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Abstract:

The γ-ray emission process in highly-excited nuclei is typically described within
the statistical model of nucleus using the two main ingredients - the level density
(LD) and the photon strength functions (PSFs). The knowledge of LD and PSFs is
essential in the modeling of nuclear reactions with applications in astrophysics or
advanced nuclear reactors. In this work, we studied the multi-step γ-ray cascade
spectra following the radiative neutron capture 167Er(n, γ)168Er measured with
the Detector for Advanced Neutron Capture Experiments in Los Alamos National
Laboratory. The experimental γ-ray spectra were compared with the simulated
spectra exploiting the dicebox Monte Carlo code for simulation of radiative
decay to test different models of LD and PSFs.

Furthermore, the measured spectra allowed us to determine the population of
the isomeric state in 168Er with 109 ns half-life and compare it with the simulated
isomeric population, which provides an important test of the applicability of the
statistical model. The simulated isomeric population was found to be significantly
lower than the experimental one if no structure effects are assumed above the
excitation energy of the isomer. If we adopt the decay scheme up to excitation
energy well above 2 MeV, we obtain the simulated isomeric ratio comparable to
the experimental one.

This result indicates that the structural effects in 168Er might still play a role
in the region of higher excitation energies (likely up to 2.0-2.4 MeV), where the
statistical model was successfully used to describe the γ-ray spectra in other
rare-earth nuclei.

In addition, from the 167Er(n, γ)168Er data, we were able to assign spins to in-
dividual neutron resonances up to energies of several hundred eV. We studied
the fluctuation properties of these neutron resonances and compared them with
the predictions of the random matrix theory. The Gaussian orthogonal ensemble
version of the random matrix theory predicts a very precise determination of the
nuclear level spacing if a sequence of neutron resonances is complete. However,
we found that the determination of the completeness is problematic and the com-
pleteness cannot be guaranteed even for short sequences with tens of resonances.

Keywords: level density, photon strength functions, statistical γ decay, neutron
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Introduction
In 1932 James Chadwick discovered the neutron, which was immediately ex-
ploited as a probe to study nuclear structure. Soon after, Enrico Fermi, motivated
by previous measurements with α particles, decided to use neutrons to induce
radioactivity in different elements. The bombardment with high-speed neutrons
as well as neutrons with thermal velocities resulted in observing the capture
of the neutron and subsequential emission of a proton, α particle, or γ radiation.
The (n, γ) reaction was however difficult to interpret within the nuclear theory
at the time, which could not describe the surprisingly large measured cross sec-
tions [1, 2] that exhibited resonances restricted to narrow neutron energy regions.

The existence of the resonances was explained by Bohr’s famous model of com-
pound nucleus [3]. He argued that their origin could not be caused by the inter-
action of a neutron with a single nucleon of the target, where the time scale is
in the order of 10−22 s. On the contrary, the neutron collides with many nucleons
of the target, and its energy is rearranged among them, which creates a complex
configuration - the compound nucleus - whose lifetime ≈ 10−15 s is much longer.
This formation is illustrated in Fig. 1, where the neutron with an incident en-
ergy provided by the billiard cue is passing through the nuclear interior. It takes
the system a long time until a possible emission of a particle or radiation takes
place, which can be considered a separate process with no immediate connec-
tion to the first stage. The creation of the compound nucleus has the highest
probability when the incident neutron’s energy is equal to the energy of the level
in the spectrum of the compound nucleus.

Figure 1: Bohr’s wooden toy model illustrating formation of the compound nu-
cleus. The figure is taken from Ref. [4].

A complex scheme of a radiative neutron capture reaction is shown in Fig. 2.
A neutron with kinetic energy En is captured in the nucleus with mass number A
forming a compound nucleus with A+1 nucleons. This so-called Neutron Reso-
nance is a highly-excited, well-defined nuclear state with a given energy, spin, and
parity. The excitation energy is given by a sum of neutron separation energy Sn

(in rare-earth nuclei typically 5–9 MeV) and the kinetic energy En of the neutron.
This state decays by emission of one or more γ rays until the nucleus reaches its
ground state.

Due to the extreme complexity of the nuclear states above Sn, the positions
and other properties of these states cannot be predicted within any nuclear model.
The nucleus displays a statistical behavior and the fluctuation properties of its
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Figure 2: Scheme of a neutron capture reaction, formation of a compound nucleus
and following emission of γ rays. The neutron resonances illustrated in the cross
section correspond to the excitation of the nuclear levels. The figure is taken
from [5].

levels are believed to be described by the Random Matrix Theory (RMT), intro-
duced to nuclear physics by Wigner in 1960s [6, 7]. Instead of an actual nuclear
Hamiltonian, he considered an ensemble of Hamiltonians expressed in a matrix
form, where matrix elements are given in terms of some probability distribution
- hence the name random matrices. There is a plethora of experimental evidence
that fluctuation properties of neutron resonances follow the predictions of random
matrix theory and the details are discussed in Chap 4.

The γ decay following the formation of a neutron resonance in heavy nu-
clei populates a large number of levels in the energy range between the ground
state up to Sn. The levels at low excitation energies just above the ground state
are well separated and their properties such as energy, spin, parity, and decay
pattern are known from experiments and usually are confirmed by theoretical
calculations. With increasing excitation energy the number of levels grows expo-
nentially and they cannot be experimentally resolved anymore. It also becomes
impossible to predict individual levels and their properties within nuclear mod-
els. Consequently, one has to rely on a statistical approach to describe nuclear
level properties using average quantities and fluctuation properties. In even-even
well-deformed rare-earth nuclei, this region, which is often referred to as the qua-
sicontinuum, is typically above 2 MeV. In order to describe the γ decay therein, we
cannot consider individual levels, but use average quantities within the Statistical
Model of nucleus - those are Level Density (LD) and Photon Strength Functions
(PSF). These quantities are essential for nuclear reaction calculations involving
interaction of photons with nuclei.

Lane and Lynn [8] introduced the PSF in 1959 as a quantity proportional
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to the photoabsorption cross section. At that time it was already known that
the photoabsorption cross section is dominated by a Giant Electric Dipole Res-
onance (GEDR) [9], a manifestation of the collective vibrations of proton and
neutron fluids induced by the incoming γ radiation. The Standard Lorentzian
model assuming a Lorentzian shape of the GEDR was very successful to describe
the E1 transitions at excitation energies above the Sn. However, later it has been
shown that the Standard Lorentzian model is inadequate in the energy region be-
low Sn because the situation there is probably much more complicated and many
other models of E1 PSF have been introduced. Furthermore, similar structures as
the GEDR have been observed in M1 and E2 PSFs which also affect the γ decay
below Sn. The current status of the PSFs models is discussed in Chap. 2.

The typical lifetimes of the intermediate states below Sn are in orders of ps.
In some nuclei, we also observe states with much longer lifetimes, referred to as
nuclear isomers. The population of an isomer is sometimes considerable and its
presence thus significantly influences the γ decay of the given nucleus. Describing
the population of the short-lived isomers (with half-lives around tens to hundreds
of ns) is problematic within the statistical model of γ decay. The analyses of the
experimental isomeric population in 177Lu [10, 11] or Hf isotopes [12] revealed
a discrepancy between the measured population and the population predicted
with simulations using the statistical model. There is a systematic trend of un-
derestimating the simulated populations with respect to the experimental ones.

The aim of this thesis was to study γ decay following the resonance neutron
capture on 167Er that was measured by the Detector for Advanced Neutron Cap-
ture Experiments (DANCE) located at Los Alamos National Laboratory (LANL).
The corresponding even-even rare-earth compound nucleus 168Er is interesting be-
cause of its isomeric state of ≈ 109 ns half-life at the excitation energy ≈ 1 MeV.
The feeding of this state is so significant that we can observe it in the γ-ray spectra
measured with the DANCE detector, which can distinguish between the cascades
populating and depopulating the isomer. The acquired γ-ray spectra were com-
pared with the Monte Carlo simulations of the γ decay employing the statistical
model of nucleus in order to obtain information about the LD and PSFs. The sim-
ulations of γ cascades also provide the isomeric population that can be compared
to the experimental one. Furthermore, we assigned spin to measured neutron res-
onances and performed analysis of the neutron resonance fluctuations, specifically
comparing the measured fluctuation properties to the predictions of the random
matrix theory.

This work is organized as follows: models of LD that we tested in our analysis
are introduced in Chap. 1. The current status of the knowledge on PSFs is
discussed in Chap. 2 and the algorithm used for the modeling of the γ decay
is described in Chap. 3. A summary of the random matrix theory predictions
relevant to our study and measures used to estimate the fluctuation properties
of neutron resonances is given in Chap. 4. The DANCE experimental facility, data
processing, experimental spectra of the measured γ rays and the experimental
method of assigning spin to neutron resonances is discussed in Chap. 5. The main
results from 167Er(n, γ)168Er analysis are presented in Chap. 6 and the conclusions
are given in Chap. 6.3.2.

The results concerning statistical properties of neutron resonances are ac-
cepted to be published in the form of the paper attached in Appendix A, together
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with the analogous analysis of two Dy isotopes. The author of this thesis was
responsible for all the work related to 167Er(n, γ)168Er, while the methodology
and realization of the statistical analysis was a collective work led by the Prague
group. The Appendix B includes a paper ready to be submitted that describes
the results on LD, PSFs and isomeric ratio deduced from the 167Er(n, γ) measure-
ment. In this case, the author of the thesis performed the complete presented
analysis.
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1. Level Density
Level density is one of the important characteristics of highly excited nuclei.
Together with photon strength functions, those are the main quantities necessary
for simulating γ decay within the statistical model. Here we introduce the most
common phenomenological models of LD, their parametrizations as well as LD
derived from microscopic calculations. In addition, we provide a short overview
of experimental techniques used to extract the LD in the energy region of our
interest.

1.1 Statistical Interpretation
Above a certain region of excitation energies (around 1.5 − 2 MeV in even-even
heavy nuclei) we rely on the statistical model to describe nuclear level properties.
Adopting a method from statistical physics, Bethe [13] in 1936 derived a formula
for nuclear LD. The main idea is that the complete information on the spectrum
is equivalent to the knowledge of the partition function of the system. Assuming
a gas of noninteracting fermions with equidistant nondegenerate single-particle
levels yields LD ρ at excitation energy E:

ρ(E) = exp(2
√

aE)
4
√

3E
, (1.1)

where a is the level density parameter.

1.2 Phenomenological Models
The two most widely used phenomenological models of level density are the Back-
Shifted Fermi Gas (BSFG) model and the Constant Temperature (CT) model.
The level density is usually expressed in a separable form:

ρ(E, J, π) = ρ(E)f(J, σ)g(π) (1.2)

with ρ(E) as the total LD, f(J, σ) as the spin distribution and g(π) is the parity
distribution. The spin distribution f(J, σ) might depend on excitation energy
E through the spin cut-off parameter σ - details are discussed in the following
two subsections. Considering gaussian distribution of the spin projections M , the
spin distribution function [14, 15], is given as:

f(J, σ) = exp
(︄

− J2

2σ

)︄
−exp

(︄
− (J + 1)2

2σ

)︄
≃ 2J + 1

2σ2 exp
(︄

− (J + 1/2)2

2σ2

)︄
(1.3)

The parity distribution is usually assumed to be g(π) = 1/2 for each parity,
corresponding to the same number of levels with positive and negative parity in-
dependently of excitation energy. However, parity dependence cannot be a priori
excluded. The asymmetry should decrease with higher excitation energy and for

7



nuclei with 20 < A < 110 was proposed to be described with a phenomenological
formula [16]:

g(π = +, E) = ρ+(E)
ρ+(E) + ρ−(E) = 1

2

(︄
1 ± 1

1 + exp[c(E − δp)]

)︄
(1.4)

where the sign “+” denotes the dominant parity for low-energy levels. Authors
proposed c = 3 MeV−1, the shift δp is different for even-even, odd-even, even-odd
and odd-odd nuclei and can be found in [16].

1.2.1 Back-Shifted Fermi Gas Model
This model employs a more realistic expression of the Bethe formula (1.1). Cor-
rections were motivated by the pairing tendency of two types of fermions present
in the nucleus. To break such a pair, an extra amount of energy is needed - which
is reflected as subtracting an energy shift ∆ from the excitation energy E. The
resulting Back-Shifted Fermi Gas LD formula derived by Gilbert and Cameron
has the energy dependence in a form [14]:

ρ(E) =
exp(2

√︂
a(E − ∆))

12
√

2σa1/4(E − ∆)5/4
(1.5)

where Gilbert and Cameron proposed the energy shift ∆ = P (N) + P (Z) with
P (N), P (Z) being the neutron and proton pairing energies, respectively. In the
later works [17, 18], a and ∆ were considered free parameters that are nucleus-
dependent and can be obtained from reproducing the experimental LD at low
excitation energies or in region above the neutron separation energy. Von Egidy
and Bucurescu [17] introduced the spin cut-off parameter σ from a global fit of
310 nuclei. The resulting expression is:

σ2 = 0.0146A5/3 1 +
√︂

1 + 4a(E − ∆)
2a

(1.6)

where A is the mass number. In the later work [18] the spin cut-off parameter
was proposed to be independent of a:

σ2 = 0.391A0.675(E − 0.5Pa′)0.312 (1.7)

and Pa′ is the deuteron pairing energy calculated from nucleus masses M(A, Z)
as follows:

Pa′ = 1
2 [M(A + 2, Z + 1) − 2M(A, Z) + M(A − 2, Z − 1)] (1.8)

and can be found in [18].
A deviation of the experimental spin distribution from Eq. (1.3) was observed

at low excitation energies for even-even nuclei. This so-called staggering effect
manifests as a preference of levels with even spins with respect to odd spins. The
corresponding spin distribution function introduced in [18] depends on a stagger-
ing parameter x:

fee(J, σ) = f(J, σ)(1 + x) (1.9)
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where x = 0.227 for even spin, x = −0.227 for odd spin and x = 1.02 for
zero spin. No energy dependence was proposed in the original paper, but the
staggering effect is expected to vanish at higher excitation energies.

1.2.2 Constant Temperature Model
Another model proposed by Gilbert and Cameron [14] aimed to describe the
experimental low-energy behavior of LD, which for a wide range of nuclei showed
an exponential dependence. This is the so-called Constant Temperature formula:

ρ(E) = 1
T

exp
(︄

E − E0

T

)︄
(1.10)

with nuclear temperature T and back shift E0 being the free parameters. The
spin cut-off parameter paired with the CTF model in Ref. [17] is a function of A
and has a form:

σ = 0.98A0.29 (1.11)

In the later work, [18] Eq. (1.7) serves as the spin cut-off parameter formula
for both CT and BSFG level density models. It is important to note that both
these models work under the assumption of parity independence of level density.

1.3 Microscopic Calculations
The above described phenomenological models adopt relatively simple formulae
to parametrize experimental data on LD. On the other hand, they do not explain
the energy shifts and dependences on the mass number, which can be performed
within numerical microscopic calculations. We will restrict ourselves to micro-
scopic models relevant to this study and tested in our simulations. A comprehen-
sive summary can be found in the RIPL-3 database [21].

One of the methods how to compute level densities relies on a combinatorial
approach, which includes counting all the configurations allowed for a given num-
ber of nucleons. This approach combined with a single-particle level scheme from
axially symmetric Hartree-Fock-Bogoliubov (HFB) method [22, 19] yields micro-
scopic level densities in a tabular form for around 8000 nuclei with 8 ≤ Z ≤ 110.
The resulting level densities are spin- and parity-dependent and given for each
isotope up to excitation energy E = 200 MeV. The HFB method usually cannot
reproduce neither the average neutron resonance spacings nor the low-lying levels,
hence a renormalization is suggested [19] to match the LD with the experimental
data.

Another approach employs Shell-Model Monte Carlo (SSMC) calculations
that transform imaginary-time many-body evolution operator to a superposition
of one-body evolutions in fluctuating one-body fields. The SSMC method was
applied to heavy rare-earth nuclei such as 162Dy [23] and different isotopes of Sm
and Nd [24]. The energy dependence of the LD ρ(E) displays a very similar be-
havior to the BSFG model in all the above-mentioned isotopes. Calculated spin
distribution of the level density in 162Dy agrees with Eq. (1.9) when the stagger-
ing parameter x decreases linearly with excitation energy to zero at E = 4 MeV.
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Figure 1.1: Spin- and parity-summed LD models tested for 168Er. The red tri-
angles correspond to the microscopic HFB calculations [19]. BSFG and CTF
models are shown for two different parametrizations of the spin cut-off parameter
σ - parametrization denoted as vEB06 is taken from [17] and the vEB09 version
is from [18]. The normalization to the s-wave resonance spacing yields different
total ρ(e) for the same model (BSFG or CTF). The experimental LD data for
166Er extracted by the Oslo method [20] are marked with black points. The s-
wave resonance spacing point was converted to the summed LD using the spin
distribution f(J, σ) with σ from [18].

The obtained parity dependence follows Eq. (1.4) with the asymmetry disap-
pearing at E = 3 MeV.

1.4 Experimental Information on Level Density
There are two experimental methods providing us with LDs in the continuous
energy region below neutron separation energy. The first consists of measuring
the neutron evaporation spectra from reactions induced by neutrons, protons,
and α particles. Analysis of the experimental cross sections and their comparison
with Hauser-Feshbach statistical calculations determines the absolute values of
the LD, as it is one of the key ingredients in these calculations. For the majority
of the analyzed nuclei [25, 26] LD is consistent with the BSFG model, while
several closed-shell nuclei with A ≈ 208 demonstrate better agreement with the
CT formula [27].

The second experimental technique to extract the LD together with the PSFs
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and Sn excitation energy, respectively. f(J, σ) is shown for HFB calculations and
for different spin cut-off parameters σ - a constant σ, vEB06 parametrization
taken from [17], vEB09 parametrization from [18] and vEB09 with staggering,
which decreases linearly with increasing excitation energy and vanishes at 4 MeV
(see Eq. (1.9)

.

is the so-called Oslo method [28, 29, 30]. It is based on reactions with charged par-
ticles, usually induced by 3He, deuterons, and protons. The energy of the resulting
charged particles is measured with silicon ∆E–E detectors, while the γ spectra
are detected with a set of LaBr3 scintillators (or the former setup with NaI de-
tectors), and these two quantities are put into a coincidence. Extraction of the
LD and PSFs is rather complicated and involves unfolding the spectra [31] and
a fit of the resulting first-generation matrix of primary γ-ray transitions. This
method does not yield absolute values of LD and PSFs, as there is an infinite
set of solutions fitting the spectra. The slope and the absolute value of the LD
energy dependence are obtained using external data on the number of low-lying
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levels, neutron resonance spacing, and average radiative width. Oslo method was
used to analyse a variety of rare-earth nuclei including 166,167Er [32, 20].
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2. Photon Strength Functions
Photon strength functions characterize average electromagnetic properties of ex-
cited nuclei and together with the level density serve as an important input
to nuclear reaction model calculations as well as simulations of the γ decay.
This chapter provides a brief overview of quantities describing the probability
of electromagnetic transitions, the definition of PSF, and presents PSFs models
for relevant multipolarities.

2.1 Introduction of PSFs

2.1.1 Probability of Electromagnetic Transitions
The partial γ-decay width Γαγβ determines the probability of an electromag-
netic transition from the initial state |α⟩ = |Eα, Jα, πα⟩ to the final state |β⟩ =
|Eβ, Jβ, πβ⟩ via emission of a photon with Eγ = Eα − Eβ. It can be expressed as
a sum of contributions from different types X (electric or magnetic) and multi-
polarities L (L = 1, 2, 3...∞) of the electromagnetic transitions:

Γαγβ =
∑︂

X=el.,mag.

∑︂
L

Γ(XL)
αγβ (2.1)

and Γ(XL)
αγβ is given as:

Γ(XL)
αγβ = 8π(L + 1)

L[(2L + 1)!!]2

(︄
Eγ

ℏc

)︄2L+1

B(XL, α → β) (2.2)

where B(XL, α → β) is the reduced transition probability for deexcitation that is
proportional to the transition electromagnetic operator M(XL):

B(XL, α → β) = 1
2Jα + 1 |⟨βJβ∥M(XL)∥αJα⟩|2 (2.3)

According to the detailed–balance principle, we can relate reduced matrix
elements for deexcitation and the inverse process – photoexcitation

|⟨βJβ|M(XL)|αJα⟩|2 = |⟨αJα|M(XL)|βJβ⟩|2 (2.4)

as well as the reduced transition probability for the deexciation with the reduced
transition probability for photoexcitation:

B(XL, α → β) = 2Jβ + 1
2Jα + 1B(XL, β → α) (2.5)

and consequently express the partial γ-decay width Γ(XL)
αγβ as a function of the

photoabsorption cross section σ
(XL)
βγα (Eγ):

Γ(XL)
αγβ =

E2
γ

(πℏc)2
2Jβ + 1
2Jα + 1σ

(XL)
βγα (2.6)
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2.1.2 Selection Rules
In reality, not all multipolarities L contribute to the sums in Eq. (2.1). The
multipolarities of the allowed transitions |α⟩ → |β⟩ follow the Wigner-Eckart
theorem:

|Jβ − Jα| ≤ L ≤ |Jβ + Jα| (2.7)

As a result of the system Hamiltonian commutating with the parity operator,
we can also derive selection rules for parities of the initial and final states that
give nonzero contribution for electric and magnetic transitions:

• (−1)Lπαπβ = 1 for electric transitions

• (−1)L+1παπβ = 1 for magnetic transitions

In practice, the most contributing types and multipolarities XL of PSFs are
E1 (electric dipole), M1 (magnetic dipole) and E2 (electric quadrupole).

2.1.3 Average Quantities
At higher excitation energies it becomes difficult to observe transitions from/to
individual levels, therefore we need to use the average partial γ-decay width Γ(XL)

αγβ

instead of Eq.(2.2) and the average reduced transition probability for deexcitation
B(XL, α → β). Fermi’s golden rule implies that B(XL, α → β) is inversely
proportional to the LD of the initial state ρ(Eα, Jα, πα), because the sum of
transition rates around initial state |α⟩ is expected to be constant independently
of the number of levels. As a result Γ(XL)

αγβ ∼ 1/ρ(Eα, Jα, πα). Instead of Γ(XL)
αγβ ,

Bartolomew [33] introduced the so-called photon strength function to describe the
distribution of average transition probability between levels:

f (XL)(Eγ) =
Γ(XL)

αγβ ρ(Eα, Jα, πα)
E2L+1

γ

(2.8)

as a function of the transition energy Eγ.
Similarly as in Eq. (2.6), Γ(XL)

αγβ can be related to the energy smoothed pho-
toabsorption cross section σ

(XL)
βγα :

Γ(XL)
αγβ ρ(Eα, Jα, πα) =

E2
γ

(πℏc)2
σ

(XL)
βγα

2L + 1 (2.9)

which combined with Eq. (2.8) leads to an alternative definition of the PSF:

f (XL)(Eγ) = 1
(πℏc)2

σ
(XL)
βγα

(2L + 1)E2L−1
γ

(2.10)

where σ
(XL)
βγα is supposed to depend only on the photon energy Eγ and not on

the properties of the initial state. This expectation is known as the Brink hy-
pothesis [34] and is based on the assumption that the collective vibrations are
independent of intrinsic nuclear motion.
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2.2 Electric Dipole PSF
In 1947 Baldwin and Klaiber [9, 35] observed a broad resonance above the neu-
tron separation energy in the photoabsorption cross section. This resonance was
already predicted a few years prior as a result of collective vibrations of proton
and neutron fluids induced by incoming radiation. Protons and neutrons move
with mutually opposite phases, therefore this motion has electric dipole character
and the observed structure is called the Giant Electric Dipole Resonance.

There exist two macroscopic models explaining the GEDR motion. Stein-
wedel–Jensen model [36, 37] assumes vibration of proton and neutron fluid within
a fixed surface and the energy of the GEDR centroid is proportional to A−1/3.
On the other hand, Goldhaber–Teller model [38] describes it as an oscillation
of a proton incompressible sphere against a neutron incompressible sphere. The
resulting GEDR center follows A−1/6 dependence. Experimental analysis of pho-
toneutron cross section data [39] for spherical nuclei suggests GEDR position in
the form:

EG = 31.2A−1/3 + 20.6A−1/6 (2.11)

The width of the GEDR in spherical nuclei ranges from ΓG ≈ 4 − 8 MeV [40] and
systematic analysis of the photoneutron cross section data yields the expression
ΓG = 0.026E1.9

G [41]. The GEDR strength is approximated by the Thomas-
Reiche-Kuhn (TRK) sum rule [42]:∫︂ ∞

0
σ

(E1)
tot (Eγ) dEγ ≈ 60NZ

A
MeV · mb (2.12)

which expresses the total integrated cross section for the electric dipole pho-
toabsorption process. In heavy nuclei with A > 100, experimental data show
a 10-30 % increase compared to TRK rule caused by the meson-exchange contri-
butions [43, 40]. It is assumed that the E1 transitions dominate over other types
near the maximum of the GEDR and it is safe to consider ∑︁XL σ

(XL)
tot = σ

(E1)
tot in

this region.
In the case of the axially symmetric deformed nuclei, photoabsorption mea-

surements [39] indicate splitting of the GEDR into two resonances, which is a con-
sequence of vibrations along the symmetry axis of the nucleus and perpendicular
to it.

2.2.1 Phenomenological Models of Electric Dipole PSF
The most commonly used model of E1 PSF above Sn is the Standard Lorentzian
(SLO) model adopting the Lorentz form of the photoabsorption cross section
in Eq. (2.10). The PSF is given by:

f
(E1)
SLO (Eγ) = 1

3(πℏc)2 σGΓG
EγΓG

(E2
γ − E2

G)2 + E2
γΓ2

G

(2.13)

where EG, ΓG, σG are the energy, width of the resonance (both usually expressed
in MeV) and the cross section at the maximum of the resonance (expressed
in mb), respectively. E1 PSF for well-deformed nuclei is given by a superpo-
sition of two resonances with the form in Eq. (2.13) and two sets of parameters
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{EGi
, ΓGi

, σGi
}2

i=1. For simplicity, all formulas with f (E1) in this subsection are
given with only one resonance term, while the sum of two resonances is used
in our simulations.

Albeit the SLO model agrees well with photoabsorption data in the vicinity
of GEDR for medium and heavy nuclei [39, 44, 43] it shows inadequacy to describe
region below the Sn. Measurements of (n, γ) reactions yield disagreement for
a variety of spherical nuclei [44, 45] and together with the results of 143Nd(n, γα)
[46, 47, 48] indicate a possible dependence on the excitation energy E. These
data also pointed out a nonzero limit for Eγ → 0 for levels with a nonzero nuclear
temperature T of the final level. The nuclear temperature is usually expressed
as:

T =
√︄

E − ∆p

a
(2.14)

where a is the level density parameter (see Eq. (1.5)) and ∆p is the pairing
correction.

Kadmenskij, Markushev and Furman introduced a model known as the KMF
model employing the above-mentioned features based on the Fermi-liquid the-
ory of finite systems together with semi-microscopic shell model. It considers
the GEDR width ΓG(Eγ, T ) dependent on the nuclear temperature:

ΓG(Eγ, T ) = ΓG

E2
G

(E2
γ + 4π2T 2) (2.15)

and the E1 PSF has a form:

f
(E1)
KMF(Eγ, T ) = 1

3(πℏc)2 FKσGΓG
EGΓG(Eγ, T )
(E2

γ − E2
G)2 (2.16)

where the Fermi liquid parameter FK = 0.7 [49, 21] is adopted.
The model was originally proposed for spherical nuclei, however, it is often

used for well–deformed ones as well. From Eq. (2.16) it is apparent that the for-
mula diverges at Eγ = EG and thus it is not applicable near the GEDR centroid.

Analyses of γ spectra from the Oslo Cyclotron laboratory often adopt KMF
model with a constant temperature T as E1 PSF [50, 51, 52, 20, 53]. We per-
formed also simulations employing this model, hereupon denoted as the KMF-T.

Later, Chrien [54] proposed the Generalized Lorentzian (GLO) model for
spherical nuclei with a formula valid for the whole energy range that combines
both previous approaches:

f
(E1)
GLO(Eγ, T ) = 1

3(πℏc)2 σGΓG

[︄
EγΓG(Eγ, T )

(E2
γ − E2

G)2 + E2
γΓ2

G(Eγ, T ) + FK
ΓG(Eγ = 0, T )

E3
G

]︄
(2.17)

where ΓG(Eγ, T ) has the form of Eq. (2.15) and T is given by Eq. (2.14). For
Eγ ≪ EG the KMF shape dominates, while the SLO dependence is granted near
the GEDR peaks.

Another model employing the width ΓG(Eγ, T ) dependent on the energy
and temperature is the so–called Lorentzian with energy-dependent width (ELO)
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model [55]:

f
(E1)
ELO (Eγ, T ) = 1

3(πℏc)2 σGΓG
EγΓG(Eγ, T )

(E2
γ − E2

G)2 + E2
γΓ2

G(Eγ, T ) (2.18)

which adopts the SLO formula of PSF in Eq. (2.13) and ΓG(Eγ, T ) from Eq. (2.15).
There exist several other models with PSF similar to Eq. (2.18) and a different

form of ΓG(Eγ, T ) dependence on the nuclear temperature, specifically General-
ized Fermi Liquid [56], Hybrid model [57] and a family of Modified Lorentzian
(MLO) models [58]. Detailed description can be found in Ref. [21]. The re-
cent reference PSF database [59] also proposes the Simplified Modified Lorentzian
(SMLO) model, the calculated E1 PSF is available for all nuclides across the
nuclear chart.

In an attempt to achieve better compatibility for deformed nuclei, a phe-
nomenological modification of the width (2.15) with ad hoc empirical parameters
k and Eγ0 was introduced by Kopecky, Uhl and Chrien [60]:

ΓG(Eγ, T, k) =
[︄
k0 + Eγ − Eγ0

EG − Eγ0
(1 − k0)

]︄
ΓG

E2
G

(E2
γ + 4π2T 2) (2.19)

where Eγ0 ≈ 4.5 MeV is recommended [61]. The width is enhanced at Eγ = Eγ0
with respect to Eq. (2.15) if k > 1. The value of the enhancement factor k was
obtained by analysis of energy dependencies of (n, γ) cross sections and γ-ray
spectra, adjustments of the calculated average radiative widths and also average
resonance capture (ARC) data were taken into account. In our simulations we
treat k as a free parameter, as the recommended value depends strongly on the
adopted model of LD and PSF.

Inserting the width ΓG(Eγ, T, k) in the form of Eq. (2.19) into the GLO PSF
formula (2.17) yields the so-called Enhanced Generalized Lorentzian (EGLO)
model [60]. The recommended k for EGLO E1 PSF combined with BSFG LD
model from ARC compilation reaches a maximum k = 2.5 for A = 160 [61].

Finally, the so-called Modified Generalized Lorentzian (MGLO) model was
proposed [62] by using the width in Eq. (2.19) with PSF formula in the form:

f
(E1)
MGLO(Eγ, T, k) = σGΓG

3(πℏc)2

[︄
EγΓG(Eγ, T, k)

(E2
γ − E2

G)2 + E2
γΓ2

G(Eγ, T, k) + FK
ΓG4π2T 2

E5
G

]︄
(2.20)

and the second term in the brackets can be rewritten as FKΓG(0, T, 1)/E3
G.

The MGLO model is an alternative to the EGLO one with a similar high en-
ergy behavior of the decay of highly excited states. On the contrary, the MGLO
has a smaller preference for low-energy transitions than the EGLO model. The
MGLO model with k ≈ 1.5 − 2 is comparable to the KMF model.

A resonance in E1 PSF below Sn at Eγ ≈ 6 − 9 MeV has been reported
in measurements for many nuclei. This structure is usually referred to as a pygmy
resonance. Due to no indications of its presence in the region of well-deformed
rare-earth nuclei, it was not tested in the simulations for 168Er.

Comparison of the SLO, KMF, MGLO (k = 3) and EGLO (k = 3) can be
found in Fig. 2.1. Except for the SLO model, all of these models are temperature
dependent, therefore we show two curves corresponding to the primary transi-
tions (T =

√︂
(Sn − Eγ − ∆p)/a) and transitions to the ground state (T = 0). We

17



adopted the parametrization of the GEDR from Dietrich and Berman compila-
tion [43].

2.2.2 Microscopic Models of Electric Dipole PSF
Microscopic models of E1 PSF are derived especially within the quasiparticle
random–phase approximation (QRPA) approach. S. Goriely et al. performed
calculations of E1 PSF employing the axially symmetric deformed QRPA frame-
work based on D1M Gogny interaction [63], which can be found in the reference
PSF database [59] and hereafter will be referred to as QRPA+D1M. The de-
rived PSFs include free parameters that can be adjusted on available low-energy
experimental data such as those obtained with the Oslo method or the average
radiative widths.

Furthermore, predictions on E1 strength were calculated within the QRPA
approach using Skyrme effective interaction [64, 65, 66] with parametrizations
SkI3 [67], SkM∗ [68], SLy6 [69], SVbas [70] and SkP [71]. For more details,
see App. B.

2.3 Magnetic Dipole PSF
Below the Sn, also magnetic dipole (M1) transitions play an important role
in the γ decay of well-deformed rare-earth nuclei. Experimental information
on M1 strength especially in this region is nearly comparable to that of E1.
There are two dominant types of collective excitations - the Scissors Mode (SM)
and the Spin-Flip Mode (SF). Furthermore, there is an evidence about a strong
increase of the M1 PSF for very low Eγ, which is usually referred to as the Low-
Energy Enhancement (LEE).

2.3.1 Scissors Mode
A collective magnetic dipole mode was theoretically predicted using the geomet-
rical two–rotor model by Hilton [72] and later by Lo Iudice and Palumbo [73] as
well as within the framework of proton–neutron interacting model by Iachello [74].
The name of this mode originates from the graphical representation as a scissors-
like counterrotation of the proton versus neutron fluid. The first experimental
observation was performed with high–resolution electron inelastic scattering in
156Gd [75] and subsequently in 154Sm, 158Gd, 164Dy, 168Er and 174Y [76] . It was
confirmed that SM dominating at energy ESM ≈ 3 MeV is a general feature for
a large variety of heavy deformed nuclei.

These findings were verified with another experimental technique - nuclear res-
onance fluorescence (NRF) [77], which employs (γ, γ′) reaction. The experimen-
tal data from even-even nuclei showed fragmentation of the transition strength
at energy ESM ≈ 3 MeV, where the SM is expected to dominate [78]. NRF was
a successful tool to examine SM of the majority of stable even-even rare-earth
nuclei. Moreover, the SM was observed in several heavy odd-mass nuclei as well.

A systematic study of the SM via the NRF experiments in well-deformed
even-even rare-earth nuclei suggested the total transition strength ∑︁

B(M1) ≈
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3 µ2
N [79] and the spectra measured in the chain of 148,150,152,154Sm isotopes [80]

revealed its proportionality to the square of the nuclear deformation δ2.
The NRF measurement of erbium isotopes derived the total M1 transition

strength summed in the energy range ESM = 2.4 − 3.7 MeV in 166,168,170Er to
be ∑︁B(M1) = 2.67(19), 2.82(42) and 2.63(16) µ2

N [77], respectively. A newer
measurement [81] derived a larger strength ∑︁B(M1) =3.56(15) µ2

N for 168Er in
the range ESM = 2.7 − 3.7 MeV. The total strengths in the ESM energy range
for even-even Er isotopes 166,168,170Er thus fit very well into the systematics of
even-even rare-earth nuclei.

The situation is more complicated for odd-A nuclei. In particular, 167Er(γ, γ′)
measurement presented much larger total transition strength ∑︁B(M1) = (3.14±
1.12)µ2

N [82] than all values reported previously for odd-A nuclei. Moreover, the
M1 strength was found to be spread over a large interval of ESM = 2.5−4.3 MeV.
Generally, while in even-even nuclei the strength wass usually distributed over
a few states corresponding to ΓSM ≈ 200−300 keV, the spreading width in odd-A
nuclei is very variable.

The NRF and elastic scattering experiments observe SM excitations above
the ground state, while there are two types of indirect experiments used to study
properties of the SM in the quasicontinuum - measurements of neutron capture
(n, γ) reaction and p, d,α and 3He induced reactions using the Oslo Method (see
Sec. 1.4). The SM is represented by a resonance structure that is described
by a Lorentzian (2.13) with a set of parameters (ESM, ΓSM, σSM) and the total
strength ∑︁

B(SM) is proportional to the product of ΓSM and σSM. Two-step
γ cascade (TSC) spectra following the neutron capture of thermal neutrons were
studied for 163Dy, where a 3 MeV bump was detected and interpreted as a SM
resonance with the integrated M1 strength 6.2 µ2

N [83, 84]. An important outcome
of this experiment was the observation of the SM not only in the ground-state
transitions but also transitions to the excited states [84]. The MSC spectra
obtained the resonance neutron capture on a chain of Gd isotopes yielded 2–
3 times larger SM strength in odd-A 157,159Gd [62] than even–even neighboring
ones [85, 86]. MSC spectra for 162Dy [87] suggest the SC strength consistent with
the above-mentioned MSC data for even-even Gd isotopes, while even a larger
strength was reported for 164Dy [87]. Integrating the summed M1 strengths
in 162,164Dy [87] from MSC over the energy range 2.7 − 3.7 MeV, which can be
directly compared to those obtained from the NRF measurements, yields fully
compatible values.

Oslo method derived the SM parameters for a large variety of rare-earth nu-
clei, including a chain of Dy isotopes [51, 52, 53]. The deduced M1 strength
7.8 ± 2.2 µ2

N for 163Dy [53] is consistent with the TSC measurement mentioned
above. Furthermore, this strength was comparable to SM strength in neighboring
even–even Dy nuclei measured at the Oslo Cyclotron Laboratory [53], which was
6.8(8) µ2

N for 162Dy and 5.3(10) µ2
N for 164Dy. The Oslo-derived total strength in

162Dy is significantly higher than 2.3 − 4.3 µ2
N [87] from the MSC, while compa-

rable to the 164Dy value of 5.3 − 7.5 µ2
N [87]. Later the 162,164Dy Oslo data were

reanalyzed [88], yielding significantly smaller values of ∑︁B(SM) (see Fig. 6.16).
Analysis of the γ-ray spectra with the Oslo method in 166,167Er [20] reported

a pygmy resonance in both isotopes at energy ≈ 3 MeV, which was interpreted as
a low-energy E1 enhancement. The authors however note that “the possibility
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that it on the contrary is of M1 character cannot be excluded”.

2.3.2 Spin-flip Mode
Inelastic proton scattering experiments confirmed the orbital nature of the scissors
mode and were later used to study spin magnetic dipole strength in deformed
heavy nuclei that is shifted to higher energies. It is essential for the SF analysis to
use a probe sensitive to the spin part of the nuclear current. Scattering of200 MeV
protons at very small forward angles showed presence of a double–peak structure
at energies ≈ 6 and 8.5 MeV and width ≈ 2 MeV in 154Sm, 158Gd and 168Er [89].
Positions of the SF centers of gravity for non-spherical heavy nuclei follow ≈
34A−1/3 and 44A−1/3 dependency [79]. On the contrary, measurements of inelastic
electron scattering on 156Gd and 168Er provided no evidence of a concentrated M1
strength in the 4 − 10 MeV region of excitation energy.

Parameters of the SF mode were also examined in ARC experiments which
proposed center position ESF ≈ 41A1/3 and width ΓSF ≈ 4 MeV [90], this global
parametrization is also recommended in the RIPL-3 database [21]. However,
due to low value of Sn in rare-earth nuclei, ARC is not particularly sensitive to
the specific shape of M1 SF strength. Nonetheless, results from several ARC
experiments on rare–earth nuclei determined the ratio f (E1)/f (M1) ≈ 7 at Eγ =
7 MeV [91].

2.3.3 Low-energy Enhancement
In the rare-earth region, a strong LEE was firstly revealed in the PSFs extracted
from (p, dγ)151,153Sm measurement [92] with the Compton-shielded Ge clover de-
tectors, using the Oslo method. Later measurement at the same facility also re-
ported LEE in (p, dγ)147,149Sm [93]. On the other hand, the M1 PSF deduced from
(d, pγ)151,153Sm measured at the Oslo Cyclotron Laboratory [94] did not show any
evidence of LEE. Similar enhancement was previously reported in lighter nuclei,
where the shell model calculations [95, 96, 97, 98] predict its M1 nature and
an exponential decrease with the γ-ray energy. Furthermore, the authors of [96]
suggest presence of the M1 LEE throughout the nuclear chart.

Similarly to E1 PSF, the M1 PSF was derived based on QRPA+HFB calcula-
tions using D1M Gogny interaction [63, 59]. For erbium, dysprosium and gadolin-
ium isotopes the M1 PSF shape indicates presence of a concentrated strength near
the positions of the expected SM and SF resonances - just above Eγ ≈ 2 MeV
and in the region Eγ ≈ 6 − 8 MeV. In addition, M1 PSF was calculated within
the QRPA approach using Skyrme effective interaction [64, 65, 66].

In our simulations, we usually adopt a composite M1 PSF as a sum of con-
tributions from a single-particle (SP) model, scissors mode, and spin-flip mode
f (M1) = fSP +fSM +fSF. The SP model fSP corresponds to a a constant function,
independent of the Eγ. fSM is given by the Lorentzian form (2.13) and fSF is
expressed as a sum of two Lorentzians from (2.13). We assume a strict validity
of the Brink hypothesis, i.e. the M1 PSF only depends on the γ-ray energy Eγ.
In reality, the M1 PSF may have a more complicated form, which we try to mimic
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within an easily adjustable composite model. The composite M1 PSF given by
the sum of SM and SF contribution is plotted in Figs. 2.1- 2.2.

2.4 Electric Quadrupole PSF
Besides the dipole transitions that dominate the γ decay, it is affected by E2 tran-
sitions as well. The E2 strength was experimentally studied mainly by measuring
the inelastic scattering of charged particles [99] because the corresponding cross
section can be expressed as a sum of multipole contributions. These reactions us-
ing electrons, protons, and α-particles as probes demonstrated the resonance-like
behavior of E2 strength [100] that was theoretically explained as an isoscalar Gi-
ant Electric Quadrupole Resonance (GEQR). This collective motion is interpreted
as a surface oscillation of protons moving together with neutrons. The position
EG of the GEQR [40] is very close to the GEDR and the systematic for the width
ΓG and the cross section at the maximum σG was proposed as [101]:

EG = 63A−1/3 MeV
ΓG = 6.11 − 0.012A MeV (2.21)

σG = 0.00015 Z2E2
G

A1/3ΓG

mb

Moreover, an isovector giant quadrupole resonance was observed at higher
energy ≈ 130A−1/3 [40], but its effect on γ transitions below 10 MeV is negligible.

Only a small number of primary E2 transitions was observed in (n, γ) reactions
with thermal and resonance neutrons [101]. The ratio of average partial radiation
width of E1 transitions compared to the E2 one deduced from ARC measurements
is Γ(E1)/Γ(E2) ≥ 100 [91]. This is consistent with the results on primary γ-rays
from (n, γ) experiments.

E2 PSF can be represented by a Lorentzian shape using formula (2.13) with
the parameters taken from (2.21, which is recommended in [21] or it is often
adopted as a single-particle model with f (E2) being a constant function. It is
important to note that while at higher energies below the Sn the E2 transitions
do not play a major role, they significantly affect transitions at low excitation
energies due to structural effects. However, in our approach, the statistical model
assumptions are not applied in this region.
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Figure 2.1: Dipole PSF models for 168Er tested in our simulations. The upper
curves for the KMF, MGLO (k = 3) and EGLO (k = 3) correspond to the
primary transitions (T =

√︂
(Sn − Eγ − ∆p)/a), while the lower curves represent

the transitions to the ground state (T = 0). The parameters of the SM are
ESM = 3.2 MeV, ΓSM = 1.0 MeV and σSM = 0.5 mb. The parameters of the
SF are E

(1)
SF = 6.2 MeV, Γ(1)

SF = 1.0 MeV, σ
(1)
SF = 1.7 mb and E

(2)
SF = 7.7 MeV,

Γ(2)
SF = 1.8 MeV, σ

(2)
SF = 2.6 mb.
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Figure 2.2: Panel (a): Dipole photon strength functions models tested for 168Er.
The SMLO and the QRPA+D1M calculations are available in the reference PSF
database [59]. The KMF-T model with T = 0.31 was proposed for 166Er measure-
ment using the Oslo method [20]. There are two E1 PSF curves for the SMLO
and MGLO (k = 3) model, the upper curves correspond to the primary transi-
tions (T =

√︂
(Sn − Eγ − ∆p)/a), while the lower curves represent the transitions

to the ground state (T = 0). The lowest SMLO curve represents the M1 PSF.
The upper QRPA curve corresponds to the E1 PSF, the lower one represents the
M1 PSF. The SM+SF parameters are the same as plotted in Fig. 2.1. Panel
(b): Sum of dipole photon strength function models. Parameters for the KMF-
T+SM+SF model combination are taken from Ref. [20], as well as the measured
data points for (3He,3He’γ)166Er.
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3. Simulations of Statistical
γ Decay
One of the methods to study level density and photon strength functions that
govern the γ decay is to analyze experimental γ-ray spectra in comparison with
their simulated counterparts. A Monte Carlo code dicebox was developed by
F. Bečvář [102] to generate γ-cascade deexcitation within the statistical model of
γ decay. Its major advantage is the correct treatment of partial radiation widths
which are expected to follow a χ2 distribution with one degree of freedom, in nu-
clear physics referred to as the Porter-Thomas (PT) distribution (see Sec. 4.2.1).
In a number of works [59], the dicebox has been proved as a useful tool to de-
scribe γ decay following the slow neutron capture and it is freely available online
at [103].

The original algorithm of [102] was enhanced with a concept of nuclear supra-
realizations [87], the detailed description can be found in Sec. 3.2. To directly
compare experimental spectra with their simulated counterparts, it is necessary
to simulate also the response of the detector system, see Sec. 3.4.

3.1 Assumptions
The algorithm is based on the validity of the statistical model of γ decay and
other simplifying assumptions:

• Only electromagnetic channels, corresponding to deexcitation via γ rays and
internal conversion electrons are taken into account and particle channels
have negligible effect.

• Each cascade starts from a well-defined single initial level a1 with known
energy, spin and parity E1, J1, π1.

• Below a certain excitation energy, hereafter denoted as the critical energy
Ecrit, a complete experimentally determined level scheme is known, includ-
ing level energies, spins, parities and branching intensities of the depopu-
lating transitions.

• Above the Ecrit individual levels and their properties are calculated by a ran-
dom discretization of an a priori known LD formula ρ(E, J, π).

• The partial radiation width Γab for a transition a → b from the level a with
E1 ≥ Ea > Ecrit to the level b is given by a sum of contributions:

Γab = (1 + αab)
∑︂
XL

Γ(XL)
aγb =

= (1 + αab)
∑︂
XL

(︂
y

(XL)
ab

)︂2
(Ea − Eb)2L+1 f (XL)(Ea − Eb, τ)

ρ(Ea, Ja, πa) (3.1)
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in a general case where mixing of various types X and multipolarities L is
allowed by selection rules. Here f (XL) is the corresponding photon strength
function (as defined by Eq. (2.8)) depending on the γ-ray energy Eγ =
Ea −Eb and possibly on other variables τ and ρ(Ea, Ja, πa) is the LD at the
initial energy Ea. The coefficient αab corresponds to the internal electron
conversion. The quantities y

(XL)
ab are random values independently drawn

from a standard normal distribution N (0, 1) that ensure the PT fluctuations
of individual partial radiation widths Γ(XL)

ab .
Theoretically, the summation in Eq. (3.1) goes over all allowed XL, while
in reality only E1, M1 and E2 transitions are taken into account above
the Ecrit in our simulations. The only possible mixed transition is thus
M1 + E2 and the corresponding internal conversion coefficient αab can be
expressed as a function of a mixing ratio δ:

αab = α
(M1)
ab + δ2α

(E2)
ab

1 + δ2 , δ2 =
Γ(E2)

aγb

Γ(M1)
aγb

(3.2)

Consequently, the partial width from Eq. 3.1 for the mixed transition M1
+ E2 is given as:

Γ(M1+E2)
ab = (1 + α

(M1)
ab )Γ(M1)

aγb + (1 + α
(E2)
ab )Γ(E2)

aγb (3.3)

• Partial radiation widths Γab and Γa′b′ with a ̸= a′ and b ̸= b′ are not
statistically correlated.

The resulting nuclear levels and partial radiation widths governing the tran-
sitions between these levels are hence produced by a random discretization of the
given LD formula and drawn from the PT distributions with expectation values
determined by the PSFs. In rare–earth nuclei, the set of levels below Sn usually
includes 1010 −1013 partial radiation widths and that amount can be problematic
to store in the computer memory. This challenge is bypassed by the algorithm
described in Sec. 3.3.

All the information about the levels below Ecrit are taken from the ENSDF
database [104]. If the experimental information on the contribution of the internal
electron conversion is not known, it is computed using parameters from the BrIcc
database [105].

3.2 Nuclear Realizations and Suprarealizations
A generated set of levels and their corresponding partial radiation widths as
described in the previous section is hereafter called a nuclear realization (NR).
In principle, there exists an infinite number of nuclear realizations.

In addition to the original work [102], a concept of nuclear suprarealizations
(NSs) was introduced [87]. It was motivated by real behavior observed in the
decay of neutron resonances. The only difference in the γ decay of individual
resonances in the vicinity of the excitation energy E1 are the partial radiation
widths of the primary transitions, whereas the levels below E1 and their partial
radiation widths are identical.
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In practical implementation, a nuclear suprarealization denoted as Ωk is de-
fined as a set of nuclear realizations {ωik}I

i=1. Within a given NS Ωk, all the
NRs ωik, i = 1...I consist of an identical set of levels and partial radiation widths
except for the partial widths of the initial level. In other words, two NRs ωik and
ωi′k within a common NS Ωk differ only by intensities of the primary transitions.
Generally, there are infinite nuclear realizations ωik even within one fixed nuclear
suprarealization Ωk.

3.3 Algorithm
Electromagnetic cascades coming from the decay of a compound nucleus follow-
ing the neutron capture are generated adopting the assumptions discussed above
employing the Monte Carlo technique. The essential tool of this algorithm is
a deterministic random number generator (RNG) which produces a sequence
of quasi-random numbers that are predetermined by an adjustable parameter,
referred to as a generator seed ζ. The random number drawn from a uniform dis-
tribution in the interval [0, 1) which is not preset is hereafter denoted as s(•). The
scheme of the algorithm can be found in Fig. 3.3. The γ cascades are generated
as follows:

1. The level density ρ(E, J, π) is discretized to yield energies Ea, spins Ja and
parities πa of all individual levels a with E1 > Ea > Ecrit. Integrating the
LD formula over the given energy bin provides the average number of levels
involved. Within the statistical approach, these level numbers fluctuate
around the average values and usually Poisson distribution is adopted in
the simulations. In reality, the RMT theory predicts Wigner distribution
of the nearest neighbor spacings between the levels in the statistical region,
however, the level spacing in the low-energy region is better represented
by the Poisson distribution. Due to larger fluctuations expected from the
Poisson distribution than Wigner one, our fluctuation estimates may be
slightly conservative.

2. A generator seed ζa is randomly ascribed to each level a with energy Ea >
Ecrit and stored in the memory. Obtaining all partial radiation widths Γaa′

for a fixed level a is initialized only after the RNG is preset using the seed ζa.
As the seeds are ascribed to all levels above Ecrit, a set of partial radiation
widths Γaa′ for transitions to all allowed final levels a′ is known. The seeds
thus uniquely determine the outcome of generating partial radiation widths,
which presents the key ingredient to the algorithm.

3. The seed ζ1 is ascribed to the initial capturing level, RNG is preset using
the seed ζ1 and a set of partial radiation widths Γ1a′ for transitions 1 → a′

to all possible levels a′ (where Ea′ < E1) is generated.

4. A total radiation width Γ1 for the capturing level a = 1 is calculated as:

Γ1 =
∑︂
a′

Γ1a′ (3.4)
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A complete set of branching intensities I1a′ for transitions initialized from
the capture level is determined from:

I1a′ = Γ1a′

Γ1
(3.5)

and stored as a starting point of each cascade. The normalization condition∑︁
a′>1 I1a′ = 1 is fulfilled.

5. The initial capture level decays to a level a1 which is determined by a ran-
dom number s1. The choice of level a1 follows from the requirement:

a1−1∑︂
a′>1

I1a′ ≤ s1 <
a1∑︂

a′>1
I1a′ (3.6)

As a result, the level a1 at energy Ea1 with spin Ja1 and parity πa1 reached
by the first γ-cascade step is determined.

6. If the energy Ea1 of a1 level is above Ecrit, a set of partial radiation widths
Γa1a′ for all allowed transitions a1 → a′ initialized from the given level a1
is generated. Prior to this process the RNG is preset using the seed ζa1 .
Corresponding total width Γa1 and a full set of branching intensities Ia1a′

is calculated in the same fashion as listed in Item 4. If Ea1 < Ecrit, the
branching intensities Ia1a′ are derived entirely from the experimental data.

7. Using the random number s2 and a set of branching intensities Ia1a′ a second
intermediate level a2 is chosen in the same way as described in Item 5.

8. The procedure outlined from the Items 5-7 repeats until the moment when
n-th cascade step reaches the ground state. As an illustration in Fig. 3.3,
the cascade reaches the ground state after 4 steps. After reaching the
ground state, all the information characterizing a single cascade is available
- energies Eai

, spins Jai
and parities πai

of all intermediate levels as well as
the transition types X, multipolarities L and mixing ratios δ. This data set
can be used to calculate any quantity of interest such as the γ-ray spectrum.

9. The modeling procedure described in Items 5-7 is repeated L times until
satisfactory statistical accuracy of the desired quantity is achieved. Typi-
cally L ≈ 105 within the given NR.

10. In order to estimate the influence of the PT fluctuations of the primary
transitions, the algorithm steps in Item 3-9 are repeated I times to obtain
a set of NRs {ωik}I

i=1 (see Sec. 3.2). For some quantities of interest, it is
sufficient to model only one NR ω1k within each NS Ωk.

11. To assess the role of PT fluctuations of transition intensities below the
initial capture level and fluctuations due to random discretization of the
LD, the procedure in Item 1-9 is repeated K times to produce the full set
{ωik}I,K

i=1,k=1.
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Figure 3.1: Schematic description of generating γ cascades with the dicebox
algorithm. The involved levels are denoted as aj, their energies Ej and their
ascribed seeds as ζaj

[102].

3.4 Simulation of the Detector Response
Our goal is to directly compare experimental γ-ray spectra to simulated ones, thus
it is necessary to feed the γ cascades produced by dicebox to the simulation of
the detector response. The DANCE calorimeter is a rather complicated detec-
tion system consisting of 160 individual crystals and also other non-scintillating
materials (see Chap. 5). A simulation of the DANCE array based on GEANT4
Monte Carlo code was created by M. Jandel et al. [106]. Simulated γ spectra were
compared with measured data using radioactive sources 88Y, 22Na and 60Co, and
a good agreement was achieved [106]. DANCE-GEANT4 code is thus a highly
accurate simulation to model the detector response to the simulated γ cascades.
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4. Fluctuation Properties of
Neutron Resonances
Measurements of (n, γ) reactions on heavy rare–earth targets with the DANCE
detector allow us to observe individual s–wave resonances in the energy region
up to hundreds of eV. Resonance sequences of a single spin J and parity π serve as
unique data sets to test predictions of the random matrix theory, which aims to de-
scribe properties of chaotic quantum systems. Assuming the validity of the RMT
has been widely used to test the completeness of resonance data or to determine
the number of missing levels (see e.g. [107]).

This chapter addresses the main conclusions drawn from the RMT predic-
tions of nuclear spectral properties, in particular concerning Gaussian orthogonal
ensemble (GOE). A comprehensive review of the RMT concepts and status in nu-
clear physics can be found in [108, 109], hereafter we will restrict ourselves only
to the introduction of fluctuation measures relevant to our study. In addition,
we present methods how to test completeness or estimate the number of missing
levels from simulations of GOE predictions.

4.1 Random Matrix Theory
In the 1960s Wigner [6, 7] introduced random matrices to nuclear physics, which
was probably motivated by Bohr’s compound nucleus model and his idea that nu-
clei display statistical properties at excitation energies of several MeV [3]. Bohr
identified the positions of the resonances as eigenvalues of an unknown compli-
cated Hamiltonian, for which calculating the energies of these excited states is not
possible. Wigner’s approach was not to calculate the individual spectra but to
characterize spectra by their fluctuation properties as averages over the ensemble.
Instead of an actual nuclear Hamiltonian, he considered an ensemble of Hamil-
tonians, each represented by a matrix. The ensemble is defined by a probability
distribution for the matrix elements, which leads to the name random matrices.

Canonical RMT as developed by Wigner and Dyson [7] characterizes systems
by their symmetry properties. Within the RMT one calculates the joint probabil-
ity distribution of the eigenvalues and from here determines spectral fluctuation
measures of interest, which can be compared with actual fluctuation properties
from the experiment. Generally, RMT contains several input parameters, in the
case of spectral fluctuations the parameter is the average nuclear level spacing.
The predicted fluctuation measures are scaled by the average level spacing and
hence are parameter-free.

4.2 Gaussian Orthogonal Ensemble
Various nuclear global symmetries lead to different canonical ensembles of random
matrices. In particular, the Gaussian Orthogonal Ensemble characterizes systems
that are invariant under time reversal - such as nuclei - and it was very successful
in describing properties of nuclear resonances. We consider real and symmetric
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matrices in a Hilbert space of dimension N , representing systems with time-
reversal invariance, and their reality and symmetry is preserved under orthogonal
transformations of the basis. Their elements are independent random variables
drawn from Gaussian probability distribution. According to Wigner, nuclear
levels of a single spin and parity display the same ordering behavior as eigenvalues
of large N × N GOE matrices.

The mean level density ρ(E) of a GOE spectrum with N levels is approxi-
mately semicircular:

ρ(E) =

⎧⎨⎩
1

2π

√
4N − E2, for |E| ≤ 2

√
N.

0, otherwise.
(4.1)

except for a few levels at the extreme edges on both sides. The mean level spacing
is defined as D(E) = ρ(E)−1. On the other hand, the mean s–wave level density
in nuclei can be considered constant over the few keV region of experimental
comparison. As a result, it is necessary to perform a transformation to a new
energy parameter such that the average level spacing is constant, i.e. unfolding
the spectra.

We present two categories of GOE fluctuations measures that are useful in
the experimental analysis of neutron resonances - the first corresponding to fluc-
tuations of neutron widths, while the second category contains several measures
related to fluctuations of the resonance positions.

4.2.1 Fluctuations of Neutron Widths
For a single resonance of the energy ER, the capture cross section as a function of
the neutron incident energy E can be expressed with the Breit-Wigner formula:

σγ(E) = πλ2 gΓnΓγ

(E − ER)2 + 1
4Γ2 (4.2)

where λ = ℏ/(
√

2mE) is the de Broglie wavelength of the incoming neutron and
m is the neutron reduced mass. The total resonance width:

Γ = Γn + Γγ (4.3)

is given as a sum of the neutron width Γn and the radiative width Γγ. The
strength of the resonance is characterized by the resonance integral Aγ defined
as:

Aγ =
∫︂ +∞

−∞
σγ(E)dE (4.4)

which yields

Aγ = 2π2λ2g
ΓnΓγ

Γ (4.5)

where g is the statistical factor:

g = 2J + 1
2(2I + 2) (4.6)
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depending on the spin of the target nucleus I and the resonance spin J .
Removing the energy dependence of the neutron widths Γn of s–wave reso-

nances, we obtain the reduced neutron widths Γ0
n = Γn/

√
ER, where ER is the

resonance energy. The experimentally observed values of Γ0
n show large fluctua-

tions from one resonance to another in the same nucleus. This can be explained
within the GOE approach, where eigenvalues and eigenfunctions are uncorre-
lated random variables and for N → ∞ the projections of the eigenfunctions
onto an arbitrary vector in Hilbert space have a Gaussian distribution centered
at zero. These projections correspond to the reduced widths amplitudes and
since one measures reduced widths, not the amplitudes, the resulting Γ0

n distri-
bution is χ2 with one degree of freedom [110], in nuclear physics referred to as
the Porter-Thomas distribution:

P (y) = 1√
2πy

exp
(︄

− y

2

)︄
(4.7)

where y = Γ0
n/⟨Γ0

n⟩ is a dimensionless variable with ⟨Γ0
n⟩ being the average neutron

reduced width. Within the RMT calculations, the parameter ⟨Γ0
n⟩ is an input

parameter not predicted by the RMT.
The PT distribution of Γ0

n has been analyzed and verified for many data sets,
see for example the study of single–spin s–wave resonances in even–even nuclei
[111]. On the other hand, there are also indications of violation, thus it is still an
object of further studies [112, 113].

An ideal data set for the test of PT distribution is complete (no missing reso-
nances) and pure (sequences of resonances of a single spin and parity). Unfortu-
nately, every experiment has a lower limit for observing resonances. The quantity
that determines the observability is the resonance integral Aγ (see Eq. (4.4)) and
for the weakest resonances in the rare-earth region, it holds that Γn ≪ Γγ, where
Γγ ∼ 0.1 eV and it is fluctuating only by a few percent, thus Aγ ∼ gΓn. The
exact form of the observability threshold is usually not known, as it depends on
the experimental conditions.

4.2.2 Fluctuations of Resonance Positions
For a measured sequence of N resonances, the average spacing ⟨D⟩ is calculated
as:

⟨D⟩ = ∆E

N − 1 (4.8)

where ∆E is the energy difference between the last and the first resonance.
There are several different measures that can be employed for fluctuations

of resonance positions. The first and straightforward measure is the distribu-
tion of spacings between the neighboring levels (resonances), hereafter denoted
as nearest neighbor spacing distribution (NNSD). Distribution P (s) of the nearest
level spacings Di depends on the ratio s = Di/⟨D⟩. It cannot be given in a closed
form, however, an excellent approximation is given by the so-called Wigner sur-
mise [7]:

P (s) = π

2 s exp
(︄

− π

4 s2
)︄

(4.9)

33



An important implication of the GOE theory is the level repulsion between any
pair of levels, which is displayed in Eq. (4.9) as a linear increase with s for a small
value of s. In the case of random, uncorrelated levels the NNSD would follow the
Poisson distribution and there would be no level repulsion. The exact expression
of P (s) for a random matrix utilizing a rapidly converging infinite product was
numerically calculated by Gaudin [114]. Its comparison with Wigner’s hypothesis
gave a very good agreement.

Validity of the Wigner surmise (4.9) was tested against the so-called nuclear
data ensemble (NDE), containing 157 proton and 1250 neutron resonance ener-
gies obtained from 30 sequences in 27 different medium–weight and heavy nuclei
(see Fig. 4.1). Each sequence was scaled to the same average level spacing. A re-
markable agreement was found between fluctuation properties predicted from
GOE and NDE energies [115]. The results also suggest that this is a universal
phenomenon.

Figure 4.1: The nearest neighbor spacing distribution for NDE containing 1726
spacings Di (the histogram) as a function of s = Di/⟨D⟩, where ⟨D⟩ is the mean
level spacing. For comparison, the predicted distribution from GOE and Poisson
distribution are shown as solid lines. Figure taken from Ref. [116].

The NNSD does not include information about correlations between level
spacings. Such information is contained in two other fluctuation measures de-
scribed below - correlation coefficient ρ(Di, Di+1) and ∆3 statistic.

The correlation coefficient between the adjacent nearest neighbor spacings
ρ(Di, Di+1) defined as:

ρ(Di, Di+1) =
∑︁

i(Di − ⟨Di⟩)(Di+1 − ⟨Di+1⟩)
[∑︁i(Di − ⟨Di⟩)2∑︁

i(Di+1 − ⟨Di+1⟩)2]1/2 (4.10)

is sensitive to correlations between levels with energies Ei and Ei+2. GOE pre-
diction for a large number of levels yields ρ(Di, Di+1) ≈ −0.27 [117], indicating
anticorrelation between adjacent level spacings.

The ∆3 statistic is a measure of the long-range order of level positions. GOE
theory suggests that resonances of the same spin and parity tend to be equally
spaced, which manifests as a crystalline-like long-range order [118]. Dyson and
Mehta [118] developed the ∆3 statistic as a measure of the mean square deviation
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of a staircase plot N(E) from a best–fitting straight line:

∆3(L) = 1
L

min
α,β

∫︂ Ei+L

Ei

[N(E) − AE − B]2dE (4.11)

on a given length L and N(E) is the cummulative number of levels in the energy
range (Ei, Ei + L). For a large number of levels N the expected value (ensemble
average) of ∆3 approaches [118]:

∆3(N) ≈ 1
π2 [ln N − 0.0687] (4.12)

with a constant standard deviation of 0.11. The ∆3 statistics has been often
utilized to test fluctuation properties of measured neutron resonances, see for ex-
ample [117, 119, 120, 107].

4.3 Simulations of GOE Predictions

4.3.1 Reduced Neutron Widths
The analysis of the PT distribution and estimating the number of sub-threshold
s–wave resonances is traditionally performed using gΓ0

n. It is usually assumed
that the observability threshold can be reasonably approximated with a power
law function in neutron energy.

To determine the number of sub-threshold resonances, we simulate random
sequences of resonances within the statistical approach - i.e. using the average
s–wave resonance spacing D0 and the s–wave neutron strength function S0, which
follow:

S0 = ⟨gΓ0
n⟩

D0
(4.13)

The generated resonance positions follow predictions from the GOE, see the
following Sec. 4.3.2. Each resonance from the 104 simulated resonance sequences
is assigned gΓ0

n following the PT distribution, assuming the average value ⟨gΓ0
n⟩

given by Eq. (4.13) and the resulting gΓ0
n are compared to the experimental

threshold.

4.3.2 Statistics Related to Resonance Positions
In order to compare experimental resonance sequences with GOE predictions,
a large number (typically ≈ 5000) of randomly generated GOE matrices is di-
agonalized and the eigenvalues are unfolded for the Wigner’s semicircle law (see
Eq. (4.1)) to have a constant level density. The matrices are large enough to get
individual sequences of the same length as in the experiment and up to ≈ 30%
longer. The average simulated spacing is adjusted to be consistent with the ex-
periment. For the resonance sequences of mixed spin, several reasonable values
of the mixing parameter are tested and the results are independent of the exact
parameter value.
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The calculation of the ∆3 statistic from Eq. (4.11) is not practical, as except
for the maximum value of L, there is no unique definition of ∆3. Therefore we
use the ∆3(L) statistic as a function of an integer L:

∆3(L) =
⟨︄

min
a,b

1
Ei+L−1 − Ei

∫︂ Ei+L−1

Ei

dE
[︂
N (E) − aE + b

]︂2⟩︄
i

, (4.14)

where Ei is the energy of the ith resonance, N (E) us the cumulative number
function and a,b are parameters of the linear fit to the function N (E). For
a given L, the minimization is performed separately for each allowed value of i,
which satisfies the condition 1 ≤ i and (i + L − 1) ≤ Lmax. The ∆3 is calculated
for L = 3, ..., Lmax, where Lmax is the length of the sequence. For more details
about obtaining artificial resonance sequences from generated GOE matrices,
see Ref. [113].
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5. Experiment
Neutron capture experiment 167Er(n, γ)168Er was performed with the neutron
spallation source located at Los Alamos Neutron Science Center (LANSCE)
[121] at LANL. Protons accelerated to the energy of 800 MeV strike the tung-
sten target at the repetition rate 20 Hz, producing neutrons that are moderated
by a backscatter water moderator [122]. The resulting neutrons energies range
from thermal up to a few MeV. The DANCE detector is positioned at a 20.28 m
flight path from the neutron source.

Figure 5.1: DANCE detector visualized with the GEANT4 simulation toolkit.
The measured sample is positioned in the centre, two crystals are left out to
make space for the neutron beam pipe.

DANCE [123, 124] is a highly efficient scintillator calorimeter consisting of
160 BaF2 crystals covering a solid angle of almost 4π, see Fig. 5.1. Its main
purpose is the measurement of γ rays following the neutron capture on small
samples, both stable and radioactive. The solid angle coverage is essential to
achieve the detection efficiency as close to 100% as possible. A full 4π array
would include 162 crystals, in reality, two of them are removed to make space for
the neutron beam pipe. Each BaF2 crystal is covered in a PVC foil and glued
to a photomultiplier tube and this array is supported by an aluminum structure.
To reduce the flux of scattered neutrons hitting the crystals, a 6LiH shell of 6 cm
thickness is placed between the sample and the crystals. Three detectors are
monitoring the neutron flux: a gas-filled BF3+Ar proportional counter, an n-
type surface barrier Si detector, and a 235U fission chamber.

The DANCE efficiency for detecting a single 1 MeV γ ray is ≈ 86% [106],
while the energy resolution for 1 and 6 MeV γ rays is 16% and 7%, respectively.
Specifics about the energy calibration of the array are discussed in Sec. 5.1.2.

5.1 Data Acquisition and Data Processing
The scintillation light emitted by the BaF2 crystals is formed by a slow component
(decay time ≈ 600 ns) and a fast component (decay time ≈ 600 ps). Signals from
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the DANCE crystals are read out using 16-channel CAEN VX1730 digitizers with
14-bit resolution, running 500 mega samples per second [125, 126]. All DANCE
crystals trigger independently and are validated by a timing gate of a fixed width
starting ≈ 100 µs before the arrival of protons on the tungsten target. The width
of this gate (typically a few milliseconds) determines the range of neutron energies
recorded by the acquisition system.

To reduce the amount of stored data, only a fraction of the information avail-
able from the full waveforms is recorded. For each crystal, the leading edge
timestamp, long and short charge integrals, and 80-ns partial waveforms covering
the rise of the signal are recorded for the offline analysis. The short integral,
containing the bulk of the fast component in BaF2 is 12 ns wide, while the long
integral is 1000 ns long and it measures the slow component. The energy de-
posited in each DANCE crystal is calculated as the difference between the slow
and fast components. It is important to note that while the digitizer is integrating
the fast and slow components of the most recent trigger, it cannot trigger again.
This feature introduces dead time into the system, for more details see Sec. 5.2.3.
After extracting the essential waveform information, the data are transferred to
the master computer using the MIDAS (Maximum Integrated Data Acquisition
System) [127] approach.

All γ-ray signals that arrive within a preset coincidence window (usually 5–
20 ns) form an event. This event is characterized by the number of crystals that
fired, the energy deposited in each crystal, and the total energy EΣ as a sum of all
crystal energies. The simulations and calibration measurements demonstrate that
an emitted γ ray does not necessarily deposit its full energy in a single crystal,
but due to Compton scattering it is rather in several, often neighboring crystals.
The number of crystals that fire during a single γ cascade detection is thus higher
than the true multiplicity. This effect is taken into account by introducing the
so-called cluster, which is a set of adjacent crystals that are hit during an event.
The number of clusters that are hit within an event is the cluster multiplicity M ,
which is closer to the real multiplicity than the crystal one. After clusterization,
we obtain individual energies deposited in M clusters.

5.1.1 Experimental Background
There are several background sources for the DANCE detector array, which can
be grouped into three major types [124]:

1. Time-independent background, which is not correlated with the time struc-
ture of the neutron beam. This includes intrinsic radioactivity of the BaF2
crystals originating from the α decay of 226Ra, which is a chemical homo-
logue of Ba. α particles display a different intensity ratio between the fast
and slow scintillation component than γ rays (see Fig. 5.2), therefore back-
ground from the α activity can be rejected from the comparison of the fast
and slow integrals. The spectrum of the emitted α particles is used for
energy calibration, see Sec. 5.1.2. In addition to α radiation, there is also
β− activity contribution from the 226Ra decay chain, which dominates for
the lower multiplicities M < 3 and lower energies.

2. Time-dependent background correlated with the time structure of the beam,
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but not scaled with the sample placed in the beam. It is related to the γ rays
originating from the interaction of the primary proton beam with the tung-
sten spallation target, preceding the produced neutrons (the so-called γ-
flash). In order to shield the DANCE detector from this contribution, the
flight path is designed to view the upper-tier water moderator, not directly
the tungsten target. Moreover, interactions of neutrons with the material of
the beam pipe cause that γ rays are the second most prominent component
of the beam after neutrons. This background is significantly reduced by
placing Kapton foils as windows dividing the beam pipe.

3. Sample-related background, that is related to three processes:

• (n, n) reactions, where scattered neutrons are captured in the BaF2
crystals or surrounding materials. The Q-values of the capture re-
actions 135Ba(n, γ) and 137Ba(n, γ) are 9.1 and 8.6 MeV, respectively,
which is usually higher than the Q-values of the reactions with the
studied rare-earth isotopes. As already mentioned above, a 6 cm-thick
6LiH shell is placed between the sample and the crystals causing the
scattered neutrons to be attenuated due to 6Li(n, α) reaction.

• Neutron capture on sample impurities, which is discussed specifically
for Er measurement in Sec. 5.2.

• Possible radioactivity of the sample, it is not the case of this study.
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Figure 5.2: Left panel: Energy of the fast vs. slow component, the α particles
(marked with a black ellipse) are discriminated against the γ-ray signals. Right
panel: Deposited energy Edep of the α particles in crystal 2.

5.1.2 Energy and Time Calibration
The BaF2 crystals are temperature sensitive and small gain shifts have been
observed over time. As a result, it is necessary to perform run-by-run correction
to the detected energy based on α-decay signals that are distinguished from γ rays
using pulse shape discrimination (see Fig. 5.2).

Shortly before the actual measurement of 167Er(n, γ), the calibration measure-
ment using radioactive sources 22Na and 88Y without the neutron beam was run.
The first step of the calibration was utilizing the known γ-decay lines of these
radioisotopes (see Fig. 5.3), which yielded the initial quadratic energy calibration
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for each DANCE crystal. With this initial calibration applied, the α spectra for
each crystal of the source runs were saved as a template. For the subsequent
167Er(n, γ) runs, the uncalibrated α spectra were fitted to these templates for
each crystal to extract the energy calibration for a given run. An example of
the α spectra for a specific run can be found in Fig. 5.2.
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Figure 5.3: Left panel: The measured and fitted spectrum of 22Na source γ-decay
lines used for energy calibration. Right panel: Time alignment of the crystal 5
against the reference crystal.

The relative timing of all DANCE crystals slightly changes for each run as
a result of the synchronization of the digitizers. All crystals thus need to be
aligned with one another in time on a run-by-run basis, which is achieved by
adjusting their time offsets such that there is a zero difference between Compton-
scatter events in each pair of adjacent crystals. As we can see from Fig. 5.3, the
alignment within a few ns is reached.

5.2 Specifics to Erbium Measurement and Ex-
perimental Spectra

The enriched Er sample was prepared at the Oak Ridge National Laboratory
and its isotopic composition can be found in Tab. 5.1. The first measurement
in 2018 was performed with the sample of 20.1 mg mass, while the additional
measurement in 2019 used the same sample with its mass reduced by a factor of
4.

Sample Mass Isotope abundance (%)
(mg) 162Er 164Er 166Er 167Er 168Er 170Er

167Er 20.1 0.02(3) 0.06(6) 2.94(11) 91.52(25) 5.15(11) 0.33(6)

Table 5.1: Mass and isotopic composition of the Er sample. Additional smaller-
mass Er measurement was performed with a mass reduced by a factor of 4 to
check the behavior of the strong resonances.

The signals were assumed to belong to the same event if they were detected
within the preset 6 ns coincidence window. The time-of-flight (TOF) of the event
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is determined by the difference between the timestamp of the first γ ray in the
event and the recent timing signal of the proton pulse, immediately before it
strikes the tungsten spallation target. The TOF is converted to correspond-
ing neutron energy En using the geometrical flight-path length. Each event is
characterized by the neutron energy En, the total deposited energy EΣ, the clus-
ter multiplicity M , and the set of individual energies deposited in M clusters
{E(i)

γ }M
i=1.

5.2.1 Sum-energy and MSC Spectra
A part of the experimental En vs EΣ spectrum is shown in Fig. 5.4. We can
apply cuts on the above-mentioned experimental observables to draw spectra for
a chosen quantity of interest. We define the En intervals to analyze events from
the individual, well–resolved s–wave resonances. For these intervals, the spectra
of sums of deposited energies for each cluster multiplicity M , hereafter denoted
as the sum-energy spectra, are shown in Fig. 5.5.

Figure 5.4: Experimental En vs EΣ spectrum for 167Er(n, γ)168Er summed over
all multiplicities. The resonance at 15.56 eV comes from the 166Er impurity in the
sample.

Each sum-energy spectrum consists of:

• The full-energy peak located in the vicinity of the neutron separation energy
Sn, corresponding to the γ cascades where all the deposited energy was
detected by the array.

• The low-energy tail, a continous part of the spectrum related to events
where a part of the γ-ray energy escaped the detection.

• In the special case of 167Er(n, γ), we can also see a peak at EΣ ≈ 6.6 MeV
and a corresponding peak at EΣ ≈ 1.1 MeV. It results from the presence
of an isomeric state at Eexc = 1.094 MeV, whose lifetime is ≈ 100 ns. It
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is much longer than the coincidence window 6 ns, therefore the majority of
the γ cascades decaying via this state is detected as two separate events,
the cascade feeding the isomer (6.6 MeV peak) and the decay of the isomer
(1.1 MeV peak).
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Figure 5.5: Experimental sum-energy spectra from two resonances of each spin,
shown for multiplicities M = 2 − 5. The energy and spin of the resonance is
indicated in the legend in top-right panel. The spectra are normalized in the
same fashion as described in the text. The EΣ = 7 − 8 MeV range used to
construct the MSC spectra is illustrated as a red band.

The center of the full-energy peak is slighly shifted towards lower energy
than Sn due to contribution of the electron conversion process that manifests in
the transitions between low-lying levels. The sum-energy spectra in the region
EΣ < 3 MeV for lower multiplicities are influenced by the β− activity in the
crystals and the region above Sn is affected by the neutron capture on Ba isotopes
or detector effects such as event pile-up, for more detail see Sec. 5.2.3.

The DANCE setup allows us to distinguish resonances from different isotopes
if the difference in their Sn can be identified from the sum-energy spectra. An ex-
ample of a parasitic resonance is observed in Fig. 5.4 at En ≈ 15 eV, which clearly
corresponds to a smaller Sn. This evidence is supported by Atlas [128] report-
ing a 15.56 eV resonance in 166Er, which is one of the impurities in the sample
composition (see Tab. 5.1).

For the analysis of LD and PSFs, we construct the so-called multi-step cascade
(MSC) spectra corresponding mainly to events resulting from detection of com-
plete γ cascades. We define a gate on EΣ to cover events from the full-energy peak
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and we construct the spectra of the γ-ray energies deposited in M clusters. For
this purpose, only events from well–isolated resonances are chosen. The range
in the EΣ (usually referred to as the Q-value range) used in 167Er(n, γ)168Er
measurement was Q = 7 − 8 MeV to account for Sn = 7.771 MeV. By applying
this Q-value range, we exclude events from a possible parasitic resonance if its
Sn < 7.0 MeV, which holds for all Er impurities [128] listed in Tab. 5.1.

Figure 5.6: Experimental MSC spectra from two resonances of each spin, shown
for multiplicities M = 2 − 5. The energy and spin of the resonance is indicated
in the legend in top-right panel. The spectra are normalized in the same fashion
as described in the text.

The presented sum-energy spectra are normalized with a single factor given
by the number of events in the Q-value range summed over M = 2 − 6. The
constructed MSC spectra inherit this normalization. There is a strong background
contribution in M = 1 spectra, therefore this multiplicity is usually excluded.
The contribution from the off-resonance capture on the sample and the capture
of scattered neutrons in BaF2 crystals is subtracted using the experimental MSC
spectra from neighboring off-resonance regions on both sides of the resonance.
The MSC spectra from 2 resonances of each spin are shown in Fig. 5.6 for
M = 2 − 5. The allowed Jπ of the s–wave neutron resonances in 167Er(n, γ) is 3+

and 4+, while Jπ = 0+ for the ground state. Thus we expect a difference between
the decay patterns of resonances with different spins, which can be seen in the
above-presented comparison of their MSC spectra. The method that was used to
assign spins to individual resonances is discussed in Sec. 5.3.

To asses the role of the Porter-Thomas fluctuations in the MSC spectra, we
constructed the mean MSC spectra for 12 resonances of Jπ = 3+ and 15 reso-
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nances of Jπ = 4+ (see Sec. 6.2) in the same fashion as for (n, γ) measurement on
Dy isotopes described in [87]. Using the maximum likelihood fit and taking into
account experimental uncertainties, we compute the mean experimental intensity
and fluctuation of the experimental intensity for each bin.

5.2.2 Experimental Isomeric Ratio
To estimate the experimental isomeric ratio, we define a prompt γ cascade in a
way to include the cascades feeding the isomer and a delayed γ cascade mostly
corresponding to the isomeric decay (see Fig. 5.7) by defining gates on our exper-
imental observables. The prompt cascades were defined as events with M = 2−6
and EΣ = 5 − 8 MeV and the delayed cascades with EΣ = 0.4 − 1.0 MeV.

Figure 5.7: Left panel: A simplified scheme of the decay from the neutron cap-
ture state, including cascades feeding the isomer and decay of the isomer. Right
panel: Examples of the cascades falling into the prompt gate (black), including
isomeric feeding, and cascades corresponding to the delayed gate (green), includ-
ing possible detection of incomplete cascades.

The experimental data provide us with timestamp of each event and we can
construct spectra of time differences between the prompt and the delayed cas-
cades. Not all events falling into the prompt or delayed gates come from the
feeding/isomeric decay, therefore we also observe accidental coincidences that we
do not a-priori know the exact shape of. The TOF spectrum of all events, prompt
cascades and delayed cascades for three resonances is shown in Fig. 5.8.

We fit the time-difference spectra with a sum of two exponential functions,
one corresponding to the isomeric decay and the second effectively describing
the shape of accidental coincidences. An example of the time-difference spectra
and the corresponding fit is shown in Fig. 5.9. From the fit, we obtain the
isomeric half-life T1/2 and the number of isomeric decays Niso. The isomeric ratio
is commonly defined as Riso = σiso/σtot, where σiso is the isomer production cross
section and σtot is the total (n, γ) cross section. The experimental isomeric ratio
is then calculated as:

Riso = σiso × 1
σtot

= Niso

εcs→iso εiso
× εpr

Npr
, (5.1)

where Npr is the number of detected prompt cascades obtained from simple exper-
imental counting. εpr, εcs→iso and εiso are the detection efficiencies for measuring
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Figure 5.8: TOF spectrum of three resonances for all events (red), events falling
into the prompt gate (blue) and delayed gate (green). The center of the delayed-
cascades peak is shifted towards higher TOFs with respect to the prompt one.

the prompt cascade, the cascade feeding the isomer and the isomeric decay, re-
spectively. Efficiencies were obtained from the simulations, see Sec. 6.2. It should
be noted that the isomeric decay scheme is known, a simplified level scheme with
the most intense transitions is shown in Fig. 5.10. Comparison of the determined
experimental and simulated Riso is shown in Sec. 6.3.

5.2.3 Parasitic Detector Effects
The data acquistion system integrating the fast and slow components of the most
recent trigger cannot trigger again within a 1000 ns time window. If a γ ray from
a cascade B hits the crystal integrating the waveform of a previous cascade A,
this leads to a crystal pile-up, where the total integral obtained from the crystal
is larger and results in larger EA

Σ of the first event. On the other hand, the EB
Σ is

reduced by the missing γ-ray energy and its crystal multiplicity MB
cr is reduced

down by one. This effect is referred to as “dead time” and to account for it
in the analysis, the relative number of crystals that are busy integrating at the
same time as a function of TOF (and analogously En) is recorded. Hereafter, we
will refer to this observable as the “detector load” D(En), the average detector
load over all runs is shown in Fig. 5.11. In the offline analysis, we studied the
influence of the large detector load on the experimental spectra (see Sec. 5.3.3).
Naturally, the largest observed detector loads correspond to the strongest reso-
nances in 167Er(n, γ).

To avoid the dead-time effects, in the spin-assignment analysis (see Sec 5.3)
we did not consider the centers of the strongest resonances with the average
D(En) ≳ 5% from the first 167Er(n, γ) measurement and if necessary, we used only
events from the edges of these resonances where D(En) is low enough. In the ad-
ditional measurement with 1/4 of the sample mass, the average D(En) was much
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Figure 5.9: Spectrum of time difference between the prompt and delayed cascades
for 50.19 eV resonance. The spectrum is fitted by a sum of two exponential
functions, the obtained half-lives and Niso are listed in the legend. The bottom
panel shows the residuals.

Figure 5.10: Partial low-level scheme of 168Er including the isomeric state at
1094 keV excitation energy and its decay scheme. Excitation energies of the levels,
photon energies and intensities are taken from from [104].
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Figure 5.11: Average detector load from the higher-mass measurement, shown as
a function of neutron energy.

lower and no significant dead-time effects were observed. However, the latter
measurement suffered from lower statistics, therefore the presented sum-energy
and MSC spectra are constructed from the data measured with the thicker target,
using only resonances with maximum D(En) ≲ 5%.

Another detector effect related to high count rate is the event pile–up, where
two (or more) separate γ cascades are recorded within the preset coincidence
window and form a single event. This effect results in increased EΣ and M ,
its contribution (together with neutron capture in BaF2 crystals) can be seen
in Fig. 5.4 as events with EΣ ≳ 8 MeV. Only resonances with low event pile-up
were considered in the analysis, which usually corresponds to our requirement
of low D(En).

5.3 Spin Assignment of Neutron Resonances
The difference in the measured γ-ray spectra of neutron resonances with different
spin (see Fig. 5.6) can be exploited to determine the spin of these resonances.
Knowledge of the spin is essential when constructing the mean sum-energy and
mean MSC spectra. Moreover, resonance sequences of a single spin and mixed
spin are an important input for tests of GOE predictions related to fluctuation
properties of neutron resonances (see Chap. 4). This section is dedicated to the
short introduction of the method used to assign spins to resonances in 167Er(n, γ)
and we show the related experimental spectra.

5.3.1 Optimized γ-multiplicity-based Spin Assignment
Method

The fundamental of the method is based on different multiplicity distribution of
γ rays coming from the decay of resonances with different spin. Several methods
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for resonance spin assignment based on this principle have been proposed [129,
130]. Here we present a short overview of the method we adopted, detailed
characterization can be found in [131]. The main advantage of this method is its
ability to resolve close dublets of different spins at low neutron energies, which
may remain undetected by other methods of spin assignment.

The experimental yield for γ multiplicity M at neutron energy En is expressed
as a sum of contributions of each prototype:

yM(En) =
N∑︂

i=1
qi(En)µi

M + δyM(En) (5.2)

where µi
M are prototypical multiplicity distributions, δyM(En) are random pertur-

bations due to counting statistic uncertainties and N is the number of prototypes.
The multiplicity normalization condition holds ∑︁Mmax

M=Mmin
µi

M = 1.
The total capture yield at energy En then can be expressed as a sum of all

partial contributions from the decomposed yields qi(En) for a given prototype i
at neutron energy En:

q(En) =
N∑︂

i=1
qi(En) (5.3)

The objective of the method is to obtain the best estimates of the decomposed
yields qi(En), which according to the method of least squares minimize the sum
of the weighted quadratic deviations:

S2 =
∑︂
M

1
σ2

M

(︄
yM −

N∑︂
i=1

µi
Mqi

)︄2

(5.4)

where σ2
M(En) = Var[yM(En)] is the variance.

In practice, an effective way to apply this method is for N = 2 − 3, where two
prototypical multiplicity distributions are taken from resonances of different spins
and the optional third prototype represents the background contribution. The
background prototype can be taken from the off-resonance region or from mea-
surements with a 208Pb sample that provide multiplicity distribution for events
related to neutron scattering. The majority of the background events fall into
M = 1 and significantly decrease with higher M .

5.3.2 Spectra of Decomposed Yields
To construct the spectra of decomposed yields, only events with EΣ = 7 − 8 MeV
were chosen. The multiplicity distribution of the two spin prototypes (taken
from isolated resonances of the corresponding spins) and one background pro-
totype (taken from the off-resonance region) can be found in Fig 5.12. These
distributions are normalized to their intergral for M = 2 − 6, as we expect the
background contribution in M = 1.

The illustration of the experimental yield and decomposed yields for a chosen
energy range can be found in Fig. 5.13. We can clearly identify two well-resolved
resonances of Jπ = 3+ and two of Jπ = 4+, as the decomposed yields of the
corresponding spin prototype nicely follow the shape of the experimental yield.
There is a clear evidence of a dublet structure in the decomposed yields at ≈ 53 eV,
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Figure 5.12: Multiplicity distribution of two spin prototypes and one off-resonance
prototype. The distribution is normalized to the number of events with M −2−6.

while a singlet is reported in available data [128]. In fact, we can see an indication
of a more complex structure than singlet already from comparing the shape of
the experimental yields of 53 V resonance and the neighboring resonances. The
decomposed shapes agree with the shapes of the neighboring resonances. Another
example of the decomposed spectra, in particular using three prototypes, is shown
in Fig. 5.14.

Figure 5.13: Experimental and decomposed TOF spectra. The decomposition
was performed using M = 2 − 6 with two prototypes. There is a clear evidence
of a previously unreported doublet near 53.5 eV.

In reality, intensities of the primary transitions fluctuate even among the reso-

49



Figure 5.14: Experimental and decomposed TOF spectra. The decomposition was
performed using M = 1−6 with three prototypes (two spins and one background
prototype).

nances of the same spin following the PT distribution. Due to these fluctuations,
the multiplicity distributions of the resonances with the same spin are not identi-
cal, which results in a small deviation of the decomposed yield of the correct spin.
For the method to work, it is thus essential to have smaller differences between
resonances with the same spin than between resonances with different spin. More
details about the observed and expected fluctuations of the decomposed yields
can be found in App. A.

5.3.3 Influence of the Detector Effects
As discussed in Sec. 5.2.3, parasitic detector effects lead to changes in the mea-
sured multiplicity distribution. Consequently, this effect can be observed in the
spectra of decomposed yields. The example of a very strong resonance at 9.39 eV
is shown in Fig. 5.15, where the sum-energy spectra of different resonance parts
are plotted. Influence of the dead time causes enhancement of the sum-energy
spectra at lower energy below the full-energy peak, as a part of the energy is
not detected within the given event. As a result, the multiplicity distribution
is shifted towards lower multiplicities for events from resonances with a large
detector load D(En). In the figure, we can see that the effect is most promi-
nent in the center of the resonance, where the maximum D(En) reaches ≈ 13%.
For comparison, analogous figure is shown for the 22.02 eV resonance with much
lower D(En) ≈ 1.5 %, where we do not observe any discrepancies between the
sum-energy spectra of different resonance parts.

These detector effects influence the decomposed yields, see the left panel of
Fig. 5.16, where the two of the strongest resonances are displayed. Very large
deviations are observed mainly in the center of resonances. The resonance edges
with low D(En) are described well by the expected decomposed yield and can be
used to assign spins even for these specific cases. We compared the multiplicity
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ditribution of the center of 9 eV resonance (constructed from EΣ = 7 − 8 MeV
events) with three other weaker resonances of the same spin and as expected, in
the 9 eV case the multiplicity distribution is shifted towards lower values - see
Fig. 5.17.

To check the correctness of our assignment, the same analysis was performed
for the newer 167Er(n, γ) measurement with the smaller-mass sample, resulting in
lower D(En). As evident from the right panel in Fig. 5.16, no major deviations
between the expected decomposed yield and experimental one were observed.
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Figure 5.15: Sum-energy spectra summed over M = 2 − 5 from 9 eV resonance
(left panel) and 22 eV resonance (right panel). The shown spectra were con-
structed for different parts of the corresponding resonance to demonstrate the
effect of high detector load on the central part of the resonance and higher TOF
(correspondingly lower En).
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Figure 5.16: Experimental and decomposed TOF spectra. The decomposition
was performed using M = 2 − 6 with two prototypes. Left panel: Measurement
with a thick target, a significant deviation of J = 3 expected decomposed yield
from the experimental one is observed for both resonances. Right panel: Newer
measurement with 1/4 of the former target mass, detector effects related to the
dead time are supressed.
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Figure 5.17: The multiplicity distribution of four J = 3 resonances constructed
from events with EΣ = 7 − 8 MeV. The distribution is normalized to the number
of events with M − 2 − 6. In the 9 eV case the central part of the resonance has
a large D(En) and we observe a shift towards lower multiplicities in comparison
with other three resonances with much lower D(En).
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6. Results and Discussion
The first part of this chapter, Sec. 6.1, is dedicated to the analysis of fluctuation
properties of neutron resonances and determining the average resonance spacing.
The second part, Sec. 6.2, summarizes the results on the LD and PSFs obtained
from the MSC spectra and their comparison with other available data. Finally,
the last Sec. 6.3 presents the deduced experimental and simulated isomeric ratio
in 168Er.

6.1 Statistical Properties of Neutron Resonan-
ces

Analysis of neutron resonances in 167Er(n, γ), in particular their spin assignment
discussed in Sec. 5.3, provides us with pure- and mixed-spin resonance sequences
that can be utilized to test RMT predictions of the GOE. The GOE version
of the RMT is generally used to examine completeness of measured resonance
sequences and often also to estimate the number of missing resonances. There
are two ways how an s-wave resonance can be missed in the experiment - (a) it is
a part of a close dublet or (b) it is too weak and below the threshold of observ-
ability (a sub-threshold resonance). The first option for 167Er(n, γ) was checked
using the method of spin assigment described in Sec. 5.3 and several new dublets
were found. The list of all resonances with assigned spins and their comparison
to those reported in Atlas [128] is included in App. A.

The second option was addressed by estimating the number of sub-threshold
resonances using the fluctuation properties of reduced neutron widths Γ0

n as well
as GOE predictions of statistical properties of resonance positions. In the fol-
lowing two subsections, we discuss the expected number of missing resonances
from both Γ0

n fluctuations and resonance-position fluctuations for each of the
experimental sequences. Three different lengths of the experimental sequences
were tested - Emax = 135, 200, and 285 eV. The lowest Emax was chosen to have
a sufficiently high probability for the sequence to be complete, while the other
two Emax values were determined by the uncertain spin assigned just above the
given energy. The spin of the 204 eV resonance was not assigned in our analysis
nor in Atlas [128], therefore three possible options (including no resonance at this
energy) were tested for the longest sequence.

Here we summarize the most important results for 167Er(n, γ), for details
- such as the sensitivity of the tested statistics to different number of missing
resonances - see App. A. Furthermore, we show additional plots that were not
included in App. A.

6.1.1 Fluctuations of Neutron Widths
We generated 104 resonance sequences in the same fashion as introduced in
Sec. 4.3.1 and we estimated the number of sub-threshold resonances using two dif-
ferent thresholds. The tested threshold shapes were T1 = C1E

3/2 and T2 = C2E,
where C1 = 0.6 × 10−8 eV−1/2 and C2 = 1.1 × 10−7. The parameters for gen-
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erating neutron widths were S0 = 2.0 × 10−4 [128] and D0 = 3.85 eV, which is
close to the estimated spacing discussed below. The simulated 2gΓn/

√︂
E/1eV val-

ues for one chosen sequence are compared with the experimental ones reported
in Atlas [128] in Fig. 6.1. The expected strength S1 = 1.5 × 10−4 [128] of p-
wave resonances effectively prevents us from observing any p-wave resonances
in the E range of our interest.

The fractions of complete simulated mixed-spin sequences F m
0 (i.e. no reso-

nance in the sequence is below the threshold) are listed in Tab. 6.1 for all three
Emax. The dependence on S0 and D0 was found relatively weak for the fixed Emax.
The results indicate that completeness of the sequences cannot be guaranteed
even for the shortest tested sequence. The distribution of the simulated number
of the sub-threshold resonances for different Emax are shown in Fig. 6.1 for T1
threshold. Applying the T2 threshold results in slightly more missing resonances
below ≈ 300 eV (see Tab. 6.1), which compared to the right panel of Fig. 6.1 leads
to shifted distribution of sub-threshold resonances for T2 towards higher values.

Figure 6.1: Left panel: Simulated 2gΓn/
√︂

E/1eV as a function of E for s-wave
and p-wave resonances compared to experimental resonances of 167Er taken from
Atlas [128]. Assumed thresholds T1 and T2 for resonance observability are shown
as solid lines. Right panel: Simulated distribution of number of sub-threshold
resonances for T1 threshold and different E ranges.

Threshold F m
0 × 103 / Mode

Emax (eV) 135 200 285
T1 280/1 84/2 12/4
T2 152/1 37/3 4/5

Table 6.1: Fraction of complete mixed-spin sequences F m
0 of 167Er and the

mode of distribution of sub-threshold resonances for different Emax and both
adopted thresholds. Parameters used in simulations were S0 = 2.0 × 10−4 and
D0 = 3.85 eV.
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6.1.2 Fluctuations of Resonance Positions
We used three different statistics based on resonance positions (as discussed
in Sec. 4.2.2) to test the completeness of experimental resonance sequences and
to estimate the number of missing ones. We generated and diagonalized 5000
GOE matrices in the same process as described in Sec. 4.3.2. The distributions
of the desired quantities were deduced from complete sequences of the same length
Lmax as experimental ones. In addition, we simulated longer sequences of length
Lmax + Lextra, where we then randomly removed Lextra resonances to mimic the
experimental case of missing resonances. The incomplete sequences were checked
for all Lextra ≲ Lmax/3. We analyzed pure-spin as well as mixed-spin sequences,
several spin-mixing ratios were tested. The results of the statistical analysis are
presented in Tab. 6.2 for all three tested lengths Emax.

Emax(eV) L−
max L+

max
Jπ = 3+ Jπ = 4+ mixed

∆3 Di ρ ∆3 Di ρ ∆3 Di ρ

135 18 17 0–4 0+ 0 0+ 0+ 0+ 0+ 0+ 0+
200 23 27 0+ 0+ × 1+ 0+ 0+ 0+ 0+ 0+
285§ 29 39 1+ 0+ 0+ 2+ 0+ 0+ 1+ 0+ 0+
285|| 30 39 0+ 0+ 0+ 2+ 0+ 0+ 0+ 0+ 0+
285¶ 29 40 1+ 0+ 0+ 2+ 0+ 0+ 0+ 0+ 0+

§ no 204 eV
|| 204 eV 3+
¶ 204 eV 4+

Table 6.2: Results of the statistical analysis of 167Er resonance sequences. The
range of Lextra for which the sequence is compatible with GOE predictions is
indicated, e.g. “0+” means Lextra ≥ 0, “1+” means Lextra ≥ 1 etc. The symbol
× indicates inconsistence with all Lextra values for the adopted criterion (see text).
Results for three different statistics are presented - ∆3, NNSD (column labeled
Di) and correlation coefficient ρ .The number of resonances of spin J = 3 and
J = 4 are denoted as L−

max and L+
max, respectively. The different sequence versions

are explained by the respective footnotes.

The most simple measure is the NNSD, which was derived from the generated
GOE sequences. The agreement with the experiment was checked using the statis-
tic proposed by Zhang in Ref. [132]. The value of the statistic was calculated
for the experimental sequence and compared to the distribution of statistics from
individual simulated sequences - the p-value was determined. If this p-value fell
into the 95.45% central interval corresponding to ±2σ of the normal distribution,
the experimental NNSD was considered consistent with the predictions of GOE.
The same process was applied to generated sequences with Lextra resonances re-
moved and the same length Lmax as experimental sequence after the removal.
An example of a cumulative distribution function (CDF) of nearest neighbor spac-
ings for simulated GOE sequences and experimental sequence is shown in Fig. 6.2.
The restrictive power of NNSD statistic is very low, we obtained compatibility
of experimental sequences with GOE for all the tested Lextra.

The second tested statistic was the correlation coefficient ρ(Di, Di+1) calcu-
lated from the adjacent spacings both from GOE generated sequences and ex-
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Figure 6.2: Left panel: CDF of the simulated NNSD for a complete pure-spin
Lmax = 23 sequence together with the NNSD for sequences where Lextra = 3 and
6 resonances are missed. The experimental Di of Jπ = 3+ sequence for Lmax = 23
and Emax = 200 eV are shown as black points. Right panel: Analogous figure for
simulated and experimental NNSD of Lmax = 69 and Emax = 285 eV mixed-spin
sequence.

perimental resonance sequences. The CDF of the generated ρ(Di, Di+1) values
for a complete sequence with Lmax = 23 as well as Lextra = 1, 3, 6, compared
to the experimental value can be found in Fig. 6.3. The compatibility was again
determined using the 95.45% central interval. Similarly as for the NNSD, the sen-
sitivity of ρ(Di, Di+1) is very limited - except for J = 3 sequences of Emax = 135
and 200 eV, there are no restrictions on the number of missing resonances for
relevant Lextra (see Tab. 6.2). As can be seen in Fig. 6.3, if the ρexp value is
very small, we reject compatibility for all Lextra ≥ 0 using our criterion, which is
labeled with a symbol × in Tab. 6.2. However, generally, the observed shift and
widening of the distribution with increasing Lextra is not large enough to provide
sufficient restrictive power.

To assess the role of the long-range correlations, we used the ∆3 statistics de-
fined by Eq. (4.14). Completeness of the experimental sequences was traditionally
examined by the compatibility of ∆exp

3 (Lmax) with the distribution of generated
or analytically derived ∆3(Lmax). We chose a different criterion to account for
behavior for all L, where we count the number of ∆exp

3 points - for a given ex-
perimental sequence - outside the 95.45% central interval determined from the
simulated ∆3. It is important to note that this corridor is asymmetric. Then
we calculate the probability that a simulated sequence has this number or more
∆3 points outside the same corridors. If the probability is lower than 4.55%, we
reject the hypothesis that the given experimental sequence is compatible with the
simulated one. An illustration of the criterion of a complete sequence is shown
in Fig. 6.4. The probabilities are calculated for complete simulated sequences as
well as those where resonances were removed (i.e. Lextra > 0). The experimental
and simulated ∆3(L) together with the 95.45% corridors for different Lextra is
shown in Figs. 6.5 and 6.6.

The ∆3 statistic seems to be the most restrictive from the tested ones. How-
ever, its sensitivity is still limited - the corridors are wide and overlapping and
compatibility with a large number of different Lextra is obtained especially if the
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Figure 6.3: CDF of the simulated correlation coefficient ρ(Di, Di+1) for a complete
pure-spin Lmax = 23 sequence together with sequences where Lextra = 1, 3, and
6 resonances were missed. ρexp = −0.6164 for the Lmax = 23 sequence (Emax =
200 eV) of J = 3 resonances in 167Er is shown as a red arrow. The corresponding
CDF value is 0.0127 for the complete sequence and lower for any sequence with
Lextra ≥ 1. The GOE predicted mean value of -0.27 [117] for a complete sequence
is displayed as a dashed line.

∆exp
3 (L) points lie above the simulated GOE median for the complete sequence (as

illustrated in Fig. 6.5). Therefore in the majority of cases, we obtained compati-
bility even with the largest tested Lextra. On the other hand, if the ∆exp

3 (L) values
are lower than simulated ones as illustrated in Fig. 6.6, we are able to obtain the
maximum compatible Lextra from GOE, which is 4 missing resonances in this
case. Furthermore, it is clear from the Tab. 6.2 that the sensitivity of ∆3 is lower
for the mixed-spin sequences than the pure-spin ones. Nonetheless, the allowed
numbers of missing resonance from the ∆3 statistic in Tab. 6.2 are consistent
with the estimated mode of the unobserved sub-threshold resonances in Tab. 6.1.

6.1.3 Average Resonance Spacing
If a resonance sequence is complete and the positions follow predictions of the
GOE, the average spacing can be determined very precisely [118, 117], even
if the sequence is not very long and consist of a few tens of resonances. In reality, if
we cannot guarantee completeness, the uncertainties are larger due to corrections
to the unobserved resonances. To determine the D0, we adopted the following
approach. We assumed the probability distribution of the sub-threshold reso-
nances as presented in Sec. 6.1.1. For each number of sub-threshold resonances
we then determined D0 from the difference between the position of the last and
the first resonance as given in Eq. (4.8). In reality, we assumed that the actual
position of the last resonance fluctuates according to the GOE predictions [118].
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Figure 6.4: CDF for the pure-spin complete simulated sequences of Lmax = 27 to
have N of ∆3(L) points outside the simulated 95.45% central interval (i.e. ≈ 81%
of the 5000 simulated sequences have 0 points outside the 95.45% central interval).
The experimental J = 3 sequence of Lmax = 27 and Emax = 200 eV has N = 12
points outside the simulated 95.45% central interval (marked with a green arrow).
The 4.55% limit for rejection of the hypothesis is shown as a red arrow.

We also took into account restrictions on number of missing resonances resulting
from the ∆3 statistic (see Tab. 6.2).

The determined average spacings for each Emax and T1 threshold are listed
in Tab. 6.3. The results for T2 threshold differ at maximum by around a third
of the given uncertainty. The obtained D0 = 3.86(12) eV for the maximum se-
quence length is compatible with D0 = 4.06(17) eV reported by Liou et al. [117],
D0 = 3.80(21) eV from Atlas [128] and D0 = 4.20(30) eV from the RIPL-3
database [21]. The discussion about the mixing ratio D−

0 /D+
0 of the average

spacings for resonances of J = 3 and J = 4, respectively, can be found in App. A.

Emax(eV) D−
0 (eV) D+

0 (eV) D0(eV)
135 7.46(51) 7.87(58) 3.72(19)
200 8.49(50) 6.87(34) 3.79(15)
285¶ 9.03(48) 6.70(25) 3.86(12)

¶ 204 eV 4+

Table 6.3: Determined average resonance spacing D−
0 and D+

0 for pure sequences
of J = 3 and J = 4 spin, respectively and D0 for mixed-spin sequences.
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Figure 6.5: Simulated ∆3 statistics as a function of L for mixed-spin sequences
with Lmax = 50 and Lextra = 0, 1 and 7. The shaded corridors correspond
to 68.27% central interval and the dashed lines for the complete sequence (black)
and Lextra = 1 (green) show the edges of 95.45% central interval. The experi-
mental values for the mixed-spin sequence of Lmax = 50 and Emax = 200 eV are
shown as blue points.

6.2 Level Density and Photon Strength Func-
tions

We can learn about the LD and PSFs governing the γ-decay by adopting a trial-
and-error approach of comparing experimental quantities such as the sum-energy
and MSC spectra to their counterparts simulated by the dicebox code. We tested
several hundred model combinations of LD and PSFs to check the agreement
with the experimental spectra and draw conclusions about models compatible
with our data or those we can reject. It has been checked that the influence
of the E2 PSF on the shape of simulated MSC spectra is negligible, therefore we
dedicate the following discussion only to LD, E1, and M1 PSF. A single-particle
model of E2 PSF, f (E2) = 1 × 10−11 MeV−5 was adopted.

It is very difficult to quantify the level of agreement between the simulated
and experimental MSC spectra, as the individual bins are mutually correlated
and the correlation matrix is a-priori not known, therefore an extensive num-
ber of additional time-consuming simulations would be needed. For this reason,
the agreement was checked only visually.

If not stated otherwise, we simulated 20 NSs with one NR within each of them
(for more details about the algorithm see Chap. 3). It has been verified that this
approach is justified for a simple search of appropriate PSF and LD models [87].
Each NS included 2 × 105 γ cascades that were subsequently fed to the GEANT4
simulation of the detector response. For simplicity, we plot the resulting simu-
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Figure 6.6: Simulated ∆3 statistics as a function of L for pure-spin sequences
with Lmax = 18 and Lextra = 0, 1 and 7. The shaded corridors correspond
to 68.27% central interval and the dashed lines for the complete sequence (black)
and Lextra = 1 (green) show the edges of 95.45% central interval. The experimen-
tal values for the J = 3 sequence of Lmax = 18 and Emax = 135 eV are shown as
blue points.

lated spectra as the average value ± standard deviation over the suprarealizations
as a grey (or blue) band in the figures. With one exception, the presented MSC
spectra are plotted simultaneously for both spins and M = 2 − 4, as there are
no visible structures in M ≥ 5 for Eγ ≳ 1 MeV. To compare the experimental
fluctuations of the MSC intensities with the predicted fluctuations from the sim-
ulations, we generated an extended simulation with 50 NRs in each of 50 NSs,
employing the model combination which gave the best agreement with the ex-
perimental spectra. For the discussion about the fluctuation comparison, see
App. B.

For the majority of cases, we used the highest achievable Ecrit = 2.418 MeV.
We observe peaks in the M = 2 MSC spectra up to ≈ 2 MeV, which are a con-
sequence of transitions from levels around ≈ 2.1 − 2.4 MeV that could not be
described statistically. Below Ecrit = 2.418 MeV there are 57 tentative, 10 un-
certain and 3 unknown Jπ assignments out of 130 levels. We tested that these
uncertainties do not have a significant influence on our results. Furthermore,
the choice of Ecrit strongly affects the simulated isomeric ratio - see the discus-
sion in Sec. 6.3.

We constructed the simulated MSC spectra for the same range of EΣ = 7 −
8 MeV as the experimental ones. In principle, we can use also different ranges -
especially EΣ = 6 − 7 MeV could be of special interest, as it includes the cascades
feeding the isomer (see Fig. 5.5). However, these cascades make up to around 20%
of all events in this range, while the rest corresponds to low-energy tail of the full-
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energy peak. Hence the MSC spectra constructed from EΣ = 6 − 7 MeV range
do not provide us with additional useful information, nevertheless, an example
of this type of spectra is shown in Fig. 6.14.

Generally, we were unable to simultaneously describe the central interval Eγ ≈
2.5 − 5.0 MeV of the M = 2 MSC spectra for both resonance spins for any
of the tested model combinations. In the majority of cases, the simulated intensity
in J = 3 central part is overestimated.

Here we summarize the main conclusions about the search for optimum LD
and PSFs, for details see also App. B. Furthermore, we include additional plots
of the MSC spectra that were discussed, but not shown in App. B.

6.2.1 Level Density
The best agreement between the experimental and simulated MSC spectra out
of the tested models was obtained for the LD model based on HFB calcula-
tions [19]. The overall agreement for J = 3 spin is excellent, for J = 4 we observe
a deviation in the center of the M = 2 spectra, see Fig. 6.7.

A slightly worse agreement was provided by the BSFG LD model, as it over-
estimates the intensity for larger multiplicities M > 4, see Fig. 6.8. In addition,
it predicts lower intensities of the peaks at the edges of M = 2 spectra com-
pared to the model combinations with the HFB LD. The simulated spectra are
very similar for both proposed parametrizations of the BSFG (see Sec. 1.2.1).
We tested also the influence of even-odd staggering as introduced in Sec. 1.2.1,
which we assumed linearly decreasing and vanishing at E = 4 MeV. The resulting
MSC spectra with and without the staggering are nearly identical. The parity
dependence of the BSFG LD in the form of Eq. (1.4) yields very small differences
in M = 2 spectra, but there are no significant changes in the overall agreement.

We were not able to reproduce the experimental MSC spectra with the CTF
LD model shown in Fig. 6.9 for any combination of PSFs due to different strength
of the SM that was required to describe M = 2 and M > 2 spectra.

Description of the M = 2 spectra, in particular the ratio of the intensity in the
center (Eγ ≈ 2.5−5.0 MeV) versus intensity for the peaks at the edges is probably
strongly linked to the shape of the LD model. The predicted number of available
levels for E ≈ 2.5 − 5.0 MeV with respect to Eγ ≳ 5.0 MeV or Eγ ≲ 2.5 MeV is
higher for the BSFG LD than the CT LD (as can be seen in Fig. 1.1). As a result,
the BSFG model overestimates the center of M = 2, while at the edges the pre-
dicted intensity is lower than experimental one. On the other hand, the opposite
situation is observed for the CT LD model. The behavior of the M = 2 spectra
for the HFB LD model appears to be between the two above-mentioned cases.

6.2.2 E1 Photon Strength Function
We tested the E1 PSF models introduced in Sec. 2.2 with individually adjusted
parameters of M1 PSF. We were not able to reproduce the experimental spectra
with any model combination including SLO E1 PSF, as the intensity in M = 2
spectra is majorly overestimated in the central part, see Fig. 6.10, and the mul-
tiplicity distribution is shifted towards lower values.

Similar effects in the M = 2 spectra were observed also with the SMLO
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Figure 6.7: Comparison of the mean experimental MSC spectra and the simulated
MSC spectra. The best-fitting model combination using HFB LD [19], MGLO
(k = 3) E1 PSF model and adjusted parameters of the SM ESM = 3.2 MeV and
ΓSM = 1.0 MeV and σSM = 0.6 mb is plotted in grey, while the Oslo model [32]
for E1 and M1 adopting BSFG LD is plotted in blue. The mean experimental
intensities and their uncertainties are shown as full red rectangles. The red error
bars correspond to the fluctuation of the intensities. The simulated MSC spectra
are drawn as a gray (or blue) band corresponding to a two standard deviation
corridor centered at the average.

model[59], QRPA+D1M calculated E1 PSF[59] (both plotted in Fig. 6.11) and
QRPA Skyrme-based calculations [64, 65, 66] with all the tested interactions
(Fig. 6.12). However, the situation for these model combinations taken from lit-
erature is different, as here the M1 PSF was not adjusted but taken from the re-
spective recommended parametrizations or calculations - for discussion of the cor-
responding M1 PSF see Sec.6.2.3 and the references therein.

On the other hand, the EGLO model shifts the average multiplicity to a higher
value than the experimental one due to its preference for very low-energy transi-
tions as illustrated in Fig.6.10.

Probably the best agreement was achieved with the MGLO (k = 3) model
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Figure 6.8: Comparison of the mean experimental MSC spectra and the simulated
MSC spectra for Jπ = 3+ resonances and M = 2 − 5. The BSFG LD model
with parametrization from [18] is plotted in grey, while the HFB LD model [19]
in blue. Both models adopted MGLO (k = 3) E1 PSF model and composite
M1 PSF model. The SM was adjusted separately for each model combination,
the parameters of the SM were ESM = 3.2 MeV and ΓSM = 0.8 MeV and σSM =
0.45 mb for the BSFG LD and ESM = 3.2 MeV and ΓSM = 1.0 MeV and σSM =
0.60 mb for the HFB LD. The meaning of the symbols is analogous to the Fig. 6.7.

(Fig. 6.13). A reasonable description was also provided by the KMF model and
the MGLO (k = 2), however, these two models slightly overestimate the intensi-
ties in M > 3 spectra compared to the MGLO (k = 3), see Fig. 6.13.

To examine whether the only acceptable E1 PSF models are those violating
the Brink hypothesis, we tested the KMF-T model with T = 0.31 as proposed
in [20] for 166Er, see Fig. 6.7. The agreement is similar to the results obtained for
the KMF and the MGLO (k = 2, 3) E1 PSF models, therefore we cannot reject
or confirm the strict validity of the Brink hypothesis. This finding is consistent
with the previously studied MSC spectra in even-even Gd [86] and Dy [87], that
reported a good agreement using the KMF-T model with T = 0.3 − 0.4 MeV.

6.2.3 M1 Photon Strength Function

We tested the composite model of M1 PSF in the form f (M1) = f
(M1)
SP + f

(M1)
SM +

f
(M1)
SF . The best agreement was obtained with a very small SP contribution

of f
(M1)
SP ≲ 2 × 10−9MeV−3, as higher f

(M1)
SP shifts the multiplicity distribution

towards too large values. All the MSC spectra are plotted with f
(M1)
SP = 0.
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Figure 6.9: Comparison of the mean experimental MSC spectra and the simulated
MSC spectra. The CT LD model with parametrization from [18] is plotted in grey,
while the BSFG LD model with the LEE postulated in M1 PSF is plotted in blue.
Both models adopted MGLO (k = 3) E1 PSF model. The SM was adjusted
separately for each model combination. The meaning of the symbols is analogous
to the Fig. 6.7.

f
(M1)
SF was adopted as a double-Lorentzian structure with ESF1,2 and ΓSF1,2 taken

from [89].
A hint of a resonance around 3 MeV in the PSF is already anticipated from

the prominent peak in M = 3 MSC spectra at the corresponding energy. We
were not able to reproduce the spectra without postulating the SM resonance
at ≈ 3 MeV in the M1 PSF.

We adopted the SM resonance in a Lorentzian form of Eq. (2.13) and searched
for the suitable range of SM parameters in combination with the above-discussed
E1 PSF models providing a reasonable description of the spectra (MGLO with
k = 2, 3 and KMF). The acceptable ranges of SM parameters were found to be
ESM = 3.1−3.3 MeV and ΓSM = 0.8−1.3 MeV almost independently of the chosen
E1 PSF model. On the other hand, σSM scales with the absolute value of f (E1),
the allowed strength for the MGLO (k = 3) is σSM = 0.4 − 0.6 mb.
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Figure 6.10: Comparison of the mean experimental MSC spectra and the simu-
lated MSC spectra. The SLO E1 PSF model is plotted in grey, while the EGLO
(k = 3) E1 PSF model is plotted in blue. Both models adopted BSFG LD model
and composite M1 PSF model. The SM was adjusted separately for each model
combination. The meaning of the symbols is analogous to the Fig. 6.7.

As mentioned above, the presented MSC spectra are rather sensitive to the po-
sition of the SM resonance. Therefore the microscopic M1 models predicting the
SM resonance at a different energy - such as Skyrme calculations with SkI3, SLy6
or SkP (see the Appendix in App. B) - cannot describe the ≈ 3 MeV peak in
M = 3 spectra, see Fig. 6.12.

To analyze the possibility of the LEE contribution to the M1 PSF, we adopted
f (M1) = f

(M1)
LEE + f

(M1)
SM + f

(M1)
SF with the LEE part in the same form and using

the same parameter values as proposed in 151,153Sm [92]. We were not able to re-
produce the experimental MSC spectra with LEE for any combination of LD and
E1 PSF models as it majorly overestimates the intensity in higher multiplicities
M > 4, see Fig. 6.9.
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Figure 6.11: Comparison of the mean experimental MSC spectra and the simu-
lated MSC spectra. The QRPA+D1M calculations of E1 and M1 PSF [63] plus
the HFB LD model [19] is plotted in grey while SMLO model [63] for E1 and M1
PSF plus BSFG LD is plotted in blue. The meaning of the symbols is analogous
to the Fig. 6.7.

6.2.4 Average Radiative Width
The only detector-independent simulated quantity in dicebox is the average
radiative width Γγ, which depends on the absolute values of PSFs. It is expressed
as a sum of contributions from all involved transition types and multipolarities,
i.e. in our case Γγ = Γ(E1)

γ +Γ(M1)
γ +Γ(E2)

γ . Due to PT fluctuations of the primary
transitions, Γγ from individual neutron resonances differ from the mean value -
this difference reaches at most a few percent. The reported value for 167Er from
the Atlas [128] is Γγ = 91.0(16) meV.

It is important to note that there are two available GEDR parametriza-
tions obtained from the fit on (γ, xn) data for natEr - one from the compilation
of Dietrich and Berman [43] and the other one from RIPL-3 [21] (and a recent
review [133]), see Fig. 6.15. While their shape below Sn is almost identical,
they significantly differ in the absolute value of the E1 PSF. The RIPL-3 [21]
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Figure 6.12: Comparison of the mean experimental MSC spectra and the sim-
ulated MSC spectra. The QRPA+SkI3 model for E1 and M1 is plotted in
grey, while the QRPA+SkM∗ model for E1 and M1 is plotted in blue. Both
models adopted the HFB LD [19]. The meaning of the symbols is analogous
to the Fig. 6.7.

parametrization yields approximately 1.35 × larger Γγ than the one from Diet-
rich and Berman [43]. The Γ(E1)

γ value for natEr from Ref. [43] parametrization is
≈ 10% larger compared to the 160Gd parametrization [43] that was used in the
previously published analyses of the MSC spectra for Gd and Dy isotopes [87, 62].

The Γγ also depends on the adopted LD model. The HFB LD model yields
unrealistically different values for each resonance spin - this is the consequence
of a strong even-odd staggering persisting up to Sn energy. A very different spin
distribution of neutron resonances in the HFB model compared to other ones
is visible from Fig. 10 of the App. A. For a fixed PSF model, the BSFG LD
gives about two times larger Γγ than the CT LD. The HFB model for J = 3
resonances predicts Γγ almost identical to the BSFG, while for J = 4 it is about
70% of the value. The SM contributes to the total Γγ with ≈ 15%.

The MGLO (k = 3) E1 PSF combined with the M1 PSF composite model
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Figure 6.13: Comparison of the mean experimental MSC spectra and the simu-
lated MSC spectra. The KMF E1 PSF model is plotted in grey, while the MGLO
(k = 3) E1 PSF model is plotted in blue. Both models adopted the BSFG LD
and the composite M1 model with separately adjusted parameters of the SM.
The meaning of the symbols is analogous to the Fig. 6.7.

and BSFG LD yields Γγ ≈ 125 meV with the parametrization from Ref. [43],
not consistent with the above-presented reported value [128]. This finding indi-
cates that the absolute PSF below Sn might be inappropriate and/or the actual
LD model has a different energy dependence for the spins relevant to the decay
of neutron resonances. The absolute value of Γγ thus could not be used in our
analysis to further restrict the acceptability of the tested model combinations.

6.2.5 Comparison of SM Strength with Other Data
The acceptable SM (or total M1) strength obtained from the analysis of the MSC
spectra can be compared to the experimental data obtained in the NRF and
Oslo-type experiments. The MSC spectra are sensitive only to the relative
Eγ dependence of the PSFs, therefore the absolute SM strength scales with
the adopted parametrization of the GEDR. As mentioned above, the two available
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Figure 6.14: Comparison of the mean experimental MSC spectra and the sim-
ulated MSC spectra using the EΣ = 6 − 7 MeV range. The best-fitting model
combination using HFB LD [19], MGLO (k = 3) E1 PSF model and adjusted
parameters of the SM ESM = 3.2 MeV and ΓSM = 1.0 MeV and σSM = 0.6 mb is
plotted in grey. The meaning of the symbols is analogous to the Fig. 6.7. Note
the normalization factor for these spectra is the same as for the MSC constructed
from EΣ = 7 − 8 MeV range.

parametrizations [43, 21] differ in the absolute value by a factor of about 1.35.
Unfortunately, as discussed in Sec. 6.2.4, the obtained average radiative width
does not help us to constrain the GEDR parametrization. All the SM strengths
described below correspond to the GEDR parametrization from Ref. [43].

To compare with the NRF obtained strength, we determined the total M1
contribution of reduced transition probabilities ∑︁

B(M1) in the region Eγ =
2.7 − 3.7 MeV, calculated from the SM+SF composite M1 PSF with no SP part
assumed. The SM contributes to the total ∑︁B(M1) by ≈ 90%. The comparison
with the even-even isotopes of Gd, Dy, and Er is shown in Fig. 6.16, our derived
value is in perfect agreement with the NRF one and compatible with neighboring
nuclei.

Furthermore, we calculated the total SM strength ∑︁
BSM by integrating the
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Figure 6.15: Experimental (γ, xn) data for natEr and two available parametriza-
tions of the GEDR - Dietrich and Berman compilation from Ref. [43] and RIPL-3
from Ref. [21], for comparison also parametrization for 160Gd from Ref. [43] is
plotted.

SM resonance over the interval 0-10 MeV and compared it to the results from 3He
induced experiments using the Oslo method for even-even Gd, Dy, and Er. We
assumed the M1 character of the reported pygmy resonance in Er at ≈ 3 MeV.
Note that there was no Oslo measurement for 168Er, only for 166Er. Our result
is consistent with the values observed for even-even nuclei with A ≥ 160, if we
consider the former Dy data [88], see Fig. 6.16.
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Figure 6.16: Top panel: The total M1 strength ∑︁
B(M1) summed over Eγ =

2.7 − 3.7 MeV for even-even isotopes of Gd, Dy and Er as a function of mass
number A. Data from (γ, γ′) measurements [81, 77] are plotted together with
our result for 168Er and data from Gd [134] and Dy [87] analyses of the MSC
spectra. Bottom panel: Comparison of the total SM strength ∑︁BSM integrated
for Eγ = 0 − 10 MeV. Values from Oslo method for 166Er [32], Dy [51, 53] and
revisited Dy [88] are plotted together with data for 168Er, Gd [134], and Dy [87]
analyses of the MSC spectra.
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6.3 Isomeric Ratio
Statistical γ decay of 168Er is significantly influenced by the presence of an iso-
meric state at 1094 keV. It is a K-isomer with Jπ = 4− and a bandhead of the K =
4 rotational band. Its half-life from the ENSDF evaluation of 168Tm ϵ decay [104]
is T1/2 = 109.0(7) ns. One of the quantities of interest related to isomers is the
isomeric ratio, i.e. the relative number of γ cascades going via the isomeric state
over all γ cascades going to the ground state. We determined the experimental
isomeric ratio for several resonances of both spins and compared it to simulated
isomeric ratio for the tested model combinations of LD and PSFs.

6.3.1 Experimental Isomeric Ratio
From the time-difference spectra and their fit introduced in Sec. 5.2.2, we obtained
results on the isomeric decay listed in Tab. 6.4. The experimental isomeric ratio
was calculated using the form of Eq. (5.1) for 6 resonances of Jπ = 3+ and
5 resonances of Jπ = 4+. In addition, we used an off-resonance range of En =
0.2−0.25 with a contribution from captures on both resonance spins - about 23%
of Jπ = 3+ based on [128].The uncertainties come from the fit for T1/2 and Niso,
and are assumed Poisson for Npr. All but one value of half-life are 2σ compatible
with the literature value T1/2 = 109.0(7) ns [104].

The individual values of Riso are expected to fluctuate, we thus determined the
average Riso = 14.5(8)% and 25.0(14)% and the width of the distribution σRiso =
1.7(6)% and 2.5(10)% for Jπ = 3+ and 4+ resonances, respectively. Considering
the experimental uncertainties, the expectation values and the width of the distri-
bution were obtained using the maximum likelihood fit similarly as for the exper-
imental MSC spectra. Using the average values for each spin and the correspond-
ing spin contributions, we obtained Riso = 22.6(11)% in the En = 0.2 − 0.25 eV
range, which is consistent with the value 23.6(3)% obtained from the fit.

The Riso value from the ENSDF evaluation (nth, γ) at the thermal point is
26.6(10)% [104]. Weighting our values by contributions of each resonance group
to the thermal point, which are 215.9 b and 426.3 b [128] for Jπ = 3+ and Jπ = 4+,
respectively, yields 21.4(10)%. These value are not compatible, however, we have
two comments regarding this outcome. First, the intensities of the isomeric decay
from Ref. [104] are given as an average from two measurements, where the newer
measurement reports the intensities systematically smaller by about 5-10% than
the average. Second, the obtained σRiso values indicate that the fluctuations
of Riso are rather large. The largest contribution to the thermal point is given
by the Jπ = 4+ resonance at 0.460 eV with ≈ 160 b and Jπ = 3+ resonance
at 0.584 eV with ≈ 425 b. Unfortunately, due to high number of busy crystals,
we were not able to determine the Riso for these two resonances.

6.3.2 Simulated Isomeric Ratio
We obtained the simulated Riso as the simulated population of the isomeric state
using the best-fitting model combination of LD and PSF presented in Fig. 6.7.
We generated 50 NRs within each of 50 NSs to account for fluctuations from both
NRs and NSs. To examine the applicability of the statistical model to reproduce
the experimental Riso, we determined the simulated Riso as a function of Ecrit,
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Jπ Eres (eV) T1/2 (ns) Niso (x102) Npr (x102) Riso (%)

3+

22.02 112.4(28) 681(21) 7446 17.3(5)
39.43 103.0(31) 1021(43) 14045 13.8(6)
42.23 107.4(41) 471(34) 5872 15.2(11)
59.96 109.8(46) 685(60) 9325 13.9(12)
85.42 106.9(118) 39(6) 487 15.3(22)
107.6 109.8(28) 421(15) 6701 11.9(4)

4+

50.19 105.8(34) 972(63) 8822 20.6(10)
69.43 117.4(46) 232(11) 1605 27.1(13)
91.20 119.1(61) 163(11) 1251 24.4(17)
184.7 123.1(61) 192(15) 1334 26.9(21)
217.2 121.4(76) 84(9) 556 28.3(29)

- 0.2-0.25 109.2(18) 75870(27) 9536(24) 23.6(3)

Table 6.4: The experimental results on the isomeric decay, includ-
ing the obtained half-life T1/2, number of detected isomeric decays
Niso, number of detected prompt cascades Npr and the obtained
isomeric ratio Riso for 6 resonances of Jπ = 3+ and 5 resonances
of Jπ = 4+ and one off-resonance region.

the results for both resonance spins are shown in Fig. 6.17. If we do not assume
any structural effects above the isomer, i.e. we adopt the Ecrit just above 1094 keV,
the simulated Riso is significantly lower than the experimental one.

We observe an increase in the simulated Riso with increasing Ecrit, which is
related to the presence of the levels that dominantly feed the isomer. Here-
after, we will refer to these levels that directly or indirectly feed the isomer with
at least 80% of the branching intensity as the doorway levels. The level scheme
below the maximum Ecrit taken from [104] is shown in Fig. 6.18. It illustrates
an example of a doorway and a non-doorway level with the same Jπ that are
very close in excitation energy, but have a very different decay pattern. While
the doorway level at 1773.20 eV decays directly to the isomer and its rotational
band, the 1760.76 eV non-doorway level decays to the lowest-lying positive-parity
rotational bands. Including of a doorway level at low energy leads to an in-
crease of the simulated Riso by a few percent, see Fig. 6.17. On the contrary,
the population of a single level near the highest Ecrit is 0.4% at maximum and
it decreases exponentially, therefore a single doorway level at higher energy does
not induce such a strong effect. The Fig. 6.19 illustrates the statistical behavior
of the simulated populations at higher excitation energies Eexc ≥ 1.5 MeV, where
the exponential fit gives a very reasonable description. Below this region we ob-
serve levels with larger populations that clearly cannot be described exclusively
within the statistical model. An illustration of how increasing the Ecrit leads
to a larger feeding of the isomeric state can be also observed in the sum-energy
spectra in Fig. 6.20, where the simulated intensity in the 6.6 MeV peak is much
larger for higher Ecrit.

From Fig. 6.17 we observe increase of Riso up to highest adopted Ecrit for Jπ =
4+ and Ecrit ≈ 2.3 MeV for‘Jπ = 3+ resonances. This finding indicates that the
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Figure 6.17: Simulated Riso as a function of the critical energy for capturing
state spin J = 3 (upper panel) and 4 (lower panel). The average from the exper-
imental Riso is drawn as a red line, uncertainty of the average as a dashed line
and the red band represents the fluctuations σRiso . The fluctuations of the sim-
ulated Riso over NRs within a single NS are plotted as blue rectangles, while
the error bars correspond to the total fluctuations from all NRs. The excita-
tion energies of the isomer, doorway levels and non-doorway levels are marked
by the green, black and gray lines, respectively.

statistical description of the γ decay is not fully adequate for levels even up to ex-
citation energies close to the maximum Ecrit. It was not possible to go up to higher
Ecrit > 2.4 MeV as the information about the levels definitely becomes incomplete
in this region.

The Riso dependence on Ecrit is similar for other model combinations rea-
sonably reproducing the MSC spectra, the BSFG LD yields Riso values smaller
by about 10% than the presented ones with the HFB LD (see Fig. 6.7). It is
evident from the Fig. 6.17 that simultaneous reproduction of the isomeric pop-
ulations for both spins is problematic - the simulated population for Jπ = 3+

resonances for the highest Ecrit is already above the experimental average, while
for Jπ = 4+ slightly below the experimental average. The discrepancies are
on the level of two to three standard deviations for the worse spin. This finding
is consistent with the trends observed in the MSC spectra, where we were unable
to describe M = 2 spectra perfectly for both spins.
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Figure 6.18: The low-lying level scheme of 168Er with the decay of the Jπ =
6− non-doorway level at 1760.76 keV (magenta) and the 6− doorway level
at 1773.20 keV (black). The isomer is drawn in red, the doorway levels are
in black and the other levels in magenta.

Figure 6.19: Simulated populations of the levels as a function of the excitation
energy of the level, the left panel corresponds to Jπ = 3+ resonance and the right
panel to Jπ = 4+ resonance. The illustrative exponential fits performed at the ex-
citation energy range above 1.5 MeV for the given spin and parity are plotted as
dashed lines.
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Figure 6.20: Mean experimental sum-energy spectra for M = 2 − 4 and reso-
nance spins Jπ = 3+, 4+ compared to the simulated spectra for the best model
combination given in Fig. 6.7, plotted for two different Ecrit. The EΣ range used
to construct the MSC spectra is illustrated as a red band.
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Conclusions and Outlook
Coincident γ-ray spectra from the neutron capture 167Er(n, γ)168Er on s-wave
resonances of both spins were measured with the DANCE detector at LANSCE
spallation neutron source. The calorimetric capabilities of the detector enabled us
to assign spin to neutron resonances and perform the analysis of their fluctuation
properties. We analyzed the completeness of the observed resonance sequences us-
ing properties of the Porter-Thomas distribution of neutron widths and resonance
position predictions from GOE. The constructed γ-ray multi-step cascade spectra
were used to test the validity of various LD and PSF models within the statisti-
cal approach. The DANCE setup allowed us to detect the decay of the isomeric
state at 1094 keV with 109 ns half-life present in 168Er and to determine the ex-
perimental isomeric ratio, which was compared with the simulated one using the
statistical model.

The main results can be summarized as follows:

• The analysis of the completeness of observed resonance sequences based
on their fluctuation properties predicted from GOE indicates a very re-
stricted sensitivity to estimate the number of missing resonances. Further-
more, we cannot expect completeness for sequences consisting of more than
a few tens of resonances for well-deformed rare-earth odd-mass targets.
Nevertheless, assuming corrections to the number of missing resonances,
we determined the average level spacing D0 =3.86(12) eV for the s-wave
resonances of 167Er.

• The best description of the LD was obtained with the HFB model [19], con-
trary to the previous analyses of the MSC spectra [86, 87] where the BSFG
LD model was preferred. The BSFG model yields slightly worse predic-
tion than the HFB, but significantly better than the CT model. The E1
PSF was well reproduced using the MGLO (k = 2, 3), KMF, and KMF-T
model. The resonance structure at ≈ 3.1 − 3.3 MeV in M1 PSF was def-
initely necessary for the reproduction of the spectra and it was identified
as the scissors mode. Its strength is likely comparable to the neighboring
even-even rare-earth nuclei. Simultaneous description of the MSC spectra
for both spins was found to be rather difficult.

• The QRPA+D1M and SMLO model combinations of PSFs proposed in the
recent PSF review [63] do not reproduce the measured MSC spectra. A sim-
ilar conclusion can be made for PSFs based on the QRPA calculations
with several different parametrizations of the Skyrme interaction [64, 65,
66]. On the other hand, the PSFs obtained from the (3He,3He’γ)166Er mea-
surement [32] using the Oslo method provide a rather good description,
which was not achieved with the Oslo-derived PSFs in the previous MSC
analyses of rare-earth nuclei.

• The simulated isomeric ratio is significantly lower than the experimental one
if no structure effects are assumed above the excitation energy of the iso-
mer. In contrast to previous analyses[10, 11, 12], we were able to reproduce
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the experimental isomeric ratio on the level of about two standard devia-
tions if we adopt the decay scheme up to excitation energy well above 2 MeV.
This finding indicates that the structure effects play a role up to high exci-
tation energies.

Despite the finding that the structure effects influence the γ decay up to at
least 2 MeV in 168Er, the overall reasonable description of the experimental MSC
spectra indicates that the commonly-used statistical approach is at least a good
approximation at energies above about 2.0-2.4 MeV. Further studies of the appli-
cability of the statistical model can be hopefully performed using the DANCE
calorimeter, which has been proven to be a useful tool to measure isomeric decay
in rare-earth nuclei.

The MSC data for the neighboring 167Er and 170Tm were recently also mea-
sured by DANCE and their ongoing analysis should allow us to study the LD and
PSFs and establish the systematics of the scissors mode for well-deformed rare-
earth nuclei. For 167Er, the results could also be compared to the (3He,3He’γ)167Er
Oslo-type measurement [32].
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