1 eV was clearly visible. 

Bi3YIG and Bi2.5YIG spectra have in the UV region similar shape. This shape is 

however different from Bi2YIG and Bi1.5YIG spectra. This observation corresponds 

to the off-diagonal elements of the permittivity tensor spectra discussed later in this 
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sub-chapter, where we observe a bigger change in absorption between Bi2YIG and 

Bi2.5YIG samples. All spectra clearly demonstrated that the bismuth substitution 

increases amplitudes of ε1r and ε1i in the measured spectral range.  
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Figure 6.2.7: Real parts of diagonal elements of the permittivity tensor of Bix:YIGs. 
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Figure 6.2.8: Imaginary parts of diagonal elements of the permittivity tensor of Bix:YIGs. 
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When we compare our results to the results previously reported on bulk-like films 

[8], we can notice smaller ε1i amplitude and an absorption edge shift from 2.5 to 2.2 

eV. However, similar measurements performed on thin single crystal Bix:YIGs films 

show absorption data similar to our results [71-73]. Therefore we atributed this 

disprepancy to the difference between properties of thin and bulk-like films. Previous 

investigations [74-78] demonstrated that properties of ultra-thin films may 

significantly differ from properties of thicker films. Difference is ussually caused 

either by materials’ inhomogeneities or, as the thickness of the films decreases, by 

the increasing influence of surface and interface defective layers (in here modeled by 

EMA) [76, 77, 79]. 

b) MOKE and Faraday effect spectroscopy 

We measured Bix:YIGs MO properties by MOKE and MO Faraday effect 

spectroscopy. We measured MOKE rotation and ellipticity spectra in the polar 

configuration. We acquired the spectra at room temperature and at nearly normal 

light incidence. Applied magnetic field was 1.2 T which was enough for samples 

saturation. We used p-polarized light. We recorded data in the photon energy range 

from 1.4 to 5 eV. Faraday rotation and ellipticity spectra were acquired at room 

temperature using magnetic field 665 mT, which was enough for samples saturation. 

We recorded Faraday experimental spectra in the photon energy range from 1.4 to 4 

eV. Faraday hysteresis loops were measured at 3 eV. 

Figure 6.2.9 shows measured MOKE rotation spectra. Figure 6.2.10 shows measured 

MOKE ellipticity spectra. We observed MOKE rotation maxima around 3.4 and 4 

eV and MOKE ellipticity maxima near 3.3 and 4.4 eV. These values are 

characteristic for Bix:YIGs MOKE spectra [8, 68]. Furthermore, we observed strong 

MO interference in the form of strong oscillations in the spectral range below 3 eV. 

Since our samples had different thicknesses, we observed different interference 

patterns for each of them. Spectra clearly demonstrated that bismuth substitution 

increases amplitudes of MOKE rotation and ellipticity effectively in the measured 

spectral range. 
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Figure 6.2.9: Polar MOKE rotation spectra of Bix:YIGs on GGG substrates. 
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Figure 6.2.10: Polar MOKE ellipticity spectra of Bix:YIGs on GGG substrates. 
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Figure 6.2.11 shows measured MO Faraday rotation spectra. Figure 6.2.12 shows 

measured MO Faraday ellipticity spectra. Experimental data were corrected for the 

rotation from the substrate. We observed Faraday rotation minima near 2.4 eV and 

two maxima near 2.7 and 3.2 eV. Faraday ellipticity showed maxima at 2.7 and 

minima at 3.3 eV. As expected, spectra demonstrated that bismuth substitution leads 

to the enhancement of the MO Faraday rotation near to 2.4, 2.7 and 3.2 eV and 

ellipticity near 2.7 eV. We demonstrated Faraday rotation angle enhancement by 

Faraday hysteresis loop measurements shown in Figure 6.2.13. 

Figure 6.2.11: Faraday effect rotation spectra of Bix:YIGs on GGG substrates. 
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Figure 6.2.12: Faraday effect ellipticity spectra of Bix:YIGs on GGG substrates. 
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Figure 6.2.13: Faraday effect rotation hysteresis loops of Bix:YIGs on GGG substrates. 
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We calculated the off-diagonal elements of the permittivity tensor ε2r and ε2i from 

MOKE and Faraday effect spectra. We performed calculations using Yeh’s 4x4 

matrix formalism and diagonal elements of the permittivity tensor determined by SE. 

As mentioned previously, there was strong MO interference below 3 eV in MOKE 

spectra. Therefore, we used MO Faraday effect spectra in the spectral range from 1.5 

to 3 eV. Accordingly, we used MOKE spectra in the spectral range from 3 to 5 eV. 

Figure 6.2.14 shows the real part of off-diagonal permittivity tensor elements ε2r 

spectra. We observed sharp global maxima at 2.4 eV and local maxima at 4.2 eV. 

Minima around 2.7 eV and 3.1 eV were also observed, especially for higher Bi 

substitutions. As expected, bismuth increases ε2r amplitudes at extremes 2.4, 2.7 and 

3.1 eV significantly.  

Figure 6.2.15 shows the imaginary part of off-diagonal permittivity tensor elements 

ε2i spectra. We observed clear maxima at 2.5 and 4.5 eV and one minimum near 3.4 

eV. Spectra demonstrated that bismuth substitution increases amplitudes of ε2i, 

especially at extremes 2.3, 3.4 and 4.5 eV. 

We parameterized spectra of the off-diagonal elements of the Bix:YIGs permittivity 

tensors ε2r and ε2i in terms of microscopic theory. For this purpose, we used two Para 

transition terms at 2.4 and 3.1 eV and three Dia transition terms at 0.5, 2.5, 3.3 and 

4.45-4.65 eV. We used the Dia transition at 0.5 eV only to model the effect of the 

transitions outside of the measured spectral range. Therefore, we do not attribute any 

physical meaning to it. We listed some of used parameters in table 6.2.4. From these 

data, we can see that Bi substitution increases amplitudes of almost all listed 

transitions. Moreover, it lowers energy of Dia transition at 4.65 eV which most likely 

exist due to charge transfers from oxygen to octahedral Fe [8]. We associated Dia 

transitions at 2.5 eV and 3.3 eV, which are the strongest, with transitions t2(Fe3+) → 

t2g(Fe2+) and eg(Fe3+) → e(Fe2+). These transitions are mainly responsible for the 

remarkable increase of the Faraday rotation in the visible and near infrared region. In 

here we note that in studied materials, Bi is substituted per Y and not for the Fe. 

Therefore, the positive impact of Bi on mentioned transitions have been previously 

explained by increase in super-exchange interaction caused by an enhancement of 

electronic exchange [80]. This enhancement is the most probably facilitated by 

mixing 6p orbitals of Bi with 2p orbitals of Oxygen and 3d orbitals of iron. This 
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leads to considering of Bi ion as a magnetic ion [8, 80, 81]. Finally, maxima at 2.4 

eV are mainly created by the overlap of secondary negative peaks of these two 

dominant Dia transitions [8]. 
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Figure 6.2.14: Real parts of off-diagonal elements of the permittivity tensor of 

Bix:YIGs. 
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Figure 6.2.15: Imaginary parts of off-diagonal elements of the permittivity 

tensor of Bix:YIGs. 
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Table 6.2.4: Fitted parameters of Dia and Para transitions used to parameterize off-diagonal 

elements of Bix:YIGs permittivity tensors in the spectral range from 1.5 to 5.5 eV. Here, E0 

stands for central energy of the transition; Amp represents amplitude of the transition and Γ0 is 

half-width in a half-height of the transition. 

 Dia tr. 1 Dia tr. 2 Dia tr. 3 

sign 1 1 -1 

 

E0 

(eV) Amp 

Γ0 

(eV) 

E0 

(eV) Amp 

Γ0 

(eV) 

E0  

(eV) Amp 

Γ0  

(eV) 

Bi3IG 0.5 0.03 0.4 2.5 0.8 0.17 3.3 0.5 0.4 

Bi2.5YIG 0.5 0.03 0.4 2.55 0.5 0.2 3.3 0.25 0.4 

Bi2YIG 0.5 0.03 0.4 2.55 0.35 0.2 3.3 0.1 1 

Bi1.5YIG 0.5 0.03 0.4 2.55 0.2 0.15 3.3 0.1 1 

 

Dia tr. 4 Para tr. 1 Para tr. 1 

1 1 -1 

E0 
(eV) Amp 

Γ0 
(eV) 

E0 
(eV) Amp 

Γ0 
(eV) 

E0 
(eV) Amp 

Γ0 
(eV) 

4.45 0.15 0.3 2.4 0.09 0.2 3.1 0.05 0.15 
4.5 0.1 0.3 2.45 0.08 0.2 3.1 0 0.15 

4.55 0.05 0.4 2.45 0.06 0.2 3.1 0 0.15 

4.65 0.06 0.55 2.45 0.02 0.2 3 0.01 0.15 

 

We would like to note in here that all calculated permittivity tensor elements spectra 

have characteristic shape of diagonal and off-diagonal permittivity tensor elements of 

bulk-like epitaxial Bix:YIGs with small Bi concentrations [8, 68]. As explained 

earlier, properties of epitaxial films may differ from the properties of bulk-like 

materials. Therefore, we attributed result discrepancy to the fact that in this work we 

characterized epitaxial thin films. Results demonstrated that MOD in as an effective 

technique for preparation of epitaxial thin garnet films on GGG substrate. 

 

6.2.2. Nd2BiFe(5-x)GaxO12  &  Nd0.5Bi2.5Fe(5-x)GaxO12 

In this sub-chapter, we focused on the determination of complete permittivity tensors 

of Bi1:NIGxGs and Bi2.5:NIGxGs thin films. We used optical and MO spectral 

measurements at energies from 1.5 to 5.5 eV. We examined optical properties by SE 

supported by transmission intensity measurements. From these data we derived the 
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diagonal permittivity tensor elements. We examined MO properties by spectroscopic 

polar MOKE and Faraday effect rotation and ellipticity measurements. From these 

data we determined the spectral dependence of off-diagonal permittivity tensor 

elements. Finally, we parameterized obtained results in terms of microscopic theory. 

We focused on Nd2BiFe(5-x)GaxO12 and Nd0.5Bi2.5Fe(5-x)GaxO12 thin films (x = 0, 0.25, 

0.75, 1) prepared by MOD method on Gd3Ga5O12 (GGG) (111) substrates. 

Compositions of garnet films are listed in the table 6.2.5. MOD liquids for garnet 

films consisted of solutions made of Nd, Bi, Ga, and Fe carboxylates [20, 69]. We 

prepared MOD liquids by mixing each solution to obtain desired chemical 

compositions. We spin-coated those solutions on GGG (111) substrates with 3000 

rpm for 30 s and continued by drying at 100 °C for 10 minutes using a hot-plate. To 

decompose organic materials and obtain amorphous oxide films, we pre-annealed 

samples at 450 °C for 10 minutes. We repeated this procedure, from spin coating to 

pre-annealing, 5 times to obtain appropriate thickness. Nominal thicknesses of 

studied garnet films were 200 nm (based on the number of MOD cycles calibrated by 

X-ray measurements). Finally, we annealed samples for crystallization in a furnace at 

700 °C for 3 hours. We performed all the thermal treatments in the air. Figure 6.2.16 

shows theoretical model structure of Bi1:NIGxGs and Bi2.5:NIGxGs samples used 

for SE, MOKE and Faraday effect analysis. 

 

Table 6.2.5. Compositions and nominal thicknesses of examined 

garnet films 

Film composition 

Indication in Figures 

and text 

Nominal 

thickness (nm) 

Nd2BiFe5O12 Bi1NIG 200 

Nd2BiFe4.75Ga0.25O12 Bi1NIG(0.25)G 200 

Nd2BiFe4.25Ga0.75O12 Bi1NIG(0.75)G 200 

Nd2BiFe4GaO12 Bi1NIGG 200 

Nd0.5Bi2.5Fe4GaO12 Bi2.5NIG 200 

Nd0.5Bi2.5Fe4.75Ga0.25O12 Bi2.5NIG(0.25)G 200 

Nd0.5Bi2.5Fe4.25Ga0.75O12 Bi2.5NIG(0.75)G 200 

Nd0.5Bi2.5Fe4Ga1O12 Bi2.5NIGG 200 
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Figure 6.2.16: Model structure of Bi1NIGG and Bi2.5NIGG samples used for SE, MOKE and 

Faraday analysis calculations. 

 

a) Spectroscopic Ellipsometry 

We performed SE measurements on a Mueller matrix ellipsometer Woollam RC2. 

We measured spectral dependence of ellipsometry parameters ψ and Δ in reflection 

and at incident angles 55°, 60° and 65°. We used the same equipment to measure the 

transmission spectra at the incidence angle 0°. We performed measurements in the 

spectral range from 1.5 to 6.5 eV. 

We analyzed SE experimental data using a CompleteEase software provided by 

Woollam Co.. We used MSA mode to obtain optical functions spectra (diagonal 

elements of the permittivity tensor ε1r and ε1i) of Bi1:NIGxGs and Bi2.5:NIGxGs. In 

MSA mode, we combined ellipsometry and transmission measurements of each 

sample. Transmission spectra supplemented our analysis because of the strong 

interference observed in ψ and Δ in the transparent region below 2.5 eV. We fitted 

SE and transmission experimental data using a model structure shown in Figure 

6.2.16. To ensure Kramers-Kronig consistent results we parameterized obtained 

optical functions ε1r and ε1i of Bi1:NIGxGs and Bi2.5:NIGxGs by five Gaussian 

functions. Since substrates were transparent and both-side polished, we considered 

back reflections in the SE analysis. We fitted all thicknesses, including roughness in 

the CompleteEase software. We subsequently used these thicknesses in MOKE and 

Faraday spectra analysis. We listed some parameters of used parameterization 

functions in the Table 6.2.6 and the fitted thicknesses in the Table 6.2.7. Fitted 

interface thickness was zero for all samples. This zero thickness corresponds to 
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epitaxial growth of our films on GGG substrate. Figure 6.2.17 shows that used 

theoretical model describes both: SE and transmission experimental spectra well. 

 

Figure 6.2.17: Experimental data for Bi1NIG layer on GGG substrate 

compared to the theoretical model. a) Variable angle Psi and Delta SE data. b) 

Measured transmission intensity spectra. 

 

 

Table 6.2.6: Fitted parameters of Gaussian functions used to parameterize optical properties of 

Bi1:NIGxGs and Bi2.5:NIGxGs layers on GGG substrates in the spectral range from 1.5 to 6.5 

eV. Here, E0 stands for central energy of the function; Amp represents amplitude of the 

function and Br its broadening. 

 Gaussian 1 Gaussian 2 Gaussian 3 

 

E0 

(eV) Amp 

Br 

(eV) 

E0 

(eV) Amp 

Br 

(eV) 

E0 

(eV) Amp 

Br 

(eV) 

Bi1NIG 
2.75 0.76 0.39 

3.27 0.76 0.32 3.42 1.81 0.80 

Bi1NIG(0.25)G 2.79 0.72 0.42 3.25 1.11 0.24 3.45 1.64 0.63 

Bi1NIG(0.75)G 2.76 0.39 0.38 3.33 1.08 0.62 4.16 2.70 1.58 

Bi1NIGG 2.75 0.19 0.29 3.38 1.32 0.84 4.26 1.07 0.88 

Bi2.5NIG 2.59 1.35 0.35 3.33 4.91 1.03 4.12 3.12 0.93 

Bi2.5NIG(0.25)G 2.61 1.31 0.34 3.17 3.11 0.80 4.03 3.14 1.52 

Bi2.5NIG(0.75)G 2.63 1.13 0.36 3.18 2.72 0.82 4.08 3.03 1.58 

Bi2.5NIGG 2.63 1.18 0.37 3.19 3.18 0.86 4.16 3.28 1.49 
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Gaussian 4 Gaussian 5 

E0 

(eV) Amp 

Br 

(eV) 

E0  

(eV) Amp 

Br  

(eV) 

4.06 2.69 1.39 5.70 3.20 3.16 

4.02 2.92 1.40 5.72 3.18 3.06 

5.48 1.41 1.43 6.98 2.69 2.40 

5.31 1.81 2.26 8.02 2.5 4.59 

4.94 2.04 1.21 6.24 3.53 3.28 

5.40 3.69 2.30 7.94 5.66 3.61 

5.72 3.88 2.82 7.22 2.76 2.59 

6.09 5.22 2.48 7.05 6.41 4.21 

 

Table 6.2.7: Fitted thicknesses and volume fractions used for model of 

Bi1:NIGxGs and Bi2.5:NIGxGs layers on GGG substrate in the spectral 

range from 1.5 to 6.5 eV. Here, TBi:NIGG stands for film thickness; Rrough 

represents film roughness with volume fractions frough. 

 TBi:NIGG (nm) Rrough (nm) frough 

Bi1NIG 168.5 0 0.5 

Bi1NIG(0.25)G 205 0 0.5 

Bi1NIG(0.75)G 250 0 0.5 

Bi1NIGG 265 0 0.5 

Bi2.5NIG 150 10 0.5 

Bi2.5NIG(0.25)G 152 5.2 0.5 

Bi2.5NIG(0.75)G 155 4.6 0.5 

Bi2.5NIGG 157 5 0.5 

 

Figure 6.2.18(a) shows parameterized optical functions ε1r of Bi1:NIGxGs. Figure 

6.2.18(b) shows parameterized optical functions ε1r of Bi2.5:NIGxGs. From these 

spectra, it is apparent that Ga substitution decreases amplitudes of ε1r for 

Bi1:NIGxGs below 4 eV and increasing them above. On the other hand, Ga 

substitution does not noticeably influence amplitudes of ε1r for Bi2.5:NIGxGs. The 

only exception is ε1r spectra of Bi2.5:NIG above 3.5 eV. We attribute this result to 

the fact that this composition contains no Ga.   

Figure 6.2.19(a) shows parameterized optical functions ε1i of Bi1:NIGxGs. Figure 

6.2.19(b) shows parameterized optical functions ε1i of Bi2.5:NIGxGs. In here, we 

can observe that Ga substitution increases ε1i amplitudes and therefore an absorption 



73 

 

of Bi1:NIGxGs in the measured spectral range. However it decreases ε1i amplitudes 

of Bi2.5:NIGxGs. Moreover, the absorption of Bi2.5:NIGxGs is almost 30% stronger 

than the absorption of Bi1:NIGxGs. We attribute this result to the higher Bi 

concentration, since this effect of Bi was previously demonstrated in the part devoted 

to Bix:YIGs.  

 Figure 6.2.18: Real parts of the diagonal permittivity tensor elements ε1r for a) Bi1:NIGxGs and 

b) Bi2.5:NIGxGs. 

 

   Figure 6.2.19: Imaginary parts of the diagonal permittivity tensor elements ε1i for a) 

Bi1:NIGxGs and b) Bi2.5:NIGxGs. 
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b) MOKE and Faraday effect spectroscopy 

We studied MO properties of Bi1:NIGxGs and Bi2.5:NIGxGs by MOKE and MO 

Faraday effect spectroscopy. We measured spectra of polar MOKE rotation and 

ellipticity at room temperature at nearly normal light incidence. We applied magnetic 

field 1.2 T, which was enough for samples saturation. Incident light was p polarized. 

We recorded data in the photon energy range from 1.4 to 5 eV. Similarly, we 

measured spectra of Faraday rotation and ellipticity at room temperature using 

magnetic field 670 mT (enough for samples saturation). We recorded experimental 

data in the photon energy range from 1.4 to 4 eV.  

Figure 6.2.20(a) shows measured MOKE rotation spectra of Bi1:NIGxGs and Figure 

6.2.20(b) of Bi2.5:NIGxGs. Figure 6.2.21(a) shows measured MOKE ellipticity 

spectra of Bi1:NIGxGs and Figure 6.2.21(b) of Bi2.5:NIGxGs. Firstly, we can 

observe strong MO interference in the form of strong oscillations in the spectral 

range below 3 eV for Bi1:NIGxGs and Bi2.5:NIGxGs in both, rotation and 

ellipticity. Since our samples had different thicknesses, we observed different 

interference patterns for each one of them (see Table 6.2.7). Secondly, MOKE 

rotation shows extremes around 3.5 and 4.5 eV for both sample sets. However, it is 

apparent that Bi2.5:NIGxGs shows higher MOKE amplitudes at extremes caused by 

the higher Bi content [8, 82]. Finally, MOKE ellipticity shows extreme around 4.1 

eV for both sample sets which is characteristic for iron garnets MOKE spectra [8, 68, 

82]. Important observation here is that Ga substitution decreases MOKE rotation 

amplitudes at extremes. As expected, spectra demonstrated that Bi substitution 

increases, and Ga substitution decreases amplitudes of MOKE ellipticity. 
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Figure 6.2.20: Polar MOKE rotation spectra for a) Bi1:NIGxGs and b) Bi2.5:NIGxGs on GGG 

substrates. 

Figure 6.2.21: Polar MOKE ellipticity spectra for a) Bi1:NIGxGs and b) Bi2.5:NIGxGs on GGG 

substrates. 

 

Figure 6.2.22(a) shows measured MO Faraday rotation spectra for Bi1:NIGxGs and 

Figure 6.2.22(b) for Bi2.5:NIGxGs. Figure 6.2.23(a) shows measured MO Faraday 

ellipticity spectra for Bi1:NIGxGs and Figure 6.2.23(b) for Bi2.5:NIGxGs. We 

corrected experimental data for the rotation from the substrate. We observed Faraday 

rotation extremes near 2.5 and 3 eV, and Faraday ellipticity extremes near 2.3 and 

3.3 eV for both sample sets. Spectra clearly demonstrated that Bi2.5:NIGxGs shows 
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higher Faraday rotation and ellipticity amplitudes at extremes, caused by the higher 

Bi content [8, 68, 82]. One important thing to notice is that Ga substitution decreases 

MO Faraday effect amplitudes at extremes. This effect of Ga will be discussed later 

in the part devoted to the microscopic analysis of studied materials. 

Figure 6.2.22: MO Faraday rotation spectra for a) Bi1:NIGxGs and b) Bi2.5:NIGxGs on GGG 

substrates. 

 Figure 6.2.23: MO Faraday ellipticity spectra for a) Bi1:NIGxGs and b) Bi2.5:NIGxGs on GGG 

substrates. 
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2 3
-15

-10

-5

0

5

10

15

20

2 3

-40

-20

0

20

40

F
a
ra

d
a

y
 e

ll
ip

ti
c
it
y
 (

d
e
g

/
m

)

 

F
a
ra

d
a

y
 e

ll
ip

ti
c
it
y
 (

d
e
g

/
m

)

E (eV)

 Bi1:NIG

 Bi1:NIG(0.25)G

 Bi1:NIG(0.75)G

 Bi1:NIGG

 

 

E (eV)

 Bi2.5:NIG

 Bi2.5:NIG(0.25)G

 Bi2.5:NIG(0.75)G

 Bi2.5:NIGG

2 3
-20

-10

0

10

2 3
-60

-40

-20

0

20

F
a

ra
d

a
y
 r

o
ta

ti
o

n
 (

d
e

g
/

m
)

 

F
a

ra
d

a
y
 r

o
ta

ti
o

n
 (

d
e

g
/

m
)

E (eV)

 Bi1:NIG

 Bi1:NIG(0.25)G

 Bi1:NIG(0.75)G

 Bi1:NIGG

  

 

E (eV)

 Bi2.5:NIG

 Bi2.5:NIG(0.25)G

 Bi2.5:NIG(0.75)G

 Bi2.5:NIGG



77 

 

matrix formalism and diagonal elements of the permittivity tensor determined by SE.  

As already mentioned, there was strong MO interference below 3 eV in MOKE 

spectra. Therefore, we used MO Faraday effect spectra in the spectral range from 1.5 

to 3 eV and MOKE spectra in the spectral range from 3 to 5 eV. Figure 6.2.24(a) 

shows real parts of off-diagonal permittivity tensor elements ε2r of Bi1:NIGxGs and 

Figure 6.2.24(b) of Bi2.5:NIGxGs. Figure 6.2.25(a) shows imaginary parts of off-

diagonal permittivity tensor elements ε2i of Bi1:NIGxGs and Figure 6.2.25(b) of 

Bi2.5:NIGxGs. As expected from previous results, Bi substitution increases ε2r and 

ε2i amplitudes at extremes for both, Bi1:NIGxGs and Bi2.5:NIGxGs. However, Ga 

substitution acts in an opposite manner and it decreases ε2r and ε2i amplitudes.  

To explain the effect of Ga properly, one has to look at the results from microscopic 

theory. For this purpose, we parameterized off-diagonal elements spectra of 

Bi1:NIGxGs and Bi2.5:NIGxGs permittivity tensors, ε2r and ε2i. We listed some of 

used transitions parameters in table 6.2.4. We used four Para transition terms at 2.4-

2.5, 3-3.2, 3.6-4.1 and 5.7-6.6 eV to represent crystal field transitions. Furthermore, 

we used four Dia transition terms at 0.5, 2.58-2.8, 3.3-3.58 and 4.05-4.4 eV. We used 

Dia transition at 0.5 eV and Para transition at 5.7-6.6 eV only to model combined 

effect of transitions outside of measured spectral range and we do not assign them 

any physical meaning in here. First thing to notice is that the main contribution 

comes, similarly to Bix:YIGs, from Dia transitions at 2.58-2.8 eV and 3.3-3.58 eV. 

These are associated with transitions t2(Fe3+) → t2g(Fe2+) and eg(Fe3+) → e(Fe2+) 

respectively. As mentioned before, these transitions are mainly responsible for the 

remarkable increase of the Faraday rotation in the visible and near infrared region. 

From the data in the table 6.2.4 one can see that Ga substitution is decreasing these 

transitions for both materials. This is in accordance with the assumption, that Ga is 

mostly substituted for Fe3+ tetrahedral, which is crucial for both transitions. Maxima 

at 2.4 eV are mainly created by the overlap of secondary negative peaks of these two 

Dia transitions. One can also notice that Ga substitution lowers energy of much 

smaller Dia transition at 4.65 eV which most likely exist due to charge transfers from 

oxygen to octahedral Fe. This is in accordance with the assumption that Ga is in a 

smaller percentage also substituted per Fe3+ octahedral. 
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Figure 6.2.24: Real parts of the off-diagonal permittivity tensor elements ε2r for a) Bi1:NIGxGs 

and b) Bi2.5:NIGxGs. 

 

Figure 6.2.25: Real parts of the off-diagonal permittivity tensor elements ε2r for a) Bi1:NIGxGs 

and b) Bi2.5:NIGxGs. 
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Table 6.2.8: Fitted parameters of Para and Dia transitions used to parameterize off-diagonal 

elements of the permittivity tensors of Bi1:NIGxGs and Bi2.5:NIGxGs layers prepared on 

GGG (111) substrates in the spectral range from 1.5 to 5.5 eV. Here, E0 stands for central 

energy of the function; Amp represents amplitude of the function and Γ0 is half-width in a half-

height of the transition. 

 Dia tr. 1 Dia tr. 2 Dia tr. 3 Dia tr. 4 

sign 1 -1 1 -1 

 
E0 

(eV) 
Amp 

Γ0 

(eV) 

E0 

(eV) 
Amp 

Γ0 

(eV) 

E0  

(eV) 
Amp 

Γ0  

(eV) 

E0 

(eV) 
Amp 

Γ0 

(eV) 

Bi1NIG 0.5 0.04 0.4 2.67 0.14 0.2 3.24 0.2 0.2 4.1 0.1 0.6 

Bi1NIG(0.25)G 0.5 0.03 0.4 2.68 0.14 0.2 3.25 0.16 0.25 4.05 0.09 0.5 

Bi1NIG(0.75)G 0.5 0.03 0.4 2.75 0.08 0.2 3.35 0.07 0.3 4.39 0.04 0.4 

Bi1NIGG 0.5 0.03 0.4 2.8 0.065 0.3 3.58 0.065 0.4 4.4 0.05 0.4 

Bi2.5NIG 0.5 0.03 0.4 2.58 0.55 0.5 3.3 0.38 0.5 4.25 0.28 0.5 

Bi2.5NIG(0.25)G 0.5 0.03 0.4 2.6 0.45 0.17 3.3 0.28 0.5 4.4 0.17 0.55 

Bi2.5NIG(0.75)G 0.5 0.03 0.4 2.6 0.43 0.17 3.3 0.24 0.5 4.4 0.12 0.55 

Bi2.5NIGG 0.5 0.03 0.4 2.6 0.42 0.17 3.3 0.23 0.5 4.4 0.12 0.55 

 

Para tr. 1 Para tr. 2 Para tr. 3 Para tr. 4 

-1 1 -1 1 

E0 

(eV) 
Amp 

Γ0 

(eV) 

E0 

(eV) 
Amp 

Γ0 

(eV) 

E0 

(eV) 
Amp 

Γ0 

(eV) 

E0 

(eV) 
Amp 

Γ0 

(eV) 

2.5 0.005 0.3 3 0.025 0.3 3.6 0.03 0.6 5.8 0.03 0.6 

2.5 0.005 0.3 3 0.015 0.3 3.6 0.03 0.6 5.8 0.03 0.7 

2.5 0.004 0.2 3.1 0.01 0.3 3.8 0.02 0.6 6 0.034 0.78 

2.5 0.004 0.3 3.2 0.01 0.2 4 0.02 0.6 6.6 0.035 0.8 

2.4 0.07 0.2 3.1 0.009 0.3 3.9 0.06 0.6 5.7 0.06 0.5 

2.4 0.05 0.2 3.1 0.009 0.3 4.1 0.07 0.6    

2.4 0.05 0.2 3.2 0.008 0.2 4.1 0.08 0.6    

2.4 0.03 0.2 3.2 0.008 0.3 4.1 0.06 0.6    

 

6.3. Ce(0.95-x)HfxCo0.05O(2-δ) 

In recent years, magnetically doped CeO2 attracted a lot of attention since it is a 

promising magnetic semiconductor and highly applicable material in the field of 

integrated photonics. This ranges from MO applications such as integrated MO 

isolators or magneto-plasmonic sensors to magneto-photonic crystals [83-86]. The 

main advantage of this material is its high Curie temperature and more importantly a 
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great Si compatibility [87]. Moreover, it is possible to tune CeO2 magnetic properties 

by doping of the non-magnetic lattice by magnetic ions [83]. In this work we used Hf 

and Co doping. Successful adoption of this material in MO devices requires complete 

understanding of the nature and origin of CeO2 magnetic properties. Even though is 

the room temperature ferromagnetism in this material explained by an oxygen 

vacancy mechanism [88, 89], the detail optical and MO analysis is still needed.   

In this work, we focused mainly on the determination of full dielectric permittivity 

tensors of Ce(0.95-x)HfxCo0.05O(2-δ) (CeHfCoO) thin films. For this purpose, we used 

optical and MO spectral measurements at energies from 1.5 to 5.5 eV. We used SE 

supported by transmission intensity measurements to study CeHfCoO optical 

properties and to derive the diagonal permittivity tensor elements spectra. We used 

spectroscopic Faraday effect rotation and ellipticity measurements to study 

CeHfCoO MO properties and to derive the spectral dependence of off-diagonal 

permittivity tensor elements. Finally, we parameterized obtained results in terms of 

microscopic theory.  

We studied polycrystalline Ce(0.95-x)HfxCo0.05O(2-δ) thin films (x = 0, 0.15, 0.35, 

0.475, 0.6, 0.8, 0.95) prepared by pulsed laser deposition method on 2 types of 

substrates: amorphous quartz and Si/SiO2. The deposition was carried out in vacuum 

(at base pressure 1.0x10-6 Torr) with substrate temperature of 7000C. We listed 

CeHfCoO thin films compositions and nominal thicknesses (determined by 

profilometer) in table 6.3.1. Figure 6.3.1 shows theoretical model structure of 

CeHfCoO samples used for SE and Faraday effect analysis.  

Table 6.3.1: Composition and nominal thicknesses of examined 

CeHfCoO thin films prepared on amorphous quartz and Si/SiO2 

substrates. 

Film composition 

Indication in 

Figures and text 

Nominal 

thickness (nm) 

Ce0.95Co0.05O(2-δ) Ce0.95CoO 310 

Ce0.8Hf0.15 Co0.05O(2-δ) CeHf0.15CoO 310 

Ce0.6Hf0.35 Co0.05O(2-δ) CeHf0.35CoO 310 

Ce0.475Hf0.475 Co0.05O(2-δ) CeHf0.475CoO 340 

Ce0.35Hf0.60 Co0.05O(2-δ) CeHf0.60CoO 310 

Ce0.15Hf0.80 Co0.05O(2-δ) CeHf0.80CoO 300 

Hf0.95Co0.05O(2-δ) Hf0.95CoO 150 
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Figure 6.3.1: Model structure of CeHfCoO samples used for SE and Faraday analysis 

calculations. 

 

a) Spectroscopic Ellipsometry 

We performed SE measurements on a Mueller matrix ellipsometer Woollam RC2. 

We measured spectral dependence of ellipsometry parameters ψ and Δ in reflection 

and at incident angles 55°, 60° and 65°. We used the same equipment to measure the 

transmission spectra of CeHfCoO thin films prepared on transparent amorphous 

quartz substrates and we used incidence angle 0°. We performed measurements in 

the spectral range from 1.5 to 6.5 eV. 

We analyzed SE experimental data using a CompleteEase software provided by 

Woollam Co.. We used MSA mode to obtain optical functions spectra (diagonal 

elements of the permittivity tensor ε1r and ε1i) of CeHfCoO thin films. In MSA mode, 

we combined SE and transmission measurements for each CeHfCoO film 

composition on both substrates. This means that for each composition we took 

experimental data from CeHfCoO sample prepared on quartz substrate (ψ, Δ and 

transmission experimental spectra) and combined them with experimental data from 

CeHfCoO sample prepared on Si/SiO2 substrate (ψ and Δ experimental spectra). In 

MSA, we treated CeHfCoO, Si and SiO2 optical functions as parameters common for 

both samples. We treated all thicknesses (including roughness thickness) as 

parameters allowed to wary for each sample independently. This approach provided 

us with the more accurate results since it ensured that obtained constants describe all 

types of experimental data well. Figure 6.3.2 shows that used theoretical model 
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describes both SE experimental spectra well for both substrates. As a final SE step, 

we parameterized derived diagonal elements of the permittivity tensor ε1r and ε1i 

using a combination of Lorentz, Gaussian, and Tauc-Lorentz oscillators. We did this 

to obtain Kramers-Kronig consistent results. We listed some parameters of used 

oscillator functions in Table 6.3.2 and the fitted thicknesses in Table 6.3.3. We 

subsequently used all fitted thicknesses (including roughness) obtained from SE 

analysis in Faraday effect analysis. 

Figure 6.3.2: Measured SE variable angle Psi and Delta spectra of a) CeHf0.15CoO prepared on 

Si/SiO2 substrate and b) CeHf0.15CoO prepared on quartz substrate compared to the 

theoretical model. 

 

Table 6.3.2: Fitted parameters of oscillator functions used to parameterize optical properties of 

CeHfCoO thin films prepared on amorphous quartz and Si/SiO2 substrates in the spectral 

range from 1.7 to 5 eV. Here, E0 stands for central energy of the function; Amp represents 

amplitude of the function and Br its broadening. 

 Lorentz 1 Lorentz 2 Lorentz 3 

 
E0 

(eV) 
Amp 

Br 

(eV) 

E0 

(eV) 
Amp 

Br 

(eV) 

E0 

(eV) 
Amp 

Br 

(eV) 

Ce0.95CoO 5.37 1.94 1.65 6.34 3.36 0.9 15 2.9 9.48 

CeHf0.15CoO 5.19 1.45 0.93 6.25 1.7 1.87 14 8.65 5.03 

CeHf0.35CoO 4.83 1.67 0.9 5.83 1.71 2.09 14.96 9.45 4.85 

CeHf0.475CoO 4.75 1.92 0.76 5.49 1.32 1.31 12.52 10 4.65 

CeHf0.60CoO 4.61 2.35 0.8 5.44 1.73 1.64 10.67 11.06 3.03 

CeHf0.80CoO 4.62 2.99 0.88 5.92 2.55 1.99 9.79 15.89 1.69 

Hf0.95CoO - - - - - - 15 32.11 1.38 
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Gaussian Tauc Lorentz 

E0 

(eV) 
Amp 

Br 

(eV) 

E0  

(eV) 
Amp 

Br  

(eV) 

5.58 0.94 1.19 15 14.09 0.0001 

4.48 1.78 0.68 - - - 

4.25 2.25 0.59 - - - 

4.15 3.42 0.67 - - - 

4.02 4.17 0.65 - - - 

3.98 6.61 0.56 - - - 

7.34 4.52 2.2 - - - 

 

Table 6.3.3: Fitted thicknesses and volume fractions used for model of CeHfCoO 

layers on quartz and Si/ SiO2 substrate in the spectral range from 1.7 to 5 eV. 

Here, T/quartz and R/quartz stand for thickness and roughness of CeHfCoO films 

prepared on quartz substrate respectively; T/Si and R/Si stand for thickness and 

roughness of CeHfCoO films prepared on Si substrate. 

 T /quartz (nm) R /quartz (nm) T/Si (nm) R/Si (nm) 

Ce0.95CoO 180.9 2 217.6 1 

CeHf0.15CoO 234.7 1 237.7 0.5 

CeHf0.35CoO 437.2 0.5 410.9 0.6 

CeHf0.475CoO 438.9 0.5 365.7 0.5 

CeHf0.60CoO 359.2 0.4 316 0.5 

CeHf0.80CoO 269.3 2.5 242 0.5 

Hf0.95CoO 204.7 2.3 122.6 3.7 

 

Figure 6.3.3 shows real parts of diagonal permittivity tensor elements ε1r of 

CeHfCoO films. The spectral dependence of ε1r is similar in shape to results obtained 

on pure or Co doped CeO2 films [90-92]. We can observe that all the spectra are 

characteristic by one global maximum shifting from 3.6 eV to higher energies when 

Hf content increasing. Moreover, it is apparent that Hf content decreases ε1r 

amplitudes in the whole measured spectral range. This is caused by smaller 

absorption. One extra thing to observe are slightly higher amplitudes for Hf0.95Co 

material then expected (above 3 eV) from the trend that shows other compositions 

when increasing Hf content. We assume that this is probably caused by missing Co 

in the structure.  

Figure 6.3.4 shows imaginary parts of the diagonal permittivity tensor elements ε1i of 

CeHfCoO thin films. In here we can observe optical bandgap energies to be shifted 
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from 3.21 to 4.1 eV when Hf content increases. These energies are related to O2p -> 

Ce4f electronic transitions [92-94]. Moreover, one can see that Hf doping decreases 

ε1i amplitudes in the whole measured spectral range. From this result we assume that 

when is Hf replacing Ce in the material; it acts against optical vacancies from 

isolated Ce4f states localized within the optical bandgap. These vacancies serves as 

recombination centers for optically excited electrons from the valence band to the 4f 

band of the oxide and are responsible for enhanced optical absorption [92, 93, 95]. 

One more thing to support this theory is increased absorption tail below 3.2 eV for 

our samples. This absorption tail was previously explained by the effect of mid-gap 

defects (mid-gap oxygen vacancies, Co states) [92] and it can be clearly seen that this 

tail disappearing when Hf content increases.  

 

Figure 6.3.3: Real parts of the diagonal permittivity tensor elements ε1r for CeHfCoO thin films. 
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Figure 6.3.4: Imaginary parts of the diagonal permittivity tensor elements ε1i for CeHfCoO thin 

films. 

 

b) Faraday effect spectroscopy 

We studied MO properties of examined samples by MO Faraday effect spectroscopy. 

We performed this type of measurement only on samples with quartz substrate since 

these samples are transparent in the whole measured spectral range. Therefore, there 

was no need for additional MOKE measurement. We acquired all the spectra at room 

temperature and normal light incidence. We applied magnetic field 670 mT, which 

was enough for samples saturation. Incident light was p polarized. We recorded data 

in the photon energy range from 0.7 to 4 eV.  

Figure 6.3.5 shows measured MO Faraday rotation spectra of CeHfCoO films. 

Figure 6.3.6 shows measured MO Faraday ellipticity spectra of CeHfCoO films. We 

corrected experimental data for the rotation from the substrate. We observed Faraday 

rotation extreme shifting from 2.9 eV to higher energies and decreased rotation 

amplitudes when Hf content increased. On the other hand, ellipticity amplitudes 

increased their values when Hf content increased. Spectra of the fully Hf substituted 
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sample Hf0.95CoO has different rotation and ellipticity amplitudes than expected 

from the trend seen on other samples when Hf concentration increases. We attribute 

this to the missing Ce in the structure. 
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Figure 6.3.5: MO Faraday rotation spectra of CeHfCoO films prepared on quartz substrates. 
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Figure 6.3.6: MO Faraday ellipticity spectra of CeHfCoO films prepared on quartz substrates. 
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We calculated the off-diagonal elements of the permittivity tensor ε2r and ε2i from 

Faraday effect spectra using Yeh’s 4x4 matrix formalism and diagonal elements of 

the permittivity tensor determined by SE. Figure 6.3.7 shows the real parts of the off-

diagonal permittivity tensor elements ε2r. Figure 6.3.8 shows the imaginary parts of 

the off-diagonal permittivity tensor elements ε2. Spectra clearly demonstrated that Hf 

substitution decreases both, ε2i and ε2r amplitudes and shifting their maxima to higher 

energies in the measure spectral range. This can be explained by the fact that 

perpendicular magnetic anisotropy and room temperature ferromagnetism in this 

material is attributed to the magnetoelastic effects. These effects originate from 

distortions which are caused by in-plane compressive strain and vary mainly with 

Ce-Co content [92, 96]. Hf substitution not only influences this content, but it also 

reduces oxygen vacancies which also play an important role in CeHfCoO 

magnetism. 

Figure 6.3.7: Real parts of the off-diagonal permittivity tensor elements ε2r of CeHfCoO films 
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Figure 6.3.8: Imaginary parts of the off-diagonal permittivity tensor elements ε2i of CeHfCoO 

films. 

 

To relate calculated spectra to the microscopic theory, we parameterize them by the 

sum of Para and Dia oscillator terms. We listed some of used parameters in table 

6.3.4. From the result, one can clearly see that the main MO contribution comes from 

Dia transitions 1 (1.5-1.65 eV), 2 (2.42-2.95 eV) and 4 (3.75-4.3 eV). These 

therefore correspond to excited state split by the combined effect of exchange field 

and spin-orbit coupling. Moreover, they are all decreasing their values with increased 

Hf content. Transition 1 refers to localized 4f states in the band gap while transition 4 

to the oxygen electronic transitions [92].  
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Table 6.3.4: Fitted parameters of Para and Dia transitions used to parameterize off-diagonal 

elements of the permittivity tensors of HfCoCoO films in the spectral range from 1.5 to 5.5 eV. 

Here, E0 stands for central energy of the function; Amp represents amplitude of the function 

and Γ0 is half-width in a half-height of the transition. 

 Dia tr 1 Dia tr 2 Dia tr 3 

sign 1 1 1 

 
E0 

(eV) Amp 
Γ0 

(eV) 
E0  

(eV) Amp 
Γ0 

(eV) 
E0 

(eV) Amp 
Br 

(eV) 

Ce0.95Co 1.53 0.0014 0.5 2.42 0.0022 0.9 3.3 0.0005 0.3 

CeHf0.15Co 1.65 0.0011 0.4 2.4 0.0014 0.8 3.35 0.0038 0.6 

CeHf0.35Co 1.65 0.0008 0.4 2.65 0.0015 0.8 3.55 0.0038 0.7 

CeHf0.475Co 1.65 0.0007 0.4 2.85 0.0018 0.8 3.75 0.003 0.7 

CeHf0.60Co 1.65 0.0006 0.4 2.9 0.0017 0.8 3.82 0.0027 0.9 

CeHf0.80Co 1.65 0.0006 0.4 2.95 0.0019 0.8 3.85 0.0027 0.7 

Hf0.95Co 1.65 0.0004 0.4 2.3 0.0017 0.85 3.35 0.0023 0.5 

 

Dia tr 4 Dia tr 5 Para tr 1 

-1 1 1 

E0 
(eV) 

Amp 
Γ0 

(eV) 
E0 (eV) Amp 

Γ0 
(eV) 

E0 
(eV) 

Amp 
Γ0 

(eV) 

3.75 0.002 0.3 1 0.0003 0.2 0.35 0.0008 0.9 

3.83 0.004 0.2 - - - 0.4 0.0004 0.7 

4.05 0.004 0.2 - - - 0.35 0.0005 0.7 

4.15 0.0035 0.2 - - - 0.3 0.0006 0.7 

4.2 0.0033 0.2 - - - 0.3 0.0007 0.7 

4.2 0.0032 0.2 - - - 0.27 0.0007 0.7 

4.3 0.001 0.2 - - - 0.27 0.0006 0.7 
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7. CONCLUSIONS 

In this part of the thesis, we would like to conclude our findings for all investigated 

materials.  

To conclude our results on GdxFe(100-x), it is important to note that perpendicular 

magnetic anisotropy is substantial for its application potential (MO-SLM, MO disk 

storage). This type of anisotropy is characteristic for concentrations close to x ≈ 25, 

compensation concentration. We derived permittivity tensors for GdxFe(100-x) 

compositions close to this concentration. Our investigation showed that the behavior 

in the spectral range from 1.5 to 3eV, where ε1r decreases its value for higher 

energies, differs from typical Drude-like behavior (describing intra-band transitions) 

of metallic compounds. On the other hand, it is like the behavior of some transition 

metals. This is caused by the Lorentz contribution centered near 1.9 eV. This 

contribution most likely originates from the inter-band transition, which involves Fe 

3d and Gd 5d states. The Fe 3d state is located around 1.5 eV below Fermi energy. 

Contrarywise, Gd 5d states are located approx. 0.5 eV above the Fermi energy. The 

second Lorentz oscillator near 2.5 eV does not significantly modify the spectral 

dependence of Drude behavior. The reason is its small amplitude. This points on the 

origin of Gd d-d electron transition, since this transition should be forbidden with 

small oscillator strength. Finally, we discuss the Gd substitution effect. The 

amplitude of the first Lorentz oscillator near 1.9 eV decreases with Gd content. 

Increasing Gd content means decreasing Fe density of states below Fermi energy. 

This results in the suppression of Fe 3d to Gd 5d transition probability. On the 

contrary, the increase of Gd content is increasing the amplitude of the second 

Lorentz oscillator centered near 2.5 eV. Such behavior supports the assignment of 

the origin to Gd d-d transition. Our investigation of MO properties of GdxFe(100-x) 

showed that Gd substitution decreases both, ε2r and ε2i amplitudes. We attributed this 

to the fact that the magnetic moment of Fe is in this ferrimagnetic alloy stronger than 

the magnetic moment of Gd. Perpendicular anisotropy of GdxFe(100-x) was confirmed 

for all the samples. Moreover, we observed change in the magnetization direction to 

the opposite site when reaching the compensation concentration. We used one Dia 

transition to parameterize spectra of the off-diagonal elements of the GdxFe(100-x) 

permittivity tensor in terms of microscopic theory. We assumed that the MO effect 
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comes from different probabilities of transition between an orbital singlet ground 

state and split excited state and that Gd concentration decreases this splitting. 

When investigating magnetic garnets, we started with Bix:YIGs thin films with 

various Bi concentrations and determined their full permittivity tensors at energies 

from 1.5 to 5 eV. TEM measurement confirmed that Bix:YIGs films grow uniformly 

and epitaxially on GGG. We found that bismuth substitution increases amplitudes of 

ε1r and ε1i in the measured spectral range. We observed optical transitions at 2.5, 3.2 

and 4.4 eV and the absorption edge near 2.1 eV. As expected, we found that Bi 

substitution leads to the enhancement in MOKE and Faraday effects which is crucial 

for the garnet application potential. This result is also connected to the fact that 

bismuth increases ε2r and ε2i amplitudes at their extremes significantly. We used two 

Para transitions and three Dia transition to parameterize ε2r and ε2i in terms of 

microscopic theory. We found that Bi substitution increases amplitudes of almost all 

transitions. It however lowers energy of Dia transition at 4.65 eV which most likely 

exist due to charge transfers from oxygen to octahedral Fe. We associated strongest 

Dia transitions at 2.5 eV and 3.3 eV with transitions t2(Fe3+) → t2g(Fe2+) and 

eg(Fe3+) → e(Fe2+). These are mainly responsible for the increase in MO effects. 

We attributed positive impact of Bi on these transitions to the increase in super-

exchange interaction caused by the enhancement of electronic exchange. 

As a second part of magnetic garnet research, we determined complete permittivity 

tensors of Bi1:NIGxGs and Bi2.5:NIGxGs thin films with different Ga 

concentrations at energies from 1.5 to 5.5 eV. We found that Ga substitution 

decreases amplitudes of ε1r for Bi1:NIGxGs below 4 eV and increasing them above. 

On the other hand, Ga substitution does not noticeably influence amplitudes of ε1r for 

Bi2.5:NIGxGs. We also found that Ga substitution increases absorption of 

Bi1:NIGxGs. However it decreases absorption of Bi2.5:NIGxGs. Furthermore, the 

absorption of Bi2.5:NIGxGs is almost 30% stronger  than absorption of Bi1:NIGxGs. 

We attribute this to the higher Bi concentration. When looking at MO properties, we 

found that Bi substitution increases, and Ga substitution decreases amplitudes of MO 

effects. This is connected to ε2r and ε2i amplitudes which are increased by Bi and 

decreased by Ga substitution. To explain the effect of Ga properly we parameterized 

ε2r and ε2i spectra in terms of microscopic theory. We used four Para transitions to 
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represent crystal field transitions. We also used four Dia transitions. The main 

contribution comes from Dia transitions associated with transitions t2(Fe3+) → 

t2g(Fe2+) and eg(Fe3+) → e(Fe2+), mainly responsible for the remarkable increase 

in MO effects. We found that Ga substitution is decreasing these transitions. This is 

in accordance with the assumption, that Ga is mostly substituted for Fe3+ tetrahedral, 

which is crucial for both transitions. We also found that Ga substitution lowers 

energy of much smaller Dia transition at 4.65 eV which most likely exist due to 

charge transfers from oxygen to octahedral Fe. This is in accordance with the 

assumption that Ga is in a smaller percentage also substituted per Fe3+ octahedral. 

Finally, we focused on the determination of full dielectric permittivity tensors of 

CeHfCoO thin films with different Hf concentrations in the spectral range from 1.5 

to 5.5 eV. We found that Hf content decreases ε1r amplitudes in the whole measured 

spectral range. We also observed optical bandgap energies to be shifted from 3.21 to 

4.1 eV when Hf content increased. We related these energies to O2p -> Ce4f 

electronic transitions. Similarly, we found that Hf doping decreases absorption in the 

whole measured spectral range. From this result we assumed that when is Hf 

replacing Ce in the material; it acts against optical vacancies from isolated Ce4f 

states localized within the optical bandgap, responsible for enhanced optical 

absorption. Absorption tail below 3.2 eV supported this theory and it was attributed 

to the effect of mid-gap defects. When investigating MO properties, we found that 

Faraday rotation extreme is shifting from 2.9 eV to higher energies.  Rotation values 

decreased when Hf content increased. On the other hand, ellipticity values acted in 

the opposite manner. We also found that Hf substitution decreases both, ε2i and ε2r 

amplitudes and it is shifting their maxima to higher energies in the measure spectral 

range. This was explained by magnetoelastic effects which originate from distortions 

caused by in-plane compressive strain and vary with Ce-Co content. Hf substitution 

influences this content and reduces oxygen vacancies important for CeHfCoO 

magnetism. We parameterized ε2r and ε2i spectra in terms of microscopic theory by 

the sum of Para and Dia oscillator terms. We found that the main MO contribution 

comes from Dia transitions at (1.5-1.65 eV) which refers to localized 4f states in the 

band gap and at (3.75-4.3 eV) which refers to the oxygen electronic transitions.  
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List of Abbreviations 

MO - Magneto-optical 

SE - Spectroscopic Ellipsometry  

MOKE - Magneto-optical Kerr Effect 

EMA - Effective Medium Approximation method 

MSA – Multi Sample Analysis 

MOD - Metal Organic Decomposition 

MO-SLM – Magneto-optical Spatial Light Modulator 

GGG – Gadolinium Gallium Garnet, Gd3Ga5O12 

Bix:YIGs – Bismuth substituted Yttrium Iron Garnets, Y3-xBixFe5O12 

Bi1:NIGxGs – Bismuth (1) and Gallium (x) substituted Neodymium Iron Garnets,   

                          Nd2BiFe(5-x)GaxO12. 

Bi2.5:NIGxGs - Bismuth (2.5) and Gallium (x) substituted Neodymium Iron  

                            Garnets, Nd0.5Bi2.5Fe(5-x)GaxO12 

CeHfCoO – Hafnium and Cobalt substituted Cerium Oxide, Ce(0.95-x)HfxCo0.05O(2-δ) 
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