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Introduction
Since Albert Einstein’s discovery of the general theory of relativity in 1915, con-
siderable research has been devoted to the topic of exact spacetimes, i.e., non-
approximate (as opposed to numerical) solutions to the Einstein field equations
governing the relationship between the curvature of a spacetime and its mat-
ter and energy content. When an electromagnetic field is involved, one must
simultaneously also solve the Maxwell equations adjusted to be covariant in
the general-relativistic framework, which relate the field and its sources. The
Einstein–Maxwell equations are, however, notoriously difficult to solve in more
general settings. Indeed, Einstein himself is said to have been surprised that
the first non-trivial solution—the black hole spacetime of Karl Schwarzschild—
was found a mere month after the publication of the theory, even though it was
not interpreted as describing a black hole until decades later. The key ingre-
dient to Schwarzschild’s discovery was the assumption of spherical symmetry.
In subsequent years, other exact solutions were found by taking advantage of a
particular symmetry. Among them is the 1919’s solution of Tullio Levi–Civita,
which represents the most general vacuum, static and cylindrically-symmetric
metric without the cosmological constant. Despite the fact that this solution is
over a hundred years old now, cylindrical spacetimes still remain popular, with
a thorough review by Bronnikov et al. [2020] published recently. While not very
realistic, as cylindrically-symmetric systems must extend infinitely along the axis,
this symmetry can be a good approximation of certain situations. For instance,
collapsing rotating objects can produce spindle-like structures as noted in, e.g.,
Yoo et al. [2017] and East [2019], and these structures may be considered to be
approximately cylindrically symmetric in their vicinity. Moreover, according to
Bronnikov et al. [2020] the study of cosmic strings and superstrings as discussed
in, e.g., Copeland and Kibble [2010] also increased academic interest in this par-
ticular symmetry in recent years. In this thesis, we too shall consider spacetimes
that admit cylindrical symmetry.

While all exact solutions are interesting in their own right, it is always wel-
come if they can be assumed to approximately model a realistic and observable
astrophysical phenomenon. It was lucky in this respect that Schwarzschild’s as-
sumption of spherical symmetry lead to a model of a static black hole immersed
in vacuum. An even more realistic spacetime time is the one discovered by Roy
Kerr in 1963, which represents a rotating black hole. In a matter of a few years af-
ter their respective discovery, both black-hole models were generalized to include
electric charge; the non-rotating Reissner–Nordström and rotating Kerr–Newman
spacetimes were born. However, as our daily life shows, macroscopic objects tend
to be electrically neutral, and there is hardly anything more macroscopic than as-
trophysical black holes. Magnetic fields, on the other hand, appear more relevant
on cosmological scales from both theoretical and observational points of view, as
supported by papers such as Neronov and Vovk [2010], Tavecchio et al. [2010],
Durrer and Neronov [2013], and Kunze [2013]. The large-scale magnetic fields
may be of primordial origin as noted by Subramanian [2016] and they might have
played a critical role in the early universe according to Jedamzik and Pogosian
[2020]. Works such as Pétri [2017] and Carrasco et al. [2018] note that magnetic
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fields often occur in strong gravitational fields like those in the vicinity of com-
pact massive objects, so they merit investigation within the framework of general
relativity. A particular well-known exact spacetime modeling a magnetic field
that happens to be cylindrically symmetric is the Bonnor–Melvin solution, also
known as the Melvin universe. It was discovered separately by William Bowen
Bonnor [1954] and Mael Avrami Melvin [1964], and is the main inspiration for this
work. In recent years, there has been increased interest in the solution: There are
many papers studying black holes immersed in the Bonnor–Melvin background,
such as Radu [2002], Brito et al. [2014], Booth et al. [2015], and Astorino et al.
[2016]; (anti-)photon surfaces were studied in Gibbons and Warnick [2016]; the
solution was used to generate cosmological models in Kastor and Traschen [2015];
its analogues have been discussed in d ≥ 3 dimensions in Tahamtan and Halilsoy
[2013], in theories of non-linear electrodynamics in Gibbons and Herdeiro [2001],
in Born–Infeld gravity in Bambi et al. [2015], and in string theory in Tseytlin
[1995]; and so on. Note that other cylindrical spacetimes with a magnetic field
were studied in, e.g., Richterek et al. [2000], and also form a part of the review
paper Bronnikov et al. [2020].

Apart from cylindrical symmetry and magnetic fields, there is one more key
element to the spacetimes we are going to study that was missing in the above-
mentioned solutions: the cosmological constant. It was first introduced by Ein-
stein to his field equations in 1917 to make sure that they admitted a static model
of the universe, compliant with the sentiment of the period that on large scales
the universe was static. When this notion was later dismissed, Einstein disowned
the constant and, as legend has it, called it his ‘biggest blunder’. Nonetheless,
the turn of the millennium brought a renewed interest in the constant, as ob-
servations of supernovae redshifts published in papers such as Riess et al. [1998]
and Perlmutter et al. [1999] provided evidence that the expansion of the universe
accelerates. This research, which lead to the 2011 Nobel Prize in Physics being
awarded to Saul Perlmutter, Brian P. Schmidt, and Adam G. Riess, attributed
the acceleration to the very cosmological term in the Einstein equations. As noted
in Carroll [2001], the effects of the cosmological constant are sometimes dubbed
‘dark energy’, but they are not necessarily synonymous, because other, perhaps
less appealing explanations for the dark energy driving the expansion of the uni-
verse have been proposed. Corroborating the previous research, the results of
the Planck spacecraft’s mission, which were published in Aghanim et al. [2020],
also shown that the dark energy, although very low in density, forms the major-
ity of the mass-energy content of the universe due to the energy’s homogeneity
everywhere across space. It is, therefore, logical to consider the cosmological
term in the Einstein equations and study exact spacetimes that admit the con-
stant. The above-mentioned black-hole solutions have already been generalized
to the case of a non-zero cosmological constant, long before the revolutionary
observations were made, in fact. Instead, we set out to derive generalizations of
the Bonnor–Melvin spacetime, leading to our analysis of several electrovacuum,
cylindrically-symmetric spacetimes with a magnetic field and a non-zero cosmo-
logical constant. To have a full discussion from the mathematical point of view,
we consider either sign of the constant in spite of the fact that the observations
suggest that it is positive.

This thesis is divided into three main parts. The purpose of the first part is
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to lay the foundation for our original results presented in the subsequent chap-
ters. We first tackle the concept of cylindrical symmetry and then we move on
to introduce the chief methods we use to investigate the examined spacetimes.
Namely, we focus on charged test particle motion and also on finding shell sources
with reasonable properties using Israel’s cut-and-paste method. Furthermore, the
spacetimes that feature more intricate causal structure also merit their confor-
mal diagrams to be drawn. The emphasis in the opening part of the thesis is,
therefore, on an explanation of our approach to each of these notions. We finish
this part by briefly reminding the reader of some of the previously discovered and
well-known cylindrical spacetimes relevant to our current work.

The second part of the thesis is the principal and, by far, also the longest one.
Here, we discuss the properties of the examined static and cylindrically-symmetric
spacetimes themselves, featuring a magnetic field and—barring one exception—
the cosmological constant. We first derive the spacetimes using the Einstein–
Maxwell equations, while discussing some additional symmetries allowing us to
solve the equations analytically. We then focus on each of the seven spacetimes in
turn, applying the methods outlined in the first part. Not only do we investigate
particle motion and find shell sources connecting our spacetimes to the previously
known solutions mentioned in the opening part whenever possible, but we also
discuss some additional properties and try to gain more insights regarding the
physics of the spacetimes.

The last part contains further information that is not particular to any single
exact spacetime discussed in the preceding chapters. We first unify and expand
our findings about shell sources by considering shells on the interface of each
possible pair of the studied spacetimes. We also discuss whether the properties
of the shells are similar to those examined in the literature. Next, we shed the
additional symmetries that were needed to derive our exact spacetimes and we
solve the Einstein–Maxwell equations numerically. We thus assemble a catalog
of general solutions with unique physical properties. Finally, we delve into the
equations for the general solutions analytically to see if they have the so-called
Painlevé property, which could prove to be instrumental in trying to find the
exact solutions.

Last but not least, in the appendix closing the thesis we discuss a relaxed
variant of cylindrical symmetry that requires only the spatial part of the metric
to be cylindrical, while the temporal part can be arbitrary as long as the spacetime
remains static. We derive a magnetic spacetime and see that it is locally the same
as one of the previous solutions examined in this work.

In fact, although we have answered many of our original questions that aroused
our curiosity at the onset of the thesis, our investigation opened many more new
and fascinating issues to focus on in our future work.

Notation and tensor & unit formalism
In this work, we shall use boldface when referring to tensors other then the basis
tensors or scalar quantities. When it is convenient, we use the standard index
notation to describe tensors, with upper indices being contravariant and lower
indices covariant. Using the Einstein summation convention for, e.g., a covector,
we can write a = aµ dxµ, with Greek indices representing an arbitrary coordinate.
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As it represents the same tensor quantity, raising and lowering of indices shall
not be differentiated when using the boldface notation. Basis vectors are denoted
∂xµ .

Before we start working with specific spacetimes, we shall derive and explain
some general formulae, which shall be valid for every spacetime considered in this
work. In these formulae we shall use the usual notation for cylindrical coordinates
(t, r, z, φ), where t is the time coordinate, r is the radial coordinate and it is the
only coordinate that a static cylindrical metric can be a function of, and φ is cyclic.
In particular spacetimes, the coordinates may be denoted somewhat differently.

Unless stated otherwise, primes represent derivatives with respect to the radial
coordinate, f ′(r) = d

drf(r), with d
dr being the total derivative with respect to

the variable r. Partial derivatives shall be denoted using a comma aµ,ν and
covariant derivatives using a semicolon aµ;ν , while covariant absolute derivatives
with respect to a variable r are denoted D

dr .
We adopt the sign convention of the legendary ‘MTW’ textbook Misner et al.

[1973]. The signature of the metric tensor considered in this work is ( − + + + ),
which means that time-like vectors have negative magnitude. For a metric with
the components gµν in a given coordinate system, the Christoffel symbols

Γαµν ≡ gαβ Γβµν ≡ 1
2 g

αβ (gβµ,ν + gνβ,µ − gµν,β)

provide us with the means to express the Riemann tensor in the coordinate basis,

Rα
βγδ = Γαβδ,γ − Γαβγ,δ + ΓαµγΓ

µ
βδ − ΓαµδΓ

µ
βγ .

We fix the sign of the Ricci tensor by considering the contraction

Rµν ≡ Rα
µαν .

With the Ricci scalar curvature R ≡ Rµ
µ, the Einstein tensor takes the form

Gµν ≡ Rµν − 1
2Rgµν .

Using the geometrized unit system, the speed of light and the gravitational
constant are set equal to unity throughout this thesis. The values of physical
quantities shall be expressed using an arbitrary unit of length denoted u.
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1. Preliminaries

1.1 What is cylindrical symmetry?
The aim of this thesis is to analyze spacetimes with cylindrical symmetry. How-
ever, while cylindrical symmetry tends to be easy to define and understand in
classical physics, as one can rely on the coordinates to have a graspable mean-
ing there, the nature of general relativity requires us to transcend beyond the
limitations of the coordinate system and define symmetries covariantly. Indeed,
according to Bronnikov et al. [2020] there exists some confusion regarding the
definition of cylindrical symmetry in the literature.

In our work, we shall employ an intuitive approach to the desired symmetry.
Analogously to, e.g., Linet [1986], as an ansatz we consider the cylindrically-
symmetric, static metric

ds2 = − expA(r) dt2 + dr2 + expB(r) dz2 + expC(r) dφ2 (1.1)

with at least three orthogonal Killing vector fields1 ∂t, ∂z, and ∂φ. The first
of them, ∂t, is timelike and it brings about the stationarity of the spacetime.
Coupled with the fact that the vector field is orthogonal to surfaces of constant
coordinate time t, this means that the metric is also static. The last two Killing
vector fields are spacelike, and we assume that ∂φ has closed orbits, therefore φ
is the bounded angular coordinate. In order to avoid laborious work with dimen-
sions, we consider the metric functions to be dimensionless, which means that at
this point, every coordinate has the dimension of length, somewhat unintuitively
also including φ. However, the coordinates tend to undergo some transformations
during the course of the work, so the dimensions may vary in the final product.
The angular coordinate in particular is always rescaled in the end so that it is
dimensionless and the hypersurfaces at φ = 0 and φ = 2π are identified. Note,
however, that the ansatz treats the z and φ coordinates the same way, so at
this point the interpretation of the coordinates is completely arbitrary. While we
shall mostly respect the cylindrical interpretation throughout this thesis, some
spacetimes are perhaps more suited for, e.g., the toroidal interpretation (with the
z coordinate also periodic) or the planar interpretation (with φ unbounded). We
shall discuss these cases as we come across them.

The absence of the off-diagonal elements in the spatial part of the metric makes
the system invariant under reflections in any plane containing the axis as well as
in planes perpendicular to it. The resulting symmetry of the studied spacetimes
is then called ‘whole-cylinder symmetry’ in works such as Thorne [1965], Melvin
[1965], and Carot et al. [1999].

An important ingredient to both cylindrical and its parent axial symmetry is
the axis, which can be found wherever the norm of the Killing vector ∂φ vanishes
(i.e., gφφ → 0 in our coordinates). While it is natural to expect a cylindrically-
symmetric spacetime to have a single axis, we do not insist on it. In fact, we
shall encounter also spacetimes with no axes or with two of them. Note that

1There may be more Killing vector fields than three, depending on the particularities of the
metric functions in a given spacetime.
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the extrinsic curvature scalar K, which is the trace of K (1.41) as defined and
discussed in Sec. 1.2.2, can be expected to diverge to positive infinity in the
limit as the radial coordinate approaches that of the axis, because it gives the
divergence of the normal field to the cylindrical hypersurfaces we consider. Also
note that Carot [2000] states that the Petrov algebraic type of the Weyl tensor
at points on an axis in axial spacetimes can only be D or O. Our spacetimes do
not violate this theorem.

The studied spacetimes that are bereft of an axis can be separated into three
categories:

• In the spacetimes with a radial magnetic field of Sec. 2.4 and Sec. 2.6,
the axes are singular and thus not a part of the manifold. Nonetheless,
papers such as Barnes [2000] and Bronnikov et al. [2020] admit that even
physically-realistic cylindrical spacetimes may contain singular axes.

• The azimuthal inhomogeneous spacetime of Sec. 2.8 has the monotonically
increasing gφφ = r2, but what would be the axis at r = 0 lies outside of
the allowed interval of r. However, we do not consider this to be an issue
with respect to the question of cylindrical symmetry, as similar situations
can arise from the application of Israel’s cut-and-paste formalism (which
we shall introduce in Sec. 1.2.2 and use throughout the thesis) by, e.g., con-
necting two instances of the asymptotic region of a cylindrical spacetime
through a thin shell. We view the resulting spacetime to be just as cylin-
drical as the original one, but the part containing the axis would be left
out. Similar arguments can be found in, e.g., Carot et al. [1999] and Barnes
[2000]. Having said that, in the end we suggest that this particular metric
may be better understood as having toroidal symmetry anyway.

• On the other hand, our radial and azimuthal homogeneous solutions of
Sec. 2.5 and 2.7, respectively, have gφφ = const., which seems more ques-
tionable. Again, this suggests that it may be reasonable to view these
spacetimes as having a different kind of symmetry. Indeed, Bronnikov et al.
[2020] even goes as far as to say that the existence of an axis is essential
in cylindrical spacetimes. However, we choose to keep considering φ as
a 2π-periodic coordinate in these cases to match the theme of the thesis.
We discuss alternative interpretations in the corresponding sections. Both
spacetimes contain a cylinder that is invariant with respect to a reflection
of the radial coordinate under which the metric is invariant. This cylinder
can perhaps be viewed as the closest substitute for an axis, but we refrain
from calling it so.

In more technical terms, the Killing vectors ∂z and ∂φ commute, [∂z, ∂φ] = 0,
and they generate the Abelian group G2. As required by, e.g., Carot et al. [1999],
the orbits of the group are locally spacelike cylinders denoted S2. The paper then
states that a spacetime is cylindrically symmetric if and only if it admits a G2
on S2 group of isometries that contains an axial symmetry. The axial symmetry
is generated by the spacelike Killing field ∂φ, but Carot et al. [1999] notably also
requires its set of fixed points to be non-empty, which disqualifies especially the
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two spacetimes with gφφ constant2. Indeed, Carot et al. [1999] and Bronnikov
et al. [2020] define the axis as the set of fixed points under the action of the G2
group. Now, let us extend the group to also include the timelike Killing field
∂t to obtain G3 acting on timelike orbits T3. Spacetimes with such a group are
stationary, but they are not static unless they admit a timelike Killing field that
is integrable. To see that our ansatz leads to static spacetimes, we first note
that in our case G3 is Abelian as well, as ∂t commutes with the other fields too.
The Killing vectors are hypersurface orthogonal, as all of them satisfy the relation
ξ[α;βξγ] = 0 (or dξ∧ξ = 0), where ξ represents any of the three Killing vector fields.
Therefore, all 2D subgroups are orthogonally transitive, as every pair of vectors
also satisfies the weaker condition ξ[α;βξγηδ] = 0 (or dξ ∧ ξ ∧ η = 0) as defined in
Stephani et al. [2009], where η is the other Killing field of the pair. According to
Carot et al. [1999], [∂z, ∂t] = 0 with the orthogonal transitivity of the original G2
on S2 imply staticity. As ansatz (1.1) fulfills both conditions, our spacetimes pass
this more technical criterion and are indeed static and cylindrically symmetric as
long as their gφφ is not constant.

Note that in the Appendix, we limit the cylindrical symmetry to the spatial
part of the spacetime (by requiring the spatial part of the metric to match that of
the Minkowski spacetime written in cylindrical coordinates, see Sec. 1.3.1), but
we permit gtt to be the function of any of the three spatial coordinates.

1.1.1 Regularity of axes
Due to their symmetries, each of the studied spacetimes has the Killing vector
η = ∂φ, which has closed orbits and generates translations in the azimuthal
direction, with the dimensionless φ coordinate taking on values from the interval
[0, 2π). Recall that we may need to rescale the coordinate to comply with the
previous assumption. Some of the solutions may have one or two axes of symmetry
where the norm of the Killing vector η2 = gµνη

µην vanishes. In that case the
coordinate φ is degenerate there, which complicates the analysis of the spacetime
at the axis. It is then harder to determine whether the axis is regular or not.
Publications such as Mars and Senovilla [1993], Wilson and Clarke [1996], Carot
et al. [1999], Carot [2000], Stephani et al. [2009], and Bronnikov et al. [2020],
mention this issue. Non-regular axes tend to suffer from a deficit angle, a conical
singularity typically related to a distributional matter content along the axis.

For an axis located at the radial coordinate r = ra, the condition for the
so-called elementary flatness is

lim
r→ra

gµν (η2),µ (η2),ν
4η2 = 1 . (1.2)

If this regularity condition holds, the 2π-periodicity of the axial coordinate is
ensured near the axis. In the first approximation, the length of a circular orbit
around an axis is then 2π times the distance to the axis, as one would expect in
a flat spacetime.

2While the spacetimes of the first two bullet points above also technically do not contain
the axis as it would be located at a non-accessible value of the radial coordinate, Carot et al.
[1999] is more accepting of such cases.
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More precisely, it is possible to relate the condition (1.2) to the derivative of
the proper circumference of circles around the axis

C =
∫ 2π

0

√
gφφ dφ (1.3)

with respect to their proper radius rp. In the ansatz (1.1) the proper radius is
given by the difference of the radial coordinate of the circle and the axis and
so we have drp = dr with r being the circle’s coordinate radius. However, our
derivation of the final metric tensors for the exact solutions we examine in the
next part of the thesis may include transformations of the radial coordinate, so
the r coordinate appearing in the metric may not correspond to proper distance.
In that case, we have drp = √

grrdr, assuming that the axis is located at a lower
value of the radial coordinate than the circle. Therefore, the sought derivative is

dC
drp

= 1
√
grr

dC
dr . (1.4)

Now, we can take advantage of the fact that we shall be dealing exclusively with
diagonal metric tensors3, which do not depend on the φ coordinate. We then have
C = 2π√

gφφ and dC/dr = πgφφ,r/
√
gφφ. Seeing that η2 = gφφ, we can replace the

derivatives of η2 in (1.2) with the derivatives of C, leading to the expected result
dC/drp → 2π as we approach the axis.

1.2 Technicalities
In order to streamline the whole process, we shall now present methods and
formulae used in the subsequent chapters to gain more insights into the derived
spacetimes. For the sake of brevity, most of these details were left out of the
published papers, a necessary evil we shall attempt to remedy here. The solutions
themselves are derived later, in Sec. 2.1.

Not every procedure we use to examine the spacetimes, however, merits a
discussion here. We shall talk chiefly about methods of investigating particle
motion and shell sources, as these form a considerable part of the work and we
deem it necessary to point out the specifics of dealing with our spacetimes, so that
when we present the spacetimes themselves, we can focus on the results and not
on how we arrived to them. We also summarize the transformations leading to
the conformal diagrams we draw for some of the spacetimes. On the other hand,
what we shall not discuss are ‘cookbook-like’ algorithms we use without any
modifications of our own. Such algorithms are, e.g., the one for determining the
Petrov algebraic classification of the solution’s Weyl tensor (adopted from chapter
2 of Griffiths and Podolský [2009]) or the one for determining optical scalars for
null geodesic congruences (adopted from chapter 2.4 of Poisson [2004]).

1.2.1 Electrogeodesics
One way to study a spacetime is through test particle motion. We shall use the
Lagrangian formalism to examine motion of both uncharged and charged test

3Non-diagonal metric tensors appear as a stepping stone when drawing conformal diagrams
as explained in Sec. 1.2.3, but they are not used to obtain any other information about the
spacetimes.
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particles, yielding geodesics and electrogeodesics, respectively. Here we follow
our previous work Veselý and Žofka [2018] and Veselý and Žofka [2019a] dealing
with the Kerr–Newman–(anti-)de Sitter solution. Our aim is not to provide a
complete analytical solution of the full equations of motion, we rather place our
focus on a few select interesting cases.

In the Lagrangian formalism, test particle motion can be described using
the scalar Lagrangian function L. For uncharged particles, we consider the La-
grangian density

L(xα, ẋα) = 1
2gµν ẋ

µẋν , (1.5)

where ẋµ is the derivative of the particle’s position xµ with respect to a variable
used to parametrize motion, such as the proper time τ for massive particles.
Considering only affine parametrization, the particle’s four-velocity ẋµ satisfies
the normalization equation

gµν ẋ
µẋν = δ , (1.6)

where δ = −1 for massive particles and δ = 0 for massless photons.
While one could generally study the equations of motion derived from the

Lagrangian directly, such a process can prove to be rather cumbersome. Instead,
we shall utilize an effective potential V (r) describing motion in the radial direction
with respect to the particle’s radial position independent of the affine parameter.
The potential can be derived by expressing ṙ from the normalization equation
and replacing the other components of the four-velocity with the corresponding
constants of motion. Because we are going to work exclusively with cylindrical
spacetimes, the metric will always be a function of the radial coordinate only,
gµν(r), and, by extension, it will also be the only coordinate appearing in L.
Therefore, there are three constants of motion corresponding to the three cyclic
coordinates,

−E = ∂L
∂ṫ

= gttṫ , (1.7)

Z = ∂L
∂ż

= gzz ż , (1.8)

L = ∂L
∂φ̇

= gφφφ̇ , (1.9)

where we also made use of the fact that our solutions will always have a diag-
onal metric. We require E to be positive so that the particle moves forward in
coordinate time. After plugging the constants into (1.6), we obtain the effective
potential

V (r) = 1
2grr

[
−δ + E2

gtt
+ Z2

gzz
+ L2

gφφ

]
(1.10)

satisfying
1
2 ṙ

2 = −V (r) . (1.11)

A particle can move in the area with V (r) ≤ 0 and its turning points in the radial
direction fulfill V (r) = 0.
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Furthermore, the potential can be separated4 by considering

V (r) = 1
2gttgrr

(
E2 −W 2(r)

)
(1.12)

with
W 2(r) = gtt

[
δ − Z2

gzz
− L2

gφφ

]
(1.13)

A particle can move in the area satisfying W 2(r) ≤ E2 and its turning points in
the radial direction fulfill W 2(r) = E2. The advantage in using W 2 over V is that
when plotting the potentials, it is much easier to infer the behavior of various
particles with different values of E (but the same L and Z) from the chart of W 2.

When it comes to charged test particles, the situation gets somewhat more
complicated. The Lagrangian density gains an additional term corresponding to
the electromagnetic interaction,

L(xα, ẋα) = 1
2gµν ẋ

µẋν + κẋµAµ , (1.14)

where κ is the particle’s charge-to-mass ratio and A is the electromagnetic four-
potential. For axial and azimuthal fields, we can repeat the procedure for un-
charged particles, because A can be taken as a function of the radial coordinate
only. The studied axial fields are of the form F = Frφ(r) dr ∧ dφ, so a convenient
choice of the electromagnetic potential satisfying dA = F is

A =
(∫

Frφ(r) dr
)

dφ (1.15)

which means that E and Z stay the same as in the uncharged case, but

L = ∂L
∂φ̇

= gφφφ̇+ κAφ , (1.16)

from which we express φ̇ to plug in the normalization equation (1.6), equivalent
to taking L → L−κAφ in the uncharged potential (1.10). Similarly, for azimuthal
fields we have F = Frz(r) dr ∧ dz, so

A =
(∫

Frz(r) dr
)

dz (1.17)

and the one changed constant of motion is

Z = ∂L
∂ż

= gzz ż + κAz , (1.18)

leading to the change Z → Z − κAz in (1.10). Finally, for radial fields we always
have F = Fzφ dz ∧ dφ with Fzφ = const. for our spacetimes. Unfortunately, a
potential satisfying dA = F must necessarily depend on z and/or φ. Choosing

A = Fzφ z dφ (1.19)
4We choose to separate the constant of motion E from the effective potential, because then

the separated potential resembles the potentials that one may encounter in classical physics. It
is, however, only a matter of convention, as we could equivalently choose to separate any other
of the constants.

11



to avoid having to deal with the periodicity of φ, this means that z is not a cyclic
coordinate in the Lagrangian anymore, and we, therefore, lose the constant of
motion Z. This means we cannot use the effective potential V .

Not all hope is lost for the spacetimes with a radial magnetic field, however,
as an alternative approach that may be worthwhile to pursue is to analyze the
Hamilton–Jacobi equation, which has been used to provide interesting results for
black-hole spacetimes in, e.g., Hackmann et al. [2010a,b] and Hackmann and Xu
[2013]. The equation reads

H
(
xα,

∂S

∂xα

)
+ ∂S

∂λ
= 0 , (1.20)

where S is a scalar function describing the action of the system, λ is the variable
used to parametrize motion, and H is the Hamiltonian function, which for the
Lagrangian (1.14) becomes

H(xα, pα) = 1
2g

µν (pµ − κAµ) (pν − κAν) . (1.21)

Note that the generalized four-momenta

pα = ∂L
∂ẋα

= gαµẋ
µ + κAα (1.22)

are considered to be the derivatives of S in the Hamilton–Jacobi equation. The
elements of pα are the constants of motion if the particular xα is a cyclic coordi-
nate.

As for the action, for the systems with three cyclic coordinates we have

S = −1
2δλ− Et+ Lφ+ Zz +R(r) . (1.23)

It is possible to express the derivative of the only unknown function R(r) from
(1.20), but there is no point in doing so as it is equivalent to the effective potential
V through (1.22) and (1.11): R′(r) = pr = grrṙ = ±grr

√
−2V . On the other

hand, for charged particle motion in the spacetimes with a radial magnetic field,
we are one constant of motion short to use the effective potential V , but if we
assume separability of the action, we can use (1.20) with

S = −1
2δλ− Et+ Lφ+ Z(z) +R(r) , (1.24)

where Z(z) is now also an unknown function. In the fortuitous case when the
Hamilton–Jacobi equation itself is separable, i.e., it is possible to rewrite it as
f(r) = g(z), both sides are then equal to the so-called Carter constant K, which
simplifies the analysis of the problem by replacing the lost constant of motion Z.
Using the constant, we can express R′(r) from f(r) = K and similarly Z ′(z) from
g(z) = K to introduce two new effective potentials

Vr(r) = −1
2

(
R′(r)
grr(r)

)2

, (1.25)

Vz(r, z) = −1
2

(
Z ′(z)
gzz(r)

)2

, (1.26)
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satisfying

1
2 ṙ

2 = −Vr(r) , (1.27)
1
2 ż

2 = −Vz(r, z) , (1.28)

so that we have analogous relations to those above instead of having to work in
the phase space. Because (1.27) has the same form as (1.11), the new potential
for radial motion can be analyzed in the same way as the previously-discussed
effective potential V . However, unless gzz is constant, Vz is a function of two
coordinates, which needs to be taken into account when examining motion along
the z direction using (1.28).

In the course of this work we shall encounter a spacetime where the Hamilton–
Jacobi equation with particle charge included is not separable (namely the non-
cosmological spacetime with a radial magnetic field of Sec. 2.4), which renders the
method of the effective potentials sadly unusable for charged test particle motion.
On a more positive note, according to, e.g., Gutzwiller [1990], Lichtenberg and
Lieberman [1992], and Schuster and Just [2005], this particular system does not
retain enough constants of motion to be integrable and we may therefore be able
to observe deterministic chaos in the solutions to the equations of motion. Indeed,
by numerically integrating the full equations of motion

Dẋµ
dτ ≡ ẍµ + Γµαβẋαẋβ = κF µ

α ẋ
α, (1.29)

where Γµαβ are the Christoffel symbols of the second kind, we have found indica-
tions of chaotic motion for charged test particles in the above-mentioned solution,
as we briefly discuss in the corresponding chapter.

Our goals

There are two problems we are mainly interested in. First, we want to determine
whether test particles can reach interesting locations such as the axis, singular-
ities, horizons and the radial infinity (wherever applicable), which can be done
by computing the limits of the potentials. Second is the question of the ex-
istence and stability of stationary circular orbits in the planes of z = const.,
which are perpendicular to the spacetime’s axis or axes of symmetry, provided
the spacetime contains any axes. The radii of stationary orbits r0 must satisfy
V (r0) = 0 = V ′(r0), or, equivalently, W 2(r0) = E2 with (W 2)′(r0) = 0. From
these relations we usually express E2 and L2 and determine the allowed range
of r0 by requiring both of them to be positive, so that the constants themselves
are not imaginary. The stability of the orbits is given by the sign of the second
derivative of the potentials (at r0 the sign of the second derivative is the same
for both V and W 2), with stable orbits lying in the minima of the potentials and
unstable in the maxima. As we consider planar orbits, we set ż = 0, which fixes
the value of Z (to zero for uncharged particles).

The endpoints of the allowed range of r0 for uncharged massive particles are
suspected of being photon orbit radii. To verify or disprove this by finding the
photon orbits, we must proceed differently from the massive case, as solving
V (r0) = 0 = V ′(r0) or their equivalent for E and L while considering δ = 0
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necessarily leads to the unphysical solution E = 0 = L, implying a motionless
photon. Instead, we replace φ̇ with

Ω = dφ
dt = φ̇

ṫ
(1.30)

in both the photon normalization equation (1.6), gµν ẋµẋν = 0, and the stationary
(i.e., ẍµ = 0) photon (i.e., κ = 0) remnant of (1.29), Γµαβẋαẋβ = 0, while setting
ṙ = 0 = ż in both. Due to peculiarities of our spacetimes, ṫ can be eliminated from
either equation, thus dismissing the unphysical solution with E = 0. Therefore,
we solve the equations for Ω and, more importantly, the photon orbit radii r0,
which take only discrete values for photons.

The Killing constants

While the previous approach is sufficient for us to establish effective potentials for
charged radial motion if the spacetime admits it, note that a more complete set
of constants of motion can be procured by taking advantage of all the spacetime’s
symmetries as described by the Killing vector fields denoted ξ, which satisfy the
relation

ξα;β + ξβ;α = 0 , (1.31)

equivalent to saying that the Lie derivative of metric with respect to ξ vanishes,
£ξg = 0. To find out what the conserved quantity is, we must come up with
an expression the time derivative of which vanishes. As conserved quantities in
classical physics tend to be connected to the symmetries of a given system, a
reasonable relativistic candidate could be the scalar product of a Killing vector
and the four-velocity of the particle, ξαẋα. Its time derivative is

d
dτ (ξαẋα) = D

dτ (ξαẋα) = ξα;βẋ
αẋβ + ξα

Dẋα
dτ . (1.32)

The first term vanishes due to the antisymmetry of ξα;β, and we can insert the
right-hand side of the equations of motion (1.29) into the second term to obtain

d
dτ (ξαẋα) = κξαFαβẋ

β. (1.33)

Therefore, for uncharged particles with κ = 0 we obtain as many constants of
motion ξαẋα as there are Killing vector fields in the given spacetime. Only a subset
of these constants, which (for a general ẋβ) correspond to the Killing vectors that
satisfy ξαFαβ = 0, is valid for charged particles as well. An alternative derivation
of this result can be found in, e.g., Sommers [1973]. Take note that since the
time derivative does not contain κ, the subset of constants that are applicable for
charged particles does not actually distinguish between charged and uncharged
particles at all. Therefore, we cannot reproduce constants such as (1.16) or (1.18)
in this way.

Another reasonable candidate is the scalar product of a Killing vector and the
generalized four-momentum given by (1.22). We can start by adding

d
dτ (κξαAα) = D

dτ (κξαAα) = κẋβ (ξα;βA
α + ξαAα;β) (1.34)
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to (1.33). After considering Fαβ = Aβ;α − Aα;β and using the antisymmetry of
ξα;β once more, we obtain

d
dτ (pα ξα) = κẋβ

(
ξαAβ;α − Aαξβ;α

)
= κẋβ£ξA

β, (1.35)

which means that for charged particles, pα ξα is a constant of motion if the Lie
derivative £ξA vanishes. For uncharged particles, pα becomes ẋα and both sets
of constants are the same.

Both results seem to suggest that constants of motion for charged particles
are connected to those Killing vector fields that correspond not only to sym-
metries of the metric but also to symmetries of the quantities that govern the
electromagnetic field.

The results can be generalized for Killing tensors of higher rank, which are
totally symmetric but their covariant derivative is totally antisymmetric, i.e.,
kα ··· = k(α ··· ) and k(α ··· ;µ) = 0, where the dots represent an arbitrary number of
indices. Then, the constants of motion are scalar products of the tensor with
as many instances of the four-velocity as the rank of the tensor permits, but a
further condition must again be satisfied if the constant is to be valid for charged
particles as well. To demonstrate on a second-rank Killing tensor, we have

d
dτ

(
kαβẋ

αẋβ
)

= D
dτ

(
kαβẋ

αẋβ
)

= kαβ;γẋ
αẋβẋγ + 2kαβ

Dẋα
dτ ẋβ = 2κkαβFα

γ ẋ
γẋβ .

(1.36)
Like in (1.32), the first term vanished due to the antisymmetry of kαβ;γ. For the
right-hand side to vanish for any ẋα, we must either consider uncharged particles
with κ = 0, or the Killing tensor must fulfill kα(βF

α
γ) = 0. It is clear to see that

the latter condition becomes kα(··· F
α
µ) = 0 for Killing tensors of higher rank, a

result known in Sommers [1973] as well.
Note, however, that some of the constants of motion constructed from the

Killing tensors may be powers or products of the constants that can be obtained
from the Killing vectors, or, more generally, from the Killing tensors of lower
ranks. To demonstrate that for a Killing tensor of rank two, let us consider two
(not necessarily different) Killing vectors ξ and ζ. If we take kαβ = ξ(αζβ), the
symmetrized covariant derivative vanishes and this k indeed is a Killing tensor.
Due to the symmetry of ẋαẋβ, the corresponding constant is kαβẋαẋβ = ξαẋ

α ζβẋ
β,

clearly a product of the constants given by the two Killing vectors separately.
If both of the constants are valid for charged particles, their product also is.
Denoting n the number of Killing vectors (n ≥ 3 for our spacetimes), in this way
we get

(
n+1

2

)
second-rank constants that bear no additional information and can

be discarded.
Furthermore, also note that one of the Killing tensors of rank two is the metric

itself, because it is symmetric and its covariant derivative vanishes even without
the symmetrization. The corresponding constant of motion is the normalization
of the four-velocity (1.6). Unsurprisingly, the normalization is valid for both un-
charged and charged particles, as gα(β F

α
γ) = F(βγ) = 0 due to the antisymmetry

of F.
While we tend to draw more interesting implications for particle motion from

the effective potentials above, these new constants of motion may provide further
insight in specific cases, which shall be discussed accordingly. We shall limit

15



ourselves to the constants related to Killing tensors of rank at most two to keep
the constants at most quadratic in the elements of the four-velocity. As it turns
out, unfortunately, in the studied spacetimes the second-rank Killing tensors do
not produce any constants of motion that are not determined completely by the
constants obtained from the Killing vectors and the normalization of the four-
velocity.

Even though the constants we derived in this section are mentioned in papers
such as Frolov and Krtouš [2011], their usefulness can be limited by the number
of independent Killing vector fields in a given spacetime and by the difficulty of
computing higher-rank Killing tensor fields. For example, according to Visser
[2009] the Kerr solution only has two Killing vectors corresponding to the two
translational symmetries. These are covered by the cyclic coordinates in the
Lagrangian, which is probably the reason why this extended method of obtaining
constants of motion is not mentioned in papers dealing with related spacetimes
such as Hackmann et al. [2010a,b] and Hackmann and Xu [2013]. Fortunately for
us, some of our spacetimes have as much as six independent Killing vector fields,
which means that we do get new information from the procedure described here.

As hinted above, the constant ∂L/∂ẋZ corresponding to a cyclic coordinate
xZ of the Lagrangian L also corresponds to a certain Killing vector. To see this,
we can use the pristine form of the equations of motion, i.e., the Euler–Lagrange
equations,

d
dτ

(
∂L
∂ẋα

)
− L,α = 0 . (1.37)

Recalling that ∂L/∂ẋα = pα, the dot product with a vector field ξ gives

ξαL,α = ξα
d
dτ pα = d

dτ (pαξα) − pα
d
dτ ξ

α. (1.38)

Now, the cyclic coordinate fulfills

L,Z = 1
2gµν,Z ẋ

µẋν + κAµ,Z ẋ
µ = 0 . (1.39)

As the first term is quadratic in ẋµ and the second is not, both partial deriva-
tives must vanish if κ ̸= 0. The unavoidable first condition, gµν,Z = 0, means
that the metric supports a translational symmetry in xZ , which is in the given
coordinates represented by the constant Killing vector field ξ = ∂xZ satisfying
ξαL,α = L,Z = 0 and dξ/dτ = 0. Note that both expressions are covariant de-
spite containing generally non-covariant derivatives5. Therefore, inserting this ξ
into (1.38), we get the anticipated constant

0 = d
dτ (pαξα) = d

dτ pZ = d
dτ

(
∂L
∂ẋZ

)
, (1.40)

which is manifestly of the form pαξ
α in accordance with the previous results. For

charged particles, the electromagnetic field must also fulfill Aµ,Z = 0, so that
5The Lagrangian L is a scalar quantity, so its partial derivative is a vector and ξαL,α is a

scalar. Looking at (1.38), the left-hand side is a scalar and the first term on the right-hand
side is similarly also a scalar, being a derivative of manifestly scalar pαξα. This means that
pα dξα/dτ must also be a scalar quantity. As the four-momentum pα is a covector, dξα/dτ is
a vector.
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the second term in L,Z (1.39) vanishes as well. Since ξ is a basis vector, this
additional condition is actually equivalent to £ξA = 0, which is consistent with
the analysis performed above. To sum up, while all cyclic coordinates correspond
to translational symmetries of the metric, their Killing vectors must also reflect a
symmetry of the electromagnetic field if the constants are to be valid for charged
particles as well—both the gravitational and electromagnetic fields need to share
the same symmetry.

1.2.2 Shell sources
A shell source is an infinitely thin shell that is located on the interface of two
spacetimes, one of which is a studied spacetime that is understood as being
generated by the shell. The spacetime at the other side of the shell is preferably
an understood and realistic solution that is already known in the literature. While
we do not aim to convince the reader that infinite cylindrical spacetimes are
to any degree realistic, having an at least somewhat-realistic shell-source model
can be an indication of situations where the spacetime can prove to be a useful
approximation. Moreover, by examining the properties of the shell, one may hope
to learn something about the properties of the investigated spacetime’s metric in
turn.

In order to find admissible shell sources, we employ the Israel junction condi-
tions, first introduced in Israel [1966] and expanded for charged shells in Kuchař
[1968]. They are used for connecting two parts of generally distinct spacetimes
along a matching hypersurface. The fulfillment of the Einstein–Maxwell equa-
tions at the hypersurface is guaranteed by the induced energy-stress tensor S
and induced current s appearing there, giving the shell the properties we are
interested in.

The induced quantities and the shell’s geometry

Let us here summarize the details of computation of the two induced tensors.
Denoting ξi the coordinates on the hypersurface Σ and xα± in the two neighboring
spacetimes, a convenient set of tangent vectors to Σ is eαi± = ∂xα±/∂ξ

i. The
normal fields nα± in the two spacetimes are oriented in such a way that they point
in the same direction after crossing Σ. We normalize both sets of the four vectors
in each spacetime to unity. The extrinsic curvature tensor Kij associated with
the embedding of Σ in a given spacetime is

Kij = nα;βe
α
i e

β
j . (1.41)

Denoting K±
ij the curvature tensors associated with the two respective spacetimes

and [Kij] = K+
ij −K−

ij , we obtain the induced stress-energy tensor

Sij = 1
8π ([K]hij − [Kij]) , (1.42)

where we used the induced metric tensor on the hypersurface hij to contract
[K] = [Kij]hij.

As we are using Israel’s formalism to find a shell source for our spacetimes, we
first choose a suitable hypersurface in the investigated spacetimes splitting them
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in two. We use cylindrical hypersurfaces and, omitting the ± signs distinguishing
the two spacetimes being connected, we always consider the tetrad

eT = 1√
−gtt

∂t , eZ = 1
√
gzz

∂z ,

eΦ = 1
√
gφφ

∂φ , n = ϵ
1

√
grr

∂r ,
(1.43)

where (T, Z,Φ) denote the coordinates on the cylindrical hypersurface with the
usual interpretation as suggested by their names, and ϵ = ±1 determines the
orientation of the normal. The normal is to be directed from the minus spacetime
to the plus spacetime, so, for example, the choice ϵ− = ϵ+ = 1 means that we
preserve the part with lower radial coordinate from the minus spacetime, and the
part with higher radial coordinate from the plus spacetime.

Next, we must make sure that the hypersurfaces in the two spacetimes being
connected correspond to each other by fulfilling two conditions, a local one and
a topological one. First, the induced metric on Σ is related to the full spacetime
metric through hij = gµνe

µ
i e
ν
j , and its computation must lead to the same re-

sult when viewed from both neighboring spacetimes. For us, the induced metric
happens to be the three-dimensional Minkowski hij = diag(−1, 1, 1) for every
considered spacetime6, so this condition is always fulfilled. Second, the investi-
gated spacetime has cylindrical symmetry, which means that at any given time
the hypersurface will be a cylinder with axis corresponding to that of the two
spacetimes. We must then make sure that the proper circumference of the hy-
persurface C (1.3) is the same when measured in both spacetimes7, relating the
respective coordinate radii.

The induced current on Σ is given by the difference of the projections of the
electromagnetic tensors

Fi⊥ = Fµνe
µ
i n

ν (1.44)

on both sides of the hypersurface. The three-current is

si = 1
4π [Fi⊥] . (1.45)

We can then define the surface density of charge σ for a static observer on the hy-
persurface as a projection σ = −siui of the induced current to a static observer’s
three-velocity ui.

An interpretable shell

Not every connecting hypersurface that is permitted geometrically is also rea-
sonable from a physical point of view, whatever the definition of ‘reasonable’ is.

6Take note that our computations yield the Minkowski spacetime seemingly expressed in
Cartesian coordinates instead of cylindrical ones, where one would expect hΦΦ = R2 with R
denoting the radius of the shell. However, there is no radial coordinate R in the metric as the
shells have a constant radius, so the two forms of the metric are connected through a simple
rescaling of the angular coordinate, which does not introduce any off-diagonal elements.

7Like in Sec. 1.1.1 we assume in (1.3) that the angular coordinate is dimensionless with values
φ ∈ [0, 2π), which we shall ensure by rescaling the coordinate in the examined spacetimes if
necessary.
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Some could argue that shell sources are necessarily unphysical because of their
reduced dimensionality, which is a valid point that we are going to ignore here,
arguing that the shell is the result of a limiting process starting from a shell of a
finite thickness. Instead, let us have a look at the properties of the induced stress-
energy tensor S. There are various kinds of energy conditions that it may or may
not satisfy (more on them in, e.g., Maeda and Mart́ınez [2020]), but perhaps the
most intuitive way of determining the shell’s reasonableness is by comparing the
computed S to an understood stress-energy tensor S(model), such as the one for
an incoherent dust,

S(1) = µu ⊗ u , (1.46)

where u is the relativistic three-velocity of the stream of dust particles on the
hypersurface, and µ > 0 is the density of the dust8. For the Minkowski metric
and a general u, we have

S
(1)
ij = µ

⎡⎢⎣ u2
T uTuZ uTuΦ

uTuZ u2
Z uZuΦ

uTuΦ uZuΦ u2
Φ

⎤⎥⎦ . (1.47)

In every single application of the formalism we have considered during our
present work, the induced stress-energy tensor was diagonal9. Therefore, the off-
diagonal elements of S(model)

ij must vanish, which for the dust model means that
uZ = uΦ = 0 and u2

T = 1 from the normalization of the relativistic velocity of
massive particles, uiui = −1. Therefore, in order to represent the incoherent dust
of a single type of particles, a diagonal induced stress-energy tensor must have
only one non-vanishing element, STT > 0. Unfortunately, we are not going to
encounter such an agreeable S during our journey.

A very reasonable and much more useful model is the one used previously in
Žofka and Langer [2005], where the authors consider an incoherent dust composed
of four streams of particles. The three-velocities of the streams are chosen as
follows:

u(1) = uT dT + uZ dZ + uΦ dΦ, (1.48)
u(2) = uT dT − uZ dZ + uΦ dΦ, (1.49)
u(3) = uT dT + uZ dZ − uΦ dΦ, (1.50)
u(4) = uT dT − uZ dZ − uΦ dΦ. (1.51)

The model stress-energy tensor is

S(4) = µ
(
u(1) ⊗ u(1) + u(2) ⊗ u(2) + u(3) ⊗ u(3) + u(4) ⊗ u(4)

)
, (1.52)

where the choice of the same density µ for all four streams guarantees that the
tensor is diagonal,

S(4) = 4µ
(
u2
T dT 2 + u2

Z dZ2 + u2
Φ dΦ2

)
. (1.53)

8We use µ instead of the perhaps more common ρ so that the quantity would not be confused
with the radial coordinate, which is denoted ρ in some of the discussed spacetimes.

9Take note that as the intrinsic geometry of the hypersurface is flat, we need not distinguish
between covariant and contravariant components when discussing diagonality.
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From here, we can infer the conditions that a diagonal induced stress-energy
tensor must fulfill so that the the shell source can be composed of four timelike
streams of massive particles. First, STT must be positive and the remaining two
diagonal elements must be non-negative. Second, the normalization of relativistic
velocity for massive particles with δ = −1 is equivalent to having

STT − SZZ − SΦΦ = −4δµ = 4µ > 0 , (1.54)

leaving us with four conditions in total. The last relation can be used to determine
the model’s µ from the induced stress-energy tensor, and the components of the
three-velocity can then be obtained by comparing the elements of (1.53) to the
induced tensor.

Note that the diagonal components of S have a clear physical interpretation:
STT is the energy density on the shell and SZZ and SΦΦ represent the pressure
along the two respective directions. Due to our fortuitous choice of coordinates,
these quantities are scalars, as they can be easily obtained by projections to
the three-velocity of a static observer and to the two spacelike three-velocities
aligned along Z and Φ, respectively. We could rename the energy density ρ and
the pressures pZ and pΦ to use the usual symbols, but we shall not do that here
in order to avoid confusing both us and the reader, as ρ is the radial coordinate
in some of the discussed spacetimes and p can also represent the momentum of
a particle. Nonetheless, even though S always comes with two indices in the
following, let us keep in mind that the three components we encounter are always
scalars.

While we do come across shells that satisfy our requirements in this work, note
that the constructed shells do not fulfill the Einstein equations in 2+1 dimensions,
as the induced flat metric would require the induced stress-energy tensor to van-
ish. However, the equations within the full four-dimensional spacetime are still
valid as the shell is constructed in such a way that the junction conditions are
satisfied.

As a side note, for a photon shell the expression (1.54) would be equal to zero,
as photons have δ = 0, and there would have to be necessarily at least one other
non-zero diagonal element of S besides STT . However, because such a model
can be viewed as an extreme version of a massive shell, considering only massive
shells will suffice for our purposes due to continuity of the quantities involved.
Moreover, photons do not carry electric charge, which means that the shells could
not realistically contain any induced current.

Speaking of the currents, the four streams can model general induced currents
when imbued with test electric charge,

s(4) = q1u(1) + q2u(2) + q3u(3) + q4u(4) (1.55)

with components

s(4) = (q1 +q2 +q3 +q4)uT dT +(q1 −q2 +q3 −q4)uZ dZ+(q1 +q2 −q3 −q4)uΦ dΦ .
(1.56)

As we deal with spacetimes with purely magnetic fields, there is no surface density
of charge σ, equivalent to sT = 0 for the diagonal induced metric, which would
be impossible to be fulfilled by a single charged stream of particles as such a
stream would be spacelike. However, as long as the sum of charges vanishes, a
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superposition of four timelike streams can produce a spacelike total three-current.
E.g., choosing q ≡ q1 = −q2 = q3 = −q4 results in the axial

s(4) = 4quZ dZ . (1.57)

Expressing uZ from (1.53), we can compare a computed axial s = sZ dZ to the
model to obtain an expression for particle charge q,

q = sZ
2

√
µ

SZZ
= sZ

4

√
STT − SZZ − SΦΦ

SZZ
. (1.58)

The choice q ≡ q1 = q2 = −q3 = −q4 similarly leads to

s(4) = 4quΦ dΦ (1.59)

and
q = sΦ

2

√
µ

SΦΦ
= sΦ

4

√
STT − SZZ − SΦΦ

SΦΦ
(1.60)

for azimuthal currents. Generally, we can consider

s(4) = 1
4

(
sZ
uZ

+ sΦ

uΦ

)
u(1) + 1

4

(
− sZ
uZ

+ sΦ

uΦ

)
u(2)

+ 1
4

(
sZ
uZ

− sΦ

uΦ

)
u(3) + 1

4

(
− sZ
uZ

− sΦ

uΦ

)
u(4) (1.61)

to obtain the spacelike
s(4) = sZ dZ + sΦ dΦ , (1.62)

where sZ and sΦ are determined by the induced three-current. This corresponds
to the choice q4 = −q1 and q3 = −q2 in (1.55) with

q1 =
√
µ

2

(
sZ√
SZZ

+ sΦ√
SΦΦ

)
,

q2 =
√
µ

2

(
− sZ√

SZZ
+ sΦ√

SΦΦ

)
.

(1.63)

Note that there may be intervals of the shell’s radii where the induced-stress
energy tensor S does not fulfill our requirements for the four-stream interpreta-
tion, but q may still be well defined.

If two particular parts of two spacetimes allow an interpretable shell on their
interface, then the shell’s radius is not fixed in most cases but can take any
value from a specific interval. An endpoint of the interval can correspond to an
endpoint of the interval of allowed radial coordinates within the spacetime due
to an axis (singular or not) and it is also possible that the interval extends to
radial infinity. Most often, however, there is nothing extraordinary about the
extreme values of the allowed shell’s radii from the viewpoint of the spacetime
itself. What do the endpoints represent, then? Generally, we can distinguish two
cases: Either one of the diagonal elements of S vanishes, or µ vanishes. In the
former case, (1.53) implies that the corresponding element of the three-velocity
of the streams vanishes, and beyond that point the three-velocity would need to
be complex. On the other hand, the point where µ expressed from the relation
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(1.54) vanishes corresponds to a photon shell as mentioned above. This can be
seen after expressing the Lorentz factor from uT ,

γ =
√
STT
4µ , (1.64)

which clearly diverges in the limit of µ → 0+ for a finite STT > 0.
It might seem natural to extend our shell-source model to the case of a perfect

fluid, but it can be argued that a seemingly perfect fluid confined to a shell is
not perfect anymore, as there cannot be any pressure along the normal to the
hypersurface. This is not an issue for the incoherent dust, which is why we focus
solely on dust shells.

Note that if a shell admits our desired dust interpretation, the induced stress-
energy tensors actually comply with multiple energy conditions according to
Maeda and Mart́ınez [2020]. Denoting A either spatial coordinate and using
our notation, for our 3D diagonal induced stress-energy tensor S the five energy
conditions discussed in the paper read as follows:

• Null energy condition: STT + SAA ≥ 0.

• Weak energy condition: STT + SAA ≥ 0 and STT ≥ 0.

• Strong energy condition: STT + SAA ≥ 0 and SZZ + SΦΦ ≥ 0.

• Flux energy condition: (STT )2 ≥ (SAA)2.

• Dominant energy condition: STT ≥ |SAA| and STT ≥ 0.

The first three conditions are manifestly met by our dust shells, as the diagonal
elements of S are non-negative. For the same reason, we can rewrite FEC and the
first requirement in DEC as STT − SAA ≥ 0, which is fulfilled due to our relation
(1.54), which implies both that STT −SZZ > SΦΦ ≥ 0 and STT −SΦΦ > SZZ ≥ 0.
Therefore, the dust shells we aim to find fulfill each of the five standard energy
conditions.

Lastly, note that there is another scalar quantity that can be used to describe
the shell, its mass per unit proper length M1, which is defined in publications
such as Bičák and Žofka [2002], Žofka and Langer [2005], and Žofka and Bičák
[2007] as

M1 = CSTT . (1.65)

Because the shell’s circumference C given by (1.3) is by definition positive, we have
sgn(M1) = sgn(STT ). While the scalar does not provide an additional constraint
on the shells, a critical value of M1 = 1/4 tends to appear in the literature as the
maximum mass per unit length of shells located in spacetimes that are regular
on both sides of the shell regardless of the matter content of the shell itself as
long as the cosmological constant is not involved. This value has been known for
quite some time, see, e.g., Raychaudhuri and Som [1962] and Langer [1969]. In
the recent decades, this observation was made for shells connecting the (regular)
asymptotic region of the Levi–Civita solution first to flat spacetime inside the
shell by Bičák and Žofka [2002], and later to the Bonnor–Melvin spacetime by
Žofka and Langer [2005]. The existence of an upper bound for M1 for regular
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spacetimes should come as no surprise, as the amount of matter in a given region
has to be bounded for regular spacetimes that are free of horizons. Note that
this result is reminiscent of the famous hoop conjecture, first proposed in Thorne
[1972], which deals with compact matter and does not consider the presence of
the cosmological constant, but our shells violate both assumptions. After adding
a non-zero cosmological constant to the Levi–Civita solution, Žofka and Bičák
[2007] find that further conditions must be fulfilled if M1 = 1/4 is not to be
exceeded for regular spacetimes. Singular composite spacetimes are not expected
to fulfill any particular inequality with respect to M1 = 1/4.

Our approach

We aim to use Israel’s formalism to find admissible sources of (parts of) the seven
spacetimes examined in this thesis. At the end of each of the seven corresponding
sections, we first briefly discuss shells on the interface of two instances of the same
spacetime, and then we try to find an interpretable shell leading to one of the
better-known spacetimes listed in Sec. 1.3, ideally to the Minkowski spacetime of
Sec. 1.3.1 as it is the simplest, and yet, perhaps paradoxically, the most realistic
one. Finally, once all of our spacetimes have been properly introduced, in Sec. 3.1
we talk about their mutual connections.

While we would prefer to obtain analytical results, most shells are going to
be examined purely numerically, using randomly-generated parameters in the two
spacetimes on either side of the shell. This makes drawing graspable results bind-
ing the two sets of parameters together virtually impossible in most cases, which
means we are unable to learn more about the meaning of the parameters of the
two connected spacetimes. However, finding interpretable shells (especially those
that cut out singularities if there are any in the given solution) even numerically
still lends some credibility to the examined spacetime, as the shell can be seen as
something of a wormhole leading to the examined solution from another space-
time that may be generally accepted as more realistic. Of course, we still have to
ignore the fact the cylindrical symmetry is perhaps not very realistic in the first
place...

Note that we do not insist on keeping the same value (or even the sign) of the
cosmological constant on both sides of the connecting hypersurface. Therefore,
the constant is considered to be constant in the two domains separated by the
hypersurface, but there is a discontinuity on the shell itself. The shell then forms
a so-called domain wall. In recent years, shells (even charged ones) serving as
domain walls appear, for example, in the context of the AdS/CFT correspondence
and holography with implications for cosmology in papers such as Alberghi et al.
[1999], Freivogel et al. [2006a,b], Fu and Marolf [2019], de Alwis et al. [2020],
and countless others, but they were considered in older papers as well, see, e.g.,
Coleman and De Luccia [1980] and Fischler et al. [1990].

For all interpretable shells we provide a summary of their corresponding curves
of M1 in Sec. 3.1. As we perform mainly numerical analysis, we are unable to
draw analytical conclusions about the critical nature of the value of M1 = 1/4,
but we do check its uniqueness numerically and compare our results with the
expectation that regular spacetimes should often have M1 ∈ (0, 1/4].
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1.2.3 Penrose diagrams
Penrose conformal diagrams are a frequently-used way of depicting the global
causal structure of a spacetime in which two spatial coordinates play somewhat
less interesting role than the remaining one. Due to the cylindrical symmetry of
the spacetimes studied in this work, we are interested in capturing the timelike
and radial dimensions of spacetimes worthy of this endeavor. We are especially
interested in the spacetimes with a radial magnetic field presented in Sec. 2.5 and
2.6, as they are the only solutions examined in this work with a non-trivial causal
structure due to the presence of horizons.

The construction of the diagrams consists of employing such coordinate trans-
formations that in timelike two-dimensional slices along the radial direction the
areas radially bounded by the horizons, singularities, axes, and/or radial infinity
can be described using finite coordinate intervals, which makes the subsequent
rendering of the image straightforward. In our case, each point in these dia-
grams then represents a two-dimensional cylinder of the ‘lost’ coordinates z and
φ located at a given coordinate in the slice.

Restricting ourselves to z = 0 = φ, we begin with a metric of the form

ds2 = −f(r) dt2 + dr2

f(r) . (1.66)

We introduce the so-called tortoise coordinate r∗ as

dr∗ = dr
f(r) , (1.67)

which we will be generally able to integrate to express r∗(r) using elementary
functions, even though the same cannot be said for the inversion r(r∗). After the
transformation we have

ds2 = f(r(r∗))
(
−dt2 + dr∗2

)
. (1.68)

If the spacetime contains any horizons, they are located at the radii where f
vanishes. For practical purposes we shall consider each spacetime block bounded
by the given horizons separately and arrange the blocks in the resulting diagram
in the final step. While we always consider real f , the integral of 1/f can have
an imaginary part if there is a horizon. Therefore, in each of the blocks we first
select the imaginary part of the constant of integration in r∗(r) to offset the
imaginary part of the integral, effectively considering r∗ → ℜ(r∗). The real part
of the constant is set the same for each spacetime block to maintain a sense of
continuity, even though the function r∗(r) actually diverges at the horizons for
our spacetimes.

Next, on each block we introduce the analogy of the Eddington–Finkelstein
coordinates,

u = sgn(f)(t− r∗) , (1.69)
v = +(t+ r∗) , (1.70)

leading to
ds2 = − |f(r(u, v))| du dv . (1.71)
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The final transformation is to the so-called Penrose coordinates ψ a ξ,

ψ = arctan v + arctan u , (1.72)
ξ = arctan v − arctan u . (1.73)

The relation can be inverted

u = tan 1
2(ψ − ξ) , (1.74)

v = tan 1
2(ψ + ξ) , (1.75)

to obtain

du = 1
2

dψ − dξ
cos2 1

2(ψ − ξ) , (1.76)

dv = 1
2

dψ + dξ
cos2 1

2(ψ + ξ) , (1.77)

leading to the metric

ds2 = |f(r(ψ, ξ))|
(cosψ + cos ξ)2

(
−dψ2 + dξ2

)
(1.78)

conformally related to the two-dimensional flat metric, but with both coordinates
bounded by ±π arctan u, where u is an arbitrary unit of length. This enables us
to draw diagrams of finite size for each block. Note that another advantage of the
diagrams is that radial photon geodesics travel at a 45-degree angle in the chart.

To sum up, the construction consists of going through the coordinate trans-
formations (t, r) → (t, r∗) → (u, v) → (ψ, ξ). The last two coordinates are chosen
in such a way that ψ is the temporal coordinate and ξ is the spatial one even
in the dynamical areas of spacetimes with f < 0, where t and r exchange their
physical interpretation. For each block we draw its boundaries and the lines of
constant coordinates t and r, obtaining the usual diamond-shaped diagrams or
their cropped variants, depending on the boundaries of the particular area of the
spacetime. Finally, we shift ψ and ξ in the blocks so that they are arranged cor-
rectly with respect to the horizon positions to form a diagram encompassing all
areas of the spacetime with unique physical properties. However, in some cases
such a diagram may not represent a geodesically-complete spacetime and we have
to stack copies of the diagram along the appropriate edges to achieve analytical
maximality. This will be discussed on a per-diagram basis.

1.3 Better-known cylindrical spacetimes
In this section we provide a brief summary of select named spacetimes with
cylindrical symmetry we shall refer to throughout the thesis. They are often
assumed to be the limiting cases of the solutions we analyze and can be used in
determining shell sources.
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1.3.1 Minkowski
It is inconceivable that anyone who dabbles in Einstein’s theories of relativity
would not be intimately familiar with the flat Minkowski spacetime, the stage of
the special theory. Calling this spacetime only a cylindrical one is somewhat of
an understatement, because it is maximally symmetric. Having said that, for our
purposes we shall use the cylindrical form of the metric,

ds2 = −dt2 + dρ2 + dz2 + ρ2 dφ2 . (1.79)

While we do not deem it necessary to write about this spacetime in length here,
we shall present the main quantities pertaining to the use of Israel’s formalism of
Sec. 1.2.2. Considering a cylindrical hypersurface located at a given ρ = const.,
its extrinsic curvature tensor (1.41) is simply

K = ϵρ−1 dΦ2 , (1.80)

where ϵ determines the orientation of the normal as explained in Sec. 1.2.2. As
the spacetime is a vacuum one, there is no electromagnetic field to project to the
normal, so we have F⊥ = 0. Lastly, the formula for the proper circumference
(1.3) of the hypersurface is the Euclidean one,

C = 2πρ . (1.81)

The proper circumference depends on the proper radius linearly, dC/drp = 2π, as
the ρ coordinate corresponds to proper distance, drp = dρ.

1.3.2 Levi–Civita
A general cylindrically-symmetric and static vacuum exact solution without the
cosmological constant is the Levi–Civita spacetime, discovered in Levi-Civita
[1919] (republished in English in Levi-Civita [2011]) not long after the general
theory of relativity itself was introduced, even though the spacetime’s interpreta-
tion was not clear at the time. A possible form of the metric given by Richterek
et al. [2000] and Griffiths and Podolský [2009] is

ds2 = −ρ4σdt2 + ρ4σ(2σ−1)
(
dρ2 + dz2

)
+ C2ρ2(1−2σ)dφ2 (1.82)

with two parameters C > 0 and σ of any sign.
For sufficiently small positive values of σ, the spacetime can be interpreted

as that of a uniform line source (which can be replaced by a regular region filled
with matter) at the axis at ρ = 0 with σ representing the effective gravitational
mass per unit proper length. The first papers dealing with this issue suggested
the upper bound for this interpretation to be σ = 1/4, which was later extended
to σ = 1/2 until finally Wang et al. [1997] found physically-reasonable cylindrical
sources for the spacetime for σ ∈ [0, 1]. However, note that for σ > 1/2 we have
limρ→0+ gφφ = ∞, so ρ = 0 represents the asymptotic region instead of the axis.
The axis is then located at ρ → ∞. The parameter C can give a deficit angle
at the axis if σ = 0. It is not possible to regularize the axis for other values of
σ, as the fraction in (1.2) is proportional to ρ−8σ2 , so it cannot attain finite and
non-zero values in the limit of either ρ → 0 or ρ → ∞.
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The algebraic type of the spacetime depends on the value of σ. The spacetime
is flat for σ ∈ {0, 1

2 ,∞}. For other values of σ, there is a curvature singularity at
ρ = 0, regardless whether it represents the axis or the asymptotic region, as the
Kretschmann scalar

RαβγδR
αβγδ = 64σ2(4σ2 − 2σ + 1)(2σ − 1)2ρ−16σ2+8σ−4 (1.83)

diverges there. For σ ∈ {1/4, 1,−1/2} the spacetime is of type D. The solution is
otherwise algebraically general. For a general σ, the solution admits only three
independent Killing vector fields, namely ∂t, ∂z, and ∂φ, all three related to the
translational symmetries of the metric.

The metric is not asymptotic to Minkowski space in cylindrical coordinates
unless σ = 0. For σ = 1, the spacetime is the asymptotic form of the Bonnor–
Melvin solution for large ρ.

Note that the spacetime is invariant under a transformation that switches the
role of the z and φ coordinates if we also change 2σ → 1/2σ, which means that
the parameter ranges σ ∈ (0, 1/2] and [1/2,∞) are equivalent as long as the two
coordinates are swapped.

In order to use this solution for determining shell sources, we need to compute
the extrinsic curvature tensor (1.41),

K = −ϵ ρ−4σ2+2σ−1
(
2σ dT 2 − 2σ(2σ − 1) dZ2 + (2σ − 1) dΦ2

)
, (1.84)

and the proper circumference (1.3) of the shell,

C = 2πCρ1−2σ. (1.85)

Assuming we have the axis at ρ = 0 (requiring σ < 1/2), the derivative (1.4)
of C with respect to the proper radius of the shell as measured from the axis
dC/drp = 2πC(1 − 2σ)ρ−4σ2 vanishes in the asymptotic region, so the circumfer-
ence of circles with diverging proper radius does not depend on the coordinate
radius itself. As the spacetime does not contain an electromagnetic field, we have
F⊥ = 0.

Note that the generalization of the Levi–Civita solution to include the cosmo-
logical constant was discovered independently by Linet [1986] and Tian [1986],
and analyzed further in, e.g., da Silva et al. [2000], Žofka and Bičák [2007], and
Griffiths and Podolský [2010].

1.3.3 The original Bonnor–Melvin solution
The Bonnor–Melvin spacetime, also known as the Melvin universe, is a cylin-
drical, electrovacuum, static solution of the Einstein–Maxwell equations without
the cosmological term. It was originally discovered by Bonnor [1954] and later
rediscovered by Melvin [1964]. Griffiths and Podolský [2009] present the metric

ds2 =
(

1 + 1
4B

2ρ2
)2 (

−dt2 + dρ2 + dz2
)

+
(

1 + 1
4B

2ρ2
)−2

ρ2 dφ2 (1.86)

with the coordinates t, z ∈ R and ρ ∈ R+
0 of the dimension of length, and dimen-

sionless φ ∈ [0, 2π). There is an axis at ρ = 0. The only parameter B ensures
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that there is a non-zero electromagnetic field. Due to the reasons stated in the
introduction, we shall consider a purely magnetic field

F = B
(

1 + 1
4B

2ρ2
)−2

ρ dρ ∧ dφ , (1.87)

which is oriented along the z axis, but a duality rotation can be performed to
obtain an electric component as well10. The magnitude of the field is highest at
the axis and decreases monotonically to zero with increasing ρ,

FµνF
µν = 2B2

(
1 + 1

4B
2ρ2
)−4

. (1.88)

The Kretschmann scalar is

RαβγδR
αβγδ = B4 (3B4ρ4 − 24B2ρ2 + 80)

4
(
1 + 1

4B
2ρ2
)8 . (1.89)

The spacetime does not contain any curvature singularities and the axis is regular,
condition (1.2) holds.

The solution is a type D spacetime except for the hypersurface ρ = 2/ |B|
and in the limit ρ → ∞, where it is type O. It belongs to the Kundt class of
spacetimes11. It admits four Killing vector fields. Three of them, ∂t, ∂z, and ∂φ,
correspond to the three translational symmetries of the metric, while the last one,
z∂t + t∂z, corresponds to boost in the t–z plane, along the axis. Therefore, the
group of isometries of the Melvin universe is ISO(1, 1) × E(1), where ISO(d, 1) is
the Poincaré group of isometries of Minkowski spacetime of dimension d+ 1 and
E(d) is the d–dimensional Euclidean group.

Because of its cylindrical symmetry, the spacetime is not asymptotically flat.
Along the radial direction it asymptotically approaches the Levi–Civita metric
with σ = 1. Setting B = 0, we obtain the Minkowski spacetime in cylindrical
coordinates.

As this solution is the forefather to the magnetic spacetimes examined in the
following part of the thesis, we try to find a shell source for each of the spacetimes
with this solution on the other side of the shell. In order to do that, we need to
compute the relevant quantities. The extrinsic curvature tensor (1.41) is

K = ϵ
(

1 + 1
4B

2ρ2
)−2 (1

2B
2ρ
(
−dT 2 + dZ2

)
+
(

1 − 1
4B

2ρ2
)
ρ−1 dΦ2

)
(1.90)

10 A form of the metric containing both a magnetic and an electric component of the elec-
tromagnetic field is given in Kadlecová and Krtouš [2010] as

ds2 =
(

1 + E2 + B2

4 ρ2
)2

(−dt2 + dρ2 + dz2) +
(

1 + E2 + B2

4 ρ2
)−2

ρ2 dφ2

with

F = E dz ∧ dt + B

(
1 + E2 + B2

4 ρ2
)−2

ρ dρ ∧ dφ .

11According to Griffiths and Podolský [2009], a solution belongs to Kundt’s class if it admits
a null geodesic congruence with vanishing optical scalars: shear, expansion, and twist.
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and the projection of the electromagnetic tensor (1.44) yields

F⊥ = −ϵ
(

1 + 1
4B

2ρ2
)−2

B dΦ . (1.91)

The circumference (1.3) of the shells is

C = 2πρ
1 + 1

4B
2ρ2 . (1.92)

Its maximal value 2π/ |B| is achieved for ρ = 2/ |B| and the function is monotonic
on either side from the maximum with limρ→0+ C = limρ→∞ C = 0, as illustrated
in Fig. 1.1. Considering the proper radius of the shells rp, the derivative (1.4),

dC
drp

=
2π
(
1 − 1

4B
2ρ2
)

(
1 + 1

4B
2ρ2
)3 , (1.93)

yields the value of 2π at the axis as expected and vanishes for ρ → ∞.

0 2 4 6 8 10 12 14 16 18 20
0

π

2π

|B| ρ

|B
|C

Figure 1.1: The circumference of shells at a given radial coordinate for the
Bonnor–Melvin spacetime. The maximal value is achieved at |B| ρ = 2.
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2. Magnetic spacetimes

2.1 Deriving the solutions
The magnetic spacetimes presented in this work have been found through direct
manipulation of the Einstein–Maxwell equations, generally with a non-zero cos-
mological constant. Using the standard notation, the Einstein equations read

Gµν + Λgµν = 8πTµν , (2.1)

where
Tµν = 1

4π

(
F α
µ Fνα − 1

4gµνF
αβFαβ

)
(2.2)

is the stress-energy tensor of the electromagnetic field described by tensor Fµν
satisfying the Maxwell equations

F µν
;ν = 4πJµ, (2.3)

dF = 0 . (2.4)

In correspondence with the original Bonnor–Melvin solution, sources of the mag-
netic field are taken to lie in spatial infinity or (whenever applicable) in singular-
ities, so the four-current in (2.3) vanishes, Jµ = 0.

Note that the electromagnetic stress-energy tensor satisfies T µµ = 0. The
trace of the Einstein equations (2.1) then implies that the Ricci scalar is R = 4Λ
for all electrovacuum spacetimes, including those studied throughout this work.

In the following, we shall use (1.1) as the ansatz for the sought cylindrically-
symmetric and static metric tensors. As regards the magnetic field, the choice
of the ansatz depends on its desired alignment. For the sake of completeness, we
shall go through the equations for each alignment separately.

2.1.1 Axial magnetic field
Building on Žofka [2019], we first assumed the magnetic field to be of the form

F = f(r) e
C(r)

2 dr ∧ dφ , (2.5)

corresponding to the original Bonnor–Melvin solution and manifestly satisfying
one of Maxwell’s equations, dF = 0. The quantity f (of the dimension 1/u
with an arbitrary unit of length u) corresponds to one of the invariants of the
electromagnetic field,

FµνF
µν = 2f 2 , (2.6)

while the other invariant vanishes, ⋆FµνF µν = 0.
This F represents an axial magnetic field, i.e., a field aligned along the space-

time’s axis. To see that more clearly, we can use Cartesian-like coordinates
x = r cosφ and y = r sinφ and compare the obtained F = Frφ(r)/r dx ∧ dy
with the electromagnetic tensor in the Minkowski spacetime, where Fxy = Bz.
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After inserting the metric (1.1) and this F into the four non-trivial Einstein
equations, we obtain a set of second-order non-linear ordinary differential equa-
tions for the four unknown quantities A, B, C, and f as functions of the radial
coordinate r,

2(B′′ + C ′′) + (B′)2 + (C ′)2 +B′C ′ + 4Λ + 4f 2 = 0 , (2.7)
2(A′′ + C ′′) + (A′)2 + (C ′)2 + A′C ′ + 4Λ + 4f 2 = 0 , (2.8)
2(A′′ +B′′) + (A′)2 + (B′)2 + A′B′ + 4Λ − 4f 2 = 0 , (2.9)

A′B′ + A′C ′ +B′C ′ + 4Λ − 4f 2 = 0 . (2.10)

The remaining Maxwell equation can be integrated to yield

fe
A+B

2 = const., (2.11)

which is, however, a consequence of the Einstein equations above:
The derivative of (2.10) yields

A′′(B′ + C ′) +B′′(A′ + C ′) + C ′′(A′ +B′) − 8ff ′ = 0 . (2.12)

Taking the other three Einstein equations, multiplying them with the first deriva-
tive of the respective absent metric function and summing them, we obtain

2
[
A′′(B′ + C ′) +B′′(A′ + C ′) + C ′′(A′ +B′)

]
+ 4f 2(A′ +B′ − C ′)

+ (A′ +B′ + C ′)
[
A′B′ + A′C ′ +B′C ′ + 4Λ

]
= 0 . (2.13)

Next, we substitute in the first square bracket from (2.12) and in the second one
from (2.10) to get

16f
[
f ′ + 1

2f(A+B)′
]

= 0 . (2.14)

As we choose to disregard the solution with no magnetic field, we require

f ′ + 1
2f(A+B)′ = 0 , (2.15)

the solution to which is (2.11), proving that the Maxwell equation is indeed not
independent from the Einstein equations in this case.

To simplify the equations, it is possible to express the first derivatives of the
metric functions A, B, and C as functions of f and its derivatives only. The first
step is to add (2.9) and (2.10) to obtain

2(A′ +B′)′ + (A′ +B′)2 + C ′(A′ +B′) + 8Λ − 8f 2 = 0 . (2.16)

Now, first considering the case with a homogeneous magnetic field invariant,
i.e., f = const., equation (2.15) implies that A+B is constant as well. The first
three terms in the last equation vanish and we can immediately see that

f 2 = Λ . (2.17)

The relation (2.10) then simplifies to A′B′ = 0, so both of these functions must
be constant. The Einstein equations reduce to

C ′′ + 1
2 (C ′)2 + 4Λ = 0 , (2.18)
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leading to
C(r) = 2 ln σ + 2 ln sin

(√
2Λ (r +R)

)
, (2.19)

where σ and R are constants of integration. After rescaling the coordinates, we
obtain the metric

ds2 = −dt2 + dr2 + dz2 + σ2 sin2
(√

2Λ r
)

dφ2 (2.20)

with the magnetic field

F =
√

Λσ sin
(√

2Λr
)

dr ∧ dφ (2.21)

as discovered by Žofka [2019]. This solution is the topic of Sec. 2.2.
On the other hand, for a non-constant f we can use (2.15) to replace all three

instances of A′ +B′ in (2.16) with −2f ′/f . It is then possible to express the first
derivative of C as

C ′ = −2f
′′

f ′ + 4f
′

f
+ 4 f

f ′

(
Λ − f 2

)
. (2.22)

The second derivative follows,

C ′′ = −2f
′′′

f ′ + 2 f ′′

(f ′)2

(
f ′′ − 2f(Λ − f 2)

)
+ 4f

′′

f
− 4(f ′)2

f 2 + 4
(
Λ − 3f 2

)
. (2.23)

Next, adding the first two Einstein equations (2.7), (2.8) and subtracting the last
two (2.9), (2.10) from them, we obtain

A′B′ = 2C ′′ + (C ′)2 + 8f 2 , (2.24)

which for the homogeneous case reduces to (2.18). Together with (2.22) and
(2.23), we can use this equation to express A′B′ as a function of f and its deriva-
tives only. Further expressing A′ +B′ from (2.15), we can rewrite equation (2.10)
as a third-order non-linear ordinary differential equation for f as a function of r,

f ′′′f ′ − 2 (f ′′)2 + f ′′
(

6f
(
Λ − f 2

)
+ (f ′)2

f

)
+ (f ′)2 (11f 2 − 9Λ

)
− 4f 2

(
Λ − f 2

)2
= 0 . (2.25)

Finally, we need to determine A and B. From (2.15) we know that

B′ = −A′ − 2f ′

f
, (2.26)

which we can insert into (2.10) to obtain a quadratic equation for A′,

(A′)2 + 2f ′

f
A′ +

[
2f ′

f
C ′ − 4

(
Λ − f 2

)]
= 0 . (2.27)

Substituting for C ′ from (2.22), the solutions to the last two equations are

A′ = −f ′

f
±

√4f
′′

f
− 7

(
f ′

f

)2

− 4 (Λ − f 2) , (2.28)

B′ = −f ′

f
∓

√4f
′′

f
− 7

(
f ′

f

)2

− 4 (Λ − f 2) , (2.29)

32



where the signs in front of the square roots must always be chosen to be opposite.
In order to obtain a general spacetime meeting our demands, we first need

to solve (2.25), the differential equation for f . We then insert this f into (2.28),
(2.29), and (2.22), and integrate these expressions, giving us the metric functions
A, B, and C, respectively. However, in the general case such an endeavor appears
to be necessarily limited to numerical computations only, which we shall perform
and discuss later, in Sec. 3.2.

Nonetheless, there is still an exact spacetime to be discovered if we consider
the special case of A = B, thus imposing boost symmetry in the z direction to
the solution, which is also present in the original Bonnor–Melvin solution and
coincidentally also appears in the homogeneous solution without our interven-
tion. Einstein equations (2.7) and (2.8) now coincide and the three independent
equations can be written as

2(A′′ + C ′′) + (A′)2 + (C ′)2 + A′C ′ + 4Λ + 4f 2 = 0 , (2.30)
4A′′ + 3 (A′)2 + 4Λ − 4f 2 = 0 , (2.31)
(A′)2 + 2A′C ′ + 4Λ − 4f 2 = 0 . (2.32)

The Maxwell equation (2.15) can be integrated to obtain

A = ln α
f
, (2.33)

where α is a constant of integration, hence

expA(r) = expB(r) = α

f(r) . (2.34)

The difference of the last two Einstein equations (2.31) and (2.32) yields

2A′′ + (A′)2 − A′C ′ = 0 , (2.35)

which can easily be integrated to obtain

C = A+ 2 ln
(√

βA′
)

= ln
(
α

f

)
+ 2 ln

(
−
√
β
f ′

f

)
, (2.36)

where β is another constant of integration, leading to

expC(r) = αβ
f ′(r)2

f(r)3 , (2.37)

which means that axes are located wherever f ′ = 0 unless f also vanishes there.
After inserting A and C into the remaining Einstein equations, we can see that
they are not independent. (2.31) and (2.32) become

−4f
′′

f
+ 7(f ′)2

f 2 + 4
(
Λ − f 2

)
= 0 , (2.38)

while (2.30) yields

4f
′′′

f ′ − 22f
′′

f
+ 21(f ′)2

f 2 + 4
(
Λ + f 2

)
= 0 , (2.39)
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which is, however, a consequence of the simpler previous equation, as expressing
f ′′′ from the derivative of (2.38),

−4f
′′′

f
+ 18f

′f ′′

f 2 − 14(f ′)3

f 3 − 8ff ′ = 0 , (2.40)

and inserting it into (2.39) yields again the original (2.38). As such, we are dealing
with a single second-order differential equation for f ,

4ff ′′ − 7 (f ′)2 − 4f 2
(
Λ − f 2

)
= 0 . (2.41)

This condition causes the square roots in the expressions (2.28) for A′ and (2.29)
for B′ in the general solution to disappear, correctly yielding A′ = B′. As the
coordinate r does not explicitly appear in this equation, we may reduce its order
by using f as the new independent coordinate with v = f ′. We replace the second
derivative of f with

f ′′ = (f ′)′ = dv
dr = dv

df f
′ = dv

df v , (2.42)

which means that the non-linear second-order equation (2.41) can be recast as a
first-order equation

2v(f) dv(f)
df − 7

2
v(f)2

f
= 2f

(
Λ − f 2

)
, (2.43)

which still remains non-linear. This, however, can be remedied via the substitu-
tion w = v2, because then the first term on the left-hand side of the equation is
simply the derivative dw/df ,

dw(f)
df − 7

2
w(f)
f

= 2f
(
Λ − f 2

)
. (2.44)

This equation can be solved by first considering only the homogeneous, left-hand-
side part, which has the solution w0 = kf 7/2, where k is an arbitrary constant of
the dimension u−1/2 to guarantee the solution’s dimension u−4. We can use w0
as an integration factor and divide the full equation by it to obtain

dw(f)
df f−7/2 − 7

2w(f)f−9/2 = d
df

(
w(f)f−7/2

)
= 2f−5/2

(
Λ − f 2

)
. (2.45)

This equation can be solved by direct integration,

w(f)f−7/2 = γ − 4
√
f − 4

3Λf−3/2 . (2.46)

As w = v2 = (f ′)2, we have

df
dr = ±

√
γf 7/2 − 4f 4 − 4

3Λf 2 . (2.47)

It does not appear possible to obtain a closed-form expression for f(r). However,
the metric functions A = B (2.34) and C (2.37) do not depend explicitly on r,
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they depend only on f and its first derivative. It is, therefore, convenient to
consider the coordinate change r → f using (2.47), which replaces f ′ in (2.37)
and appears in the transformed gff = grr/(f ′)2. The metric produced in this
way,

ds2 = 1
f

(
−dt2 + dz2

)
+ df 2

γf
7
2 − 4f 4 − 4

3Λf 2
+ β

γf
7
2 − 4f 4 − 4

3Λf 2

f 3 dφ2 , (2.48)

with the corresponding magnetic field

F =
√
β

f
df ∧ dφ (2.49)

were the topic of the paper Veselý and Žofka [2019b], and shall be examined in
detail in Sec. 2.3.

Returning back to the general equation (2.25), it is possible to use the same
substitution as above, w = (f ′)2 viewed as a function of f , to reduce the order of
the equation in hopes of finding a general solution more easily. The derivatives
of f are thus1

f ′ =
√
w , (2.50)

f ′′ = d
drf

′ = 1
2

1√
w

dw
dr = 1

2
1√
w
ẇf ′ = 1

2ẇ , (2.51)

f ′′′ = d
drf

′′ = 1
2

d
dr ẇ = 1

2ẅf
′ = 1

2
√
wẅ , (2.52)

where a dot denotes differentiation with respect to f from now on in this section.
After inserting the expressions into (2.25), we obtain

wẅ − ẇ2 +
[
w

f
− 6f

(
f 2 − Λ

)]
ẇ − 8

(
f 2 − Λ

)2
f 2 + 2w

(
11f 2 − 9Λ

)
= 0 .

(2.53)

A general analytical solution of this equation (if there even is one in the first
place) eludes us still.

The two spacetimes described above satisfy (2.25) with additional constraints.
The homogeneous case requires f ′ = 0, whence we immediately have f 2 = Λ.
For the boost-symmetric solution, we can express f ′′ from (2.41), compute f ′′′

and insert both into (2.25) to see that it is fulfilled. However, the numerical
computations in Sec. 3.2 suggest that there are other solutions with different
properties than the two above.

For Λ = 0, one expects to be able to find the original Bonnor–Melvin spacetime
among the solutions of equation (2.53), and indeed, we recover it for

w = γf 7/2 − 4f 4 . (2.54)

It may not be immediately obvious that this is the original solution, but by
comparing this w with (2.47), it is obvious that it corresponds to the spacetime

1The sign of f ′ is not relevant, as it factors out in f ′′ and the other derivatives appear in
(2.25) as f ′′′f ′ and (f ′)2 only, both necessarily positive.
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described in Sec. 2.3 with Λ = 0. It will be shown in the corresponding section
that after taking this limit, the spacetime can be transformed to one of the known
forms of the Bonnor–Melvin metric. However, it turns out that there is another
independent solution to be found,

w = 4αf 3 − 4f 4, (2.55)

which by virtue of (2.50) leads to

f = α

1 + α2r2 . (2.56)

Using such f , however, results in a complex metric, as the argument of the square
root in the expressions for A′ (2.28) and B′ (2.29) is negative,

4 f
′′

f
− 7

(
f ′

f

)2

+ 4f 2 = − 4α2

1 + α2r2 . (2.57)

To remedy the issue, we can consider a purely imaginary α and factor the imag-
inary unit out, α → iα. Even though z now unusually replaces t in the role of
the timelike coordinate, the resulting metric is real,

ds2 =
(
1 − α2r2

)
exp(2 arcsinαr) dt2 + dr2

−
(
1 − α2r2

)
exp(−2 arcsinαr) dz2 + dφ2

1 − α2r2 , (2.58)

but the new f is not,
f = iα

1 − α2r2 , (2.59)

and it leads to an imaginary electromagnetic field tensor,

F = iα
(1 − α2r2)3/2 dr ∧ dφ . (2.60)

The Wick rotation φ → it, t → φ, z → iz makes F real again,

F = α

(1 − α2r2)3/2 dt ∧ dr , (2.61)

and reestablishes t as the timelike coordinate,

ds2 = − dt2
1 − α2r2 + dr2 +

(
1 − α2r2

)
×
[
exp(−2 arcsinαr) dz2 + exp(2 arcsinαr) dφ2

]
. (2.62)

Finally, as F now represents an electric field, we use a dual rotation to get the
magnetic field

F = α dz ∧ dφ . (2.63)
Take note that while our original ansatz contained an axial magnetic field, we
ended up with a radial one in this case. Even though it does not include the
cosmological constant, thus deviating from the class of spacetimes we are mainly
interested in, we covered this solution together with two others in our ‘radial’
paper Veselý and Žofka [2021]. It is the topic of Sec. 2.4.
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2.1.2 Radial magnetic field
Inspired by the surprising twist described in the previous paragraph, we moved
on to study spacetimes with a radial magnetic field by considering

F = f(r) e
B(r)

2 e
C(r)

2 dz ∧ dφ , (2.64)

where f is again bound to the electromagnetic field invariant by (2.6), while the
other invariant remains zero.

To see that we are dealing with a radial field, we again use Cartesian-like
coordinates x = r cosφ and y = r sinφ, which yields the slightly more complicated
F = yFzφ(r)/r2 dx ∧ dz − xFzφ(r)/r2 dy ∧ dz. By analogy with the Minkowski
spacetime, we take Fxz = −By and Fyz = Bx, which implies2 B⃗ = −Fzφ(r)/r e⃗r.

The new ansatz leads to two sign changes in the Einstein equations,

2(B′′ + C ′′) + (B′)2 + (C ′)2 +B′C ′ + 4Λ + 4f 2 = 0 , (2.65)
2(A′′ + C ′′) + (A′)2 + (C ′)2 + A′C ′ + 4Λ − 4f 2 = 0 , (2.66)
2(A′′ +B′′) + (A′)2 + (B′)2 + A′B′ + 4Λ − 4f 2 = 0 , (2.67)

A′B′ + A′C ′ +B′C ′ + 4Λ + 4f 2 = 0 . (2.68)

The Maxwell equation (2.3) can be integrated to obtain

fe
B+C

2 = const., (2.69)

which also happens to be the exact requirement to fulfill the other Maxwell equa-
tion dF = 0, which is not satisfied trivially by the ansatz for F this time. The
condition is not independent from the Einstein equations, as repeating exactly
the same steps as in the axial case leads to the analogy of (2.15),

f ′ + 1
2f(B + C)′ = 0 . (2.70)

Once again our goal is to express the metric functions A, B, and C as func-
tions of f and its derivatives. The procedure is completely analogous to the one
described in the previous section. We begin by adding (2.65) and (2.68) to obtain

2(B′ + C ′)′ + (B′ + C ′)2 + A′(B′ + C ′) + 8Λ + 8f 2 = 0 . (2.71)
Take note that the sign of the last term is different than in (2.16).

Dealing first with the case of f = const., from (2.70) we see that B + C is
constant this time. It follows from the last equation that

f 2 = −Λ , (2.72)

which means that Λ has to be negative, as opposed to the previous case. (2.68)
reduces to B′C ′ = 0, meaning that B and C are both constant. We are left with
one independent Einstein equation,

A′′ + 1
2 (A′)2 + 4Λ = 0 . (2.73)

2In a similar argument in Veselý and Žofka [2021] we mistakenly consider the opposite sign
of B⃗. The fact that B⃗ is radial, as we intended to prove, nonetheless holds.
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The function
A(r) = 2 ln

[
α cosh

√
−2Λ (r −R)

]
(2.74)

with the integration constants α and R solves this equation. A simple rescaling
of the coordinates eliminates both constants and leads to

ds2 = − cosh2
(√

−2Λ r
)

dt2 + dr2 + dz2 + σ2dφ2 (2.75)

with
F = σ

√
−Λ dz ∧ dφ (2.76)

as published in Veselý and Žofka [2021] and discussed in Sec. 2.5.1. While in
the paper we chose to represent the solution using this metric, a more general
solution can be found,

ds2 = −
(
e

√
−2Λ r + a e−

√
−2Λ r

)2
dt2 + dr2 + dz2 + σ2dφ2 , (2.77)

with the same expression for the magnetic field3. This metric is investigated in
Sec. 2.5.2.

For the case of a non-constant f , the additional symmetry we are going to
consider that will lead us to analytical results is B = C, imposing rotational
symmetry in the z–φ plane (which we obtained in the homogeneous case auto-
matically) upon the solution. The three independent Einstein equations are

2(A′′ + C ′′) + (A′)2 + (C ′)2 + A′C ′ + 4Λ − 4f 2 = 0 , (2.78)
4C ′′ + 3 (C ′)2 + 4Λ + 4f 2 = 0 , (2.79)
(C ′)2 + 2A′C ′ + 4Λ + 4f 2 = 0 , (2.80)

and the Maxwell equation yields

C = ln α
f

(2.81)

with a constant of integration α. Therefore, the two corresponding metric func-
tions are

expB(r) = expC(r) = α

f(r) , (2.82)

which means that the electromagnetic field invariant (2.6) diverges at the axes.
Taking the difference of the last two Einstein equations,

2C ′′ + (C ′)2 − A′C ′ = 0 , (2.83)

leads to an analogy of (2.36),

A = C + 2 ln
(√

βC ′
)

= ln
(
α

f

)
+ 2 ln

(
−
√
β
f ′

f

)
(2.84)

3Note that we can find a similar metric for the axial homogeneous spacetime of Sec. 2.2 as
well, but the arguments of the exponential functions would be ±i

√
2Λ r. Since we do not aim

to investigate complex spacetimes in this work, we are left with either a sine or a cosine in the
metric. It does not matter which one we choose, as a shift in the radial coordinate can convert
one into the other.
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with a constant of integration β. The corresponding metric element is

expA(r) = αβ
f ′(r)2

f(r)3 . (2.85)

Take note that while after exchanging A ↔ C the expressions for the metric
elements (2.82) and (2.85) are the same as (2.34) and (2.37) in the axial case,
their final form will differ due to the effect of the different signs of the terms with
f ′ in the Einstein equations. Analogously to the axial case it can be shown that
there is only one remaining independent Einstein equation,

4ff ′′ − 7 (f ′)2 − 4f 2
(
Λ + f 2

)
= 0 . (2.86)

Using the substitution w = (f ′)2 with the replacement rule for f ′′ (2.51), we get

ẇ − 7
2
w

f
= 2f

(
Λ + f 2

)
. (2.87)

Like its axial counterpart, this equation can be integrated using the integration
factor f 7/2, leading to the analogy of (2.47) with one different sign,

df
dr = ±

√
γf 7/2 + 4f 4 − 4

3Λf 2 . (2.88)

The coordinate change r → f allows us to obtain the spacetime

ds2 = −
γf

7
2 + 4f 4 − 4

3Λf 2

f 3 dt2 + df 2

γf
7
2 + 4f 4 − 4

3Λf 2
+ 1
f

(
dz2 + β2dφ2

)
(2.89)

with
F = β dz ∧ dφ , (2.90)

originally presented in the same paper as the previous two radial solutions, Veselý
and Žofka [2021], and discussed in Sec. 2.6 of this thesis.

Finally, for a non-constant f and B ̸= C we use (2.70) to replace all instances
of B′ + C ′ in (2.71) with −2f ′/f to obtain

A′ = −2f
′′

f ′ + 4f
′

f
+ 4 f

f ′

(
Λ + f 2

)
. (2.91)

Adding (2.65) and (2.68) together and subtracting (2.66) and (2.67) from them,
we get

B′C ′ = 2A′′ + (A′)2 − 8f 2, (2.92)
where we can insert A′ (2.91) and its derivative to express the right-hand side
solely in terms of f and its derivatives. Inserting the above relations into (2.68),
we obtain an equation for f similar to (2.25),

f ′′′f ′ − 2 (f ′′)2 + f ′′
(

6f
(
Λ + f 2

)
+ (f ′)2

f

)
− (f ′)2 (11f 2 + 9Λ

)
− 4f 2

(
Λ + f 2

)2
= 0 , (2.93)
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which can be rewritten using our favorite substitution w = (f ′)2 as

wẅ − ẇ2 +
[
w

f
+ 6f

(
f 2 + Λ

)]
ẇ − 8

(
f 2 + Λ

)2
f 2 − 2w

(
11f 2 + 9Λ

)
= 0 .

(2.94)

As before, we can use (2.70) to replace B′ in (2.68) with

B′ = −C ′ − 2f ′

f
, (2.95)

leading to an analogy of (2.27),

(C ′)2 + 2f ′

f
C ′ +

[
2f ′

f
A′ − 4

(
Λ + f 2

)]
= 0 . (2.96)

As we know A′ from (2.91), we can solve the last two equations to obtain two
pairs of expressions for B′ and C ′ in terms of f ,

B′ = −f ′

f
±

√4f
′′

f
− 7

(
f ′

f

)2

− 4 (Λ + f 2) , (2.97)

C ′ = −f ′

f
∓

√4f
′′

f
− 7

(
f ′

f

)2

− 4 (Λ + f 2) , (2.98)

with opposite signs in front of the square roots.
The general strategy to obtain a spacetime satisfying our demands again con-

sists of finding f(r) by solving either (2.93) or the equivalent (2.94), inserting it
into (2.91), (2.97), and (2.98), and integrating the resulting expressions to obtain
A, B, and C, respectively. It should come as no surprise that this does not seem
feasible to be performed analytically. Numerical experiments with this system
too shall be performed in Sec. 3.2.

2.1.3 Azimuthal magnetic field
To obtain a spacetime with a magnetic field aligned with the φ direction, we
consider

F = f(r) e
B(r)

2 dr ∧ dz , (2.99)

immediately satisfying dF = 0. As per the usual, the function f fulfills (2.6).
Again, the transformation to Cartesian-like coordinates defined as x = r cosφ

and y = r sinφ enables us to see that this is an azimuthal field. In these coordi-
nates, we have F = xFrz(r)/r dx∧dz+yFrz(r)/r dy∧dz. The Minkowski-inspired
relations Fxz = −By and Fyz = Bx then yield B⃗ = −Frz(r)/r e⃗φ.

Now, we could proceed along the lines of the previous two cases. However,
there is a much simpler way of obtaining solutions with azimuthal magnetic fields
analogous to the previous ones, because we can use the fact that the metric
depends on neither φ nor z due to our choice of cylindrical symmetry. As far as
the Einstein–Maxwell equations are concerned, it is possible to swap the functions
B and C corresponding to the z and φ coordinates, respectively, without breaking
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the validity of the entire set of equations, a trick not possible with the radial
coordinate r. Therefore, the azimuthal solutions can be obtained by exchanging
gzz ↔ gφφ in the metric and Frφ ↔ Frz in the magnetic field of a given axial
solution. While seemingly trivial, such a change impacts the global structure of
the spacetimes considerably, as what used to be an unbounded coordinate z is
now to be understood as a bounded angular coordinate φ, and vice versa. The
homogeneous solution with an azimuthal magnetic field is examined in Sec. 2.7
and the inhomogeneous one in Sec. 2.8.

As the azimuthal spacetimes have the same local properties as the correspond-
ing axial ones, we shall put less emphasis on these spacetimes than on the rest.
We focus mainly on the differences arising from the exchange z ↔ φ, which
affects, e.g., circular orbits and shell sources.

2.1.4 General magnetic field
The final logical step would be to consider a superposition of the previously-
considered magnetic fields to dispose of their alignment along one of the prominent
directions,

F = fz dr ∧ dφ+ fr dz ∧ dφ+ fφ dr ∧ dz . (2.100)

The left-hand side of the Einstein equations is unaffected by this change and
remains diagonal. However, the stress-energy tensor on the right-hand side gains
non-diagonal elements, which must be equal to zero in order for the equations to
be fulfilled. The non-diagonal elements satisfy

Tij ∝ fifjg
kk, (2.101)

where i ̸= j ̸= k ̸= i are spatial indices. Therefore, the products of any two func-
tions fi must be equal to zero, which means that only one of them can be non-zero.
As a result, the three cases studied above are the only possible configurations of
the magnetic field permitted by our ansatz of cylindrical symmetry.
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2.2 Bonnor–Melvin–Λ
(Axial homogeneous spacetime)

The first of the presented magnetic spacetimes, forming the basis for our sub-
sequent work, was derived and published in Žofka [2019]. The aim of the work
was to dispose of the dependence of the electromagnetic invariant on the radial
coordinate, thus ensuring the homogeneity of the magnetic field. This was made
possible by including a positive cosmological constant, Λ > 0, preventing the
collapse of the uniform magnetic field.

Two forms of the metric were presented in the paper. The first is

ds2 = −dt2 + dr2 + dz2 + σ2 sin2
(√

2Λ r
)

dφ2 (2.102)

with
F =

√
Λσ sin

(√
2Λ r

)
dr ∧ dφ , (2.103)

where the coordinates t, r, and z, along with the parameter σ, have the dimension
of length, while φ is dimensionless. Depending on the value of σ, there may be
a deficit angle at the axes. The condition (1.2) for elementary flatness fixes the
value σ2 = 1/2Λ, which is reflected in the rescaled variant

ds2 = −dt2 + dz2 + 1
2Λ

(
dr2 + sin2 r dφ2

)
(2.104)

with the magnetic field4

F = 1
2
√

Λ
sin r dr ∧ dφ , (2.105)

where the coordinates t and z have the dimension of length, while r and φ are
dimensionless. The second form of the metric, which we shall exclusively use
from now on, clearly shows that the spacetime is locally a direct product of 2D
Minkowski spacetime and a two sphere, which has a constant radius of 1/

√
2Λ.

This is typical for monopole compactifications of higher-dimensional solutions
encountered in the string theory, see, e.g., Olasagasti and Vilenkin [2000] and
Prasetyo and Ramadhan [2016]. Note that (70) of the latter paper is a variant of
our (2.104). The magnetic field’s invariant is indeed constant,

FµνF
µν = 2Λ , (2.106)

while the Kretschmann scalar is 16Λ2. There is no curvature singularity in the
spacetime. The dual electromagnetic field to (2.105) is ⋆F =

√
Λ dt ∧ dz, an

electric field aligned along the axes5.
The solution exhibits higher symmetry than the original Bonnor–Melvin so-

lution, as it has two additional Killing vector fields, bringing the total number to
4There is a typo in equation (33) in Žofka [2019]. Also note that the sign of the magnetic

field can be chosen arbitrarily.
5Žofka [2019] incorrectly states that the invariant ⋆Fµν⋆F µν remains equal to 2Λ, but,

in fact, its value is −2Λ. For dual fields, the invariant always has the opposite sign,
⋆Fµν⋆F µν = −FµνF µν . Furthermore, note that in order to keep the expressions simpler, we
omit additional minus signs in ⋆F if they appear, as the signs of both F and ⋆F can be chosen
arbitrarily for our solutions.
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six. Apart from the three translational Killing vectors and the one correspond-
ing to boost in the t–z plane, the two new vectors, sinφ ∂r + cot r cosφ ∂φ and
cosφ ∂r − cot r sinφ ∂φ (in the rescaled coordinates), along with ∂φ represent
rotations on the two-sphere of constant coordinates t and z. This corresponds to
the ISO(1, 1) × SO(3) group of isometries.

The spacetime is type D. The metric (2.104) coincides with (7.19) in Griffiths
and Podolský [2009] and, therefore, the solution is among those investigated in
Plebański and Hacyan [1979]. The solution belongs to the Kundt class: The
integral curves of the two principal null directions

√
2(∂t ± ∂z)/2 happen to be

geodesics with vanishing optical scalars. The constant factor multiplying both
vectors was chosen so that their scalar product is −1 as required by the algorithm
in Poisson [2004].

The proper circumference (1.3) of circles centered around the axis at r = 0 is√
2/Λ π sin r, and it vanishes not only for vanishing radius, but somewhat simi-

larly to the Bonnor–Melvin spacetime (where it vanished at the axis and in the
asymptotic region) also for coordinate radius r = π corresponding to proper ra-
dius π/

√
2Λ. Therefore, we may consider the solution to have a second axis there.

In our analysis, we limit ourselves to the interval of r between these two axes,
but the radial coordinate in the metric is periodic and one can choose another
admissible interval without affecting the physics involved (bar the arbitrary sign
of F). As is usual wherever axial symmetry is involved, we do not extend the
radial coordinate beyond any of the two axes, which lie in finite proper radial
distance from each other in this spacetime.

The paper did not comment on the spacetime’s limit for a vanishing cosmo-
logical constant, as it is not possible to perform the limit of Λ → 0+ in either
metric in a straightforward manner. However, the transformation

x =
√

2
Λ tan

(
r

2

)
cosφ ,

y =
√

2
Λ tan

(
r

2

)
sinφ ,

(2.107)

brings the metric (2.104) into the form

ds2 = −dt2 + dx2 + dy2(
1 + Λ

2 (x2 + y2)
)2 + dz2 (2.108)

with the magnetic field

F =
√

Λ(
1 + Λ

2 (x2 + y2)
)2 dx ∧ dy . (2.109)

We thank Prof. Kjell Rosquist for pointing this transformation out. All coor-
dinates have the dimension of length. This form of the metric becomes the
Minkowski spacetime in the limit Λ → 0+.

Particle motion

In the original paper very little investigation of electrogeodesics was performed.
We shall use the second form of the metric (2.104) with the corresponding mag-
netic field (2.105). For the Lagrangian density (1.14), two constants of motion
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are trivial, E = ṫ and Z = ż, but the last one is somewhat more complicated,

L = 1
2Λ

(
φ̇ sin2 r − κ

√
Λ cos r

)
. (2.110)

The effective potential for radial motion is

V = Λ
(

−δ − E2 + Z2 + 2
sin2 r

(
κ

2 cos r +
√

ΛL
)2
)
, (2.111)

while its separated counterpart reads

W 2 = E2 + V

Λ = −δ + Z2 + 2
sin2 r

(
κ

2 cos r +
√

ΛL
)2
. (2.112)

Analysis of the potentials shows us that the only particles capable of reaching
both axes necessarily fulfill L = κ = 0, i.e., they must be uncharged and exhibit
no azimuthal motion, but they may be both massive particles and photons. For
a non-zero L, an uncharged particle can never reach any of the two axes as the
potential diverges there, and the particle will oscillate in the radial direction
between them. While a similar fate befalls most charged particles as well, for
certain special values of L,

L± = ± κ

2
√

Λ
, (2.113)

they may reach either the axis located at r = 0 (for L−) or the one at r = π (for
L+) but never both. For these two values of L, the potential is monotonous in
the considered range r ∈ [0, π],

V± = Λ
(

−δ − E2 + Z2 + κ2

2 tan∓2 r

2

)
, (2.114)

so instead of oscillating between the two axes, these particles oscillate through
one of them.

Concerning circular orbits in planes perpendicular to the axes, we set Z = 0
to have ż = 0 and look at the potential and its first derivative,

V
⏐⏐⏐
Z=0

= Λ
(

−δ − E2 + 2
sin2 r

(
κ

2 cos r +
√

ΛL
)2
)
, (2.115)

V ′ = − Λ
sin3 r

(
2
√

ΛL+ κ cos r
) (
κ+ 2

√
ΛL cos r

)
, (2.116)

and see for which values of the parameters they both vanish. There is no need
to consider Z = 0 in the derivative, as the term containing it vanishes anyway.
Ideally, we would solve the equations for E and L to get an allowed range of orbit
radii.

Starting with uncharged particles with κ = 0, this method yields only L = 0,
which means no azimuthal motion, unless r = π/2, because midway between the
two axes the derivative vanishes. For an uncharged particle to follow a circular
orbit there, it must hold that 2ΛL2 − E2 − δ = 0, a condition valid for massive
particles and photons alike. The condition also yields Ω2 = (dφ/dt)2 = 2Λ for
photons. The second derivative of V at r = π/2 is positive, V ′′(π/2)|κ=0 = 4Λ2L2,
which means the orbits are stable.
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For charged particles, the addition of a non-zero κ enables particles to follow
a circular orbit at any r ̸= π/2 between the two axes as long as it has the correct
constants of motion,

E2 = 1
2
(
−2δ + κ2 tan2 r

)
, (2.117)

L = − κ

2
√

Λ
1

cos r , (2.118)

leading to φ̇ = −κ
√

Λ/ cos r. The orbits are again stable, as the second derivative
of V yields κ2Λ/ cos2 r for the above L. For r = π/2, the term with κ in the poten-
tial vanishes, but the derivative does not vanish this time, V ′(π/2) = −2Λ3/2κL.
Therefore, to orbit at r = π/2 charged particles require L = 0. Even though
generally (2.110) means that a vanishing L does not imply a vanishing φ̇ for a
charged particle, r = π/2 is the only location when the implication holds and a
charged particle cannot perform circular motion there, but it can stand still.

Actually, due to the symmetries of the spacetime, any massive particle not
moving in any spatial direction in our coordinates at the initial time will remain
still regardless of its charge or the absence thereof. Moreover, particles moving
in the direction of the magnetic field do so with a constant four-velocity.

We can obtain more constants of motion using the Killing vectors through the
procedure explained in Sec. 1.2.1. The boost vector yields the constant zṫ − tż
valid even for charged particles, which means we can express the dependence of
z on coordinate time t as

z(t) = Z

E
t+ z0 . (2.119)

The two rotational Killing vectors provide us with somewhat more exciting con-
stants

A = sin(φ) ṙ + sin(r) cos(r) cos(φ) φ̇ ,
B = cos(φ) ṙ − sin(r) cos(r) sin(φ) φ̇ ,

(2.120)

which are sadly valid only for uncharged particles, as these two particular Killing
vector fields do not satisfy the additional conditions related to the symmetries
of the electromagnetic field. Using the constant L (2.110) with κ = 0, we can
replace φ̇ = 2ΛL/ sin2 r in the two constants. In the general case when at least
one of the constants is non-zero, we can then express r and ṙ as functions of φ,

r(φ) = arctan
(

2ΛL
A cosφ−B sinφ

)
mod π , (2.121)

ṙ(φ) = A sinφ+B cosφ , (2.122)

where one has to consider modulo π in the first relation to obtain a continuous
curve r(φ). Note that while these results are applicable only for uncharged par-
ticles (including photons), they do not depend on ż = Z, so any motion along
the z axis is permitted. For an illustration comparing the theoretical curves of
r(φ) and ṙ(φ) to a numerical computation see Fig. 2.1. As with analogous results
for the remaining two homogeneous spacetimes shown in Fig. 2.14 and 2.23, the
numerical and analytical results match very well despite being obtained by dif-
ferent means, which lends further credence to the numerical computations we use
to check every analytical result.
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(a) The chart of r(φ) (2.121).
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(b) The chart of ṙ(φ) (2.122).

Figure 2.1: The comparison of the cyan theoretical curves to the data points
obtained by numerical integration of the equations of motion for a massive un-
charged particle with the initial spatial coordinates r = 1.5, φ = 1, and z = 0,
and the initial spatial components of the four-velocity ṙ = 3/u, φ̇ = 1/u, and
ż = 0.1, in the spacetime with Λ = 1 u−2. The relevant constants of motion are
L ≈ 0.497 u, A ≈ 2.56/u, and B ≈ 1.56/u. The equations of motion were inte-
grated for the total proper time of 400 u, during which the particle went through
the entire loop 201 times. Its position in the charts was marked every 8 u of proper
time. The particle’s motion along the z axis is irrelevant for the two charts.
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Regarding the second-rank Killing tensors, the only new constant of motion
that is not completely determined by the constants obtained from the Killing
vectors is ṙ2 + sin2(r) φ̇2, which is valid even for charged particles. However, this
constant complements E and Z to give the normalization of the four-velocity, so
if we include δ, its value is fixed by the constants we have already been using,
ṙ2 + sin2(r) φ̇2 = 2Λ(δ + E2 − Z2). After replacing φ̇ with L (2.110), we obtain
the effective potential V (2.111).

Shell sources

To use Israel’s formalism of connecting spacetimes of Sec. 1.2.2, we first need
to compute the extrinsic curvature tensor (1.41) for the cylindrical hypersurface
r = const.,

K = ϵ
√

2Λ cot r dΦ2, (2.123)

and the projection of the electromagnetic tensor (1.44),

F⊥ = −ϵ
√

Λ dΦ . (2.124)

As mentioned above, the proper circumference of the hypersurface is

C =
√

2
Λ π sin r . (2.125)

The derivative (1.4) of C with respect to the proper radius rp measured from the
axis at r = 0 is

dC
drp

= 2π cos r . (2.126)

As expected, we have |dC/drp| → 2π at the axes. The sign is negative for the
axis at r = π because the proper radius is measured from the other axis.

Choosing the opposite direction of the normal, which corresponds to switching
the sign of ϵ, is equivalent to moving the hypersurface to π− r when dealing with
K and C, which are the quantities relevant for determining whether a specific
shell satisfies the conditions specified in Sec. 1.2.2. This simplifies the analysis,
as we can focus on only one sign of ϵ as long as we examine the whole interval
of r. The (somewhat less interesting) projection of the magnetic field changes its
sign.

The trace of K is obviously

K = ϵ
√

2Λ cot r . (2.127)

As expected for the two spacetime’s axes, K → +∞ in the limit of r → 0+ if the
normal field is oriented towards higher values of the radial coordinate (ϵ = +1),
and also in the limit of r → π− for the opposite orientation of the normal.

When talking about shell sources, the original paper Žofka [2019] only con-
siders shells resulting from connecting the spacetime to another instance of itself,
taking advantage of the symmetry of C with respect to r = π/2. The paper
states that for the discussed orientation of the two normals, the pressure along
the axis (determined by SZZ) is positive, while the energy density (i.e., STT ) is
equal in magnitude but negative. Indeed, it can be shown that regardless of the
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orientation of the normals (represented by ϵ) and even when considering different
values of Λ on each side of the hypersurface, we always have

STT = −SZZ = ϵ−
√

Λ− cos(r−) sin(r+) − ϵ+
√

Λ+ cos(r+) sin(r−)
4
√

2π sin(r+) sin(r−)
, (2.128)

where the ± signs distinguish the spacetimes on either side of the shell as ex-
plained in Sec. 1.2.2. This means that this shell cannot simultaneously ful-
fill both STT > 0 and SZZ ≥ 0 as needed for the desired interpretation via
four charged particle streams. For the sake of completeness, let us add that
SΦΦ = 0 and the only non-zero element of the induced three-current on the shell
is sΦ = (ϵ−

√
Λ− − ϵ+

√
Λ+)/4π.

Similarly, a hypersurface connecting this spacetime to the Minkowski space-
time or the original Bonnor–Melvin solution also has STT = −SZZ . However, a
reasonable shell connecting this spacetime to the asymptotic region of the Levi–
Civita solution of Sec. 1.3.2 can be found, as can be seen in Fig. 2.2. Note that
the value of the parameter σ = 0.1 used here admits the effective gravitational
mass interpretation of σ in the Levi–Civita solution.

0 0.2 0.4 0.6 0.8

0

0.1

0.2

r

1/
u
−
1

STT

SZZ

SΦΦ

4µ
q

Figure 2.2: The properties of shells on the interface of the Bonnor–Melvin–Λ
solution (Λ = 0.4 u−2) and the Levi–Civita solution (σ = 0.1, C = 1 u), expressed
as functions of the radial coordinate of the shell in the former spacetime. The
spacetimes are aligned in such a way that the region with lower r in BMΛ and
the asymptotic region of LC are preserved. The induced three-current on the
shell has only one non-zero element, sΦ =

√
Λ/4π, which allows us to use (1.60)

to compute the magnitude of particle charge q in the region admitting the four-
stream interpretation of the shell, located between the two dotted lines.
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2.3 Axial inhomogeneous spacetime
The metric of the inhomogeneous solution with an axial magnetic field was pre-
sented in Veselý and Žofka [2019b] as

ds2 = 1
f

(
−dt2 + dz2

)
+ df 2

γf
7
2 − 4f 4 − 4

3Λf 2
+ β

γf
7
2 − 4f 4 − 4

3Λf 2

f 3 dφ2 (2.129)

with
F =

√
β

f
df ∧ dφ . (2.130)

Taking u as an arbitrary unit of length, the dimensions of the coordinates are as
follows: t [

√
u], f [u−1], z [

√
u], and φ [u]. Apart from the cosmological constant

Λ [u−2], which can be of either sign, there are two other parameters in the metric,
γ
[
u−1/2

]
and β [u]. The latter needs to be positive for the metric to keep the

correct signature. The metric is a product of a warped 2D Minkowski space and
a 2D Riemannian metric.

Not before publishing the paper did we realize that perhaps a more convenient
form can be obtained after employing the transformation

t̂ = 1√
β
t , r̂ =

√
β f−1/2,

ẑ = 1√
β
z , φ̂ = − 2

σ
φ ,

(2.131)

which leads to (barring the hats)

ds2 = −r2 dt2 + dr2

M(r) + r2 dz2 + σ2 M(r) dφ2, (2.132)

where the newly-introduced parameter σ > 0 and the coordinate r have the
dimension of length, while the remaining coordinates are dimensionless. The
master function reads

M(r) = −β2

r2 + α

r
− Λ

3 r
2 (2.133)

with α = γβ3/2/4 of the dimension of length. The function’s roots correspond to
the spacetime’s axes. The magnetic field is

F = βσ

r2 dr ∧ dφ (2.134)

and the corresponding four-potential according to (1.15) is A = −βσ/r dφ, while
the dual electric field is simply ⋆F = β dt ∧ dz. The field invariant becomes

FµνF
µν = 2β2

r4 , (2.135)

and the Kretschmann scalar is

RαβγδR
αβγδ = 4

3r8

(
2Λ2r8 + 9α2r2 − 36αβ2r + 42β4

)
. (2.136)
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We consider only positive values of r, as taking r < 0 corresponds to r > 0 with
the opposite sign of α, and it is obvious from the two scalars that it is not possible
to cross r = 0 unless both α and β vanish. Unlike in the previous form of the
metric, there is nothing stopping us from considering both signs of β now, as
the sign only affects the polarity of the magnetic field. While we allow the case
α = 0, we shall not investigate the case βΛ = 0 in detail here, as we are primarily
interested in cosmological solutions with a magnetic field. Note that considering
α = 0 does not affect the asymptotics of M.

For the metric to have the correct signature, the master function M must be
positive. In the following we shall work with

m(r) = r2M(r) = −β2 + αr − Λ
3 r

4, (2.137)

which has the same non-zero roots as M, and the value r = 0 would correspond to
a physical singularity anyway. Assuming that all three parameters are non-zero,
m is a polynomial of degree four and the general expressions for its roots are too
unwieldy to work with. Nonetheless, determining the number of positive roots is
possible.

Applying Descartes’ rule of signs, for Λ < 0 there is always one root, as there
is only one sign change in the sequence of coefficients of the terms in m regardless
of the signs of α and β, and the allowed range of r stretches from this axis to
positive infinity.

On the other hand, for Λ > 0 there may be up to two roots. Because m is
negative both in the neighborhood of r = 0 and in the asymptotic region, we just
need to determine whether there is any positive maximum. Setting the derivative
m′(r) = α− 4Λr3/3 equal to zero, we see that the suspected extremum6 lies at

r3
0 = 3α

4Λ (2.138)

and that α must be positive so that r0 is also positive. After plugging r0 into m,
we obtain

m(r0) = −β2 + 3 3
√

6
8

α4/3

Λ1/3 . (2.139)

The threshold value m(r0) = 0 corresponds to

αM = 4
3 |β|3/2 Λ1/4, (2.140)

for which M has one degenerate root and is everywhere non-positive. There are
no roots for α < αM and M is negative. Only for α > αM is there an interval of
r where M is positive as required by the metric. In this case, the spacetime has
two separate axes.

Examples of all four variants of the master function M with respect to different
signs of Λ and values of α are depicted in Fig. 2.3.

Note that, in a way, the degenerate case with Λ > 0 corresponds to the
previous spacetime from Sec. 2.2. Plugging αM (2.140) into the double root of
the master function r0 (2.138), we get r0(crit) = |β|1/2 Λ−1/4. Going backwards

6Take note that the extrema of the full master function M may lie elsewhere, but this fact
is irrelevant in our effort to determine the number of positive roots.

50



0.5 0.75 1 1.25 1.5
−1

−0.5

0

0.5

1

r/u

M

Λ = +1 u−2, α = 1.1αM

Λ = +1 u−2, α = 1.0αM

Λ = +1 u−2, α = 0.9αM

Λ = −1 u−2, α = 1 u

Figure 2.3: The four archetypes of the master function M(r) with different pa-
rameters Λ and α, but always with β = 1 u. The blue curve represents spacetimes
with Λ < 0 and the green one represents valid spacetimes with Λ > 0. While the
orange curve with α = αM = 4

3 u reaches zero, neither it nor the red curve ever
reach positive values, and thus they do not correspond to valid spacetimes.

through the transformation (2.131) (disregarding the case of β < 0, which we
did not allow back then), we obtain f 2 = Λ, which coincides with (2.17) as
seen during the derivation of the homogeneous spacetime. Furthermore, plugging
r0(crit) into the electromagnetic field invariant (2.135), we correctly obtain the
value FµνF µν = 2Λ of (2.106). It is not straightforward, however, to consider
the previous spacetime as a parametric limit of the presently-investigated one,
as a necessary stepping stone during the derivation of the metric (2.129) was
considering f as the new radial coordinate, which is, of course, not possible for a
constant f .

This solution is almost everywhere of Petrov algebraic type D with the excep-
tion of the hypersurface r = 2β2/α and in the limit r → ∞ (if either of them can
be found within the particular spacetime), where it is type O. Like in the original
Bonnor–Melvin solution, there are four Killing vector fields. Three correspond to
the translational symmetries and one to the boost in the t–z plane. The group of
isometries is ISO(1, 1) × E(1), the same as for the Bonnor–Melvin solution. Like
both the homogeneous and Bonnor–Melvin solutions, this spacetime too belongs
to the Kundt class, as the integral curves of the two principal null directions√

2(∂t ± ∂z)/2r are again geodesics with vanishing optical scalars.
While the spacetime does not contain any curvature singularities, there may be

conical defects at the axes. The condition (1.2) that ensures elementary flatness
at an axis located at r = ra becomes

lim
r→ra

σ2 (M′(r))2 = σ2 (M′(ra))2 = 4 (2.141)

due to continuity of M and its derivatives at the axes. Therefore, by setting

σ2 = 4
(M′(ra))2 (2.142)

we can always eliminate the conical defect for the axis at ra in the spacetime.
There is only one axis for spacetimes with Λ < 0, so they can always be made
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free of the defect. However, there are two axes if Λ > 0 and α > αM. Plugging
the above value of σ2 into the condition, elementary flatness for the second axis
at rb is guaranteed if

M′(ra) = −M′(rb) , (2.143)

where we used the fact that the two derivatives must have opposite signs as
evident from the analysis of the master function. While one may be tempted to
consider this condition to be just as easily satisfiable as the previous one if we fix
one of the remaining parameters of the solution, we must keep in mind that unlike
σ the other parameters influence the positions of the axes as they all appear in
M. Analysis of the problem reveals that it is actually not possible to fulfill the
second condition. To show that, we can compare M with its factorization,

−3r2

Λ M(r) = 3β2

Λ − 3α
Λ r + r4

= (r − ra)(r − rb)(r − rc)(r − rc) ,
(2.144)

where rc and rc are the remaining roots of M, which must be complex conjugate
in this case. By expanding the second line and comparing the coefficients at
the corresponding powers of r with the first line, we can eliminate the irrelevant
complex roots and obtain

β2 = Λ
3 rarb

(
r2
a + rarb + r2

b

)
,

α = Λ
3 (ra + rb)

(
r2
a + r2

b

)
.

(2.145)

Plugging the values into the derivatives of M, the condition (2.143) becomes

0 = M′(ra) + M′(rb) = Λ
3

(ra − rb)2 (ra + rb)3

r2
a r

2
b

, (2.146)

which is clearly not possible to be fulfilled for two distinct positive values of ra
and rb. See also Fig. 2.4 for the chart of −M′(rb)/M′(ra) demonstrating this
issue. Therefore, one of the two axes for the solution with Λ > 0 must contain a
conical defect. This result is consistent with Lim [2018]. Note that

M′(r) = 4β2

r3 − 3α
r2 + 2M(r)

r
= α

r2 − 4Λ
3 r− 2M(r)

r
= β2

r3 − Λr− M(r)
r

, (2.147)

which means that we can replace the derivatives of M in the conditions with the
first two terms of any of the expressions as M = 0 at the axes.

The proper radial distance (corresponding to a definite integral of √
grr dr)

to an axis from any given point in the spacetime is finite, because the axes are
represented by simple roots of M and so we are effectively integrating 1/

√
r − ra

in their vicinity, leading to finite results. On the other hand, for Λ < 0 the proper
distance diverges in the limit r → ∞, as the integrand behaves like 1/r in the
asymptotic region.

Speaking of the asymptotic region, if we consider the leading term of the
series M(r) = −Λ

3 r
2 + O(1/r), perform the transformation r →

√
−3/Λ / x and
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Figure 2.4: The chart of −M′(rb)/M′(ra) as a function of α/αM for two axes at
ra < rb in a spacetime with Λ > 0. Numerical computations suggest that the
value of the function does not depend on the remaining parameters of the metric,
even though the coordinates of the axes do. For α > αM the function does not
reach the required value −M′(rb)/M′(ra) = 1 and elementary flatness of both
axes can never be achieved. The function approaches 1 in the limit α → αM as
the two axes merge.

φ →
√

−3/Λ φ / σ, we obtain the anti-de Sitter metric as seen in, e.g., Griffiths
and Podolský [2009],

ds2 =
− 3

Λ
x2

(
−dt2 + dx2 + dz2 + dφ2

)
. (2.148)

Note, however, that the coordinates in this form of the anti-de Sitter metric are
usually considered to be unbounded, but we still consider the φ coordinate to be
periodic.

After setting Λ = 0, the simplified master function M0(r) = −β2/r2 + α/r
requires α to be positive, or else M0 would be negative for all r > 0. It then
has a positive root at ra = β2/α and the allowed region of r stretches to positive
infinity. We can use (2.142) to set σ = 2β4/α3 to ensure elementary flatness of
the axis, which leads to the metric

ds2 = −r2 dt2 + dr2

−β2

r2 + α
r

+ r2 dz2 + 4β8

α6

(
−β2

r2 + α

r

)
dφ2 (2.149)

with
F = 2β5

α3r2 dr ∧ dφ . (2.150)

Now, let us consider the transformation ρ =
√
α (r − ra) mapping the allowed

interval r ∈ [ra,∞) into ρ ∈ R+
0 bijectively. After defining new parameters

B = 2/β and A = 2−3/2α, we arrive at the metric

ds2 =

(
1 + 1

4B
2ρ2
)2

A4B4

(
2A2

(
−dt2 + dz2

)
+ dρ2

)
+ A4B4

(
1 + 1

4B
2ρ2
)−2

ρ2 dφ2

(2.151)
and the magnetic field

F = ρ

A2B
(
1 + 1

4B
2ρ2
)2 dρ ∧ dφ . (2.152)
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The magnetic field invariant is

FµνF
µν = 2A4B6

(
1 + 1

4B
2ρ2
)−4

(2.153)

and the Kretschmann scalar is

RαβγδR
αβγδ = A8B12 (3B4ρ4 − 24B2ρ2 + 80)

4
(
1 + 1

4B
2ρ2
)8 . (2.154)

The quantities are noticeably similar to those of the Bonnor–Melvin solution of
Sec. 1.3.3. It does not appear to be possible to transform the parameter A away
without introducing a conical defect, but we recover the Melvin universe if we set
A = 1/B and rescale the t and z coordinates.

The solution was obtained using different methods prior to our work. A vari-
ant of the metric was perhaps first discovered in Dias and Lemos [2002] by varying
the Einstein–Hilbert action. While the paper only deals with the case Λ < 0, it
also presents a rotating generalization of the spacetime and notably examines the
solution’s mass, charge, and (for the rotating variant) angular momentum per
unit length. They also note the spacetime is both timelike and null geodesically
complete. Next, a generalization of Ernst’s solution generating technique was
used to obtain this solution in Astorino [2012]. The transformation r → 1 + ρ2/4
and φ → −2φ/σ connects our metric (2.132) to (4.6) of the cited paper with
B = β and k = 4α. The properties of the spacetime are not investigated there,
but the paper discusses a rotating variant as well. In Lim [2018] the metric
was recovered by applying a limiting procedure to the (anti-)de Sitter–C-metric,
generalizing Havrdová and Krtouš [2007] for a non-zero cosmological constant,
considering both magnetic and electric components of the electromagnetic field.
Some properties of the spacetime are studied in this paper, including electro-
magnetic fluxes across the plane of constant t and z, and some parametric limits
of the metric are provided. The paper also tackles uncharged particle motion,
which partly overlaps with our more extensive analysis below, which also includes
charged test particles. Properties of the magnetic field and the ADM mass and
tensions for spacetimes with Λ < 0 are studied in Kastor and Traschen [2020].
Moreover, the recent paper Lim [2021] explores a certain type of shell sources,
different from those we study in this thesis. Last but not least, a gyraton metric
on a variant of this spacetime is studied in Kadlecová and Krtouš [2014].

Particle motion

Let us examine particle motion now. For the metric (2.132), the constants of
motion for a charged test particle with the charge-to-mass ratio κ are

E = r2 ṫ , (2.155)

L = σ2 M(r) φ̇− βσκ

r
, (2.156)

Z = r2ż . (2.157)

The effective potential for radial motion satisfying ṙ2/2 = −V then reads

V (r) = M(r)
2

(
−δ − E2 − Z2

r2

)
+ 1

2σ2

(
βσκ

r
+ L

)2

(2.158)
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and its separated counterpart according to (1.12) is

W 2(r) = E2 + 2r2

M(r)V (r) = −r2δ + Z2 + r2

σ2M(r)

(
βσκ

r
+ L

)2

. (2.159)

First, the interesting limiting cases are motion towards an axis (either the
only axis in spacetimes with Λ < 0 or any of the two axes if Λ > 0 and α > αM)
and towards the radial infinity for Λ < 0. When approaching an axis, we perform
the limit of M → 0+ (i.e., we approach zero from positive values of M) while the
radial coordinate of the axis ra is finite. In this case, the first term in V vanishes
while the second, positive term survives. This means that a general particle is
unable to reach any axis, unless it satisfies two conditions: First, it needs to
have L = −βσκ/ra ≡ La so that V → 0 at the axis, and second, the remaining
constants of motion must satisfy the inequality E2 ≥ −δr2

a + Z2, otherwise the
potential is positive in the neighborhood of the axis, prohibiting particle motion
there. The second condition follows from the Taylor expansion of the potential
at ra with L = La employing the factorization M(r) = f(r) (r − ra), which is
always possible for valid spacetimes, as an axis is represented by a root of M of
multiplicity one. We then have

V (r)
⏐⏐⏐
L=La

= f(r) (r − ra)
2

(
−δ − E2 − Z2

r2

)
+ β2κ2

2

(1
r

− 1
ra

)2

= −E2 − δr2
a + Z2

2r2
a

f(ra) (r − ra) + O
(
(r − ra)2

)
, (2.160)

where f(ra) (r − ra) must be positive near the axis in the area with M > 0.
Therefore, the leading term of the expansion is negative (thus allowing particle
motion near the axis) if the strict version of the inequality above holds. In the
case of E2 = −δr2

a + Z2, the linear term in the expansion of V vanishes and the
leading term is the quadratic one with the coefficient (β2κ2 − 2δr3

af(ra))/2r4
a,

which again must be negative to allow particle motion near the axis, yielding an
additional condition7. In this case we additionally have V ′ → 0, which means the
particles would reach the axis in infinite proper time8. Note that photons must
satisfy L = 0 and E > |Z| to reach an axis. These photons then reach the axis
in finite affine parameter, as V ′(ra) is non-zero for them, even though for purely-
radially moving photons with Z = L = 0 the coordinate velocity |dr/dt| = r

√
M

vanishes as they approach the axis. Considering E = |Z| with L = 0 necessarily
leads to ṙ = 0, so no axis is being approached.

The other limit, r → ∞ for Λ < 0, is easier to analyze. For δ = −1 the poten-
tials diverge to positive infinity, which means that no massive particle whatsoever
may ever escape the pull towards the axis. For photons, on the other hand, the
limit is finite,

lim
r→∞

V (r)
⏐⏐⏐
δ=κ=0

= −Λ
6
(
−E2 + Z2

)
+ L2

2σ2 , (2.161)

7Technically we could go on considering that even the quadratic coefficient can be zero,
leading to a condition for the cubic coefficient, which could also be zero, and so on. However,
the additional constrains would need to be imposed on the spacetime instead of the particle.

8Since it is impossible for a massive particle to reach an axis without serious fine-tuning of
the initial conditions, the situation is reminiscent of the phenomenon of repulsive gravity, which
occurs in naked-singularity spacetimes. We shall briefly discuss it once we observe it properly
in Sec. 2.4 and 2.6, as these solutions actually contain singularities.

55



which means that in the asymptotic region photons with high enough E are
not barred from moving arbitrarily far away from the axis9. It would take the
photons infinite affine parameter to reach r → ∞, however, because V ′ → 0 for
them, although the coordinate velocity of purely radially-moving photons actually
diverges in this limit.

Regarding stationary circular orbits in the planes z = const., let us start with
photons. For them, the only non-trivial equation of motion (1.29) is the radial
one. Together with the normalization equation (1.6) with δ = 0, we have a set
of two equations for the photon coordinate angular velocity Ω = dφ/dt and the
orbiting radius, yielding

Ω2 = 768β6

(81α4 − 256β6Λ)σ2 (2.162)

with the orbit located at
rγ = 4

3
β2

α
, (2.163)

provided that M(rγ) > 0, and α > 0 so that rγ is also positive10. The for-
mer condition translates to 81α4 > 256 β6Λ, which also means that we need
not worry about Ω being imaginary. For Λ < 0 the condition is clearly always
fulfilled, and the same is, in fact, true for Λ > 0 as well: By comparing the
fourth power of (2.140) to the conditions, we can see that they are equivalent
to α > αM(> 0), the necessary and sufficient condition for the existence of an
interval with M > 0 for Λ > 0. This means that there is a photon orbit in
every valid spacetime of this family with α > 0. The orbits are stable, because
V ′′(rγ) = 729α6E2/ 2048 β10 > 0. After performing the appropriate coordinate
transformation, our result (2.163) is equal to (58) in Lim [2018]. Note that purely
axial null geodesics can exist anywhere in the spacetime, because for constant r
and φ the equations of motion yield ẗ = z̈ = 0 with ṫ = |ż|.

Moving on to orbits of massive particles, to get the constants of motion it
might be easier this time to start with the separated potential,

W 2
⏐⏐⏐
orbit

= r2

⎛⎝1 + 1
σ2M(r)

(
βσκ

r
+ L

)2
⎞⎠ , (2.164)

and its first derivative,
(
W 2

⏐⏐⏐
orbit

)′
= 2r + 1

3σ2 r3 M2(r)

[ (
2Λr4 + 3αr − 6β2

)
β2σ2κ2

+ 2
(
Λr4 + 6αr − 9β2

)
β σ κL r + 3

(
3αr − 4β2

)
L2r2

]
. (2.165)

Setting the latter relation to zero, we can express L as

L = σ

3 (3αr − 4β2) r

[
−(Λr4 + 6αr − 9β2)βκ± 3r2M(r)

√
β2κ2 − 6αr + 8β2

]
,

(2.166)
9This result is the only discrepancy between our work and Lim [2018], which states that

photon motion is unbounded only for radially-moving photons. Numerical integration of the
equations of motions seems to support our claims, as we found photons with L ̸= 0 apparently
escaping into radial infinity.

10For α = 0 the equations of orbital motion for photons do not have any solution if β ̸= 0.
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and the corresponding E2 is equal to W 2 from (2.164) after plugging a particular
L in. Since M > 0, we need not worry about E2 being negative for any valid
r, but the square root in L affects the region of r where circular orbits may be
located. First, for α ≤ 0 (also requiring Λ < 0), the argument of the square root
is positive everywhere and massive particle orbits can be found anywhere in the
spacetime (unlike the photon orbit, which is nowhere to be found for α ≤ 0). On
the other hand, for α > 0 (and any sign of Λ) the orbits can only be located at

r ≤ (8 + κ2)β2

6α = rγ + β2κ2

6α . (2.167)

For uncharged particles with κ = 0, this means that the upper bound for the
radii is the photon orbit at rγ and the inequality in this particular case must
be strict, as (2.166) diverges at rγ for each sign in front of the square root. For
charged particles the upper bound shifts above the photon orbit. Regardless of
the particle’s charge, the allowed region then stretches all the way to the axis
located at lower r. Take note that for certain values of κ the numerical value
of the shifted upper bound may lie above the r coordinate of the second axis
present in spacetimes with Λ > 0. In these cases, orbits of particles with such κ
may lie at any valid r in the spacetime. The denominator of L would suggest a
divergence at the photon orbit radius for charged particles as well, but, in fact,
this is true for only one of the two sign choices in L. The leading terms in the
series expansion of (2.166) at the photon orbit radius rγ for κ ̸= 0 are

L

σ
= (1 ± sgn(βκ)) (81α4 − 256β6Λ) βκ

972α4 (r − rγ)−1

+ −3 (243α4 + 256β6Λ)κ2 ± sgn(βκ) (81α4 − 256β6Λ) (3κ2 − 4)
1296α3βκ

+ O(r − rγ) . (2.168)

Due to the presence of 1 ± sgn(βκ) in the otherwise diverging first term, the
divergence vanishes for one of the two signs in L, and the value of the non-
diverging L at rγ is given by the constant second term. The differences between
the values of L for charged and uncharged particles in the case of α > 0 are
illustrated in Fig. 2.5.

Concerning the stability of the orbits, the second derivative of the potential
for uncharged particles can be written as(

W 2
⏐⏐⏐κ=0

orbit

)′′
= 4 (4β2 − 3αr)

r2 M(r) + 6 (8β2 − 5αr)
4β2 − 3αr , (2.169)

independently of the sign in L (2.166), which was inserted after the derivatives
were performed. For α ≤ 0, the second derivative is clearly positive wherever
M(r) > 0. For α > 0, the orbit radii satisfy 4β2 > 3αr due to (2.167). Taking
into account that 8/5 > 4/3, (2.169) is again positive in the area where un-
charged orbits may be located. Therefore, geodesic stationary circular orbits are
always stable in this spacetime. After adding charge, however, some orbits in
spacetimes with α > 0 may be unstable. Analysis through the Reduce function
of Mathematica reveals that while all orbits located at lower r than the photon
orbit radius rγ are stable, some charged orbits above rγ may be unstable, which
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Figure 2.5: Charts of possible values of L for massive particles orbiting at a
given r in the axial inhomogeneous spacetime with parameters α = 4 u, β = 2 u,
Λ = −1 u−2, and σ = 1 u. The red curves represent uncharged geodesic orbits,
while the blue curves correspond to particles with charge-to-mass ratio κ = 1.
The dotted vertical line denotes photon orbit at rγ = 4

3 u. The left boundary of
the chart, where the corresponding pairs of curves converge, is the spacetime’s
axis located at r ≈ 0.936 u. Valid values of r stretch from the axis to infinity.

has to be checked numerically for each given orbit in a given spacetime. A neces-
sary but not sufficient condition appears to be that the particle’s charge-to-mass
ratio must fulfill κ2 > 10 for spacetimes with Λ < 0 or κ2 > 25 for spacetimes
with Λ > 0. Only orbits corresponding to the L that diverges at rγ can become
unstable. See Fig. 2.6 for an example of unstable charged orbits.

The boost Killing vector field yields another constant of motion, r2(zṫ − tż),
which can be used to obtain the same expression for z(t) as in the homogeneous
case,

z(t) = Z

E
t+ z0 , (2.170)

which is again valid for uncharged and charged test particles alike. There do not
appear to be any other second-rank Killing tensors than the metric and the ten
symmetrized tensor products of the four Killing vectors, giving us no additional
constants.

Shell sources

The extrinsic curvature tensor (1.41) for the shell at r = const. is more compli-
cated than the one in the homogeneous solution,

K = ϵ

⎛⎝
√
M(r)
r

(−dT 2 + dZ2) + 1
2

M′(r)√
M(r)

dΦ2

⎞⎠ . (2.171)

The projection of the electromagnetic tensor (1.44) yields

F⊥ = −ϵβ

r2 dΦ . (2.172)
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Figure 2.6: Charts of possible values of L (dotted lines) and the corresponding
same-colored (W 2)′′ (solid lines) for charged massive particles with charge-to-
mass ratio κ = 10 in the axial inhomogeneous spacetime with the parameters
α = 5 u, β = 1 u, Λ = −1 u−2, and σ = 1 u, with r stretching from the photon
orbit radius rγ = 4

15 u to the upper orbit bound at r = 18
5 u. The blue lines are

the ones that diverge at rγ, and there is a region in which the blue orbits are
unstable with (W 2)′′

< 0.

The proper circumference (1.3) of the hypersurface is

C = 2πσ
√
M(r) (2.173)

and its derivative with respect to the proper radius rp (measured from the axis
at lower r if Λ > 0) as given by (1.4) is

dC
drp

= πσM′(r) . (2.174)

If the axis is regular and the condition (2.141) holds for it, the derivative’s limit
becomes the expected 2π. For Λ < 0, we have dC/drp → ∞ in the asymptotic
region. Recall that for the original Bonnor–Melvin solution discussed in Sec. 1.3.3
the derivative vanishes in that limit.

Note that the trace of K,

K = ϵ

⎛⎝2
√
M(r)
r

+ 1
2

M′(r)√
M(r)

⎞⎠ , (2.175)

diverges to positive infinity as we approach the axes, limM(r)→0+ K = +∞, as
expected. For the axis at lower r, the normal must must be oriented towards
greater values of r (i.e., ϵ = +1) and we have M′ > 0. For spacetimes with
Λ > 0, the second axis has M′ < 0 and the normal field must be oriented in the
opposite direction, ϵ = −1, so the two minus signs cancel out.

As in the homogeneous case, a shell between two variants of this spacetime
(albeit with different parameters) has STT = −SZZ for all possible arrangements
of the spacetimes with respect to the hypersurface, which is undesirable for our
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purposes. Note that, interestingly, this time SΦΦ ̸= 0. The same is also true for
shells connecting the solution to the corresponding homogeneous solution and the
Minkowski and the Bonnor–Melvin spacetimes. On the hand, it is possible to find
interpretable shells for both signs of Λ connecting the region containing the axis
at lower r to the asymptotic region of the Levi–Civita solution with interpretable
values of its parameter σ, see Fig. 2.7 for illustration. Note that for σ < 0 in
the Levi–Civita spacetime, we also found interpretable shells on the interface of
the outer region (i.e., greater r) of the axial solution for either sign of Λ and the
region containing the singular axis in the Levi–Civita solution.

The above-mentioned paper Lim [2021] examines in great detail shells on the
interface of the axial inhomogeneous solution with Λ < 0 and the anti-de Sitter
spacetime in arbitrary dimension D ≥ 4. Instead of our four-stream interpre-
tation of the shells, the cited paper considers shells containing a charged scalar
field. Furthermore, in Veselý and Žofka [2019b] we considered shells leading to
the Linet–Tian spacetime, which generalizes the Levi–Civita solution to include
the cosmological constant. We found out that it is possible to have a shell made of
four particle streams that connects the asymptotic part of the Linet–Tian space-
time to the part of the examined solution with the axis at a lower value of r, while
considering the same value of Λ of either sign in both connected spacetimes.
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(a) The axial inhomogeneous solution with Λ = 0.2 u−2, β = 7.5 u, α = 24 u, and
σ = 0.7 u. The two axes are located at r ≈ 2.44 u and r ≈ 6.04 u.
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(b) The axial inhomogeneous solution with Λ = −1.2 u−2, β = −8 u, α = 0.2 u, and
σ = 0.4 u. The axis is located at r ≈ 3.55 u.

Figure 2.7: The properties of two shells on the interface of the axial inhomoge-
neous solution and the Levi–Civita solution (in both cases with σ = 0.2, C = 1 u),
expressed as functions of the radial coordinate of the shell in the axial spacetime.
The spacetimes are aligned in such a way that the region with lower r in the mag-
netic solution and the asymptotic region of LC are preserved. The expression for
the induced three-current on the shell is the same in both cases and has only one
non-zero element, sΦ = β/4πr2, which allows us to use (1.60) to compute particle
charge q in the region admitting the four-stream interpretation of the shell, which
is located between the two dotted lines.
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2.4 Radial Bonnor–Melvin
While trying to recover the original Bonnor–Melvin solution from our equations,
we stumbled across its variant with a radial magnetic field. Due to its similarity
to the forefather spacetime, this is the only solution we decided to examine in
this work despite the fact that it is bereft of the cosmological constant. In Veselý
and Žofka [2021] we presented two forms of the metric,

ds2 = − dt2
1 − α2r2 + dr2 +

(
1 − α2r2

) [
e−2 arcsinαr dz2 + σ2e2 arcsinαr dφ2

]
(2.176)

and

ds2 = − dt2
cos2 αρ

+ cos2 αρ
[
dρ2 + e−2αρ dz2 + σ2e2αρ dφ2

]
, (2.177)

with the transformation 1 − α2r2 = cos2 αρ connecting the two forms. The
expression for the magnetic field is the same in both cases,

F = ασ dz ∧ dφ . (2.178)

Unlike in the paper we add the parameter σ [u] here to ensure that φ is dimen-
sionless, while the other coordinates have the dimension of length. Apart from
σ, the sign of which also determines the orientation of the magnetic field, there is
another free parameter α [u−1]. The radial coordinate is bounded, αr ∈ (−1, 1)
for (2.176), or αρ ∈ (−π/2, π/2) for (2.177). Not only do the endpoints represent
axes, as the proper circumference of circles around them vanishes there, but also
the proper length in the z direction vanishes there, so they are pointlike. Using
the latter form of the metric from now on, the invariant of the magnetic field is

FµνF
µν = 2α2

cos4 αρ
, (2.179)

while the Kretschmann scalar is

RαβγδR
αβγδ = 8α4

cos8 αρ

(
4 cos4 αρ− 10 cos2 αρ+ 7

)
. (2.180)

Hence, the axes are singular in this spacetime, as the scalars diverge there, and
can be considered two opposite magnetic monopoles giving rise to the magnetic
field. The axes are in finite proper radial distance from any point in the spacetime.
The electric field dual to (2.178) is ⋆F = α cos−2(αρ) dt ∧ dρ.

The spacetime is almost everywhere algebraically general, i.e., type I. At the
hypersurface r = 0 = ρ the solution is type O, and it is type D at αr = ±1/

√
10

or, equivalently, αρ = ± arctan(1/3). It admits only the three Killing vector fields
corresponding to the translational symmetries of the metric, which corresponds to
the E(1)×E(1)×E(1) group of isometries. The boost symmetry in the z direction,
which is present in the original Bonnor–Melvin spacetime, is lost. Furthermore,
the metric is invariant under the exchange z ↔ φ as long as we rescale φ and
z so that σ ends up back in the transformed gφφ if we simultaneously also take
either ρ → −ρ, or α → −α. The former choice changes the sign of F, as does
considering α → −α & ρ → −ρ, which leaves the metric intact as well.
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To determine whether the spacetime belongs to the Kundt class like the pre-
vious two, we have to consider the four-velocity of the general null geodesic

k = E cos2(αρ) ∂t ±
√
E2 − cos−4(αρ) (σ−2e−2αρL2 + e2αρZ2) ∂ρ
+ Ze2αρ cos−2(αρ) ∂z + Lσ−2e−2αρ cos−2(αρ) ∂φ , (2.181)

which we can obtain from the effective potential V (2.186), which we shall discuss
momentarily. The geodesic is parametrized by three constants of motion E, Z,
and L. The auxiliary null field N as required by the algorithm from Poisson [2004]
may be derived from k be choosing the opposite sign of kρ and normalizing the
field such that k · N = −1, which generally prevents N from being geodesic
anymore despite its relatedness to k. As it turns out, it is not possible to fix
the constants of motion in such a way that expansion and shear vanish, even
though twist is zero for any null geodesic. Perhaps the simplest results can be
obtained for radial geodesics with Z = L = 0, when the expansion scalar yields
∓2αE tanαρ and the shear tensor is ∓αE cos2 αρ (e−2αρdz2 − σ2e2αρdφ2) for the
two possible signs in k. Note that it is not possible to consider E = 0 as then
ṫ = 0. Therefore, the solution does not belong to the Kundt class.

If we set α = 0 and rescale φ to dispose of σ, we obtain the flat Minkowski
spacetime. Interestingly, its metric is then expressed in the standard Cartesian
coordinates instead of the cylindrical ones we used in Sec. 1.3.1.

Note that it is not possible to ensure elementary flatness near the singular
axes, as the fraction in (1.2) for η = ∂φ becomes

gµν (η2),µ (η2),ν
4η2 = α2σ2e2αρ(1 − tanαρ)2, (2.182)

which diverges at both axes.
The form of the metric (2.177) is clearly a special case of (3.16) from Bronnikov

et al. [2020], but the solution’s properties were not studied extensively there. Note
that a related metric with similar properties is derived in Richterek et al. [2000],
but we have not been able to find a transformation relating our (2.177) and their
(27), so we assume that our metric is not a special case of theirs despite the
similarities.

Conformal diagram

Although the causal structure of this spacetime is not particularly exciting, in
Veselý and Žofka [2021] we presented the Penrose conformal diagram of the so-
lution. The relevant part of the metric (2.177) already has the correct form in
compliance with (1.66), with f(ρ) = 1/ cos2 αρ. Omitting the constant of inte-
gration, the tortoise coordinate defined by (1.67) is

r∗ = ρ

2 + sin 2αρ
4α . (2.183)

Unfortunately, the relation is not invertible, so we cannot obtain ρ(r∗) to get the
transformed metric. That, however, does not hinder our ability to produce the
Penrose diagram, as we can still follow the transformations in Sec. 1.2.3 to obtain
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ξ and ψ as functions of t and ρ,

ψ(t, ρ) = arctan
(
t+ ρ

2 + sin 2αρ
4α

)
+ arctan

(
t− ρ

2 − sin 2αρ
4α

)
, (2.184)

ξ(t, ρ) = arctan
(
t+ ρ

2 + sin 2αρ
4α

)
− arctan

(
t− ρ

2 − sin 2αρ
4α

)
. (2.185)

In the diagram in Fig. 2.8 we plot the lines of constant coordinates t or ρ.

i+

i−

ρ
=
co
n
st
.

t = const.

Figure 2.8: The conformal diagram of the non-cosmological spacetime with a
radial magnetic field. Apart from the two singularities, which are indicated by
wavy lines, each point in the diagram represents a cylindrical surface. Lines of
constant coordinate ρ are solid and lines of constant t are dotted.
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Particle motion

As explained in Sec. 1.2.1, establishing an electromagnetic four-potential, such
as A = ασz dφ in accordance with (1.19), necessarily leads to the loss of one
constant of motion for spacetimes with a radial magnetic field. This means that
the method of the effective potential V (1.10) for radial motion is viable only for
uncharged particles in this case, i.e., κ = 0. Using the radial coordinate ρ, the
effective potential satisfying ρ̇2/2 = −V is

V (ρ) = 1
2

(
− δ

cos2 αρ
− E2 + 1

cos4 αρ

(
σ−2e−2αρL2 + e2αρZ2

))
(2.186)

and its separated counterpart is

W 2(ρ) = E2 + 2V = − δ

cos2 αρ
+ 1

cos4 αρ

(
σ−2e−2αρL2 + e2αρZ2

)
, (2.187)

with the constants of motion

E = ṫ cos−2 αρ , (2.188)
L = φ̇ σ2e2αρ cos2 αρ , (2.189)
Z = ż e−2αρ cos2 αρ . (2.190)

Due to the presence of the cosines in the potentials, the only particles capable
of reaching the singularities at αρ = ±π/2 are purely radially moving photons
with δ = Z = L = 0, because otherwise the potentials diverge as they approach
the singularities. A test particle’s inability to reach a naked singularity geodesi-
cally appears to be a manifestation of the phenomenon referred to as repulsive
gravity, which has been studied in works such as Pugliese et al. [2011, 2013],
Luongo and Quevedo [2014], and Boshkayev et al. [2016], as well as having been
observed in the Kerr–Newman–(anti-)de Sitter solution in our own Veselý and
Žofka [2018] and Veselý and Žofka [2019a]. Timelike radial massive geodesics
oscillate around ρ = 0 symmetrically.

For Z = 0, we can set V and its derivative equal to zero to obtain conditions
on stationary circular orbits. For uncharged massive particles with δ = −1, the
remaining two constants of motion then read

E2
⏐⏐⏐
orbit

= cosαρ− sinαρ
cos2 αρ (cosαρ− 2 sinαρ) , (2.191)

L2
⏐⏐⏐
orbit

= σ2e2αρ cos2 αρ sinαρ
cosαρ− 2 sinαρ . (2.192)

Both of these values must be simultaneously positive in order to represent a valid
orbiting particle, because negative squares lead to imaginary velocities and van-
ishing constants of motion mean the particle does not move in the corresponding
direction. As Fig. 2.9 shows, the range of admissible radii is αρ ∈ (0, arctan 1/2).
From the chart we can also see that the orbits are stable, because the second
derivative of the potential

V ′′(ρ)
⏐⏐⏐
orbit

= α2 (6 cos3 αρ− 2 cos2 αρ sinαρ− 5 cosαρ+ 4 sinαρ)
cos4 αρ (cosαρ− 2 sinαρ) (2.193)
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Figure 2.9: The values of E2, L2, and rescaled V ′′ for a hypothetical orbiting
massive uncharged test particle at a given radius for the metric (2.177) with
σ = 1 u. The admissible range of radii is αρ ∈ (0, arctan 1/2). The right bound
is indicated by the dotted line.

is positive in the allowed range.
At ρ = 0, an orbiting particle’s angular velocity vanishes as L = 0, which

means that a massive particle can remain static there11. Take note that, some-
what counter intuitively, ρ = 0 is a cylindrical surface with the proper circumfer-
ence 2πσ. From the inspection of the potential, both uncharged massive particles
and photons can move along a spiral instead of a closed orbit at ρ = 0 as long as
Z = ±L/σ, i.e., ż = ±σφ̇, because V ′(ρ = 0) = α(Z2−σ−2L2). From V (ρ = 0) we
can see that E2 = Z2 +σ−2L2 −δ > 0. As V ′′(ρ = 0) = α2(4Z2 +4σ−2L2 −δ) > 0,
the discussed special cases are stable under perturbations in the radial direction.

There can be no massive geodesic orbits at αρ0 = arctan 1/2, because both E
and L disappear from the non-zero first derivative of V there, V ′(ρ0) = −5αδ/8
if Z = 0. However, it turns out that this is the only allowed radius of photon
orbits, which can be seen by expressing Ω2 from the normalization equation (1.6)
and the only non-trivial equation of motion for photons (1.29) and comparing the
results. The resulting angular velocity is

Ω = ± 5
4σ exp

(
− arctan 1

2

)
. (2.194)

The second derivative of the potential shows that photon orbits are stable too,

V ′′|photon orbit = 125
32 α

2σ−2L2 exp
(

−2 arctan 1
2

)
> 0 . (2.195)

The Hamilton–Jacobi equation (1.20) with the separated ansatz (1.24) unfor-
tunately does not provide an alternative for the effective potential for charged
particles, because it is not separable in this case,

(
R′(ρ)

)2
−δ cos2 αρ−E2 cos4 αρ+e2αρ

(
Z ′(z)

)2
+e−2αρ

(
ακz − L

σ

)2
= 0 . (2.196)

11This even applies for charged particles, as can be seen from the full equations of motion.
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As there are no other Killing vectors than the three translational ones, which
correspond to the cyclic coordinates in the uncharged Lagrangian, there are no
other constants of motion linear in the four-velocity to be found with the proce-
dure exploiting the Killing vectors. Similarly, we have not found any other Killing
tensors of rank two but the six symmetrized tensor products of the three Killing
vectors and the metric.

While we cannot use the effective potential to describe charged particle mo-
tion, we can still work with the full equations of motion (1.29). The first thing
to note is that charged particles cannot achieve stationary circular orbits, as for
ρ = const. one of the equations of motion reads

z̈ = κασ cos−2(αρ) e2αρ φ̇ , (2.197)

which means that azimuthal motion forces an acceleration in the z direction.
Perhaps more interesting, however, is an observation made during numerical ex-
periments with the system: it appears that charged test particles may undergo
chaotic motion for certain initial conditions, which can be expected as the charged
system does not contain enough constants of motion to be integrable. In Fig. 2.12
at the very end of this section we present Poincaré sections of several charged
particle trajectories with similar initial conditions, depicting intersections of the
trajectories with a given plane. For a certain range of initial radial positions, the
sections fill up a non-zero area, which is symptomatic of deterministic chaos as
noted in, e.g., Schuster and Just [2005] and Moon [2008]. While chaotic motion
is suspected in these cases, confirming it would require analysis beyond the scope
of this work. Note the different scales of the individual sections; the trajectories
suspected of deterministic chaos tend to encompass far greater portion of the
available radial space.

Shell sources

Using the second form of the metric (2.177), for a cylindrical shell we obtain the
extrinsic curvature tensor (1.41)

K = − ϵα

cos2 αρ

(
sinαρ dT 2 + (sinαρ+ cosαρ) dZ2 + (sinαρ− cosαρ) dΦ2

)
,

(2.198)
while the projection of the electromagnetic tensor F⊥ (1.44) vanishes as in all
spacetimes with a radial magnetic field. Therefore, we can consider only σ > 0 in
the following, as the sign of σ only determines the direction of the now-irrelevant
magnetic field. The proper circumference (1.3) of the hypersurface is

C = 2πσ eαρ cosαρ . (2.199)

Note that the circumference vanishes at both singularities. The maximal circum-
ference

√
2πσeπ/4 ≈ 9.74σ is achieved at αρ = π/4, and the function is monotonic

on either side of the maximum, see Fig. 2.10 for illustration. This means that
generally two different radial coordinates correspond to a single value of C. The
situation is quite similar to the original Bonnor–Melvin solution, as can be seen
by comparing the chart to Fig. 1.1 of Sec. 1.3.3.

Note that the quantities above are symmetric in such a way that reversing
the normal by considering ϵ → −ϵ yields the original results if we also consider
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Figure 2.10: The circumference of shells at a given radial coordinate in the radial
Bonnor–Melvin spacetime. The maximal value is achieved at αρ = π/4.

α → −α and ρ → −ρ at the same time. Therefore, in our numerical experiments
we can focus on a single direction of the normal if we examine the entire interval
of ρ while simultaneously considering both signs of α.

The derivative of C with respect to the proper radius rp measured from the
axis at lower ρ is given by (1.4),

dC
drp

= 2πασeαρ (1 − tanαρ) . (2.200)

It diverges at the two singular axes.
The trace of K is

K = −ϵα sinαρ
cos2 αρ

. (2.201)

To see its behavior at the singular axes, for both of them we need to consider
ϵ = −sgn(ρ) so that the normal field of the hypersurface points towards the
other axis. The coordinates of the axes can be written as ρ = sgn(ρ) π/(2 |α|).
Plugging both of these into the numerator, we get −ϵα sinαρ = |α|, so K once
again diverges to positive infinity as we approach either of the two axes.

Unlike the previous two spacetimes, this one admits an interpretable shell
on the interface of two instances of this solution. This particular case is rather
unusual, as we have

SZZ = −SΦΦ = 1
8π

ϵ+α+ cos(α−ρ−) − ϵ−α− cos(α+ρ+)
cos(α−ρ−) cos(α+ρ+) . (2.202)

Previously, we had STT = −SZZ , which defied our preferred interpretation of the
shell, as STT has to be positive and SZZ simultaneously non-negative. However,
it is perfectly acceptable to have SZZ = SΦΦ = 0 (the shell is then made of static
particles), so we should view (2.202) equal to zero as another condition binding
the shell’s radii in the two spacetimes, along with C− = C+,

σ− eα−ρ− cosα−ρ− = σ+ eα+ρ+ cosα+ρ+ . (2.203)

This means that for a given configuration of the two connected spacetimes both
radii are fixed. Even though (2.203) is a transcendental equation, we can express
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one of the cosines from (2.202) after setting the relation to zero, insert it into
(2.203) and divide the equation by the other cosine (recall that the cosines vanish
only in the singularities). We can then effortlessly express one of the radii, e.g.,

α−ρ− = α+ρ+ + ln
(
ϵ+σ+α+

ϵ−σ−α−

)
, (2.204)

and use the other equation to obtain the other radius,

α+ρ+ = arctan
⎛⎝− ϵ−α−

ϵ+α+
+ cos ln ϵ+σ+α+

ϵ−σ−α−

sin ln ϵ+σ+α+
ϵ−σ−α−

⎞⎠ . (2.205)

Now, we need to check whether

STT = 4µ = 1
4π

ϵ+α+ sin(α+ρ+) cos2(α−ρ−) − ϵ−α− sin(α−ρ−) cos2(α+ρ+)
cos2(α−ρ−) cos2(α+ρ+)

(2.206)
is positive. Note that due to the aforementioned symmetry of the spacetime, all
we have to do is find an interpretable shell for one configuration, and we can get
the remaining configurations by switching the appropriate signs if we do not care
for the particular values of the parameters. Considering ϵ− = ϵ+ = +1 (i.e., we
keep the region with lower ρ in the minus spacetime and the region with higher
ρ in the plus spacetime), we can have, e.g.,

σ− = 1 u , α− = 5/u
σ+ = 1 u , α+ = 4/u

}
STT ≈ 0.228/u , (2.207)

while exchanging α− ↔ α+ yields the opposite value STT ≈ −0.228/u. This
means that there are both interpretable and non-interpretable shells for each
variant of the connection of the two spacetimes. The particle streams on the
shell are uncharged.

A particularly appealing configuration would be that of the hypersurface con-
necting two instances of the same spacetime (i.e., with the same parameters α
and σ) in such a way that the spacetime could be pictured as existing between
two coaxial shells, which would eliminate both singularities. It is possible to
conceive such a model due to the fact that there generally are two radial coordi-
nates corresponding to the same circumference as seen in Fig. 2.10. In this case,
the orientation of the normals must be the same regardless of the actual sign,
ϵ− = ϵ+ ≡ ϵ. Substituting from (2.203) into (2.202), we get

SZZ = −SΦΦ = ϵα

8π
1 − eα(ρ−−ρ+)

cosαρ+
, (2.208)

which vanishes if and only if ρ− = ρ+, prohibiting two different coordinate radii
of the shell and forcing us to abandon this convenient model.

Next, we do not need to look for shell sources in the Levi–Civita spacetime,
as the simpler Minkowski spacetime suffices this time. The coordinate radius
in the Minkowski solution is σ eαρ cosαρ when using the standard cylindrical
coordinates. Keeping the region with lower ρ in the magnetic solution, we can
see from

SΦΦ = 1
8π

α

cosαρ (2.209)
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that we need to consider α > 0. Denoting ϵ the orientation of the normal in the
Minkowski spacetime such that ϵ = +1 means that we preserve the asymptotic
region, we have

SZZ = 1
8π

−ασ + ϵe−αρ

σ cosαρ . (2.210)

Therefore, SZZ is clearly negative unless ϵ = +1. Depending on the parameters in
the metric, the four functions can be positive near the negative axis in the mag-
netic solution, as illustrated in Fig. 2.11a. Again, the shell is devoid of electrical
charge. If we want to keep the region with higher ρ in our magnetic solution, we
can exploit the symmetry of the spacetime. For the sake of completeness, note
that we have also found an interpretable shell leading to the asymptotic region
of the Levi–Civita solution with interpretable σ.

Finally, the spacetime also admits an interpretable shell connecting it to the
original Bonnor–Melvin spacetime of Sec. 1.3.3. Keeping the region with the neg-
ative axis from our solution, we found an admissible connection to the asymptotic
region of the Bonnor–Melvin solution, see the corresponding Fig. 2.11b. Due to
the magnetic field in the forefather solution, this particular configuration leads
to the non-zero induced electric three-current on shell

s = − 1
4π

(
1 + 1

4B
2ρ2
BM

)−2
B dΦ , (2.211)

from which we can compute particle charge q using (1.60). ρBM denotes the radial
coordinate in the original solution. In Fig. 2.11b, we use the radius below the
maximal circumference, which can be expressed in terms of ρ of the examined
radial solution as

ρBM(ρ) = 2
B2σ eαρ cosαρ

(
1 −

√
1 −B2σ2 e2αρ cos2 αρ

)
. (2.212)
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(a) The Minkowski spacetime. The shell is uncharged.
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(b) The original Bonnor–Melvin spacetime (B = −2/u).

Figure 2.11: The properties of shells on the interface of the radial Bonnor–Melvin
solution (in both cases with α = 1/u, σ = 1 u) and another spacetime, expressed
as functions of the radial coordinate of the shell in the former spacetime. The
spacetimes are aligned in such a way that the region with lower ρ in the radial
Bonnor–Melvin solution and the asymptotic region of the other one are preserved.
The region admitting the four-stream interpretation of the shell is located to the
left of the dotted line in both cases.
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Figure 2.12: Poincaré sections at φ = 0 for charged particle motion in the radial
Bonnor–Melvin spacetime with α = π/2 u−1 and σ = 1 u for various initial radial
positions αρ = ξ π/2 increasingly close to the axis at ξ = −1. The initial values of
the remaining coordinates are set to zero. The spatial components of the initial
four-velocity are fixed at (ρ̇, ż, φ̇) = (0.5,−0.5, 0.04/u) and the charge-to-mass
ratio of the particles is κ = 5. The equations of motion have been integrated for
the same amount of affine parameter in all cases presented here. For each value of
ξ, the number in parenthesis denotes the number of points at which the particle’s
spatial trajectory intersects the section. The figure is spread over multiple pages.
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Figure 2.12: Poincaré sections for the radial Bonnor–Melvin spacetime. (cont.)
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Figure 2.12: Poincaré sections for the radial Bonnor–Melvin spacetime. (cont.)
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2.5 Radial homogeneous spacetime

2.5.1 The hyperbolic-cosine metric
The first of the two cosmological solutions introduced in Veselý and Žofka [2021]
was the counterpart to the homogeneous solution of Sec. 2.2 but with a radial
magnetic field instead of the axial one. The metric considered in the paper is

ds2 = − cosh2
(√

−2Λ r
)

dt2 + dr2 + dz2 + σ2dφ2, (2.213)

where the coordinates t, r and z are of the dimension of length, while φ is dimen-
sionless. Apart from the cosmological constant Λ [u−2], which must be negative
(unlike in the axial spacetime), there is one additional parameter, σ [u].

The magnetic field is
F = σ

√
−Λ dz ∧ dφ (2.214)

with A = σ
√

−Λ z dφ and the Hodge dual ⋆F =
√

−Λ cosh
(√

−2Λ r
)

dt ∧ dr.
The magnetic field invariant is

FµνF
µν = −2Λ , (2.215)

and the Kretschmann scalar is 16Λ2. There are no singularities in the spacetime
and the coordinates may take any real values except for the cyclic coordinate φ.
Setting Λ = 0 yields the Minkowski spacetime. Note that there a reflectional
symmetry of the metric functions with respect to r = 0, but we cannot consider
it an axis proper, because it does not fulfill gφφ → 0 as gφφ is, in fact, constant.
This means that the proper circumference of circles at any r is constant as well,
including somewhat counter-intuitively also the circumference of the cylinder at
r = 0 itself.

The solution is everywhere of algebraic type D and it admits six Killing vec-
tor fields. There is the usual trinity related to translations, ∂t, ∂z, and ∂φ, the
field σ2φ ∂z − z ∂φ corresponding to rotational symmetry of the spacetime in the
z–φ plane, and two other fields, − sin(

√
−2Λ t) tanh(

√
−2Λ r) ∂t+cos(

√
−2Λ t) ∂r

and cos(
√

−2Λ t) tanh(
√

−2Λ r) ∂t + sin(
√

−2Λ t) ∂r, which together with ∂t cor-
respond to the three Killing vectors of a two-dimensional anti-de Sitter space-
time, as the metric is a direct product of the 2D anti-de Sitter spacetime and
a 2D Riemannian metric. As also stated in Griffiths and Podolský [2009], the
group of isometries of the family of spacetimes the studied metric belongs to is
SO(2, 1) × E(2) and the solution is among the spacetimes studied in Plebański
and Hacyan [1979].

The spacetime belongs to the Kundt class, but the two principal null di-
rections we obtained through the algorithm in Griffiths and Podolský [2009],
cosh−1

(√
−2Λr

)
∂t±∂r, do not correspond to geodesics. Instead, we have to flash-

forward to the effective potential (2.224), which we can use to obtain a general for-
mula for the four-velocity corresponding to a null geodesic. Considering ṙ > 0, for
E = 1 and Z = L = 0 we obtain k = cosh−2

(√
−2Λr

)
∂t + cosh−1

(√
−2Λr

)
∂r,

which actually also yields one of the principal null directions after a non-constant
rescaling, which is, however, not obvious to infer beforehand. Next, we select
N =

(
∂t − cosh

(√
−2Λr

)
∂r
)
/2 as the auxiliary null field (not geodesic in this

case) with the scalar product k · N = −1 as required by the algorithm in Poisson
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[2004]. We can then see that the null geodesic congruence k has vanishing optical
scalars, proving the solution belongs to the Kundt class.

As noted in Sec. 1.1, with gφφ constant we see that it may not be the best to
consider this spacetime to be cylindrically symmetric. The rotational symmetry
in the z–φ plane, along with the fact that gzz is constant as well, suggest that
discarding the periodicity of φ and extending it to φ ∈ R, thus replacing the
considered cylindrical symmetry with a planar one, may be a better way to look
at this metric. Furthermore, the subgroup E(2) is also suggestive of the planar
interpretation of the coordinates. However, to maintain the theme of the work
we shall not do that here and treat φ as the angular coordinate as usual.

All things considered, if we discard the periodicity of φ, this solution can
perhaps be considered to be a generalization of the anti-de Sitter solution for a
non-vanishing magnetic field, as the solution is homogeneous and extends into
infinity in all spatial directions. The last part is not true about the Bonnor–
Melvin–Λ spacetime of Sec. 2.2, as the radial coordinate is bound between the
two axes, which is why we refrained from calling that spacetime a generalization
of the de Sitter spacetime as the analogy is somewhat weaker. Note, however, that
the presence of the homogeneous magnetic field introduces a preferred direction
into the spacetime, which means the solution is no longer isotropic.

Conformal diagram

Next, we are going to show the transformations of the radial and time coordinates
presented in Sec. 1.2.3, ultimately leading to the construction of the Penrose
conformal diagram. None of the transformations affects the expression for F
(2.214). First, the transformation cosh2

(√
−2Λr

)
= 1 − 2ΛR2 brings the metric

(2.213) into the form

ds2 = −
(
1 − 2ΛR2

)
dt2 + dR2

1 − 2ΛR2 + dz2 + σ2dφ2, (2.216)

as required by (1.66). The tortoise coordinate r∗ (1.67) is

r∗ = 1√
−2Λ

arctan
(√

−2ΛR
)

= 1√
−2Λ

arctan
(

sinh
(√

−2Λ r
))

. (2.217)

We can invert r∗(R) to obtain the metric

ds2 = −dt2 + (dr∗)2

cos2
(√

−2Λ r∗
) + dz2 + σ2dφ2. (2.218)

The Eddington–Finkelstein coordinates u = t− r∗ and v = t+ r∗ yield

ds2 = − du dv

cos2
(√

−Λ
2 (v − u)

) + dz2 + σ2dφ2. (2.219)

Finally, we perform the transformations (1.72) and (1.73) to get the Penrose
coordinates ψ and ξ, leading to the metric

ds2 = −dψ2 + dξ2

(cosψ + cos ξ)2 cos2
(√

−2Λ sin ξ
cosψ+cos ξ

) + dz2 + σ2dφ2. (2.220)

After inserting r∗(r) from (2.217) into ψ and ξ, we obtain the conformal diagram
in Fig. 2.13 by plotting the lines of constant t or r.
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Figure 2.13: The conformal diagram of the hyperbolic-cosine homogeneous cos-
mological spacetime with a radial magnetic field. Each point in the diagram
represents a cylindrical surface. Lines of constant coordinate r are solid and lines
of constant t are dotted.
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Particle motion

As for the previous spacetime, we have to consider uncharged and charged particle
motion separately. The constants of motion for uncharged test particles are

E = ṫ cosh2
(√

−2Λ r
)
, (2.221)

L = φ̇ σ2, (2.222)
Z = ż , (2.223)

leading to the effective potential

V (r) = 1
2

⎛⎝−δ − E2

cosh2
(√

−2Λ r
) + L2

σ2 + Z2

⎞⎠ , (2.224)

which satisfies ṙ2/2 = −V , and its separated counterpart

W 2(r) = cosh2
(√

−2Λ r
)(

−δ + L2

σ2 + Z2
)
, (2.225)

which is related to V through (1.12).
The limits of the potentials are straightforward, as the only function appearing

in them is the hyperbolic cosine, which satisfies cosh(0) = 1 and it diverges when
r → ±∞. Because of this, the only negative term in V diminishes when moving
away from r = 0, and while the limit

lim
r→±∞

V (r) = 1
2

(
−δ + L2

σ2 + Z2
)

(2.226)

is finite, it is clearly positive and no particle can ever escape into radial infin-
ity geodesically. Because the potential is monotonic, uncharged test particles
oscillate through r = 0 in the radial direction.

Regarding circular orbits with Z = 0, it is not possible to fix the constants of
motion so that the first derivative of (2.224),

V ′(r) =
√

−2Λ sinh
(√

−2Λ r
)
E2

cosh3
(√

−2Λ r
) , (2.227)

vanishes for an arbitrary r. However, apart from the limit r → ±∞ it does vanish
for r = 0, and V (0) = 0 gives the constraint E2 = −δ + L2/σ2 that orbiting
particles must satisfy. Specifically for photons, this translates to Ω = ±1/σ. The
second derivative of the potential V ′′(0) = −2ΛE2 is manifestly positive, which
means that the orbits are stable.

For charged test particles with κ ̸= 0, the previous method is unusable because
z is not a cyclic coordinate anymore, which means that there is no constant
of motion corresponding to Z (2.223). However, the Hamilton–Jacobi equation
(1.20)

(
R′(r)

)2
− δ − cosh−2

(√
−2Λr

)
E2 +

(
Z ′(z)

)2
+
(√

−Λκz − L

σ

)2
= 0 (2.228)
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is separable in this case, with the original E (2.221) and the charged variant of
L (2.222),

L = φ̇ σ2 +
√

−Λσκz . (2.229)
Therefore, we can introduce the Carter constant K to obtain the two effective
potentials according to (1.25) and (1.26),

Vr(r) = − E2

2 cosh2
(√

−2Λ r
) +K (2.230)

and
Vz(z) = 1

2

(
−δ +

(√
−Λκz − L

σ

)2)
−K . (2.231)

As gzz = 1, the latter potential does not depend on r. The particle’s prop-
erties must fulfill −δ ≤ 2K ≤ E2, otherwise one of the potentials is positive
everywhere, which is incompatible with (1.27) or (1.28). Charged test particles
oscillate around r = 0 in the radial direction and z0 = L/(σ

√
−Λκ) in the z

direction. Expressing L from the last relation,

L = σ
√

−Λκz0 , (2.232)

we can replace it in (2.231) to obtain

Vz(z) = −1
2
(
δ + Λκ2 (z0 − z)2

)
−K , (2.233)

and in (2.229) to get

φ̇ =
√

−Λκ
σ

(z0 − z) . (2.234)

Both of these expressions more openly reflect the spacetime’s translational sym-
metry in z by employing the replacement constant of motion z0 in lieu of L. As
z0 can be arbitrary, charged test particles (with suitable constants of motion) can
be found at any z. Setting Vz = 0, we can see that the maximum distance along
the z axis (both coordinate and proper, as gzz = 1) a given particle can move
away from z0 is

∆zmax =
√
δ + 2K
−Λκ2 . (2.235)

To sum up the equations for charged test particle motion, the evolution of the
system can be decomposed into two independent subsets of equations, one for
t(τ) and r(τ) using the equations (2.221) and ṙ2 = −2Vr with (2.230), and the
other for φ(τ) and z(τ) using (2.234) and ż2 = −2Vz with (2.233). The constants
of motion E, K, and z0 are fixed by the initial conditions.

Regarding circular orbits, the derivatives of Vr (2.230) are the same as the re-
spective derivatives of V (2.224), which means that charged orbits can be located
only at r = 0 and they are stable in the radial direction as well. From Vr(0) = 0
we have E = 2K, replacing the previous constraint on the constants of motion.
To make sure that the orbits are located in a plane perpendicular to the axis,
we also require Vz = 0 = dVz/dz. The derivative yields z = z0, which, however,
means that the particles do not actually orbit at all, as from (2.234) we have
φ̇ = 0, so the spacetime does not admit circular orbits of charged test particles
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in the planes of constant z. Nevertheless, if we were interested in these static
particles, from Vz = 0 we would see that (E =) 2K = −δ. The static particles
are stable in the z direction too, because d2Vz/dz2 = −Λκ2 > 0.

The rotational Killing vector fields yields the additional constant12 φż − zφ̇,
which is valid only for uncharged particles with κ = 0. We can then express one
of the coordinates as the function of the other, such as

φ(z) = L

σ2Z
z + φ0 mod 2π . (2.236)

The last two Killing vectors, however, yield more interesting results. These vec-
tors represent the symmetries of the electromagnetic field, so their constants

A = sinh
(√

−2Λ r
)

cosh
(√

−2Λ r
)

sin
(√

−2Λ t
)
ṫ+ cos

(√
−2Λ t

)
ṙ ,

B = sinh
(√

−2Λ r
)

cosh
(√

−2Λ r
)

cos
(√

−2Λ t
)
ṫ− sin

(√
−2Λ t

)
ṙ

(2.237)

are valid even for charged particles unlike (2.120) for the axial homogeneous
solution of Sec. 2.2. After replacing ṫ = E cosh−2

(√
−2Λ r

)
, we can express r

and ṙ from the constants as functions of coordinate time t,

r(t) = 1
2
√

−2Λ
ln
⎛⎝E + A sin

(√
−2Λ t

)
+B cos

(√
−2Λ t

)
E − A sin

(√
−2Λ t

)
−B cos

(√
−2Λ t

)
⎞⎠ , (2.238)

ṙ(t) = A cos
(√

−2Λ t
)

−B sin
(√

−2Λ t
)
. (2.239)

These functions are compared to a numerical computation in Fig. 2.14. The argu-
ment of the logarithm in (2.238) is always positive, as inserting the three relevant
constants of motion into the fraction enables us to rewrite it as exp

(
2
√

−2Λ r
)
,

which is manifestly positive. Note that this substitution leads to the loss of the
dependence on t and (2.238) becomes simply r = r.

Considering Killing tensors of rank two does not yield any new independent
constants of motion.

Shell sources

The extrinsic curvature tensor (1.41) for a shell at r = const. is

K = −ϵ
√

−2Λ tanh
(√

−2Λ r
)

dT 2 (2.240)

and the projection of the electromagnetic tensor F⊥ (1.44) vanishes. The proper
circumference (1.3) of the hypersurface

C = 2πσ (2.241)
12This is the first instance of many constants of motion with a ‘naked’ φ coordinate not

inside the argument of a trigonometric function we encounter throughout this work. It seems
appropriate to stress here that such constants must be understood locally, ignoring the dis-
continuity of φ at the endpoints of its interval of periodicity by, e.g., shifting the coordinate if
necessary. While the issue is not as glaring there, note that we actually implicitly assume the
same wherever φ̇ is involved, as this quantity is ill-defined on the endpoints of the interval.
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(a) The chart of r(t) (2.238).
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(b) The chart of ṙ(t) (2.239).

Figure 2.14: The comparison of the cyan theoretical curves to the data points
obtained by numerical integration of the equations of motion for a massive charged
particle with κ = 1 in the spacetime with Λ = −1 u−2 and σ = 1 u. The relevant
initial conditions are t = 0, r = 0.2 u, ṫ ≈ 1.66, and ṙ = 1. The important
constants of motion are E ≈ 1.80, A = 1, and B ≈ 0.496. The shown range of t
corresponds to the total proper time of approximately 10.7 u. Neighboring marks
in the charts are 0.1 u of proper time apart. The particle’s movement in the two
remaining spatial dimensions is irrelevant.
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does not depend on the radial coordinate r, which can therefore be chosen arbi-
trarily. Due to the symmetries of the spacetime, choosing the opposite sign of ϵ
corresponds to repositioning the hypersurface r → −r.

The trace of K,
K = ϵ

√
−2Λ tanh

(√
−2Λ r

)
, (2.242)

does not diverge anywhere in the spacetime, which is consistent with the fact
that there is no axis where gφφ → 0. It is interesting to note, however, that
at r = 0, which remains a prominent hypersurface for the metric, we have
K = −2Λϵr + O(r3). Therefore, as we leave r = 0 and venture into either part of
the spacetime, the normal field pointing towards the corresponding region always
has a positive divergence.

First, a shell connecting two variants of this spacetime cannot be made of
particle streams as it necessarily has STT = 0. However, note that if the shell
is located at r = 0 in both instances of the spacetime, the induced stress-energy
tensor vanishes, S = 0, regardless of the orientation of the two normals and the
value of Λ on either side of the shell. This means we can change the value of Λ at
r = 0 or consider only the region with r > 0, ‘bouncing back’ when approaching
r = 0, without the need to cater to the junction conditions.

An interpretable shell is also not possible to be used to connect this spacetime
to the Minkowski spacetime, as then SZZ = −2µ, so we cannot have both SZZ ≥ 0
and µ > 0 at the same time (and it is not possible to have S = 0 for this
connection). We were unable to find numerically any admissible connection to
the Levi–Civita spacetime.

On a more positive note, we can find an interpretable shell connecting the
spacetime to the region containing the axis of the original Bonnor–Melvin so-
lution. It is not possible to connect the asymptotic region, as then STT would
inevitably be negative. Depending on the parameters of the two spacetimes, the
interval of the allowed shell’s coordinate radii in the radial homogeneous solution
can be either empty, bounded, or only half-bounded. The last two possibilities
are illustrated in Fig. 2.15, where we keep the region with negative radial in-
finity in the examined solution. However, we can exploit the symmetry of the
spacetime to retain the other region instead. Like for the analogous shell in the
radial Bonnor–Melvin solution, the induced three-current is due to the original
Bonnor–Melvin solution, so the expression is almost the same as (2.211),

s = 1
4π

(
1 + 1

4B
2ρ2
BM

)−2
B dΦ , (2.243)

except for the opposite sign, which arises from the fact that this time we keep
the region containing the axis instead of the asymptotic region. We again use the
lower possible value of the coordinate in the Bonnor–Melvin solution,

ρBM = 2
B2σ

(
1 −

√
1 −B2σ2

)
, (2.244)

which does not depend on r, because neither does the circumference C (2.241).
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(a) The homogeneous solution with Λ = −0.4 u−2 and σ = 1 u. The region admitting
the four-stream interpretation of the shell extends from negative infinity to the dotted
line.
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(b) The homogeneous solution with Λ = −0.5 u−2 and σ = 1 u. The region admitting
the four-stream interpretation of the shell is located between the two dotted lines.

Figure 2.15: The properties of two shells on the interface of the radial homoge-
neous solution and the Bonnor–Melvin solution (in both cases with B = 0.7/u),
expressed as functions of the radial coordinate of the shell in the homogeneous
spacetime. The spacetimes are aligned in such a way that the region with neg-
ative radial infinity in the homogeneous solution and the region containing the
axis in the Bonnor–Melvin spacetime are preserved. Note that the value of STT
is the same in both charts, as it does not depend on Λ.
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2.5.2 The general metric
A more general variant of the solution (2.213) is

ds2 = −
(
e

√
−2Λ r + a e−

√
−2Λ r

)2
dt2 + dr2 + dz2 + σ2dφ2 (2.245)

with still
F = σ

√
−Λ dz ∧ dφ (2.246)

and the same constant electromagnetic field invariant −2Λ and Kretschmann
scalar 16Λ2 as the hyperbolic-cosine metric. The spacetime has six independent
Killing vector fields corresponding to the same symmetries and is again of type
D everywhere.

The dimensionless real parameter a can be chosen arbitrarily. Taking a = 1
and rescaling the temporal coordinate, we recover the previous metric (2.213) by
simply using the definition cosh x = (ex + e−x) /2. Another interesting option is
to set a = 0, which yields a metric with a single exponential function

ds2 = −e2
√

−2Λ rdt2 + dr2 + dz2 + σ2dφ2. (2.247)

Note that we can consider the transformation r → −r to keep the other exponen-
tial of (2.245), but this does not affect the underlying physics. Finally, a = −1
leads to

ds2 = − sinh2
(√

−2Λ r
)

dt2 + dr2 + dz2 + σ2dφ2. (2.248)
We originally discounted this metric in our paper as we thought of the cosine
metric as the more convenient one since hyperbolic cosine is positive everywhere,
while sine has one root. However, as it turns out, the root at r = 0 corresponds
to something much more profound than a simple coordinate singularity:

We can apply the transformation

R = 1
2
√

−2Λ
(
e

√
−2Λ r − a e−

√
−2Λ r

)
(2.249)

to (2.245) and rescale t → t/2, which yields the metric

ds2 = −
(
a− 2ΛR2

)
dt2 + dR2

a− 2ΛR2 + dz2 + σ2dφ2 (2.250)

with F (2.246) unchanged. For a = 1 we obtain (2.216) of the cosine solution.
Seeing this form of the metric, it is now clear that the hyperbolic-sine spacetime is
qualitatively different from the cosine one: negative values of a lead to horizons
appearing at R = ±

√
a/2Λ and there is a dynamical region with gtt > 0 and

gRR < 0 between them, where the usually timelike Killing vector field ∂t becomes
spacelike. What is more, the solution with a single exponential (i.e., a = 0)
features a double horizon at R = 0 corresponding to r → −∞ in the original
coordinates, which leaves the double horizon in infinite proper distance from any
other point in the spacetime. This makes it the extremal version of the spacetime.
Recall that the investigated scalars are constant (and finite) everywhere, which
suggests that there are no curvature singularities in the spacetime despite the
presence of the horizons, and the two static regions at either side of the extremal
horizon or the two non-degenerate horizons are exact copies of each other. The
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situation is, therefore, different than for the well-known black-hole solutions or
even for the black-string solution examined in the following section, as their
horizons separate a region with a singularity and an asymptotic region. The
horizons are Killing horizons, as the norm of the Killing vector field ∂t vanishes
there. Using the form of metric (2.250) is, therefore, preferable to the previous
ones, as it covers the horizons and the dynamical region of the spacetime if
applicable.

While we can consider an arbitrary a, only its sign is important and we can
hence limit ourselves to, e.g., a ∈ {−1, 0, 1}, corresponding to the sinh, single-
exp, and cosh metric tensors, respectively. To see that, we can use the identities

2b cosh(x− x0) = b e−x0ex + b ex0e−x (2.251)

and
2b sinh(x− x0) = b e−x0ex − b ex0e−x. (2.252)

Therefore, any linear combination of two exponential functions appearing in gtt
of (2.245) with a ̸= 0 can be expressed as a rescaled hyperbolic function with a
shifted argument. More specifically, in our case (x =

√
−2Λ r) the coefficient by

the first exponential in the metric (2.245) is fixed, so we have b = ex0 . Plugging
this into the second term of the above identities and comparing it with the metric,
we obtain x0 = ln

√
|a|. Having replaced a with b and x0, we can now certainly

rescale the t coordinate to remove b from the metric and shift the radial coordinate
to remove x0, yielding either the sinh metric (for a < 0), or the cosh metric (for
a > 0). As F (2.246) is invariant under these transformations, we can always
recover the corresponding hyperbolic spacetime in its simplest form for any non-
zero a. Perhaps an easier argument can be made for the transformed metric
(2.250), where the transformation t → kt and R → R/l is equivalent to a → l2a
in the metric as long as |k| = |l|.

The conformal diagrams of the solutions with a = 0 and a = −1, constructed
using the procedure outlined in Sec. 1.2.3 from the metric (2.250), illustrate the
causal structure of the spacetimes in Fig. 2.16. Recall that the conformal diagram
of the metric with a = 1 can be found in Fig. 2.13.

We leave further investigation of this set of solutions for an upcoming paper.
In the paper, we intend to forgo the cylindrical symmetry considered in this thesis
and drop the periodicity of the φ coordinate, as it does not appear suitable for
this spacetime.
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(b) The hyperbolic-sine variant of the met-
ric with a = −1. There are two hori-
zons of multiplicity one at R = ±RH with
RH =

√
a/2Λ.

Figure 2.16: The conformal diagrams of two variants of the homogeneous cosmo-
logical solution with a radial magnetic field. Each point in the diagram represents
a cylindrical surface. Lines of constant coordinate r are solid and lines of constant
t are dotted. The hyperbolic-cosine variant of the metric with a = 1 is depicted
in Fig. 2.13.
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2.6 Radial inhomogeneous spacetime
The last of the solutions examined in Veselý and Žofka [2021] is the radial variant
of the inhomogeneous spacetime of Sec. 2.3. The original form of the metric
presented in the paper is

ds2 = −
γf

7
2 + 4f 4 − 4

3Λf 2

f 3 dt2 + df 2

γf
7
2 + 4f 4 − 4

3Λf 2
+ 1
f

(
dz2 + β2dφ2

)
(2.253)

with
F = β dz ∧ dφ . (2.254)

Using the arbitrary unit of length u, we have t
[
u3/2

]
, f [u−1], z [

√
u], and φ [

√
u],

and the parameters are Λ [u−2], γ
[
u−1/2

]
, and β [1]. The signs of all parameters

can be chosen arbitrarily.
To obtain a more convenient form of the metric, we can use a transformation

not unlike (2.131) in Sec. 2.3,

t̂ = 2√
|β| u

t , r̂ =
√

|β| u f−1/2,

ẑ = 1√
|β| u

z , φ̂ =
√

|β|
u φ ,

(2.255)

while simultaneously rescaling β̂ = β u. We include the unit of length u in the
transformations so that the new coordinates (omitting the hats in the following)
t and r (as well as the parameter β) have the dimension of length, while z and φ
are dimensionless. The transformed metric reads

ds2 = −N(r) dt2 + dr2

N(r) + r2
(
dz2 + dφ2

)
(2.256)

with the master function

N(r) = β2

r2 − α

r
− Λ

3 r
2, (2.257)

which differs from M (2.133) in Sec. 2.3 by the signs of the first two terms. The
dimension of α = −γ |β|3/2 /4 is u. The expression for the magnetic field F
remains (2.254). The potential is A = βz dφ and the invariant has the same form
as (2.135) in Sec. 2.3,

FµνF
µν = 2β2

r4 . (2.258)

The Hodge dual of the field is ⋆F = βr−2 dt∧dr. The expressions for the magnetic
field and its dual are reminiscent of those for the field (2.134) of Sec. 2.3, except
that the coefficients for the magnetic and electric fields are exchanged. Take note
that this form of the metric, more in line with (2.132), is slightly different from
(38) in Veselý and Žofka [2021], because we have moved β so that the limit of
vanishing magnetic field can be performed far more easily, and changed the sign
of the 1/r term in N to avoid unnecessary minus signs further down the road.
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The solution is a warped product of a 2D black-hole spacetime (compare, e.g.,
Lemos [1995]) and R2. Again, in the following we shall focus primarily on the
case βΛ ̸= 0, as we are interested in cosmological magnetic solutions, but the
value of α can be arbitrary.

The radial coordinate r can take any positive value. Like in Sec. 2.3, consid-
ering negative values of r corresponds to considering the opposite sign of α for
r > 0. Unless both α and β vanish, there is a physical singularity located at
r = 0, because the Kretschmann scalar

RαβγδR
αβγδ = 4

3r8

(
2Λ2r8 + 9α2r2 − 36αβ2r + 42β4

)
, (2.259)

which has the same form as (2.136), diverges there, along with the electromagnetic
field invariant (2.258) for β ̸= 0. The singular axis cannot be regularized with
respect to Sec. 1.1.1, as the fraction in (1.2) becomes simply N(r), which diverges
as r → 0+. Note that the axis is located in finite proper radial distance from
points in its coordinate vicinity, as √

grr = r/ |β| + O(r2), so the integral is finite.
Unlike the axial spacetime discussed in Sec. 2.3, negative values of N do not

disrupt the signature of the metric. Instead, the physical interpretation of the
radial and temporal coordinate exchanges there, and the radii where N = 0 form
the horizons, like in the well-known black-hole spacetimes due to the similarity of
the metric (2.256) with those of the Reissner–Nordström–(anti-)de Sitter family
(see, e.g., Stuchĺık and Hled́ık [2002]). The norm of the timelike Killing vector
field ∂t vanishes at the horizons, which means that these null surfaces are Killing
horizons. However, unlike the mentioned spherically-symmetric spacetimes, the
studied solution is cylindrically symmetric, which means that it is more appro-
priate to call it a black-string spacetime instead of a black hole.

To determine the horizon structure, we need to analyze the master function
N. We shall do so in a manner analogous to our analysis of M in Sec. 2.3, as
expressing the roots directly again proves to be infeasible. Working with

n(r) = r2 N(r) = β2 − αr − Λ
3 r

4, (2.260)

we can see that this time for Λ > 0 there is exactly one positive root, separating
the static region with the singularity and the dynamical asymptotic region as
r → ∞. For Λ < 0, there can be up to two distinct roots. Because n is positive
both near the singularity and in the asymptotic region, we need the determine
whether it has a negative minimum in the relevant interval of r > 0. Setting the
derivative equal to zero yields the analogue of (2.138) for the extremum,

r3
0 = −3α

4Λ , (2.261)

which means that α, unlike Λ, must be positive for r0 to also be positive. Inserting
r0 into n, we get

n(r0) = β2 − 3 3
√

6
8

α4/3

(−Λ)1/3 . (2.262)

The threshold value n(r0) = 0 corresponds to

αN = 4
3 |β|3/2 (−Λ)1/4 , (2.263)
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in which case the master function N has one degenerate root and is everywhere
non-negative, unlike its counterpart M from Sec. 2.3, which is non-positive in
the threshold case. For α > αN, there are two roots of N corresponding to
two horizons and there is a dynamical region of the spacetime between them,
where gtt > 0 and grr < 0 in the used coordinates and the Killing vector field
∂t becomes spacelike. For α < αN there are no horizons and the spacetime is
everywhere static and contains a naked singularity.

For α = αN, the root of the master function N corresponds to a degenerate
horizon at r = |β|1/2 (−Λ)−1/4 separating the two static regions. Again, the in-
verse of the transformation (2.255) yields the value f 2 = −Λ corresponding to
(2.72) of the homogeneous solution discussed in Sec. 2.5, but it cannot be seen as
a straightforward limit of the present spacetime, as our derivation of the inhomo-
geneous spacetime relied on using the invariant f as a radial coordinate, which
would be impossible if it was constant. Note that the proper radial distance to
the degenerate horizon from any other point in the spacetime is infinite, which is
not true for the two single horizons in the case of α > αN.

Examples of N corresponding to all four possible horizon configurations are
depicted in Fig. 2.17.
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Figure 2.17: The four archetypes of the master function N(r) with different
parameters Λ and α, but always with β = 1 u. All four of them correspond to
valid spacetimes. The blue curve represents spacetimes with Λ > 0, which always
contain a single cosmological horizon, while the remaining three curves represent
spacetimes with Λ < 0 and αN = 4

3 u. The spacetime with the green curve of
N(r) contains two horizons, the spacetime with the orange curve has one double
horizon, and the red curve corresponds to a naked singularity.

Taking into account that it is possible to perform a duality transformation of
the electromagnetic field without breaking the Einstein–Maxwell equations (and
thereby transition from a purely magnetic field to an electric one in our case),
this solution can be viewed as a cylindrically-symmetric analogue of the above-
mentioned Reissner–Nordström–(anti-)de Sitter spacetime, as both solutions are
static, electrovacuum, and contain the cosmological constant. However, for Λ > 0
the possible horizon structure is different: While both families of solutions always
contain the cosmological horizon, RN(a)dS may also contain up to two black-hole
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horizons closer to the singularity, unlike the presently-studied solution. For Λ < 0,
both spacetimes can have up to two black-hole (or black-string) horizons.

Like both the well-known black-hole solutions and the Bonnor–Melvin space-
time, this solution is also of Petrov algebraic type D, except for the hypersurface
r = 2β2/α (if α > 0) and in the limit r → ∞, where it is type O. There are
four Killing vector fields, three for the translational symmetries and one for the
rotational symmetry in the z–φ plane, corresponding to the E(1) × E(2) group
of isometries. This suggests that it may be of interest here to either make the z
coordinate periodic to replace the cylindrical symmetry with a toroidal one, or
to extend the angular coordinate to φ ∈ R to obtain planar symmetry. While
Lemos and Zanchin [1996] considers both cylindrical and toroidal symmetry and
the similar spacetime of Lemos [1995] is described there mainly in terms of pla-
nar symmetry, the toroidal interpretation seems to be preferred in the literature.
Having said that, we shall consider cylindrical symmetry to remain consistent
with the the rest of this work.

Note that unlike the other cosmological spacetimes examined in the work, this
one does not belong to the Kundt class. Considering the general four-velocity
corresponding to a null geodesic obtained through the effective potential (2.287)
discussed later, we have

k = E

N(r) ∂t ±
√
E2 − N(r)

r2 (Z2 + L2) ∂r + Z

r2 ∂z + L

r2 ∂φ . (2.264)

Like in the homogeneous case, the vectors we obtain for Z = L = 0, namely
(∂t/N(r) ± ∂r)E, correspond to the two principal null directions, but this time
only their shear and twist vanish, while their expansion scalar is θ = ±2E/r.
It turns out that it is not possible to fix the constants E, Z, and L in such a
way that all three scalars vanish. Therefore, there is not a single null geodesic
congruence with all three optical scalars equal to zero and the spacetime indeed
does not belong to the Kundt class. However, having an expanding null geodesic
congruence with vanishing shear and twist, this solution belongs to the Robinson–
Trautman family instead.

Like in the axial solution of Sec. 2.3, the asymptotic form of the spacetime
for Λ < 0 is the anti-de Sitter solution, because if we take the leading term of the
series N(r) = −Λ

3 r
2 + O(1/r), perform the transformation r →

√
−3/Λ / x and

rescale t, we again obtain the metric

ds2 =
− 3

Λ
x2

(
−dt2 + dx2 + dz2 + dφ2

)
. (2.265)

Unlike the axial solution the spacetimes with Λ > 0 here also have an asymptotic
region, even tough it is dynamical. For the metric with the leading term of the
series of N(r), the transformation r →

√
3/Λ / η and t →

√
3/Λ x yields the

metric
ds2 =

3
Λ
η2

(
−dη2 + dx2 + dz2 + dφ2

)
, (2.266)

so the solution with Λ > 0 is asymptotically de Sitter.
Note that this solution shares some noteworthy similarities with the Linet–

Tian spacetime, i.e., the Levi–Civita solution with a non-zero cosmological con-
stant. The Linet–Tian solution normally has only three Killing vector fields,
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which correspond to the usual ‘cylindrical’ translations, but for certain values of
the parameters in the metric, da Silva et al. [2000] observed that the solution
obtains an additional Killing vector corresponding to rotations in the z–φ plane
and that the solution also contains horizons.

The form of the metric (2.256) coincides with (2) of Huang and Liang [1995],
(2.3) of Lemos and Zanchin [1996], and the metric discussed in Brill et al. [1997]
with k = 0. Mass and charge in the ADM or Brown and York formalism is
examined in each of the three papers. In the last two papers, the authors con-
sider a negative cosmological constant only, even though the metric admits either
sign of Λ. In Lemos and Zanchin [1996] the authors also notably introduce a
rotating variant of the spacetime with Λ < 0, which has since been generalized
to higher dimensions in Awad [2003] and to non-linear electromagnetic fields in
Hendi [2010], and its analogues within various frameworks of modified gravity
have been considered in papers such as Dehghani [2003] and Hendi [2008]. Hawk-
ing radiation from the black-string variant of the spacetime is studied in Sharif
and Javed [2012]. Interestingly, the solution has experienced a surge in interest in
the recent years. Han et al. [2019] and Hong et al. [2020] study thermodynamic
properties of the metric, following a similarly-themed paper Gwak [2017] dealing
with a variant of the spacetime with Λ < 0 and spherical symmetry generalized
to higher dimensions. Furthermore, in Feng et al. [2021] the authors consider the
spacetime as a heat engine.

Conformal diagrams

The relevant part of the metric (2.256) is in the form (1.66) with f(r) = N(r)
as required during our process of obtaining the Penrose conformal diagrams. Be-
cause the presence of the horizons leads to a more complicated causal structure,
there are going to be four diagrams as there are four possible horizon configu-
rations, and the diagrams are generally going to be composed of several blocks
connected at the horizons.

For non-extremal spacetimes, we can express the tortoise coordinate (1.67) as

r∗ = −
∑
ri

r2
i ln

(
r
ri

− 1
)

α + 4
3Λr3

i

+ c , (2.267)

where ri are the roots of N(r) and c is the constant of integration. Take note
that in the extremal case the master function has a double root and the integral
of 1/N has to change accordingly. As explained in Sec. 1.2.3, in each spacetime
block we fix the value of c to eliminate the imaginary part of r∗, which can
arise due to the logarithms and complex roots of N, but the imaginary part is
always constant in each block. The relation r∗(r) is not invertible in elementary
functions, which prohibits us from writing down the metric tensors of the blocks
explicitly. Nonetheless, the transformations in Sec. 1.2.3 allow us to construct
the conformal diagrams by plotting the lines of constant t or r in the Penrose
coordinates

ψ(t, r) = arctan
⎛⎝t− ℜ

∑
ri

r2
i ln
(

r
ri

−1
)

α+ 4
3 Λr3

i

⎞⎠+ sgn(N) arctan
⎛⎝t+ ℜ

∑
ri

r2
i ln
(

r
ri

−1
)

α+ 4
3 Λr3

i

⎞⎠
(2.268)
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and

ξ(t, r) = arctan
⎛⎝t− ℜ

∑
ri

r2
i ln
(

r
ri

−1
)

α+ 4
3 Λr3

i

⎞⎠− sgn(N) arctan
⎛⎝t+ ℜ

∑
ri

r2
i ln
(

r
ri

−1
)

α+ 4
3 Λr3

i

⎞⎠ ,
(2.269)

which have to be shifted in such a way as to complete the block structure of the
given diagram.

Starting with the case Λ > 0, there is only one horizon configuration, with a
cosmological horizon separating the static area containing the singularity and the
dynamical asymptotic region. For each of the two regions there is a different type
of block, which need to be connected at the horizon. The diagram in Fig. 2.18a
represents the maximal analytical extension of the spacetime.

For Λ < 0, there are three different possible horizon configurations, similar to
the black hole solutions of the Reissner–Nordström family. The simplest causal
structure is that of the naked-singularity solution, which consists of only one
static region extending from the singularity to radial infinity. Its diagram is
presented in Fig. 2.18b. Next, the extremal configuration of Fig. 2.18c has one
double horizon separating two static regions, which means there are two different
types of blocks connected at the double horizon. To achieve maximal analytical
extension, copies of the diagram need to be connected vertically at the double
horizon. Finally, the black string solution has two horizons with a dynamical
region between them. There are, therefore, three types of blocks that must be
connected at the proper horizon after possibly being appropriately rotated. This
configuration is represented by the diagram in Fig. 2.18d. Maximal analytical
extension is performed by vertically connecting copies of diagram along the outer
horizon at r = r2.

The case of Λ = 0

Note that even when considering Λ = 0, this solution is still almost everywhere
of algebraic type D and contains the four independent Killing vector fields. This
sets it apart from the non-cosmological radial Bonnor–Melvin solution of Sec. 2.4,
which means that it is not such a parametric limit for the cosmological spacetime.
Of course, the original Bonnor–Melvin solution of Sec. 1.3.3 also cannot be a
parametric limit, not only because of the different alignment of the magnetic
field, but mainly because our solution contains a singularity at r = 0 even for
Λ = 0 while the Melvin universe is singularity free.

The simplified master function N0(r) = β2/r2 − α/r has a single root at
rH = β2/α corresponding to a horizon as long as α is positive. The horizon
separates the static region, which contains the singular axis, and the dynamical
asymptotic region, which is reminiscent of spacetimes with a positive cosmological
constant. On the other hand, if α ≤ 0, the master function N0 is positive for
all r > 0, the spacetime does not contain any horizons and is static everywhere.
The Penrose conformal diagrams of the two alternatives, which like in the full
spacetime had to be computed numerically as r∗(r) is still not invertible, are
presented in Fig. 2.19. Note that the metric for Λ = 0 becomes a special case of
(27)13 in Richterek et al. [2000] and (3.14) in Bronnikov et al. [2020].

13There is typo in relation (31).
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(a) The only possible horizon configuration for Λ > 0. The spacetime contains a horizon
at r = rH .

Figure 2.18: The conformal diagrams of the inhomogeneous cosmological space-
time with a radial magnetic field. Each point in the diagram represents a cylin-
drical surface. Lines of constant coordinate r are solid, lines of constant t are
dotted and the wavy lines represent the singularity at r = 0. The figure is spread
over multiple pages.
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(b) The naked singularity for Λ < 0 with
α < αN.
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(c) The extremal spacetime for Λ < 0 with
α = αN. There is a degenerate horizon at
r = rH .

Figure 2.18: The conformal diagrams of the inhomogeneous cosmological space-
time with a radial magnetic field. (cont.)
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(d) The black-string spacetime for Λ < 0 with α > αN. There are two horizons, an
inner horizon at r = r1 and an outer one at r = r2.

Figure 2.18: The conformal diagrams of the inhomogeneous cosmological space-
time with a radial magnetic field. (cont.)
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(a) The case with α > 0. There is a
single horizon at r = rH .
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(b) The naked-singularity spacetime
for α ≤ 0.

Figure 2.19: The conformal diagrams of the inhomogeneous spacetime with a
radial magnetic field for Λ = 0. Each point in the diagram represents a cylindrical
surface. Lines of constant coordinate r are solid, lines of constant t are dotted
and the wavy lines represent the singularity at r = 0.

To obtain metric tensors more resembling (1.86) of the original Bonnor–Melvin
solution, we can perform similar transformations that led us to (2.151) for the
axial inhomogeneous spacetime of Sec. 2.3.

Disregarding the case of α = 0, which will be discussed separately, for the
horizonless spacetimes with α < 0, we consider ρ =

√
−αr and β = 2/B (we do

not need to redefine α this time to eliminate numerical factors in gρρ) to get

ds2 = −
4α2

(
1 + 1

4B
2ρ2
)

B2ρ4 dt2 + B2ρ6

α4
(
1 + 1

4B
2ρ2
) dρ2 + ρ4

α2

(
dz2 + dφ2

)
(2.270)

with the magnetic field
F = 2

B
dz ∧ dφ . (2.271)

The invariants are
FµνF

µν = 8α4

B2ρ8 (2.272)

and
RαβγδR

αβγδ = 4α8 (3B4ρ4 + 48B2ρ2 + 224)
B4ρ16 . (2.273)
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Note that, interestingly, unlike the original Bonnor–Melvin spacetime, this metric
does not contain second powers of the term 1+ 1

4B
2ρ2. Also note that apart from

the singularity at ρ = 0, there is not any degeneracy in the metric.
For α > 0, the situation is more complicated. To convert the metric into a

Bonnor–Melvin-like form, we need to use two separate transformations on either
side of the horizon. First, for the static region with 0 < r < rH we consider
ρ = −

√
α (rH − r) ∈ (− |β| , 0). We choose the negative sign for this ρ in order

to be able to use ρ > 0 for the asymptotic region so that r → ∞ ⇔ ρ → ∞.
Redefining B = 2/β and A = 2−3/2α, we get

ds2 = − A2B4ρ2

2
(
1 − 1

4B
2ρ2
)2 dt2 +

(
1 − 1

4B
2ρ2
)2

A4B4 dρ2 +
2
(
1 − 1

4B
2ρ2
)2

A2B4

(
dz2 + dφ2

)
,

(2.274)
and the singularity is located at ρ = −2/ |B|. On the other hand, the dynamic
asymptotic region with r > rH requires us to consider ρ =

√
α (r − rH) ∈ (0,∞).

Using the same A and B, we get

ds2 = A2B4ρ2

2
(
1 + 1

4B
2ρ2
)2 dt2 −

(
1 + 1

4B
2ρ2
)2

A4B4 dρ2 +
2
(
1 + 1

4B
2ρ2
)2

A2B4

(
dz2 + dφ2

)
.

(2.275)
In both cases, the magnetic field is

F = 2
B

dz ∧ dφ , (2.276)

but the expressions for its invariant

FµνF
µν = 2A4B6(

1 + 1
4 sgn(ρ)B2ρ2

)4 (2.277)

and the Kretschmann scalar

RαβγδR
αβγδ =

A8B12
(
3B4ρ4 − 24 sgn(ρ)B2ρ2 + 80

)
4
(
1 + 1

4 sgn(ρ)B2ρ2
)8 (2.278)

differ for either transformation. Both metric tensors contain a degeneracy (cor-
responding to the horizon) at ρ = 0, which is by our definition an endpoint
of the allowed values of ρ in both cases. The two metric tensors can be again
brought together by considering the transformation r = sgn(ρ) ρ2. We also rede-
fine α = A/

√
2 to eliminate numerical factors in grr, which leads to

ds2 = α2B4r

4
(
1 + 1

4B
2r
)2 dt2 −

(
1 + 1

4B
2r
)2

α4B4r
dr2 +

4
(
1 + 1

4B
2r
)2

α2B4

(
dz2 + dφ2

)
(2.279)

with the unchanged expression for the magnetic field F = 2/B dz ∧ dφ. The
singularity is located at r = −4/B2 and the horizon at r = 0. Negative values of
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r correspond to the static region and positive values to the dynamical asymptotic
region. In these coordinates, the magnetic field invariant is

FµνF
µν = α4B6

2
(
1 + 1

4B
2r
)4 (2.280)

and the Kretschmann scalar is

RαβγδR
αβγδ =

α8B12
(
3B4r2 − 24B2r + 80

)
64
(
1 + 1

4B
2r
)8 . (2.281)

Note that in the final forms of the metric tensors (2.270) and (2.279) the sign
of the parameter α is irrelevant as it appears only in even powers in spite of the
fact that we split the original metric in these two branches with respect to the
sign of the original α. The new solutions can also be considered contenders for
the title of the radial Bonnor–Melvin solution, which we had already bestowed
upon the spacetime from Sec. 2.4.

Briefly returning to the case of α = 0, a simple rescaling of the z and φ
coordinates yields the conformastatic metric

ds2 = −β2

r2 dt2 + r2

β2

(
dr2 + dz2 + dφ2

)
(2.282)

with the magnetic field
F = 1

β
dz ∧ dφ . (2.283)

The magnetic field invariant, FµνF µν = 2β2/r4, is still the same as in the full
spacetime and the Kretschmann scalar has the value of 56β4/r8. This metric is
a special case of (3.15) in Bronnikov et al. [2020] with q = 1/β and b = 0.

Particle motion

Moving on to particle motion, recall that this spacetime can contain a dynamical
area hidden beyond a horizon, where N < 0 and r becomes the new time coordi-
nate. In our examination of particle motion, we focus solely on the static areas
with N > 0. We are more interested in the static regions as they are thought to
better correspond to the real universe than the dynamical regions and an observer
in a static region would never be able to observe the insides of a dynamical region
through a horizon.

Starting with uncharged particles with κ = 0, the three constants of motion
are

E = ṫN(r) , (2.284)
L = φ̇ r2, (2.285)
Z = ż r2. (2.286)

Using them, we can write the effective potential satisfying ṙ2/2 = −V as

V (r) = N(r)
2

(
−δ + L2 + Z2

r2

)
− E2

2 , (2.287)
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and the separated potential according to (1.12) is

W 2(r) = N(r)
(

−δ + L2 + Z2

r2

)
. (2.288)

There are three interesting coordinate limits to examine. First, when ap-
proaching the singularity the potentials diverge to positive infinity, which means
that incoming particles always turn back. The only exception are purely radially
moving photons with Z = L = δ = 0, which are the only particles capable of
falling into the singularity geodesically, as we then have V (r) = −E2/2. Like
in the non-cosmological spacetime of Sec. 2.4, we consider this to be another
example of repulsive gravity, which is usually studied in the context of naked-
singularity spacetimes. However, the singularity is geodesically inaccessible for
massive test particles (regardless of their charge, as will be shown later) even if
the static area containing the singularity is covered by a horizon from the view-
point of an observer in the asymptotic region. Next, for the horizons we consider
the limit of N → 0+, which again leads to V → −E2/2 but this time for all
uncharged particles regardless of their other parameters, so they act attractively.
Finally, for Λ < 0 we can also consider the limit r → ∞, in which case the poten-
tial diverges for all massive particles, preventing them from escaping into radial
infinity. However, some photons may escape if the limit

lim
r→∞

V (r)
⏐⏐⏐
δ=0

= −Λ
6
(
L2 + Z2

)
− E2

2 (2.289)

is negative for them.
For stationary photon orbits in the planes z = const., the only non-trivial

equation of motion is the radial one, which together with the normalization equa-
tion yields

Ω2 = −81α4 + 256β6Λ
768β6 (2.290)

for the photon coordinate angular velocity Ω = dφ/dt. Because Ω2 must be
positive, we need to have Λ < 0 and |α| < αN. The orbit can be found at

rγ = 4
3
β2

α
, (2.291)

which means that α must be positive. Both conditions combined, we get that
photon orbits can only be found in spacetimes with a negative Λ and α ∈ (0, αN).
These parameters lead to a naked singularity, so N is always positive at the photon
orbit (as well as everywhere else). Note that for α = αN, rγ coincides with the
degenerate horizon radius. The orbits are stable, as the second derivative of V is
729α6L2/ 2048 β10 > 0 for them.

For massive particle orbits, we can get the particle’s constants of motion using
the usual equations V (r) = 0 and V ′(r) = 0, leading to

E2 = − 2N2(r) r2

3αr − 4β2 (2.292)

and

L2 =

(
2β2 − αr + 2

3Λr4
)
r2

3αr − 4β2 . (2.293)
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Both of the squares must be positive to represent real constants. From E2 we see
that we need to have 3αr < 4β2, and L2 further requires 2β2 − αr + 2

3Λr4 < 0,
while it must simultaneously hold that N(r) > 0 so that the orbits are in the
static part of the spacetime. The Reduce function of Mathematica reveals that
for Λ > 0 the conditions cannot be fulfilled, so these spacetimes do not allow any
geodesic orbits at all, including photon ones. For Λ < 0, the sign of α matters. For
α > 0, there are massive geodesical orbits only in naked-singularity spacetimes,
specifically in a region bounded from above by the photon orbit radius rγ, while
the lower bound is given by the corresponding root of the numerator in L2. For
α ≤ 0, the orbits can be found at any r greater than the root.

For charged particles with κ ̸= 0, we need to transition from the Lagrangian
formalism to the Hamilton–Jacobi equation (1.20). For the separated action
(1.24), the equation becomes

−r2 N(r)
(
R′(r)

)2
+ δr2 + E2r2

N(r) −
(
Z ′(z)

)2
− (βκz − L)2 = 0 , (2.294)

which is clearly separable. The constant of motion E remains

E = ṫN(r) , (2.295)

but L is now
L = r2 φ̇+ βκz . (2.296)

Introducing the Carter constant K, we can establish the two effective potentials
(1.25) and (1.26),

Vr(r) = N(r)
2

(
−δ + K

r2

)
− E2

2 (2.297)

and
Vz(r, z) = 1

2r4

(
(βκz − L)2 −K

)
. (2.298)

The Carter constant must be non-negative so that Vz is not positive everywhere.
As (2.297) has the same form as (2.287), what has been said about the limits of
the radial effective potential remains true after replacing L2 +Z2 in (2.287) with
K. Like in the homogeneous case, we denote

L = βκz0 (2.299)

to better see the translational symmetry along the z axis. We can then rewrite
Vz as

Vz(r, z) = 1
2r4

(
β2κ2 (z0 − z)2 −K

)
, (2.300)

and (2.296) as
φ̇ = βκ

r2 (z0 − z) , (2.301)

using z0 instead of L alongside the other constants of motion E and K. Deter-
mined by the turning points at Vz = 0, the maximal coordinate distance from z0
along the z axis that a particle may reach does not depend on r,

∆zmax =
√

K

β2κ2 , (2.302)
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but the corresponding proper distance r∆zmax does.
Contrary to the homogeneous spacetime, the full set of equations governing

charged test particle motion cannot be separated into two independent subsets,
as all components of the four-velocity are functions of r(τ), which is given by
ṙ2 = −2Vr with Vr being (2.297). The relation (2.284) gives t(τ). The evolution
of the last two coordinates, z(τ) and φ(τ), is determined by ż2 = −2Vz with
(2.300), and (2.301), respectively. Both of these two differential equations also
explicitly depend on z. The initial conditions determine the constants of motion
E, K, and z0.

Like in the homogeneous case, there cannot be any electrogeodesic circular
orbits, because considering ∂Vz/∂z = 0 leads to z = z0, which in turn means
that φ̇ = 0 from (2.301). However, it is possible to fulfill the other conditions
arising from the two potentials required to keep the particle static in this set of
coordinates. From Vz = 0 (2.300), we see that this particle must have K = 0
and that the particle’s charge is irrelevant in this analysis. After plugging this
value into (2.297), Vr = 0 leads to E2 = −δN(r0) for a particle static at r = r0.
Finally, V ′

r = −δN′(r0)/2 = 0 means that the static particle must be located
in an extremum of N (note that photons with δ = 0 cannot be static in any
coordinate system, as that would violate the normalization of their four-velocity).
Expressing α from N′(r0) = 0, we obtain α = 2(3β2 + Λr4

0)/3r0, which leads to
N(r0) = −(β2 + Λr4

0)/r2
0. This means that for Λ > 0, the extremum has to lie in

the dynamic region beyond the horizon, which means no static particles can be
found there. For Λ < 0, static particles at r0 satisfying N(r0) > 0 can be found if
the spacetime is that of a naked singularity, with no horizons and α < αN. This
is yet another manifestation of repulsive gravity, akin to the cases investigated
in, e.g., Pugliese et al. [2011, 2013] and in our previous work Veselý and Žofka
[2018, 2019a].

Like in the homogeneous case, for uncharged particles we can obtain the ad-
ditional constant r2

(
φż − zφ̇

)
from the rotational Killing vector. We can then

obtain the analogue of (2.236),

φ(z) = L

Z
z + φ0 mod 2π . (2.303)

No additional constants of motion are to be gained from second-rank Killing
tensors.

Shell sources

The extrinsic curvature tensor (1.41) is

K = ϵ

⎛⎝−1
2

N′(r)√
N(r)

dT 2 +

√
N(r)
r

(
dZ2 + dΦ2

)⎞⎠ (2.304)

and the projection of the electromagnetic tensor F⊥ (1.44) vanishes for the last
time in this work. The proper circumference (1.3) of the hypersurface takes the
same form as in flat geometry,

C = 2πr, (2.305)
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but its derivative with respect to the proper radius of the shell rp, as given by
(1.4), is not constant,

dC
drp

= 2π
√
N(r) . (2.306)

The derivative vanishes at the horizons and the formula does not work in the
dynamical regions, because r does not represent the radial coordinate. In the
static regions, however, the formula correctly expresses the change of C when
the proper radius changes, even though the value of the proper radius itself is
debatable if the shell is above the black-string horizons. The derivative diverges
at the singular axis and for Λ < 0 also in the limit of r → ∞.

The trace of K mirrors (2.175) of the axial inhomogenenous solution, only
with the two master functions swapped,

K = ϵ

⎛⎝2
√
N(r)
r

+ 1
2

N′(r)√
N(r)

⎞⎠ . (2.307)

When approaching the axis at r = 0, we need to orient the normal field so that
it points towards the asymptotic region to obtain the correct limit, thus setting
ϵ = +1. After inserting N (2.257), we get the expected result limr→0+ K = +∞.

Regarding shell sources, this spacetime appears to be quite readily connectible
through an interpretable shell to other solutions talked about in this thesis, but
we have not been able to find such a configuration that would eliminate all sin-
gularities in the resulting spacetime. For Λ < 0, interpretable shells can be found
both for naked-singularity spacetimes and for spacetimes with horizons. In the
latter case they seem to be much easier to find in the inner region containing the
singularity, but we also found examples of admissible shells above the black-string
horizons.

First, it is possible to connect two instances of the spacetime through an
interpretable shell. The shell must be located at the same radial coordinate in
both spacetimes, there is no induced three-current and the energy-stress tensor
satisfies SZZ = SΦΦ. Unfortunately, noting that

STT = 1
4πr

(
ϵ−

√
N−(r) − ϵ+

√
N+(r)

)
, (2.308)

it is not possible to connect two asymptotic regions together (−ϵ− = ϵ+ = 1),
which would be the most interesting configuration as it would be singularity-
free. On the other hand, interpretable shells can connect the region with the
singularity to another region with the singularity or the asymptotic region, in
both cases with different metric parameters (including opposite signs of Λ). For
illustration, see Fig. 2.20, where we consider opposite signs of Λ on each side of
the shell. However, it is possible to switch any of the two signs and still find an
interpretable shell, because in our examples they are found near the singularity at
r = 0, where the term with Λ in N (2.257) gets suppressed by the other two terms
with negative powers of r. This is also true for the connections to the Minkowski
spacetime presented later in Fig. 2.22. Note that for one configuration we found
admissible shells not only near the singularity, but also above the black-string
horizons of one of the solutions. These extra shells in our example do not admit
the opposite sign of Λ in the other spacetime.
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(a) Connection to the asymptotic region. Interpretable shells can be found to the left
of the dotted line.
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(b) Connection to the region with the axis. Interpretable shells can be found on either
side of the black-string horizons of one of the two solutions in the two regions between
the dotted line pairs.

Figure 2.20: The properties of shells on the interface of two instances of the radial
inhomogeneous solution. The radial coordinate of the shell is the same in both
spacetimes. The instance with the parameters Λ = −1 u−2, β = 3 u, and α = 7 u
always keeps the region with the axis. It has two black-string horizons marked
by the two dash-dotted lines. The two figures represent connections to either
part of the spacetime with the parameters Λ = 1 u−2, β = 1 u and α = −5 u.
This spacetime has a cosmological horizon at r ≈ 2.53 u. There is no induced
three-current on the shells.
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Connecting the part of the spacetime containing the singularity to the homo-
geneous counterpart of Sec. 2.5.1 through interpretable shells is also possible for
both signs of Λ in the inhomogeneous spacetime, as shown in Fig. 2.21. We found
admissible connections both above and below the black-string horizons.

For the Minkowski, Levi–Civita, and Bonnor–Melvin spacetimes, it is gener-
ally possible to find interpretable shells connecting the part of the radial spacetime
with the singularity to a part of each of the three spacetimes. In Fig. 2.22, we
present connections to both the outer and the inner parts of the Minkowski space-
time, with both signs of Λ in the examined solution. Connections preserving the
singular axis of the studied spacetime are possible for the remaining two solutions
as well.
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(a) Λ = −1 u−2, β = 1 u, α = 5 u; σ = 5 u.
The shell is above the outer black-string
horizon in the inhomogeneous solution.
The admissible region is to the left of the
dotted line.
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(b) Λ = −1 u−2, β = 1 u, α = 5 u;
σ = 0.1 u. The shell is below the inner
black-string horizon in the inhomogeneous
solution. Any radial coordinate r in the
homogeneous solution is admissible.
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(c) Λ = −1 u−2, β = 1 u, α = 1 u; σ = 1 u.
There are no horizons in the inhomoge-
neous solution and it contains a naked sin-
gularity. The admissible region is located
between the two dotted lines.
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(d) Λ = 1 u−2, β = 5 u, α = 1 u; σ = 1 u.
There is a cosmological horizon in the
inhomogeneous solution above the shell.
The admissible region is to the left of the
dotted line.

Figure 2.21: The properties of shells on the interface of the radial inhomogeneous
and homogeneous solutions expressed as functions of the radial coordinate in the
homogeneous spacetime. The value of the radial coordinate in the inhomogeneous
solution is equal to the value of the parameter σ of the homogeneous solution,
which always has Λ = −1 u−2. The spacetimes are aligned in such a way that
the region with the singular axis in the inhomogeneous solution and the region
with negative radial infinity in the homogeneous solution are preserved. There is
no induced three-current on the shells and the value of STT is constant in each
chart.
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(a) Λ = 0.5 u−2, β = 10 u, α = −8 u.
The cosmological horizon is at r ≈ 1.55 u.
We connect the asymptotic part of the
Minkowski spacetime.
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(b) Λ = −0.8 u−2, β = 7 u, α = 8 u.
The inner black-string horizon is at
r ≈ 0.77 u. We connect the asymptotic
part of the Minkowski spacetime.
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(c) Λ = 0.2 u−2, β = 8 u, α = −5 u.
The cosmological horizon is at r ≈ 2.46 u.
We connect the part of the Minkowski
spacetime with the axis.
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(d) Λ = −0.75 u−2, β = 10 u, α = −5 u.
The examined spacetime does not contain
any horizons. We connect the part of the
Minkowski spacetime with the axis.

Figure 2.22: The properties of shells on the interface of the radial inhomogeneous
solution (for both signs of Λ) and the Minkowski spacetime (for both the asymp-
totic region and the part with the axis). The value of the radial coordinate of the
shell is the same in both spacetimes. We preserve the region with the singular
axis in the examined magnetic solution. There is no induced three-current on the
shell. In each chart, the four-stream interpretation of the shell is possible in the
region to the left of the dotted line.
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2.7 Azimuthal homogeneous spacetime
Taking the axial metric (2.104) and the corresponding magnetic field (2.105), we
can perform the coordinate change explained in Sec. 2.1.3 to obtain the metric

ds2 = −dt2 + 1
2Λ

(
dr2 + sin2 r dz2

)
+ σ2dφ2 (2.309)

and the magnetic field
F = 1

2
√

Λ
sin r dr ∧ dz (2.310)

with the dual electric field ⋆F = σ
√

Λ dt ∧ dφ. Coordinates r, z and φ are
dimensionless, while t and the newly-introduced parameter σ have the dimension
of length. Note that r ∈ [0, π] and the proper radial distance between the two
endpoints of the interval is finite. The z coordinate is degenerate at the endpoints
of the interval of r, so for t = const. the spacetime can be thought of being reduced
to a flat ring at the extreme values of r. The cosmological constant Λ has to be
positive. The values of the invariants remain the same, FµνF µν = 2Λ and the
Kretschmann scalar is equal to 16Λ2. The local properties of the metric are the
same as in the axial homogeneous solution of Sec. 2.2.

The spacetime is of Petrov algebraic type D. There are six Killing vectors:
∂t, ∂z, and ∂φ for the translational symmetries, σ2φ ∂t + t ∂φ for boost in the φ
direction, and sin z ∂r + cot r cos z ∂z with cos z ∂r − cot r sin z ∂z (together with
∂z) correspond to rotations on the two-sphere with constant t and φ. Due to
the solution’s relatedness to the axial homogeneous spacetime of Sec. 2.2, this
solution clearly admits the ISO(1, 1) × SO(3) group of isometries and belongs to
the Kundt class too.

While the corresponding axial homogeneous spacetime discussed in Sec. 2.2
had properties that were agreeable with our preferred cylindrical symmetry, after
swapping gzz and gφφ the metric (2.309) appears less suitable to be interpreted
in that way. For instance, there is no axis in the spacetime as gφφ is constant.
Instead, perhaps a better way of interpreting this metric is through toroidal
symmetry, with z replaced with another 2π-periodic angular coordinate ζ. We
can imagine the torus as arising from a cylinder of radius (sin r)/

√
2Λ with the

ζ coordinate going around the circumference of the cylinder. The φ coordinate
is measured along the axis of the cylinder. By identifying φ = 0 and φ = 2π, we
transform the cylinder into a topological torus. Note that such a construction also
suits the extrinsic curvature scalar of the shells we use in our applications of the
Israel formalism, which we shall briefly elaborate on in the corresponding section.
Interestingly, recall that in classical electrodynamics an azimuthal magnetic field
may be found along a straight wire with an electric current, which is manifestly
a cylindrically-symmetric configuration.

Particle motion

Regarding electrogeodesics, it should come as no surprise that the effective po-
tential for radial motion fulfilling ṙ2/2 = −V is similar to (2.111),

V (r) = Λ
(

−δ − E2 + 2
sin2 r

(
κ

2 cos r +
√

ΛZ
)2

+ L2

σ2

)
, (2.311)
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while the separated potential satisfying (1.12) is

W 2(r) = E2 + V (r)
Λ = −δ + 2

sin2 r

(
κ

2 cos r +
√

ΛZ
)2

+ L2

σ2 . (2.312)

The constants of motion are

E = ṫ , (2.313)
L = σ2φ̇ , (2.314)

Z = 1
2Λ

(
ż sin2 r − κ

√
Λ cos r

)
. (2.315)

When approaching the endpoints of the interval of r, the term with Z in the
potentials generally diverges, turning away particles. For two special values of Z,
namely

Z± = ± κ

2
√

Λ
, (2.316)

the potentials are monotonic, and the particle can reach r = 0 for Z− or r = π
for Z+ (or both of them if κ = 0 = Z).

For stationary circular orbits in the planes z = const., the constant of motion
Z must be set to

Z|ż=0 = − κ

2
√

Λ
cos r0 (2.317)

in order to eliminate motion along the z axis for a particle at a particular r0. The
potential then becomes constant,

V |ż=0 = Λ
(

−δ − E2 + L2

σ2

)
, (2.318)

and setting it equal to zero gives us a constraint on the particle’s constants of
motion. As V ′(r)|ż=0 = 0, the second condition on the constants of motion
is missing in this case. Therefore, particle orbits, including those of photons,
can be located at any r in the spacetime. Concerning the stability, we have
V ′′(r)|ż=0 = Λκ2, which means that orbits of charged particles are stable. For
geodesic orbits, all derivatives vanish, so the orbits are in the state of indifference.
From (2.318) follows that photons must fulfill L/σ = ±E. Therefore, for the
coordinate angular velocity of photons Ω = dφ/dt we now have Ω = ±1/σ.

For the toroidal interpretation of the metric, stationary circular orbits in the
ζ direction with φ = const. correspond to orbits in planes z = const. of the axial
homogeneous solution as discussed in Sec. 2.2 due to the relatedness of the two
spacetimes.

The boost Killing vector yields the constant φṫ − tφ̇, which is applicable for
both uncharged and charged particles. We can then write

φ(t) = L

σ2E
t+ φ0 mod 2π . (2.319)

The two rotational Killing vectors produce constants valid only for uncharged
particles,

A = sin(z) ṙ + sin(r) cos(r) cos(z) ż ,
B = cos(z) ṙ − sin(r) cos(r) sin(z) ż .

(2.320)
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We can use these constants to obtain the analogues of (2.121) and (2.122) from
the axial spacetime of Sec. 2.2,

r(z) = arctan
(

2ΛZ
A cos z −B sin z

)
mod π , (2.321)

ṙ(z) = A sin z +B cos z . (2.322)

The theoretical results are compared to numerical integration of the equations of
motion in Fig. 2.23.

As usual, the second-rank Killing tensors do not provide us with constants of
motion independent from those gained from the Killing vectors and the normal-
ization of the four-velocity.
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(a) The chart of r(z) (2.321).
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(b) The chart of ṙ(z) (2.322).

Figure 2.23: The comparison of the cyan theoretical curves to the data points
obtained by numerical integration of the equations of motion for a massive un-
charged particle in the spacetime with Λ = 1 u−2 and σ = 1 u. The relevant
initial conditions are r = 3, z = 0, ṙ = −0.1/u, and ż = 0.5/u. The important
constants of motion are Z ≈ 0.00498 u, A ≈ −0.0699/u, and B = −0.1/u. The
shown range of z corresponds to the total proper time of approximately 85.6 u.
Neighboring marks in the charts are 1 u of proper time apart.
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Shell sources

The extrinsic curvature tensor (1.41) is

K = ϵ
√

2Λ cot r dZ2 (2.323)

and the projection of the electromagnetic tensor (1.44) is

F⊥ = −ϵ
√

Λ dZ . (2.324)

While the two above quantities are similar to those for the axial homogeneous
spacetime, the proper circumference (1.3) of the hypersurface is the same as in
the radial homogeneous solution and independent of r,

C = 2πσ . (2.325)

As in the axial solution, changing the direction of the normal corresponds to
moving the hypersurface to π − r as far as K is concerned, only the sign of F⊥
changes. The trace K is the same as in the axial case, K = ϵ

√
2Λ cot r, which

notably means that it diverges at the endpoints of the interval of r even though gφφ
is constant (and non-zero) here. Instead, gzz vanishes there. This suggests that
the toroidal interpretation of the coordinates may be preferable to the cylindrical
one. We then have a toroidal shell, and a diverging extrinsic curvature is to be
expected when the minor radius of a torus approaches zero. However, for the
sake of compatibility with the previous shells examined in this work, let us keep
considering the shell to be cylindrical.

As with the other homogeneous spacetimes, not even this one admits a shell
made of four particle streams on the interface of two instances of this solution.
This time, the culprit is the relation STT = −SΦΦ valid for these shells. It can
be shown analytically that it is also not possible to find an interpretable shell
leading to the Minkowski spacetime.

However, we found an interpretable shell connecting a part of this spacetime
to a region of the Levi–Civita solution that does not contain the curvature singu-
larity, as demonstrated in Fig. 2.24a. Levi–Civita’s parameter σ lies at the very
end of the extended physically-reasonable interval as discussed in Sec. 1.3.2. Note
that as σ > 1/2, the connected region contains a non-regularizable axis at infinite
radial coordinate, so it is not the asymptotic region. The induced three-current
on the shell reads s =

√
Λ/4π dZ, which means we can use (1.58) to obtain the

charge of the streams q.
Moreover, interpretable shells can also be found on the interface of the exam-

ined spacetime and the asymptotic region of the original Bonnor–Melvin space-
time. For the configuration in Fig. 2.24b, we select the higher possible value of
the radial coordinate in the Bonnor–Melvin spacetime,

ρBM = 2
B2σ

(
1 +

√
1 −B2σ2

)
, (2.326)

and the induced three-current reads

s = 1
4π

(√
Λ dZ −

(
1 + 1

4B
2ρ2
BM

)−2
B dΦ

)
. (2.327)

As neither of the spatial components vanishes, the four particle currents are
grouped into two pairs with respect to the magnitude of electric charge they
carry according to (1.63).
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(a) The azimuthal homogeneous solution (Λ = 0.5 u−2, σ = 1 u) and the Levi–Civita
solution (σ = 1, C = 1 u). The singularity in the Levi–Civita spacetime is avoided.
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(b) The azimuthal homogeneous solution (Λ = 1 u−2, σ = 1 u) and the Bonnor–Melvin
solution (B = 0.8/u).

Figure 2.24: The properties of shells on the interface of the azimuthal homoge-
neous solution and another spacetime, expressed as functions of the radial coor-
dinate of the shell in the homogeneous solution. The spacetimes are aligned in
such a way that the region with lower r in the homogeneous solution and the re-
gion with higher radial coordinate in the other spacetime are preserved. In both
cases, the region admitting the four-stream interpretation of the shell is located
between the two dotted lines and the value of SZZ does not depend on r.
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2.8 Azimuthal inhomogeneous spacetime
Using the method described in Sec. 2.1.3, we can convert the axial inhomogeneous
spacetime from Sec. 2.3 into a spacetime with an azimuthal magnetic field with
the metric

ds2 = −r2dt2 + dr2

M(r) + M(r) dz2 + r2dφ2. (2.328)

The master function M is the same as in the axial case,

M(r) = −β2

r2 + α

r
− Λ

3 r
2. (2.329)

The magnetic field reads
F = β

r2 dr ∧ dz (2.330)

with the four-potential A = −β/r dz. The dual electric field is ⋆F = β dt ∧ dφ.
The coordinates t and φ are dimensionless, while r and z, as well as the parameters
α and β, have the dimension of length. The magnetic field’s invariant is

FµνF
µν = 2β2

r4 (2.331)

and the Kretschmann scalar is

RαβγδR
αβγδ = 4

3r8

(
2Λ2r8 + 9α2r2 − 36αβ2r + 42β4

)
. (2.332)

Both expressions are the same as those in Sec. 2.3 and 2.6. It is again reasonable to
consider only positive values of r, as negative values correspond to the opposite
sign of α. The local properties of the spacetime are the same as in the axial
inhomogeneous solution of Sec. 2.3.

Since the sign of M affects the signature of the metric like in the axial case,
the analysis performed in Sec. 2.3 is valid here as well. For Λ < 0 the coordinate
r can always take on values from a left-bounded interval. For Λ > 0 the threshold
value of

αM = 4
3 |β|3/2 Λ1/4 (2.333)

gives the lower bound on the value of the parameter α that valid spacetimes must
respect, α > αM. Then, the range of r is given by the interval bounded by the
positive roots of M. For illustration we refer the reader to Fig. 2.3 in Sec. 2.3.

The spacetime is almost everywhere type D. At the hypersurface r = 2β2/α
and in the limit r → ∞ (if these radial coordinates are valid in the particular
spacetime), the solution is of type O. There are four Killing vector fields cor-
responding to the three translational symmetries and boost in the φ direction,
yielding the ISO(1, 1) × E(1) group of isometries, and the solution belongs to the
Kundt class like its axial counterpart.

Unlike the axial solution of Sec. 2.3, the endpoints of the interval of r do not
correspond to the spacetime’s axes. The axis would be located at r = 0, which
lies outside the allowed range of r. Therefore, the axis is not located within the
spacetime and we do not need to apply the procedure from Sec. 1.1.1 to regularize
it. Instead, at the endpoints of the interval the metric element gzz vanishes and
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for t = const. the spacetime resembles a flat ring there. Note that if we did not
opt to limit the interval of r, the metric would change its signature as the radial
coordinate would cross the points where M = 0. While we do not admit such a
possibility in this thesis, we intend to study the signature change in our future
work.

Analogously to the homogeneous case, a toroidal interpretation of the metric
with a periodic coordinate ζ replacing z may be in order here. Again, ζ represents
rotation around the tube, with the minor radius being

√
M(r) this time. However,

as gφφ and, therefore, also the proper circumference along the φ direction depend
on r too, the geometry is harder to visualize now.

Like in the axial spacetime, for Λ < 0 the asymptotic region extends to infi-
nite proper radial distance. Considering the leading term of M in the asymptotic
region, we may recover the anti-de Sitter metric (2.148) using an analogous trans-
formation as in Sec. 2.3.

Note that alongside the axial inhomogeneous solution, the azimuthal variant
(with Λ < 0) too is briefly discussed in Dias and Lemos [2002]. The paper also
presents a generalization of the spacetime with added linear momentum in the z
direction.

Particle motion

Moving on to electrogeodesics, the three constants of motion are

E = r2 ṫ , (2.334)
L = r2φ̇ , (2.335)

Z = M(r) ż − βκ

r
. (2.336)

We can then establish the effective potential for radial motion

V (r) = M(r)
2

(
−δ − E2 − L2

r2

)
+ 1

2

(
βκ

r
+ Z

)2

, (2.337)

which satisfies ṙ2/2 = −V . The separated potential (1.12) reads

W 2(r) = E2 + 2r2

M(r)V (r) = −r2δ + L2 + r2

M(r)

(
βκ

r
+ Z

)2

. (2.338)

These potentials differ from (2.158) and (2.159) only by the change Z ↔ L.
Regarding the limits of the potentials, the conclusions from Sec. 2.3 are valid

here as well, as long as we remember to exchange Z ↔ L. The limits M → 0+

generally diverge to positive infinity, so most particles are turned back when
approaching ra such that M(ra) = 0. However, particles with Z = −βκ/ra ≡ Za
are not turned back, and for them we have V → 0. Further, it must hold that
E2 ≥ −δr2

a + L2 so that the potential is negative in the vicinity of ra, thus
allowing particle motion. If the equality is valid, further conditions from the
series expansion of V at ra follow. For Λ < 0, in the limit r → ∞ the potential
diverges for massive particles with δ = −1. On the other hand, some photons
may escape into radial infinity if the limit

lim
r→∞

V (r)
⏐⏐⏐
δ=0

= −Λ
6
(
−E2 + L2

)
+ Z2

2 (2.339)
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is negative for them.
Stationary circular orbits, however, differ considerably from those examined

in Sec. 2.3. First, to prevent motion along the z axis at a particular r0, we need
to have

Z|ż=0 = −βκ

r0
. (2.340)

We then have
V (r0)

⏐⏐⏐
ż=0

= M(r0)
2

(
−δ − E2 − L2

r2
0

)
(2.341)

and

V ′(r0)
⏐⏐⏐
ż=0

= 1
6r3

0

(
12β2 − 9αr0

)(
−δ − E2 − L2

r2
0

)
− M(r0) δ

r0
. (2.342)

Discounting first the case of M(r0) = 0, we set the potential equal to zero to
see that orbiting particles must fulfill L2 = E2 + δr2

0. Inserting that into the
derivative, the first term vanishes, so the second term must be zero at a particular
r0 to allow an orbit there. This is never possible to achieve for massive particles,
but for photons with δ = 0 the second term is identically zero. This means that
while there cannot be any massive orbiting particles in the spacetime, photons
can orbit at any valid r. Their coordinate angular velocity Ω = dφ/dt is ±1, just
like in the previous section. Noting that photons have κ = 0, the second (and
any other higher) derivative of the potential vanishes for them, which means the
orbits are in a state of indifference. On the other hand, if M(r0) = 0 and so r0
corresponds to a finite endpoint of the allowed interval of the radial coordinate,
even massive particles with appropriate constants of motion are apparently able
to orbit there, because the troublesome second term in (2.342) vanishes. However,
full analysis is difficult in the used coordinate system because the metric changes
its signature there. We leave this question for our follow-up work mentioned
earlier.

Like in the homogeneous case, if we want to consider the toroidal interpreta-
tion of the coordinates, the ζ coordinate corresponds to φ of the axial inhomo-
geneous solution if we omit the parameter σ that is specific to the axial space-
time. Therefore, orbits in the ζ direction correspond fully to the orbits studied
in Sec. 2.3 with σ = 1 u.

This solution, too, has its analogy of the boost Killing vector field from the
homogeneous spacetime, which yields the constant r2

(
φṫ− tφ̇

)
, also valid for

charged particles. We can then obtain the counterpart to (2.319),

φ(t) = L

E
t+ φ0 mod 2π . (2.343)

Unfortunately, not even this last solution apparently admits second-rank Killing
tensors that produce independent constants of motion.

Shell sources

As in the homogeneous counterpart, the extrinsic curvature tensor (1.41)

K = ϵ

⎛⎝
√
M(r)
r

(
−dT 2 + dΦ2

)
+ 1

2
M′(r)√
M(r)

dZ2

⎞⎠ (2.344)
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and the projection of the electromagnetic tensor (1.44)

F⊥ = −ϵβ

r2 dZ (2.345)

are similar to those for the corresponding axial solution, while the proper cir-
cumference (1.3) of the hypersurface is the same as in the radial inhomogeneous
solution,

C = 2πr . (2.346)

Also like in the radial solution the circumference’s derivative with respect to the
proper radius rp is not constant, but instead

dC
drp

= 2π
√
M(r) , (2.347)

which vanishes at the endpoints of the interval of r. Note that the notion of the
shell’s proper radius is not well defined here, as the axis that would be located
at r = 0 lies well outside the allowed range of r, so we cannot measure distance
to it. Instead, we may replace the proper radius with the proper radial distance
to the lower endpoint of the interval of r in the derivative and it becomes well
defined again as the rate of change of the shell’s proper circumference when an
invariant normal characteristic size changes. The trace K is again the same as in
the corresponding axial solution, (2.175), so it diverges as we approach the points
where M(r) = 0. Like in the case of the homogeneous spacetime, this is an argu-
ment in favor of the toroidal interpretation of the coordinates, as this divergence
corresponds to a vanishing minor radius of the now-toroidal shell. Another ar-
gument in favor of the toroidal interpretation is that even though the spacetime
does not admit the value r = 0, it would correspond to a vanishing circumference
of circles along the tube of the torus and the scalar would diverge there as well.
Nonetheless, in the following we shall retain the cylindrical interpretation so that
we can consider shells leading to the other spacetimes discussed in this work.

As for the previous solution, all shells between two instances of this spacetime
have STT = −SΦΦ regardless of their particular configuration, which means these
shells cannot be interpreted using four particle streams. The same is also true for
all shells connecting the inhomogeneous spacetime to the previous homogeneous
one.

For Λ > 0, we found an interpretable shell connecting a part of this solution
with the axis at higher r to a part of the Minkowski spacetime (Fig. 2.25a) and
the Bonnor–Melvin spacetime (Fig. 2.25b), both also containing the axis. For
the latter connection, we have to select the lower value of the radial coordinate
in the Bonnor–Melvin solution,

ρBM = 2
B2r

(
1 −

√
1 −B2r2

)
, (2.348)

and the induced three-current

s = 1
4π

(
− β

r2 dZ +
(

1 + 1
4B

2ρ2
BM

)−2
B dΦ

)
(2.349)
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requires two pairs of streams to carry different charge determined by (1.63). In
the other two subfigures of Fig. 2.25, the induced three current has only one non-
zero element, sZ = −β/4πr2, which allows us to use (1.58) to compute particle
charge q.

For Λ < 0, the only spacetime we managed to find a connection to through
an interpretable shell was the part of the Levi–Civita solution that contains the
(singular) axis. Properties of a shell connecting it to the asymptotic region of
the examined solution can be found in Fig. 2.25c. Note that the negative value
of σ in the Levi–Civita solution does not admit a physically-realistic source as
mentioned in the corresponding Sec. 1.3.2.
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(a) The azimuthal inhomogeneous solution (Λ = 0.2 u−2, β = 6 u, α = 15 u) and the
Minkowski spacetime.
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(b) The azimuthal inhomogeneous solution (Λ = 0.4 u−2, β = 1.5 u, α = 3 u) and the
Bonnor–Melvin spacetime (B = 0.05/u).
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(c) The azimuthal inhomogeneous solution (Λ = −0.2 u−2, β = −2 u, α = 1.2 u) and
the Levi–Civita spacetime (σ = −0.5, C = 1.5 u). The preserved axis of the Levi–Civita
spacetime is singular.

Figure 2.25: The properties of shells connecting the azimuthal inhomogeneous
solution to all of the spacetimes of Sec. 1.3, expressed as functions of the radial
coordinate of the shell in the azimuthal solution. The spacetimes are always
aligned in such a way that the region with higher r of the azimuthal spacetime
and the region with the axis of the other solution are preserved. In all cases, the
region admitting the four-stream interpretation of the shell is located between
the dotted lines.
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3. Miscellanea

3.1 Additional remarks on shell sources
When examining individual solutions, we tried to find shell sources with reason-
able properties using Israel’s formalism explained in Sec. 1.2.2. On the other
side of the hypersurface, we considered another instance of the same solution
and the well-known ‘historical’ spacetimes of Sec. 1.3. For the inhomogeneous
solutions we also examined shells leading to their corresponding homogeneous
counterparts. Now that all cylindrical solutions of interest to us have been prop-
erly introduced, we can consider shells that connect different examined solutions
together regardless of the alignment of their respective magnetic fields.

It turns out that the only connections mixing our spacetimes together that
never admit interpretable shells are those between the three homogeneous space-
times. All shells on the interface of the axial and radial homogeneous spacetimes
fulfill SZZ = −2µ = SΦΦ − STT ; on the interface of the axial and azimuthal solu-
tions STT = 2µ = −SZZ − SΦΦ; and on the interface of the radial and azimuthal
spacetimes SΦΦ = −2µ = SZZ − STT . None of these hypersurfaces is able to
satisfy the conditions imposed on a shell made of four particle currents, namely
STT > 0, µ > 0, SZZ ≥ 0, and SΦΦ ≥ 0, as explained in Sec. 1.2.2.

Every other spacetime pair that has not been yet discussed admits an inter-
pretable shell for one or more particular configurations of the two solutions. Up
until this point we usually supported our claims with appropriate charts, but we
have to draw a line here in order not to overwhelm the reader with figures that,
frankly, appear quite similar to each other for the most part. Instead, we shall
provide charts for and discuss only the most interesting cases. All of our results
are then summarized in Table 3.1 at the very end of this section.

Most of the charts we shall provide here may not seem unusual by themselves,
but they will be of interest once we start discussing their mass per unit length
later in this section. First, there is Fig. 3.1, which depicts shells that involve
the radial homogeneous solution. The shell of Fig. 3.1a connects it to the radial
Bonnor–Melvin solution and has atypically low mass despite belonging to a sin-
gular spacetime. On the other hand, the shell of Fig. 3.1b, which connects the
radial homogeneous spacetime to the azimuthal inhomogeneous solution, along
with the four connections of the axial inhomogeneous spacetime presented in
Fig. 3.2, has higher mass than expected, even though there are no singularities in
the composite spacetimes. Finally, Fig. 3.3 depicts a shell on the interface of the
Bonnor–Melvin–Λ and radial Bonnor–Melvin solutions, the unit mass of which
can cross the threshold value. These figures serve to show us that there is nothing
manifestly peculiar about the other properties of the shells that would set them
apart at first glance from the shells we examined previously.

The chart in Fig. 3.4, however, is more remarkable. It concerns a shell on
the interface of the radial inhomogeneous solution and the radial Bonnor–Melvin
spacetime. While neither the region admitting interpretable shells nor the shells’
mass per unit length are particularly exciting, it is interesting to observe the be-
havior of shells outside of the interpretable region. We use the radial coordinate
of the radial Bonnor–Melvin solution ρ as the independent variable in the chart.
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(a) The radial homogeneous solution (Λ = −0.7 u−2, σ = 0.5 u) and the radial Bonnor–
Melvin spacetime (α = 0.02/u, σ = 6 u). The region admitting the four-stream inter-
pretation of the shell is located between the dotted lines. The streams are uncharged.
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(b) The radial homogeneous spacetime (Λ = −0.9 u−2, σ = 5 u) and the azimuthal
inhomogeneous solution (Λ = −0.7 u−2, β = −2 u, α = −3 u). The region admitting
the four-stream interpretation of the shell is located to the right of the dotted line.
The induced three-current on the shell has one non-zero element, sZ = β/4πσ2, which
allows us to use (1.58) to compute particle charge q.

Figure 3.1: The properties of shells on the interface of the radial homogeneous
solution and another spacetime, expressed as functions of the radial coordinate
of the shell in the homogeneous solution. In both cases, the value of STT does
not depend on r and the spacetimes are aligned in such a way that the region
with positive radial infinity in the homogeneous solution and the region with the
axis at lower radial coordinate in the other spacetime are preserved.
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(a) The region with the axis at lower radial
coordinate of the axial inhomogeneous so-
lution (Λ = 10−3 u−2, β = 8 u, α = 11 u,
σ = 10 u) connected to the radial homoge-
neous spacetime (Λ = −0.5 u−2, σ = 5 u).
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(b) The region with the axis at lower radial
coordinate of the axial inhomogeneous so-
lution (Λ = −0.5 u−2, β = −4 u, α = 2 u,
σ = 10 u) connected to the radial homo-
geneous spacetime (Λ = −1 u−2, σ = 9 u).
The four-stream interpretation of the shell
is possible in the region to the left of the
dotted line.
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(c) The region with the axis at higher ra-
dial coordinate of the axial inhomogeneous
solution (Λ = 0.4 u−2, β = 4.7 u, α = 19 u,
σ = 3 u) connected to the azimuthal
homogeneous spacetime (Λ = 0.2 u−2,
σ = 5 u).
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(d) The asymptotic region of the axial
inhomogeneous solution (Λ = −0.3 u−2,
β = 0.4 u, α = 5 u, σ = 2 u) connected
to the azimuthal homogeneous spacetime
(Λ = 0.8 u−2, σ = 5 u). This is the only so-
lution without a conical defect in the axial
spacetime.

Figure 3.2: The properties of shells on the interface of the axial inhomogeneous
solution and the radial or azimuthal homogeneous solution, expressed as functions
of the radial coordinate of the shell in the given homogeneous spacetime, which
always keeps the region with lower values of r. Unless stated otherwise, the four-
stream interpretation of the shell is possible in the region between the dotted
lines.
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Figure 3.3: The properties of shells on the interface of the Bonnor–Melvin–Λ solu-
tion (Λ = 0.5 u−2) and the radial Bonnor–Melvin spacetime (α = 2/u, σ = 0.8 u),
expressed as functions of the radial coordinate of the shell in the latter space-
time. The spacetimes are aligned in such a way that the region with higher r in
BMΛ and the region containing the singular axis at ρ ≈ −0.785 u in the radial
Bonnor–Melvin solution are preserved. The induced three-current on the shell
has only one non-zero element, sΦ = −

√
Λ/4π, which allows us to use (1.60) to

compute particle charge q in the region admitting the four-stream interpretation
of the shell, located to the left of the dotted line.

We can see that some of the quantities related to the induced stress-energy tensor
S reach their quite prominent extrema for a certain value of ρ that does not look
significant in any way. Computing the radial coordinate in the radial inhomo-
geneous spacetime r, however, we see that this ρ corresponds to the maximum
accessible value of r and that the shell is nearing the cosmological horizon in
the inhomogeneous spacetime. Indeed, by examining the circumference C (2.199)
of cylinders in the radial Bonnor–Melvin spacetime, we find that this particular
value of ρ corresponds to the maximum of C. This figure can be viewed as a
reminder that we observe the properties of the shells from the point of view of
one of the two connected spacetimes, but something interesting can be going on
in the other one. While we should in general be able to choose the radial coordi-
nate of either of the two spacetimes as the independent variable, expressing one
radius often tends to be much easier than expressing the other in practice. Note
that similar charts can also be produced for shells that connect the radial inho-
mogeneous solution to, e.g., the Bonnor–Melvin–Λ spacetime, probably because
the circumference of the shell in the Bonnor–Melvin–Λ solution (2.125) is given
by a formula similar to (2.199). Both functions have a global maximum and are
monotonic on either side of it.

Speaking of the radial inhomogeneous solution, it should be pointed out that
we were sadly not able to construct a single shell connecting the spacetime to
any other solution considered in this work that would eliminate the singular axis.
On the other hand, every valid shell for the radial Bonnor–Melvin spacetime
eliminates one of its two singular axes. It may be possible to eliminate both of
them through the use of multiple shells. Interestingly, out of all the investigated
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(a) The induced quantities on the shell.
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(b) The value of the radial coordinate r in the radial inhomogeneous solution needed
to match the circumference of cylinders at a given ρ in the radial Bonnor–Melvin
spacetime. Note that the maximal value at the vertical axis r ≈ 3.708 u corresponds to
the cosmological horizon of the radial inhomogeneous solution.

Figure 3.4: The properties of shells on the interface of the radial Bonnor–
Melvin solution (α = 2.6/u, σ = 2.39 u) and the radial inhomogeneous solution
(Λ = 0.3 u−2, β = −0.6 u, α = −5 u), expressed as functions of the radial coordi-
nate of the shell in the former spacetime. The spacetimes are aligned in such a
way that the region with higher ρ in the radial Bonnor–Melvin solution and the
region with the singular axis of the inhomogeneous spacetime are preserved. The
region admitting the four-stream interpretation of the shell is located between the
dotted lines. The shell is uncharged. Disregarding now the allowed region, note
that some of the induced quantities on the shell tend to their (locally) extreme
values when the shell approaches the cosmological horizon in the inhomogeneous
solution, with the closest value of the radial coordinate marked by the dashdot-
ted line. This value corresponds to the maximal circumference of cylinders in the
considered radial Bonnor–Melvin spacetime.
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solutions these two singular spacetimes appear to be the most congenial to be used
in Israel’s cut-and-paste formalism, as they are the only two examined spacetimes
that admit shells compliant with our demands and sewn onto every other solution
considered in this thesis.

Finally, note that, curiously, neither axial nor azimuthal magnetic field allow
the homogeneous and its corresponding inhomogeneous solutions to be brought
together through an interpretable shell, but it is possible to connect any pair of a
homogeneous spacetime and an inhomogeneous one if their magnetic fields have
different directions. Only radial magnetic field also admits an interpretable shell
on the interface of the homogeneous and inhomogeneous solutions.

Our numerical computations suggest that at least one configuration for all
the other pairs of spacetimes that were not explicitly discussed admits an in-
terpretable shell. However, we did not find anything noteworthy about these
configurations, so we shall settle for their brief summary in Table 3.1 only. Note
that the table does not contain information about which regions of the solutions
are preserved.

3.1.1 Mass per unit proper length
Now that all discovered interpretable shells related to the studied spacetimes
have been introduced, it is time to turn our attention towards the shells’ mass
per unit proper length M1 (1.65). We omitted that information when we discussed
individual shells, because we believe that it is better to gather the data in one
place. That place is the perhaps slightly confusing Fig. 3.5. In it, all curves of M1
corresponding to every presented interpretable shell are plotted. We understand
that having so many curves in one chart makes it difficult to find one’s footing
in it. However, we can more plainly see the prominence of the critical value of
M1 = 1/4 as talked about in Sec. 1.2.2 now. Žofka and Bičák [2007] claim that
further conditions must be met if M1 = 1/4 is to remain the upper bound of mass
per unit length of cylinders in regular spacetimes when the cosmological constant
is involved, but it is not clear what the conditions should be for our examined
solutions, so we did not cater for them specifically. Nonetheless, we see that only
a single shell has its unit mass cross (very slightly) the value of M1 = 1/4 and not
many more approach it at an extreme value of the shell’s radial coordinate. Note
that Žofka and Bičák [2007] discovered curves crossing the line when examining
the cosmological variant of the Levi–Civita spacetime, which makes the rarity of
that occurrence for our plethora of cosmological solutions rather surprising.

First, the shell of Fig. 3.3, which is the one crossing M1 = 1/4, connects the
Bonnor–Melvin–Λ and radial Bonnor–Melvin solutions, the latter of which does
not include the cosmological constant but one of its two singularities prevails.
While its unit mass is usually above the critical value, for an extreme value
of coordinate radii it approaches M1 → 0.248, which itself is quite close to the
threshold value. The two shells for which the Maple software determines the limit
to be exactly M1 = 1/4 are the connections of again the radial Bonnor–Melvin
solution of Fig. 2.11a and the azimuthal inhomogeneous solution of Fig. 2.25a, in
both cases to the Minkowski spacetime. Interestingly, the two composite solutions
approach that value from the opposite sides of the chart, as the former spacetime
is singular while the latter is regular. The two spacetimes also admit shells leading
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to the original Bonnor–Melvin spacetime, which happen to have a limit close to
M1 = 1/4, but not quite, as M1 → 0.252 for Fig. 2.11b and M1 → 0.247 for
Fig. 2.25b.

In the vast majority of cases, the shells in the considered composite spacetimes
without any curvature singularities have M1 < 1/4 and those with at least one of
them have M1 greater than the critical value1 despite the fact that virtually all
of them contain a non-zero cosmological constant on at least one side of the shell.
The only non-cosmological connections are those of the radial Bonnor–Melvin
solution of Sec. 2.4 either to another instance of itself of (2.207) or to the better-
known spacetimes of Sec. 1.3 illustrated in Fig. 2.11. Note that in these cases,
we have M1 > 1/4 as expected, because there is always a curvature singularity
present in the part (or parts) of the radial Bonnor–Melvin solution we keep.

The shells that do not conform to the divide mostly arise from connections of
a pair of the cosmological solutions we study. The only deviant connection that
involves an elder spacetime from Sec. 1.3 is that of Fig. 2.24a, where we connect
a part of the singularity-free azimuthal homogeneous solution to a part of the
Levi–Civita solution with a conical defect but not a curvature singularity. Note
that the parameter σ of the Levi–Civita solution in this case lies at the upper
boundary of the interval that admits realistic sources. We consider a value of σ
lying outside that interval in Fig. 2.25c, but the preserved part of the Levi–Civita
solution contains the singular axis anyway, so the obtained M1 > 1/4 is not a
cause for concern.

The other regular spacetimes with M1 > 1/4 are the connection of the ra-
dial homogeneous and azimuthal inhomogeneous solutions of Fig. 3.1b, and the
connections involving the axial inhomogeneous solution illustrated in Fig. 3.2,
both to the radial or azimuthal homogeneous spacetimes. All of the individual
spacetimes demonstrated the ability to admit an interpretable shell to another
regular spacetime with M1 < 1/4. Note that in Fig. 3.2, in three of the four
considered connections the axial solution keeps a region with an axis, which in
all cases involves a conical defect. However, the last shell does not contain the
defect and still has M1 > 1/4, and the connections of Fig. 2.7 have M1 < 1/4
despite involving the defect. Therefore, the conical defect does not appear to
play a key role with respect to M1. This is corroborated by Bičák and Žofka
[2002], which states that introducing a conical defect to the Minkowski space-
times connected to the asymptotic part of the Levi–Civita solution does not have
any major repercussions for the shells.

There is only one only singular connection with M1 < 1/4, namely that of
Fig. 3.1a, where we connect a part of the radial Bonnor–Melvin solution (which
must always contain a singularity) and a part of the radial homogeneous solution.
As noted in Sec. 1.2.2, the papers cited there do not say that singular connections
must fulfill M1 > 1/4. However, since it is the only discovered singular case with
a below-critical M1, it merits a dashed curve in Fig. 3.5 nevertheless. Note that
this configuration can also yield a shell with M1 > 1/4 for different parameters
of the two involved spacetimes.

In Table 3.1 summarizing all shells corresponding to all pairs of the examined
spacetimes, we also list whether their mass per unit length is lower or greater
than M1 = 1/4.

1Recall, however, that only regular spacetimes are expected to respect the threshold value.
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Figure 3.5: The chart of mass per unit length M1 for every interpretable shell
considered in this work. The independent variable x is the rescaled coordinate
radius of the shell, r = rmin + (rmax − rmin)x, so that the value x = 0 corresponds
to the minimal admissible radius rmin and x = 1 to the maximal radius rmax.
Note that the charts where the interval of the permitted coordinate radii is not
bounded all have a constant value of M1. For the sake of completeness, we also
plot the value of M1 for the shell connecting two instances of the radial Bonnor–
Melvin solution (2.207) even though its radii are fixed. Except for this case, the
legend entries refer to the figure showing the other properties of the corresponding
shell. If there are multiple configurations presented in the same figure, the color
of the curves remains the same and the legend entry lists the subfigures that share
the style of their curves in the order of descending M1. Note that the curves for
Fig. 2.11a and 2.11b overlap almost perfectly, so we plot only the former one.
Also note that while the legend entry implies that Fig. 2.25b has higher M1 than
Fig. 2.25a, the latter has the slightly higher limit of M1 → 1/4 for x → 1. When
approaching x → 1, the dash-dotted curve for Fig. 3.3 crosses the critical value
of M1 = 1/4. The dashed curves are located in their entirety on the opposite side
of the critical value than expected.
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BMΛ Ax. in. Rad. BM Rad. h. Rad. in. Az. h. Az. in. Mink. LC BM
BMΛ

✗ ✗
Fig. 3.3

✗
✓

✗
✓

✗
Fig. 2.2

✗(Sec. 2.2) S (±) S (+) R (−) R (−)

Ax. in.
✗

✓ Fig. 3.2a, b ✓ Fig. 3.2c, d ✓
✗

Fig. 2.7
✗(Sec. 2.3) S (+) CD (+) S (+) CD/R (+) CD (−) CD (−)

Rad. BM Eq. (2.207) Fig. 3.1a Fig. 3.4 ✓ ✓ Fig. 2.11a ✓ Fig. 2.11b
(Sec. 2.4) S (+) S (±) S (+) S (+) S (+) S (+) S (+) S (+)

Rad. h.
✗

Fig. 2.21
✗

Fig. 3.1b
✗ ✗

Fig. 2.15
(Sec. 2.5.1) S (+) R (+) R (−)

Rad. in. Fig. 2.20 ✓ ✓ Fig. 2.22 ✓ ✓

(Sec. 2.6) S (+) S (+) S (+) S (+) S (+) S (+)

Az. h.
✗ ✗ ✗

Fig. 2.24a Fig. 2.24b
(Sec. 2.7) CD (+) R (−)

Az. in.
✗

Fig. 2.25a Fig. 2.25c Fig. 2.25b
(Sec. 2.8) R (−) S (+) R (−)

Table 3.1: Information about shells on the interface of every pair of spacetimes considered in this work. In every cell that corresponds to
a shell that admits the desired four-particle-stream interpretation, there is either a check mark (✓) or a reference to the corresponding
figure if we provided one. If a particular pair of solutions does not admit an interpretable shell, the corresponding cell contains a cross
mark (✗). Furthermore, we also note whether the syncretic spacetimes are completely regular (R) or if they contain a conical defect but
no curvature singularities (CD) or if there is at least one curvature singularity (S). The (±) signs denote whether the shell’s mass per
unit length is greater (+) or lower (−) than the prominent value of M1 = 1/4. The unit mass of the shell of Fig. 3.3 connecting the
Bonnor–Melvin–Λ and radial Bonnor–Melvin spacetimes crosses the value of M1 = 1/4. For the connections of the radial homogeneous
and the radial Bonnor–Melvin spacetimes, the shell in Fig. 3.1a has M1 < 1/4, but we also found shells with M1 > 1/4. Note that their
unit mass does not depend on the shell’s radius. The connection of the axial inhomogeneous and azimuthal homogeneous solutions of
Fig. 3.2c contains an axis with a conical defect in the former spacetime, while the shell in Fig. 3.2d leads to the regular asymptotic region.
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3.2 General numerical solutions
The cosmological solutions examined in this work contain additional symmetries,
which prevents them from being the most general static, cosmological, cylindrical
spacetimes with a magnetic field. While we were not able to solve the relevant
equations analytically (provided they have a closed-form solution in the first
place), it is possible to examine the equations numerically to assess some of
the properties that the general metric should have. To that end, we shall take
advantage of the Mathematica software to find numerical solutions to the system
(2.7)–(2.10) for the axial (or azimuthal) magnetic field and (2.65)–(2.68) for the
radial case to determine the metric functions in our original ansatz (1.1).

More precisely, in each set we use the last equation to substitute f 2 into the
previous ones, which yields a set of three equations for A′, B′, and C ′ as functions
of the radial coordinate2. The equations are of second order, so as initial condi-
tions we have to choose the values of the three functions and their first derivatives
at a particular r. Since the radial coordinate does not explicitly appear in the
system, we can shift it arbitrarily, which allows us to set the initial conditions
always at r = 0. Moreover, as the system contains only derivatives of the metric
functions, we can set A(0), B(0), and C(0) arbitrarily without affecting their
derivatives. We choose A(0) = B(0) = C(0) = 0 for simplicity, but these values
are simply gauge and can be transformed away through a simple rescaling of a
given coordinate by a constant factor3. Therefore, the interesting physical prop-
erties of the solution are determined by the initial derivatives A′(0), B′(0), and
C ′(0), and the cosmological constant Λ, which is the only parameter appearing
in the differential equations. We shall generate these four values randomly (dis-
carding solutions with negative f 2) and catalog the resulting spacetimes by their
properties, focusing on the number of axes and singularities. These families of
solutions are then listed in two subsections pertaining to a particular orientation
of the magnetic field.

In the charts demonstrating our results, we plot both the metric elements
gtt = −eA, gzz = eB, and gφφ = eC (recall that grr = 1), and the corresponding
derivatives A′, B′, and C ′. Moreover, to pinpoint curvature singularities we
also plot FµνF µν = 2f 2 with f 2 computed from (2.10) or (2.68), as well as the
Kretschmann scalar

RαβγδR
αβγδ = 1

4
(
(A′)4 + (B′)4 + (C ′)4

)
+
(
A′′(A′)2 +B′′(B′)2 + C ′′(C ′)2

)
+
(
(A′′)2 + (B′′)2 + (C ′′)2

)
+ 1

4
(
(A′)2(B′)2 + (A′)2(C ′)2 + (B′)2(C ′)2

)
. (3.1)

Noting that the Ricci scalar

−R = 1
2 (A′B′ + A′C ′ +B′C ′)+

(
(A′)2 + (B′)2 + (C ′)2

)
+(A′′ +B′′ + C ′′) (3.2)

2Note that the metric (1.1) has grr = 1, which means that the difference of the radial
coordinate between two points corresponds to their proper radial distance.

3Forcing C(r = 0) = 0 ↔ gφφ(r = 0) = 1 may lead to a conical defect at an axis, which
could have been avoided by choosing a different value of C(0). A simple rescaling of the angular
coordinate φ cannot affect the defect, but we can eliminate it if we simultaneously also redefine
the bounds of the coordinate. Even though such a redefinition alters the spacetime, the metric
and local physics stay the same. Therefore, we are not going to pay attention to conical defects
in this section.
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becomes R = 4Λ for electrovacuum spacetimes, we use it to replace C ′′ for axial
magnetic fields or A′′ for radial magnetic fields in (3.1), which helps mitigate
numerical fluctuations of the Kretschmann scalar in some cases.

3.2.1 Axial magnetic field
Boost-symmetric solutions

Before dealing with general initial conditions, let us see whether we are able to
reproduce the two axial solutions of Sec. 2.2 and 2.3. What these spacetimes have
in common is their boost symmetry in the t–z plane. To recover these solutions
numerically, we set A′(0) = B′(0). Because the system (2.7)–(2.10) is invariant
under the transposition A′ ↔ B′, considering the same initial conditions for these
two functions ensures that we have A(r) = B(r) in the whole domain.

First, considering non-zero values of the initial derivatives, we obtain solutions
corresponding to the axial inhomogeneous spacetime of Sec. 2.3. The numerical
spacetimes do not appear to contain any curvature singularities as the two mon-
itored scalars do not seem to diverge anywhere. The case of Λ > 0 is depicted in
Fig. 3.6a. The solution contains two axes as expected. For Λ < 0, there is an axis
and an asymptotic region, in which the electromagnetic field invariant tends to
zero and A′, B′, and C ′ all tend to the same constant, as illustrated in Fig. 3.6b.
This means that a suitable rescaling of the coordinates by a constant factor could
lead to −gtt = gzz = gφφ as r → ∞. Therefore, in the asymptotic region we have

ds2 = e2αr
(
−dt2 + dz2 + dφ2

)
+ dr2 (3.3)

with a real constant α satisfying 2α = A′ = B′ = C ′. Defining a new radial
coordinate x = e−αr/α, the metric becomes the anti-de Sitter

ds2 = α−2

x2

(
−dt2 + dx2 + dz2 + dφ2

)
. (3.4)

By comparing this metric to (2.148), we see that α =
√

−Λ/3. Indeed, in Fig. 3.6b
the derivatives tend to 2α. Therefore, our numerical results are consistent with
the analytic spacetime.

If we consider the even more special case of vanishing A′(0) and B′(0), we
recover the homogeneous Bonnor–Melvin–Λ solution discussed in Sec. 2.2 if we
also consider Λ > 0. The functions A(r) = B(r) then remain constant in the
whole domain. From (2.10) we can see that A′(0) = B′(0) = 0 implies f 2(0) = Λ.
Inserting these into the previous three equations, we get that A′′(0) = B′′(0) = 0
too, which is also propagated for other values of the radial coordinate. Therefore,
gtt and gzz remain constant (as well as grr by definition), as do the two tracked
scalars, which become FµνF µν = 2Λ and RαβγδR

αβγδ = 16Λ2. The curve of gφφ
clearly corresponds to gφφ of (2.102) for a particular choice of σ and with a shifted
radial coordinate. The results are fully consistent with the analytic solution and
are illustrated in Fig. 3.6c. Note that changing the initial C ′(0) only shifts the
entire chart along the horizontal axis.

For A′(0) = B′(0) = 0, considering Λ < 0 yields f 2 < 0. Therefore, there are
no new solutions in this class.
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Figure 3.6: Numerical spacetimes with an axial magnetic field and boost sym-
metry; the curves of A′ and B′ overlap in each chart. The first two solutions
correspond to the axial inhomogeneous spacetime of Sec. 2.3, the last one to the
homogeneous Bonnor–Melvin–Λ solution of Sec. 2.2.
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General solutions

We shall now leave boost symmetry behind and examine solutions satisfying
A′(0) ̸= B′(0), which do not have any counterpart in the exact solutions examined
previously in this work.

As it turns out, the general solutions seem to have a similar structure to the
inhomogeneous spacetimes of Sec. 2.3 with the notable difference that there are
curvature singularities on the axes, as especially the Kretschmann scalar (3.1)
diverges there very markedly. For Λ > 0, the solutions contain two singular axes.
Interestingly, on one of the axes gtt diverges and gzz vanishes, while on the other
axis the opposite limits hold, as illustrated in Fig. 3.7a. For Λ < 0, there is
one singular axis and a regular asymptotic region, in which FµνF

µν → 0 and
the derivatives of the metric functions all tend to 2

√
−Λ/3, so the asymptotic

behavior of the solution appears to be the same as in the boost-symmetric case
(i.e., the solution tends to the anti-de Sitter spacetime). We have discovered two
different patterns for the axis. In the solution of Fig. 3.7b we have gtt → −∞
and gzz → 0 as we approach the axis. On the other hand, the solution depicted
in Fig. 3.7c has the opposite limits, gtt → 0 and gzz → ∞.

It does not appear that C ′(0) coinciding with either A′(0) or B′(0) leads to
any solutions different from those already discussed.

Note that the habilitation thesis Žofka [2021], which features some overlap
with this work, also contains a chapter on general numerical spacetimes with an
axial magnetic field. However, the results there differ from ours. Seeing that we
were also able to recover the exact solutions numerically, which the older work
did not attempt, we suspect that a mistake invalidating the results must have
been made in the habilitation thesis.

3.2.2 Radial magnetic field
Solutions with rotational symmetry

Apart from the three translational symmetries, the cosmological solutions with
a radial magnetic field of Sec. 2.5 and 2.6 also contain a rotational symmetry in
the z–φ plane, corresponding to B′ = C ′. Similarly to the axial case, the radial
system (2.65)–(2.68) is invariant under B′ ↔ C ′, so setting B′(0) = C ′(0) ensures
that the derivatives stay the same throughout the whole domain.

The situation here is quite more complicated than for the spacetimes with
axial magnetic fields, as the solutions of Sec. 2.5 and 2.6 may contain horizons
and admit multiple causal configurations. Unfortunately, our ansatz for the met-
ric (1.1) is ill-suited to deal with dynamical regions, as the signs of the metric
elements are fixed. A complex A(r) could be considered to change the sign of
gtt, but grr = 1 is fixed regardless, so it can never become negative as needed in
the dynamical regions of our solutions. Even though we are not able to explore
the dynamical regions numerically, we are able to identify the horizons in our
numerical solutions, as they can be found at those values of r where the integra-
tion of the system fails with gtt approaching zero (as it also must change its sign
there), while the other metric elements and especially the two examined scalars
are finite.

Starting again with the inhomogeneous case and focusing first on solutions
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Figure 3.7: Numerical spacetimes with an axial magnetic field that do not have
boost symmetry.
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with Λ > 0, the exact spacetime suggests that there is only one possible configu-
ration, which contains a singular axis and a horizon separating the static region
with the axis and the dynamical asymptotic region. Indeed, our numerical ex-
periments seem to support this structure, as we were not able to find any other
distinct spacetimes. Our results for the static region are illustrated in Fig. 3.8a.

For Λ < 0, the exact solution admits three different causal configurations.
First, the black-string solution contains a dynamical region sandwiched between
two static regions delimited by the horizons. As mentioned above, we cannot ex-
plore the dynamical region numerically, but we were able to find solutions clearly
corresponding both to the inner static region with the axis (Fig. 3.8b), which is
notably quite similar to the solution with Λ > 0 of Fig. 3.8a, and also to the
asymptotic region (Fig. 3.8c). Next, there is the naked-singularity variant of the
spacetime, which does not contain any horizons and it can be fully explored us-
ing our numerical computations. It contains a singular axis and an asymptotic
region, as illustrated in Fig. 3.8d. The last configuration is the extremal one with
a single horizon of multiplicity two, which separates two static regions. So far,
we were able to draw the figures using randomly-generated initial conditions, as
both the naked spacetimes and the black-string solutions require the initial con-
ditions to fulfill a certain inequality, which gives us enough leeway to satisfy the
requirements without any further effort on our part. The extremal case, however,
imposes a condition in the form of an equality, which is virtually impossible to
be satisfied using randomly-generated numbers. Fortunately, knowing the exact
solution beforehand, we can use it to our advantage to fine-tune the initial con-
ditions to obtain an extremal solution numerically. For us to be able to match
the exact metric (2.256) to the ansatz (1.1), we need to replace the radial co-
ordinate in (2.256), which shall be denoted r̂ in the following, with the proper
radial distance r used in the ansatz. More precisely, we only need to do so in the
derivatives of the metric functions, which are the only relevant initial data we
need for our numerical computations. Considering gtt(x) = − expA(x), where x
stands for either r or r̂ (there is no transformation of the timelike coordinate),
we have

dA(x)
dx = d

dx ln(−gtt(x)) = 1
gtt(x)

dgtt(x)
dx . (3.5)

Since r is the proper radial distance, i.e., dr =
√
gr̂r̂(r̂) dr̂, the desired derivative

can be expressed as

A′(r) ≡ dA(r)
dr = dA(r̂)

dr̂
dr̂
dr = 1

gtt(r̂)
√
gr̂r̂(r̂)

dgtt(r̂)
dr̂ , (3.6)

and analogously for B′(r) = C ′(r). We can insert any admissible r̂0 and use
the obtained A′ and B′ = C ′ as the initial conditions for our problem, setting
r(r̂0) = 0 as the initial r can be chosen arbitrarily. In order to draw our charts,
we computed the initial values for the spacetime with Λ = −1 u−2, β = 1 u, and α
fixed by (2.263). With the degenerate horizon at r̂ = 1 u, we examine the region
containing the axis in Fig. 3.8e starting from r̂0 = 3/5 u, and we use r̂0 = 2 u
for the asymptotic region in Fig. 3.8f. It is not possible to see the horizon in the
two charts, as the proper radial distance from any point in the spacetime to the
degenerate horizon is infinite, but note that the two examined scalars have the
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same values as r → ∞ in the region under the horizon, and as r → −∞ in the
region above the horizon. The extremal solutions are very vulnerable to rounding
errors in numerical computations, as they can push the solution towards a black-
string spacetime or a naked-singularity one. Increasing the WorkingPrecision
parameter of NDSolve in Mathematica can delay these effects considerably.

In all cases with Λ < 0, the derivatives of the metric functions A′ and B′ = C ′

tend to 2
√

−Λ/3 in the asymptotic region. In a completely analogous manner to
the axial spacetimes, this is consistent with the anti-de Sitter limit (2.265) of the
exact spacetime.

Regarding numerical analogues of the homogenous solutions investigated in
Sec. 2.5, a similar argument like the one for the spacetimes with an axial mag-
netic field explains that the exact spacetimes are recovered for B′(0) = C ′(0) = 0.
Relation (2.68) then implies that f 2(0) = −Λ, which means that this time Λ must
be negative so that we obtain a magnetic field. Inserting these initial values into
the three differential equations we aim to solve numerically, we see that the sec-
ond derivatives vanish, B′′(0) = C ′′(0) = 0, which again remains valid for the
entire interval of r. Unlike the axial case, we cannot change the initial A′ arbi-
trarily without affecting the physics of the spacetime, as the spacetime admits
three different causal configurations as we already know from Sec. 2.5.2. Limiting
ourselves first to A′(0) ≥ 0, the threshold A′(0) is easy to find from the exact
solution: The metric with a single exponential function (2.247) is the extremal
boundary between (2.213) and (2.248) containing the hyperbolic functions. The
derivative of A(r) for (2.247) is constant in the entire region, A′(r) = 2

√
−2Λ,

and it indeed gives the threshold A′(0) setting the other configurations apart.
Fig. 3.9 containing illustrations of numerical solutions corresponding to all three
possible causal configurations seems to confirm this notion. Performing the trans-
formation r → −r, which inverts the charts along the vertical axis, corresponds
to setting A′(0) → −A′(0). Charts for negative A′(0) are, therefore, only mirror
images of charts with positive A′(0). Note that like in the inhomogeneous case,
it is not possible to work with the dynamical region of the sinh metric in the
used coordinates, as the numerical integration of the equations cannot go beyond
gtt = 0 because of the fixed radial component of the metric, so Fig. 3.9c only
depicts the static regions of the spacetime. Compare that to the horizon of the
extremal solution of Fig. 3.9b, which lies in infinite proper radial distance (used
as our independent variable) from any other point in the spacetime, meaning the
numerical integration could be extended infinitely in both directions, provided
there are no problems with machine precision of the integration.

General solutions

There seems to be a broader palette of spacetimes with B′(0) ̸= C ′(0). Starting
with the case of Λ > 0, we found four different types of spacetimes, which are
illustrated in Fig. 3.10. In all four cases, the interval of r is finite and both
endpoints apparently always correspond to curvature singularities, as the two
monitored scalars diverge. The solutions can be split into two pairs based on
the behavior of gφφ. One pair of spacetimes contains two singular axes, while
the other pair contains a singular axis and a singular asymptotic region with
gφφ → ∞, so the circumference of circles around the axis diverges. Interestingly,
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Figure 3.8: Numerical spacetimes with a radial magnetic field and rotational
symmetry corresponding to the inhomogeneous spacetime of Sec. 2.6. The curves
of B′ and C ′ overlap in each chart, as well as the curves of gzz and gφφ. The figure
is spread over multiple pages.
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Figure 3.8: Numerical spacetimes corresponding to the radial inhomogeneous
spacetime of Sec. 2.6. (cont.)
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which had to be shifted and rescaled to match the considered initial conditions.

Figure 3.9: Numerical spacetimes with a radial magnetic field and rotational
symmetry corresponding to the homogeneous spacetimes of Sec. 2.5. The curves
of B′ and C ′ overlap in each chart, as well as the curves of gzz and gφφ.
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the singular asymptotic region is located in finite proper radial distance from any
other point in the spacetime, as the (bounded) radial coordinate corresponds to
proper distance. The solutions within each pair then differ in the limits of the
remaining two metric functions. Note that the solution of Fig. 3.10c bears striking
similarities to the non-cosmological radial Bonnor–Melvin spacetime of Sec. 2.4,
because the plotted functions look like those in the metric (2.176), as they have
a single extremum and the same limits, and the interval of r is also bounded by
two singular axes. Unlike the exact spacetime, however, the numerical spacetime
contains the cosmological constant, but it can be argued that due to the properties
of the cosmological term its effects are much less prominent in spacetimes without
an asymptotic region, such as this one.

Turning our attention to spacetimes with Λ < 0 now, we found six qualita-
tively different solutions, which are illustrated in Fig. 3.11. Three of them contain
a regular asymptotic region as r → ∞. For them, the limits of the derivatives
tend to the familiar value of 2

√
−Λ/3 while FµνF µν → 0, suggesting that the

spacetimes are once more asymptotically anti-de Sitter. The interval of r is left-
bounded and the endpoint corresponds to a curvature singularity. As we approach
the singularity, two metric functions always vanish while the last one diverges.
All three combinations are possible, which notably includes the case of gφφ → ∞
of Fig. 3.11a. In this case, the singularity does not represent an axis, but in-
stead we are dealing with a singular asymptotic region in finite proper distance
as discussed above. The solution then does not contain any axes. Next, we found
three solutions with a finite interval of r. These solutions invariantly contain a
singular axis at which gφφ and gzz vanish and gtt diverges. The other endpoint
of r is singular too. Like for the spacetimes with the anti-de Sitter asymptotics,
this endpoint admits any combination of two vanishing and one diverging metric
functions, which again notably includes gφφ determining whether the endpoint
represents a second singular axis or a singular asymptotic region.

Interestingly, finite endpoints of the interval of r in the present figures al-
ways seem to correspond to a singularity, as the two examined scalars diverge
there. Therefore, we were not able to find a single configuration supporting
(non-degenerate) horizons. This leads us to think that spacetimes containing at
least one horizon may be a subset of measure zero within the larger set of all
cylindrically-symmetric and static spacetimes with a radial magnetic field. We
already know that spacetimes with a further rotational symmetry may contain
horizons, but if there is another similar subset, it is extremely unlikely to be dis-
covered by numerical experiments. Barring this subset, like in the axial case the
general spacetimes thus always contain a naked singularity, which is less desirable
from the physical point of view. The spacetimes with an extra symmetry tend to
have more favorable properties.

While it is merely a conjecture for spacetimes with horizons, extremal space-
times by their very nature form a subset of measure zero within the given family
of solutions. Having said that, we happened by accident upon a solution that
appears to near some sort of an extremal state, as illustrated in Fig. 3.12. A
small change in C ′(0) while keeping the other initial conditions fixed results in
a dramatic change in the properties of the spacetime, as a regular asymptotic
region with r → ∞ is replaced by a singular axis at a finite r, while the left part
of the spacetime appears virtually unaffected by this change. Fine-tuning C ′(0)

137



further, it is possible to extend the plateau seen in both charts. It is, therefore,
not inconceivable that a spacetime with constant gzz and gφφ as r → ∞ can be
found, extending the plateau infinitely. The suggested infinite plateau would not
lead to a degenerate horizon in infinite proper distance, however, as in place of
gtt → 0 we have gtt → −∞ there. Instead, this asymptotic behavior would be the
same as for any of the homogeneous spacetimes seen in Fig. 3.9. Unfortunately,
we were not able to achieve sufficient numerical precision to actually obtain such
a spacetime numerically, provided the equations even admit it in the first place.

gtt gzz gϕϕ FµνF
µν/Λ

A′/
√
Λ B′/

√
Λ C ′/

√
Λ

√︁
RαβγδRαβγδ/Λ

−0.5 0 0.5 1

0

5

√
Λ r

(a) Initial conditions A′(0) ≈ 0.714
√

Λ,
B′(0) ≈ −1.71

√
Λ, and C ′(0) ≈ 3.76

√
Λ
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√
Λ
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with Λ = 6 u−2. The solution has two sin-
gular axes.

Figure 3.10: Numerical spacetimes with a radial magnetic field and Λ > 0 that
do not have rotational symmetry. The legend is above the figures and it is valid
for each of the four charts.
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axis and there is a regular asymptotic region as r → ∞.
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axis and there is a regular asymptotic region as r → ∞.

Figure 3.11: Numerical spacetimes with a radial magnetic field and Λ < 0 that
do not have rotational symmetry. The figure is spread over multiple pages.
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Figure 3.11: Numerical spacetimes with a radial magnetic field and Λ < 0. (cont.)
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Figure 3.12: Numerical spacetimes with a radial magnetic field without rotational
symmetry that seem to near an extremal state. Both spacetimes have the same
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3.3 The Painlevé property
The full equations for w(f) = f ′(r)2 we want to solve are second-order ODEs
(2.53) for the axial and azimuthal cases and (2.94) for the radial case. Both
equations can be written together as

wẅ − ẇ2 +
[
w

f
∓ 6f

(
f 2 ∓ Λ

)]
ẇ − 8

(
f 2 ∓ Λ

)2
f 2 ± 2w

(
11f 2 ∓ 9Λ

)
= 0 ,

(3.7)

where the upper sign applies in the axial/azimuthal case and the lower sign in
the radial case. The dots denote derivatives of w(f) with respect to f .

According to Slavyanov and Lay [2000], considerable research was done at
the beginning of the 20th century on second-order ODEs that have the so-called
Painlevé property, which means that their solutions do not contain any movable
critical points, i.e., essential singularities that depend on the initial data, so their
position cannot be determined from the forms of the functions appearing in the
equation itself. Considered in the complex domain, these equations can either
be solved using known functions (albeit not necessarily elementary ones), or be-
long to one of the six Painlevé equations, the solutions of which are Painlevé
transcendents. Ince [1956] provides a full catalog of all fifty admissible classes
of second-order ODEs without movable singularities, and a set of necessary (not
sufficient) conditions that the equation must fulfill to have the Painlevé property.
It would be very convenient if (3.7) were among them, as it could point us to
their solutions.

Denoting p = dw/df , we rewrite the equations as ẅ = R(f, w, p) with

R(f, w, p) = 1
w
p2 −

[
1
f

∓ 6f
w

(
f 2 ∓ Λ

)]
p+

[
8f 2

w

(
f 2 ∓ Λ

)2
∓ 2

(
11f 2 ∓ 9Λ

)]
.

(3.8)
First, we require R to be a rational function of w and p with coefficients analytic
in f , which is fulfilled for f ∈ R \ {0}. Let us inspect the other conditions in
the two subregions of f where the coefficients are analytic. R needs to be a
polynomial in p of degree at most two, which is also true in our case. We can
write

d2w

df 2 = L(f, w)p2 +M(f, w)p+N(f, w) (3.9)

with functions L, M , and N evident from (3.8).
Ince gives two constraints on the form of these functions. L(f0, w) must only

have at most simple poles and belong to one of the five types listed in his work,
or be identically zero. The second condition states that if D(f, w) is the least
common denominator of the partial fractions in L, then we must be able to
express M = µ(f, w)/D(f, w) and N = ν(f, w)/D(f, w), with degrees of µ and ν
as polynomials in w not exceeding the degree of D by more than one and three,
respectively.

For us D = w and both µ = wM and ν = wN are also of degree one in w, so
the second condition is fulfilled. However, while L(f0, w) = 1/w indeed only has
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one simple pole in w = 0, it does not belong to any of the five listed types4. Since
these conditions were necessary, we conclude that our equations unfortunately do
not have the Painlevé property.

Take note that at first glance, it may seem that the equations (3.7) belong to
one of the canonical equations listed under type II in Ince [1956], as the ‘master’
equation for these classes is

d2w

df 2 = 1
w

(
dw
df

)2

+
[
A(f)w +B(f) + C(f)

w

]
dw
df

+D(f)w3 + E(f)w2 + F (f)w +G(f) + H(f)
w

. (3.10)

(3.7) is of the above form with B, C, G, and H being the only non-zero functions.
However, to avoid movable critical points, two further conditions must be met:
A(f)D(f) = 0 and C(f)H(f) = 0, the latter of which does not hold in our case.

As the equations are not endowed with the Painlevé property, we cannot take
advantage of the previous research on this topic and have to look for a solution
elsewhere. It is also possible, however, that the equations do not have a closed-
form solution at all...

4As L(f0, w) = 1/w has the principal part 1/w at the pole, it cannot belong to any other
type than type I. However, L would then need to be 2/w to be included in that type. A
numerical factor such as this one may seem rather insignificant, but note that the classification
was performed using the simpler equation ẅ = Lẇ2, where (not counting integration constants)
L = 1/w means w = exp(f), while L = 2/w yields w = 1/f , a completely different result.
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Conclusion
This thesis is a review of a particular class of exact solutions to the Einstein–
Maxwell equations of the classical 4D general theory of relativity. The solutions
are inspired by the Bonnor–Melvin solution, a cylindrically-symmetric electrovac-
uum spacetime containing a magnetic field aligned along the axis of symmetry.
Barring one exception, the spacetimes we examined further admit a non-zero cos-
mological constant, and they all contain a magnetic field aligned along one of the
three spatial coordinates of the usual cylindrical coordinate system. Any other
alignment is incompatible with cylindrical symmetry.

By direct manipulation of the Einstein–Maxwell equations we derived seven
solutions in total. Their basic properties are summarized in Table C.1. The six
cosmological solutions are of algebraic type D like the original Bonnor–Melvin
solution and mostly belong among the Kundt spacetimes with the exception of
the inhomogeneous solution with a radial magnetic field, which belongs to the
Robinson–Trautman family and notably is the only examined cosmological so-
lution containing a curvature singularity. The corresponding pairs of the axial
and azimuthal solutions have the same local properties, only their global topo-
logical properties (i.e., which coordinates are periodic) differ. We also obtained
one solution without the cosmological constant, which has a radial magnetic
field. This solution differs considerably not only from the cosmological solutions,
but also from the original Bonnor–Melvin solution. The non-cosmological solu-
tion contains two curvature singularities, belongs to neither the Kundt nor the
Robinson–Trautman family, is of the most general type I and admits only the
three translational Killing vector fields corresponding to static cylindrical sym-
metry, while the Bonnor–Melvin solution with the axial magnetic field also admits
boost symmetry in the direction of the axis.

During our investigation, we examined test particle motion of both uncharged
and charged massive particles as well as photons using the method of the effective
potential, focusing mainly on stationary circular orbits. Remarkably, we discov-
ered that charged particles may undergo chaotic motion for the non-cosmological
solution with the radial magnetic field. Moreover, we investigated shell sources
for the spacetimes, requiring them to be composed of particle streams to have rea-
sonable physical properties. Resulting mainly from numerical experiments, the
pairs of spacetimes admitting these shells on their interface are listed in Table 3.1.
We also noted that regular composite spacetimes mostly but not always admit
only shells with mass per unit proper length lower than 1/4, which is a value
observed in similar contexts in the literature for non-cosmological spacetimes.

It should be noted that while we assumed cylindrical symmetry for each space-
time, some of them appear more suited for either toroidal or planar symmetry.
In this respect, the worst offenders are the homogeneous spacetimes with a radial
or an azimuthal magnetic field. Recall that also the inhomogeneous solution with
a radial magnetic field is often examined in the context of toroidal symmetry in
the literature.

Needless to say, a treatise of similar length as this entire thesis could probably
be written about any single one of the examined spacetimes separately, and a lot
of research can still be done beyond the select topics that we decided to focus on.
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First and foremost, in our future work we intend to investigate more closely
the radial homogeneous solution of Sec. 2.5 and its twin, the spacetime of the
Appendix, which is locally the same but has a different global structure as per
our choice. In the follow-up work, we notably intend to shed the shackles of
cylindrical symmetry, because it is ill-suited for the radial homogeneous solution,
and unwind the φ coordinate. The two azimuthal solutions also deserve further
investigation, especially with regards to the endpoints of the admissible interval
of the radial coordinate.

Of course, the most natural continuation of this work is to solve the equations
for the general solutions with no additional symmetry as we have already tried
in Sec. 3.3 but to no avail. While numerical experiments performed in Sec. 3.2
suggest that the equations admit various families of solutions, we must keep in
mind that neither of them necessarily has to correspond to an exact spacetime
with a metric that can be expressed using analytical functions. Indeed, even the
original Bonnor–Melvin solution also contains additional boost symmetry.

An alternative path would be to dispose of the requirement of staticity and
look for dynamical solutions. That would enable us to investigate phenomena
such as gravitational collapse or cosmic censorship. However, even the present
static equations are notoriously difficult to solve so one would apprehend an uphill
battle here. As yet unpublished results suggest, there are, for instance, solutions
combining a dynamic cylindrical spacetime generated by an electromagnetic field
together with perfect fluid but some of the standard energy conditions are broken.

Another possible way that this work can be extended is to examine parametric
limits of the spacetimes in a covariant manner. A coordinate-free approach based
on the Cartan–Karlhede algorithm was developed in Paiva et al. [1993] and is
also discussed in Stephani et al. [2009]. The parametric limits we considered
in this work were always viewed from the perspective of a certain system of
coordinates, which may result in certain limiting spacetimes remaining hidden
from us, as explained in Paiva et al. [1993]. The application of the Cartan–
Karlhede algorithm, however, may require us to work with up to tenth covariant
derivatives of the Riemann tensor, which is why we settled with the less rigorous
approach in this work.

Among other things that may merit further investigation are, e.g., thermo-
dynamic properties of the spacetimes and the stability of the solutions under
perturbations, which have already been studied for some of the solutions but not
for all. The chaotic motion that was discovered in the radial Bonnor–Melvin so-
lution of Sec. 2.4 can be investigated using the proper apparatus of chaos theory.
It is also possible to consider the dual electric counterparts to the spacetimes
and investigate particle motion there. Even though it is magnetic fields that
are observed on cosmological scales, the electrostatic counterparts of our space-
times may have a better interpretation of the sources, as, for example, electric
monopoles are preferable to magnetic monopoles. And the list could go on...
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Λ Type Family Isometry Main features
Bonnor–Melvin 0 D Kundt ISO(1, 1) × E(1) Axis → ∞(Sec. 1.3.3)

Bonnor–Melvin–Λ + D Kundt ISO(1, 1) × SO(3) Axis → axis(Sec. 2.2)
Axial inhomogeneous ± D Kundt ISO(1, 1) × E(1) Λ > 0 : axis → axis

(Sec. 2.3) Λ < 0 : axis → ∞
Radial Bonnor–Melvin 0 I ✗ E(1) × E(1) × E(1) Singularity → singularity(Sec. 2.4)
Radial homogeneous − D Kundt SO(2, 1) × E(2) −∞ → (0 − 2 horizons) → ∞(Sec. 2.5)

Radial inhomogeneous ± D Robinson– E(1) × E(2) Λ > 0 : singularity → horizon → ∞
(Sec. 2.6) Trautman Λ < 0 : singularity → (0 − 2 horizons) → ∞

Azimuthal homogeneous + D Kundt ISO(1, 1) × SO(3) r bounded(Sec. 2.7)
Azimuthal inhomogeneous ± D Kundt ISO(1, 1) × E(1) Λ > 0 : r bounded

(Sec. 2.8) Λ < 0 : r left-bounded

Table C.1: A summary of the properties of the spacetimes examined in this thesis compared to the original Bonnor–Melvin solution.
Column ‘Λ’ contains the admissible signs of the cosmological constant and column ‘Type’ the Petrov algebraic classification of the Weyl
tensor. Column ‘Family’ classifies the spacetimes with respect to null geodesic congruences; the radial Bonnor–Melvin solution does not
belong to any such family. The structure of the Killing vector fields of the spacetimes is given in column ‘Isometry’. Finally, in column
‘Main features’ we summarize the structure of the spacetimes as the radial coordinate in the preferred form of the metric increases. Note
that wherever any examined spacetime contains a curvature singularity, it is a singular axis. For the two azimuthal spacetimes, the
endpoints of the interval of the radial coordinate r are neither axes nor curvature singularities and they warrant further investigation. As
not to omit anything, recall that both the Bonnor–Melvin and Bonnor–Melvin–Λ spacetimes have an axial magnetic field.
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Appendix:
Spatially-cylindrical spacetimes
In this appendix, we examine static spacetimes with the cylindrical symmetry
limited to the spatial part of the metric. Specifically, we borrow the spatial part
from the Minkowski spacetime of Sec. 1.3.1, but gtt is allowed to depend on all
three spatial coordinates. To preserve staticity, gtt cannot depend on t and we
keep the metric diagonal, i.e.,

ds2 = − expA(ρ, z, φ) dt2 + dρ2 + dz2 + ρ2 dφ2 . (A.1)

Vacuum solution

First, let us discuss a vacuum solution without the cosmological constant. In
order to find vacuum solutions, the Einstein equations (2.1) are equivalent to
R = 0, where R is the Ricci tensor. Nevertheless, we shall focus on the Einstein
tensor, solving G = 0, as we will eventually proceed to add Λ and a magnetic
field anyway. The non-zero, independent elements of G are

Gρρ = 1
4

((
A2
,z + 2A,zz

)
+ 2
ρ
A,ρ + 1

ρ2

(
A2
,φ + 2A,φφ

))
, (A.2)

Gρz = −1
4 (A,ρA,z + 2A,ρz) , (A.3)

Gρφ = −1
4

(
A,ρA,φ + 2A,ρφ − 2

ρ
A,φ

)
, (A.4)

Gzz = 1
4

((
A2
,ρ + 2A,ρρ

)
+ 2
ρ
A,ρ + 1

ρ2

(
A2
,φ + 2A,φφ

))
, (A.5)

Gzφ = −1
4 (A,zA,φ + 2A,zφ) , (A.6)

Gφφ = ρ2

4

((
A2
,ρ + A2

,z

)
+ 2 (A,ρρ + A,zz)

)
. (A.7)

Solving these equations leads us to the metric

ds2 = − (a ρ cosφ+ b ρ sinφ+ c z + d)2 dt2 + dρ2 + dz2 + ρ2 dφ2 . (A.8)

It contains parameters a, b, and c of the dimension of 1/u, and dimensionless
d. If we set a = b = c = 0 and d = 1, we obtain the Minkowski solution
in cylindrical coordinates. However, it can be shown that even when the first
three parameters are non-zero, this metric in fact also represents the Minkowski
spacetime. Both the Ricci and the Kretschmann scalars vanish, and the metric
allows the full set of ten Killing vectors, which means we are dealing with a
maximally-symmetric spacetime. Then, the uniqueness theorem for maximally-
symmetric spaces of Weinberg [1972] says that there must exist a coordinate
transformation between our metric and the usual Minkowski one, as both metrics
are maximally symmetric, have the same Ricci scalar and the same signature. In
fact, an easier way of seeing this is by examining the Riemann tensor itself, as it
vanishes.
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We can transform this metric to the Cartesian coordinates by considering
x = ρ cosφ and y = ρ sinφ to obtain

ds2 = − (a x+ b y + c z + d)2 dt2 + dx2 + dy2 + dz2 . (A.9)

Note that these forms of the metric contain a degeneracy on the hypersurface
where gtt = 0.

It is not possible to solve the Einstein equations for a cosmological variant
of this spacetime, as then Gtt + Λgtt = −Λ expA(ρ, z, φ), which requires us to
consider Λ = 0. Note that the ansatz (A.1) yields Gtt = 0.

Magnetic solution

Let us now add an axial magnetic field to the mix. With

F = B(ρ, z, φ) dρ ∧ dφ , (A.10)

we shall first make sure that the four-current J obtained from the Maxwell equa-
tions (2.3) vanishes,

8πρ2J = (A,φB + 2B,φ) ∂ρ −
(
A,ρB + 2B,ρ − 2B

ρ

)
∂φ = 0 , (A.11)

and that the Maxwell equation (2.4),

dF = −B,z dρ ∧ dz ∧ dφ = 0 , (A.12)

is fulfilled. We use these relations to determine B. The equations can be satisfied
for A(ρ, z, φ) = A1(ρ, φ) + A2(z), leading to B = βρ exp(−A1(ρ, φ)/2). However,
one of the Einstein equations (2.1),

Gtt + Λgtt − 8πTtt = −
(
β2 + ΛeA1(ρ,φ)

)
eA2(z) = 0 , (A.13)

clearly requires a constant A1 to be solvable, and we can always rescale the t
coordinate to have A1 ≡ 0. The cosmological constant must be negative, as we
then have Λ = −β2. Omitting A1, the remaining non-trivial Einstein equations
require

2A′′
2(z) + (A′

2(z))
2 + 4Λ − 4β2 = 0 , (A.14)

which is somewhat reminiscent of some of the relations encountered in Sec. 2.1.
We can solve these equations to obtain the metric

ds2 = −
(
e

√
−2Λ z + a e−

√
−2Λ z

)2
dt2 + dρ2 + dz2 + ρ2 dφ2 (A.15)

with the magnetic field
F =

√
−Λ ρ dρ ∧ dφ . (A.16)

As it stands, this spacetime appears to be something of a cross between the axial
and radial homogeneous solutions of Sec. 2.2 and Sec. 2.5.2, respectively. We have
an axial magnetic field like in Sec. 2.2, but unlike that solution the cosmological
constant must be negative here, Λ < 0. A negative Λ is consistent with the radial
solution of Sec. 2.5.2, and the metric (A.15) certainly resembles (2.245) more than
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the axial counterparts, but we should keep in mind that gtt in the present metric
is a function of z instead of the radial coordinate, which makes this solution only
axially symmetric instead of cylindrically.

Like in the radial homogeneous solution, the magnetic field invariant is

FµνF
µν = −2Λ , (A.17)

and the Kretschmann scalar has the usual value for our homogeneous spacetimes
16Λ2. Like in all the other homogeneous solutions, there are six independent
Killing vector fields and the spacetime is of Petrov algebraic type D.

The properties of the metric allow the axis to be located at an arbitrary value
of the radial coordinate, so it is reasonable to dispose of the axis altogether by
applying a transformation from the polar to Cartesian coordinates in the planes
of constant t and z. Considering x = ρ cosφ and y = ρ sinφ, we obtain

ds2 = −
(
e

√
−2Λ z + a e−

√
−2Λ z

)2
dt2 + dx2 + dy2 + dz2 (A.18)

with
F =

√
−Λ dx ∧ dy . (A.19)

This metric and the magnetic field are manifestly locally identical to (2.245)
and (2.246) of Sec. 2.5.2, respectively, barring a linear rescaling of one of the
coordinates, which explains the striking similarities between the two spacetimes.
Only our chosen interpretation of the coordinates is different.

Therefore, a lot of what was said about the radial homogeneous spacetime is
also valid here. Again, it is possible to consider a ∈ {−1, 0, 1} only, as we can
apply specific coordinate transformations to normalize an arbitrary a to the one
from the set with the same sign. Effectively, we can then consider three separate
cases of the metric (A.15) with different gtt,

−gtt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cosh2

(√
−2Λ z

)
if a = +1 ,

exp
(
2
√

−2Λ z
)

if a = 0 ,
sinh2

(√
−2Λ z

)
if a = −1 .

(A.20)

Like in Sec. 2.5.2 the three options have different causal structures given by
the number of horizons. Note that if we decide to keep the originally-proposed
interpretation of the coordinates, the horizons are topologically planes instead of
cylinders. A better form of the metric similar to (2.250),

ds2 = −
(
a− 2ΛZ2

)
dt2 + dx2 + dy2 + dZ2

a− 2ΛZ2 , (A.21)

can be obtained using a transformation analogous to (2.249), which does not
affect F.

Finally, note that our ansatz (A.1) does not allow magnetic fields that would
be understood as radial and azimuthal in the original coordinates, as one is unable
to find any solutions compliant with the Einstein–Maxwell equations in these
cases.
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J. Bičák and M. Žofka. Notes on static cylindrical shells. Classical and Quantum
Gravity, 19(14):3653, 2002.

W. B. Bonnor. Static magnetic fields in general relativity. Proceedings of the
Physical Society. Section A, 67(3):225–232, 1954.

I. Booth, M. Hunt, A. Palomo-Lozano, and H. Kunduri. Insights from Melvin–
Kerr–Newman spacetimes. Classical and Quantum Gravity, 32(23):235025,
2015.

K. Boshkayev, E. Gasperin, A. C. Gutierrez-Pineres, H. Quevedo, and S. Toktar-
bay. Motion of test particles in the field of a naked singularity. Physical Review
D, 93(2):024024, 2016.

D. R. Brill, J. Louko, and P. Peldán. Thermodynamics of (3 + 1)-dimensional
black holes with toroidal or higher genus horizons. Physical Review D, 56:
3600–3610, 1997.

R. Brito, V. Cardoso, and P. Pani. Superradiant instability of black holes im-
mersed in a magnetic field. Physical Review D, 89:104045, 2014.

K. A. Bronnikov, N. O. Santos, and A. Wang. Cylindrical systems in general
relativity. Classical and Quantum Gravity, 37(11):113002, 2020.

J. Carot. Some developments on axial symmetry. Classical and Quantum Gravity,
17(14):2675, 2000.

150



J. Carot, J. M. M. Senovilla, and R. Vera. On the definition of cylindrical sym-
metry. Classical and Quantum Gravity, 16(9):3025, 1999.

F. Carrasco, C. Palenzuela, and O. Reula. Pulsar magnetospheres in general
relativity. Physical Review D, 98:023010, 2018.

S. M. Carroll. The cosmological constant. Living reviews in relativity, 4(1):1–56,
2001.

S. Coleman and F. De Luccia. Gravitational effects on and of vacuum decay.
Physical Review D, 21:3305–3315, 1980.

E. J. Copeland and T. W. B. Kibble. Cosmic strings and superstrings. Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466
(2115):623–657, 2010.

M. F. A. da Silva, A. Wang, F. M. Paiva, and N. O. Santos. Levi-Cività solutions
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J. B. Griffiths and J. Podolský. The Linet-Tian solution with a positive cosmo-
logical constant in four and higher dimensions. Physical Review D, 81:064015,
2010.

M. C. Gutzwiller. Chaos in Classical and Quantum Mechanics. Interdisciplinary
Applied Mathematics. Springer-Verlag, 1990. ISBN 978-1-4612-6970-0.

B. Gwak. Thermodynamics with pressure and volume under charged particle
absorption. Journal of High Energy Physics, 2017(11):1–16, 2017.

E. Hackmann and H. Xu. Charged particle motion in Kerr-Newmann space-times.
Physical Review D, 87(12):124030, 2013.

E. Hackmann, B. Hartmann, C. Lämmerzahl, and P. Sirimachan. Test parti-
cle motion in the space-time of a Kerr black hole pierced by a cosmic string.
Physical Review D, 82:044024, 2010a.

E. Hackmann, C. Lämmerzahl, V. Kagramanova, and J. Kunz. Analytical so-
lution of the geodesic equation in Kerr-(anti-) de Sitter space-times. Physical
Review D, 81(4):044020, 2010b.

Y.-W. Han, X.-X. Zeng, and Y. Hong. Thermodynamics and weak cosmic cen-
sorship conjecture of the torus-like black hole. The European Physical Journal
C, 79(3):1–6, 2019.
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