
MASTER THESIS

Barbora Hudcová

Complexity in Cellular Automata

Algebra Department

Supervisor of the master thesis: Ing. Tomáš Mikolov, Ph.D.
Study programme: Mathematics

Study branch: Mathematics for Information
Technologies

Prague 2020

This is not a part of the electronic version of the thesis, do not scan!

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank my supervisor, Ing. Tomáš Mikolov, Ph.D., for giving me
a unique opportunity to develop a better idea of what the life of a researcher is
like and for always making sure I don’t lose sight of the big picture. I am very
grateful to Doc. RNDr. Jǐŕı Tůma, DrSc. for all his time and work he invested
in me. Last but not least, I would like to thank prof. RNDr. Jaromı́r Antoch,
CSc., Prof. RNDr. Petr Kůrka, CSc., and Mgr. Ondřej Týbl for their valuable
advice on various topics. Thanks to my friends and family for being patient with
me and supporting me.

ii

Title: Complexity in Cellular Automata

Author: Barbora Hudcová

Department: Algebra Department

Supervisor: Ing. Tomáš Mikolov, Ph.D., department

Abstract: In order to identify complex systems capable of modeling artificial life,
we study the notion of complexity within a class of dynamical systems called cel-
lular automata. We present a novel classification of cellular automata dynamics,
which helps us identify interesting behavior in large automaton spaces. We give a
detailed comparison of our results to previous methods of dynamics classification.
In the second part of the thesis, we study the backward dynamics of cellular au-
tomata. We present a novel representation of one-dimensional cellular automata,
which can be used to charcterize all their garden of eden configurations. We
demonstrate the usefulness of this method on examples.

Keywords: cellular automata, dynamical systems, classification of cellular au-
tomata, complex systems, garden of eden

iii

Contents

Introduction 2

1 Introducing Cellular Automata 4
1.1 Preliminaries . 4
1.2 Introducing Cellular Automata 5

1.2.1 One-dimensional Cellular Automata 6
1.2.2 Two-dimensional Cellular Automata 6

1.3 Cellular Automata on a Finite Grid 7
1.3.1 1D CAs Operating on a Finite Grid 7
1.3.2 2D CAs Operating on a Finite Grid 8

1.4 Brief History of Cellular Automata 9

2 Classifying Cellular Automata 11
2.1 CA Dynamics via Space-Time Diagrams 11

2.1.1 Wolfram’s Classification 11
2.1.2 Zenil’s Classification . 13

2.2 Global Dynamics of Cellular Automata 15
2.2.1 Equivalent Cellular Automata 15
2.2.2 Z-parameter . 16

2.3 Transient Classification . 20
2.3.1 Basic Concepts and Motivation 20
2.3.2 Data Sampling and Regression Fits 21
2.3.3 Transient Classifiation of ECAs 23
2.3.4 Discussion . 26
2.3.5 Transient Classification of 2D CAs 28
2.3.6 Transient Classification of Well Known CAs 29

3 Preimages of Cellular Automata 31
3.1 Preimage Relations of Cellular Automata 31
3.2 Cayley Graphs of Cellular Automata 34

3.2.1 Matrix Representation of Cayley Graphs 35
3.3 Phase-Space Properties of Rule 45 37

3.3.1 Rule 45 as a Random Mapping 41
3.4 Cellular Automata as Topological Mappings 42
3.5 Rule 110 . 44

3.5.1 Construction of Canonical Orphans 45
3.6 Discussion . 48

Conclusion 49

Bibliography 50

1

Introduction
In the past decades, the interest in studying neural networks has been increasing
rapidly. Along with this hype, they are often marketed as ”the” artificial intelli-
gence. However, they lack some fundamental properties to accomplish that. For
example, it is challenging to implement a long-term memory in the neural network
environment. A more fundamental problem is their inability to recognize similar
tasks to those they have been trained for and adjust to perform well in them,
[14]. This suggests that there is a need for a different paradigm that would bring
us closer to the ambitious goal of designing real artificial general intelligence.

There is one field in particular that seems to promise an interesting and novel
approach to searching for artificial general intelligence: the field of artificial life.
It unifies researchers with different backgrounds such as mathematics, physics,
computer science, or biology, most of whom wish to understand evolutionary
mechanisms through the simulation of computer programs. The goal is to search
for models that resemble some form of artificial evolution. Within their simu-
lation, there would be complex structures spontaneously emerging and further
growing in complexity, interacting with one another, and potentially exhibiting
some form of intelligence. An iconic example is Tierra [20], a model where simple
computer programs compete for memory and CPU time and exhibit interesting
forms of parasitism and symbiosis. More recent attempts to model artificial life
are for example [18] or [23]. As interesting as such approaches are, they are not
rooted in formal theory. Possibly, such experiments might direct us towards the
correct definitions of life, complexity, and emergence which are crucial and which
we lack.

The field of complex systems offers more formal means of studying artificial
life. Within it, scientists build upon the mathematical foundations of dynamical
systems theory. The intriguing property of such systems is that even very simple
rules can yield interesting behavior.

A reoccurring concept, as exhibited by the simple example of the logistic map,
is that increasing a single parameter of a rule specifying the system’s dynamics
can change the dynamics from trivial and easily predictable to chaotic; more
details can be found in [25]. Somewhere ”between” these two modes of operation,
we observe specific parameter values that cause the so-called complex behavior.
Even though dynamical systems theory gives us a formal definition of chaos, as
of yet, we have no conditions which would characterize complex behavior.

At least, to develop better intuition, we informally describe some properties
shared by complex systems. Among them are the following:

• The system consists of many particles that are interacting locally but are
eventually capable of some global synchronization.

• The system’s underlying rule is nonlinear.

• When asked how the system’s simulation would look like at time t, there
are no significantly more efficient means to get an answer other than to
simulate the system itself for t time steps.

Classic examples of complex systems found in nature include ant colonies,
stock price fluctuations, or the neuron interactions in the human brain. In such

2

systems, we often see some ”higher-order organisms forming” — organisms con-
sisting of multiple basic building blocks of the system which nevertheless seem
to act as individuals, an example being a flock of birds. The ultimate goal in
the field of complex systems is to give a suitable formal definition of complexity
or some sufficient conditions for it, to develop methods of automatically find-
ing complex systems in large dynamical systems spaces, and to subsequently use
those as models of artificial life.

In this thesis, we study an elementary class of dynamical systems, which are
called cellular automata. They are probably the most classic example of systems
capable of complex behavior. We examine their properties to develop a better
understanding of the notion of complexity and propose a novel experimental
method of classifying their dynamics.

In the first part of the thesis, we study forward dynamics of cellular au-
tomata. We present a novel method of classifying cellular automata dynamics;
Section Transient Classification. We compare our results to previous classifica-
tion schemes and demonstrate how our method can be used to automatically
search for automata with interesting behavior. In the second part of the thesis,
we present a novel representation of cellular automata related to their backward
dynamics; Section Cayley Graphs of Cellular Automata. We use this representa-
tion to deduce certain phase-space properties of a chaotic automaton operating
on a finite cyclic grid; Section Phase-Space Properties of Rule 45. Moreover, we
present a characterization of all garden of eden configurations of a famous Turing
complete automaton operating on an infinite grid; Theorem 38, Theorem 39. To
the best of our knowledge, both results concerning the particular automata are
new.

3

1. Introducing Cellular Automata
Before we define cellular automata, we present some basic notions and notation
that we use throughout the thesis.

1.1 Preliminaries
We understand the set of natural numbers to be the set N = {0, 1, 2, 3, . . .}. The
set N \ 0 is denoted by N+. Z denotes the set of integers.

Words
Let A be a finite non-empty set and n ∈ N. A word w of length n over A is a
sequence w = w0w1 . . . wn−1 where each wi ∈ A. We also define the empty word ϵ
to be the empty sequence. A∗ denotes the set of all words over A, including the
empty word, and A+ denotes the set A∗ \ ϵ. Any set L ⊆ A∗ is called a language
over A. The length of w is denoted by |w| and the set of all words of length n
over A by An. The length of ϵ is 0.

An infinite word u over A is a mapping from Z to A, we write

u = . . . u−2u−1u0u1u2 . . . , ui ∈ A for all i ∈ Z.

The set of all infinite words is denoted by AZ. A left infinite word l over A is a
mapping from {. . . , −3, −2, −1} to A and we write l = . . . l−3l−2l−1. Analogously,
a right infinite word r over A is a mapping from N to A and we write r =
r0r1r2r3

Let u, v ∈ A∗, u = u0u1 . . . un−1, v = v0v1 . . . vm−1 for some m, n ∈ N+. We
define the concatenation of u and v to be the word u0u1 . . . un−1v0v1 . . . vm−1,
which we denote by uv. The empty word is a neutral element with respect to
concatenation. Let l be a left infinite word over A and r be a right infinite word
over A. We can analogously define concatenations lr, lu, and ur.

With respect to the above notation, we say that v ∈ A+ is a subword or a
block of u if there exist p, s ∈ A∗ such that u = pvs. In such case, we write v ⊑ u.
If |v| < |u|, we say v is a proper block of u. If p = ϵ, we say v is a prefix of u. And
at last, if s = ϵ, then we say that v is a suffix of u. We say that u is a block of
an infinite word w over A if there exists a left and a right infinite word l, r over
A such that w = lur.

Let w ∈ A+ and n ∈ N. For convenience, we write (w)n or wn instead of
ww . . . w⏞ ⏟⏟ ⏞

n times

. By w0 we understand the empty word. Let p, s ∈ A∗. The expression

p(w)∗s denotes the set {pvs | v ∈ {w}∗}. For i, j ∈ {0, 1, . . . , |w| − 1}, i < j, we
write w[i,j] = wiwi+1 . . . wj. An analogous notation is used for infinite words.

Functions
We denote 2 = {0, 1}. A Boolean function is any function f : 2n → 2 for some
n ∈ N+. We say a Boolean function is balanced if

|{u ∈ 2n | f(u) = 0}| = |{v ∈ 2n | f(v) = 1}| = 2n−1.

4

Finite Automata
A deterministic finite automaton (DFA) is a 5-tuple A = (Q, A, δ, q0, F) where:

• Q is a finite set of states

• A is a finite set of input symbols

• δ : Q × A → Q is a transition function

• q0 ∈ Q is an initial state

• F ⊆ Q is a set of accept states.

With respect to the above notation, we say that the automaton A accepts a
word w ∈ A+, w = w0 . . . wn−1, if there exists a sequence of states of length n+1,
(q0, q1, . . . , qn) ⊆ Qn+1 such that δ(qi, wi) = qi+1 for all i ∈ {0, 1, . . . , n − 1} and
qn ∈ F . We say that ϵ is accepted by A if q0 ∈ F .

Let A be a finite set. We call the language L ⊆ A∗ a regular language if there
exists a deterministic finite automaton A = (Q, A, δ, q0, F) such that the set of
words accepted by A is precisely L.

1.2 Introducing Cellular Automata
Informally, a cellular automaton (CA) can be perceived as a k-dimensional grid
consisting of identical finite state automata. They are all updated synchronously
in discrete time steps based on an identical transition function depending only
on the states of automata in their local neighborhood. A more formal definition
presented below is based on a great introduction to cellular automata by Jarkko
Kari [9].

Let d ∈ N. We define a d-dimensional cellular grid as Zd and we call its
elements cells. Let S be a finite set of states. A configuration of the cellular grid
is a mapping

c : Zd → S.

We denote the set of all d-dimensional configurations by SZd .
Let k ∈ N+. We define a d-dimensional neighborhood of size k to be a sequence

N = (n⃗1, n⃗2, . . . , n⃗k) where each n⃗i ∈ Zd and n⃗i ̸= n⃗j for all i ̸= j. Given such
N , we can compute the relative neighborhood of a cell z⃗ ∈ Zd as (z⃗ + n⃗1, z⃗ +
n⃗2, . . . , z⃗ + n⃗k).

We define the local update rule to be a function that specifies the ”next” state
of a cell based on the ”old” states of the cell’s relative neighborhood. Formally,
given a d-dimensional neighborhood of size k and a finite set of states S, it is a
function

f : Sk −→ S.

A cellular automaton is given by a global update function that operates on the
configurations. It updates the states of all cells of the configuration in parallel by
”considering the states in every cell’s relative neighborhood” and using the local
update rule to obtain a ”new” state of the cell.

Definition 1. A cellular automaton operating on an infinite grid is a mapping
given by:

5

1. a dimension d ∈ N+ of the cellular grid

2. a neighborhood N = (n⃗1, n⃗2, . . . , n⃗k) ⊆ (Zd)k of size k for some k ∈ N+

3. a finite set of states S

4. a local update rule f : Sk → S.

We denote such a cellular automaton by the tuple (SZd
, F) where F is the global

update function defined as:

F : SZd → SZd

c(z⃗) ↦→ f(c(z⃗ + n⃗1), c(z⃗ + n⃗2), . . . , c(z⃗ + n⃗k)) for all z ∈ Zd.

The most typical study cases are one, and two-dimensional CAs as their con-
figurations can be easily visualized.

1.2.1 One-dimensional Cellular Automata
In the case of 1D CAs, we will simplify the notation. Let N = (n1, . . . , nk) ⊆ Zk

be a neighborhood of some CA. If we put r = max{|ni| | i ∈ {1, 2, . . . , k}}, we
can notice that N can be embedded into a larger symmetric neighborhood, which
is of the form (−r, −r + 1, . . . , r − 1, r). In such case, we call r the radius of the
symmetric neighborhood.

For any 1D CA with neighborhood N = (n1, . . . , nk) and local rule f : Sk → S,
we can consider an analogous automaton with N ′ = (−r, . . . , r), r = max{|ni| | i ∈
{1, 2, . . . , k}}, and a local function f ′ : S2r+1 → S defined as f ′ = f◦(πn1 , . . . , πnk

)
where πi : S2r+1 → S is the canonical projection to the i-th coordinate. Therefore,
without loss of generality, we can assume that any 1D CA has such a symmetric
neighborhood.

Suppose we have a local rule of a 1D CA f : S2r+1 → S. We can extend f to
a mapping ˜︁f : S∗ ‧‧➡ S∗ defined as:

˜︁f(u0u1 . . . un) = f(u0, u1, . . . , u2r+1)f(u1, u2, . . . , u2r+2) . . . f(un−2r, . . . , un)

for any u0 . . . un ∈ ⋃︁∞
k=2r+1 Sk.

1.2.2 Two-dimensional Cellular Automata
When studying 2D CAs, there are two classic examples of neighborhoods that
are considered. The Moore neighborhood is defined as

NMoore = ((1, 1), (1, 0), (1, −1), (0, 1), (0, 0), (0, −1), (−1, 1), (−1, 0), (−1, −1)).

The simpler Von Neumann neighborhood is defined as

NVon Neumann = ((1, 0), (0, 1), (0, 0), (0, −1), (−1, 0)).

6

Moore neighborhood Von Neumann neighborhood

Figure 1.1: Diagrams of two typical neighborhoods of two-dimensional cellular
automata.

1.3 Cellular Automata on a Finite Grid
Given a cellular automaton (SZd

, F) and an initial configuration u ∈ SZd , we
define the trajectory of u as:

(u, F (u), F 2(u), F 3(u), . . .).

The process of obtaining a trajectory is often called a simulation or an evolu-
tion of the CA. Studying the dynamics of a cellular automaton simply means
the studying of any property related to its global function, which is iterated on
different initial conditions.

So far, we have considered CAs operating on infinite grids. Such automata
are usually studied in fields such as symbolic dynamics for their interesting theo-
retical properties. However, when visualizing the cellular configurations, or when
viewing CAs as a non-classical model of computation, we have to consider some
form of a finite-sized cellular grid. Below, we present one possible method of
reduction to a finite grid specifically for 1D and 2D CAs. The generalization of
the method to higher dimensions is straightforward.

1.3.1 1D CAs Operating on a Finite Grid
In the case of 1D CAs, we consider the cellular grid to be Zn and we simply
compute the cells in the relative neighborhood modulo n. More formally, a one-
dimensional cellular automaton operating on a finite cyclic grid of size n ∈ N+ is
a tuple (Sn, F) where F is given by a local rule f : S2r+1 → S with a symmetric
neighborhood with radius r and:

F : Sn → Sn

ci ↦→ f(ci−r mod n, . . . , ci+r mod n)

for all i ∈ Zn.
Let (Sn, F) be a one-dimensional CA operating on a cyclic grid and let u ∈ Sn

be an initial configuration. The trajectory (u = F 0(u), F (u), F 2(u), . . .) can be
easily visualized in the following way. We define the space-time diagram of the
CA (Sn, F) simulated on u for t time steps as a matrix M ∈ St×n where

(M)(i,j) = F i(u)j, i ∈ {0, 1, . . . , t − 1}, j ∈ {0, 1, . . . , n − 1}.

We write F 0(u) := u.

7

Figure 1.2: Schema of a one-dimensional cyclic cellular grid.

0 10 20 30 40 50 60
0

10

20

30

40

50

Figure 1.3: Space-time diagram of a one-dimensional CA operating on a cyclic
grid of size 70, simulated for 50 time steps on a randomly chosen initial configu-
ration.

Such space-time diagrams are typically visualized by identifying each state
with a different color. In case when the set of states is the set 2 = {0, 1}, the
custom is to identify state 0 with white and state 1 with black color.

In Figure 1.3, we show the space-time diagram of an ECA with local rule
f : 23 → 2, f(a, b, c) = (a + c) mod 2.

1.3.2 2D CAs Operating on a Finite Grid
In the case of 2D CAs, we consider the cellular grid to be of the form Zm × Zn

for some m, n ∈ N+ and analogously to the 1D case, we simply compute first
coordinates of a cell’s relative neighborhood modulo m and second coordinates
modulo n. More formally, a two-dimensional cellular automaton operating on a
finite cyclic grid of size m × n is a tuple (Sm·n, F) where F is given by a neigh-
borhood G = ((g(1)

1 , g
(2)
1), (g(1)

2 , g
(2)
2), . . . , (g(1)

k , g
(2)
k)) and a local rule f : Sk → S

8

and:

F : Sm·n → Sm·n

c(i, j) ↦→ f(c(i + g
(1)
1 mod m, j + g

(2)
1 mod n),

c(i + g
(1)
2 mod m, j + g

(2)
2 mod n),

...
c(i + g

(1)
k mod m, j + g

(2)
k mod n))

for all (i, j) ∈ Zm × Zn.
Loosely speaking, the topology of the two-dimensional finite grid is that of a

torus.

Figure 1.4: Schema of a two-dimensional cyclic cellular grid.

In the case of 2D CAs, their simulations are usually presented as animations
where the frames represent consecutive configurations.

There are other ”boundary conditions” that are being considered when study-
ing the dynamics of cellular automata. Another frequent choice is to fix the
”boundary cells” in a certain state. However, this choice seems more arbitrary.
The advantage of computing the coordinates of cells in relative neighborhood
modulo a set of fixed numbers is that all the cells have the same neighborhood.

1.4 Brief History of Cellular Automata
Cellular automata were first studied as models of self-replication. In the 1950s
the great mathematician John Von Neumann was interested in the connections
between biology and the new rising field of computational devices. His goal was
to come up with a computational model, within which self-replication would be
possible. After Stanislaw Ulam suggested the model of cellular automata for this
purpose, Von Neumann was able to define a ”universal constructor” within a 2D
CA. That is a finite arrangement of cells, together with a possibly infinite tape,
which is able to build any automaton whose description is encoded on the tape.

9

Therefore, the universal constructor can also build ”itself”. The crucial mech-
anism of self-replication is to use the information encoded on the tape twice.
Firstly, to interpret it and to build the structure and secondly, to copy the in-
formation on the tape of the new structure. This was an intriguing idea as Von
Neumann came up with this concept before the structure of DNA was discov-
ered, and therefore, before the mechanisms of DNA’s self-replication were known
to humankind. This exciting part of history is described by the Nobel laureate
Sydney Brenner [1].

In the cellular environment, it is easy to come up with trivial structures (such
as a structure consisting of one cell only), which are able to self replicate. This
is the reason why Von Neumann aimed to design a ”universal constructor” — a
structure being undoubtedly non-trivial as it has the same computational capa-
bilities as a universal Turing machine. After Von Neuman’s work was completed
and published by Arthur Burks [17], it spurred many other variations on the
design of self-replicating cellular structures. Many scientists argued that there
is a large gap between ”trivial” and ”computationally universal” structures and
that organisms in nature might not necessarily be ”Turing complete”. Therefore,
many other much simpler structures were designed, a great overview was written
by Reggia et al. [21], possibly the most famous of them being the loops designed
by Christopher Langton [11].

Figure 1.5: Illustration of a ”colony” of Langton loops - simple structures in a
2D CA system, which are capable of self-replication.

Since the 1950s cellular automata have been studied for their various proper-
ties — as computational systems [15], as possible models for artificial life [12], as
topological mappings [10], but mainly as dynamical systems capable of complex
behavior [26], [28]. In the next chapter, we give a more detailed overview of the
work related to classifying dynamics of CAs.

10

2. Classifying Cellular Automata
A crucial result helping us understand the notion of complexity would be a suit-
able classification of different CA dynamics. It could also navigate us toward a
region of CAs with complex behavior. An ideal classification would be based on
a rigorously defined and easily measurable property.

In this section, we describe three qualitatively different methods of CA clas-
sification to develop a better intuition for distinguishing different CA dynamics.
Subsequently, we present a novel method, which we call the Transient classifi-
cation, and compare our results to previous methods on a small class of CAs.
We then show how the Transient classification can be used to search for complex
automata in larger CA spaces.

2.1 CA Dynamics via Space-Time Diagrams
First, we introduce a small class of one-dimensional CAs often used to demon-
strate the results of different classification methods.

Definition 2. We define an elementary cellular automaton (ECA) to be a one-
dimensional cellular automaton with radius r = 1 and the set of states 2 = {0, 1}.

Each ECA is given by a Boolean function f : 23 → 2. Hence, there are
only 256 of them. The size of the ECA class is the main reason it is frequently
used when examining different properties of CAs. Given a property we want to
measure, it is feasible to obtain results for each ECA and present an exhaustive
comparison. As there are kk2r+1 one-dimensional CAs with k states and radius
r, the size of such class grows steeply when either k, or r is increased. For
instance, as soon as we increase the number of states to 3 and keep r = 1, we
obtain 333 ≈ 1013 different cellular automata. For such vast classes, an exhaustive
comparison is not feasible.

We have a natural bijection between the set of ternary Boolean functions
{f : 23 → 2} and integers in the set {0, 1, . . . , 255} given simply by:

f ↦→ 20f(0, 0, 0) + 21f(0, 0, 1) + 22f(0, 1, 0) + . . . + 26f(1, 1, 0) + 27f(1, 1, 1).

We call such number the Wolfram number of f , after the notation introduced
by Stephen Wolfram in [28], which is now widely used. Further, respecting his
terminology, we will refer to each ECA as rule k where k is the corresponding
Wolfram number of the ECA’s local rule.

2.1.1 Wolfram’s Classification
When observing the space-time diagrams of CAs, we notice that even simple
automata can produce intriguing patterns. A very extensive study of cellular
automata based on their visualizations was done by Stephen Wolfram in [28].

Therein, he established an intuitive, yet informal classification of CA dynam-
ics based on the space-time diagrams. He distinguishes the following classes of
behavior.

11

Class 1 . . . space-time diagrams quickly resolve to a simple configuration
repeated at every time step

Class 2 . . . after a short time, there are only a few configurations repeating
periodically in the diagram

Class 3 . . . the diagrams look chaotic and no obvious pattern is formed
Class 4 . . . the diagrams produce some localized structures, which interact

with each other in complicated ways

The best way to understand the informal description is to observe examples
given in Figure 2.1.

0 10 20 30 40
0

5

10

15

20

25

30

35

40

0 10 20 30 40
0

5

10

15

20

25

30

35

40

0 50 100 150 200
0

50

100

150

200

0 50 100 150 200
0

50

100

150

200

Figure 2.1: Space-time diagrams of rules from each Wolfram’s class. Class 1 rule
32 is on the top left, Class 2 rule 108 on the top right. Both are simulated for 40
time steps on a grid of size 50. At the bottom row, we have Class 3 rule 30 on
the left and Class 4 rule 110 on the right. The two are simulated for 200 steps
on a grid of size 250.

Classes 1 and 2 are considered to have simple dynamics, whereas Classes 3
and 4 seem to have more intriguing properties. Class 3 is usually referred to as
chaotic and Class 4 as complex. There are, however, only four ECA rules that are
classified as complex. According to Wolfram, they are rules 110, 124, 137, and
193. They all have isomorphic phase-spaces. We will talk about the isomorphism
of phase-spaces in more detail in Section 2.2.1. The argument, which supports
Wolfram’s claim that such rules are complex, is that they have been proven to
be Turing complete [3]. The iconic examples of chaotic rules are rules 30 and 45.

12

Though informal, Wolfram’s classification is widely referred to in the litera-
ture. The main issue is that we have no formal method to classify CAs in this
way. Moreover, the behavior of some CAs can vary with different initial config-
urations. We have examples of this scenario even in the simple ECA class where
e.g. rule 126 exhibits class 2 behavior when simulated from a particular set of
initial conditions, and otherwise shows Class 3 behavior. This is illustrated in
Figure 2.2. In fact, there is no exhaustive list of ECAs and their corresponding
classes to be found. Wolfram rather presents only examples of rules from each
class. The Transient classification we present in this chapter deals with such
issues.

0 20 40 60 80
0

10

20

30

40

50

60

70

80

0 20 40 60 80
0

10

20

30

40

50

60

70

80

Figure 2.2: On the left, rule 126 is simulated on an initial condition consisting of
a single 1 bit padded with 0’s. On the right, the same rule is simulated with a
random initial configuration.

2.1.2 Zenil’s Classification
In [31], Hector Zenil presents an intuitive approach aiming to formalize Wolfram’s
observations of space-time diagrams. Let (2n, F) be an ECA, u ∈ 2n an initial
configuration, and T ∈ N+ a time threshold. Zenil generates the space-time
diagram of u simulated for T time-steps and uses a compression algorithm in
order to measure the size of the compressed diagram. Intuitively, Class 1 and 2
automata produce repetitive patterns in their space-time diagrams, and therefore,
the compressed size of such diagrams is relatively small. For chaotic automata,
the compressed size of their space-time diagrams should be large.

Concretely, Zenil puts T = 200, n = 401, and chooses the initial configuration
u to have u201 = 1 and ui = 0 for all the other positions. He chooses the
compression algorithm to be Mathematica’s function Compress from the zlib
package. After obtaining the data for every ECA, Zenil uses a clustering technique
to obtain two classes. In Figure 2.3, we show our reproduction of Zenil’s results
using Python.

When comparing this classification to Wolfram’s, we get that the dominating
”yellow” cluster corresponds to classes 1 and 2. The ”purple” cluster with larger
compression size roughly corresponds to Wolfram’s classes 3 and 4.

We conducted multiple experiments presented in Figure 2.4, which show that
Zenil’s results are very sensitive to the choice of many parameters. We dare

13

0 50 100 150 200 250
ECA rule

0

2000

4000

6000

8000

10000

co
m

pr
es

se
d

siz
e

in
 b

yt
es

Figure 2.3: Reproduction of Zenil’s results described in [31]. The two colors
distinguish two CA classes obtained by a clustering technique KMeans in Python.
We note that the sizes of the compressed diagrams do not match Zenil’s results
exactly. This is because we have used a slightly different compression algorithm
- Python’s gzip. However, the results are qualitatively the same, and the clusters
we have obtained are identical to Zenil’s.

say that Zenil chose the parameter values precisely to obtain a good match to
Wolfram’s classification. In vast CA spaces, where it is not feasible to examine
every CA and mark it into one of Wolfram’s classes by hand, it would not be
clear how the parameter values should be chosen.

The method depends on the time threshold T , the choice of the initial condi-
tion, the compression algorithm, as well as the data representation. To illustrate
the sensitivity of the results, we show two graphs in Figure 2.4 with different
choices of the parameters.

0 50 100 150 200 250
ECA rule

0

2000

4000

6000

8000

10000

12000

14000

16000

co
m

pr
es

se
d

siz
e

in
 b

yt
es

0 50 100 150 200 250
ECA rule

0

2500

5000

7500

10000

12500

15000

17500

co
m

pr
es

se
d

siz
e

in
 b

yt
es

Figure 2.4: Graphs representing the results of Zenil’s method when different
parameter values were used. They demonstrate how sensitive the results are. On
the left, the ECAs were simulated for 400 rather than 200 time steps. This causes
rules 110, 124, 137, and 193 to no longer belong to the ”purple” cluster. Therefore,
such rules would not be marked as ”interesting” by this method. On the right,
the ECAs were simulated from a fixed, randomly chosen initial condition. In such
case, we obtain entirely different clusters.

14

2.2 Global Dynamics of Cellular Automata
One of the issues of Wolfram’s and Zenil’s classifications is that they examine local
dynamics of CAs - the classifications are dependent on the choice of an initial
configuration. As there are different means of choosing the initial configuration,
this adds arbitrariness to the method. In this section, we introduce the properties
of cellular automata related to their global dynamics.

Let us consider a d-dimensional finite cyclic cellular grid G = Zm1 × . . .×Zmd
,

where each mi ∈ N+. Let (SG, F) be a CA operating on such a grid, let u ∈ SG

and let (F 0(u) = u, F (u), F 2(u), F 3(u), . . .) be the trajectory of u.
As the set of all grid configurations SG is finite, the trajectory eventually

becomes periodic. More precisely, there exist i, j ∈ N, i < j, such that F i(u) =
F j(u). Let i ∈ N be the smallest positive integer, for which there exist j ∈ N,
j > i, such that F i(u) = F j(u). We call the sequence

(F 0(u) = u, F (u), F 2(u), . . . , F i(u))

the transient of u. We denote its length by tu, i.e. tu = i. Let j ∈ N be smallest
such that F i(u) = F j(u). We call the sequence

(F i(u), F i+1(u), F i+2(u), . . . , F j−1(u))

the attractor of u and denote its length as au, au = j − i. We define the rho value
of u as ρu = tu + au.

The phase-space of the CA (SG, F) is an oriented graph with vertices V = SG

and edges E = {(u, F (u)), u ∈ SG}. Such a graph is composed of components,
each containing one attractor and multiple transients ”leading” to the attractor.
The phase-space completely characterizes the dynamics of the system. It is,
however, infeasible to describe it for large n.

2.2.1 Equivalent Cellular Automata
Clearly, any two CAs with isomorphic phase-spaces have identical dynamics. We
can use this fact to reduce the size of ECAs we examine. This will save us space
and time when giving an exhaustive comparison of the results of the Transient
classification for every ECA.

Let A denote the set of all local rules of elementary cellular automata. We
have |A| = 256. We define mappings π : A → A and σ : A → A as follows:

π(f)(a, b, c) = f(c, a, b) ∀a, b, c ∈ {0, 1}
σ(f)(a, b, c) = 1 − f(1 − a, 1 − b, 1 − c) ∀a, b, c ∈ {0, 1}.

Therefore, rule π(f) is obtained from f by switching the role of the ”left and
right neighbor”. Similarly, rule σ(f) is obtained from f by switching the role of
states 0 and 1.

We define a relation ∼ ⊆ A × A so that f ∼ g if at least one of the following
conditions holds:

f = g, f = π(g), f = σ(g), f = σ(π(g)).

15

Figure 2.5: An intriguing phase-space visualization of ECA rule 110 operating on
a cyclic grid of size 12. Only a part of the phase-space is shown. The direction of
the edges is not depicted. Naturally, all edges point towards the ”center cycle”
in each component. The edges within each cycle are directed ”clockwise”. The
software used to produce such illustrations is described in [29].

It can be easily verified that ∼ is an equivalence relation and that there are
88 equivalence classes of ECAs. Let n ∈ N+. We further define two mappings:

Πn : 2n → 2n, Π(u)i = un−i

Σn : 2n → 2n, Σ(u)i = 1 − ui.

Clearly, both mappings Πn, Σn are bijective for every n ∈ N+. Moreover, let
(2n, F) and (2n, G) be two ECA with local functions f and g, for which it holds
that f = π(g). Then,

G(u) = Π−1
n F (Πn(u)),

which gives us that Πn is an isomorphism of the phase-spaces of the ECAs. By
analogous arguments for the case when f = σ(g) and f = σ(π(g)), we obtain the
following observation.

Observation 3. Let (2n, F) be an ECA with local rule f and (2n, G) an ECA
with local rule g. If f ∼ g then the two ECAs have isomorphic phase-spaces.

From now on, we will only consider the 88 ECA classes with unique dynamics.
We choose the rule with the smallest Wolfram number from each equivalence class
to represent it.

2.2.2 Z-parameter
In this subsection, we introduce a different method of classifying CA dynamics.
We describe the Z-parameter — a simple parameter related to CAs’ backward dy-
namics introduced by Andrew Wuensche [30]. One of the phase-space properties
Wuensche has examined is the maximum preimaging of CAs defined below.

16

Definition 4. Let A be a finite set and n ∈ N. Let (An, F) be a cellular automa-
ton operating on a finite cyclic grid of size n. We define the maximum preimaging
of such automaton to be the number

mpn = max
u∈An

{|F −1(u)|}.

We say that (An, F) is reversible, if mpn = 1. That is, if F is injective.

As the maximum preimaging is usually infeasible to compute for automata
operating on large grids, Wuensche introduces the Z-parameter, which loosely
relates to the maximum preimaging parameter, and is very simple to compute.
The main purpose of this subsection is to describe the Z-parameter as a different
approach to classifying cellular automata.

Definition 5. Let f : 23 → 2 be a local rule of some ECA.
We say that ab ∈ 22 is left deterministic for f, if for every output u ∈ 2 there

exists a unique c ∈ 2 such that f(a, b, c) = u.
We say that a ∈ 2 is left deterministic for f if it holds that for every u ∈ 2

there exists a unique b ∈ 2 such that f(a, b, c) = u for every c ∈ 2.
At last, we say that ϵ is left deterministic for f if it holds that for every u there

exists a unique a ∈ 2 such that f(a, b, c) = u for every b, c ∈ 2.
Analogically, we define right deterministic words.

If f is a local rule of some ECA, for which ab ∈ 22 is left deterministic, then it
must hold that f(a, b, 0) = u and f(a, b, 1) = 1−u. Therefore, in case every word
of length two is left deterministic for f , we have that f is a balanced Boolean
function.

Similarly, if a ∈ 2 is left deterministic for f , then f(a, 0, c) = u and f(a, 1, c) =
1 − u for every c ∈ 2. Hence, if both 0 and 1 are left deterministic for f , it also
implies that f is balanced.

Definition 6. Let (An, F), resp (AZ, F), be a one-dimensional cellular automaton
with local rule f . Let u ∈ An, resp u ∈ AZ. We say that v ∈ A∗ is a partial
preimage of u if ˜︁f(v) ⊑ u.

Below, we illustrate the meaning of left deterministic words. Let f be a local
rule of an ECA operating on an infinite grid. Suppose we have a configuration
u ∈ AZ, for which we want to construct a preimage. Further, suppose we have
already constructed a partial preimage v = v0v1 . . . vk. Suppose we would like to
search for all partial images of u created by appending one letter to v, that is,
obtain v′ = v0v1 . . . vkvk+1, so that v′ is still a partial preimage of u. Then:

• In case vk−1vk is left deterministic for f , vk+1 can be uniquely determined
by vk−1, vk, and uk.

vk−1 vk ?

uk−1 uk uk+1

17

• In case vk is left deterministic for f , vk+1 can be uniquely determined by
vk and uk+1.

vk−1 vk ?

uk−1 uk uk+1

• In case ϵ is left deterministic for f , vk+1 can be uniquely determined by
uk+2.

vk−1 vk ? ?

uk−1 uk uk+1 uk+2

We can notice that if ϵ is left deterministic for f : 23 → 2, then there exists
u ∈ 2 such that f(0, b, c) = u and f(1, b, c) = 1 − u for all b, c ∈ 2. Therefore,
the values of f do not depend on the second and third input coordinates. This
implies that there are no left deterministic words for f other than ϵ.

Moreover, in such a case, the corresponding ECA operating on a cyclic tape
is reversible, as every configuration has exactly one preimage.

Definition 7. Let f : 23 → 2 be a local rule of some ECA. We define the
probability ”that each partial preimage can be prolonged uniquely to the right given
two symbols” as the number

pl
2 = 1

4 |{ab ∈ 22, ab is left deterministic for f}|.

We define the probability ”that each partial preimage can be prolonged uniquely to
the right given one symbol” as the number

pl
1 = 1

2 |{a ∈ 2, a is left deterministic for f}|.

Finally, we define

pl
0 =

⎧⎨⎩1 if ϵ is left deterministic for f

0 otherwise.

We define Zl = pl
2 + (1 − pl

2)pl
1 + pl

0. Analogously, we define Zr. The Z-parameter
for local rule f is defined as Z = max{Zl, Zr}.

Clearly, 0 ≤ pl
i ≤ 1 for every i ∈ {0, 1, 2}. Moreover, if pl

0 = 0 then 0 ≤ Zl =
pl

2 + (1 − pl
2)pl

1 ≤ pl
2 + 1 − pl

2 = 1. The other case when pl
0 = 1 implies that there

are no non-empty left deterministic words for f and pl
1 = 0, pl

2 = 0. Therefore,
Zl = 1. We get that 0 ≤ Zl ≤ 1 and analogically, it holds that 0 ≤ Zr ≤ 1 and
therefore, we also get that 0 ≤ Z ≤ 1.
Example. We will compute the Z-parameter of rule 110. The left and right Z-
parameters can be easily computed from the table of the local rule.

18

u 111 110 101 100 011 010 001 000
f(u) 0 1 1 0 1 1 1 0

Computing Zl:

pl
2 = 1

4 |{11, 10, 00}| = 3
4

pl
1 = 1

2 |∅| = 0

pl
0 = 0

Zl = 3
4 + 0 + 0 = 0.75

Computing Zr:

pr
2 = 1

4 |{11}| = 1
4

pr
1 = 1

2 |{0}| = 1
2

pr
1 = 0

Zr = 1
4 + 3

4 · 1
2 + 0 = 0.625

Hence, Z = max{0.75, 0.625} = 0.75.
In fact, the Z-parameter is closely related to the algorithm Wuensche uses

to compute CAs’ phase-spaces. The algorithm first generates an attractor cy-
cle by observing the trajectory of a chosen configuration. Then, it computes all
preimages of all attractor configurations and iterates this process of preimage gen-
eration until the whole component is obtained. We describe a simplified version
of the preimage generation process below.

The computation of a preimage of a configuration u ∈ 2n, u = u0u1 . . . un−1,
under a CA (2n, F) with local rule f can be described by the following pseu-
docode.

1. initialize the queue of ”possible preimages” by ˜︁f−1(u0)

2. repeat until the queue of possible preimages is empty:

• take a partial preimage p from the queue of possible preimages
• prolong p by all possible symbols x ∈ 2 so that px is still a partial

preimage of u

• if |px| = n, check whether F (px) = u, either discard px or save it as a
valid preimage of u

• if |px| < n, return px to the queue of partial preimages

3. return the set of valid preimages

Below, we describe the relationship between the maximum preimaging and
Z-parameter. Lemma 8 describes the case when Z = 1.

Lemma 8. Assume we have an ECA with local rule f such that Z = 1. Then,
mpn ≤ 4 for any n ∈ N.

Proof. Without loss of generality we will suppose that Zl = 1.
In case when pl

0 = 1, we have that ϵ is left deterministic for f . In such case it
is clear that every configuration has exactly one preimage and mpn = 1 for every
n ∈ N.

In case when pl
0 = 0 we have that 1 = ZL = pl

2 + (1 − pl
2)pl

1. This implies that
either pl

1 = 1, or pl
2 = 1. That is, either every word of length 1 is left deterministic,

or every word of length 2 is left deterministic. Both such scenarios imply that f is

19

balanced. Hence, | ˜︁f−1(a)| = 4 for any a ∈ 2. Moreover, either case implies that
every partial preimage of every configuration can be uniquely prolonged by one
symbol on the right. Following the above algorithm for computing all possible
preimages of a given configuration, we see that we obtain only 4 ”candidate”
preimages of a suitable length. After checking whether such candidates are indeed
preimages of the given configuration, we get that any configuration has at most
4 preimages and mpn ≤ 4 for every n ∈ N.

Lemma 9 describes the case when Z = 0.

Lemma 9. An ECA with local rule f has Z = 0 if and only of mpn = 2n for
every n ∈ N+.

Proof. Let Fn denote the global function of the ECA operating on a cyclic grid
of size n. Then mpn = 2n for some n ∈ N+ if and only if Fn is constant. And
further, Fn is constant for all n ∈ N+ if and only if f is constant.

It clearly holds that if f is constant there are no left or right deterministic
words for f and Z = 0. It remains to prove the converse.

If Z = 0, there are no left or right deterministic words of either length 0, 1,
or 2. The non-existence of left deterministic words of length two implies that
f(a, b, 0) = f(a, b, 1) for all a, b ∈ 2. The non-existence of the right ones implies
that f(0, b, c) = f(1, b, c) for all b, c ∈ 2. Therefore, f(a, b, c) is only dependent
on its second coordinate b, i. e. there exists a function g : 2 → 2 such that
f(a, b, c) = g(b) for all a, b, c ∈ 2. As there is no left deterministic word of length
one for f , it holds that for all a ∈ 2 there exists c ∈ 2 such that f(a, 0, c) =
f(a, 1, c). Therefore it holds that g is constant, and consequently, that f is
constant as well.

In this sense, we have some correspondence between the Z-parameter and
maximum preimaging. Intuitively, having mpn = 2n for all n implies that all
transients of all configurations have length at most 1, such ECAs belong to Wol-
fram’s Class 1 and are rather uninteresting. On the other hand, ECAs with Z = 1
can possibly have long attractors or transients. In fact, some typical Wolfram
Class 3 automata such as rule 30 or rule 45 have Z = 1. However, most ECAs
have 0 < Z < 1. From broader experiments, including the examination of 1D
CAs with a neighborhood of size 5, Wuensche suggests that complex behavior
typically occurs at Z ≈ 0.75.

So far, we have given a non-exhaustive overview of different approaches of clas-
sifying CA dynamics. In the subsequent section, we present a novel classification
method.

2.3 Transient Classification

2.3.1 Basic Concepts and Motivation
The key concept of our classification is that we consider a CA operating on a
cyclic grid of increasing size and measure the asymptotic growth of its average
transient length. In this subsection, we motivate this experiment.

For a given CA and a grid of size n, we randomly sample initial configurations
u ∈ {0, 1}n and estimate the average transient length µn = 1

2n

∑︁
u∈{0,1}n tu by

20

a value ˆ︁µn. With the help of computer simulations, we obtain a sequence of
estimations ˆ︁µ1, ˆ︁µ2, . . . , ˆ︁µk where k is as large as possible given computational
resources that we have. Using linear regression, we find a function that best
fits our data - we examine the fit to a constant, logarithmic, linear, polynomial,
and exponential functions. The result could be interpreted as finding the fittest
”asymptotic growth of the average transient length”.

In non-classical models of computation [24] the process of traversing CA’s
transients can be perceived as the process of self-organization, in which informa-
tion can be aggregated in an irreversible manner. The attractors are then viewed
as memory storage units, from which the information about the output can be
extracted. This is explored in [7]. The average transient growth then corresponds
to the average computation time of the CA. CAs with bounded transient lengths
can only perform trivial computation. On the other hand, CAs with exponential
transient growth can be interpreted as inefficient computation models.

In the context of artificial evolution, we can view the local rule of a CA as
the physical rule of the system, whereas the initial configuration as the particular
”setting of the universe”, which is then subject to evolution. If we are interested in
finding CAs capable of complex behavior automatically, it would be beneficial for
us if such behavior occurred on average, rather than having to select the initial
configurations carefully from some narrow region. The probability of finding
such special initial configurations would be extremely low as the overall number
of configurations grows exponentially with increasing grid size. This motivates
our study of the growth of average transient lengths rather than the maximum
transient lengths.

We note that transients of CAs have been examined before as in [30], [22].
However, we are not aware of an attempt to compare the ”asymptotic growth” of
transients for different CAs. We present the classification method in more detail
using the simple class of ECAs. Subsequently, we show how the method can be
used in more general CA spaces.

2.3.2 Data Sampling and Regression Fits
Suppose we have an ECA operating on a large grid of size n. In such case,
computing the average transient length µn is infeasible. Therefore, we randomly
sample initial configurations u1, u2, . . . , um and estimate µn by 1

m

∑︁m
i=1 tui

. It
remains to estimate the number of samples m so that the error | 1

m

∑︁m
i=1 tui

− µn|
is reasonably small.

More formally, we fix n ∈ N and let (Cn, Un) be a discrete probability space
where Cn = {0, 1}n is the set of all n-bit configurations and Un is a uniform
distribution. Let X : Cn → N be a random variable, which sends each u to
its transient length tu. This gives rise to a probability distribution of transient
lengths on N with mean E(X) and variance var(X). We can notice that

21

E(X) =
∞∑︂

i=0
Un{u ∈ Cu|X(u) = i} · i

=
∞∑︂

i=0

∑︂
u∈Cn, X(u)=i

1
2n

· i

=
∑︂

u∈Cn

1
2n

X(u)

= µn.

Our goal is to obtain a good estimate of E(X) by the Monte Carlo method
([19]).

Let (X1, X2, . . . , Xm) be a random sample of independent, identically dis-
tributed random variables, Xi

d= X for all i. Let µ(m)
n = 1

m

∑︁m
i=1 Xi be the sample

mean and σ(m)
n =

√︃
1

m−1
∑︁m

i=1(Xi − µ
(m)
n)2 the sample standard deviation. As

var(X) < ∞, we have by the Central limit theorem that the distribution of√
mµ(m)

n converges to a normal distribution when m → ∞. Moreover, the inter-
val (︃

µ(m)
n − u1− α

2

σ(m)
n√
m

, µ(m)
n + u1− α

2

σ(m)
n√
m

)︃
where uβ is the β quantile of the normalized normal distribution, covers µn for m
large with probability approximately 1 − α. We will take α = 0.05. Hence, with
probability approximately 95%

|µn − µ(m)
n | < u0.975

σ(m)
n√
m

.

From the nature of our data, both the values E(x) = µn and var(X) tend
to grow with increasing grid size. Therefore, to employ a general method of
estimating the number of samples, we consider the relative error |µn−µ

(m)
n |

µn
. We

obtain that with probability around 95%

|µn − µ(m)
n |

µn

< u0.975
σ(m)

n√
mµn

.

We approximate the value of µn by µ(m)
n and finally obtain the following criterion.

For m sufficiently large such that

u0.975
σ(m)

n√
mµ

(m)
n

< ϵ (2.1)

we have that µ(m)
n differs from µn by at most ϵ · 100% with probability approxi-

mately 95%.
In practice, we put ϵ = 0.1 and produce the observations in batches of size

20 until condition (2.1) is met. For each ECA we obtain a dataset of the form
(ˆ︁µn)nmax

n=nmin
where ˆ︁µn is the estimate of the average transient length on the grid of

size n. In case of ECAs, we put nmin = 4 and keep generating data until a time
bound is reached.

22

Subsequently, we perform regression fits to constant, logarithmic, linear, poly-
nomial, and exponential functions. We measure the fitness by the R2 score and
pick the fit with the highest R2 value. Below we describe the pseudocode of the
algorithm, which provides a clear method for the ECA classification.

1. time bound := Tmax

2. for n = 4, 5, 6, 7, . . . do:

(a) error = 1, samples = empty array

(b) while error > 0.1:
• generate transient lengths of 20 randomly chosen initial configura-

tions on a grid of size n and append them to the array of samples

• if the process of generating the transient length of a single config-
uration takes more than Tmax, exit and go to 3

• update the error of the samples
(c) compute ˆ︁µn

3. we have obtained average transient estimates (ˆ︁µ4, ˆ︁µ5, . . . , ˆ︁µN) for increas-
ing grid size; we perform linear regression to const, log, lin, poly and exp
functions and mark the R2 score of each fit

4. if the maximum of the marked R2 scores is greater than 0.9, classify the
CA to the corresponding class; else, mark the CA as unclassified

2.3.3 Transient Classifiation of ECAs
For most ECAs we were able to generate data for grids as large as 400. We found
a good fit with R2 > 90% for most ECAs and obtained four major classes named
Bounded, Log, Lin, and Exp Class. The exception are rules in classes Affine and
Fractal, which were not fitted to any functions due to their specific form. Below,
we give a more detailed description of each class.

Bounded Class: 27/88 rules (30.68%). The average transient lengths were
bounded by a constant independent of the grid size. This suggests that the long
term dynamics of such automata can be predicted efficiently.

0 5 10 15 20 25
0

5

10

15

20

25

30
50 100 150 200

grid size

1.75

1.80

1.85

1.90

1.95

2.00

av
er

ag
e

tra
ns

ie
nt

 le
ng

th

Rule 36

Figure 2.6: Bounded Class rule 36. The average transient plot is on the left, the
space-time diagram on the right.

23

Log Class: 39/88 rules (44.32%). The largest ECA class exhibits possible
logarithmic average transient growth. The event of two cells at a large distance
”communicating” is improbable for this class.

0 5 10 15 20 25
0

5

10

15

20

25

30
50 100 150 200

grid size

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

av
er

ag
e

tra
ns

ie
nt

 le
ng

th

Rule 28

Figure 2.7: Log Class rule 28. The average transient plot is on the left, the
space-time diagram on the right.

Lin Class: 8/88 rules (9.09%). On average, information can be aggregated
from cells at an arbitrary distance. This class contains automata whose space-
time diagrams resemble some sort of computation. This is supported by the fact
that it contains two rules known to have a non-trivial computational capacity:
rule 184, which computes the majority of black and white cells, and rule 110,
which is the only ECA proven to be Turing complete.

0 20 40 60 80
0

20

40

60

80

100
50 100 150 200

grid size

50

100

150

200

av
er

ag
e

tra
ns

ie
nt

 le
ng

th

Rule 62

Figure 2.8: Lin Class rule 62. The average transient plot is on the left, the
space-time diagram on the right.

We note that rules in this class are not necessarily complex as the interesting
behavior seems to correlate with the slope of the linear growth. Most of the
Class Lin rules have only a very gradual incline. In fact, the only two rules with
such a slope greater than 1, rules 110 and 62, seem to be the ones with the most
interesting space-time diagrams.

We are aware of the issue that average transients of rules in Lin Class might
turn out to grow logarithmically or exponentially given enough data samples.
This could explain that the behavior of ECAs in Lin Class depends on the slope
of the transient growth. However, obtaining enough data points to distinguish
the asymptotic growth might not be computationally feasible. Therefore, the
class could be interpreted as consisting of rules, which might have a logarithmic
or exponential growth, but this could not be decided given only a limited amount

24

of data points. However, given such limited data, the best fit for such rules seems
to be to a linear function.

Exp Class: 6/88 rules (6.82%). This class has a striking correspondence to
automata with chaotic behavior. Visually, there seem to be no persistent patterns
in the configurations. Not only the transients, but also the attractor lengths are
significantly larger than for other rules. This class contains rules 45, 30, and 106
whose transients grow the fastest, as well as rules 54, 73, and 22. We note that
the average transient length of rule 45 seems to grow exponentially only for grids
of even size. For grids of an odd size, rule 45 seems to be reversible. We will
prove the reversibility of rule 45 operating on grids of odd size in the subsequent
chapter.

0 20 40 60 80
0

20

40

60

80

100
5 10 15 20 25 30

grid size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

av
er

ag
e

tra
ns

ie
nt

 le
ng

th

1e6 Rule 45

Figure 2.9: Exp Class rule 45. The average transient plot is on the left, the
space-time diagram on the right.

Affine Class: 4/88 rules (4.55%). This class contains rules 60, 90, 105, and
150 whose local rules are affine Boolean functions. Such automata can be studied
algebraically and predicted efficiently. It was shown in [13] that the transient
lengths of rule 90 depend on the largest power of 2 that divides the grid size.
Therefore, the measured data did not fit any of the functions above but formed
a rather specific pattern.

0 20 40 60 80
0

20

40

60

80

100
20 25 30 35 40 45

grid size

0.0

2.5

5.0

7.5

10.0

12.5

15.0

av
er

ag
e

tra
ns

ie
nt

 le
ng

th

Rule 90

Figure 2.10: Affine Class rule 90. The average transient plot is on the left, the
space-time diagram on the right.

Fractal Class: 4/88 rules (4.55%). This class contains rules 18, 122, 126, and
146, which are sensitive to initial conditions. Their evolution either produces a

25

fractal structure resembling a Sierpinski triangle or a space-time diagram with no
apparent structure. We could say such rules oscillate between easily predictable
behavior and chaotic behavior. Their average transients and periods grow quite
fast, which makes it difficult to gather data for larger grid sizes.

20 30 40 50 60 70
grid size

0

100

200

300

400

500

av
er

ag
e

tra
ns

ie
nt

 le
ng

th

Rule 126 0 20 40 60 80
0

20

40

60

80

100

Figure 2.11: Fractal Class rule 126. The average transient plot is on the left, the
space-time diagram on the right.

2.3.4 Discussion
We have performed a simple linear regression minimizing the mean square error.
One of the assumptions, which is used when proving that such method guarantees
to find the best fit, is homoscedasticity of the data. In our case, when observing
the plots of the average transient estimations, we could notice that for some ECAs
the data seems to have an increasing variance with increasing grid size (e.g. rules
62 or 126). In such a case, we are not guaranteed to have found functions with
the best fit. However, as we only use a simple linear regression method, this is in
practice not considered to be a significant problem. Observing the data manually,
it would be difficult to imagine better fits for the data than the ones found by
the regression method.

We note that we have also tried to measure the asymptotic growth of the
average attractor size 1

2n

∑︁
u∈{0,1}n au, as well as the average of the rho value

1
2n

∑︁
u∈{0,1}n ρu. However, we obtained data points that could not be fitted to

simple functions well. This is due to the fact that many automata have attractors
consisting of a configuration, which is shifted by one bit to the left, resp. right,
at every time step. The size of such an attractor then depends on the greatest
common divisor of the size of the period of the attractor and the grid size. This
causes oscillations of the measured data. We conclude that such phase-space
properties are not suitable for this classification method.

Below, we compare our results to other classifications described earlier. Ex-
haustive comparison for each ECA is presented in Figure 2.12.

Wolfram’s Classification - Discussion The significance of our results stems
precisely from the fact that the Transient Classification corresponds to Wolfram’s
so well. As it is not clear for many rules, which Wolfram class they belong to,
the main advantage is that we provide a formal criterion, upon which this could
be decided.

In particular, rules in Classes Bounded and Log correspond to rules in either
Class 1 or 2. Class Exp corresponds to the chaotic Class 3 and Class Lin contains

26

Classification Comparison
ECA Transient Wolf. Zenil Wuen.
0 bounded 1 1 or 2 0
1 bounded 2 1 or 2 0.25
2 bounded 2 1 or 2 0.25
3 bounded 2 1 or 2 0.25
4 bounded 2 1 or 2 0.25
5 bounded 2 1 or 2 0.5
6 log 2 1 or 2 0.5
7 log 2 1 or 2 0.75
8 bounded 1 1 or 2 0.25
9 lin 2 1 or 2 0.5
10 bounded 2 1 or 2 0.5
11 log 2 1 or 2 0.75
12 bounded 2 1 or 2 0.5
13 log 2 1 or 2 0.75
14 lin 2 1 or 2 0.75
15 bounded 2 1 or 2 1
18 fractal 2/3 1 or 2 0.5
19 bounded 2 1 or 2 0.625
22 exp 2/3 1 or 2 0.75
23 log 2 1 or 2 0.5
24 bounded 2 1 or 2 0.5
25 lin 2 1 or 2 0.75
26 log 2 1 or 2 0.75
27 log 2 1 or 2 0.75
28 log 2 1 or 2 0.75
29 bounded 2 1 or 2 0.5
30 exp 3 3 1
32 log 1 1 or 2 0.25
33 log 2 1 or 2 0.5
34 bounded 2 1 or 2 0.5
35 log 2 1 or 2 0.625
36 bounded 2 1 or 2 0.5
37 log 2 1 or 2 0.75
38 bounded 2 1 or 2 0.75
40 log 1 1 or 2 0.5
41 log 2 1 or 2 0.75
42 bounded 2 1 or 2 0.75
43 lin 2 1 or 2 0.5
44 log 2 1 or 2 0.75
45 exp 3 3 1
46 bounded 2 1 or 2 0.5
50 log 2 1 or 2 0.625
51 bounded 2 1 or 2 1
54 exp 2/4 1 or 2 0.75

Classification Comparison
ECA Transient Wolf. Zenil Wuen.
56 log 2 1 or 2 0.75
57 lin 2 1 or 2 0.75
58 log 2 1 or 2 0.75
60 affine 2 1 or 2 1
62 lin 2 1 or 2 0.75
72 bounded 1 1 or 2 0.5
73 exp 3/4 3 0.75
74 log 2 1 or 2 0.75
76 bounded 2 1 or 2 0.625
77 log 2 1 or 2 0.5
78 log 2 1 or 2 0.75
90 affine 2 1 or 2 1
94 log 2 1 or 2 0.75
104 log 1 1 or 2 0.75
105 affine 2 1 or 2 1
106 exp 3 1 or 2 1
108 bounded 1 1 or 2 0.75
110 lin 4 4 0.75
122 fractal 2/3 1 or 2 0.75
126 fractal 2/3 1 or 2 0.5
128 log 1 1 or 2 0.25
130 log 2 1 or 2 0.5
132 log 2 1 or 2 0.5
134 log 2 1 or 2 0.75
136 log 1 1 or 2 0.5
138 bounded 2 1 or 2 0.75
140 log 2 1 or 2 0.625
142 lin 2 1 or 2 0.5
146 fractal 2/3 1 or 2 0.75
150 affine 2 1 or 2 1
152 log 2 1 or 2 0.75
154 bounded 2/3 1 or 2 1
156 log 2 1 or 2 0.75
160 log 1 1 or 2 0.5
162 log 2 1 or 2 0.75
164 log 2 1 or 2 0.75
168 log 1 1 or 2 0.75
170 bounded 2 1 or 2 1
172 log 2 1 or 2 0.75
178 log 2 1 or 2 0.5
184 lin 2 1 or 2 0.5
200 bounded 1 1 or 2 0.625
204 bounded 2 1 or 2 1
232 log 1 1 or 2 0.5

Figure 2.12: Comparing classifications of the 88 unique ECAs.

Class 4 together with some Class 2 rules. We mention an interesting discrepancy:
rule 54, which is possibly considered by Wolfram to be Turing complete, belongs
to the Class Exp. This might suggest that computations performed by this rule
can be, on average, quite inefficient.

Zenil’s Classification - Discussion Zenil’s Classification of ECAs offers a
great formalization of Wolfram’s and seems to correspond to it roughly. The main
issue of this method is that the outcome of the classification is very sensitive to
the choice of many parameters. Compared to the Transient Classification, it is
less fine grained. In addition, it uses a clustering technique that requires data
of multiple automata to be mutually compared in order to give rise to different
classes. In contrast, the Transient Class can be determined for a single automaton
without any context. Lastly, most compression algorithms are meant to compress
one-dimensional or two-dimensional objects. Therefore, it is not straightforward
how to extend Zenil’s method to classify CAs from higher dimensional CA spaces.

27

The Transient Classification has no such issue and, in principle, can be extended
to an arbitrary space of CAs.

Wuensche’s Z-parameter - Discussion Wuensche suggests that complex
behavior occurs around Z = 0.75, which agrees with the fact that Lin Class rules
with a steep slope (rules 110, 62, and 25) have precisely this Z value. However, the
Z = 0.75 is in fact quite frequent. This suggests that thanks to its simplicity, the
Z parameter can be used to narrow down a vast space of CA rules when searching
for complexity. However, more refined methods have to be subsequently applied
to find concrete CAs with interesting behavior.

2.3.5 Transient Classification of 2D CAs
So far, we have examined the toy model of ECAs. The actual usefulness of the
classification would stem from its application to more general CA spaces where
it could be used to discover automata with interesting behavior. We, therefore,
applied it on a subset of two-dimensional CAs with Moore neighborhood and 3
states to see whether 2D automata would exhibit such evident transient growths.

When measuring the average transient length of 2D CAs, we only consider
the cyclic grids to be of the form Zn ×Zn, n ∈ N+. In contrast to the 1D case, we
measure the average transient growth with respect to n rather than the size of the
grid, which is n2. This is motivated by the fact that in a n × n grid, the greatest
distance between two cells depends linearly on n rather than quadratically.

To reduce the vast automaton space, we only considered such automata whose
local rules are invariant to all the symmetries of the neighborhood (rotations and
reflections of a 3 × 3 square). As there are still 32861 such symmetrical 2D CAs,
we randomly sampled 10 000 of them.

Classification of 2D 3-state CAs (10 000 samples)
Transient Class Percentage of CAs

Bounded Class 0%
Log Class 18.21%
Lin Class 1.17%
Poly Class 1.03%
Exp Class 72.62%
Unclassified 6.97%

Table 2.1: Classification of 10 000 randomly sampled symmetric 2D 3-state CAs.

We were able to classify 93.03% of 10 000 sampled automata with a time
bound of 40 seconds for the computation of one transient length value on a single
CPU. We estimate that most CAs are unclassified due to such computation time
restriction or due to rather strict conditions we imposed on a good regression fit.
We obtained the same significant classes, the Log, Lin, and Exp Class. However,
in this case, the Exp Class seems to dominate the rule space. Another interesting
difference is that a new class was observed — the polynomial class that contains
rules whose transients grow approximately quadratically. Moreover, our results
suggest that the occurrence of bounded class CAs in 2D is much scarcer as we
found no such CAs in our sample.

28

We observed the space-time diagrams of randomly sampled automata from
each class to infer its typical behavior. On average, the Log Class automata
quickly enter attractors of small size. Lin Class exhibit emergence of various
local structures. For automata with more gradual incline, such structures seem
to die out quite fast. However, automata with steeper slopes exhibit complex
interactions of such structures. The Poly class automata with a steep slope
seem to produce spatially separated regions of chaotic behavior against a static
background. In the case of more gradual slopes, some local structures emerge.
Finally, the Exp Class seems to be evolving chaotically with no apparent local
structures. We present various examples of CA evolution dynamics in the form
of GIF animations here1.

These observations suggest that the region of Lin Class with a steep slope
and Poly class with a more gradual incline seems to contain a non-trivial ratio
of automata with complex behavior. In this sense, the Transient Classification
can assist us to automatically search for complex automata similarly to [2] where
interesting automata were discovered by measuring the growth of structured com-
plexity using a data compression approach.

2.3.6 Transient Classification of Well Known CAs
We were interested whether some well-known complex automata from larger CA
spaces would conform to the transient classification as well. Surprisingly, the
result is positive.

Game of Life As the left plot in Figure 2.13 suggests, the famous cellular
automaton called Game of Life [5], which is proved to be Turing complete, seems
to fit the Lin Class. This is confirmed by the linear regression fit with R2 ≈ 98.4%.

0 20 40 60 80
0

20

40

60

80

20 40 60 80 100
grid size

0.0

0.5

1.0

1.5

2.0

av
er

ag
e

tra
ns

ie
nt

 le
ng

th

1e3 Game of Life

Figure 2.13: Game of Life. Average transient growth plot is on the left. On the
right, we show a diagram at time 200 started from a random initial configuration.

Genetically Evolved Majority CA In [16], it is studied how genetic algo-
rithms can evolve CAs capable of global coordination. The authors were able to
find a 1D CA denoted as ϕpar with two states and radius r = 3, which is quite
successful at computing the majority task with the output required to be of the
form of a homogenous state of either all 0’s or all 1’s.

1https://bit.ly/ca_animations

29

https://bit.ly/ca_animations

0 50 100 150
0

50

100

150

200
50 100 150 200

grid size

20

40

60

80

100

120

av
er

ag
e

tra
ns

ie
nt

 le
ng

th

CA par

Figure 2.14: Cellular automaton ϕpar. The average transient growth plot is on
the left. On the right, we show a space-time diagram simulated from a random
initial configuration.

This CA seems to belong to the Lin Class, which is confirmed by the linear
regression fit with R2 ≈ 99.2%.

Totalistic 1D 3-state CA A totalistic CA is any CA whose local rule depends
only on the number of cells in each state and not on their particular position.
Wolfram studied various CA classes, one of them being the totalistic 1D CAs
with radius r = 1 and 3 states S = {0, 1, 2}. Considering only totalistic CAs
significantly reduces the number of 1D CAs with radius 1 and 3 states and also
makes it possible to represent the local rules by a short description.

In [28], Wolfram presents a list of possibly complex CAs from this class. We
applied the Transient Classification to such CAs and learned that most of them
were classified as logarithmic. This agrees with our space-time diagram observa-
tions that the local structures in such CAs ”die out” quite quickly. Nonetheless,
some of the CAs were classified as linear. An example of such a CA is in Figure
2.15 where the linear regression fit has R2 ≈ 97.63%.

0 50 100 150 200 250
0

50

100

150

200

250

300
0 100 200 300 400

grid size

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

tra
ns

ie
nt

 le
ng

th

1e4 Totalistic CA code 1635

Figure 2.15: Totalistic cellular automaton with code 1635. The average transient
growth plot is on the left. On the right, we show a space-time diagram of the
evolution from a random initial configuration.

30

3. Preimages of Cellular
Automata
So far, we have studied the ”forward dynamics” of cellular automata. That is, we
have observed the trajectories of configurations obtained when time is progressing
forward. In this chapter, we explore another approach - we study the properties of
CAs’ phase-spaces related to the ”backward dynamics” of the system. More con-
cretely, we study CAs’ properties related to the number of preimages of different
configurations. An ultimate goal would be to relate the forward and backward
dynamics of CAs in order to develop a better understanding of the notion of
complexity within the model of cellular automata.

We have already described some work of Andrew Wuensche, who has examined
CAs’ backward dynamics. In this chapter, we describe a novel representation
of 1D CAs, which we call the Cayley graph of a CA, and we demonstrate its
usefulness by using it to obtain some new results about the phase-space properties
of a particular ECA. We note that all the methods described in this chapter
are applicable to any one-dimensional cellular automaton; however, for simpler
notation, we present them in the context of elementary cellular automata.

3.1 Preimage Relations of Cellular Automata
In this section, we define the preimage relations of CAs and describe how do
they relate to the number of preimages of CA configurations. This notion is
subsequently used to define the Cayley graphs of CAs.
Definition 10. For an ECA with local rule f we define two binary relations
Rf

0 , Rf
1 ⊆ 22 × 22 called the preimage relations as follows:

Rf
0 = {(ab, bc) | f(a, b, c) = 0}

Rf
1 = {(ab, bc) | f(a, b, c) = 1}.

If the local rule f is clear from the context, we omit the superscript in the notation
of the relations.

We illustrate the meaning of these relations in the case where the ECA op-
erates on an infinite grid. Let u ∈ 2Z be a configuration, for which we want to
construct a preimage. Suppose we have already constructed a partial preimage
v ∈ 2+, v = v0v1v2 . . . vk, and that we would like to append one letter to v,
that is, obtain v′ = v0v1 . . . vkvk+1, so that v′ would still be a partial preimage
of u. That is, we search for vk+1 ∈ 2 such that f(vk−1vkvk+1) = uk. Then, all
the possible symbols we could append to v are exactly symbols x ∈ 2 satisfying
(vk−1vk, vkx) ∈ Ruk

.
Below, we relate the properties of the preimage relations to the existence

of preimages of cellular automata configurations. For that, we introduce the
following notation.

Let B be an arbitrary set. We define the diagonal relation on B as diag(B) =
{(b, b) | b ∈ B}. For a binary relation R ⊆ B × B we define its fixed points as the
elements of the set R ∩ diag(B).

31

v0 v1 . . . vk−1 vk ?

u1 . . . uk−1 uk

˜︁f

Let R, S ⊆ B × B be binary relations on B. We define the composition of R
and S as a binary relation

R ◦ S = {(r, s) | there exists x ∈ B such that (r, x) ∈ R and (x, s) ∈ S}.

This way, the definition, unfortunately, does not correspond to the function com-
position but for our purposes, it is much easier to work with. Clearly, the com-
position operation is associative, and therefore, we can write the composition of
n ∈ N+ binary relations R0, R1, . . . , Rn−1 ⊆ B × B as R0 ◦ R1 ◦ . . . ◦ Rn−1. We
define the inverse relation of R as

R−1 = {(s, r) | (r, s) ∈ R}

and we define the domain of R as:

dom(R) = {r | there exists an s ∈ B such that (r, s) ∈ R} ⊆ B.

Suppose we have an ECA and its two preimage relations R0, R1 ⊆ 22 × 22.
Let u ∈ 2+, u = u0u1 . . . un−1 for some n ∈ N+. We define the relation

Ru := Ru0 ◦ Ru1 ◦ . . . ◦ Run−2 ◦ Run−1 .

Let (a, b) ∈ Ru. We call a sequence (w0 := a, w1, . . . , wn−1, wn := b) where each
wi ∈ 22 a witness for u and (a, b) if it satisfies that:

(wi, wi+1) ∈ Rui
for all i ∈ {0, 1, . . . , n − 1}.

Lemma 11. Let (2n, F) be an elementary cellular automaton operating on a finite
grid of size n ∈ N, and let R0, R1 be its preimage relations. Then, a configuration
u ∈ 2n, u = u0u1 . . . un−1, has a preimage under F if and only if the relation
Ru = Ru0 ◦ Ru1 ◦ . . . ◦ Run−1 has a fixed point. Moreover, we have a natural
bijection between the set of preimages of u and the set of witnesses for u and all
fixed points of Ru. The bijection is given by:

β : F −1(u) −→
⋃︂

(a,a) fixed point of Ru

{w ∈ (22)n+1 | w witness for u and (a, a)}

β(v0v1 . . . vn−2vn−1) = (vn−1v0, v0v1, . . . , vn−2vn−1, vn−1v0).

Proof. Let us fix a configuration u ∈ 2n for some n ∈ N+. Clearly, the mapping
β is injective. We show that it indeed maps each preimage of u to a witness for
u and some fixed point of Ru. Subsequently, we show that β is surjective.

Suppose v ∈ 2n is a preimage of u, v = v0v1 . . . vn−1.

v0 v1 v2 v3 . . . vn−3 vn−2 vn−1

u0 u1 u2 u3 . . . un−3 un−2 un−1

F

32

Then clearly:

(vn−1v0, v0v1) ∈ Ru0 ⇔ f(vn−1, v0, v1) = u0. (3.1)
(v0v1, v1v2) ∈ Ru1 ⇔ f(v0, v1, v2) = u1 (3.2)

... (3.3)
(vn−3vn−2, vn−2vn−1) ∈ Run−2 ⇔ f(vn−3, vn−2, vn−1) = un−2 (3.4)

(vn−2vn−1, vn−1v0) ∈ Run−1 ⇔ f(vn−2, vn−1, v0) = un−1. (3.5)

Therefore, we get that (vn−1v0, vn−1v0) ∈ Ru and indeed, the sequence
(vn−1v0, v0v1, . . . , vn−2vn−1, vn−1v0) is a witness for u and (vn−1v0, vn−1v0).
Conversely, suppose we have a witness for u and a fixed point (a, a) ∈ Ru given
by (w0 = a, w1, . . . , wn−1, wn = a). Then, there exist elements vi ∈ 2,
i ∈ {0, 1, . . . , n − 1} such that

w1 = v0v1

w2 = v1v2
...

wn−1 = vn−2vn−1

wn = vn−1v0 = w0.

From the equivalences (3.1) - (3.5), it is clear that v0v1 . . . vn−1 is a preimage of
u. Hence, β is a bijection.

Definition 12. Let (2n, F), resp. (2Z, F) be an elementary cellular automaton
operating on a cyclic grid of size n, resp. on an infinite grid. We say that a
configuration u ∈ 2n, resp. u ∈ 2Z is a garden of eden (GOE) configuration if u
has no preimage under F .

The primary goal of this chapter is to study how to characterize all the garden
of eden configurations of a given ECA as this question is by no means straight-
forward to answer. In the case of an ECA operating on a cyclic grid, the ECA’s
phase-space properties, including the number of GOE configurations, can vary
dramatically depending on the grid size.

So far, from Lemma 11, we have obtained that u ∈ 2+ is a GOE configuration
of a given ECA operating on a cyclic grid with local rule f if and only if Rf

u

contains no fixed points. Below, we present a preliminary for the characterization
of GOE configurations of ECAs operating on infinite grids.

Lemma 13. Let (2Z, F) be an elementary cellular automaton given by a local
rule f with preimage relations R0 and R1. Then, a configuration u ∈ 2+ has a
preimage under ˜︁f if and only if the relation Ru is nonempty. Moreover, we have
a bijection between preimages of u under ˜︁f and the set of witnesses for u and all
elements in the relation Ru.

Proof. Analogous to the proof of Lemma 11.

Definition 14. Let A be a finite alphabet, r ∈ N and f : A2r+1 → A a local rule
of a 1D cellular automaton. We call such words, which have no preimage under˜︁f , orphans of ˜︁f .

33

3.2 Cayley Graphs of Cellular Automata
We define a relational monoid on 2 as a monoid (P(2 × 2), ◦, 1) of all bi-
nary relations on 2 with ◦ being the composition operation of relations and
1 = {(00, 00), (01, 01), (10, 10), (11, 11)} being the neutral element with respect
to ◦.

Definition 15. Let f be a local rule of some ECA. We define the preimage monoid
of f

Mf = (M f , ◦, 1)

as a submonoid of the relational monoid on 2 generated by the preimage relations
Rf

0 , Rf
1 .

Although we define the preimage monoid only for ECAs, it can be defined for
any one-dimensional cellular automaton. Given a finite set A and a local rule
f : A2r+1 → A of some 1D CA, the size of the preimage monoid is bounded by
the number of binary relations on the set A2r × A2r, which is equal to 2|A|4r . In
the case of ECAs, the upper bound on the size of the monoid is 216.

Before we define the Cayley graph of an ECA, we define the notion of a
labeled directed graph to be a triplet G = (V, E, l), where V is the set of vertices,
E ⊆ V × V is the set of edges, and l : E → L is a mapping from the set of edges
to some finite set L of edge labels.

Let G = (V, E, l) be a labeled directed graph. We define a walk of length
n ∈ N+ in G to be a sequence w = (v0, e1, v1, e1, . . . , en, vn) where

• vi ∈ V for each i ∈ {0, 1, . . . , n},

• ei = (vi−1, vi) ∈ E for each i ∈ {1, 2, . . . , n}.

In such a case, we say that the walk w starts at the vertex v0 and terminates in
the vertex vn. Note that in a walk, both vertices and edges can be repeated. Let
v, w ∈ V . We say that w is a successor of v if there exists a walk in G starting
at v and terminating in w.

Definition 16. Let f be the local rule of some ECA. We define the Cayley graph
of the ECA as a labeled directed graph Cf = (V f , Ef , lf) where:

• V f = M f is the set of elements of the preimage monoid of f ,

• there is an edge (R, S) labeled by x ∈ {0, 1} if and only if R ◦ Rx = S.

Clearly, the Cayley graph of any ECA has at most 216 vertices. From each ver-
tex R ∈ V f there are exactly two edges pointing towards vertices corresponding
to R ◦ R0 and R ◦ R1, which are labeled by 0 and 1, respectively.

Let f be the local rule of some ECA. The key property of the Cayley graph
(V f , Ef , l) is that we have a correspondence between ECA configurations u ∈
2+ and walks in the Cayley graph starting at 1 and terminating at the vertex
Ru. More concretely, each configuration u ∈ 2n uniquely determines a walk
(v0 = 1, e1, v1, . . . , en, vn) such that l(vi, vi+1) = ui for all i ∈ {0, 1, . . . , n − 1}.
Moreover, the walk satisfies that vn = Ru. Therefore, given the Cayley graph of
some ECA together with a configuration u ∈ 2+, we can decide whether u has

34

a preimage on the cyclic grid by ”following the walk given by u in the Cayley
graph” and examining whether the terminal vertex of such a walk, Ru, has a fixed
point.

Just from the definition of a Cayley graph, we obtain a simple result about the
garden of eden configurations of ECAs, and by a straightforward generalization,
of any 1D CA.

Observation 17. Let Fn denote the global rule of an ECA operating on a cyclic
grid of size n. Then, the set of all its garden of eden configurations

L = {u ∈ 2+ | u is a garden of eden configuration for (2|u|, F|u|)}

forms a regular language.

Proof. We fix an ECA and denote its Cayley graph as C = (V, E, l) and the set
of all its GOE configurations as L.

The language L corresponds exactly to the walks starting at 1 and terminating
in any node corresponding to a relation without any fixed points. We define the
DFA accepting L in a straightforward way - we set its set of states to be V , the set
of input symbols to be 2, and the initial state to be 1. We define the transition
function δ : V × 2 → V as δ(v, a) = v ◦ Ra and the set of accepting states to
be F = {R ∈ V | R ∩ diag(2) = ∅}. The accepting language of such a DFA is
precisely L.

3.2.1 Matrix Representation of Cayley Graphs
In this section, we describe how the preimage relations can be represented as
matrices.

General Matrix Monoid
We present a new structure, the general matrix monoid, which gives us informa-
tion not only about the existence of a preimage of a configuration but also about
the number of such preimages. However, there are ECAs, for which the general
matrix monoid is infinite, which we demonstrate on an example.

First, we formally define a mapping T that transforms any number in its
binary representation to its decimal one.

T : 2+ −→ N

T (u0u1 . . . un−1un) =
n∑︂

i=0
2n−iui.

In particular, we have that T (00) = 0, T (01) = 1, T (10) = 2, and T (11) = 3.

Definition 18. Given a binary relation R ⊆ 2 × 2 we define its matrix represen-
tation to be a four by four binary matrix MR ∈ 24×4 where

(MR)(T (a),T (b)) =

⎧⎨⎩1, if (a, b) ∈ R

0, otherwise.

35

Definition 19. Let R0, R1 ⊆ 2 × 2 be the two preimage relations of some ECA.
We define the general matrix monoid, G = (G, ·, I), of the ECA as a monoid gen-
erated by matrices M0 := MR0 , M1 := MR1 ∈ N4×4 where the matrix multiplication
· is considered over the semiring N and I ∈ N4×4 is the identity matrix.

Given the general matrix monoid G = (G, ·, I) of some ECA, generated by
M0, M1 ∈ N4×4, we define Mu := Mu0 ·Mu1 · . . . ·Mun−1 . In Lemma 20, we describe
what information is encompassed in the matrix Mu.

Lemma 20. Suppose we have an ECA operating on a cyclic grid of size n ∈ N+.
Let G = (G, ·, I) be its general matrix monoid and let u ∈ 2n. Then, (Mu)(T (a),T (b))
denotes the number of witnesses for u and (a, b).

Proof. We prove this by induction on n. The claim is straightforward for n = 1.
Suppose that we have n > 1 and that the claim holds for all w ∈ 2+, |w| ≤ n.
Let u ∈ 2n+1, u = u0 . . . un. We put u′ = u1 . . . un. Then, (Mu)(T (a),T (b)) =
(Mu0 ·Mu′)(T (a),T (b)) = ∑︁

x∈22(Mu0)(T (a),T (x)) · (Mu′)(T (x),T (b)). Each summand gives
us the number of witnesses for u0 and (a, x) times the number of witnesses for u′

and (x, b) for a particular x ∈ 22. Those are exactly the witnesses for u, which
”pass through x”. Therefore, the sum gives us exactly the number of witnesses
for u and (a, b).

Corollary 21. Suppose we have an ECA (2n, F) operating on a cyclic grid of
size n ∈ N+ with local rule f . Let G = (G, ·, I) be its general matrix monoid and
let u ∈ 2n. Then, Tr(Mu) denotes the number of preimages of u under F .

From Lemma 20 we obtain a straightforward algorithm, which computes the
number of preimages of a configuration u ∈ 2n in linear time with respect to n,
given a local rule of an ECA operating on a cyclic grid.

To see that the general matrix monoid can be infinite for some CAs, let us
consider ECA rule 0. Clearly, for each n ∈ N+, the configuration 0n has 2n

preimages on the cyclic grid and therefore, limn→∞Tr(M0n) = ∞. This implies
that the general matrix monoid of rule 0 is infinite.

Finite Matrix Monoid
The Cayley graph of any ECA can be efficiently generated by a computer pro-
gram. In order to do that, it is useful to represent the Cayley graph by a finite

matrix monoid. We define the matrix of ones as J =
(︄

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

)︄
and the minimum

of two matrices A, B ∈ N4×4 to be the matrix min(A, B) where min(A, B)(i,j) =
min{A(i,j), B(i,j)} for i, j ∈ {0, 1, 2, 3}.

We define a binary operation • : N4×4 × N4×4 → N4×4 as follows:

A • B = min(A · B, J).

As we work with matrices with non-negative entries, it can easily be shown that •
is an associative operation. Moreover, for any four by four binary matrix A ∈ 24×4

it holds that A • I = min(A · I, J) = min(A, J) = A = I • A. Therefore, the
triplet (24×4, •, I) forms a monoid.

36

Definition 22. Let us consider an ECA with preimage relations R0 and R1. We
define the finite matrix monoid F = (F, •, I) to be a submonoid of the monoid
(24×4, •, I) generated by MR0 and MR1.

Let us consider an ECA with preimage relations R0 and R1 whose preimage
monoid is denoted as M = (M, ◦, 1) and whose finite matrix monoid is denoted
as F = (F, •, I). Then, we have a natural bijection between the two monoids
defined as:

ϕ : M −→ F
R ↦−→ MR.

We show that ϕ is a homomorphism. Let R, S ∈ M . Then, (MR◦S)(T (a),T (b)) = 1
if and only if there exists some x ∈ 2 such that (a, x) ∈ R and (x, b) ∈ S. On
the other hand, (MR • MS)(T (a),T (b)) = 1 if and only if there exists some x ∈ 2
such that (MR)(T (a),T (x)) = 1 and (MS)(T (x),T (b)) = 1, which holds if and only if
(a, x) ∈ R and (x, b) ∈ S. Therefore, (MR◦S)(T (a),T (b)) = (MR • MS)(T (a),T (b)) for
all a, b ∈ 2.

The relations with no fixed points correspond to matrices with only 0’s on
their main diagonal. Therefore, given an ECA operating on a cyclic grid of size
n and a configuration u = u0 . . . un−1, we can efficiently decide whether u has
a preimage by computing the matrix MRu = MRu0

• MRu1
• . . . • MRun−1

and
examining its diagonal.

3.3 Phase-Space Properties of Rule 45
We demonstrate the usefulness of the Cayley graph on the example of ECA rule
45. When examining the phase-space of rule 45 in Chapter 2, we have noticed that
for small n, the average transient length seems to grow exponentially for n even.
However, the rule seems reversible when operating on a cyclic grid of odd size. In
this chapter, we will prove the reversibility of rule 45 for a cyclic grid of odd size
using the Cayley graph representation. In fact, we will be able to characterize
all configurations with a given number of preimages and also give a formula for
computing the number of garden of eden configurations as a parameter of the
grid size.

For the rest of this section, we fix f to be the local rule of ECA 45.

u 111 110 101 100 011 010 001 000
f(u) 0 0 1 0 1 1 0 1

We can notice that for each b, c and u ∈ 2 there is a unique a ∈ 2 such that
f(a, b, c) = u. Using the terminology of Definition 5, every word bc ∈ 22 is right
deterministic for f . This implies that every partial preimage can be uniquely
prolonged by one symbol on the left. This property can be observed from the
preimage relations R0, R1 for f , which are depicted in Figure 3.1 and, for which
it holds that both R−1

0 and R−1
1 are functions. Therefore, it also holds that R−1

u

is a function for any u ∈ 2+.

Lemma 23. Let (2n, F) denote the ECA rule 45 operating on a cyclic grid of
size n. It holds that every u ∈ 2n has exactly one witness for every (a, b) ∈ Ru.

37

00

01 10

11

R0

00

01 10

11

R1

Figure 3.1: Preimage relations of rule 45.

Proof. Let u = u0u1 . . . un−1, n ∈ N+ and let (a, b) ∈ Ru. Since R−1
ui

is a
function for all i ∈ {0, . . . , n − 1} it holds that there is exactly one sequence
(w0, w1, . . . , wn = b) such that wi ∈ 2 and (wi, wi+1) ∈ Rui

for all i. Since there
must be some witness for u and (a, b), we have that w0 = a, which completes the
proof.

Corollary 24. For rule 45 operating on a cyclic grid, it holds that every word
u ∈ 2+ has exactly as many preimages as there are fixed points of the relation
Ru.

Before we present the Cayley graph of rule 45, we make one more observation
in order to simplify the graph.

Lemma 25. Let (2n, F) denote the ECA rule 45 operating on a cyclic grid of
size n. Let u ∈ 2n be such that there exists v ⊑ u, for which R−1

v is a constant
function. Then, u has exactly one preimage under F .

Proof. We will write u = pvs where p, s ∈ 2∗. We need to show that Ru has
exactly one fixed point. As the fixed points of Ru and R−1

u are identical, it suffices
to show that R−1

u has exactly one fixed point.
We have that R−1

u = R−1
s ◦ R−1

v ◦ R−1
p where both R−1

s and R−1
p are functions

and R−1
v is a constant function. This implies that their composition Ru is also a

constant function, and therefore, has exactly one fixed point.

Our goal is to use the Cayley graph of rule 45 to characterize all configurations
with a given number of preimages. Using Lemma 25, we know that whenever there
is an edge in the Cayley graph pointing towards a vertex R corresponding to the
inverse of a constant function, we can disregard the vertex as well as all of its
successors because all the walks starting at 1 and passing through R correspond
to configurations with exactly one fixed point.

The graph can be examined in Figure 3.2. There are three vertices in the
graph, which represent relations without fixed points. Let V1 denote the terminal
vertex of the walk starting at 1 given by 01. Similarly, let V2 denote the terminal
vertex of the walk given by 1101 and V3 the terminal node of the walk given by
10.

V1 =

⎛⎜⎜⎜⎝
0 0 1 1
0 0 0 0
1 0 0 0
0 1 0 0

⎞⎟⎟⎟⎠ , V2 =

⎛⎜⎜⎜⎝
0 0 1 1
0 0 0 0
1 1 0 0
0 0 0 0

⎞⎟⎟⎟⎠ , V3 =

⎛⎜⎜⎜⎝
0 1 0 0
1 0 1 1
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ .

38

1(︄
0 1 0 0
0 0 0 0
1 0 0 0
0 0 1 1

)︄ (︄
1 0 0 0
0 0 1 1
0 1 0 0
0 0 0 0

)︄

(︄
0 0 0 0
0 0 0 0
0 1 0 0
1 0 1 1

)︄
0

(︄
0 0 0 0
0 0 0 0
0 0 1 1
1 1 0 0

)︄

(︄
0 0 0 0
0 0 0 0
1 0 1 1
0 1 0 0

)︄
0

(︄
0 0 0 0
0 0 0 0
1 1 0 0
0 0 1 1

)︄
V1 =

(︄
0 0 1 1
0 0 0 0
1 0 0 0
0 1 0 0

)︄

(︄
1 0 1 1
0 0 0 0
0 1 0 0
0 0 0 0

)︄
0

(︄
1 1 0 0
0 0 0 0
0 0 1 1
0 0 0 0

)︄
= W1

(︄
0 1 0 0
0 0 0 0
1 0 1 1
0 0 0 0

)︄
0

V2 =

(︄
0 0 1 1
0 0 0 0
1 1 0 0
0 0 0 0

)︄

U =

(︄
1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0

)︄
V3 =

(︄
0 1 0 0
1 0 1 1
0 0 0 0
0 0 0 0

)︄
0

(︄
0 0 1 1
1 1 0 0
0 0 0 0
0 0 0 0

)︄

W2 =

(︄
1 0 1 1
0 1 0 0
0 0 0 0
0 0 0 0

)︄
0

(︄
1 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0

)︄

0 1

0

0

0 0

0

0

0

0

0

0

1 1

1

1

1

1

1

1

0 preimages
1 preimage
2 preimages
3 preimages

Figure 3.2: Cayley graph of rule 45. Vertices representing constant functions and
their successors are not depicted. The edges pointing at such vertices are marked
as dashed.

As the structure of the Cayley graph of rule 45 is very simple, the form of con-
figurations corresponding to walks starting at 1 and terminating in either V1, V2,
or V3 can be observed directly from Figure 3.2. Below, we give a characterization
of such walks.

1. It is straightforward that all the configurations that describe such walks
terminating at V1 form the set 01(11)∗.

2. The walks terminating at V2 either pass through V1, or through the ”green
vertex” U . In the first case, the set of configurations corresponding to such
paths is 01(11)∗01(11)∗01(11)∗

(︂
01(11)∗01(11)∗

)︂∗
. In the second case, it is

11(11)∗01(11)∗
(︂
01(11)∗01(11)∗

)︂∗
.

3. Lastly, there are walks terminating at V3, which are the ones corresponding
to configurations from the set 10

(︂
1(11)∗01(11)∗0

)︂∗
.

We see that in all cases, the configurations consist of an odd number of 0’s where
each two 0’s are separated by a block consisting of an odd number of 1’s. In case
1, the configurations only consist of a single 0. All the configurations that consist
of any of 2k + 3, k ∈ N, 0’s are described by the first scenario in case 2. All
the configurations that consist of any of 2k + 1, k ∈ N, 0’s are described by the
second scenario in case 2 together with case 3.

39

Corollary 26. The configurations, which have no preimages under the ECA rule
45 operating on a finite cyclic grid, are exactly those consisting of an odd number
of single 0’s, each two 0’s being separated by a block of an odd number of 1’s.

We briefly mention an outline of a formal proof of the above characterization
of walks terminating at vertices without fixed points. Let C = (V, E, l) denote
the Cayley graph of rule 45. It clearly holds that for all R, S ∈ V , dom(R ◦ S) ⊆
dom(R). Hence, if a vertex S is a successor of vertex R, it must hold that
dom(S) ⊆ dom(R).

We have that dom(V1) = {00, 10, 11}. We can easily check that dom(R1) =
{00, 01, 10} and that dom(V1) ⊈ dom(R1). Therefore, V1 cannot be a successor
of R1.

Further, we can notice that dom(R0 ◦ R0) ⊊ dom(R0) = dom(V1) and there-
fore, V1 cannot be a successor of R0 ◦ R0.

We have that V1 = R0 ◦ R1 and dom(V1 ◦ R0) ⊊ dom(V1) and therefore, we
can never reach V1 by any walk passing through V1 ◦ R0.

Therefore, the only way to reach V1 from R0 is to ”continue from R0 by an edge
labeled as 1 to the vertex R0 ◦ R1 = V1”. Further, the only way to reach V1 from
V1 is to ”continue from V1 by an edge labeled as 1 to the vertex V1 ◦ R1 = R0”.
And lastly, V1 can only be reach from the vertices 1, R0, and V1. From this,
we can easily obtain that all the walks starting at 1, which terminate in V1,
correspond to configurations from the set 01(11)∗. Similarly, we can approach
the characterization of walks starting at 1, which terminate at V2 or at V3.

Analogously, we can describe all the configurations with exactly two preimages
as the ones corresponding to walks terminating at either vertex W1 - the terminal
vertex of the walk given by 0101, which starts at 1, or W2 - terminal vertex of
the walk given by 1010.

W1 =

⎛⎜⎜⎜⎝
1 1 0 0
0 0 0 0
0 0 1 1
0 0 0 0

⎞⎟⎟⎟⎠ , W2 =

⎛⎜⎜⎜⎝
1 0 1 1
0 1 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ .

1. The walks terminating at W1 either pass through V1, or through the ”green
vertex” U . In the first case, the configurations corresponding to such walks
are of the form
01(11)∗01(11)∗

(︂
01(11)∗01(11)∗

)︂∗
. In the second case, we have configura-

tions of the form 11(11)∗01(11)∗01(11)∗
(︂
01(11)∗01(11)∗

)︂∗
.

2. The walks terminating at W2 are the ones corresponding to configurations
from the set 1(11)∗01(11)∗0

(︂
1(11)∗01(11)∗0

)︂∗
.

Analogously, we obtain a second corollary.

Corollary 27. The configurations, which have exactly two preimages under the
ECA rule 45 operating on a finite cyclic grid, are exactly configurations, which
consist of an even, nonzero number of single 0’s, each two 0’s separated by a block
of an odd number of 1’s.

40

Furthermore, we can see that all configurations with exactly three preimages
form the set 11(11)∗. They are exactly those configurations consisting of a non-
zero even number of 1’s. Combining the results, we obtain Theorem 28.

Theorem 28. ECA rule 45 operating on a cyclic grid of odd size is reversible.

Proof. Examining the vertices in the Cayley graph of rule 45, we see that every
configuration has either 0, 1, 2, or 3 preimages. We have given the characteriza-
tion of all configurations having 0, 2, or 3 preimages, from which we can see that
all such configurations are of even size. Therefore, if a configuration is of an odd
size, it must have exactly one preimage. This implies that rule 45 operating on a
cyclic grid of odd size is reversible.

3.3.1 Rule 45 as a Random Mapping
In Chapter 2, we have seen that rule 45 possesses typical properties of a chaotic
rule - its space time diagrams seem to form no obvious structures and its average
transient length seems to grow exponentially for a grid of even size. In the
literature, chaotic cellular automata are often connected to ”random behavior”.
In fact, Stephen Wolfram has patented the idea of using the chaotic ECA rule 30
as a pseudorandom generator1 [27]. In this subsection, we use the results about
the phase-space properties of rule 45 that we obtained so far to compare the rule
to a random mapping.

We define a random mapping space to be a triplet (X, F , P) where X is some
finite set of cardinality N ∈ N+, F is the set of all functions T : X → X and
P is the uniform probability distribution over F . By g : F → N we denote the
random variable determining the number of GOE configurations for a particular
function. Formally, g(F) = |{u ∈ X | F −1(u) = ∅}| for F ∈ F . The statistical
properties of random mappings have been widely studied in the past. In [4], the
following results have been obtained:

E(g) ≈ N

e
as N → ∞ (3.6)

We consider the random mapping space to be (X, F , P) where X = 2n for n ∈ N+.
Then, for an ECA (2n, F) we have that F ∈ F and N = |X| = 2n. In such case,
we have that E(g) ≈ 2n

e
. The goal of this subsection is to compare the number

of GOE configurations of a random mapping and of rule 45. Therefore, we need
to establish the number of GOE configurations of length n ∈ N+ for this rule.

We have already established that all the garden of eden configurations of rule
45 have an even length and that they are exactly those configurations that contain
an odd number of 0’s, each two 0’s separated by a region of an odd number of
1’s.

Let us fix n ∈ N+ even, and let u ∈ 2n be a GOE configuration of rule 45.
We fix l ∈ N+ to be the largest odd number such that l ≤ n

2 ; l is, therefore, the
largest number of 0’s that u can contain. There must be some i ∈ Zn such that
ui = 0. Then, for all j such that uj = 0, it holds that j has the same parity as i.
Therefore, each GOE configuration v ∈ 2n satisfies exactly one of the following
two cases.

1hyperlink to the patent register: https://patents.google.com/patent/US4691291A/en

41

https://patents.google.com/patent/US4691291A/en

1. For every i ∈ Zn ui = 0 implies that i is even. In such a case, there are
(︂n

2
k

)︂
different GOE configurations containing k 0’s on even positions. Therefore,
the total number of such configurations is(︄

n
2
1

)︄
+
(︄

n
2
3

)︄
+ . . . +

(︄
n
2
l

)︄
.

2. For every i ∈ Zn ui = 0 implies that i is odd. In such a case, there are
(︂n

2
k

)︂
different GOE configurations containing k 0’s on odd positions. Therefore,
the total number of such configurations is again(︄

n
2
1

)︄
+
(︄

n
2
3

)︄
+ . . . +

(︄
n
2
l

)︄
.

To simplify the sum, we observe the following.(︄
n
2
0

)︄
+
(︄

n
2
1

)︄
+
(︄

n
2
2

)︄
+ . . . +

(︄
n
2
n
2

)︄
= 2n

2 (3.7)(︄
n
2
0

)︄
−
(︄

n
2
1

)︄
+ . . . + (−1)n

2

(︄
n
2
n
2

)︄
= (1 + (−1))n

2 = 0. (3.8)

Substracting (3.8) from (3.7), we get that(︄
n
2
1

)︄
+
(︄

n
2
3

)︄
+ . . . +

(︄
n
2
l

)︄
= 2n

2 −1.

Therefore, for a grid of even size n, the total number of garden of eden config-
urations is 2 · 2n

2 −1 = 2n
2 . As 2n

2 << 2n

e
, we can conclude that for a large grid

of even size, the number of GOE configurations of rule 45 is much smaller than
the expected value of the number of GOE configurations of a random mapping.
Therefore, rule 45 does not have one of the fundamental statistical properties of
a random mapping.

3.4 Cellular Automata as Topological Mappings
So far, we have studied the phase-space properties of 1D CAs operating on a
cyclic grid of finite size. In the following, we will examine infinite garden of eden
configurations. This section, however, shows that due to the simplicity of 1D CAs,
the task in fact reduces to studying finite structures. To obtain this reduction,
we introduce some basic facts from the field of symbolic dynamics. This section
is based on the results presented in [10].

Let A = {a1, . . . , an} be a finite set and consider the discrete topological space
(A, P(A)). We define (AZ, T) to be the space equipped with product topology.
A classical basis of (AZ, T) is the system

B = {
∞∏︂

i=−∞
Ai | Ai ⊆ A, Ai = A for all but finitely many i}.

As (A, P(A)) is compact, we get from Tychonoff’s theorem that (AZ, T) is com-
pact as well.

42

Definition 29. Let A be a finite set, u ∈ A+, and z ∈ Z. A cylinder is a set of
the form [u]z = {x ∈ AZ | xz+i = ui for all 0 ≤ i < |u|}.

Let πi : AZ → A be the i-th projection, let u ∈ A+, u = u0u1 . . . un−1, and
let z ∈ Z. Clearly, [u]z = ⋂︁n−1

i=0 π−1
z+i(ui) where each set π−1

z+i(ui) is clopen. Hence,
every cylinder is a finite intersection of clopen sets and is itself clopen. In the
following Lemma 30, we show that the set of all cylinders forms a basis for (AZ, T).

Lemma 30. Let C = {[u]z | u ∈ A+, z ∈ Z} be the set of all cylinders. Then, C
forms a basis for (AZ, T).

Proof. Let B ∈ B and x ∈ B. We will show that there exists C ∈ C such that
C ⊆ B and x ∈ C. This will imply that C is a ”finer system” than B and,
therefore, a basis for (AZ, T). Let i1, i2, . . . , ik ∈ Z, i1 < i2 < . . . < ik be such
that πi(B) = A for all i ∈ Z \ {i1, i2, . . . , ik}. We set u = x[i1,ik]. Then, the
cylinder [u]i1 contains x and it clearly holds that [u]i1 ⊆ B.

Given a cellular automaton (AZ, F), we will show that the mapping F : AZ →
AZ is a continuous mapping of topological spaces.

Lemma 31. Let (AZ, F) be a cellular automaton with radius r ∈ N and a lo-
cal rule f : A2r+1 → A. Then, the mapping F : AZ → AZ is a continuous
endomorphism of the topological space (AZ, T).

Proof. It suffices to show that F −1(C) is open for every cylinder C ∈ C. Let
u ∈ A+ and z ∈ Z. It is is straightforward that F −1([u]z) is open because
F −1([u]z) = ⋃︁

v∈˜︁f−1(u)
[v]z−r is a union of open sets.

Let A be any finite set, (A, P(A)) the discrete topological space, and (AZ, T)
the space with product topology. We define the shift operator σ : AZ → AZ

by σ(u)i = ui+1 for u ∈ AZ. In fact, there is a fundamental result first stated
by Hedlund [6], which characterizes cellular automata to be exactly those con-
tinuous endomorphisms of (AZ, T), which commute with the shift operator, i.e.
F (σ(u)) = σ(F (u)).

We can finally prove Theorem 32, which explains why we only need to examine
finite patterns when studying the garden of eden configurations of a CA operating
on an infinite grid.

Theorem 32. Let A be a finite set, (AZ, F) a cellular automaton operating on
an infinite grid, and let f be its local rule with radius r. A configuration u ∈ AZ

is a garden of eden configuration if and only if it contains an orphan.

Proof. Suppose a ∈ AZ is not gargen of eden. Then there exists v ∈ AZ such that
F (v) = u. Let w be any finite subword of u, w = u[i,j] for some i, j ∈ Z. Then
v[i−r,j+r] is a preimage of w under ˜︁f . Therefore, u contains no orphan.

Conversely, suppose u contains no orphan. Then, u[−n,n] has a preimage under˜︁f for all n ∈ N. Therefore, each F −1(u[−n,n]) = ⋃︁{[v]−n−r | v ∈ ˜︁f−1(u[−n,n])} is a
nonempty closed set. From compactness of the space (AZ, T), the intersection⋂︁

n∈N F −1(u[−n,n]) is nonempty and contains some x ∈ AZ, which is a preimage
of u.

43

Combining Theorem 32 and Lemma 13 we get that in order to describe all
garden of eden configurations of an ECA operating on an infinite tape, it is
sufficient to characterize all words u ∈ 2+, u = u0u1 . . . un−1 for some n ∈ N+,
such that the relation Ru0 ◦ Ru1 ◦ Ru2 ◦ . . . ◦ Run−1 is empty.

We say that a CA (AZ, F) is surjective, if F is a surjective mapping. As a
corollary, using the Cayley diagrams, we get a very simple proof of the known
fact about the decidability of surjectivity for 1D CAs.

Corollary 33. It is decidable whether a one-dimensional cellular automaton is
surjective.

Proof. For a CA with local rule f : A2r+1 → A, it suffices to construct its Cayley
graph whose size is bounded by 2|A|4r . Then, the CA is surjective if and only if
the Cayley graph does not contain a vertex corresponding to the empty relation.
This can be easily checked.

It is interesting how various problems get significantly more difficult when
considering CAs in higher dimensions. As an example, Kari [8] has shown that
the problem of surjectivity is undecidable for 2D CAs.

3.5 Rule 110
Rule 110 is of particular interest to researchers as it is so far the only ECA
proven to be Turing complete and, therefore, undoubtedly regarded as complex.
This makes this rule subject to various studies of its properties. Even though
researchers often give examples of garden of eden configurations of rule 110 op-
erating on either cyclic or infinite grid, so far, we have not seen a complete
characterization of all garden of eden configurations of this rule. In this section,
we present such characterization in case the rule operates on an infinite grid. The
characterization of ”cyclic GOE configurations” can be obtained analogously.

For the rest of this section, we fix f to be the local rule with Wolfram number
110.

Observation 34. Let u, v ∈ 2∗ be such that v ⊑ u. Then, if v is an orphan of˜︁f , u is also its orphan.

Proof. Let us write u = rvs for some r, s ∈ 2∗. Then Ru = Rr ◦ Rv ◦ Rs. Since
Rv = ∅ we obtain that Ru = Rr ◦ ∅ ◦ Rs = ∅. Hence, u is an orphan.

In the following text, we will construct a language G ⊆ 2∗, which consists of
all ”canonical” orphans of ˜︁f . By ”canonical”, we mean that:

• Any orphan of ˜︁f contains some u ∈ G as a subword.

• Each u ∈ G contains no other v ∈ G as a subword.

Using Observation 34, we get that orphans are exactly those words u ∈ 2∗,
which contain some v ∈ G as a subword. And further, using Theorem 32, we get
that all garden of eden configurations of rule 110 operating on an infinite grid are
exactly the words u ∈ 2Z, which contain some v ∈ G as a subword. In the next
subsection, we construct the language G.

44

3.5.1 Construction of Canonical Orphans
The local rule f with Wolfram number 110 is given by the following table.

u 111 110 101 100 011 010 001 000
f(u) 0 1 1 0 1 1 1 0

For the rest of this section, we fix R0, R1 to be the relations Rf
0 , Rf

1 . They
have the following form:

R0 = {(00, 00), (10, 00), (11, 11)}
R1 = {(00, 01), (01, 10), (01, 11), (10, 01), (11, 10)}.

We will examine the powers of both relations. Clearly

R2
0 = {(00, 00), (10, 00), (11, 11)} = R0. (3.9)

For R1 the situation is not as simple:

R2
1 = {(00, 10), (00, 11), (01, 01), (01, 10), (10, 10), (10, 11), (11, 01)}

R3
1 = {(00, 01), (00, 10), (01, 01), (01, 10), (01, 11), (10, 01), (10, 10), (11, 10),

(11, 11)}
R4

1 = {(00, 01), (00, 10), (00, 11), (01, 01), (01, 10), (01, 11), (10, 01), (10, 10),
(10, 01), (11, 01), (11, 10)}

R5
1 = {(00, 01), (00, 10), (00, 11), (01, 01), (01, 10), (01, 11), (10, 01), (10, 10),

(10, 01), (11, 01), (11, 10), (11, 11)}.

We see that R5
1 = C := {00, 01, 10, 11} × {01, 10, 11}. C contains all pairs from

22 × 22 except the elements of the form (ab, 00), a, b ∈ 2.

Lemma 35. Rn
1 = C for all n ∈ {5, 6, 7, . . .}.

Proof. We will prove this by induction on n. For n = 5 the statement clearly
holds. Suppose that n > 5 and that Rn−1

1 = C. It suffices to show that R1◦C = C.
Let a ∈ {00, 01, 10, 11} and c ∈ {01, 10, 11}. Then, there exists b ∈ {00, 01, 10, 11}
such that (a, b) ∈ R1. As c ̸= 00 it holds that (b, c) ∈ C. Therefore (a, c) ∈ R1 ◦C
and R1 ◦ C = C.

Definition 36. We define a mapping P : 2∗ → 2∗, which maps each word u
to the word constructed from u by substituting all subwords in u of the form 1k,
k ≤ 6 by 15 and all subwords 0l, l ≥ 2 by 0. We say that P (u) is a reduced word.

A word w ∈ 2∗ is reduced if and only if it contains no blocks of the form 16

or 02. From the equality (3.9) and Lemma 35, we have that Ru = RP (u) for all
u ∈ 2∗. Therefore, when searching for orphans, it suffices to examine reduced
words.

Lemma 37. R0(1110)k10 = R010 for any k ∈ N.

Proof. It suffices to prove that R0111010 = R010 and use induction on k. This
equality is easily verified by computing that both sides are equal to {(11, 00)}.

45

Using the previous Lemma 37, we can notice that R10(1110)k10 = {(01, 00)}
and since R0 = {(00, 00), (10, 00), (11, 11)} we see that

R010(1110)k10 = R0 ◦ R10(1110)k10 = ∅ for any k ∈ N.

Therefore, any reduced word u ∈ 2∗ containing a subword of the form 010(1110)k10
for some k ∈ N is an orphan. In the following Theorem 38, we prove the converse.

Theorem 38. If a reduced word u ∈ 2∗ does not contain a subword of the form
01(0111)k010 for some k ∈ N, then it is not an orphan of ˜︁f .

Proof. Let u ∈ 2∗ be a reduced word satisfying the assumption. We want to show
that Ru ̸= ∅. Without loss of generality we can assume that u is of the form 1v
for some v ∈ 2∗. In case u is not of this form, we consider the word 1u and notice
that this word still satisfies the assumption. In such a case, we will prove that
R1u ̸= ∅. From Lemma 34 it will follow that Ru ̸= ∅.

It can easily be shown that if u is of the form 1n for any n ∈ N+ then
Ru ̸= ∅. Therefore, we can assume the reduced word u contains at least one 0
and, therefore, is of the form

1k101k20 . . . 1kn01e where n ∈ N+, 1 ≤ ki ≤ 5 for all i, and 0 ≤ e ≤ 5.

Further, we will write u in the form u = b1b2 . . . bm1e where each block satisfies
exactly one of the following cases. Informally, case Case 1 deals with all the
occurrences of the block 010 in u and case Case 2 deals with the rest.

Case 1 b = 1l0(1110)k10 where k ∈ N is largest possible (therefore, it cannot
happen that l = 3); and l ∈ {1, 2, 3, 4, 5} denotes the maximum number of 1’s,
which form a prefix of the block 0(1110)k10 in u.

Case 2 b = 1k0 and b is not a subword of any block from case Case 1; either b
is a prefix of u and b = 1k0, k ≥ 1, or b is not a prefix of u and k ≥ 2 is maximum
possible (in such a case, u must contain the block 0b as a subword).

Below, we show that the form u = b1 . . . bm1e can always be constructed. We
write u in the following form and describe the construction by induction on n.

u = 1k10⏞ ⏟⏟ ⏞
c1

1k20⏞ ⏟⏟ ⏞
c2

. . . 1kn0⏞ ⏟⏟ ⏞
cn

1e

If n = 1 then we put b1 = c1, which is a block from Case 2, and we are done.
Suppose that n > 1 and that any reduced word 1l101l20 . . . 1ln′ 01e′ , n′ < n,

can be written in the desired form.
If cn = 10 then there exists a k such that the block ckck+1 . . . cn is a block from

Case 1. Hence, we put bm = ckck+1 . . . cn and we get that u = c1c2 . . . cn′bm1e

where n′ = k − 1. If cn ̸= 10 then cn is a block from Case 2 and we put
u = c1 . . . cn′bm1e where n′ = n−1. Hence, we have constructed u = c1 . . . cn′bm1e

where n′ < n and we use the induction assumption on the word c1 . . . cn′ .
As we have constructed the form u = b1 . . . bm1e, we can examine the relations

Rbi
for each block bi in u. The main goal is to show that whenever the block bi

is not a prefix of u then (00, 00) ∈ Rbi
. We study all the possible cases below.

46

Case A Let b = bi, i ≥ 2, be a block, which is not a prefix of u. We show that
(00, 00) ∈ Rb.

Case A1 We assume b is not a prefix and it is of the form b = 1l0(1110)k10
for some k ∈ N, l ∈ {1, 2, 3, 4, 5}. In such a case, l ̸= 3 because k is the
maximum number of blocks 1110 contained in b. Moreover l ̸= 1 otherwise b
would be an orphan and u would violate the assumption. We already have that
R0(1110)k10 = {(11, 00)}. For l ∈ {2, 4, 5} it holds that (00, 11) ∈ Rl

1. Therefore,
(00, 00) ∈ Rb.

Case A2 We assume b is not a prefix and it is of the form b = 1k0 where
k ≥ 2. For k ≥ 2 it holds that (00, 10) ∈ Rk

1 and since (10, 00) ∈ R0 we obtain
that (00, 00) ∈ Rb.

Case B The remaining case we need to examine is when b = b1 is the prefix of
u. Our goal is to show that then there exist c, d ∈ 2 such that (cd, 00) ∈ Rb.

Case B1 Suppose b is a prefix of the form b = 1l0(1110)k10, k ∈ N, l ∈
{1, 2, 3, 4, 5}.

• if l ∈ {2, 4, 5} we already know that (00, 00) ∈ Rb from Case A1

• if l ∈ {1, 3} then it holds that (01, 11) ∈ Rl
1 and since (11, 00) ∈ R(0111)k010

we get that (01, 00) ∈ Rb.

Case B2 We are left with the case when b is a prefix of u, b = 1k0, k ≥ 1.
Then for each k there exist c, d ∈ 2 such that (cd, 10) ∈ Rk

1 . Since (10, 00) ∈ R0,
we have that (cd, 00) ∈ Rb.

To summarize, for u = b1b2 . . . bm1e as defined above, we have that there exist
c, d ∈ 2 such that (cd, 00) ∈ Rb1b2...bm .

For e ∈ {1, 2, 3, 4, 5}, there exist g, h ∈ 2 such that (00, gh) ∈ Re
1.

Altogether, if e = 0 then Ru = Rb1 ◦ Rb2 ◦ . . . ◦ Rbm ∋ (cd, 00) for some
c, d ∈ 2. If e ∈ {1, 2, 3, 4, 5} then Ru = Rb1 ◦ Rb2 ◦ . . . ◦ Rbm ◦ Re

1 ∋ (cd, gh) for
some c, d, g, h ∈ 2. Therefore, Ru ̸= ∅.

Finally, we can describe all canonical orphans in the following Theroem 39.

Theorem 39. An infinite word u ∈ 2Z is a garden of eden configuration of rule
110 if and only if it contains a subword from the set

G = {010k11110k2 . . . 0kn−11110kn10 | n ∈ N, ki ∈ N+ for all i ∈ {1, 2, . . . , n}}

= 01
(︂
0+111

)︂∗
0+10.

Proof. We know that a reduced word is an orphan of ˜︁f if and only if it contains
a subword of the form 010(1110)k10 for some k ∈ N. Now it suffices to compute
P −1{010(1110)k10 | k ∈ N} = 0+10+

(︂
1110+

)︂∗
10+. As the multiple 0‘s forming

47

the prefix and suffix of words in the set are unnecessary we finally define the
canonical language

G = 01
(︂
0+111

)︂∗
0+10.

Clearly for any two words in G it holds that one is not a subword of the other.
Let u ∈ 2Z be such that u contains some v ∈ G as a subword. Then, Rv =

RP (v) = ∅. Therefore, v is an orphan and u is a garden of eden configuration of
rule 110.

Conversely, let u ∈ 2Z be a GOE configuration of rule 110. Let v ∈ 2∗ be an
orphan of ˜︁f contained in u. Then, the reduced word P (v) is also an orphan and
from Theorem 38 it must contain a subword of the form 01(0111)k010 for some
k ∈ N. Then, v must contain a subword from the set P −1{01(0111)k010 | k ∈
N} = G. Therefore, u contains a subword from the set G.

3.6 Discussion
We presented a novel representation of 1D CAs called the Cayley graphs of cellular
automata, which are related to the backward dynamics of the system. We used
the Cayley graphs to obtain the characterization of garden of eden configuration
for the ECA rule 45 operating on a cyclic grid to demonstrate its usefulness. We
used a slightly different approach to characterize all garden of eden configurations
of the Turing complete rule 110 operating on an infinite grid. Due to the results of
Kari [8] we know that such characterization of GOE configurations is impossible
for CAs in higher dimensions as the problem of surjectivity is undecidable for
them.

48

Conclusion
The model of cellular automata has been intensively studied by many researchers
in the past due to their intriguing complex behavior. This makes it surprising
that there is still so much to explore about it. We have demonstrated that by
proposing a novel classification of CA dynamics, which corresponds to Wolfram’s
classification surprisingly well.

We believe the ultimate goal to understand complex behavior of various dy-
namical systems is to propose suitable formal definitions of fundamental notions
in complex systems theory. We hope that the Transient classification, as well
as our studies related to CAs backward dynamics, can help us understand such
notions better.

49

Bibliography
[1] S. Brenner. My Life in Science. BioMed Central Ltd, 2001.

[2] H. Cisneros, J. Sivic, and T. Mikolov. Evolving structures in complex sys-
tems. 2019.

[3] M. Cook. Universality in elementary cellular automata. Complex Systems,
15, 01 2004.

[4] P. Flajolet and A. Odlyzko. Random Mapping Statistics. Advances in Cryp-
tology — EUROCRYPT ’89, 1990.

[5] M. Gardener. Mathematical games: the fantastic combinations of john con-
way’s new solitaire game ”life. 1970.

[6] G. A. Hedlund. Endomorphisms and automorphisms of the shift dynamical
system. Mathematical systems theory, 3:320–375, 1969.

[7] K. Kaneko. Complexity in basin structures and information processing by
the transition among attractors. 01 1985.

[8] J. J. Kari. Reversibility and surjectivity problems of cellular automata.
Journal of Computer and System Sciences, 48:149 – 182, 1991.

[9] J. J. Kari. Basic Concepts of Cellular Automata, pages 3–24. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

[10] P. Kůrka. Topological and Symbolic Dynamics. Société mathématique de
France, 2003.

[11] C. G. Langton. Self-reproduction in cellular automata. Physica D: Nonlinear
Phenomena, 10(1):135 – 144, 1984.

[12] C. G. Langton. Studying artificial life with cellular automata. Physica D:
Nonlinear Phenomena, 1986.

[13] O. Martin, A. Odlyzko, and S. Wolfram. Algebraic properties of cellular
automata. Communications in Mathematical Physics, 93, 06 1984. doi:
10.1007/BF01223745.

[14] T. Mikolov, A. Joulin, and M. Baroni. A roadmap towards machine intelli-
gence. ArXiv, abs/1511.08130, 2015.

[15] M. Mitchell. Computation in cellular automata: A selected review. 1996.

[16] M. Mitchell, J. Crutchfield, and R. Das. Evolving cellular automata with
genetic algorithms: A review of recent work. First Int. Conf. on Evolutionary
Computation and Its Applications, 1, 05 2000.

[17] J. V. Neumann and A. W. Burks. Theory of Self-Reproducing Automata.
University of Illinois Press, USA, 1966.

50

[18] C. Ofria and C. Wilke. Avida: A software platform for research in compu-
tational evolutionary biology. Artificial Life, 10(2):191–229, 2004.

[19] A. B. Owen. Monte Carlo theory, methods and examples. 2013.

[20] T. S. Ray. An approach to the synthesis of life. 1991.

[21] J. Reggia, S. Armentrout, H. Chou, and Y. Peng. Simple systems that
exhibit self-directed replication. Science (New York, N.Y.), 259:1282–7, 03
1993.

[22] C. Saclay and H. Gutowitz. Transients, cycles, and complexity in cellular
automata. Physical Review A, 44, 12 1994.

[23] L. Soros and K. Stanley. Identifying necessary conditions for open-ended
evolution through the artificial life world of chromaria. Artificial Life Con-
ference Proceedings, (26):793–800, 2014.

[24] S. Stepney. Nonclassical Computation — A Dynamical Systems Perspective,
pages 1979–2025. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[25] S. H. Strogatz. Nonlinear Dynamics and Chaos. CRC Press, 2000.

[26] S. Wolfram. Statistical mechanics of cellular automata. Rev. Mod. Phys.,
55:601–644, 1983.

[27] S. Wolfram. Random sequence generation by cellular automata. Advances
in Applied Mathematics, 7(2):123 – 169, 1986.

[28] S. Wolfram. A New Kind of Science. Wolfram Media, 2002.

[29] A. Wuensche. Exploring discrete dynamics. The DDLab manual. 2019.

[30] A. Wuensche and M. Lesser. The global dynamics of celullar automata: An
atlas of basin of attraction fields of one-dimensional cellular automata. J.
Artificial Societies and Social Simulation, 4, 01 2001.

[31] H. Zenil. Compression-based investigation of the dynamical properties of cel-
lular automata and other systems. Computing Research Repository - CORR,
19, 10 2009.

51

	Introduction
	Introducing Cellular Automata
	Preliminaries
	Introducing Cellular Automata
	One-dimensional Cellular Automata
	Two-dimensional Cellular Automata

	Cellular Automata on a Finite Grid
	1D CAs Operating on a Finite Grid
	2D CAs Operating on a Finite Grid

	Brief History of Cellular Automata

	Classifying Cellular Automata
	CA Dynamics via Space-Time Diagrams
	Wolfram's Classification
	Zenil's Classification

	Global Dynamics of Cellular Automata
	Equivalent Cellular Automata
	Z-parameter

	Transient Classification
	Basic Concepts and Motivation
	Data Sampling and Regression Fits
	Transient Classifiation of ECAs
	Discussion
	Transient Classification of 2D CAs
	Transient Classification of Well Known CAs

	Preimages of Cellular Automata
	Preimage Relations of Cellular Automata
	Cayley Graphs of Cellular Automata
	Matrix Representation of Cayley Graphs

	Phase-Space Properties of Rule 45
	Rule 45 as a Random Mapping

	Cellular Automata as Topological Mappings
	Rule 110
	Construction of Canonical Orphans

	Discussion

	Conclusion
	Bibliography

