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Abstract:

In this doctoral thesis, we study all the relevant two- and three-point Green
functions of the chiral currents and densities. Specifically, in the first part of
the thesis, we present the leading-order contributions of the QCD condensates
up to dimension six to these Green functions, obtained within the framework of
the Operator product expansion. These consist of the perturbative contribution
followed by the contributions of the quark, gluon, quark-gluon and four-quark
condensates.

In the second part, we restrict ourselves to the order parameters of the chiral
symmetry breaking in the chiral limit. We investigate them within the Chiral per-
turbation theory and Resonance chiral theory and, in order to obtain constraints
on the parameters of the effective Lagrangians, we require their high-energy be-
haviour to match OPE. As it turns out, the duplication of the lowest vector,
axial-vector, scalar and pseudoscalar resonance multiplets in the corresponding
Lagrangians is necessary.

As a special case, we study the ⟨V V P ⟩ Green function with three vector and
three pseudoscalar resonance multiplets taken into account — needless to say,
this investigation is performed on an algebraic level only. We also study the
correlation of the pion-pole contribution to the muon g−2 factor and the effective
parameter χ(r).
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Introduction

Quantum chromodynamics (QCD) is thought to be the correct theory for a de-
scription of the strong interactions in terms of the quarks and gluons — at least
the decades of undergoing various experimental checks incline us to such a con-
clusion. Its nonabelian structure, however, leads to the fact that QCD can not
be treated perturbatively at low energies and one is thus forced to proceed to use
the effective theories — the Chiral perturbation theory (ChPT) and Resonance
chiral theory (RChT).

These methods are based on effective Lagrangians that, as the field content,
take into account lowest hadronic states instead of the quarks and gluons. On
top of that, the Lagrangians usually contain a large number of unknown param-
eters and these need to be obtained in order to secure the predictability of one’s
model. To this end, one may construct the respective Green functions that can
be associated with physical processes. Using then either experimental inputs or
an expected theoretical behaviour of these objects, such as their high-energy limit
obtained within the framework of Operator product expansion (OPE), one may
be eventually able to extract some unknown parameters of corresponding effective
Lagrangians.

This doctoral thesis, based on two journal articles, [1] and [2], deals with the
above-mentioned approach. Firstly, the OPE of all the relevant two- and three-
point Green functions was studied in ref. [1]. Then, we have restricted ourselves
only to a small part of the Green functions in ref. [2], namely to ⟨V V P ⟩, ⟨V AS⟩
and ⟨AAP ⟩. Then, the contributions of resonance multiplets to these functions
have been calculated therein. Subsequently, these resonance contributions have
been then matched onto the respective OPE. Such a procedure then led to con-
straints for some of the unknown coupling constants of the effective ChPT and
RChT Lagrangians.

Outline. This thesis consists of four chapters and four appendices. After the
Introduction, a rudimentary chapter 1 follows. In section 1.1, we firstly portray
a brief historical background behind the theory of strong interactions. Then, we
follow with a qualitative description of the Quantum chromodynamics, Chiral
perturbation theory and Resonance chiral theory in sections 1.2, 1.3 and 1.4,
respectively.

Chapter 2 deals with the framework of Green functions. In detail, the con-
cepts of Green functions of chiral currents is introduced in section 2.1. Then, we
describe their Ward identities in 2.2, classification in 2.3 and tensor decomposi-
tion in 2.4. It is important to notice that throughout this chapter, we provide a
set of useful informations needed for forthcoming parts of the thesis, nevertheless,
we tacitly assume and acquaintance with section 2 and appendices E and F of
our paper [1].

In chapter 3, we comment on the well-known properties of the vacuum struc-
ture of QCD and add several new observations obtained in our article [1]. Specif-
ically, in sections 3.1, 3.2 and 3.3, we discuss the presence of condensates in the
QCD vacuum, introduce the concept of Operator product expansion and comment
on a greatly useful framework of the Fock–Schwinger gauge. Then, in section 3.4,
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we discuss the quark propagator in external gluon field in both the coordinate
and momentum representations. Finally, section 3.5 summarizes the propagation
formulae that we have derived in article [1] and that were used to study the OPE
of all the relevant two- and three-point Green functions therein.

In the last chapter 4, we build upon our paper [2] and discuss results obtained
therein. In detail, sections 4.1 and 4.2 contain a description of the procedure
of extending the respective Lagrangians for multiplets of resonances with higher
mass and, consequently, the corresponding results of resonance contributions to
the ⟨V V P ⟩, ⟨V AS⟩ and ⟨AAP ⟩ Green functions are presented. Then, the match-
ing of these results onto the respective OPE and ChPT contributions are given
in sections 4.3 and 4.4, respectively. Finally, section 4.5 deals with a study of a
situation with three vector and three pseudoscalar resonances taken into account
in the case of the ⟨V V P ⟩ Green function, and refers to several phenomenological
examples studied in detail in [2].

The four appendices then follow. In appendix A, we provide a short note on
the Fourier transform used in ref. [1], while appendix B extends the discussion
by providing a look beyond the chiral limit within the OPE. Finally, appendices
C and D refer to the full versions of articles [1] and [2] attached to this thesis.

Original results. Results presented in this thesis are based on author’s journal
articles [1, 2], accompanied by the conference proceedings [3, 14], to which we refer
throughout this thesis extensively.1

Notation. The notation used throughout this thesis corresponds to the one
used in refs. [1, 2]. For clarity, we present below only some of the definitions or
conventions that truly needs to be reminded. If necessary, a ref. [16] shall be
consulted.

• Einstein’s summation convention is employed throughout this thesis.

• SU(3) generators T a (a = 1, . . . , 8) are defined as halves of the Gell-Mann
matrices λa,

T a =
1

2
λa , Tr (T aT b) =

1

2
δab .

These generators satisfy the following (anti)commutation relations:

[T a, T b] = ifabcT c , {T a, T b} = 1

3
δab + dabcT c ,

where dabc is the totally symmetric SU(3) group invariant and fabc is the
totally antisymmetric SU(3) structure constant.

• Dirac representation of gamma matrices is considered. We use

ε0123 = +1 ,

the fifth Dirac matrix defined as

γ5 = iγ0γ1γ2γ3

1To complete the author’s contributions, a study text [15] can be mentioned as well. This,
however, is not related to the concepts studied in this thesis whatsoever.
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and the commutator is taken to be

σµν =
i

2
[γµ, γν ] .

• A short-hand designation for the contractions of Levi-Civita tensor with
the components of momenta is used:

εµνα(p) ≡ εµναβpβ , εµν(p)(q) ≡ εµναβpαqβ .

• Feynman’s “slash notation” for an arbitrary four-vector pµ is employed:

/p ≡ pµγ
µ .
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1. Theory of strong interactions

Without the four fundamental interactions, the universe would not be able to
exist. One may thus argue that the gravitational, weak, electromagnetic and
strong interactions are the pillars that not only support but actually allow an
existence of nature and life in it as we know it. It would be meaningless to dispute
about what interaction is the most significant one — they all are irreplaceable
and equally important, although each of them dominates on its own domain, be
it either a typical length scale of relevance or a type of particles they act on.

Nevertheless, one can safely say that the strong interaction represents a force
which behaviour is rather specific in comparison to the others. Such a peculiarity
is given by the fact that the strength of the strong interaction grows with the
distance. Such a feature confines the quarks into hadrons and, consequently,
allows atomic nuclei to hold together.

In this section, we briefly describe the history behind the theory of strong in-
teractions and then discuss the framework of quantum chromodynamics. Then,
we present a pedagogical introduction into effective field theories of strong inter-
actions at low energies, i.e. the Chiral perturbation theory and Resonance chiral
theory.

1.1 Historical introduction

The 1950s and 1960s represented the golden age of particle physics due to a
tremendous progress in producing and detecting new particles — the hadrons,
as they were named later by Lev Borisovich Okun in 1962. Such a progress was
possible not only because of the invention of the bubble chamber in 1952 by
Donald A. Glaser [17] but also because of the significant improvements made on
the spark chamber in 1955 by Paul-Gerhard Henning.2

Observation of a large quantity of particles indicated that not all of them
can be fundamental, i.e. elementary — that is, further indivisible. Physicist thus
began to sort the particles. Firstly, they were classified according to their charge
and isospin by Eugene Wigner and Werner Heisenberg, whilst Tadao Nakano,
Kazuhiko Nishijima and Murray Gell-Mann proposed to categorize them accord-
ing to their strangeness [18, 19, 20]. The observed particles were divided into
groups with similar properties. Such a classification, named the “eightfold way”,
was proposed by Gell-Mann and Yuval Ne’eman in 1961 [21, 22]. In detail, such
a scheme is based on the symmetry group SU(3) and the hadrons are members of
specific representations — multiplets — of such a group. In detail, the baryons
occupy octets and decuplets, while the mesons exist in octets and singlets.3

2Improvements of what is now called a spark chamber have been made, however, already
since the late 1940s and, in a way, were a variation of the first particle detector constructed by
Hans Geiger and Walther Müller in 1928.

3Let us note that the name “baryon” was introduced by Abraham Pais in 1953. On the other
hand, the term “meson” was introduced already in 1934 by Hideki Yukawa who used it as a
denomination for a particle that was believed to be a carrier of strong force inside atomic nuclei
[23]. The first candidate for such a particle was observed in 1936 by Carl David Anderson and
Seth Henry Neddermeyer [24]. However, although this “µ-meson” had a similar mass as the
one expected by Yukawa, it turned out that it does not interact strongly and, therefore, could
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Indeed, nine baryon resonances with spin 3/2 were already observed as of
1961. It was obvious that they can not form an octet — rather, as it was sug-
gested by Gell-Mann and Ne’eman, they should belong to the decuplet. However,
one particle was missing. Based on the mass differences inside the hypothetical
decuplet, they predicted the existence of the Ω− baryon with a mass approxi-
mately 1680MeV. Such a missing piece was indeed found in 1964 [26] and the
discovery was an incredible triumph of particle physics of that age.

In 1964, Gell-Mann and George Zweig tried independently to explain the
structure of the hadron multiplets by assuming that the baryons and mesons are
bound states of three hypothetical particles that form an SU(3) triplet [27, 28, 29].
Whilst Gell-Mann used the term “quarks” for such elementary particles, Zweig
called them “aces” — as we now know, the former denomination got generally
accepted and ensured its place in history.4

As we have already mentioned, the Gell-Mann’s model postulated the exis-
tence of three fundamental quarks: u (“up”), d (“down”) and s (“strange”) with
electric charges 2/3, −1/3 and −1/3 of the one of the positron, respectively.
The internal structure of the proton could thus be explained as a bound state
schematically denoted as uud, the one of the neutron as udd etc.

There was, however, problem with the above-mentioned Ω− baryon since it
was assumed to be a quark combination of the type sss. The Ω− baryon is
the lightest particle with three strange quarks and, therefore, the ground state
of such a combination. Since its spin is 3/2, the spins of the three quarks are
parallel. The wave function of the Ω− baryon is then given by a product of its
spin and quark parts and thus seems to be fully symmetrical — which, however,
contradicts the Pauli’s exclusion principle!5

Obviously, there must be another quantum number the quarks carry and that
acquire three different values in order to have the wave function antisymmetric.
Such a problem has been studied extensively between 1964 and 1971 by Oscar
Greenberg, Moo-Young Han, Yoichiro Nambu, Gell-Mann and Harald Fritzsch
[32, 33, 34] and the solution was eventually found — it was proposed that quarks
have an additional SU(3) gauge degree of freedom, the so-called colour charge
that acquires the “values” of r (“red”), g (“green”) and b (“blue”). Further,
it was concluded that the wave functions of hadrons are singlets of the colour
group.6

A concept of colour charge has been experimentally confirmed beyond rea-
sonable doubt since then. One of the evidences is the measurement of the cross
section of the e+e− annihilation at high energies. In fact, it can be shown that

not be the particle responsible for holding nuclei together. Later on, it was realized that the
Anderson’s particle is actually the now-called muon. The first genuine meson, the “π-meson”
or simply “pion”, was finally observed in cosmic rays in 1947 by Cecil Powell, Hugh Muirhead,
César Lattes and Giuseppe Occhialini [25].

4To be thorough, one must note that there was another effort to explain the internal structure
of some of the hadrons preceding the one of Gell-Mann and Zweig. It is the Sakata model,
introduced by Shoichi Sakata in 1956 [30]. Needless to say, the model proved to be incorrect
since the proton, neutron and Λ-baryon were assumed to be fundamental particles that the
other hadrons were consisted of.

5Needless to say, such a problematic property concerned also the doubly-charged ∆++

baryon, which is the state of three u-quarks and that was observed already in 1951 [31].
6The problem of an additional quantum number of quarks was also discussed already in 1965

by Nikolay Bogolyubov, Boris Struminsky and Albert Tavkhelidze [35, 36].
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the following relation holds:

σtot(Ec.m.; e
+e− → hadrons)

σtot(Ec.m.; e+e− → µ+µ−)

Ec.m. ≫mf−−−−−−→ 3
∑︂
f

e2f , (1.1)

where the sum runs over all the quark flavours (f being u, d, s etc.) with masses
mf and electric charges ef , that are kinematically accessible at the centre-of-
mass energy Ec.m., and where the factor of 3 in front of the sum stands for three
colours of each quark flavour. The validity of the relation above has been indeed
confirmed by many experiments for various regions of available energy.

Naturally, experimentalists kept searching for a direct observation of the
quarks themselves — to no avail, nonetheless. It was often pointed out by
Gell-Mann that quarks might be purely mathematical constructs and not real
particles. On the other hand, Richard Feynman claimed that high-energy ex-
periments indeed show quarks as real particles — even though he called them
“partons” [37].7

In 1972 and 1973, Fritzsch, Gell-Mann and Heinrich Leutwyler interpreted
the colour group as a gauge group [38, 39]. The corresponding gauge theory,
the quantum chromodynamics (QCD), introduces an octet of massless colour
gauge vector bosons, the gluons, that generate the interactions. The framework
of QCD is based on the Yang–Mills theory developed in 1954 by Chen Ning Yang
and Robert Mills [40]. Because of this, the gluons can interact also with each
other, which was a bit unusual at the time — indeed, recall that photons in QED
do not posses such a property.

The above-mentioned self-interaction of gluons has a major consequence. It
makes the QCD to be asymptotically free, which means that the value of the
strong coupling constant decreases as the energy increases. In other words, the
quarks and gluons behave as free particles at high energies and, on the other
hand, are confined inside the hadrons at low energies. Such a behaviour was
discovered by David Gross, Frank Wilczek and David Politzer in 1973 [41, 42].8

“Show must go on”, as would classic say — and it has gone. The discovery of
the asymptotic freedom commenced a rapid development not only in QCD but
in the quantum field theory as well. Here, however, we can not spend much time
and space by the other fascinating stories that followed (or slightly preceded to
it) — theoretical predictions and the discoveries of the heavy c, b and t quarks,
observations of jets etc. Nevertheless, to make the tale complete as much as
possible for our purposes, let us finally remark that not only the quarks, but
also the gluons have been experimentally found as well — their existence was
proven by the observation of the three-jet event by the TASSO experiment at the
PETRA accelerator at DESY [45].

By this we conclude our short historical introduction and move onto the the-
oretical description of QCD in detail.

7The distinction between the quarks and partons can now be understood only as a subtlety
in nomenclature, however, both Gell-Mann and Feynman viewed the concept of “particles” and
their fundamental properties slightly differently.

8Interestingly enough, the asymptotic freedom of the Yang–Mills theory was discovered even
before that — by Iosif Benzionovich Khriplovich in 1969 [43] and Gerard ’t Hooft in 1972 [44].
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1.2 Quantum chromodynamics

From the historical entrée presented above, one can be sure of the fact that the
quarks and gluons are real physical objects. Constructing a theory, governing
interactions between them, is the natural next step. As we know already, such a
theory indeed exists — the Quantum chromodynamics, which validity has been
proved by many experimental verifications. In what follows, we shortly comment
on the ideas leading to the QCD Lagrangian and consequences following from the
nonabelian nature of this theory.9

Quarks and gluons. The Quantum chromodynamics (QCD) is a local non-
abelian gauge theory of strong interactions. It is based on the colour SU(3)
symmetry group as the underlying gauge group, with the fundamental degrees of
freedom being the quarks and gluons.

In such a theory, the quarks qf (x) are Dirac spinors and transform under the
fundamental representation of the SU(3) group. On top of that, it is theoretically
and experimentally confirmed that there are six flavours of quarks. The respective
flavour index f thus acquires the following “values”:

f = u, d, s, c, b, t , (1.2)

with, in addition to the quarks introduced in the preceding section, c (“charm”),
b (“bottom”) and t (“top”) being quarks with electric charges 2/3, −1/3 and 2/3
of the one of the positron, respectively. To this end, each of the above-mentioned
quark flavours is the colour triplet, with the colour indices denoted explicitly as

qf (x) =

⎛⎜⎜⎜⎝
qrf (x)

qgf (x)

qbf (x)

⎞⎟⎟⎟⎠ , (1.3)

and with the spinor indices being tacitly omitted for simplicity. In what follows,
however, we shall restrain ourselves from writing down any indices apart from
the flavour ones for clarity.10

The quarks differ, among other quantum numbers, mainly in their masses.
One can thus separate the light and heavy quarks with respect to the typical
hadronic scale of ΛH = 1GeV:

mu,md,ms ≪ ΛH < mc,mb,mt . (1.4)

For our purposes, we will neglect any contributions from the heavy quarks and
restrict ourselves only to the three light ones.

Finally, there are eight gluon fields, denoted as Aa
µ(x) for a = 1, . . . , 8, that

are Lorentz vectors. For each gluon field there exist the corresponding generator
T a that, in the fundamental representation, is given as a half of the Gell-Mann
matrix λa.

9For a detailed introductory literature on QCD, apart from the original scientific papers
cited in the preceding section, one may also rely on a large number of introductory books or
review articles. For such a purpose, we refer the reader to [46, 47, 48, 49, 50, 51].

10The reason for such a simplification is purely aesthetic. Having to be meticulous, the quark
field should be generally denoted as qαi,f (x) with the spinor (i = 1, 2, 3, 4), colour (α = r, g, b)
and flavour (f) indices shown explicitly. This would, however, make the relations a bit chaotic.
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QCD Lagrangian. Having identified the field content of the theory, let us
write down the QCD Lagrangian.11 It reads

LQCD =
∑︂
f

iqf (x) /∇qf (x)−
1

4
Ga

µν(x)G
aµν(x)⏞ ⏟⏟ ⏞

L(0)
QCD

−
∑︂
f

mfqf (x)qf (x)⏞ ⏟⏟ ⏞
L(mass)

QCD

, (1.5)

which we have split into two parts — the first one being the Lagrangian in the
chiral limit L(0)

QCD and the second one being the mass term L(mass)
QCD — and omitted

terms that are not relevant for our discussion.12 The meaning of the symbols in
the individual terms is as follows.

a) In order to ensure the QCD Lagrangian to be invariant under the local
SU(3) colour gauge symmetry, we have introduced the covariant derivative
in the fundamental representation,

∇µ = ∂µ + igsAµ(x) , (1.6)

with gs being the strong coupling constant and Aµ(x) = Aa
µ(x)T

a stands for
the octet of gluons. In (1.5), we have conveniently utilized the Feynman’s
slash notation, i.e. /∇ ≡ ∇µγ

µ.

b) The second term is responsible for the dynamics of the gluons. To this end,
we have defined the gluon field strength tensor Gµν(x) = Ga

µν(x)T
a as

[∇µ,∇ν ] = igsGµν(x) , (1.7)

for which one easily obtains

Gµν(x) = ∂µAν(x)− ∂νAµ(x) + igs[Aµ(x),Aν(x)] , (1.8)

i.e.
Ga

µν(x) = ∂µAa
ν(x)− ∂νAa

µ(x)− gsf
abcAb

µ(x)Ac
ν(x) . (1.9)

We take the liberty to point out that a contraction of two gluon field
strength tensors is not gauge-invariant, however, its colour trace is — which
is the reason of the form of such a term.

c) Finally, in accordance with section 1.1, we have denoted mf as the individ-
ual quark masses. For future purpose, it is useful to define the mass matrix
M as

M = diag(mu,md,ms) . (1.10)
11Strictly formally, LQCD should be called the “Lagrangian density”, however, we will prefer

a commonly used term “Lagrangian” instead — this applies throughout the whole thesis.
12We have omitted the gauge-fixing term and the term incorporating the Faddeev–Popov

ghosts. In this regard, it is also important to point out that the gauge symmetry permits an
addition of another term which we have neglected, that is the so-called theta-term

θ
g2s

64π2
Ga

µν(x) ˜︁Gaµν(x) ,

where ˜︁Gaµν(x) = 1
2ε

µναβGa
αβ(x) is the dual gluon field strength tensor. This term, even though

gauge-invariant and renormalizable, violates both P and CP symmetry. In fact, the physical
CP -violating angle is θ = θ + arg detM, withM being the mass matrix (see below), and the
experimentally obtained upper limit is |θ| ≤ 10−10 [52, 53].
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Equations of motion. Having the Lagrangian (1.5), the equations of motion
can be obtained using the Euler–Lagrange equations. In what follows, we shall
consider only the part of the QCD Lagrangian that is relevant in the chiral limit,
i.e. L(0)

QCD.
The equation of motion for the quark field corresponds to the well-known

Dirac equation:

/∇qf (x) = 0 , (1.11a)

qf (x)
←−
/∇ = 0 , (1.11b)

with /∇ acting to the right, as usual, and
←−
/∇ acting to the left.

On the other hand, the equation of motion for the gluon field reads

(DµG
µν(x))a = gs

∑︂
f

qf (x)γ
νT aqf (x) , (1.12)

with the T a matrix acting in the colour space and where the covariant derivative
in the adjoint representation is

(Dµ)
ab = ∂µδ

ab + gsf
abcAc

µ(x) . (1.13)

Running coupling. Instead of the strong coupling gs, one usually considers
another parameter, that is

αs =
g2s
4π

. (1.14)

Then, in the perturbative regime of QCD, expressions for observables of the
theory are given in terms of the renormalized coupling constant αs(µ

2
R), which

depends on an unphysical renormalization scale µR. If the renormalization scale
is taken close to the scale of momentum transfer Q for a given process, the
parameter αs(µ

2
R ≈ Q2) represents the effective strength of the strong interaction

in the said process.
The dependence of the strong coupling constant on the renormalization scale

is given by the so-called renormalization group equation, through which one also
defines the QCD β-function as

µ2
R

dαs

dµ2
R

= β(αs) , (1.15)

with

β(αs) = −α2
s

∞∑︂
n=0

βnα
n
s , (1.16)

where the coefficients βn are given by the contributions of corresponding Feynman
diagrams at O(αn+1

s ). For example, at one-loop level, one has [41, 42]13

β0 =
33− 2Nf

12π
, (1.17)

13For a curious reader, we reproduce here also the coefficient β1 corresponding to the two-loop
contribution:

β1 =
153− 19Nf

24π2
.

Starting with the three-loop coefficient β2, one founds a presence of the dependence of the
coefficients on the renormalization scheme. Also, for an extensive overview of the running of
the QCD coupling constant, see ref. [54] or [55] and references therein.
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where we tacitly assume the existence of three colours of quarks and Nf being
the number of their flavours. This then leads to

αs(Q
2) =

1

β0 ln

(︃
Q2

Λ2
QCD

)︃ , (1.18)

where ΛQCD ≈ 200MeV.
One can thus notice that at low momentum transfers, the strong coupling

grows rapidly and the QCD becomes nonperturbative. On top of that, such a
behaviour at low energies leads to the confinement — the effect that does not allow
separating single quarks or gluons and, rather, making them hidden inside the
colourless states, i.e. the hadrons.14 On the other hand, as the momentum transfer
increases, the strong coupling decreases and the QCD is indeed perturbative, with
quarks and gluons then interacting weakly — this is then called the asymptotic
freedom.15

Chiral symmetry. Let us carry on in the investigation of the QCD Lagrangian
in the chiral limit, i.e. for the quark masses set to zero. Then, the Lagrangian
L(0)

QCD is invariant under the SU(3) colour gauge symmetry and, due to the elim-
ination of the mass term, also under the U(3) flavour symmetry.

In order to examine the global symmetries of L(0)
QCD, we introduce the projec-

tion operators16

PL,R =
1

2
(1± γ5) , (1.19)

that decompose the quark field qf (x) into its chiral components qfL(x) and qfR(x),

qfL,R
(x) = PL,R qf (x) , (1.20)

with
qf (x) = qfL(x) + qfR(x) . (1.21)

Then, the QCD Lagrangian in the chiral limit can be rewritten to

L(0)
QCD =

∑︂
f

(︁
iqfR(x) /∇qfR(x) + iqfL(x) /∇qfL(x)

)︁
− 1

4
Ga

µν(x)G
aµν(x) , (1.22)

which is invariant not only under the above-mentioned U(3) flavour symmetry,
but also under the independent transformations of the chiral components,

qfL,R
(x)→ UL,R(x)qfL,R

(x) , (1.23)

14In such a context, the parameter ΛQCD is called the characteristic scale of confinement.
15On an algebraical level, the asymptotic freedom can be traced back to the minus sign in

front of eq. (1.16) and the positivity of the coefficient (1.17) for the number of quark flavours
in the Standard model. Equivalently, on the Lagrangian level, it is caused by the presence of
the self-interaction of the gluons — upon substituting (1.9) into the QCD Lagrangian (1.5),
one obtains the following three- and four-gluon interaction terms:

L(0)
QCD ∋

1

2
gsf

abc(∂µAa
ν − ∂νAa

µ)Ab µAc ν − 1

4
g2sf

abcfadeAb
µAc

νAd µAe ν .

16These projection operators are idempotent (P 2
L = PL, P

2
R = PR), orthogonal (PLPR = 0,

PRPL = 0) and satisfy the completeness relation (PL + PR = 1).
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where UL,R are unitary 3×3 matrices. Then, the Lagrangian (1.22) possesses the
classical U(3)L × U(3)R symmetry.

Chiral currents and densities. The element of the U(3) group can be di-
vided into the SU(3) component and the U(1) phase part. Then, in order to be
consistent with the notation chosen in our work [1], let us consider, instead of the
colour triplet of a single-flavour quark field (1.3), rather the flavour triplet q(x):

q(x) =

⎛⎜⎜⎜⎝
u(x)

d(x)

s(x)

⎞⎟⎟⎟⎠ . (1.24)

As a consequence of the Noether’s theorem applied to the Lagrangian (1.22),
there are eighteen conserved currents on the classical level, associated with the
above-mentioned transformations of left- and right-handed quark components.
The SU(3) currents (a = 1, . . . , 8) are17

V a
µ (x) = q(x)γµT aq(x) , (1.25a)

Aa
µ(x) = q(x)γµγ5T

aq(x) , (1.25b)

that transform as vector and axial-vector under parity transformation, respec-
tively, whilst the U(1) singlet currents read

Vµ(x) = q(x)γµq(x) , (1.26a)

Aµ(x) = q(x)γµγ5q(x) . (1.26b)

At the quantum level, however, the situation is a bit different — after quan-
tization, the conservation of the axial-vector current (1.26b) is spoiled and the
symmetry is not preserved anymore because of the presence of the anomaly,

∂µAµ(x) =
3g2s
32π2

εµνρσGa
µνG

a
ρσ , (1.27)

due to which the QCD Lagrangian in the chiral limit (1.22) is invariant under
the chiral group SU(3)L × SU(3)R × U(1)V .

Finally, as the last remark and without further discussion, let us add that it
turns out to be useful to define also the SU(3) scalar and pseudoscalar densities,

Sa(x) = q(x)T aq(x) , (1.28a)

P a(x) = iq(x)γ5T
aq(x) , (1.28b)

and, equivalently, the U(1) singlets

S(x) = q(x)q(x) , (1.29a)

P (x) = iq(x)γ5q(x) . (1.29b)

17Let us also point out that in (1.25a)-(1.25b) and (1.28a)-(1.28b), the matrix T a acts in the
flavour space.
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Explicit symmetry breaking. Let us now consider the mass term L(mass)
QCD of

the QCD Lagrangian (1.5). Although we have neglected it up to this point, its
presence is of great interest. Indeed, once the masses of the quarks are considered
to be nonzero, the symmetry is explicitly broken.

The symmetry of the theory is affected by the various scenarios of mutual
sizes of the quark masses. We present some of them in the following itemized list,
inspired by ref. [56].

a) mu = md = ms = 0: the octet of vector and axial-vector currents are
conserved and the symmetry group is SU(3)L × SU(3)R × U(1)V .

b) mu = md = ms ̸= 0: vector current is conserved and the Lagrangian is
invariant under the symmetry SU(3)V × U(1)V .

c) mu = md = 0: the symmetry is SU(2)L × SU(2)R × U(1)SV × U(1)V , with
U(1)SV being the conservation of the strangeness.

d) mu = md ̸= 0: the chiral limit of the lightest quarks with the symmetry
SU(2)V × U(1)SV × U(1)V .

e) For general values of the masses mu, md, ms, there is no flavour symmetry
except for U(1)V , which represents the conservation of the baryon number.

To this end, let us point out that an addition of the quark masses to the
Lagrangian makes the currents (1.25a)-(1.26b) not conserved — for details, see
(2.9a) and (2.9b).

Spontaneous symmetry breaking. In the chiral limit, the QCD symmetry
group SU(3)L× SU(3)R×U(1)V is spontaneously broken to SU(3)V ×U(1)V due
to the presence of the order parameter — the quark condensate.

According to the Goldstone theorem, to each generator, which does not anni-
hilate the vacuum state, there corresponds one massless Goldstone boson [57, 58].
Therefore, an octet of these particles appears in the QCD spectrum of QCD. As
we will see in the next section, such a consequence turns out to be crucial for our
understanding of the behaviour of QCD at low energies.

1.3 Chiral perturbation theory

As we have suggested in the previous section, an approach to the description
of the strong interaction with the quarks and gluons as the force carriers is no
longer valid at low energies due to the increase of the strong coupling, which thus
spoils the perturbative behaviour of QCD. To be able to qualitatively describe the
hadronic spectrum below approximately 2GeV, one is thus required to introduce
an effective field theory with another relevant degrees of freedom — the mesons
and baryons. Such a theory, however, is not known from first principles and the
situation is further complicated by the presence of the mass gap that separates
the octet of pseudoscalar mesons from the rest of the hadronic spectrum.

Restricting ourselves to the energy region below the mass of the first hadronic
resonance, i.e. the ρ(770) meson, the strong interaction can then be described by
the means of an effective theory called the Chiral perturbation theory (ChPT)
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[59, 60, 61]. The ChPT is built on the account of the spontaneous chiral symmetry
breaking

G ≡ SU(Nf )L × SU(Nf )R → H ≡ SU(Nf )V , (1.30)

of the QCD Lagrangian with Nf massless quarks, due to which N2
f −1 Goldstone

bosons arise in the coset space G/H as the effective degrees of freedom of the
theory. These are then associated with the pseudoscalar mesons as the lowest
states of the hadronic spectrum. In the case of the two-flavour ChPT, i.e. for
Nf = 2, only the triplet of pions is taken into account. However, for Nf = 3, one
needs to include also the kaons and the eta meson.

Chiral operators. Following the formalism of building effective Lagrangians
with spontaneous symmetry breaking proposed in [62, 63], one may utilize a
suitable way of parametrization of the Goldstone bosons provided therein.

Let us denote ϕ as the Goldstone bosons in the coset space G/H and a cor-
responding coset representative as uL,R(ϕ). The transformation under a chiral
transformation g = (gL, gR) ∈ G is given by

uL(ϕ)
G−→ gLuL(ϕ)h

†(g, ϕ) , (1.31a)

uR(ϕ)
G−→ gRuR(ϕ)h

†(g, ϕ) , (1.31b)

where h(g, ϕ) ∈ H is the compensator field. In fact, one may take the choice of
the coset representative such that

uR(ϕ) = u†
L(ϕ) ≡ u . (1.32)

A suitable form of the above-mentioned parametrization is the exponential
one, in which the Goldstone bosons are incorporated as

u = exp

(︃
i√
2F

ϕ

)︃
, (1.33)

where the low-energy parameter F is the pion decay constant and, in the case of
Nf = 3,

ϕ =
√
2ϕaT a =

⎛⎜⎜⎜⎜⎜⎜⎝
π0

√
2
+

η8√
6

π+ K+

π− − π0

√
2
+

η8√
6

K0

K− K
0 −2η8√

6

⎞⎟⎟⎟⎟⎟⎟⎠ . (1.34)

Mesonic chiral Lagrangians can be constructed by taking traces of products
of chiral operators X that either transform as [59, 60, 61, 62, 63]

X
G−→ h(g, ϕ)Xh†(g, ϕ) (1.35)

or remain invariant under chiral transformations. It can be shown that the fol-
lowing operators fulfill such a requirement and, in fact, form a complete set. They
are as follows:

uµ = i
[︁
u†(∂µ − irµ)u− u(∂µ − iℓµ)u

†]︁ , (1.36a)

χ± = u†χu† ± uχ†u , (1.36b)

fµν
± = uF µν

L u† ± u†F µν
R u . (1.36c)
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In the operators above, we have made a use of the following quantities: ℓµ

and rµ are the left and right external sources,

χ = 2B0(s+ ip) , (1.37)

s and p are the scalar and pseudoscalar sources, B0 is a constant related to the
quark condensate and

F µν
L = ∂µℓν − ∂νℓµ − i [ℓµ, ℓν ] , (1.38a)

F µν
R = ∂µrν − ∂νrµ − i [rµ, rν ] , (1.38b)

are the left and right nonabelian field strength tensors. It is also convenient to
introduce the operator

hµν = ∇µuν +∇νuµ (1.39)

in which the covariant derivative is defined by

∇µ • = ∂µ •+[Γµ, •] , (1.40)

and the chiral connection reads

Γµ =
1

2

[︁
u†(∂µ − irµ)u+ u(∂µ − iℓµ)u

†]︁ . (1.41)

Chiral Lagrangian. Similarly to any other effective field theory, a Lagrangian
is organized according to its power counting. Here, the ChPT Lagrangian can
be written down schematically as a series of terms with an increasing number of
derivatives and quark masses, ordered by powers of a generic momentum p. As of
the day of completion of this work, the chiral Lagrangian is known up to O(p8):

LChPT = L(2)
ChPT⏞ ⏟⏟ ⏞
LO

+L(4)
ChPT + L(4)

WZW⏞ ⏟⏟ ⏞
NLO

+L(6)
ChPT + L(6)

WZW⏞ ⏟⏟ ⏞
NNLO

+L(8)
ChPT⏞ ⏟⏟ ⏞

NNNLO

+ . . . , (1.42)

where we have denoted which Lagrangians belong to the leading order (LO),
next-to-leading order (NLO) etc.

Instead of writing down all the Lagrangians in detail, which would not be
either desirable or well-arranged, we rather provide a brief commentary for each
of them and refer the reader to the original papers where the necessary details
can be found comfortably.18 Also, the Lagrangians relevant specifically for our
purposes have been discussed concisely in ref. [2], see section 2.1 therein.

a) The ChPT Lagrangian of the lowest order, L(2)
ChPT, was introduced in [60,

61] and depends only on two parameters: the pion decay constant F and
the parameter B0. Due to its remarkable simplicity, stemming from basic
properties of current algebra, we make an exception and present its form:

L(2)
ChPT =

F 2

4
⟨uµu

µ + χ+⟩ . (1.43)

18We strictly follow the widely accepted notation so as the reader can compare it with the
literature without confusion.
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b) The NLO Lagrangian L(4)
ChPT was derived in [60, 61] also and, contrary to

the previous one, is already a bit complicated. Usually, it is presented in
a form consisted of ten terms with the couplings L1, . . . , L10. Sometimes,
however, another terms are included — these are the terms proportional
to constants L11 and L12 that vanish when the equations of motion are
employed, and the terms proportional to H1 and H2 that are needed only
for the renormalization.

c) The another NLO ChPT Lagrangian L(4)
WZW is actually the leading-order

contribution of the pure Goldstone-boson part of the odd-intrinsic parity
sector and its parameters are set entirely by the chiral anomaly. Such a
Lagrangian was introduced in [64] upon the previous work presented in
ref. [65] — due to which it is usually called as the Wess–Zumino–Witten
Lagrangian.

d) The NNLO Lagrangian L(6)
ChPT was studied in [66, 67] and, in SU(3), it

consists of 94 terms.

e) A classification of a minimal set of independent terms of the anomalous

NNLO ChPT Lagrangian L(6)
WZW was initiated in [66, 68] and, according to

[69, 70], there are 23 terms in SU(3) in total.

f) Finally, the present state of the art is concluded by the recently-obtained

NNNLO Lagrangian L(8)
ChPT, derived in ref. [71]. In SU(3), it contains 1254

terms in total.

1.4 Resonance chiral theory

Considering the large-Nc limit, an effective theory of QCD for an intermediate
energy region, that also satisfies all symmetries of the underlying theory, can be
constructed. Such a theory is the Resonance chiral theory (RChT) and is relevant
for energies Mρ ≤ E ≤ 2GeV [72].

RChT increases the number of degrees of freedom of ChPT by including mas-
sive U(3) multiplets of vector V (1−−), axial-vector A(1++), scalar S(0++) and
pseudoscalar P (0−+) resonances, denoted generically as a nonet field R that can
be decomposed into singlet R0 and octet Ra [72, 73]:

R =
R0√
3
+
√
2RaT

a . (1.44)

A procedure of constructing the RChT Lagrangian was presented in detail
in refs. [72, 73] and summarized also in [74]. We thus refrain ourselves from
going into unnecessary details here and provide only a brief summary. To this
end, a construction of the RChT Lagrangian is based upon the single resonance
approximation, in which only the lightest multiplets of resonances are accounted
for. In such an approach, the Goldstone bosons are coupled to massive U(3)
multiplets. Then, the construction follows the path of building operators that
transform similarly to (1.35) — in our case, we desire such tensors to transform
as

X
G′
−→ h(g, ϕ)Xh†(g, ϕ) , (1.45)
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with
G′ ≡ U(3)L × U(3)R . (1.46)

Within the large-Nc approach, there is no limit to the number of resonances
that can be included in the effective Lagrangian. We can thus construct the
RChT Lagrangian as an expansion in the number of resonance fields, i.e. [72]

LRChT = LChPT+L(kin)
R1R1

+
∑︂
R1

LR1 +
∑︂
R1, R2

LR1R2 +
∑︂

R1, R2, R3

LR1R2R3 + . . . , (1.47)

with the kinetic term given as

L(kin)
R1R1

= −1

2
⟨∇µRµν∇αR

αν⟩+ 1

4
M2

R⟨RµνR
µν⟩+ 1

2
⟨∇αR′∇αR

′⟩ − 1

2
M2

R′⟨R′R′⟩ ,
(1.48)

in which we have denoted R = V,A and R′ = S, P for clarity.
The individual terms of the Lagrangian (1.47) can also be classified by the

chiral order, for which they contribute after integrating the resonances out. Then,
the resonance Lagrangian can be schematically written down as

LRChT = L(4)
RChT + L(6)

RChT + . . . . (1.49)

We alert the reader that the vector and axial-vector resonances are spin-one
particles so there is a freedom of choice which formalism one uses to describe
them.19 As examples, we mention the Proca (vector) formalism [75] or the first-
order formalism [76, 77]. In our previous work [2], however, we have employed
the antisymmetric tensor formalism and in what follows, we briefly present the
respective Lagrangians.

a) The couplings of the lowest massive U(3) multiplets with the pseudoscalar
fields and external sources in the leading order of 1/Nc are given by the
linear part of the interaction resonance Lagrangian (1.49), i.e. [72]

L(4)
RChT =

FV

2
√
2
⟨Vµνf

µν
+ ⟩+

iGV

2
√
2
⟨Vµν [u

µ, uν ]⟩+ FA

2
√
2
⟨Aµνf

µν
− ⟩

+ cd⟨Suµuµ⟩+ cm⟨Sχ+⟩+ idm⟨Pχ−⟩+
idm 0

Nf

⟨P ⟩⟨χ−⟩ . (1.50)

b) The O(p6) Lagrangian, relevant in the odd-intrinsic parity sector, was clas-
sified for the first time in ref. [78]. Its form consists of 67 terms in total,
parameterized as20

L(6, odd)
RChT = −εµναβ

∑︂
(i,X)

κX
i ( ˆ︁OX

i )µναβ , (1.51)

19Needless to say, the solution of any calculation should be independent of used formalism.
However, since one works with perturbation theories, the calculations are performed only up to
a given order, which makes different formalisms nonequivalent with respect to each other.

20A note regarding the convention is in order here. Ref. [78] uses an opposite convention
for the Levi-Civita tensor with respect to the convention used in this thesis and in the papers
[1, 2]. So as the meaning of the corresponding coupling constants remains the same, we have
modified the respective Lagrangian (1.51) by adding the overall minus sign.
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where κX
i are the coupling constants, i being a serial number of such an

operator according to tables 1-7 presented in ref. [78] and X denotes the
relevant combination of resonance fields. In detail, the Lagrangian (1.51)
takes into account operators with the single (V , A, S, P ), double (V V ,
AA, SA, SV , V A, PA, PV ) and triple (V V P , V AS, AAP ) combinations

of resonances. As we have suggested, the individual operators ( ˆ︁OX
i )µναβ can

be found well-arranged in ref. [78], see tables 1-7 at pages 10-11 therein.21

21For a curious reader, we list here how many operators with the respective allowed combi-
nation X of resonances there actually exist. In a compact and intuitive notation of the form
(X, imax), it is as follows: (V , 18), (A, 16), (S, 2), (P , 5), (V V , 4), (AA, 4), (SA, 2), (SV , 2),
(V A, 6), (PA, 2), (PV , 3), (V V P , 1), (V AS, 1) and (AAP , 1).
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2. Framework of Green functions

In this second introductory chapter, we will summarize the basic properties of the
Green functions made of the chiral currents.22 After their formal definition, we
shall briefly discuss the relevant Ward identities that allow us to find out which
Green functions are indeed physical and which are not allowed under the certain
symmetries. Then, we will pay an attention to the decomposition of the Green
functions and a general structure of contributions of resonance multiplets.

2.1 Green functions of chiral currents

As much as the concept of Green functions is trivial and their formal definition
intuitive, they undoubtedly belong among the most important objects of quan-
tum field theory due to their both theoretical and phenomenological significance.
A canonical example may be demonstrated on the fact that the amplitudes of
physical processes can be calculated using the Lehmann–Symanzik–Zimmermann
(LSZ) reduction formula from the Green functions.

The Green functions are the vacuum expectation values of the time-ordered
products of the quantum fields. One may thus denote the n-point Green function
symbolically as

ΠO1...On(x1, . . . , xn) ≡ ⟨0|TO1(x1) · · · On(xn)|0⟩ , (2.1)

where the operators O stand for any of the currents (1.25a), (1.25b) or the den-
sities (1.28a), (1.28b), and where the symbol |0⟩ stands for the nonperturbative
QCD vacuum — which we will devote a special attention to in the next chapter.23

The Green functions of colourless sources are gauge-invariant objects and must
be then invariant also with respect to translation. Without loss of generality, the
translation invariance allows us to perform a shift by the n-th coordinate and
thus, eventually, eliminate it by setting it to zero:24

ΠO1...On(x1, . . . , xn−1, xn)

= ΠO1...On(x1 − xn, . . . , xn−1 − xn, 0)

(xn =0)
≡ ΠO1...On(x1, . . . , xn−1) . (2.2)

Such a property may not be, however, apparent immediately in practical calcu-
lations and one may resort to using a computer brute force to verify it.

The Green function, as introduced above, is quantified in the coordinate rep-
resentation. Its conversion to the momentum representation can be made by

22A Green function can be also called a “correlator”. Throughout this thesis, we will use
both terms alternately, with emphasis on a more appropriate aesthetic use in a given context.

23We will desist ourselves from writing down the vacuum state from now on, i.e. ⟨0|•|0⟩ ≡ ⟨•⟩.
24Such a shift of a coordinate is usually a very standard operation. On the other hand, as

ref. [79] argues, one needs to be careful when the correlator is made of derivative currents.
Then, one would have not been eligible to perform such a shift and set the coordinate of the
respective current into the origin from the beginning. As an example of such a situation are
the calculations of the quark loops in the external gluon field.
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applying the Fourier transform, i.e.

ΠO1...On(p1, . . . , pn−1; pn) (2.3)

=

∫︂
d4x1 · · · d4xn−1 e

−i(p1·x1+...+pn−1·xn−1)ΠO1...On(x1, . . . , xn−1) ,

where the above-mentioned translation invariance amounts to the conservation
of the four-momenta in the form

p1 + . . .+ pn−1 + pn = 0 . (2.4)

To simplify the designation of the Green functions in the text a bit, we shall
use a shortened notation of ⟨O1 · · · On⟩ with no regard as what the respective
representation of such a correlator is — which will be obvious from the context
either way. Also, we will restrict ourselves only to n = 2 and n = 3 throughout
this thesis, i.e. only the two- and three-point Green functions will be of relevance
here.

2.2 Ward identities

The Ward identities reflect the symmetry properties of a given theory on the
quantum level. Considering as an example the three-point Green functions in the
coordinate representation, their Ward identities correspond to the divergences
thereof expressed as linear combinations of the two-point correlators. In the
momentum representation, the derivative is then changed for a multiplication
with the respective four-momentum.

Fur our purpose, let us write down the formulae for the Ward identities explic-
itly for the two- and three-point Green functions. Assuming that O1(x) stands
for any of the Noether currents, which we will thus denote specifically together
with the Lorentz index as Oµ

1 (x), we have25

∂x
µ⟨TO

µ
1 (x)O2(y)⟩ = ⟨T ∂x

µO
µ
1 (x)O2(y)⟩
+ δ(x0 − y0)⟨T [O0

1(x),O2(y)]⟩ , (2.5)

∂x
µ⟨TO

µ
1 (x)O2(y)O3(z)⟩ = anomaly + ⟨T ∂x

µO
µ
1 (x)O2(y)O3(z)⟩

+ δ(x0 − y0)⟨T [O0
1(x),O2(y)]O3(z)⟩

+ δ(x0 − z0)⟨TO2(y)[O0
1(x),O3(z)]⟩ . (2.6)

Now, two quantities are left to be determined: the divergences of currents
and the equal-time commutators. The latter can be obtained easily after some
algebraical manipulations. In detail, the mutual commutators of the vector and
axial-vector currents read26

[V a
0 (t,x), V

b
µ (t,y)] = [Aa

0(t,x), A
b
µ(t,y)] = iδ(3)(x− y)fabcV c

µ (t,x) , (2.7a)

[V a
0 (t,x), A

b
µ(t,y)] = [Aa

0(t,x), V
b
µ (t,y)] = iδ(3)(x− y)fabcAc

µ(t,x) , (2.7b)

25We note that ∂x
µ ≡ ∂

∂xµ .
26This can be left to the reader as a simple exercise — one may, however, find a hint in a

useful book [50], see sections 2.3 and 2.4 therein.

22



whilst for the commutators of these currents with the scalar and pseudoscalar
densities we have

[V a
0 (t,x), S

b(t,y)] = iδ(3)(x− y)fabcSc(t,x) , (2.8a)

[Aa
0(t,x), P

b(t,y)] = −iδ(3)(x− y)dabcSc(t,x) , (2.8b)

[V a
0 (t,x), P

b(t,y)] = iδ(3)(x− y)fabcP c(t,x) , (2.8c)

[Aa
0(t,x), S

b(t,y)] = iδ(3)(x− y)dabcP c(t,x) . (2.8d)

Then, also after some algebra, the divergences of the Noether currents (1.25a)
and (1.25b) can be expressed as

∂µV a
µ (x) = iq(x) [M, T a] q(x) , (2.9a)

∂µAa
µ(x) = iq(x)γ5 {M, T a} q(x) , (2.9b)

where the mass matrixM, as given by (1.10), can be rewritten as a linear com-
bination of the Gell-Mann matrices,

M = (mu −md)T
3 +

mu +md − 2ms√
3

T 8 +
mu +md +ms

3
, (2.10)

which eventually leads to

[M, T a] = i(mu −md)f
3abT b +

i(mu +md − 2ms)√
3

f 8abT b , (2.11a)

{M, T a} = (mu −md)

(︃
1

3
δ3a + d3abT b

)︃
+

mu +md − 2ms√
3

(︃
1

3
δ8a + d8abT b

)︃
+

2(mu +md +ms)

3
T a , (2.11b)

from which one easily sees the emergence of the scalar and pseudoscalar densities
in (2.9a) and (2.9b).

To find explicit results of the Ward identities for all the relevant Green func-
tions, see subsections 2.2.1 and 2.2.2 in our paper [1], where we have derived them
in detail, i.e. for all relevant channels.

2.3 Classification

Having established the Ward identities, we may now embark on identifying the
relevant Green functions of chiral currents and densities. The total number of all
possible n-point Green functions is given as a number of all n-combinations with
repetitions from a set of k currents and densities.27 Based on the introductory
paragraphs in the previous chapter, we have two currents (vector V and axial-
vector A) and two densities (pseudoscalar P and scalar S) at disposal.

27Naturally, such a number of combinations with repetitions is determined by the binomial
coefficient (︃

n+ k − 1

n

)︃
.
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Being interested only in the total number of their possible combinations at this
stage, we have ten two-point and twenty three-point Green functions. Needless to
say, aforementioned numbers include also such Green functions, whose existence
is forbidden on the grounds of parity invariance etc. To present all the Green
functions in a clear manner, we introduce the table below.

n Green functions

2 ⟨V V ⟩ ⟨V A⟩ ⟨V S⟩ ⟨V P ⟩ ⟨AA⟩

⟨AS⟩ ⟨AP ⟩ ⟨SS⟩ ⟨SP ⟩ ⟨PP ⟩

3 ⟨ASP ⟩ ⟨V SS⟩ ⟨V PP ⟩ ⟨V V A⟩ ⟨AAA⟩

⟨AAV ⟩ ⟨V V V ⟩ ⟨SSS⟩ ⟨SPP ⟩ ⟨V V P ⟩

⟨AAP ⟩ ⟨V AS⟩ ⟨V V S⟩ ⟨AAS⟩ ⟨V AP ⟩

⟨SSP ⟩ ⟨PPP ⟩ ⟨V SP ⟩ ⟨ASS⟩ ⟨APP ⟩

Table 2.1: A complete list of all the two- and three-point
Green functions made of the V and A currents and P
and S densities. The correlators forbidden in QCD are
written down in bold.

To make the set of all the Green functions a bit well-arranged, we proposed
an organization scheme in ref. [1]. Therein, we have divided the correlators into
two groups, based on what contributions they acquire in the chiral limit. The
scheme is as follows.

• Set 1: The correlators with the perturbative contribution in the chiral limit,
i.e. those with a nonzero contribution of a Feynman graph that is obtained
by contracting together all the respective currents in such a way so a loop
is formed. The following Green functions satisfy such a definition:

– ⟨V V ⟩, ⟨AA⟩, ⟨SS⟩, ⟨PP ⟩.
– ⟨ASP ⟩, ⟨V SS⟩, ⟨V PP ⟩, ⟨V V A⟩, ⟨AAA⟩, ⟨V V V ⟩, ⟨AAV ⟩.

• Set 2: The order parameters of the chiral symmetry breaking in the chiral
limit. This constitutes such Green functions, whose perturbative contribu-
tion vanishes in the chiral limit and their OPE starts with the contribution
of the quark condensate (see section 3.2 for details). The respective Green
functions are as follows:

– ⟨AP ⟩.
– ⟨SSS⟩, ⟨SPP ⟩, ⟨V V P ⟩, ⟨AAP ⟩, ⟨V AS⟩, ⟨V V S⟩, ⟨AAS⟩, ⟨V AP ⟩.

2.4 Tensor decomposition

Knowledge of the tensor decomposition of the Green functions is of fundamental
importance since it is the very essence of what such a correlator looks like. On top
of that, such an information allows us to write down the respective contributions
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to the Green functions in a comprehensible fashion — usually only in a form of the
invariant scalar functions. In practice, however, it is sometimes a bit complicated
identifying such a decomposition since the relevant symmetries and respective
Ward identities must be taken into account.

To this end, we take the liberty to refer the reader to our paper [1], where
an extensive overview of the tensor decompositions of all the relevant three-point
Green functions can be found in subsections 2.3.1 and 2.3.2. Furthermore, in
the appendices E and F therein, we have also provided a thorough discussion on
the explicit derivation of the decompositions of the ⟨V V A⟩, ⟨AAA⟩, ⟨AAV ⟩ and
⟨V V V ⟩ Green functions.

In contrast with the above-mentioned correlators, some of them actually do
have a remarkably simple structure. As an example, we present the tensor decom-
positions of the ⟨V V P ⟩, ⟨V AS⟩ and ⟨AAP ⟩ Green functions — not only because
of the fact that we will pay a special attention to these functions in the following
chapters. Then, due to their transversality and the Lorentz and parity invariance,
the decompositions of these correlators can be written down as[︁

ΠV V P (p, q; r)
]︁abc
µν

= FV V P (p
2, q2, r2)dabcεµν(p)(q) , (2.12a)[︁

ΠV AS(p, q; r)
]︁abc
µν

= FV AS(p
2, q2, r2)fabcεµν(p)(q) , (2.12b)[︁

ΠAAP (p, q; r)
]︁abc
µν

= FAAP (p
2, q2, r2)dabcεµν(p)(q) , (2.12c)

where the invariant functions FV V P and FAAP are symmetrical in the first two
arguments because of the Bose symmetry.
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3. Vacuum structure of QCD

In this chapter, we shall discuss the properties of the vacuum structure of QCD
and thus formally conclude the introductory parts of this thesis. To this end, we
point out that apart from references cited throughout the text below, this section
is partially based also on ref. [1], specifically on subsections 3.1-3.4 therein.

3.1 QCD condensates

Unlike in the case of the quantum electrodynamics, the QCD vacuum is non-
perturbative and its structure nontrivial due to which there exist fluctuations of
quarks and gluons that are represented by nonvanishing QCD condensates. These
condensates are vacuum expectation values of the local gauge-invariant compos-
ite operators made of the quark and gluon fields and, eventually, the derivatives
thereof.

In our previous work [1], only a few of the QCD condensates have been taken
into account in our analysis of their contributions to the OPE of Green functions
in the chiral limit (see below). In detail, we have restricted ourselves only to the
condensates with canonical dimension D ≤ 6. Then, the investigation consisted
of the contributions of the quark (D = 3), gluon (D = 4), quark-gluon (D = 5)
and four-quark (D = 6) condensates.28

Since the QCD condensates are nonperturbative parameters, their numerical
values can not be calculated directly and need to be obtained either experimen-
tally or using, for example, lattice QCD. In what follows, we briefly summarize the
main properties of the above-mentioned condensates and introduce their present
values, extracted by using various methods.

Quark condensate. The lowest nontrivial QCD condensate is the quark con-
densate, ⟨qq⟩. It actually possesses a particular significance since its nonzero
value represents a sufficient condition for the spontaneous breakdown of the chi-
ral symmetry in QCD — then, the quark condensate is also called as the order
parameter of the chiral symmetry breaking.29 On top of that, it represents a
significant contribution to the QCD sum rules [82].

The numerical value of the quark condensate is a quantity that depends on
the renormalization scale µ — in most cases, the scale of µ = 1GeV is considered,
for which one has30

⟨qq⟩ = −(1.38± 0.17) · 10−2GeV3 . (3.1)

Needless to say, the value presented above is known already from the late 60’s,
namely from the Gell-Mann Oakes Renner relation [83]. In spite of this, it is still
a largely accepted valued, although newer ascertainments based on the lattice

28In ref. [1], we have tacitly omitted the contribution of another QCD condensate with D = 6,
that is the three-gluon condensate. The reason is that it is argued that such a contribution
vanishes in the chiral limit for any two-point Green function [80, 81].

29We point out that it is indeed a sufficient, and not a necessary condition.
30The logarithmic dependence on the renormalization scale occurs if the respective condensate

has a nonzero anomalous dimension.
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QCD give a slightly different values — see for example [84, 85, 86, 87, 88, 89, 90]
for details.

Gluon condensate. The gluon condensate is the vacuum expectation value of
a product of two gluon field strength tensors, ⟨Ga

µνG
aµν⟩. To be able to manage

the indices economically, we will employ a short-hand notation and denote it
simply as ⟨G2⟩ from now on.

Its existence was proposed in the seminal papers [82, 91] and the authors ob-
tained the value from the charmonium sum rules, for which the gluon condensate
is the leading nonperturbative correction. It reads31

αs

π
⟨G2⟩ = (1.2± 0.4) · 10−2GeV4 (3.2)

and does not depend on the renormalization scale due to its zero anomalous
dimension.

Since then, many other estimated have been proposed by different authors.
For a comprehensive overview of the obtained values, see [92] and references
therein.

Quark-gluon condensate. A vacuum expectation value of two quark fields
and one gluon field strength tensor is the quark-gluon condensate, ⟨qσµνG

µνq⟩.
Once again, to save indices as much as possible, we shall denote it as ⟨qσ ·Gq⟩.

In the literature, the quark-gluon condensate is usually parameterized pro-
portionately to the quark condensate, i.e.

gs⟨qσ ·Gq⟩ = m2
0⟨qq⟩ , (3.3)

with

m2
0 = (0.8± 0.2)GeV2 (3.4)

at µ = 1GeV being a parameter obtained either from the sum rules for baryonic
resonances [93] or from an analysis of B-mesons by QCD sum rules [94]. Another
estimates using various models can be also found in refs. [95, 96, 97, 98, 99, 100,
101, 102, 103].

Four-quark condensate. Finally, the four-quark condensate is the vacuum
expectation value of four quark fields that can be accompanied by an additional
spinor or flavour structure, ⟨qXq qXq⟩. Here, the symbol X thus stands for
such a combination of (1, γµ, γ5, γµγ5, σµν) and (1, T a) matrices that preserves the
Lorentz invariance.

As we have argued in ref. [1], evaluation of the contribution of such a conden-
sate to the Green functions is by far the most complicated of all the condensates
discussed so far. On top of that, not very much is actually known about the
four-quark condensates — both theoretically and experimentally.

On the other hand, one simplifying assumption is available — it is believed
that intermediate vacuum states dominate at large-Nc limit, which allows us to

31Here, we have chosen to add the numerical factor of αs

π , as it is commonly considered in
the literature.

28



express the four-quark condensate in a form proportional to the quark condensate
squared, i.e. schematically [91, 104]32

⟨qXq qXq⟩ = ⟨qXq

(︄
∞∑︂

n=0

|n⟩⟨n|

)︄
qXq⟩ ∼ ⟨qq⟩2 . (3.5)

For an illustration of the applicability of the formula (3.5), we point out that we
have shown in ref. [1] that the following formula holds:

⟨qγµT aq qγµT aq⟩ = − 4

27
⟨qq⟩2 . (3.6)

3.2 Operator product expansion

The framework of the Operator product expansion (OPE) was developed by
K. G. Wilson in his pioneering work [105].33 It constitutes a method which allow
us to study short-distance behaviour of the Green functions or, equivalently in
QCD, their high-energy behaviour.

The idea behind the OPE is as follows. Similarly to the right-hand side of
(2.3), let us consider a vacuum expectation value of a time-ordered product of
several local gauge-invariant composite operators, made of the field variables of
the theory. If the coordinates of these operators are in a close proximity to
each other, such an object can be rewritten as a series of the so-called Wilson
coefficients (denoted generally as COa

1Ob
2Oc

3
), accompanied by the vacuum averages

of the local gauge-invariant operators, i.e. the QCD condensates. Then, the
Wilson coefficients carry all the informations about the short-distance physics
and are calculable in perturbative QCD with the help of the standard technique
of Feynman graphs.

In the paragraph above, we have assumed the special case of OPE for simplic-
ity, in which all the coordinates of the respective operators are close to each other.
Such a choice is then equivalent to the situation, where all the momenta are simul-
taneously large, i.e. the scaling of the momenta goes as (p, q, r)→ (λp, λq, λr) for
λ→∞. This is exactly the case that was studied in our previous paper [1], where
we have investigated the OPE of all the existing three-point Green functions of
chiral currents in the chiral limit. Taking into account only the contributions
of the QCD condensates studied in ref. [1], the OPE applied to the three-point
Green function in the momentum representation gives

ΠOa
1Ob

2Oc
3
(λp, λq;λr)

λ→∞−−−→ λC1
Oa

1Ob
2Oc

3
(p, q; r) +

1

λ2
C

⟨qq⟩
Oa

1Ob
2Oc

3
(p, q; r)⟨qq⟩

+
1

λ3
C

⟨G2⟩
Oa

1Ob
2Oc

3
(p, q; r)⟨Ga

µνG
aµν⟩+ 1

λ4
C

⟨qσ·Gq⟩
Oa

1Ob
2Oc

3
(p, q; r)⟨qσµνG

µνq⟩

+
1

λ5
C

⟨qq⟩2

Oa
1Ob

2Oc
3
(p, q; r)⟨qq⟩2 + . . . . (3.7)

32It is assumed that an accuracy of such a factorization hypothesis is ∼ 1/N2
c , i.e. for Nc = 3

it is roughly 10%.
33We point out that the acronym “OPE” is sometimes used in literature also for the term

“one-pion exchange”. Needless to say, such an expression is not of any importance nor relevance
throughout this thesis and we reassure the reader that there can not occur any ambiguities.
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The explicit results of the OPE for all the relevant three-point Green functions
are quite complicated. Therefore, instead of reproducing all of these expressions
here unnecessarily, we refer the reader to ref. [1], especially to sections 4 to 8.
Nevertheless, we present the results of the OPE for the ⟨V V P ⟩, ⟨V AS⟩ and
⟨AAP ⟩ Green functions at the end of section 3.5 as illustrative examples that
will be of a further use in chapter 4.

3.3 Fock–Schwinger gauge

The purpose of this section is to summarize a pedagogical introduction to the
basics of the Fock–Schwinger gauge, as we have already presented it in ref. [1].
Needless to say, the basics of the Fock–Schwinger gauge has been covered by many
authors already and a curious reader may find suitable sources of informations
elsewhere — these are often, however, of a brief nature.34 On top of that, said
gauge has been called by various alternative names in the literature so the reader
should be aware of possible ambiguities.35

The Fock–Schwinger gauge has been originally introduced with respect to
quantum electrodynamics in order to simplify calculations involving the photon
fields in refs. [106, 107] and later applied in an equivalent way to quantum chro-
modynamics for the gluon fields as well [79, 108, 109]. Within the context of this
thesis, the Fock–Schwinger gauge corresponds to the condition

xµAa
µ(x) = 0 , (3.8)

with Aa
µ(x) being the gluon field. As we will see shortly, an advantage of the

Fock–Schwinger gauge (3.8) stems from the fact that it allows us to express the
gluon field in terms of the gluon field strength tensor and the covariant derivatives
thereof.

On the other hand, such a gauge violates the translation invariance. Nev-
ertheless, as we have already pointed out in section 2.1, the Green functions of
colourless sources are gauge-invariant — and since any gauge-invariant quantity
must be invariant also with respect to translation, one must thus make sure that
all the necessary Feynman diagrams for a given contribution, with the condition
(3.8) taken into consideration, are actually accounted for.36

We will show how to express the gluon field in terms of the gluon field strength
tensor within the framework of the Fock–Schwinger gauge now. Although such

34The discussion below is based, apart from appendix B in [1], on refs. [47, 79, 110].
35It might be interesting to list some of the denominations used in the literature. As ref. [111]

mentions, the name “Fock–Schwinger gauge” is used by the authors of [79, 112, 113, 114, 115,
116, 117], while the following names are sometimes used as well: the “Fock gauge” [118], the
“Schwinger gauge” [119, 120, 121], the “complete Lorentz invariant gauge” [108, 122, 123], the
“coordinate gauge” [117, 123, 124, 125], the “fixed–point gauge” [80], the “Cronström–Dubikov–
Smilga gauge” [123, 126, 127], the “Poincare gauge” [118, 128, 129, 130], the “homogenous
gauge” [131] or the “multipolar gauge” [132, 133, 134].

36In fact, a general form of the gauge condition (3.8) is such that the gluon field therein
is multiplied not by the four-vector x but x − x0, with an arbitrary coordinate x0 being the
gauge parameter. Based on what we have stated above, any gauge-invariant quantity must
be independent of the parameter x0 — cancellation of x0-dependent terms thus represents a
validity check of the evaluation procedure. However, the special case (3.8) of x0 = 0 is often
considered so as the algebraical difficulties are avoided as much as possible.
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a property has important consequences, the derivation itself is trivial. In detail,
the gluon field can be easily rewritten as

Aa
µ(x) = ∂µ(x

νAa
ν(x))− xν∂µAa

ν(x) = −xν∂µAa
ν(x) , (3.9)

where the assumption of the gauge condition (3.8) has been utilized in the last
step. Having the gluon field given by an expression made of a product of a
coordinate and a derivative of the gluon field, we shall consider to evaluate a
product of such a coordinate and the gluon field strength tensor — a quantity
that contains derivatives. Once again, assuming the validity of (3.8), one obtains

xνGa
µν(x) = −xν(∂νAa

µ(x)− ∂µAa
ν(x)) , (3.10)

since the commutator, present in the gluon field strength tensor, vanishes upon
the above-mentioned condition. Then, substituting (3.9) into (3.10), one gets

xνGa
µν(x) = −Aa

µ(x)− xν∂νAa
µ(x) . (3.11)

A crucial modification of (3.11) now lies in rescaling the coordinate. In fact,
let us consider x = αy, with α being a real number. Then, the relation (3.11)
modificates to

αyνGa
µν(αy) = −Aa

µ(αy)− yν∂νAa
µ(αy) = −

d

dα
(αAa

µ(αy)) , (3.12)

where we have rewritten the second equality as the total derivative. Performing
an integration of both sides of (3.12) with respect to α over the interval [0, 1],
the right-hand side becomes free of the parameter α, and one gets

Aa
µ(x) = −xν

∫︂ 1

0

αGa
µν(αx) dα , (3.13)

where we have changed conventionally the coordinate y to x. Finally, we perform
the Taylor expansion of the gluon field strength tensor around the origin, which
takes the form

Ga
µν(αx) =

∞∑︂
n=0

αn

n!
xρ1 · · ·xρn ∂ρ1 · · · ∂ρnGa

µν(x)
⃓⃓
x=0

. (3.14)

One may now employ an important property of the Fock–Schwinger gauge,
which allow us to interchange the partial derivatives in (3.14) for the covariant
ones in the adjoint representation. Indeed, it is obvious to notice that the relation

xµ(∂µG
a
αβ(x)) = xµ(DµGαβ(x))

a (3.15)

holds when (3.8) is considered — and an extension of such a relation to a product
of multiple coordinates and respective derivatives is then a mere trivial task.
Inserting (3.14) into (3.13), together with the above property, gives us the result

Aa
µ(x) = −xν

∞∑︂
n=0

1

n! (n+ 2)
xρ1 · · ·xρn(Dρ1 · · ·DρnGµν(x))

a
⃓⃓
x=0

, (3.16)
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i.e.

Aa
µ(x) = −

1

2
xνGa

µν(0)−
1

3
xνxρ(DρGµν(x))

a
⃓⃓
x=0

+ . . . , (3.17)

where we have written down explicitly only the terms that are relevant for calcu-
lations presented in this thesis.

Contrary to the derivation of the formula (3.16) above, a similar one can be
obtained also for the expansion of the quark field — but in much easier way. In
fact, it is only a minor modification of the respective Taylor series, in which the
partial derivatives of the quark field are interchanged for the covariant ones in
the fundamental representation — once again, due to the gauge condition (3.8).
Then, such an expansion can be written down as

q(x) =
∞∑︂

n=0

1

n!
xρ1 · · ·xρn(∇ρ1 · · · ∇ρnq(x))

⃓⃓
x=0

, (3.18)

where we have suppressed all the relevant indices attached to the quark field, as
introduced in section 1.2, for simplicity. As an example, the first two terms of
the expansion above read

q(x) = q(0) + xµ(∇µq(x))
⃓⃓
x=0

+
1

2
xµxν(∇µ∇νq(x))

⃓⃓
x=0

+ . . . . (3.19)

A similar formula to (3.18) can be found also for the Dirac-conjugated quark
field q(x). There, however, the quark field and the derivatives switch places, with
derivatives acting then to the left.

3.4 Quark propagator in external gluon field

As we have emphasized in section 3.3, an advantage of the Fock–Schwinger gauge
is that it allows us to express the gluon field in terms of the gluon field strength
tensor and the covariant derivatives thereof. On top of that, one can employ such
a gauge in a straightforward manner to evaluate the propagation of a quark in
the external gluon field — the respective propagator is then a helpful object that
simplifies significantly calculations of the gluonic condensates.

The quark propagator in an external gluon field can be made a use of in two
representations, either the coordinate or the momentum one, mutually equiva-
lent to each other under the application of the Fourier transform.37 We present
expressions of said propagator in both representations since we will utilize each
of them in different instances — firstly in the chiral limit and secondly in the
mass case. Nevertheless, we will make do with the propagator expanded up to
terms with two gluon field strength tensors with no derivatives since our interest
is limited only to one relevant gluonic condensate, that is the gluon condensate.

Coordinate representation. An explicit form of the massless quark propa-
gator in the external gluon field, expanded up to the term with two gluon field
strength tensors coupled to the quark line, has been presented in ref. [79] and
reads

S(x, y) = S0(x, y) + Sαβ
1 (x, y)Gαβ(0) + S2(x, y)Gαβ(0)G

αβ(0) + . . . , (3.20)

37For a convention regarding the Fourier transform, see appendix A.
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with the coordinate dependence summarized in the following coefficients:

S0(x, y) =
i

2π2

/x− /y

(x− y)4
, (3.21a)

Sαβ
1 (x, y) =

gs
4π2

(︃
/x− /y

(x− y)4
xαyβ − i(x− y)µ

4(x− y)2
γνγ5ε

µναβ

)︃
, (3.21b)

S2(x, y) =
ig2s

192π2

/x− /y

(x− y)4
(︁
(x · y)2 − x2y2

)︁
. (3.21c)

Obviously, the propagator (3.20) is not translation-invariant and thus can not
be written down in the form of a function of the difference of the coordinates,
i.e. S(x, y) ̸= S(x − y, 0). Obviously, such a property is the consequence of the
gauge condition (3.8) — which is, on an algebraical level, manifested by the first
term in the bracket of (3.21b) and a whole term (3.21c). However, the propagator
simplifies considerably when either one of the coordinates is set to the origin.
Indeed, let us choose y = 0, which then leads to a simple expression38

S(x, 0) =
i/x

2π2x4
− igsxµ

16π2x2
γνγ5ε

µναβGαβ(0) + . . . , (3.22)

from which the contribution of the two gluon field strength tensors vanished.
An advantage of the propagator (3.20) is that it acts generally between two

coordinates and thus can be used for any n-point Green function. On the other
hand, its limitation is that it can be used only in the chiral limit — unless an
infinite series of terms proportional to the powers of quark mass is added to it.
To this end, one may schematically denote an extension for the correction linear
in quark mass as39

S(x, y) −→ S(x, y;m) = S(x, y)− m

4π2(x− y)2
+O(m2) . (3.23)

Momentum representation. In the special case, when the propagator acts
between a nonzero coordinate and the origin, one can make a use of the result
obtained in ref. [109], where the quark propagator in the momentum represen-
tation is presented — on top of that, even the nonzero mass of such a quark is
considered therein.40 The propagator reads

S(p,m) = S0(p,m) +Sαβ
1 (p,m)Gαβ(0)+Sαβγδ

2 (p,m)Gαβ(0)Gγδ(0)+ . . . , (3.24)

with the explicit form of the contributing parts given as

S0(p,m) =
i(/p+m)

p2 −m2
, (3.25a)

Sαβ
1 (p,m) = −igs

4

{σαβ, /p+m}
(p2 −m2)2

, (3.25b)

Sαβγδ
2 (p,m) = −ig2s

4

fαβγδ(p,m) + fαγβδ(p,m) + fαγδβ(p,m)

(p2 −m2)5
, (3.25c)

38It even holds that S(x, 0) = −S(−x, 0) = −S(0, x).
39The terms proportional to higher powers of m get quite complicated since the mass terms

arise also in the respective logarithms — see section 4.1 in ref. [135].
40As we will show in appendix B, this can be used to obtain the contribution of the gluon

condensate to the two-point Green functions in a very straightforward way.
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where we have denoted41

fαβγδ(p,m) = (/p+m)γα(/p+m)γβ(/p+m)γγ(/p+m)γδ(/p+m) . (3.26)

Obviously, the expressions (3.25a)-(3.25b) are analogous to (3.21a)-(3.21b),
when both the mass and one of the coordinates are set to zero — then, the first
two terms of the propagator (3.24) should be equivalent to (3.22). To convince
ourselves, one may apply the Fourier transform (A.1) on (3.22) and make a use
of the formulae presented in appendix A in ref. [1].42

The remaining question then relates to the presence of the term with two
gluon field strength tensors in (3.24). As we have mentioned in the paragraph
above, such a term should vanish in the chiral limit, as it disappeared in (3.22).
As it turns out, the key to answering this issue is projecting out the Lorentz
structure of these tensors. To this end, the formula below is of the importance:43

Gαβ(0)Gγδ(0) =
1

72
(gαγgβδ − gαδgβγ)G

2 , (3.27)

where G2 ≡ Ga
µνG

aµν is the local operator that, upon being placed between the
vacuum states, gives arise to the gluon condensate.

For the given purpose, one may neglect the numerical factors and pay attention
only to the Lorentz structure of the quantities in question. In detail, one shall
realize that upon substituting (3.27) into the last term of (3.24), the following
structure emerges:

(gαγgβδ − gαδgβγ)(f
αβγδ(p,m) + fαγβδ(p,m) + fαγδβ(p,m)) . (3.28)

The algebraical adjustments are then nothing but a trivial exercise and one finds
out that (3.28) is, in fact, equal to the difference of the two functions (3.26).
Specifically, it is equal to

fααββ(p,m)− fαββα(p,m) = −12m(p2 −m2)(p2 +m/p) , (3.29)

which vanishes for m = 0, as expected.

3.5 Propagation formulae

As we have depicted above, the QCD condensates are, among other, local oper-
ators. In reality, the condensates that one obtains when evaluating the contribu-
tions of respective Feynman diagrams are nonlocal since the quark and/or gluon
fields between the vacuum states come from currents with different space-time
arguments. In order to obtain the genuine QCD condensates, one is then required

41We point out to the reader that although we use a different notation for the function (3.26)
in comparison with the ref. [109], their version of the propagator (3.25c) mistakenly contains
one redundant term (/p+m) on the far-most right-hand side of eq. (3.45c) at page no. 27 therein.

42Only a minor inconvenience arises when one is required to rewrite the commutator of the
sigma-tensor and the momentum-slash in a form proportional to the Levi-Civita tensor. To
this end, the following expressions prove to be useful: σµνγρ = i(gνργµ − gµργν) − εµνραγαγ5
and γρσµν = i(gµργν − gνργµ)− εµνραγαγ5. Then, one has {σµν , /p} = −2ε(p)µναγαγ5.

43Such a formula follows directly from the relation Ga
αβ(0)G

b
γδ(0) =

1
96δ

ab(gαγgβδ−gαδgβγ)G2

upon multiplying it with T aT b and using the fact that T aT a = 4
3 .
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to employ the propagation formulae that express such nonlocal condensates in
terms of the local ones.

These formulae are one of the main results of our paper [1], where we have
formulated and derived them in full length. Due to their importance, we present
them here once again. In detail, the following vacuum expectation values and
their expansion were of the essence in order to obtain the contributions of the
local quark, gluon, quark-gluon and four-quark condensates in the chiral limit:

⟨qAi,α(x)qBk,β(y)⟩ =
(︃
⟨qq⟩
22 · 32

δik −
gs⟨qσ ·Gq⟩
25 · 32

[F ⟨qq⟩(x, y)]ki

+
iπαs⟨qq⟩2

23 · 37
[G⟨qq⟩(x, y)]ki + . . .

)︃
δαβδ

AB , (3.30a)

αs⟨Aa
µ(x)Ab

ν(y)⟩ =
αs⟨G2⟩
27 · 3

H⟨G2⟩
µν (x, y)δab + . . . , (3.30b)

gs⟨qAi,α(x)Aa
µ(u)q

B
k,β(y)⟩ =

(︃
gs⟨qσ ·Gq⟩
27 · 32

[F ⟨qAq⟩
µ (x, u, y)]ki

+
παs⟨qq⟩2

23 · 35
[G⟨qAq⟩

µ (x, u, y)]ki + . . .

)︃
(T a)βαδ

AB , (3.30c)

where the coordinate dependence is summarized in the following functions:

F ⟨qq⟩(x, y) =
1

2
(x− y)2 +

i

3
σ(x)(y) , (3.31a)

G⟨qq⟩(x, y) = 4(x · y)(/x− /y)− (x2 − y2)(/x+ /y) , (3.31b)

H⟨G2⟩
µν (x, y) = (x ·y)gµν − yµxν , (3.31c)

F ⟨qAq⟩
µ (x, u, y) = σ(u)µ , (3.31d)

G⟨qAq⟩
µ (x, u, y) =

1

6
γµ
(︁
3u · (x+ y)− 4u2

)︁
+

1

6
/u
(︁
4uµ − 3(x+ y)µ

)︁
− i

2
εµ(x−y)(u)αγαγ5 . (3.31e)

In the formulae above, one substitutes for the quark and gluon fields according
to (3.16) and (3.18), respectively. Only then one needs to perform various ma-
nipulations such as the integration by parts or employing the equations of motion
for the quark and gluon fields so as the local QCD condensates are extracted.

We will not discuss these formulae here in detail — rather, we refer the reader
to our article [1], especially to sections 3.4 and 3.5. We also take the liberty
to point reader’s attention to appendix C therein, where the derivation of the
above-mentioned formulae is explained rigorously step by step as exempli gratia.

Having the aforementioned propagation formulae at disposal, one can indeed
start performing calculations of corresponding Feynman diagrams in order to
obtain the contributions of individual QCD condensates to the Green functions.
Discussing such a procedure here in detail is, however, beyond the scope of this
thesis — we thus kindly refer the reader once again to the ref. [1], specifically
to sections 5, 6, 7 and 8, where the respective calculations of the contributions
of the quark, gluon, quark-gluon and four-quark condensates, respectively, are
discussed thoroughly, together with the final results.
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Only so as we can comfortably utilize some of the results obtained therein in
the next chapter, we reproduce here the contributions of the quark and quark-
gluon condensates to the ⟨V V P ⟩, ⟨V AS⟩ and ⟨AAP ⟩ Green functions — see
eqs. (5.5)-(5.7) and (7.12)-(7.14), respectively, in ref. [1]. The results read

FOPE
V V P

(︁
(λp)2, (λq)2, (λr)2

)︁
=
⟨qq⟩
6λ4

p2 + q2 + r2

p2q2r2

− gs⟨qσ ·Gq⟩
72λ6

r2(p4 + q4) + 3(p2 − q2)2(p2 + q2) + 4r6

p4q4r4
+O

(︃
1

λ8

)︃
, (3.32a)

FOPE
V AS

(︁
(λp)2, (λq)2, (λr)2

)︁
=
⟨qq⟩
6λ4

p2 − q2 − r2

p2q2r2

− gs⟨qσ ·Gq⟩
72λ6

r2(p4 − q4) + 3(p2 − q2)(p4 + q4)− 4r6

p4q4r4
+O

(︃
1

λ8

)︃
, (3.32b)

FOPE
AAP

(︁
(λp)2, (λq)2, (λr)2

)︁
=
⟨qq⟩
6λ4

p2 + q2 − r2

p2q2r2

− gs⟨qσ ·Gq⟩
72λ6

r2(p4 + q4) + 3(p2 − q2)2(p2 + q2)− 4r6

p4q4r4
+O

(︃
1

λ8

)︃
(3.32c)

for λ→∞.
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4. Contribution of resonances
within RChT

In the last chapter of this thesis, we will be interested in the contributions of
the resonance multiplets to the Green functions of chiral currents and densities.
To this end, based on our previous work [2], we will restrict ourselves only to
the odd-intrinsic parity sector of QCD. In other words, we will discuss only the
resonance contributions to the ⟨V V P ⟩, ⟨V AS⟩ and ⟨AAP ⟩ correlators.

In a way, this chapter serves as an extension of the paper [2] that is currently
submitted for publication. On top of that, we fulfill our promise given in such
paper by showing here the explicit results of the RChT–OPE matching and the
resonance saturation.

4.1 Duplication of resonance multiplets

At this stage, we have the individual contributions of the quark and quark-gluon
condensates in the form of the respective Operator product expansions (3.32a)-
(3.32c). One may thus utilize such a knowledge and compare them with the re-
spective contributions obtained within the framework of RChT. Such resonance
contributions are given by the expressions (4.2), (4.7) and (4.12) in ref. [2].44

However, such a matching between the respective contributions fails due to alge-
braical reasons.

General parametrization. As we have found in ref. [2], a remedy to such an
ache — at least in the minimal case — is to duplicate the resonance multiplets,
for which a detailed discussion and explicit derivation can be found in appendix
A therein. To this end, one can introduce the invariant scalar functions of the
⟨V V P ⟩, ⟨V AS⟩ and ⟨AAP ⟩ Green functions as follows:

FV V P (p
2, q2, r2) =

RV V P (p
2, q2, r2)

(p2 −M2
V1
)(p2 −M2

V2
)(q2 −M2

V1
)(q2 −M2

V2
)

× B0F
2

r2(r2 −M2
P1
)(r2 −M2

P2
)
, (4.1a)

FV AS(p
2, q2, r2) =

RV AS(p
2, q2, r2)

(p2 −M2
V1
)(p2 −M2

V2
)(q2 −M2

A1
)(q2 −M2

A2
)

× B0F
2

(r2 −M2
S1
)(r2 −M2

S2
)
, (4.1b)

FAAP (p
2, q2, r2) =

RAAP (p
2, q2, r2)

(p2 −M2
A1
)(p2 −M2

A2
)(q2 −M2

A1
)(q2 −M2

A2
)

× B0F
2

r2(r2 −M2
P1
)(r2 −M2

P2
)
, (4.1c)

44The results (4.2) and (4.7) in ref. [2] have been calculated already in ref. [78] — we, however,
refer here to our work [2] for unanimity of convention.

37



with the respective polynomials R(p2, q2, r2) given by eqs. (A.11) and (A.31)
presented in [2].

The parametrization of (4.1a) and the subsequent expressions is adopted from
ref. [136]. Nevertheless, it might be appropriate to explain the reasoning behind
it. To do so, let us restrict ourselves to ⟨V V P ⟩ correlator and a simpler case
of its OPE given only by the contribution of the quark condensate. As can be
read off from (3.32a), the mass dimension of the invariant function FV V P is −1
(this goes also for FV AS and FAAP ). Due to the incorporation of the Goldstone
bosons and resonances, the denominator of (4.1a) is thus of mass dimension 14
and consists of respective propagators. Consequently, the numerator is then of
mass dimension 13. However, since (4.1a) is supposed to be matched onto the ex-
pression proportional to the quark condensate, which is momentum-independent
quantity of mass dimension 3, we can simply adopt the quark condensate into the
parametrization of (4.1a) and consider only the remaining dimension of 10 given
by the momentum-dependent polynomial RV V P .

45 In the case of the ⟨V AS⟩
correlator, there is no contribution from the Goldstone bosons, which lowers the
dimension of the polynomial RV AS to 8.

Reduction of the coefficients. As can be seen from the above-mentioned ex-
pressions (A.11) and (A.31) in refs. [2], the polynomials RV V P and RAAP consists
of 34 terms, while the RV AS is made of 35 parts due to the lack of the Bose sym-
metry. Obviously, one may try to minimalize the number of unknown coefficients
of these polynomials by introducing several well-supported requirements. In this
case, the following conditions were considered.

1) The ansatz (4.1a) is assumed to satisfy the following essential requirements.

– The OPE (3.32a) with all momenta simultaneously large.

– The OPE with only two momenta large [137]:

FOPE
V V P

(︁
(λp)2, (q − λp)2, q2

)︁
=
⟨qq⟩
3λ2

1

p2q2
+O

(︃
1

λ3

)︃
(4.2)

for λ→∞.

– For the pion transition form factor, defined as

Fγ∗γ∗π0(p2, q2) =
2

3B0F
lim
r2 → 0

r2FV V P (p
2, q2, r2) , (4.3)

the Brodsky–Lepage behaviour [138, 139]

lim
Q2 →∞

Q2Fγ∗γ∗π0(0,−Q2) = 2F (4.4)

is assumed to be fulfilled.

– The chiral anomaly at the photon point [64, 65]:

Fγ∗γ∗π0(0, 0) =
Nc

12π2F
. (4.5)

45Needless to say, the relation ⟨qq⟩ = −3B0F
2 is taken into account when swapping between

⟨qq⟩ and B0F
2.
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2) The situation with the ⟨V AS⟩ Green function is quite dismal — apart
from a brief discussion regarding its OPE in refs. [1, 78, 140], there is
probably no further knowledge of a respective form factor that could have
been connected to phenomenology. Therefore, the only condition we require
from (4.1b) to fulfill is the OPE (3.32b).

3) Similarly to the previous case, only a little is known about the ⟨AAP ⟩ Green
function. With respect to the current state of the art, we require (4.1c) to
satisfy the two following conditions.

– The OPE (3.32c) with all momenta simultaneously large.

– The OPE with only two momenta large [137]:

FOPE
AAP

(︁
(λp)2, (q − λp)2, q2

)︁
=
⟨qq⟩
3λ2

1

p2q2
+O

(︃
1

λ3

)︃
(4.6)

for λ→∞.

The results of demanding the above-mentioned conditions to come into effect can
be found in appendix A in ref. [2]. To help the reader a bit, we mention that the
results for the ⟨V V P ⟩ are the expressions (A.12), (A.13), (A.15), (A.18), (A.21)
and (A.23). For ⟨V AS⟩, the results are eqs. (A.32) and (A.33). Finally, the results
for ⟨AAP ⟩ are eqs. (A.38), (A.39) and (A.41). Specifically, the parametrizations
(4.1a)-(4.1c) thus have 8, 10 and 12 free parameters, respectively.

Extension of Lagrangians. So far, we have established the need of duplicat-
ing the resonance multiplets, in order to satisfy the OPE contributions (3.32a)-
(3.32c), on the general parametrizations (4.1a)-(4.1c). Therefore, let us now
advance directly to extending the resonance Lagrangians and briefly comment on
such a procedure.

The required duplication of the resonance multiplets at the Lagrangian level
is quite easy. In fact, it is rather trivial for single-resonance operators — one
simply takes into account the same operators with the original resonance fields
exchanged for the ones from the nearest higher-mass multiplet of the same kind.
However, for the two- and three-resonance operators, one must be careful since all
the independent combinations need to be taken into account and some algebraical
manipulations must be performed to make sure that all the linearly independent
terms are accounted for.

For simplicity, we will not present the extended Lagrangians here and only
refer the reader to our paper [2]. Therein, the Lagrangian (3.17) and the tables
4-15 are of the importance.

Lastly, we present a short remark regarding the notation. When having to
duplicate the contribution of a respective operator by replacing the original res-
onance fields for the duplicated ones, we accompany this newly-arised operator
with a coupling constant that acquires its form according to the following rule:

κX′

i −→ λX′

i ,

κX′Y ′

i −→ λX′Y ′

i1 , λX′Y ′

i2 , . . . ,

κX′Y ′Z′ −→ λX′Y ′Z′

1 , λX′Y ′Z′

2 , . . . , (4.7)
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where X ′, Y ′ and Z ′ stand either for V , A, S or P .46 Such a choice of unam-
biguous notation in (4.7) indeed allows us to avoid confusion when having to
duplicate the operators that did not play any role in paper [2] whatsoever but
might be needed in the same context in the future. Also, the lower indices “i1”
etc. represent a decimal notation and the ellipses are due to the need to take into
account every necessary combinations of the resonances inside the individual two-
or three-resonance operators. The additional operators are then accompanied by
the couplings of the type µX′

i with the labelling chosen accordingly.

4.2 Two-multiplet resonance contribution

In this section, we simply reproduce the ChPT and RChT contributions that we
have obtained in ref. [2] in order to utilize them properly in sections 4.3 and 4.4.

ChPT contribution. In the Nc → ∞ limit, the ChPT contributions to the
⟨V V P ⟩, ⟨V AS⟩ and ⟨AAP ⟩ Green functions up to O(p6) are given by eqs. (4.1),
(4.6) and (4.11) in ref. [2], i.e.

FChPT
V V P (p2, q2, r2) =

B0Nc

8π2r2
− 32B0C

W
7 + 8B0C

W
22

p2 + q2

r2
, (4.8a)

FChPT
V AS (p2, q2, r2) = 32B0C

W
11 , (4.8b)

FChPT
AAP (p2, q2, r2) =

B0Nc

24π2r2
− 32B0C

W
9 + 8B0C

W
23

p2 + q2

r2
, (4.8c)

RChT contribution. Unlike the aforementioned expressions, the RChT con-
tributions to the ⟨V V P ⟩, ⟨V AS⟩ and ⟨AAP ⟩ Green functions up to O(p6) are
quite lengthy. They are given by eqs. (4.5), (4.10) and (4.15) in [2], i.e.

FRChT
V V P (p2, q2, r2) =

B0Nc

8π2r2
(4.9a)

+
2
√
2B0FV1

(p2 −M2
V1
)r2
[︁
(2κV

12 + κV
16)(p

2 − q2 − r2) + 2κV
17q

2 − 8κV
14r

2
]︁

+
2
√
2B0FV1

(q2 −M2
V1
)r2
[︁
(2κV

12 + κV
16)(q

2 − p2 − r2) + 2κV
17p

2 − 8κV
14r

2
]︁

+
64B0d

(1)
m κP

5

r2 −M2
P1

−
4B0F

2
V1
(8κV V

2 − κV V
3 )

(p2 −M2
V1
)(q2 −M2

V1
)
−

4B0F
2
V1
κV V
3 (p2 + q2)

(p2 −M2
V1
)(q2 −M2

V1
)r2

+
16
√
2B0FV1d

(1)
m κPV

3

(p2 −M2
V1
)(r2 −M2

P1
)
+

16
√
2B0FV1d

(1)
m κPV

3

(q2 −M2
V1
)(r2 −M2

P1
)

+
16B0F

2
V1
d
(1)
m κV V P

(p2 −M2
V1
)(q2 −M2

V1
)(r2 −M2

P1
)

+
2
√
2B0FV2

(p2 −M2
V2
)r2
[︁
(2λV

12 + λV
16)(p

2 − q2 − r2) + 2λV
17q

2 − 8λV
14r

2
]︁

46To avoid any clash in the notation, we have added the apostrophes to clearly differentiate
from the symbol X that has been used in (1.51) to denote various combinations of the resonance
fields.
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+
2
√
2B0FV2

(q2 −M2
V2
)r2
[︁
(2λV

12 + λV
16)(q

2 − p2 − r2) + 2λV
17p

2 − 8λV
14r

2
]︁

+
64B0d

(2)
m λP

5

r2 −M2
P2

− 16B0FV1FV2λ
V V
21

(p2 −M2
V1
)(q2 −M2

V2
)
− 16B0FV1FV2λ

V V
21

(p2 −M2
V2
)(q2 −M2

V1
)

−
4B0F

2
V2
(8λV V

22 − λV V
34 )

(p2 −M2
V2
)(q2 −M2

V2
)
−

4B0F
2
V2
λV V
34 (p2 + q2)

(p2 −M2
V2
)(q2 −M2

V2
)r2

− 2B0FV1FV2

(p2 −M2
V1
)(q2 −M2

V2
)r2
[︁
(p2 + q2 − r2)(λV V

31 + 2λV V
32 + λV V

33 )− 4λV V
32 p2

]︁
− 2B0FV1FV2

(p2 −M2
V2
)(q2 −M2

V1
)r2
[︁
(p2 + q2 − r2)(λV V

31 + 2λV V
32 + λV V

33 )− 4λV V
32 q2

]︁
+

16
√
2B0FV2d

(1)
m λPV

31

(q2 −M2
V2
)(r2 −M2

P1
)
+

16
√
2B0FV2d

(1)
m λPV

31

(p2 −M2
V2
)(r2 −M2

P1
)

+
16
√
2B0FV1d

(2)
m λPV

32

(q2 −M2
V1
)(r2 −M2

P2
)
+

16
√
2B0FV1d

(2)
m λPV

32

(p2 −M2
V1
)(r2 −M2

P2
)

+
16
√
2B0FV2d

(2)
m λPV

33

(q2 −M2
V2
)(r2 −M2

P2
)
+

16
√
2B0FV2d

(2)
m λPV

33

(p2 −M2
V2
)(r2 −M2

P2
)

+
16B0FV1FV2d

(1)
m λV V P

1

(p2 −M2
V1
)(q2 −M2

V2
)(r2 −M2

P1
)
+

16B0FV1FV2d
(1)
m λV V P

1

(p2 −M2
V2
)(q2 −M2

V1
)(r2 −M2

P1
)

+
16B0F

2
V1
d
(2)
m λV V P

2

(p2 −M2
V1
)(q2 −M2

V1
)(r2 −M2

P2
)
+

16B0F
2
V2
d
(1)
m λV V P

3

(p2 −M2
V2
)(q2 −M2

V2
)(r2 −M2

P1
)

+
16B0FV1FV2d

(2)
m λV V P

4

(p2 −M2
V1
)(q2 −M2

V2
)(r2 −M2

P2
)
+

16B0FV1FV2d
(2)
m λV V P

4

(p2 −M2
V2
)(q2 −M2

V1
)(r2 −M2

P2
)

+
16B0F

2
V2
d
(2)
m λV V P

5

(p2 −M2
V2
)(q2 −M2

V2
)(r2 −M2

P2
)
+

32B0F
2
V1
µV V
2 r2

(p2 −M2
V1
)(q2 −M2

V1
)

+
16B0FV1FV2µ

V V
21 r2

(p2 −M2
V2
)(q2 −M2

V1
)
+

16B0FV1FV2µ
V V
21 r2

(p2 −M2
V1
)(q2 −M2

V2
)
+

32B0F
2
V2
µV V
22 r2

(p2 −M2
V2
)(q2 −M2

V2
)

+
16B0F

2
V1
d
(1)
m µV V P

1 (p4 + q4)

(p2 −M2
V1
)(q2 −M2

V1
)(r2 −M2

P1
)
+

16B0F
2
V1
d
(2)
m µV V P

2 (p4 + q4)

(p2 −M2
V1
)(q2 −M2

V1
)(r2 −M2

P2
)

+
16B0F

2
V2
d
(1)
m µV V P

3 (p4 + q4)

(p2 −M2
V2
)(q2 −M2

V2
)(r2 −M2

P1
)
+

16B0F
2
V2
d
(2)
m µV V P

4 (p4 + q4)

(p2 −M2
V2
)(q2 −M2

V2
)(r2 −M2

P2
)
,

FRChT
V AS (p2, q2, r2) = −8

√
2B0FV1(κ

V
4 − 2κV

15)

p2 −M2
V1

− 16
√
2B0FA1κ

A
14

q2 −M2
A1

(4.9b)

− 32B0c
(1)
m κS

2

r2 −M2
S1

− 16
√
2B0FA1c

(1)
m κSA

1

(q2 −M2
A1
)(r2 −M2

S1
)
+

8
√
2B0FV1c

(1)
m (2κSV

1 + κSV
2 )

(p2 −M2
V1
)(r2 −M2

S1
)

+
16B0FV1FA1κ

V A
6

(p2 −M2
V1
)(q2 −M2

A1
)
− 16B0FV1FA1c

(1)
m κV AS

(p2 −M2
V1
)(q2 −M2

A1
)(r2 −M2

S1
)

− 8
√
2B0FV2(λ

V
4 − 2λV

15)

p2 −M2
V2

− 16
√
2B0FA2λ

A
14

q2 −M2
A2

− 32B0c
(2)
m λS

2

r2 −M2
S2

41



− 16
√
2B0FA2c

(1)
m λSA

11

(q2 −M2
A2
)(r2 −M2

S1
)
− 16

√
2B0FA1c

(2)
m λSA

12

(q2 −M2
A1
)(r2 −M2

S2
)

− 16
√
2B0FA2c

(2)
m λSA

13

(q2 −M2
A2
)(r2 −M2

S2
)
+

8
√
2B0FV2c

(1)
m (2λSV

11 + λSV
21 )

(p2 −M2
V2
)(r2 −M2

S1
)

+
8
√
2B0FV1c

(2)
m (2λSV

12 + λSV
22 )

(p2 −M2
V1
)(r2 −M2

S2
)

+
8
√
2B0FV2c

(2)
m (2λSV

13 + λSV
23 )

(p2 −M2
V2
)(r2 −M2

S2
)

+
16B0FV2FA1λ

V A
61

(p2 −M2
V2
)(q2 −M2

A1
)
+

16B0FV1FA2λ
V A
62

(p2 −M2
V1
)(q2 −M2

A2
)

+
16B0FV2FA2λ

V A
63

(p2 −M2
V2
)(q2 −M2

A2
)
− 16B0FV2FA1c

(1)
m λV AS

1

(p2 −M2
V2
)(q2 −M2

A1
)(r2 −M2

S1
)

− 16B0FV1FA2c
(1)
m λV AS

2

(p2 −M2
V1
)(q2 −M2

A2
)(r2 −M2

S1
)
− 16B0FV1FA1c

(2)
m λV AS

3

(p2 −M2
V1
)(q2 −M2

A1
)(r2 −M2

S2
)

− 16B0FV2FA2c
(1)
m λV AS

4

(p2 −M2
V2
)(q2 −M2

A2
)(r2 −M2

S1
)
− 16B0FV2FA1c

(2)
m λV AS

5

(p2 −M2
V2
)(q2 −M2

A1
)(r2 −M2

S2
)

− 16B0FV1FA2c
(2)
m λV AS

6

(p2 −M2
V1
)(q2 −M2

A2
)(r2 −M2

S2
)
− 16B0FV2FA2c

(2)
m λV AS

7

(p2 −M2
V2
)(q2 −M2

A2
)(r2 −M2

S2
)

− 16B0c
(1)
m FV2FA1µ

V AS
11 p4

(p2 −M2
V2
)(q2 −M2

A1
)(r2 −M2

S1
)
− 16B0c

(1)
m FV2FA2µ

V AS
12 p4

(p2 −M2
V2
)(q2 −M2

A2
)(r2 −M2

S1
)

− 16B0c
(2)
m FV2FA1µ

V AS
13 p4

(p2 −M2
V2
)(q2 −M2

A1
)(r2 −M2

S2
)
− 16B0c

(2)
m FV2FA2µ

V AS
14 p4

(p2 −M2
V2
)(q2 −M2

A2
)(r2 −M2

S2
)

− 16B0c
(1)
m FV1FA2µ

V AS
21 q4

(p2 −M2
V1
)(q2 −M2

A2
)(r2 −M2

S1
)
− 16B0c

(1)
m FV2FA2µ

V AS
22 q4

(p2 −M2
V2
)(q2 −M2

A2
)(r2 −M2

S1
)

− 16B0c
(2)
m FV1FA2µ

V AS
23 q4

(p2 −M2
V1
)(q2 −M2

A2
)(r2 −M2

S2
)
− 16B0c

(2)
m FV2FA2µ

V AS
24 q4

(p2 −M2
V2
)(q2 −M2

A2
)(r2 −M2

S2
)

− 16B0c
(2)
m FV1FA1µ

V AS
31 r4

(p2 −M2
V1
)(q2 −M2

A1
)(r2 −M2

S2
)
− 16B0c

(2)
m FV2FA1µ

V AS
32 r4

(p2 −M2
V2
)(q2 −M2

A1
)(r2 −M2

S2
)

− 16B0c
(2)
m FV1FA2µ

V AS
33 r4

(p2 −M2
V1
)(q2 −M2

A2
)(r2 −M2

S2
)
− 16B0c

(2)
m FV2FA2µ

V AS
34 r4

(p2 −M2
V2
)(q2 −M2

A2
)(r2 −M2

S2
)
,

FRChT
AAP (p2, q2, r2) =

B0Nc

24π2r2
(4.9c)

+
2
√
2B0FA1

(q2 −M2
A1
)r2
[︁
(q2 − p2 − r2)(κA

3 + 2κA
8 + κA

15) + 2p2κA
16

]︁
+

2
√
2B0FA1

(p2 −M2
A1
)r2
[︁
(p2 − q2 − r2)(κA

3 + 2κA
8 + κA

15) + 2q2κA
16

]︁
− 8
√
2B0FA1(2κ

A
11 + κA

12)

q2 −M2
A1

− 8
√
2B0FA1(2κ

A
11 + κA

12)

p2 −M2
A1

+
64B0d

(1)
m κP

1

r2 −M2
P1

−
32B0F

2
A1
κAA
2

(p2 −M2
A1
)(q2 −M2

A1
)
−

4B0F
2
A1
κAA
3 (p2 + q2 − r2)

(p2 −M2
A1
)(q2 −M2

A1
)r2

42



+
8
√
2B0FA1d

(1)
m (2κPA

1 + κPA
2 )

(p2 −M2
A1
)(r2 −M2

P1
)

+
8
√
2B0FA1d

(1)
m (2κPA

1 + κPA
2 )

(q2 −M2
A1
)(r2 −M2

P1
)

+
16B0F

2
A1
d
(1)
m κAAP

(p2 −M2
A1
)(q2 −M2

A1
)(r2 −M2

P1
)

+
2
√
2B0FA2

(q2 −M2
A2
)r2
[︁
(q2 − p2 − r2)(λA

3 + 2λA
8 + λA

15) + 2p2λA
16

]︁
+

2
√
2B0FA2

(p2 −M2
A2
)r2
[︁
(p2 − q2 − r2)(λA

3 + 2λA
8 + λA

15) + 2q2λA
16

]︁
− 8
√
2B0FA2(2λ

A
11 + λA

12)

q2 −M2
A2

− 8
√
2B0FA2(2λ

A
11 + λA

12)

p2 −M2
A2

+
64B0d

(2)
m λP

1

r2 −M2
P2

− 16B0FA1FA2λ
AA
21

(p2 −M2
A1
)(q2 −M2

A2
)
− 16B0FA1FA2λ

AA
21

(p2 −M2
A2
)(q2 −M2

A1
)

−
4B0F

2
A2
(8λAA

22 − λAA
34 )

(p2 −M2
A2
)(q2 −M2

A2
)
−

4B0F
2
A2
λAA
34 (p2 + q2)

(p2 −M2
A2
)(q2 −M2

A2
)r2

− 2B0FA1FA2

(p2 −M2
A1
)(q2 −M2

A2
)r2
[︁
(p2 + q2 − r2)(λAA

31 + 2λAA
32 + λAA

33 )− 4λAA
32 p2

]︁
− 2B0FA1FA2

(p2 −M2
A2
)(q2 −M2

A1
)r2
[︁
(p2 + q2 − r2)(λAA

31 + 2λAA
32 + λAA

33 )− 4λAA
32 q2

]︁
+

8
√
2B0FA2d

(1)
m (2λPA

11 + λPA
21 )

(p2 −M2
A2
)(r2 −M2

P1
)

+
8
√
2B0FA2d

(1)
m (2λPA

11 + λPA
21 )

(q2 −M2
A2
)(r2 −M2

P1
)

+
8
√
2B0FA1d

(2)
m (2λPA

12 + λPA
22 )

(p2 −M2
A1
)(r2 −M2

P2
)

+
8
√
2B0FA1d

(2)
m (2λPA

12 + λPA
22 )

(q2 −M2
A1
)(r2 −M2

P2
)

+
8
√
2B0FA2d

(2)
m (2λPA

13 + λPA
23 )

(p2 −M2
A2
)(r2 −M2

P2
)

+
8
√
2B0FA2d

(2)
m (2λPA

13 + λPA
23 )

(q2 −M2
A2
)(r2 −M2

P2
)

+
16B0FA1FA2d

(1)
m λAAP

1

(p2 −M2
A1
)(q2 −M2

A2
)(r2 −M2

P1
)
+

16B0FA1FA2d
(1)
m λAAP

1

(p2 −M2
A2
)(q2 −M2

A1
)(r2 −M2

P1
)

+
16B0F

2
A1
d
(2)
m λAAP

2

(p2 −M2
A1
)(q2 −M2

A1
)(r2 −M2

P2
)
+

16B0F
2
A2
d
(1)
m λAAP

3

(p2 −M2
A2
)(q2 −M2

A2
)(r2 −M2

P1
)

+
16B0FA1FA2d

(2)
m λAAP

4

(p2 −M2
A1
)(q2 −M2

A2
)(r2 −M2

P2
)
+

16B0FA1FA2d
(2)
m λAAP

4

(p2 −M2
A2
)(q2 −M2

A1
)(r2 −M2

P2
)

+
16B0F

2
A2
d
(2)
m λAAP

5

(p2 −M2
A2
)(q2 −M2

A2
)(r2 −M2

P2
)
+

32B0F
2
A1
µAA
2 r2

(p2 −M2
A1
)(q2 −M2

A1
)

+
16B0FA1FA2µ

AA
21 r2

(p2 −M2
A2
)(q2 −M2

A1
)
+

16B0FA1FA2µ
AA
21 r2

(p2 −M2
A1
)(q2 −M2

A2
)
+

32B0F
2
A2
µAA
22 r2

(p2 −M2
A2
)(q2 −M2

A2
)

+
16B0F

2
A1
d
(1)
m µAAP

1 (p4 + q4)

(p2 −M2
A1
)(q2 −M2

A1
)(r2 −M2

P1
)
+

16B0F
2
A1
d
(2)
m µAAP

2 (p4 + q4)

(p2 −M2
A1
)(q2 −M2

A1
)(r2 −M2

P2
)

+
16B0F

2
A2
d
(1)
m µAAP

3 (p4 + q4)

(p2 −M2
A2
)(q2 −M2

A2
)(r2 −M2

P1
)
.

43



4.3 Matching RChT–OPE

In this section, we perform the matching between the RChT and OPE contri-
butions, i.e. between (3.32a), (3.32b), (3.32c) and (4.9a), (4.9b), (4.9c), respec-
tively. In detail, such a matching is performed by scaling all the momenta of the
RChT contributions simultaneously as (p, q, r) → (λp, λq, λr) for λ → ∞ and
subsequently expanding such expressions in terms of λ. A comparison with the
respective OPE contributions is then made.

In order to present the results of the matching as economically as possible,
we provide them in the form of an auxiliary file — the Mathematica notebook.
Therein, one can find what some of the couplings of the extended resonance
Lagrangian are supposed to be equal to in order to satisfy the desired behaviour
of the ⟨V V P ⟩, ⟨V AS⟩ and ⟨AAP ⟩ Green functions.

Further, in the said file, we provide expressions for the coefficients of the poly-
nomials in (4.1a)-(4.1c) that help us to present the final results of the resonance
contributions of these correlators in a compact form. To verify the validity of
such results, some of these expressions can be then compared to their forms ob-
tained at the algebraical level — see eqs. (A.12), (A.13), (A.15), (A.18), (A.21)
and (A.23) for ⟨V V P ⟩, eqs. (A.32) and (A.33) for ⟨V AS⟩ and, finally, eqs. (A.38),
(A.39) and (A.41) for ⟨AAP ⟩, referring once again to the article [2].

4.4 Resonance saturation

Finally, let us turn our attention to the ChPT contributions (4.8a), (4.8b) and
(4.8c) that are given in terms of the respective low-energy constants CW

i . In
RChT, the contribution of these constants is accounted for in terms of the reso-
nance multiplets. A natural task is then to perform the matching of both contri-
butions and obtain the expressions for the low-energy constants in terms of the
couplings of the resonance Lagrangian.

The matching itself is carried out as follows. Firstly, we take the resonance
contributions (4.9a), (4.9b), (4.9c) and perform the Taylor expansion in terms of
the kinematical variables p2, q2 and r2 around zero. Then, the relevant polynomial
structures of such series are compared to the tree-level ChPT results (4.8a), (4.8b)
and (4.8c), respectively.

The results of the above-mentioned matching are quite lengthy. They are as
follows:47
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47In the expressions below, we have highlighted in bold such contributions that one would
have obtained if only the lowest resonance multiplets would have been taken into account.
These can be compared also with eqs. (39) and (87) in ref. [78] and with eq. (B.3) in ref. [2].
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Upon applying the constraints obtained from the RChT–OPE matching, the
expressions above can be rewritten as follows:
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(4.11e)

Interestingly enough, we see that we have obtained a simple relation (4.11d)
for CW

22 , in which all the parameters are known. This thus allows us to extract
its numerical value:

CW
22 = 7.68 · 10−3GeV−2 (4.12)

4.5 Three-multiplet resonance contribution

As we have shown in ref. [2], the pion transition form factor obtained from the
⟨V V P ⟩ Green functions with two vector and two pseudoscalar resonance mul-
tiplets reproduces the one of the THS — cf. eqs. (A.24) and (A.25) in [2] and
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eq. (17) in [136]. Naturally, one might try to increase the number of respective
multiplets in accordance with the previous strategy. Then, instead of (4.1a), one
is required to consider the ansatz

FV V P (p
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B0F
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,

where SV V P (p
2, q2, r2) is a polynomial of mass dimension 16 and, after taking

into account the requirements (3.32a), (4.2), (4.4) and (4.5), encompass of 40
unknown coefficients — we shall denote them, for example, as αi.
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The pion transition form factor, corresponding to the ansatz (4.13), reads
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and depends on seven coefficients. Naturally, it is desirable to determine them.
We have thus introduced three additional requirements that the parametriza-

tion (4.13) should satisfy. These are as follows.

• The “subleading” Brodsky–Lepage behaviour [104, 141]:
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, (4.15)

with the parameter δ2 = (0.20± 0.02)GeV2.

• The asymptotic behaviour of the form factor ⟨V1|V |π0⟩ for q2 →∞:

lim
p2 →M2

V1

r2 → 0

(p2 −M2
V1
)r2FV V P (p

2, q2, r2) ∼ 1

q2
. (4.16)

48Originally, before one applies the above-mentioned requirements, the polynomial consists
of 95 Bose-symmetric terms and the same number of corresponding coefficients. Although it
would not make sense to list the full polynomial, the reader might be interested which coefficient
belongs to a specific monomial. To this end, we describe the organization of such a polynomial
as follows. Let us consider a general Bose-symmetric monomial of a dimension d in a form
(p2a + q2a)p2bq2br2c, where a, b and c are natural numbers and the factors of two guarantee
that there can not occur odd powers of any of the momenta p, q or r. Obviously, the relation
2(a+2b+ c) = d holds. Then, starting with a constant term, we sort the individual monomials
in such an order so as the size of its dimension is saturated primarily by the number a, only
then by b and, lastly, by c.
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• The semi on-shell Brodsky–Lepage behaviour for the pseudoscalar reso-
nances for Q2 →∞ [142]:

lim
r2 →M2

Pi

(r2 −M2
Pi
)FV V P (0,−Q2, r2) ∼ 1

Q2
, (4.17)

with factorization in all pseudoscalar channels, i.e. i = 1, 2, 3.

Although the results that one gets by utilizing these conditions are shown in
ref. [2], let us reproduce them here in more detail. The reasoning behind this
is the fact that, as it turns out, one actually obtains constraints also for some
coefficients that are not present in the form factor (4.14).

After substituting the pion transition form factor (4.14) into (4.15), one gets

Fγ∗γ∗π0(−Q2,−Q2)

Fγ∗γ∗π0(0, 0)
=

8π2F 2

3
(4.18)

×
[︃
1

Q2
− 1

Q4

(︃
2α16 + α20

M2
P1
M2

P2
M2

P3

+ 2(M2
V1

+M2
V2

+M2
V3
)

)︃
+O

(︃
1

Q6

)︃]︃
,

i.e. so as to fulfill the “subleading” Brodsky–Lepage behaviour one has

α20 = −2α16 − 2M2
P1
M2

P2
M2

P3

(︃
M2

V1
+M2

V2
+M2

V3
− 4

9
δ2
)︃
. (4.19)

The condition (4.16) gives us the series

−
[︃
q4α37 + q2

(︁
α25 − α37(3M

2
V1
−M2

V2
−M2

V3
)
)︁
+

1

2
M2

V1
M2

P1
M2

P2
M2

P3
+ α16

+ α25(M
2
V2

+M2
V3
) + α37

(︁
3M2

V1
(M2

V1
−M2

V2
−M2

V3
) +M4

V2
+M4

V3
+M2

V2
M2

V3

)︁ ]︃
×

B0F
2M2

V1

(M2
V1
−M2

V2
)(M2

V1
−M2

V3
)M2

P1
M2

P2
M2

P3

+O
(︃

1

q2

)︃
, (4.20)

from which, if one enforces its behaviour according to (4.16), it is obvious that
the polynomial structure in the brackets must vanish. This leads to

α16 = −
1

2
M2

V1
M2

P1
M2

P2
M2

P3
, (4.21a)

α25 = α37 = 0 . (4.21b)

Finally, the behaviour (4.17) gives us three sets of conditions. Writing down
explicitly the expansion in terms of Q2 for the factorization of the first pseu-
doscalar resonance multiplet, we get

− B0F
2

M2
V1
M2

V2
M2

V3
(M2

P1
−M2

P2
)(M2

P1
−M2

P3
)

×
[︃
α36Q

4 −
(︁
α24 + α36(M

2
V1

+M2
V2

+M2
V3
) + β62M

2
P1

)︁
Q2 + α15

+ α26M
2
P1

+ α36(M
4
V1

+M2
V1
M2

V3
+M2

V2
M2

V3
+M2

V1
M2

V2
+M4

V2
+M4

V3
)

+ (α24 + α38M
2
P1
)(M2

V1
+M2

V2
+M2

V3
) + α40M

4
P1

]︃
+O

(︃
1

Q2

)︃
, (4.22)

50



with the equivalent expressions for the second and the third multiplets obtained
easily by replacing MP1 for MP2 and MP3 , respectively. Since the elimination of
the terms in the bracket is straightforward, we readily get the following constrains:

α15 = α24 = α26 = α36 = α38 = α40 = 0 . (4.23)

Taking into account the results obtained above and substituting them back
into the form factor (4.14), only three coefficients remain undetermined: α2, α6

and α10.
A procedure of identifying the values of these parameters is, however, a bit

complicated. First of all, they are dimensionful, so scaling them accordingly is a
useful start. Then, it is obvious to notice that once one of the momenta is set
to zero, the form factor is then a function of only α2. This can be fitted onto
the experimental data obtained by the BABAR [143], BELLE [144] and CLEO
[145] collaborations. On top of that, the parameter α2 can be fixed also from the
decays ρ+ → π+γ and ω → π0γ. In ref. [2], we have investigated these approaches
and acquired values that are in a mutual agreement — see section 5.2 therein.

The determination of the parameters α6 and α10 is far more complicated.
A detailed discussion can be found also in ref. [2], see section 5.3 therein. We
will not go into details here, let us only mention that we have employed the
decays ω → π0e+e− and ω → π0µ+µ−, from which the obtained values are
burdened with a large error due to the corresponding unreliable χ2 function.
Nevertheless, the obtained central values were subsequently used, together with
the decay π0 → e+e− and the effective parameter χ(r), for a prediction of the
pion-pole contribution to the muon anomalous magnetic moment. The result,
having a large error as well, reads

aLbyL, π
0

µ = 65± 45 · 10−11 . (4.24)
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Conclusion

In this thesis and the respective attached journal articles, we have studied all the
relevant two- and three-point Green functions of the chiral currents and densities
using the ChPT/RChT and OPE approaches.

We have presented the leading-order contributions of the QCD condensates
up to dimension six to these correlators, obtained within the framework of the
Operator product expansion. In detail, such an effort consisted of recalculating
the well-known perturbative contributions and then by evaluating the respective
contributions of the QCD condensates — both in the chiral limit. We have
accomplished to obtain the following results:

• The contributions of the gluon and four-quark condensates to the ⟨V V A⟩,
⟨AAA⟩, ⟨V V V ⟩, ⟨ASP ⟩, ⟨AAV ⟩, ⟨V SS⟩ and ⟨V PP ⟩ Green functions.

• The contributions of the quark and quark-gluon condensates to the ⟨SSS⟩,
⟨SPP ⟩, ⟨V V P ⟩, ⟨AAP ⟩, ⟨V AS⟩, ⟨V V S⟩, ⟨AAS⟩ and ⟨V AP ⟩ Green func-
tions.

In the second part of the work, we have then limited ourselves to the order
parameters of the chiral symmetry breaking in the chiral limit, i.e. to the ⟨V V P ⟩,
⟨V AS⟩ and ⟨AAP ⟩ Green functions. These were subjected to an investigation
within the Chiral perturbation theory and Resonance chiral theory. In order to
obtain some constraints on the parameters of the effective Lagrangians, we have
required their high-energy behaviour to match OPE, for which the contributions
of the quark and quark-gluon condensates were taken into account. The result of
such an approach was a realization that the duplication of all the lowest vector,
axial-vector, scalar and pseudoscalar resonance multiplets in the corresponding
Lagrangians is inevitable. On top that, taking into account several derivative
operators of a higher dimension was proved to be necessary. Then, the respective
resonance contributions were successfully matched onto OPE, from which a series
of constraints for the respective coupling constants of the resonance Lagrangians
were extracted in the form of “sum rules”.

As a special case, we have also studied the ⟨V V P ⟩ Green function with three
vector and three pseudoscalar resonance multiplets taken into account. Needless
to say, this investigation was performed only on an algebraic level since the corre-
sponding extension of the resonance Lagrangian would be extremely complicated.
To this end, we were able to construct the relevant double off-shell pion transition
form factor Fγ∗γ∗π0(p2, q2) as a function of three parameters only. Their values
were eventually identified with the help of various phenomenological inputs, such
as using the fit on the experimental data for the quantity Q2Fγ∗γ∗π0(0,−Q2) and
the decays ρ+ → π+γ, ω → π0γ, ω → π0e+e− and ω → π0µ+µ−. Finally, a study
of the correlation of the pion-pole contribution to the muon g − 2 factor and the
effective parameter χ(r), related to the π0 → e+e− decay, was performed.

Future prospects. In the second part of our work, we have knowingly ignored
the anomalous three-point Green functions, i.e. the ⟨V V A⟩ and ⟨AAA⟩ corre-
lators. The reason for such a simplification is that their OPE starts, even in
the chiral limit, with the perturbative contribution. A presence of the respective
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logarithmic terms makes the matching on their resonance contributions difficult
since these terms can not be treated within RChT with a finite number of reso-
nances. This, however, represents a challenging task that would be interesting to
study further. Also, as another future prospect, it would be desirable to perform
the presented study completely beyond the chiral limit.
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[5] T. Kadavý, K. Kampf and J. Novotný, Green functions of currents in the
odd-intrinsic parity sector of QCD, AIP Conf. Proc. 1701 (2016) no. 1,
040009.
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[78] K. Kampf and J. Novotný, Resonance saturation in the odd-intrinsic parity
sector of low-energy QCD, Phys. Rev. D 84 (2011), 014036. [arXiv:1104.3137
[hep-ph]].

[79] V. A. Novikov, M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Calcu-
lations in External Fields in Quantum Chromodynamics. Technical Review,
Fortsch. Phys. 32 (1984) 585.

59



[80] M. S. Dubovikov and A. V. Smilga, Analytical Properties of the Quark Po-
larization Operator in an External Selfdual Field, Nucl. Phys. B 185 (1981)
109.

[81] W. Hubschmid and S. Mallik, Operator expansion at short distance in QCD,
Nucl. Phys. B 207 (1982), 29-42.

[82] M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, QCD and Resonance
Physics: Applications, Nucl. Phys. B 147 (1979), 448-518.

[83] M. Gell-Mann, R. J. Oakes and B. Renner, Behavior of current divergences
under SU(3)× SU(3), Phys. Rev. 175 (1968), 2195-2199.

[84] A. Bazavov, C. Bernard, C. DeTar, X. Du, W. Freeman, S. Gottlieb,
U. M. Heller, J. E. Hetrick, J. Laiho and L. Levkova, et al. Staggered chiral
perturbation theory in the two-flavor case and SU(2) analysis of the MILC
data, PoS LATTICE2010 (2010), 083. [arXiv:1011.1792 [hep-lat]].

[85] S. Borsanyi, S. Durr, Z. Fodor, S. Krieg, A. Schafer, E. E. Scholz and
K. K. Szabo, SU(2) chiral perturbation theory low-energy constants from
2 + 1 flavor staggered lattice simulations, Phys. Rev. D 88 (2013), 014513.
[arXiv:1205.0788 [hep-lat]].
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A. Fourier transform

In ref. [1], it was desirable to convert the results of contributions of the QCD
condensates to the Green functions in the coordinate representation into the
momentum one — the reason being that, eventually, one would need to compare
them with the corresponding ChPT/RChT contributions, which are obtained
within the momentum representation straight away.

The Fourier transform is the tool that does such a conversion. A reader
might find different conventions regarding the sign in the exponential in various
literature — the one we have used in ref. [1] corresponds to a convention in which
all the momenta of a Green function are taken as ingoing. For simplicity, let us
restrict ourselves into one variable only. Then, the Fourier transform reads

˜︁F (p) =

∫︂
d4x e−ip·xF (x) ←→ F (x) =

∫︂
d4p

(2π)4
eip·x ˜︁F (p) , (A.1)

from which it can be noticed that the following relations hold:50∫︂
d4p

(2π)4
eip·xpµ ˜︁F (p) = −i∂ x

µ

∫︂
d4p

(2π)4
eip·x ˜︁F (p) ,∫︂

d4x e−ip·xxµF (x) = i∂ p
µ

∫︂
d4x e−ip·xF (x) . (A.2)

For the purposes of ref. [1], one thus needs only the Fourier transforms of
1/x2, 1/x4 and log(−µ2x2), with µ being an arbitrary scale. Then, any other
expressions needed can be obtained using the formulae (A.2) repeatedly. For the
first two relations one has (n ∈ N) [79, 109]∫︂

d4x
e−ip·x

x2
= −4iπ2

p2
,∫︂

d4x
e−ip·x

x2n
= i(−1)n 24−2nπ2

Γ(n− 1)Γ(n)
p2(n−2) ln

(︃
− p2

µ2

)︃
+ Pn−2(p

2) , (A.3)

where n > 1 and Pn−2(p
2) is a polynomial of power n−2 in p2 and Γ(n) = (n−1)!

is a gamma function. The latter integral is generally UV-divergent because the
coefficients of such polynomial are ill-defined.51 Nevertheless, the polynomial does
not depend of p2 for n = 2 and its derivation with respect to pµ vanishes, which
allows us to comfortly express the results presented in appendix A in ref. [1].

Finally, the Fourier transform of the logarithmic term can be found in ref. [135]
and it reads52 ∫︂

d4x e−ip·x log(−µ2x2) =
16iπ2

p4
. (A.4)

50Since there is indeed a must to distinct between the derivatives with respect to coordinate
x and momentum p, we add the upper index that does the job.

51As ref. [79] remarks, a presence of such ill-defined polynomials without singularities in p2

is typical for a study of sum rules, where they disappear after borelization.
52A ref. [135] presents a large number of useful Fourier transforms, including details of their

calculation — see appendices A and C therein.
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B. OPE beyond chiral limit

To be fair with the reader, we will not discuss here the OPE beyond chiral limit
and its individual contributions in detail. Rather, we will fulfill our obligation and
discuss one particular example — the contribution of the the gluon condensate
to the two-point Green functions in the case of nonzero quark mass.

As we have argued in section 3.4, the quark propagator in the external gluon
field in the momentum representation (3.24) simplifies significantly, among other
procedures, the calculation of the contribution of the gluon condensate to the two-
point Green functions. Before we prove such a statement, we remind the reader
the procedure of a standard calculation performed in the coordinate representa-
tion, followed by the application of the Fourier transform, as we have presented
it in ref. [1] — see appendix D.3 therein.

Let us now turn our attention to the calculation itself. To obtain the contri-
bution of the gluon condensate to the two-point Green functions, one is required
to evaluate the contributions of the figs. 13(a)-13(c) at page no. 61 in ref. [1].
This is a straightforward calculation similar to an evaluation of the perturbative
contribution with the only difference being that one uses the relevant parts of the
propagator (3.24). After some algebraical manipulations, it is indeed trivial to
obtain the contributions of the respective Feynman graphs in the following form:

[︁
Π

⟨G2⟩
Oa

1Ob
2
(p)
]︁
(a)

=
παs⟨G2⟩

96
δab×

×
∫︂

d4ℓ

(2π)4
Tr

[︄
Γ1
{σαβ, /ℓ +m}
(ℓ2 −m2)2

Γ2

{σαβ, /ℓ + /p+m}(︁
(ℓ+ p)2 −m2

)︁2
]︄
, (B.1a)

[︁
Π

⟨G2⟩
Oa

1Ob
2
(p)
]︁
(b)

=− παs⟨G2⟩
24

δab×

×
∫︂

d4ℓ

(2π)4
Tr

[︄
Γ1

fααββ(ℓ,m)− fαββα(ℓ,m)

(ℓ2 −m2)5
Γ2

/ℓ + /p+m

(ℓ+ p)2 −m2

]︄
, (B.1b)

[︁
Π

⟨G2⟩
Oa

1Ob
2
(p)
]︁
(c)

=− παs⟨G2⟩
24

δab×

×
∫︂

d4ℓ

(2π)4
Tr

[︄
Γ1

/ℓ +m

ℓ2 −m2
Γ2

fααββ(ℓ+ p,m)− fαββα(ℓ+ p,m)(︁
(ℓ+ p)2 −m2

)︁5
]︄
,

(B.1c)

with the only necessary ingredients being (3.27) and the knowledge of the fact
that (3.28) reduces to (3.29).53

Then, using the relation (3.29), the expressions (B.1b) and (B.1c) can be
simplified a bit:[︁

Π
⟨G2⟩
Oa

1Ob
2
(p)
]︁
(b)

=
παs⟨G2⟩

2
δab×

×m

∫︂
d4ℓ

(2π)4
Tr

[︄
Γ1

ℓ2 +m/ℓ

(ℓ2 −m2)4
Γ2

/ℓ + /p+m

(ℓ+ p)2 −m2

]︄
, (B.2a)

53To be thorough, let us point out that (3.27) is utilized since one needs to employ the relation
Tr [Gαβ(0)Gγδ(0)] =

1
24 (gαγgβδ − gαδgβγ)G

2 in a mid-stage of the calculation.
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[︁
Π

⟨G2⟩
Oa

1Ob
2
(p)
]︁
(c)

=
παs⟨G2⟩

2
δab×

×m

∫︂
d4ℓ

(2π)4
Tr

[︄
Γ1

/ℓ +m

ℓ2 −m2
Γ2

(ℓ+ p)2 +m(/ℓ + /p)(︁
(ℓ+ p)2 −m2

)︁4
]︄
, (B.2b)

from which it is obvious that the contributions of the graphs 13(b) and 13(c)
vanish in the chiral limit, as expected — cf. the discussion above the relation
(D.10) in ref. [1]. For clarity, let us mention that performing the integration in
(B.1a) within the chiral limit is an elementary task and one indeed recovers the
already obtained results — cf. eqs. (B.6) and (B.7) in [1].

Let us now, however, advance and finalize the integration of the expressions
(B.1a), (B.2a) and (B.2b) form ̸= 0. As a special example, let us choose the ⟨V V ⟩
Green function — after substituting for the respective Dirac matrices, performing
the integrations and summing up the contributions of the three Feynman graphs,
the final result of the contribution of the gluon condensate beyond the chiral limit
reads54

Π
⟨G2⟩
V V (p2) =

iαs⟨G2⟩
24πp4

(B.3)

×
24m6

(︁
Λ(p2;m,m) + 2

)︁
− 4m4p2

(︁
3Λ(p2;m,m) + 7

)︁
+ 8m2p4 − p6

(p2 − 4m2)3
.

In (B.3), we have denoted a dimensionless function of momenta and masses
Λ, which is the part of the Passarino–Veltman B0 function containing the s-plane
branch cut. Its form reads55

Λ(s;m1,m2) =
λK(s,m

2
1,m

2
2)

2s
lim

ε→ 0+

∫︂ 1

0

dz

sz2 − (s+m2
1 −m2

2)z +m2
1 − iε

=

√︁
λK(s,m2

1,m
2
2)

s
log

(︄√︁
λK(s,m2

1,m
2
2) +m2

1 +m2
2 − s

2m1m2

)︄
, (B.4)

where56

λK(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz (B.5)

is the Källén’s function.57 Finally, we point out that the function (B.4) simplifies
a bit in the special case of both masses being equal to each other, as in (B.3):

Λ(s;m,m) =

√︁
s(s− 4m2)

s
log

(︄√︁
s(s− 4m2) + 2m2 − s

2m2

)︄
. (B.6)

54We remind the reader that we present only the Lorentz-invariant scalar coefficient, i.e. the
coefficient in front of the structure (p2gµν − pµpν)δ

ab.
55We note that (B.4) has a branch cut discontinuity in the complex s-plane running from

s = (m1 +m2)
2 to infinity, and a non-Landaunian pole at s = 0.

56The special cases of λK(x, y, y) = x(x−4y) and λK(x, y, 0) = (x−y)2 are useful to remember.
57Since Källén was a Swedish, it might be interesting for a Czech reader to find out what the

correct pronunciation of his name actually is. To this end, we point out that the syllable “kä”
should be read as the Czech syllable “še”.
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• https://link.springer.com/article/10.1007/JHEP10(2020)142.
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