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Abstract:

Oxoporphyrinogens are flat macrocyclic molecules possessing binding and protonation sites, and
capable of light absorption in the visible region. These properties are prerequisites for a colori-
metric molecular sensor, i.e. a specific detector of other molecules in the sample. In this work, we
studied chromic properties of three oxoporphyrinogens, OxP and its partially (Bz2OxP) and fully
(Bz4OxP) N-benzylated derivatives. Their colorimetric response to organic acids is caused by
protonation and subsequent formation of supramolecular host-guest complex. We have shown
that colorimetric sensitivity is highest for OxP and gradually weakens for Bz2OxP and Bz4OxP
since the N-benzylation blocks the central binding sites, decreasing binding affinity of the ox-
oporphyrinogens. Furthermore, solvatochromic response of the oxoporphyrinogens to varying
solvent polarity showed similar sensitivity decrease in Bz2OxP and Bz4OxP. The chromic and
binding properties were studied by UV/vis and NMR spectroscopy, host-guest binding models
were applied to describe the formation of oxoporphyrinogen-acid complexes.

In NMR spectra of protonated OxP and Bz2OxP, we detected several dynamic processes, mani-
fested as chemical exchange, such as prototropic tautomerization (i.e. change of the protonation
site) or rotation of bulky side groups in Bz2OxP. These processes were observed at different tem-
peratures and acid concentrations, the corresponding transition rate coefficients were obtained
by fitting of the NMR exchange lineshapes. In protonated Bz2OxP, the effect of temperature
obeys the Eyring equation, and the effect of acid concentration has been modeled using a kinetic
model derived from competitive host-guest binding.

This thesis presents detailed mechanism of color changes in OxP, Bz2OxP and Bz4OxP and
confirms potential application as colorimetric sensors in nonpolar media. Our NMR study of
dynamic processes in the oxoporphyrinogens contributes to understanding the concentration
dependence of transition rate coefficients, which is always system-specific. The presented models
can be applied to a wide range of dynamic systems.

Keywords: oxoporphyrinogens, supramolecular complexes, colorimetric sensors, dynamic molec-
ular processes
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Preface

Compounds capable of light absorption in the visible region as well as host-guest complexa-
tion with variety of ligands are perfect candidates for molecular sensors. These properties are
present in porphyrins possessing rich conjugated system. Similar compounds, porphyrinogens
(with sp3 meso-carbon), lack the conjugated system and thus are colorless. However, they are
capable of binding a broad spectrum of organic molecules, including metallic or non-metallic
anions. The advantages of porphyrins and porphyrinogens are conveniently combined in oxo-
porphyrinogens (with sp2 meso-carbon), which are subject of this work. Oxoporphyrinogen (OxP)
and its derivatives have been previously studied from the perspective of colorimetric detection
of various molecules, anions and acids in nonpolar media. Several dynamic molecular processes
have also been observed in these compounds. Here, we provide detailed analysis of chromism
and internal dynamics of OxP and its N-benzylated derivatives in the presence of organic acids.
Their solvatochromic properties are also studied. This work is mainly based on our publications
[1] and [2].



1 Introduction
1.1 Overview of tetrapyrroles

Compounds of our interest belong to a wide class called tetrapyrroles, containing four pyrrole
rings typically joined by single-atom links at the pyrrole 𝛼-positions [3]. Scheme in Fig. 1.1
shows simplified classification of tetrapyrroles, presenting example molecules for each group
(names of depicted compounds are highlighted by boldface in the text below). Basic division

TETRAPYRROLES

CYCLIC TETRAPYRROLES

Porphyrinogens
(calix[4]pyrroles)

oxoporphyrinogen

uroporphyrinogen III

bilirubin dinoflagellate luciferin

LINEAR TETRAPYRROLES

Porphyrins

unsubst. porphyrin
(porphine)

heme B

unsubst. porphyrinogen
(calix[4]pyrrole)

chlorin bacteriochlorin corrin

Other cyclic tetrapyrroles

meso-octamethylporphyrinogen
(meso-octamethylcalix[4]pyrrole)

tetraphenylporphyrin

sp2 meso-carbon

sp3 meso-carbon

chlorophyll a

porphodimethene

meso-position

β-position

Figure 1.1: Simplified structure-based classification of tetrapyrroles. Several tetrapyrrole subclasses are
omitted. Red color denotes differences of the unsubstituted rings from porphine.
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comprises linear (open) tetrapyrroles and cyclic (closed) tetrapyrroles. Both groups represent
essential natural dyes and metabolites [4, 5] as well as widely-studied artificially synthesized
molecules [6].

Linear tetrapyrroles include bile pigments such as bilirubin or biliverdin, breakdown prod-
ucts of heme [5]. Another example is dinoflagellate luciferin, which produces bioluminiscence
(𝜆max = 475 nm) after oxidation catalyzed by luciferase enzyme [7, 8].

Cyclic tetrapyrroles are classified according to the type of macrocycle conjugation. Many of
them are capable of coordinating a metal atom in their molecular center, which is denoted as
‘chelate’ or by a prefix ‘metallo-’. Prototypes of the tetrapyrrole macrocycle are fully conjugated
porphyrins, whose unsubstituted form is called porphine. Their name is derived from a Greek
word for ‘purple’. A well known natural metalloporphyrin is heme (most abundant form heme
B), coordinating Fe2+ atom. Heme is located in red blood cells, bound to hemoglobin protein as
a prosthetic group, and serves for transport of oxygen [9]. Man-made porphyrins have many
applications in both chelated and free-base forms as discussed below. A common example is
tetraphenylporphyrin (TPP), that has already appeared in thousands of scientific publications
[10]. Interestingly, TPP is the first molecule, whose vibrational modes have been experimentally
imaged [11].

Another group of cyclic tetrapyrroles are porphyrinogens, also called calix[4]pyrroles [12].
Their central nitrogens are bound by single bonds, and unsubstituted porphyrinogens contain
four NH groups. While free-base (i.e. non-chelated) porphyrins such as TPP posses flat macro-
cycle, porphyrinogen center is more saddle-like. In this work we distinguish two types of por-
phyrinogens based on their meso-position (marked in Fig. 1.2): (i) “true” porphyrinogens with
𝑠𝑝3 hybridization on meso-carbons, (ii) oxoporphyrinogens with the same formal ring structure as
(i) but with 𝑠𝑝2 meso-carbon hybridization. Structure of unsubstituted porphyrinogen shows
the presence of two additional NH groups and interruption of conjugation in contrast to por-
phine (denoted by red color in Fig. 1.1). The incomplete conjugation renders the “true” por-
phyrinogens colorless. In the heme metabolism, porphyrinogens are precursors to porphyrins,
which also gave them the name. Examples of metabolic porphyrinogens are uroporphyrinogen
III, coproporphyrinogen III and protoporphyrinogen IX [5]. A frequently investigated synthetic
porphyrinogen is meso-octamethylcalix[4]pyrrole [12]. This molecule enables various chem-
ical modifications for different applications, further details are in the next section. The other
group based on porphyrinogen structure and also subject of this work are oxoporphyrinogens,
possessing 𝑠𝑝2 meso-carbon hybridization. Oxoporphyrinogen (OxP) has been first synthe-
sized by Milgrom [13]. Oxoporphyrinogens are colored in contrast to “true” porphyrinogens due
to the complete conjugation of the oxoporphyrinogen ring. On the other hand, both types of
porphyrinogen share anion binding capabilities owing to the central NH groups.

There are other possible modifications of the porphyrin macrocycle illustrated in Fig. 1.1
(differences from the porphyrin ring are denoted by red color), with different degree of satu-
ration at meso- or 𝛽-positions (marked in Fig. 1.1). Many of them constitute essential natural
compounds. Reduced porphyrins (addition of hydrogens at the 𝛽-carbons) chlorin and bac-
teriochlorin constitute the core of chlorophylls (plants and algae) and bacteriochlorophylls1

(photosyntetic bacteria) [14, 15]. These compounds are magnesium chelates and include many
variants, e.g. chlorophyll a and chlorophyll b are the green plant pigments. Chlorophylls and
bacteriochlorophylls serve for light harvesting, energy transfer and also electron transfer in nat-
ural photosystems [15]. Another macrocycle, corrin, is substantially saturated and lacks one of
the methine link. A member of the corrins is cobalamin,2 also known as vitamin B12 [4]. As the
name suggests, it is a chelate of cobalt. Interestingly, the already mentioned uroporphyrinogen

1Some bacteriochlorophylls are based on the bacteriochlorin but others on the chlorin ring.
2There are several forms of cobalamin, e.g. hydroxycobalamin or cyanocobalamin [16].
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III is common biosynthetic precursor to hemes, chlorophylls and also cobalamin [4, 15]. The last
shown example of tetrapyrrole macrocycle is porphodimethene.

Applications of artificial cyclic tetrapyrroles utilize their binding properties (central NH bind-
ing sites), electronic structure or the ability to form 𝜋–𝜋 stacked structures [17]. Porphyrin-based
compounds can serve as molecular probes for detection of cations or anions [18, 19]. Similarly,
“true” porphyrinogens serve as probes3 of anions or neutral species [6, 12, 21]. TPP has wide
applications in photochemistry, for example, as photosensitizer in light-induced oxidation4 [22].
Protonated TPP has the capability of forming helical J-aggregates for chiral recognition [23]. Fur-
ther application include, for example, photoacoustic imaging probes [24, 25] or photodynamic
therapy [26, 27].

1.2 Properties of investigated oxoporphyrinogens

Oxoporphyrinogen (OxP) and its derivatives5 N21,N23-bis(4-bromobenzyl)oxoporph. (Bz2OxP)
and also N21,N22,N23,N24-tetrakis(4-bromobenzyl)oxoporph. (Bz4OxP) are the subject of the cur-
rent work. All three oxoporphyrinogens are shown in Fig. 1.2a–c, their X-ray crystal structures
are given in Fig. 6.1 in Chapter 6. Atoms in the central macrocycle are numbered in the same
way as porphine [3], see Fig. 1.2d. Figure 1.2 also shows several names of particular sites, which
will be often used in the in chapters with experimental results. Methine links numbered 5, 10, 15
and 20 are denoted as meso positions. Labeling of 𝛼 (1, 4, 6, 9, … ) and 𝛽 (2, 3, 7, 8, … ) positions
is derived from that of pyrrole in Fig. 1.2e. The bulky side groups are denoted as hemiquinonoid
or cyclohexadienilidene, the corresponding hydrogens at ortho-position will be reffered to as or-
tho-H. Carbonyl C=O sites can be protonated by an acid, the central NH groups serve as binding
site for anions or neutral molecules. Next to the carbonyl, two tert-butyl groups are located,
consisting of an sp3 carbon with three methyls. Central nitrogen atoms are N-alkylated with
bromobenzyl groups. Noteworthy, chlorin and porphyrin macrocycles show NH tautomerism,
where the two central hydrogens “jump” among the four nitrogen atoms [28, 29]. Such scenario
is, however, impossible in Bz2OxP since the N-alkylation prevents any rearrangements.

3For UV/vis probing, a chromofore is attached to colorless porphyrinogens or displacement assay technique is
used (weakly bound colored anion is displaced by more strongly binding analyte, which leads to color change of the
colored anion [20]).

4High triplet-state energy of tetraphenylporphyrin (142.3 kJ/mol) enables excitation of triplet oxygen to its singlet
state (94.2 kJ/mol) [22].

5The 4-bromobenzyl derivatives are more soluble in chloroform than the corresponding non-brominated deriva-
tives.

meso
tert-butyl

α

ββ

α

β
β

hemiquinonoid

α

α
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2

3
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5
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7

8

9

10

11

12

13
14

15
16

17

18

19

20
21 22

2324

ortho

(a) OxP

(e) pyrrole

(d) porphine(c) Bz4OxP(b) Bz2OxP bromobenzylcarbonyl

Figure 1.2: Oxoporphyrinogens, notation of important sites and groups. (a–c) Oxoporphyrinogens inves-
tigated in this work. (d) Labeling of pyrrole positions transferable to other cyclic tetrapyrroles, (e) labeling
of pyrrole positions.
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Various aspects of OxP and Bz2OxP were studied by Jonathan Hill, Jan Labuta and cowork-
ers [30–42]. Colorimetric detection of anions, solvents, acid or bases in solution [30–33] was
observed as well as detection of trace water in tetrahydrofuran [34]. Nanocomposite film with
OxP provides naked-eye discrimination of methanol from ethanol [35]. Another aspect is obser-
vation of dynamic processes present in oxoporphyrinogens [36, 37]. Finally, a novel approach
was developed for NMR determination of enantiomeric excess of chiral analytes using oxopor-
phyrinogens (in particular OxP and Bz2OxP) as chirality sensors [37–42]. This method is de-
scribed in detail in Sec. 3.4.3 (determination of enantiomeric excess is also possible in TPP [39]
or other compounds [43, 44]).

1.3 Aims and structure of this work

This work is based on our publications [1] and [2] including figures and parts of text. It is also
a continuation of the master’s thesis6 [45]. Here, we investigate oxoporphyrinogen (OxP) and
two N-alkylated derivatives denoted as Bz2OxP and Bz4OxP and their interaction with organic
acids. In particular, chiral camphorsulfonic acid (CSA), achiral difluoroacetic acid (DFA) and
trifluoroacetic acid (TFA) are used. The effect of chirality on NMR spectra has been taken into
account, especially in fast exchange processes. Furthermore, solvatochromic color changes of the
oxoporphyrinogens are observed in the mixture of polar dimethylformamid (DMF) and nonpolar
chloroform. Our aims are as follows:

• Determination of the effect of N-alkylation on color changes. Color changes of OxP,
Bz2OxP and Bz4OxP induced by CSA of DFA will be studied in chloroform solvent.

• Analysis of UV/vis spectral changes by singular value decomposition. This type of analysis
has not been used before in our systems, it allows determination of the exact number of
absorbing species, their UV/vis spectra (and the corresponding degree of protonation) and
the corresponding populations.

• Determination of binding constants. Binding isotherms for UV/vis and NMR titration ex-
periments will be constructed and fitted by appropriate host-guest binding models.

• Investigation of solvatochromism. Color changes induced by solvent polarity change or
hydrogen bonding with the oxoporphyrinogents will be studied in the DMF/chloroform
mixture.

• Identification of dynamic molecular processes such as rotation of side groups or tautomer-
ization. These processes will be observed in NMR spectra in a form of so-called chemical
exchange.

• Derivation of analytical lineshape for three-state chemical exchange. The lineshape will be
calculated from the Bloch-McConnell equations and will be used to retrieve the transition
rate coefficients from the exchange spectra by fitting.

• Determination of transition rate coefficients and energy barriers as obtained from line-
shape fitting of experimentally obtained exchange spectra. Concentration dependence of
the transition rate coefficients will be described by host-guest binding models, and tem-
perature dependence of the transition rate coefficients will be analyzed in terms of Eyring
equation.

6Available at https://dspace.cuni.cz/handle/20.500.11956/67480.

https://dspace.cuni.cz/handle/20.500.11956/67480


6 Chapter 1. Introduction

This work consists of theoretical part (Chapter 1–5) and experimental part (Chapter 6–7).
Extensive appendices provide an overview of binding models, NMR lineshapes, details about ex-
perimental measurements, data analyses and measured NMR spectra. Codes for implementation
in Mathematica software are also included.

In particular, structure of this work is as follows: The currentChapter 1 introduces the inves-
tigated oxoporphyrinogens and gives an overview of the wider class of tetrapyrroles. Chapter
2 provides theory of supramolecular binding and chemical kinetics. Chapter 3 introduces the
NMR spectroscopy with focus on chemical exchange. Analytical three-state exchange lineshape,
derived in our publication [2], is also shown in this chapter. Basics of UV/vis spectroscopy are
given in Chapter 4. In Chapter 5, comprehensive description of singular value decomposition
and its application to UV/vis spectra is presented. In Chapter 6, chromic and binding properties
of the oxoporphyrinogens are studied experimentally with UV/vis and NMR spectroscopy. Re-
sults from our publication [1] are presented here in an extended form. In the next experimental
chapter, Chapter 7, dynamic processes in OxP and Bz2OxP are studied. Part of this research
is published in our article [2], nevertheless, large portion of these results remains unpublished.
Results of this work and further applications are concisely summarized in Chapter 8.



2 Quantitative description of
supramolecular binding
Supramolecular structures encompass molecular assemblies without formation of covalent bo-
nds. The assemblies are held together by hydrogen bonding or by electrostatic forces. These
weak binding forces enable incessant formation and dissociation of the supramolecular complex,
implying that the supramolecular systems are dynamic even after they achieve equilibrium. For-
mation and dissociation of supramolecular complexes follow the general laws of kinetics and
equilibrium for chemical reactions, which are explained in this chapter. From the theoretical
point of view, the matter is described in detail in textbooks of Atkins [46] or McQuarrie and
Simon [47]. From the practical point of view, the textbook of Connors [48] is the basic source.

2.1 Description of chemical reactions

2.1.1 Equilibrium constant

A general chemical reaction converting reactants R𝑗 to products P𝑗 is described by the following
scheme

νP1P1+νP2P2+νR1R1+νR2R2+

KHG

SI_scheme_HG11

Keq

scheme_general_reaction

… …

KHG

KHW

SI_scheme_HGW

scheme_HG12

H HG2HG

H

HGa

HGb

HG2

(a) microscopic binding scheme

H HG2HG
K1 K2

(b) stepwise binding scheme

scheme_HG12_micro_stepwise

K1

SI_scheme_HG11_v2

OLD νP1P1+νP2P2+|νR1|R1+|νR2|R2+
Keq

scheme_general_reaction

… …

Scheme 2.1: General scheme of a chemical reaction.

where 𝜈𝑗 are stoichiometric numbers,1 𝜈𝑗 < 0 for reactants (educts) and 𝜈𝑗 > 0 for products [46].
The quantity 𝐾eq is called equilibrium constant (also denoted as binding or stability constant)
[48].

Chemical reactions usually take place in contact with thermal reservoir at constant pressure.
Therefore, description using Gibbs free energy potential d𝐺 = −𝑆d𝑇 +𝑉d𝑝 +𝜇R1d𝑛R1 +𝜇R2d𝑛R2 +
𝜇P2d𝑛P2 + 𝜇P1d𝑛P1 … is convenient since the contact with the reservoir ensures d𝑇 = d𝑝 = 0.
Thus, for constant temperature and pressure,

(d𝐺)𝑝,𝑇 = 𝜇R1d𝑛R1 + 𝜇R2d𝑛R2 + 𝜇P2d𝑛P2 + 𝜇P1d𝑛P1 … , (2.1)

where 𝑛𝑗 is the amount of component 𝑗 (in mol) and 𝜇𝑗 is the chemical potential of component 𝑗
defined as 𝜇𝑗 = 𝜕𝐺

𝜕𝑛𝑗 (in J.mol−1).
Number of molecules 𝑛𝑗 in the system deviate from their initial values 𝑛i

𝑗 while approaching
to their equilibrium values. Thus, 𝑛𝑗 = 𝑛i

𝑗 + 𝜈𝑗𝜉 , where 𝜉 is the extent of reaction (in moles).
Hence, the Gibbs energy change can be expressed as (d𝐺)𝑝,𝑇 = ∑𝑗 𝜈𝑗 𝜇𝑗d𝜉 . Also from Eq. (2.1)
(d𝐺)𝑝,𝑇 = (

𝜕𝐺
𝜕𝜉 )𝑝,𝑇

d𝜉 , therefore by comparison

(
𝜕𝐺
𝜕𝜉 )𝑝,𝑇

= ∑
𝑗
𝜈𝑗 𝜇𝑗 . (2.2)

In textbooks [47], the right-hand side of Eq. (2.2) is denoted as Δr𝐺, in particular,

Δr𝐺 = ∑
𝑗
𝜈𝑗 𝜇𝑗 . (2.3)

1stoichiometric numbers https://goldbook.iupac.org/terms/view/S06025

https://goldbook.iupac.org/terms/view/S06025
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Note that Δr𝐺 equals to a derivative of the Gibbs energy or for a difference of chemical potentials
(multiplied by appropriate stoichiometric numbers).

Principle of minimum Gibbs potential states that any unconstrained internal parameter (in
our case the reaction extent 𝜉 ) minimizes the Gibbs potential in equilibrium [49], yielding the
condition for equilibrium

(
𝜕𝐺
𝜕𝜉 )𝑝,𝑇

= 0 ⇒ Δr𝐺 = ∑
𝑗
𝜈𝑗 𝜇𝑗 = 0 . (2.4)

This is a general condition valid for liquids as well as gases and solids. If Δr𝐺 < 0, the reaction
spontaneously proceeds in forward direction and ifΔr𝐺 > 0, the reaction spontaneously proceeds
in backward direction until equilibrium is achieved at Δr𝐺 = 0. Hence, the crucial property of
the system of interest is the exact form of chemical potential as function of concentration of all
present chemical species.

The chemical potential of 𝑗-th component of multi-component ideal gas is expressed as 𝜇𝑗 =
𝜇◦𝑗 (𝑝, 𝑇 ) + 𝑅𝑇 ln 𝑥𝑗 . This also holds for the ideal liquid solution, where the liquids do not interact
[50]. For non-ideal liquid solution the chemical potential can be written in similar manner as

𝜇𝑗 = 𝜇◦𝑗 (𝑝, 𝑇 ) + 𝑅𝑇 ln 𝑎𝑗 , (2.5)

where 𝑎𝑗 is the activity of 𝑗-th component defined so that Eq. (2.5) is exactly valid for a non-ideal
solution. Values of the standard chemical potential 𝜇◦𝑗 are by definition related to a particular
reference state in which 𝑎𝑗 = 1. The choice of reference state includes values of pressure, tem-
perature and concentrations of the experimental solution. As a common practice, the standard
state is chosen at infinite dilution of the solutes (although other choices are possible, see page 30
in [48]). The activity can be directly related to concentration by

𝑎𝑗 = 𝛾𝑗[𝑗] , (2.6)

where [𝑗] is the concentration of 𝑗-th component. The activity coefficients 𝛾𝑗 correct for non-
ideality of the solution. For more details, see the next section.

Using the equation for chemical potential, Eq. (2.5), the equilibrium condition in Eq. (2.4) is
rewritten as

ln
𝑎𝜈P1
P1 𝑎

𝜈P2
P2 ⋯

𝑎𝜈R1
R1 𝑎

𝜈R2
R2 ⋯

= −
∑𝑗 𝜈𝑗 𝜇◦𝑗
𝑅𝑇

. (2.7)

Although the activities depend on concentration, the right-hand side and consequently the left-
hand side depend only on pressure and temperature. Therefore, we define the equilibrium con-
stant as

𝐾eq = exp(−
Δr𝐺◦

𝑅𝑇 ) , (2.8)

where Δr𝐺◦ = ∑𝑗 𝜈𝑗 𝜇◦𝑗 is the standard Gibbs energy of reaction (in J.mol−1). Hence, the standard
Gibbs energy can be calculated from the equilibrium constant using

Δr𝐺◦ = −𝑅𝑇 ln 𝐾eq . (2.9)

The equilibrium constant binds together activities of all components in equilibrium,

𝐾eq =
𝑎𝜈P1
P1 𝑎

𝜈P2
P2 ⋯

𝑎𝜈R1
R1 𝑎

𝜈R2
R2 ⋯

. (2.10)

For dilute solutions (𝛾𝑗 = 1) the equilibrium constant is equal to

𝐾eq =
[P1]𝜈P1[P2]𝜈P2 ⋯
[R1]𝜈R1[R2]𝜈R2 ⋯

. (2.11)
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To conclude, value of Δr𝐺 decides if the reaction is in equilibrium or proceeds in forward/-
backward direction. On the other hand, Δr𝐺◦ determines the value of the equilibrium constant
𝐾eq and consequently the equilibrium concentration of all chemical species. Because Δr𝐺◦ =
Δr𝐻 ◦ − 𝑇Δr𝑆◦, it is possible to determine the energetic contribution Δr𝐻 ◦ and entropic contribu-
tion Δr𝑆◦ from temperature dependence of 𝐾eq. If Δr𝐻 ◦ and Δr𝑆◦ are independent of temperature,
plot of ln 𝐾eq vs. 1/𝑇 yields straight line with the slope −Δr𝐻 ◦/𝑅 and intercept Δr𝑆◦/𝑅 according
to

ln 𝐾eq = −
Δr𝐻 ◦

𝑅
1
𝑇

+
Δr𝑆◦

𝑅
. (2.12)

An equilibrium constant is defined not only for the overall reaction scheme according to Eq.
(2.10) but also for every elementary reaction. Each elementary reaction has its own independent
equilibrium constant and corresponding standard Gibbs energy of reaction.

2.1.2 Meaning of activity coefficients

Activity coefficients can be defined in multiple ways, depending on the use of a particular con-
centration scale (see page 33 in [48]). Besides the molar concentration scale ([𝑗] = 𝑛𝑗/𝑉 [mol/l])
implying 𝑎𝑗 = 𝛾𝑗[𝑗], also molar fraction scale (𝑥𝑗 = 𝑛𝑗/∑ 𝑛𝑗 [mol/mol]) implying 𝑎𝑗 = 𝛾 𝑥𝑗 𝑥𝑗 can be
used. The latter approach is useful for interpretation of activity coefficients. The Gibbs energy of
multi-component solution 𝐺 = ∑𝑗 𝑛𝑗𝜇𝑗 can be reformulated as

𝐺(𝑇 , 𝑝, 𝑛𝑗)
𝑛

=∑
𝑗
𝑥𝑗𝜇◦𝑗 (𝑇 , 𝑝, 𝑛𝑗)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
pure components

+ 𝑅𝑇 ∑
𝑗
𝑥𝑗 ln 𝑥𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
mixing entropy

+ 𝑅𝑇 ∑
𝑗
𝑥𝑗 ln 𝛾 𝑥𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
non-ideality

, (2.13)

where 𝑅 is the gas constant. The first two terms in Eq. (2.13) correspond to an ideal solution in-
cluding mixing entropy but not mixing enthalpy (non-interacting particles). The last term stands
for enthalpic and entropic contributions from non-ideality, which explains the physical mean-
ing of activity coefficients. This expression for Gibbs energy including activity coefficients is
important not only for chemical reactions but also for other thermodynamic applications involv-
ing chemical potential, e.g. vapor pressure in vapor-liquid equilibrium or construction of phase
diagrams [51].

Values of activity coefficients and exact meaning of 𝜇◦𝑗 depend on the choice of reference
state. If the reference state is defined at pure components, then the limit 𝑥𝑗 → 1 implies 𝛾 𝑥𝑗 → 1,
and 𝜇◦𝑗 is equal to molar Gibbs energy of molecules of the pure component 𝑗, which interact
with other molecules of the same type. On the other hand, if the reference state is at infinitely
diluted components, then [𝑗] → 0 implies 𝛾𝑗 → 1, and 𝜇◦𝑗 describes isolated molecule of the
𝑗-th component interacting with surrounding molecules of the medium (solvent). Illustration of
actual measured activity coefficients 𝛾 𝑥𝑗 in two-component solution is given in Fig. 2.1. Activ-
ity coefficients of solution mixtures can be obtained experimentally by vapor-liquid equilibria
measurement (a standard technique) or other methods, such as IR spectroscopy [52–54].

The activity coefficients depend on temperature, pressure and 𝑁spc − 1 concentration/molar
fraction values, where 𝑁spc is the number of present chemical species. Gibbs-Duhem relation
[49, 50] at constant temperature and pressure, ∑𝑛𝑗d𝜇𝑗 = 0, binds together chemical potentials of
a multi-component mixture. After the substitution 𝜇𝑗 = 𝜇◦𝑗 + 𝑅𝑇 ln 𝛾𝑗 , the activity coefficients are
related by

∑𝑥𝑗d ln 𝛾𝑗 = 0 . (2.14)
For example, for two-component system with 𝛾 as a function of 𝑥2 in the form 𝛾1 = 𝛾1(𝑥2),
𝛾2 = 𝛾2(𝑥2) it follows (page 53 in [50]) that

d ln 𝛾2
d𝑥2

= −
𝑥1
𝑥2

d ln 𝛾1
d𝑥2

. (2.15)
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benzene

Figure 2.1: Activity coefficients for benzene-acetonitrile solution at 298 K obtained from vapor pressure
measurements at vapor-liquid equilibrium. Values adopted from [52].

This condition must be obeyed for construction of models for activity coefficients. Simple Mar-
gules model employs polynomials in 𝑥𝑗 , but for practical purposes, more realistic models are used,
e.g. NRTL (non-random two-liquid), UNIQUAC (universal quasichemical) or UNIFAC (UNIQUAC
Functional-group Activity Coefficients) models [50, 51, 55]. Dortmund Data Bank is a database
of thermodynamic properties, where the activity coefficients of many chemical mixtures can be
obtained [56].

2.1.3 The rate law

The central relation governing rates in chemical kinetics, law of mass action, was discovered in
the second half of 19th century by contributions of Guldberg, Waage, van’t Hoff and Horstmann
[57, 58]. This law describes elementary reactions (not overall reactions) as collisions between the
reacting molecules. The most common types of reactions are unimolecular reactions (e.g. decay
of a complex or a conformational change) and bimolecular reactions (e.g. complex formation)
Probability of the collisions is proportional to concentration of both reactants. If we consider a
bimolecular reaction R1 + R2 ⇌ P1 + P2, then formally

forward reaction rate = 𝜅fwd[R1][R2] ,
backward reaction rate = 𝜅rev[P1][P2] , (2.16)

where 𝜅fwd and 𝜅rev are the reaction rate coefficients for forward and backward (reverse) chemical
reaction, respectively.2 These coefficients depend on temperature and pressure but not on con-
centrations of the chemical species in the system. Difference of forward and backward reaction
rates defines the reaction rate 𝑣 [59] as

𝑣 = 𝜅fwd[R1][R2] − 𝜅rev[P1][P2] . (2.17)

Time change of a particular chemical species concentration can be obtained from reaction rates
of corresponding elementary reactions, for example in the case of one elementary reaction,
d[R1]/d𝑡 = −𝑣 or d[P2]/d𝑡 = 𝑣. Then, construction of the governing differential equations is

2Although reaction rate coefficients 𝜅● are usually denoted in the literature as ‘𝑘●’, here, we apply the Greek letter
‘𝜅’ to avoid confusion with transition rate coefficients defined in Chapter 3.
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straightforward,

d[R1]
d𝑡 = −𝜅fwd[R1][R2] + 𝜅rev[P1][P2] ,

d[R2]
d𝑡 = −𝜅fwd[R1][R2] + 𝜅rev[P1][P2] ,

d[P1]
d𝑡 = −𝜅rev[P1][P2] + 𝜅fwd[R1][R2] ,

d[P2]
d𝑡 = −𝜅rev[P1][P2] + 𝜅fwd[R1][R2] . (2.18)

It is a set of first order nonlinear differential equations, which can be solved numerically. Notably,
the equilibrium constant in dilute limit can be derived from the chemical kinetics because in
equilibrium both reaction rates are equal, i.e. 𝑣 = 0 (or equivalently, time derivatives in Eq. (2.18)
are equal to zero), yielding

𝐾eq =
𝜅fwd
𝜅rev

=
[P1][P2]
[R1][R2]

. (2.19)

All governing reactions must conserve the total mass, hence summing all subequations in
Eq. (2.18) must yield d

d𝑡 ([R1] + [R2] + [P1] + [P2]) = 0, i.e. all right-hand side terms of the sube-
quations must sum to zero. The rate law is applicable to describe chemical kinetics in wide range
of systems. For example, in enzyme-catalyzed reactions the chemical kinetics usually assumes
short initial pre-steady-state mode (𝑣 dramatically changes in time) followed by approximate
steady-state (𝑣 approximately constant) [2, 60].

2.1.4 Eyring equation

Temperature dependence of reaction rate coefficients is obtained from the transition state the-
ory of chemical reactions [46, 47, 61, 62]. Energetic scheme for bimolecular reaction is given
in the following scheme The reaction coordinate is an abstract 1D representation of geometric

R1+ R2

P1+ P2

(R1R2)‡

reaction coordinate

Scheme 2.2: Transition state in an elementary bimolecular reaction.

parameters of the two reacting molecules along the reaction pathway. The forward reaction pro-
gresses when reactants R1 and R2 collide with energy big enough to overcome the barrier Δ𝐺‡

fwd
and reach the transition state (R1R2)‡ and vice versa for the backward reaction. The transition
state is a saddle point in the potential energy surface (depending on all atomic coordinates in the
system), while states R1 + R2 or P1 + P2 are minima.

The reaction rate coefficients 𝜅fwd and 𝜅rev are directly related to barrier heights Δ𝐺‡
fwd and

Δ𝐺‡
rev, respectively according to the Eyring equation [63]

𝜅𝑗 =
𝜂𝑘Boltz𝑇

ℎ
exp

(
−
Δ𝐺‡

j
𝑅𝑇 )

, (2.20)



12 Chapter 2. Quantitative description of supramolecular binding

where Δ𝐺‡
j is the Gibbs energy barrier (in J.mol−1) corresponding to 𝜅𝑗 , 𝜂 is the transition prob-

ability, ℎ is the Planck constant and 𝑅 is the molar gas constant. The transition probability 𝜂
describes how likely the system moves to the other minimum after it reaches the transition state,
it is usually set to unity because it cannot be measured experimentally. The Eyring equation
provides temperature dependence of reaction rate coefficients.

Relationship of the equilibrium constant and reaction rate coefficients 𝐾eq = 𝜅fwd/𝜅rev (for
dilute solutions, Eq. (2.19)) provides the relationship between the barrier heights and the standard
reaction Gibbs energy. Using the definition of equilibrium constant (Eq. (2.8)) and the Eyring
equation for 𝜅fwd and 𝜅rev, it follows that

exp(−
Δr𝐺◦

𝑅𝑇 ) = 𝐾eq =
𝜅fwd
𝜅rev

= exp
(
−
Δ𝐺‡

fwd − Δ𝐺‡
rev

𝑅𝑇 )
. (2.21)

Comparison of the first and last expressions yields

Δr𝐺◦ = Δ𝐺‡
fwd − Δ𝐺‡

rev (2.22)

implying that Δr𝐺◦ is the difference between minima in the Gibbs energy profile corresponding
to R1 + R2 and P1 + P2, see Scheme 2.2.

Variable temperature measurements are a standard means to obtain the value of energy bar-
rier of a molecular process. Similarly to the standard reaction Gibbs energy, the energy barrier
can be decomposed to its enthalpic and entropic contributions,

Δ𝐺‡
𝑗 = Δ𝐻‡

𝑗 − 𝑇Δ𝑆‡𝑗 . (2.23)

Using this decomposition in the Eyring equation, the measured dependence of 𝜅𝑗(𝑇 ) can be vi-
sualized in Eyring plot of ln(𝜅𝑗/𝑇 ) versus 1/𝑇 . Assuming Δ𝐻‡

𝑗 and Δ𝑆‡𝑗 are constant along the
reaction coordinate, the Eyring plot is a straight line because

ln
𝜅𝑗
𝑇

= −
Δ𝐻‡

𝑗

𝑅
1
𝑇

+ ln
𝑘Boltz
ℎ

+
Δ𝑆‡𝑗
𝑅

(2.24)

as illustrated in Fig. 2.2.

2.5 3.0 3.5 4.0
20
15
10
5
0
5

10
15

Figure 2.2: Illustration of Eyring plot for various values
of Δ𝐺‡

𝑗 = Δ𝐻‡
𝑗 − 𝑇Δ𝑆‡𝑗 . Temperatures range from −40 to

140 ◦C with 20 ◦C step.

Values of Δ𝐻‡
𝑗 and Δ𝑆‡𝑗 can be obtained

from slope and intercept, respectively,
from the Eyring plot according to Eq.
(2.24). Possible deviations from linear-
ity in the Eyring plot can be caused by
the presence of multiple processes with
different energy barriers, which sum to
the observed apparent reaction rate coef-
ficient [2]. Another possible cause is de-
pendence of Δ𝐻‡

𝑗 and Δ𝑆‡𝑗 on tempera-
ture, which can be modeled by additional
terms with molar heat capacity change
Δ𝐶‡

𝑝 in the Eyring equation [64, 65].
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2.2 Host-guest binding

In many cases of supramolecular binding, the interacting molecules are denoted as host (usually a
large molecule) and guest (usually a small molecule), nevertheless, the choice is rather arbitrary.
Common binding mechanisms are, for example, hydrogen bonding, ion pairing or formation of
coordination complexes (metal-ligand interaction) [66]. The host molecule often contains hydro-
gen bond donor sites or Lewis basic donor atoms (with lone electron pair). On the other hand,
the guest molecule often contains hydrogen bond acceptor sites or Lewis acidic acceptor atoms
[67]. Examples of host molecules include proteins, cage molecules, cyclic molecules with central
cavity (e.g. crown ethers or cyclodextrin) or zeolites. Guest molecules include, for example, metal
cations, halide anions, hormones, pheromones and other small organic molecules with functional
group(s) [67].

During the construction of host-guest binding models in the following sections, infinite di-
lution will be assumed and consequently, all activity coefficients are set to unity (i.e. 𝛾𝑗 = 1). As
a result, these models cannot describe the host-guest binding in the whole concentration range.
The formalism of host-guest binding can be readily used for description of protonation with an
acid in nonpolar medium, where the cation and anion originating from the acid are held closely
together due to electrostatic forces. In polar medium (e.g. in water), the cation and anion strongly
interact with the medium thus moving freely in the solution [68]. In addition, ionic species in
polar solvent strongly behave non-ideally and the approximation 𝛾𝑗 ≈ 1 is not valid even for
dilute solutions.

2.2.1 H:G 1:1 binding model

In this work, host molecules are consistently denoted as H and guest molecules as G. Although
host-guest complexesH𝑚G𝑛 with arbitrary stoichiometry can generally exist, in this work we as-
sume the presence of only one host in the complex. The most elementary interaction is formation
of HG complex with 1:1 H:G stoichiometry described by the following scheme

KHG

Scheme 2.3: Host-guest binding scheme (H:G 1:1 stoichiometry).

Binding strength of the complex is characterized by the equilibrium constant 𝐾HG defined
as 𝐾HG = exp(−

Δr𝐺◦
𝑅𝑇 ), where Δr𝐺◦ = 𝜇◦𝐇𝐆 − 𝜇◦𝐇 − 𝜇◦𝐆. According to Eq. (2.11), the equilibrium

constant is related to concentrations of the chemical species. Together with the balance of total
mass, the complete set of equations is obtained,

𝐾HG =
[HG]
[H][G]

, (2.25a)

[H]t = [H] + [HG] , (2.25b)
[G]t = [G] + [HG] , (2.25c)

where [●]t denotes total concentration. Then the concentrations can be calculated analytically as
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[H] =
𝐾HG([H]t − [G]t) − 1 +

√
[𝐾HG([H]t − [G]t) − 1]2 + 4𝐾HG[H]t

2𝐾HG
, (2.26a)

[HG] =
𝐾HG([H]t + [G]t) + 1 −

√
[𝐾HG([H]t − [G]t) − 1]2 + 4𝐾HG[H]t

2𝐾HG
, (2.26b)

[G] =
𝐾HG([G]t − [H]t) − 1 +

√
[𝐾HG([H]t − [G]t) − 1]2 + 4𝐾HG[H]t

2𝐾HG
. (2.26c)

The above equations enable calculation of concentrations of all species when the total concen-
trations and 𝐾HG value are known. On the other hand, measurement of concentration of the
chemical species can be used for determination of 𝐾HG. The effect of different 𝐾HG values is
illustrated in Fig. 2.3. Implementation of Eq. (2.26) in Mathematica is given in Appendix A.1.

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8
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10000

50000

[G]t / mM

[H
G

] 
/ 

m
M

Figure 2.3: Concentration of complexed host in host-guest 1:1 binding model for different equilibrium
constants. Value of [H]t =1 mM is kept constant, [G]t is changing.

The host-guest binding model does not account for interactions with the medium M (i.e. sol-
vent), which can be approximately described as HM +GM ⇌ HG +MM. Hence, the host-guest
binding model is relevant only in situations, where the contributions of medium-medium and
medium-solute (i.e. medium-host and medium-guest) interaction energies to the standard reac-
tion Gibbs energy are negligible. Consequently, host-guest models cannot be applied in the case
of weak binding corresponding to values of 𝐾HG ⪅ 1 (see pages 6 and 13 in [48]). For exam-
ple, hydrophobic association in polar solvents is governed mainly by strong medium-medium
interactions.

2.2.2 Aspects of multiple binding sites

Host molecules can posses more than one binding site for the guest. Let us consider two binding
sites denoted as 𝑎 and 𝑏, which enables formation of four chemical species for the host, namelyH,
HG𝑎, HG𝑏 and HG2 as shown in Scheme 2.4a. The species HG𝑎 and HG𝑏 are denoted according
to the occupied binding site.
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νP1P1+νP2P2+νR1R1+νR2R2+

KHG

SI_scheme_HG11

Keq

scheme_general_reaction

… …

KHG

KHW

SI_scheme_HGW

scheme_HG12

H HG2HG

H

HGa

HGb

HG2

(a) microscopic binding scheme

H HG2HG
K1 K2

(b) stepwise binding scheme

scheme_HG12_micro_stepwise

Scheme 2.4: Host-guest 1:2 binding model. (a) microscopic binding scheme described by microscopic
binding constants, (b) stepwise binding scheme described by stepwise binding constants.

Each binding step in Scheme 2.4a is described by a microscopic binding constant defined as

𝐾mic.
𝑎 =

[HG𝑎]
[H][G]

, (2.27a)

𝐾mic.
𝑎𝑏 =

[HG2]
[HG𝑎][G]

, (2.27b)

𝐾mic.
𝑏 =

[HG𝑏]
[H][G]

, (2.27c)

𝐾mic.
𝑏𝑎 =

[HG2]
[HG𝑏][G]

. (2.27d)

The total number of microscopic binding constants increases rapidly with the number of binding
sites 𝑛, but not all of them are independent [69], see Table 2.1.

Table 2.1: Number of microscopic and stepwise binding constants for a host-guest system, where the host
molecule contains 𝑛 binding sites.

total No. microscopic No. independent microscopic No. stepwise
𝑛 = 2 4 3 2
𝑛 = 3 12 7 3
𝑛 = 4 32 15 4
𝑛 = 5 80 31 5
𝑛 = 6 192 63 6

general 𝑛 𝑛2𝑛−1 2𝑛 − 1 𝑛

It is often impossible to distinguish between binding at site 𝑎 or site 𝑏 experimentally. There-
fore, it is convenient to introduce stepwise binding constants as illustrated in Scheme 2.4b. The
binding constant 𝐾1 accounts for binding at either of the two sites, and 𝐾2 accounts for binding
of a second guest molecule at either HG𝑎 or HG𝑏 , formally

𝐾1 =
[HG𝑎] + [HG𝑏]

[H][G]
=

[HG]
[H][G]

, (2.28a)

𝐾2 =
[HG2]

([HG𝑎] + [HG𝑏]) [G]
=

[HG2]
[HG][G]

, (2.28b)

where [HG] = [HG𝑎] + [HG𝑏]. In a general binding scheme, a stepwise binding constant 𝐾𝑗
describes binding of 𝑗-th guest to the complex HG𝑗−1 according to the definition

𝐾𝑗 =
[HG𝑗]

[HG𝑗−1][G]
. (2.29)
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The stepwise binding constants are uniquely determined from the (independent) microscopic
binding constants but not vice versa because the number of the latter is always higher then the
former, see Table 2.1. Thus, microscopic binding constants cannot be calculated from the stepwise
binding constants and are mostly experimentally inaccessible except for symmetric systems, see
Sec. 2.2.4 (although they have been determined in an asymmetric two-site system from measure-
ments with many different guests [70]). Stepwise binding constants are sufficient for construc-
tion of binding models describing experimental data. However, microscopic binding constants
describe the interaction between binding sites during cooperative binding as explained later in
Sec. 2.2.4.

For an overall reaction H + 𝑛G ⇌ HG𝑛, the overall binding constant is defined as

𝛽𝑗 =
[HG𝑗]
[H][G]𝑗

=
𝑛

∏
𝑗=1

𝐾𝑗 , (2.30)

where 𝑗 = 1… 𝑛 (cf. page 47 in [48]). The overall binding constant is a product of stepwise binding
constants. In some cases, one or more complexes HG𝑗 are present at undetectable concentrations
in the sample solution (e.g. for highly cooperative binding steps, see Sec. 2.2.4). Then, the corre-
sponding stepwise binding constants cannot be determined, but the binding can still be described
using the product of corresponding stepwise binding constants.

It is impossible to find an analytical solution for concentrations of all species in an overall
reaction H + 𝑛G ⇌ HG𝑛 for arbitrary 𝑛. Thus, following the approach given in the paper
of Hargrove [71], the concentrations of host-related species (i.e. [H] and [HG𝑗]) and [G]t are
expressed as functions of [H]t and [G]. Subsequently, the free guest concentration is calculated
numerically from a polynomial equation in the form 𝑓 ([G]; 𝐾𝑗 , [H]t, [G]t) = 0. Here, we give
an example of host-guest binding with 1:4 stoichiometry. The equations for stepwise binding
constants and total mass balance are

𝐾𝑗 =
[HG𝑗]

[HG𝑗−1][G]
, for 𝑗 = 1, … , 4 , (2.31a)

[H]t = [H] + [HG] + [HG2] + [HG3] + [HG4] , (2.31b)
[G]t = [G] + [HG] + 2[HG2] + 3[HG3] + 4[HG4] . (2.31c)

The concentrations of host-related species have a simple functional dependence on the free guest
concentration as calculated from Eq. (2.31),

[H] =
[H]t

1 + 𝐾1[G] + 𝐾1𝐾2[G]2 + 𝐾1𝐾2𝐾3[G]3 + 𝐾1𝐾2𝐾3𝐾4[G]4
, (2.32a)

[HG] =
𝐾1[G][H]t

1 + 𝐾1[G] + 𝐾1𝐾2[G]2 + 𝐾1𝐾2𝐾3[G]3 + 𝐾1𝐾2𝐾3𝐾4[G]4
, (2.32b)

[HG2] =
𝐾1𝐾2[G]2[H]t

1 + 𝐾1[G] + 𝐾1𝐾2[G]2 + 𝐾1𝐾2𝐾3[G]3 + 𝐾1𝐾2𝐾3𝐾4[G]4
, (2.32c)

[HG3] =
𝐾1𝐾2𝐾3[G]3[H]t

1 + 𝐾1[G] + 𝐾1𝐾2[G]2 + 𝐾1𝐾2𝐾3[G]3 + 𝐾1𝐾2𝐾3𝐾4[G]4
, (2.32d)

[HG4] =
𝐾1𝐾2𝐾3𝐾4[G]4[H]t

1 + 𝐾1[G] + 𝐾1𝐾2[G]2 + 𝐾1𝐾2𝐾3[G]3 + 𝐾1𝐾2𝐾3𝐾4[G]4
. (2.32e)

In the next step, Eq. (2.32a–e) are substituted into Eq. (2.31c) and rearranged, yielding the afore-
mentioned equation 𝑓 ([G]; 𝐾𝑗 , [H]t, [G]t) = 0 in the form

𝐾1𝐾2𝐾3𝐾4[G]5 + 𝐾1𝐾2𝐾3(4𝐾4[H]t − 𝐾4[G]t + 1)[G]4 + 𝐾1𝐾2(3𝐾3[H]t − 𝐾3[G]t + 1)[G]3

+ 𝐾1(2𝐾2[H]t − 𝐾2[G]t + 1)[G]2 + (𝐾1[H]t − 𝐾1[G]t + 1)[G] − [G]t = 0 . (2.33)
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Concentration [G] is then calculated numerically from this polynomial equation in the interval
[G] ∈ [0, [G]t], concentrations of other species are obtained from Eq. (2.32). Implementation and
derivation of the binding models for up to four binding sites in Mathematica is given in Appendix
A.2–A.4.

2.2.3 Competitive host-ligand binding

Competitive binding is a situation where two different ligands bind to a single binding site at
the host molecule (and the binding of one ligand prevents binding of another ligand). Assuming
the host molecule possesses one binding site (1:1 binding stoichiometry) and denoting the com-
petitive ligands as G (guest) and W (for example, water), the binding can be described by two
binding constants 𝐾HG and 𝐾HW according to Scheme 2.5 [2, 40].

KHG

KHW

Scheme 2.5: Competitive 1:1 host-ligand binding scheme with ligands G and W.

The corresponding equations for binding constants and mass balance are

𝐾HG =
[HG]
[H][G]

, (2.34a)

𝐾HW =
[HW]
[H][W]

, (2.34b)

[H]t = [H] + [HG] + [HW] , (2.34c)
[G]t = [G] + [HG] , (2.34d)
[W]t = [W] + [HW] . (2.34e)

Numeric solution, analogous to Eq. (2.32) and (2.33), requires solving a system of two second-
order polynomial equations in [G] and [W], see Appendix A.5.1. Here, we show another solution,
which leads to numeric treatment of third-order polynomial equation in [H]. First, the following
equations

[HG] =
𝐾HG[H][G]t
1 + 𝐾HG[H]

, (2.35a)

[HW] =
𝐾HW[H][W]t
1 + 𝐾HW[H]

, (2.35b)

[G] =
[G]t

1 + 𝐾HG[H]
, (2.35c)

[W] =
[W]t

1 + 𝐾HW[H]
(2.35d)

are obtained by combination of Eq. (2.34a,b) and Eq. (2.34d,e). Then, substitution of Eq. (2.35a,b)
into Eq. (2.34c) yields the aforementioned third-order polynomial equation in [H],

[H]3𝐾HG𝐾HW + [H]2(𝐾HG + 𝐾HW + [G]t𝐾HG𝐾HW − [H]t𝐾HG𝐾HW + 𝐾HG𝐾HW[W]t)
+ [H](1 + [G]t𝐾HG − [H]t𝐾HG − [H]t𝐾HW + 𝐾HW[W]t) − [H]t = 0 . (2.36)

This equation is solved numerically in the interval [H] ∈ [0, [H]t]. The resulting value of [H] is
then substituted into Eq. (2.35), yielding the concentrations of other chemical species. Implemen-
tation of this solution and derivation of the corresponding equations in Mathematica is given in
Appendix A.5.2.
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2.2.4 Cooperativity

Cooperative binding relates to host molecules with multiple binding sites. It arises, when the
presence of a bound guest increases or decreases affinity to bind another guest (cf. [72] and page
78 in [48]). Let us illustrate this phenomenon with the host-guest binding model, where the host
molecule possesses two binding sites 𝑎 and 𝑏. Here, binding is described by four microscopic
binding constants (Scheme 2.4a). For example, cooperative binding at the site 𝑎 arises when
binding steps H → HG𝑎 (in the absence of another bound guest) and HG𝑏 → HG2 (in the
presence of another bound guest) have different affinities (i.e. 𝐾mic.

𝑎 ≠ 𝐾mic.
𝑏𝑎 ). From the point of

view of Gibbs energy profile, Δ𝐺◦
𝑎 ≠ Δ𝐺◦

𝑏𝑎 (subscript ‘r’ in Δr omitted in the following text) as
shown in Scheme 2.6a. On the other hand, independence of binding sites implies non-cooperative
binding (for binding sites located far apart, e.g. at different ends of a large molecule) and requires
Δ𝐺◦

𝑎 = Δ𝐺◦
𝑏𝑎 and Δ𝐺◦

𝑏 = Δ𝐺◦
𝑎𝑏 , see Scheme 2.6b.

The four microscopic binding constants are not independent, which can be inferred from
the Gibbs energy profile. The energy difference between the HG2 complex and the free host
and guest species should be equal for both branches 𝑎 → 𝑎𝑏 and 𝑏 → 𝑏𝑎, i.e. 𝜇◦HG2

− 𝜇◦H −
2𝜇◦G = Δ𝐺◦

𝑎 + Δ𝐺◦
𝑎𝑏 = Δ𝐺◦

𝑏 + Δ𝐺◦
𝑏𝑎. Hence, using the formula Δ𝐺◦

𝑗 = −𝑅𝑇 ln 𝐾𝑗 (Eq. (2.9)) implies
−𝑅𝑇 ln (𝐾mic.

𝑎 𝐾mic.
𝑎𝑏 ) = −𝑅𝑇 ln (𝐾mic.

𝑏 𝐾mic.
𝑏𝑎 ), and thus 𝐾mic.

𝑎 𝐾mic.
𝑎𝑏 = 𝐾mic.

𝑏 𝐾mic.
𝑏𝑎 . Subsequently, an

interaction parameter 𝛼12, describing interaction between both binding sites (cf. page 23 in [48]),
can be defined as

𝛼12 =
𝐾mic.
𝑏𝑎

𝐾mic.
𝑎

=
𝐾mic.
𝑎𝑏

𝐾mic.
𝑏

. (2.37)

Thus, 𝛼12 describes cooperativity of binding at both 𝑎 and 𝑏 sites, see 2.6a. It is also a measure
of standard reaction Gibbs energy difference since Δ𝐺◦

𝑎𝑏 − Δ𝐺◦
𝑏 = Δ𝐺◦

𝑏𝑎 − Δ𝐺◦
𝑎 = −𝑅𝑇 ln 𝛼12.

Interacting sites imply 𝛼12 ≠ 1. If 𝛼12 > 1, then binding at one site increases binding affinity for
the other site (i.e. 𝐾mic.

𝑏𝑎 > 𝐾mic.
𝑎 and 𝐾mic.

𝑎𝑏 > 𝐾mic.
𝑏 ). If 𝛼12 < 1, the binding affinity decreases upon

(b) independent binding sites

(c) identical binding sites

(a) general binding scheme
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Scheme 2.6: Gibbs energy profile for host-guest 1:2 binding model. (a) General case, (b) independent (i.e.
non-interacting) binding sites, (c) identical binding sites, (d) identical and independent binding sites. In
(c) and (d), Δ𝐺◦

1 = Δ𝐺◦
𝑎 = Δ𝐺◦

𝑏 and Δ𝐺◦
2 = Δ𝐺◦

𝑎𝑏 = Δ𝐺◦
𝑏𝑎 .
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binding of single guest molecule (i.e. 𝐾mic.
𝑏𝑎 < 𝐾mic.

𝑎 and 𝐾mic.
𝑎𝑏 < 𝐾mic.

𝑏 ). Hence, the cooperativity
assumes three qualitatively different modes according to the value of the interaction parameter,

𝛼12 < 1 (negative cooperativity) ,
𝛼12 = 1 (no cooperativity) ,
𝛼12 > 1 (positive cooperativity) .

The case 𝛼12 = 1 must be taken cautiously when assessing independence of the binding sites
because a fortuitous compensation of different effects in interacting sites can be manifested as
𝛼12 ≈ 1 (cf. [70] and page 86 in [48]).

The general relationship between stepwise and microscopic binding constants derived in [69]
is

𝐾𝑗 =
∑𝑛

𝑙1<𝑙2<⋯<𝑙𝑗 𝐾
mic.
𝑙1 𝐾mic.

𝑙1𝑙2 …𝐾mic.
𝑙1𝑙2…𝑙𝑗

∑𝑛
𝑙1<𝑙2<⋯<𝑙𝑗−1 𝐾

mic.
𝑙1 𝐾mic.

𝑙1𝑙2 …𝐾mic.
𝑙1𝑙2…𝑙𝑗−1

, (2.38)

where 𝑛 is the number of binding sites and 𝑙𝑗 = 𝑎, 𝑏, 𝑐, … 𝑛. The binding site labels are ordered
as 𝑎 < 𝑏 < 𝑐 < … , thus, for example, 𝐾mic.

𝑎𝑐𝑏 is not present in the formula as it is dependent on
other constants. For 𝑛 = 2, the relationships are 𝐾1 = 𝐾mic.

𝑎 + 𝐾mic.
𝑏 and 𝐾2 =

𝐾mic.
𝑎 𝐾mic.

𝑎𝑏
𝐾mic.
𝑎 +𝐾mic.

𝑏
. Note that

the dependent 𝐾mic.
𝑏𝑎 does not appear in these formulae as expected. There are three important

special cases for a host with 𝑛 binding sites.

Case 1 – Independent binding sites as shown in Scheme 2.6b. Here, each binding site has its
own binding constant 𝐾mic.

𝑙𝑗 independent of occupancy of other binding sites, i.e. 𝐾mic.
𝑙1𝑙2…𝑙𝑗 = 𝐾mic.

𝑙𝑗
where 𝑙𝑗 = 𝑎, 𝑏, 𝑐, … , and all interaction parameters 𝛼𝑗−1,𝑗 are equal to unity. Substitution into Eq.
(2.38) yields

𝐾𝑗 =
∑𝑛

𝑙1<𝑙2<⋯<𝑙𝑗 𝐾
mic.
𝑙1 𝐾mic.

𝑙2 …𝐾mic.
𝑙𝑗

∑𝑛
𝑙1<𝑙2<⋯<𝑙𝑗−1 𝐾

mic.
𝑙1 𝐾mic.

𝑙2 …𝐾mic.
𝑙𝑗−1

, (2.39)

where 𝑙𝑗 = 𝑎, 𝑏, 𝑐, … . For 𝑛 = 2, the relationships are 𝐾1 = 𝐾mic.
𝑎 + 𝐾mic.

𝑏 and 𝐾2 = 𝐾mic.
𝑎 𝐾mic.

𝑏
𝐾mic.
𝑎 +𝐾mic.

𝑏
.

Systems with independent binding sites are always non-cooperative.

Case 2 – Identical binding sites as shown in Scheme 2.6c. Here, symmetry of the host molecule
implies equal energy levels for a particular complex HG𝑗 . Therefore, the microscopic binding
constants only depend on the number of bound guests, not on the particular site, hence 𝐾mic.

𝑙1𝑙2…𝑙𝑗 =
𝐾mic.
𝑗 , where 𝑗 = 1, 2, … , 𝑛. Their relationship with stepwise binding constants can be obtained

either by substitution into Eq. (2.38) or by counting the occupied and unoccupied binding sites
as follows

𝐾𝑗 =
No. unoccupied sites on HG𝑗−1

No. occupied sites on HG𝑗
𝐾mic.
𝑗 =

𝑛 − (𝑗 − 1)
𝑗

𝐾mic.
𝑗 =

𝑛 − 𝑗 + 1
𝑗

𝐾mic.
𝑗 . (2.40)

Overview of these relationships for different 𝑛 is given in Table 2.2.
Systems with identical binding sites might be either cooperative or non-cooperative. Note-

worthy, the microscopic binding constants can be directly calculated from the stepwise constants.

Case 3 – Independent identical binding sites as shown in Scheme 2.6d. Here, all binding
steps are fully described by only one microscopic binding constant 𝐾mic. (cf. page 52 in [48]).
The simplification 𝐾mic.

𝑗 = 𝐾mic. in Eq. (2.40) yields

𝐾𝑗 =
𝑛 − 𝑗 + 1

𝑗
𝐾mic. . (2.41)
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Table 2.2: Relationship between stepwise and microscopic binding constants for a host-guest system,
where the host molecule contains 𝑛 identical binding sites.

stepwise and microscopic binding constants

𝑛 = 2 𝐾1 = 2𝐾mic.
1 𝐾2 = 1

2𝐾
mic.
2

𝑛 = 3 𝐾1 = 3𝐾mic.
1 𝐾2 = 𝐾mic.

2 𝐾3 = 1
3𝐾

mic.
3

𝑛 = 4 𝐾1 = 4𝐾mic.
1 𝐾2 = 3

2𝐾
mic.
2 𝐾3 = 2

3𝐾
mic.
3 𝐾4 = 1

4𝐾
mic.
4

𝑛 = 5 𝐾1 = 5𝐾mic.
1 𝐾2 = 2𝐾mic.

2 𝐾3 = 𝐾mic.
3 𝐾4 = 1

2𝐾
mic.
4 𝐾5 = 1

5𝐾
mic.
5

𝑛 = 6 𝐾1 = 6𝐾mic.
1 𝐾2 = 5

2𝐾
mic.
2 𝐾3 = 4

3𝐾
mic.
3 𝐾4 = 3

4𝐾
mic.
4 𝐾5 = 2

5𝐾
mic.
5 𝐾6 = 1

6𝐾
mic.
6

For 𝑛 = 2, the relationships are 𝐾1 = 2𝐾mic. and 𝐾2 = 1/2𝐾mic.. These systems are always non-
cooperative and the microscopic constant can be determined from the stepwise constants.

The interaction parameter has been defined for the case 𝑛 = 2 as ratio of microscopic binding
constants, which can be generalized to arbitrary 𝑛 provided the binding sites are identical (see
Case 2 above). Thus, for binding step HG𝑗−1 → HG𝑗 it holds

𝛼𝑗−1,𝑗 =
𝐾mic.
𝑗

𝐾mic.
𝑗−1

. (2.42)

Using this definition, −𝑅𝑇 ln 𝛼𝑗−1,𝑗 can be interpreted as a difference of standard Gibbs energies of
reaction (i.e. −𝑅𝑇 ln 𝛼𝑗−1,𝑗 = Δ𝐺◦

𝑗 −Δ𝐺◦
𝑗−1, where Δ𝐺◦

𝑗 corresponds to binding step HG𝑗−1 → HG𝑗 ),
see Scheme 2.6c. Using Eq. (2.40) and (2.42), the interaction parameters can be calculated from
the stepwise binding constants as (cf. equation (3) in [73])

𝛼𝑗−1,𝑗 =
(𝑛 − 𝑗 + 2)𝑗

(𝑛 − 𝑗 + 1)(𝑗 − 1)
𝐾𝑗

𝐾𝑗−1
. (2.43)

Expressions for interaction parameters for different 𝑛 are listed in Table 2.3. When the binding
sites are not identical, binding stepHG𝑗−1 → HG𝑗 cannot be described by one interaction param-
eter only. However, in these cases the microscopic binding constants are usually experimentally
inaccessible.

Table 2.3: Interaction coefficients for host-guest binding, where the host molecule contains 𝑛 identical
binding sites.

interaction parameter

𝑛 = 2 𝛼12 = 4𝐾2
𝐾1

𝑛 = 3 𝛼12 = 3𝐾2
𝐾1

𝛼23 = 3𝐾3
𝐾2

𝑛 = 4 𝛼12 = 8𝐾2
3𝐾1

𝛼23 = 9𝐾3
4𝐾2

𝛼34 = 8𝐾4
3𝐾3

𝑛 = 5 𝛼12 = 5𝐾2
2𝐾1

𝛼23 = 2𝐾3
𝐾2

𝛼34 = 2𝐾4
𝐾3

𝛼45 = 5𝐾5
2𝐾4

𝑛 = 6 𝛼12 = 12𝐾2
5𝐾1

𝛼23 = 15𝐾3
8𝐾2

𝛼34 = 16𝐾4
9𝐾3

𝛼45 = 15𝐾5
8𝐾4

𝛼56 = 12𝐾6
5𝐾5

The type of cooperativity described above is called ‘allosteric cooperativity’, which can be
either ‘homotropic’ or ‘heterotropic’. The former refers to cooperative binding of one type of
guest as in our case, the latter refers to cooperative binding of different types of guest to the
same host molecule. There are also other types of cooperative binding for guests, which attach
to the host at multiple sites at once or for hydrogen bonding in DNA double helix (cf. pages 175
and 215 in [74]). A well-known example of allosteric cooperative binding is oxygen binding to
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haemoglobin at its four binding sites. This system is described by various models in the literature,
one of them is based on the formalism described here, which is referred to as Adair-Klotz model
[75].



3 Nuclear magnetic resonance
spectroscopy
Nuclear magnetic resonance (NMR) is a phenomenon when electromagnetic waves in the MHz
range are absorbed in atomic nuclei immersed in external magnetic field and then emitted back
at a particular resonant frequency. NMR spectroscopy exploits the NMR related phenomena to
obtain useful information about matter at atomic level. In synthetic chemistry, it is applied for
structure determination of newly synthesized substances as well as for sample purity checks. In
chemical physics, binding and dynamic properties of various systems can be investigated. There
are many textbooks dealing with theory of NMR, e.g. Levitt [76], Cavanagh et al. [77], Macomber
[78] or Slichter [79]. In this chapter, short introduction to NMR spectroscopy is given as well as
detailed treatment of chemical exchange in NMR as described in our paper [2], parts of the text
are taken from that publication.

3.1 Basic phenomena in NMR

3.1.1 Nuclei in magnetic field

Atomic nuclei with nonzero spin 𝐼 also possess the magnetic moment 𝜇, whose magnitude is de-
scribed by element-specific gyromagnetic ratio 𝛾 (ratio of magnetic dipole moment and angular
momentum),

𝝁 = 𝛾ℏ𝐈 . (3.1)

In the presence of external magnetic field, energy levels of nuclear spins split into 2𝐼 + 1 levels.
This phenomenon is called the Zeeman effect. In the following text, let us consider only nuclei
with spin 𝐼 = 1/2 resulting in Zeeman splitting into two energy levels. Energy of a magnetic
dipole in a magnetic field B0 is

𝐸mag = −𝝁.B0 , (3.2)

thus, the Zeeman splitting for 𝐼 = 1/2 induces two energy levels separated by

Δ𝐸 = |𝛾 |𝐵0ℏ = |𝜔0|ℏ (3.3)

as illustrated in Fig. 3.1. The quantity

𝜔0 = −𝛾𝐵0 (3.4)

is called the Larmor frequency. For 𝛾 > 0, the energy level of spin |↑⟩ is lower than spin |↓⟩, hence,

B0

Figure 3.1: Illustration of Zeeman splitting for spin-1/2 nucleus with 𝛾 > 0 (spin and magnetic moments
are oriented in the same direction). Populations of energy levels are not to scale.
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in equilibrium, state |↑⟩ is more populated according to Boltzmann distribution,

𝑝↑
𝑝↓

= exp(−
𝐸↑ − 𝐸↓
𝑅𝑇 ) . (3.5)

At room temperature, the population difference 𝑝↑−𝑝↓ for hydrogen nucleus (𝛾 = 42.58MHz/T) is
very small, about 10−5. The observed NMR signal is weak since it is proportional to the population
difference.

In reality, most nuclear spins are not in their eigenstates |↑⟩ or |↓⟩ but in superposition of
these two states (see section 11.1 in [76]). Thus, proper description of the whole ensemble of
nuclear spins requires the use of spin density matrix 𝜌̂ with full quantum mechanical approach.
However, a classical macroscopic model can be applied for description of the basics of NMR
measurement, while some phenomena in NMR require quantum mechanical approach. From
macroscopic point of view, the ensemble of nuclear spins can be described by magnetization1 M,
i.e. density of magnetic moments in a volume 𝑉 ,

M =
1
𝑉

∑𝝁 . (3.6)

Let us assume that the external magnetic field points in the 𝑧-direction, i.e. B0 = 𝐵0e𝑧 . Then
equilibrium implies that the magnetization is also aligned with 𝑧-axis (in order to minimize the
energy 𝐸mag = −M.B0). When initially tilted away from the 𝑧-axis, the magnetization starts to
precess around the 𝑧-axis with the Larmor frequency 𝜔0 and relaxes back to equilibrium.

3.1.2 Chemical shift

Local magnetic field 𝐵loc at the position of reference nucleus is the sum of the external field 𝐵0
and additional field 𝐵ind induced by the presence of electrons in the surroundings. The induced
field is proportional to the external field, 𝐵ind = −𝜎𝐵0, where 𝜎 is the shielding constant. In
general, the shielding constant is a tensor, which is averaged to a scalar due to rapid motion in
liquid samples. Hence, 𝐵loc = 𝐵0 + 𝜎𝐵0 and the nuclear magnetic spins precess with modified
Larmor frequency

𝜔0 = −𝛾𝐵loc = −𝛾(1 − 𝜎)𝐵0 . (3.7)

This influence of surrounding electrons is called chemical shift (see section 3.7 in [76]). It enables
differentiation of symmetrically nonequivalent nuclear spins in NMR measurement. Thus, NMR
provides a useful tool to identify chemical substances, as every molecule has its unique NMR
fingerprint.

It is common practice to measure the chemical shift relative to a chemical standard present
in the sample with Larmor frequency 𝜔std and shielding constant 𝜎std. Conversion from angular
frequency 𝜔 to chemical shift 𝛿 is defined as [76, 77, 81]

𝛿 =
𝜔 − 𝜔std
2𝜋𝜈0

× 106 = (𝜎 − 𝜎std) × 106 , (3.8)

where 𝜈0 is the spectrometer frequency and the frequency 2𝜋𝜈0 corresponds to 𝜎 = 1. The unit
of chemical shift 𝛿 is ‘ppm’ (parts per million) since the frequency difference (𝜔 − 𝜔std)/(2𝜋) is
in orders of Hz or kHz while 𝜈0 is in orders of MHz. Chemical shift only depends on shield-
ing constants and does not depend on the external field 𝐵0 because it is calculated as a relative

1Nuclear magnetization of water in external field 𝐵0 = 11.7 T is 𝑀(H2O) = 2𝑐(H2O) 𝑁A 𝜇 (𝑝↑ −𝑝↓) = 9.6×10−4 A.m−1,
where 𝑐(H2O) = 55.5 M is the molar water concentration, 𝑁A the Avogadro constant, 𝜇 = 2.2×10−27 A.m2 the magnetic
moment of hydrogen nucleus and 𝑝↑ −𝑝↓ = ℏ𝛾𝐵0

2𝑘B𝑇
= 6.4×10−6 the population difference at room temperature. This value

is much smaller than the magnetization of a typical bar magnet 𝑀(magnet) = 3.7 × 105 A.m−1 [80].
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frequency difference. Hence, measured chemical shifts of a particular molecule are identical on
spectrometers with different 𝐵0. Note that due to historical reasons, the chemical shift axis in
ppm is plotted in increasing order from right to left. Equation (3.8) provides a simple formula for
the conversion from ppm to rad.s−1 valid for frequency difference,

Δ𝜔 [rad.s−1] = 2𝜋 × 𝜈0 [MHz] × Δ𝛿 [ppm] . (3.9)

Tetramethylsilan (TMS) is commonly used in nonpolar solvents as a NMR standard because it
is inert to common chemicals and its nuclei have rather stable Larmor frequency value (temper-
ature change by 100 ◦C leads to change of 𝛿TMS by 0.1 ppm [82]). It has twelve hydrogen atoms
with identical chemical shift which provides strong NMR signal even at low TMS concentrations.

3.1.3 Relaxation

There are several types of interaction of the nuclear spins with each other and with their sur-
roundings. These interactions are mostly averaged out by molecular motion in liquid or gaseous
samples and thus not directly detectable in NMR measurements. Yet they are the cause of relax-
ation of the magnetization M from any starting position to the equilibrium M ∥ B0. There are
two qualitatively different relaxation mechanisms (see sections 2.6 and 2.7 in [76]).

The first mechanism, spin-lattice relaxation, is described by the relaxation time 𝑇1. Here, en-
ergy is transferred from the observed spins to the surroundings (called lattice) to achieve thermo-
dynamic equilibrium with minimum energy 𝐸mag = −M.B0 [78]. This type of relaxation involves
only the 𝑀𝑧 component of the magnetization, hence, it is also called longitudinal relaxation.

The other relaxation mechanism with the relaxation time 𝑇2 is called spin-spin relaxation.
It is the result of direct dipole-dipole interaction between nuclear magnetic moments. Their
interaction causes fluctuations in their local magnetic field 𝐵loc and consequently their Larmor
frequency, which leads to gradual dephasing during their precession. In this case no energy is
dissipated, but entropy of the system increases.

Longitudinal relaxation rate 𝑅1 = 1/𝑇1 and transverse relaxation rate 𝑅2 = 1/𝑇2 are also
used instead of relaxation times. For small molecules with low viscosity, such as pure water,
at room temperature, typical values of 𝑇1 and 𝑇2 are about 3 − 4 s. However, in solutions of
macromolecules or proteins the relaxation times are an order of magnitude or more shorter. In
addition, 𝑇2 is always smaller than 𝑇1.

3.1.4 J-coupling

An interaction, which is not averaged due to fast molecular motion, is indirect spin-spin cou-
pling mediated by electrons in molecular bonds. It is also called J-coupling and its strength is
described by the coupling constant 𝐽 . J-coupling is manifested in NMR by splitting of a single
NMR resonance at Larmor frequency 𝜔0 into two or more resonances (see section 3.8 in [76]). For
example, if the observed nuclear spin 𝐼1 is J-coupled to another nuclear spin 𝐼2 = 1/2, then two
resonances for 𝐼1 are observed. In particular, observed frequency of 𝐼1 is 𝜔0+𝐽 /2 if 𝐼2 is in state |↑⟩,
and 𝜔0 − 𝐽 /2 if 𝐼2 is in state |↓⟩. Generally, if spin 𝐼2 > 1/2 or the spin 𝐼1 is coupled to several other
nuclear spins, the observed Larmor frequency splits into more than two frequencies. J-coupling
is a quantum phenomenon and it cannot be described by the classical model (see section 17.8 in
[76]).

3.1.5 Bloch equations

Classical derivation of magnetization dynamics and consequently the spectral lineshapes for
NMR is based on Bloch equations [83, 84]. Here, single nuclear spin can be represented by the
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classical angular momentum L of some rotating object related to the magnetic moment as 𝝁 = 𝛾L.
Time change of L can be induced by torque 𝝉 , i.e. dL

d𝑡 = 𝝉 . The presence of external field causes
torque on the magnetic moment, 𝝉 = 𝝁×B [85]. Combination of the expressions for torque yields
d𝝁
d𝑡 = 𝛾𝝁 × B, which is valid for a single magnetic moment. Assuming homogeneous magnetic
field in the whole sample, the same expression holds for the magnetization (i.e. volume density
of magnetic moments). However, apart from the torque, both longitudinal (𝑇1) and transverse
(𝑇2) relaxation mechanisms have to be taken into account, hence the resulting Bloch equations
describing the evolution of magnetization are

d𝑀𝑥

d𝑡
= 𝛾(M × B)𝑥 −

𝑀𝑥

𝑇2
,

d𝑀𝑦

d𝑡
= 𝛾(M × B)𝑦 −

𝑀𝑦

𝑇2
,

d𝑀𝑧

d𝑡
= 𝛾(M × B)𝑧 +

𝑀0 − 𝑀𝑧

𝑇1
. (3.10)

Note that the torque 𝛾M×B is perpendicular to both the magnetization M and the magnetic field
B, which causes precession of M around B.

3.1.6 Effect of radiofrequency field

The macroscopic magnetization can be manipulated by application of radiofrequency (RF) elec-
tromagnetic field of amplitude 𝐵RF perpendicular to the external field B0, whose frequency 𝜔RF
is close to the Larmor frequency of the nuclei. Because of this resonance, even small 𝐵RF has
substantial effect on the spin states. It can be shown (see section 8.4.2 in [76]) that during the
RF irradiation, the magnetization undergoes nutation movement, which tilts the magnetization
away from the equilibrium position (M ∥ B0). Solution of the Bloch equations (Eq. 3.10) shows
that the nutation frequency is

𝜔nut = |
1
2
𝛾𝐵𝑅𝐹 | . (3.11)

For example, if the RF field is applied during a pulse of duration 𝜏p, the magnetization rotates by
the angle 𝛽p = 𝜔RF𝜏p. In NMR spectroscopy, this is used to manipulate the direction of magneti-
zation using short pulses. For example, in order to tilt M into the 𝑥-𝑦 plane, the pulse amplitude
𝐵RF and 𝜏p are chosen such that 𝜔RF𝜏p = 𝜋

2 . This type of pulse is called ‘(𝜋2 ) pulse’ (see section
10.8 in [76]), its typical duration is 𝜏p ≈ 10 𝜇s.

3.2 Measurement of NMR

3.2.1 NMR spectrometer

NMR is measured with a NMR spectrometer as shown in Fig. 3.2a. The sample is located in a
probe, which is inside a superconducting magnet (cooled with liquid helium and liquid nitrogen)
generating the external magnetic field B0, see Fig. 3.2b. RF field is generated by transverse coil
wound perpendicular to the sample tube, see Fig. 3.2c. The coil serves as transmitter, inducing the
NMR signal, and receiver, detecting the NMR signal. NMR spectroscopy requires high magnetic
fields in order to obtain good spectral resolution, for example, magnetic field 𝐵0 = 11.7 T induces
Larmor frequency of 500 MHz for 1H nuclei. Note that frequency of the RF field produced by NMR
(in orders of 100 MHz) is too high for the current analog-digital converters. Hence, a reference
wave with frequency 𝜔ref is subtracted from the NMR signal in so-called ‘quadrature detection’
(see sections 4.5.2 and A.5 in [76]; [87]), and the NMR signal with frequency 𝜔0 is digitized with
the offset frequency Ω0 = 𝜔0 −𝜔ref. Morover, signal in complex form is obtained from quadrature
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Figure 3.2: NMR spectrometer. (a) Photo of Bruker 500 MHz commercial spectrometer (500 MHz is the
Larmor frequency for 1H nuclei), (b) scheme of the spectrometer parts and (c) detailed view on the sample
in the probe. The spectrometer scheme was adopted and edited from [86].

detection. Importantly, 𝜔ref is equal to the frequency of the RF pulse 𝜔RF (see Sec. 3.1.6) since
they are produced by the same RF wave synthesizer (see section 4.6 and figure 4.14 in [76]). This
fact is conveniently used for theoretical assessment, when a frame of reference rotating with
frequency 𝜔ref is introduced (see section 10.6 in [76]).

3.2.2 Pulsed NMR experiment

The production and detection of NMR signal is illustrated in Fig. 3.3. The procedure starts from
equilibrium (1), with the magnetization along the 𝑧-axis. Then, the magnetization M is tilted to
the 𝑥-𝑦 plane perpendicular to B0 after a (𝜋2 ) RF pulse from the transmitter coil (2). Thereafter,
during so-called free induction decay (FID) period, it undergoes free precession with Larmor
frequency 𝜔0 (3) until it relaxes back to equilibrium (4) due to the longitudinal and transverse
relaxation mechanisms. Note that |M(𝑡)| changes during the evolution due to the presence of
relaxation.2 Also, according to the definition 𝜔0 = −𝛾𝐵0, nuclei with 𝛾 > 0 precess clockwise and
nuclei with 𝛾 < 0 precess counterclockwise. During the relaxation period (3), the NMR signal
is produced in the sample and detected as induced electric current in the receiver coil, which is
proportional to the precessing magnetization.

Since the magnetization precesses around the 𝑧-axis, only the transverse magnetization com-
ponent (transverse to the external magnetic field 𝐁0) is detected. The NMR signal is acquired
with quadrature detection (see the previous section) producing complex signal in the form of
𝑀𝑥 (𝑡) + 𝑖𝑀𝑦 (𝑡), where the original Larmor frequency 𝜔0 is detected as an offset frequency Ω0 =
𝜔0 − 𝜔ref (where 𝜔ref = 𝜔RF). Usually, frequency domain is preferred over the time domain to
analyze NMR signal, for which Fourier transform (FT) is used.3

To compensate for low sensitivity of the NMR technique (mainly due to low 𝑝↑ − 𝑝↓), high
sample concentrations about 0.1–1 mM are typically used to obtain hydrogen spectrum. Also,
the data acquisition described in Fig. 3.3 is repeated many times with subsequent data averaging,
typically the number of scans 𝑁scan < 100 for hydrogen nuclei and 𝑁scan = 2000–20000 for carbon
nuclei.

2During FID, Bloch equations (Eq. 3.10) have the form d
d𝑡M = 𝜔0M × B + f(𝑇1, 𝑇2). Therefore, the magni-

tude of magnetization |M| changes in time due to the relaxation terms f(𝑇1, 𝑇2) since d
d𝑡 (M.M) = 2M.dM/d𝑡 =

M. {𝜔0M × B + f(𝑇1, 𝑇2)} = M.f(𝑇1, 𝑇2) ≠ 0.
3Pulsed FT NMR spectroscopy is the state-of-the-art technique and superseded the original continuous-wave (CW)

NMR spectroscopy [88].
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Figure 3.3: Illustration of pulsed NMR experiment. Snapshots (1–4) in the upper left panel correspond
to points (1–4) in the bottom left panel showing the voltage in transmitter-receiver coil. The right panel
shows Fourier transform of the NMR signal.

3.2.3 Lorentzian spectral lineshape

The NMR signal is detected during the free induction decay (FID) period ((3) in Fig. 3.3), hence it
is highly relevant for calculation of the observed spectral lineshapes. During FID, total magnetic
field is equal to the constant external field B = (0, 0, 𝐵0), thus defining the complex transverse
magnetization

𝑀𝑥𝑦 = 𝑀𝑥 + 𝑖𝑀𝑦 (3.12)

Bloch equations (Eq. 3.10) reduce to

(laboratory frame)

d𝑀𝑥𝑦

d𝑡
= 𝑖𝜔0𝑀𝑥𝑦 − 𝑅2𝑀𝑥𝑦 , (3.13a)

d𝑀𝑧

d𝑡
= 𝑅1(𝑀0 − 𝑀𝑧) . (3.13b)

The complex transverse magnetization 𝑀𝑥𝑦 is proportional to so-called −1 quantum coherence
(nondiagonal element of density matrix 𝜌̂) in quantum description of NMR, which is directly
proportional to the acquired NMR signal during FID.

Theory of NMR spectroscopy is often constructed in the frame of reference rotating with 𝜔ref.
In this frame, magnetization due to spins with Larmor frequency 𝜔0 rotates with Ω0 = 𝜔0 − 𝜔ref.
Quadrature detection yields digitized NMR signal with this offset frequency Ω0, therefore, the
acquired signal is described by Bloch equations in rotating frame,

(rotating frame)

d𝑀𝑥𝑦

d𝑡
= 𝑖Ω0𝑀𝑥𝑦 − 𝑅2𝑀𝑥𝑦 , (3.14a)

d𝑀𝑧

d𝑡
= 𝑅1(𝑀0 − 𝑀𝑧) . (3.14b)

In the following text, we will consider spin dynamics only in the rotating frame of reference.
Without the loss of generality, let us assume the initial position of magnetization after the (𝜋2 )
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pulse along the 𝑥-axis, i.e. 𝑀𝑥𝑦 (0) = 𝑀𝑥 (0) = 𝑀0 (and 𝑀𝑦 = 𝑀𝑧 = 0), where 𝑀0 is the initial
equilibrium magnetization. Using this initial condition, the solution of Eq.(3.14) during FID is

𝑀𝑥𝑦 (𝑡) = 𝑀0 exp (𝑖Ω0𝑡 − 𝑅2𝑡) , (3.15a)
𝑀𝑧(𝑡) = 𝑀0 [1 − exp (−𝑅1𝑡)] . (3.15b)

Note that 𝑀𝑥𝑦 → 0 and 𝑀𝑧 → 𝑀0 as 𝑡 → ∞.
In order to calculate the spectral lineshape in frequency domain 𝑆(Ω), we apply Fourier trans-

form (FT)4 on the above solutions for 𝑀𝑥𝑦 (𝑡). As the signal is collected from 𝑡 = 0, the corre-
sponding magnetization is multiplied by the Heaviside step function 𝜃(𝑡) or equivalently the
integration proceeds in time interval (0, +∞) instead of (−∞, +∞),

𝑆(Ω) = FT[𝑀𝑥𝑦𝜃(𝑡)] = ∫
+∞

−∞
𝑀𝑥𝑦𝜃(𝑡) exp(−𝑖Ω𝑡)d𝑡 = ∫

+∞

0
𝑀𝑥𝑦 exp(−𝑖Ω𝑡)d𝑡 . (3.16)

For compact notation, we also introduce a quantity

𝛼 = 𝑅2 − 𝑖(Ω − Ω0) . (3.17)

Then, the solution of Bloch equations for transverse magnetization during FID, i.e. the spectral
lineshape, is

𝑆(Ω) =
𝑀0

𝑅2 − 𝑖(Ω − Ω0)
=
𝑀0

𝛼
. (3.18)

Real and imaginary parts of 𝑆(Ω) are called ‘absorption’ and ‘dispersion’ lineshapes, respectively,5

Re[𝑆(Ω)] = Re[
𝑀0

𝛼 ] =
𝑀0𝑅2

𝑅2
2 + (Ω − Ω0)2

, (3.19a)

Im[𝑆(Ω)] = Im[
𝑀0

𝛼 ] =
𝑀0(Ω − Ω0)

𝑅2
2 + (Ω − Ω0)2

. (3.19b)

These lineshapes are shown in Fig. 3.3 (right panel). Full width at half maximum of the absorp-
tion lineshape is proportional to 𝑅2, i.e. transverse relaxation causes so-called ‘homogeneous
broadening’ of the NMR lineshapes. However, further ‘inhomogeneous broadening’ is caused by
inhomogeneity of the external magnetic field 𝐵0. The sign of the dispersion lineshape depends on
the convention in FT. More details about the Lorentzian lineshape are given in Appendix B.1.1.

3.3 Chemical exchange

NMR spectroscopy is sensitive to molecular processes, which change chemical environments, i.e.
states 𝐴, 𝐵,… , of a particular reference nuclear spin. Such processes, when they are reversible,
are called chemical exchange in NMR terminology and lead to non-Lorentzian spectral lineshapes.
We denote these transitions between states as spin kinetics. Chemical exchange is characterized
by transition rate coefficients 𝑘𝑖𝑗 (in units of s−1), where 𝑖, 𝑗 = 𝐴, 𝐵, … ; 𝑖 ≠ 𝑗. These coefficients are
often denoted as ‘rate constants’, although, due to their possible dependence on concentration
(for example, in a bimolecular reaction, see discussion in Sec. 3.4.1), we apply the term ‘transition
rate coefficients’. The simplest and most common case is a two-state chemical exchange between
𝐴 and 𝐵 spin states (i.e. between states with different chemical environments and thus different
offset Larmor frequencies Ω𝐴 and Ω𝐵) described by two transition rate coefficients 𝑘𝐴𝐵, 𝑘𝐵𝐴 as
illustrated in Scheme 3.1.

4The convention for FT used in this work is 𝑓 (Ω) = ∫ +∞
−∞ 𝑓 (𝑡)𝑒−𝑖Ω𝑡d𝑡 . The corresponding inverse FT is then 𝑓 (𝑡) =

1
2𝜋 ∫ +∞

−∞ 𝑓 (Ω)𝑒𝑖Ω𝑡dΩ.
5The terms ‘absorption’ and ‘dispersion’ have no physical meaning and are purely historical [76].



3.3. Chemical exchange 29

Scheme 3.1: Spin kinetics of two-state exchange.

Basic principles of chemical exchange are illustrated in Fig. 3.4 with the example of symmet-
ric two-state exchange. In that case, transition rate coefficients 𝑘 are identical in both directions
(i.e. 𝑘𝐴𝐵 = 𝑘𝐵𝐴 = 𝑘), see Fig. 3.4a. Lifetime 𝜏 in both states is exponentially distributed [89]
and 𝑘 = 1/⟨𝜏⟩ plays a role of mean frequency of transitions (inverse of the mean lifetime), see
Fig. 3.4b. Figure 3.4c shows that the reference nuclear spin precesses with offset frequency Ω𝐴
while in state 𝐴 and with Ω𝐵 while in state 𝐵 (decay of the FID signal due to 𝑇2 relaxation is not
visible during such short time period). Chemical exchange causes “mixing” of these Larmor fre-
quencies resulting to nontrivial alteration of the resulting NMR spectrum, see Fig. 3.4d (bottom
spectrum). There are three different regimes depending on the magnitude of 𝑘 compared to the
Larmor frequency difference ΔΩ𝐴𝐵 = |Ω𝐴 − Ω𝐵 | as shown in Fig. 3.4e:

1. Slow exchange regime occurs when 𝑘 ≪ ΔΩ𝐴𝐵. The spectral lineshape is very close to
two Lorentzians placed at Ω𝐴 and Ω𝐵. Mixing of the two Larmor frequencies is too slow
and does not induce any significant spectral change.

2. Intermediate exchange regime occurs when 𝑘 ≈ ΔΩ𝐴𝐵. The spectrum is broadened and
significantly differs from the Lorentzian lineshape. The two peaks merge at a so-called ‘co-
alescence point’ 𝑘c (when 𝑘 increases, the minimum between two peaks disappears exactly
at 𝑘c).

3. Fast exchange regime occurs when 𝑘 ≫ ΔΩ𝐴𝐵. Fast mixing of Larmor frequencies aver-
ages the signal into a single Lorentzian-like peak located at 𝑝𝐴Ω𝐴 + 𝑝𝐵Ω𝐵.

Note that the intermediate regime is sometimes called ‘slow intermediate’ or ‘fast intermediate
regime’ depending from which side the coalescence point is approached [76]. Furthermore, the
area below the spectral lineshape (i.e. peak intensity) is not altered when 𝑘 changes, see Appendix
B.

Transition rate coefficient at the coalescence point 𝑘c for symmetric two-state exchange can
be calculated from the analytical lineshape [2, 76]. Assuming 𝑅𝐴

2 = 𝑅𝐵
2 = 𝑅2, 𝑘c can be obtained

by the following approximative formula

𝑘c ≈
ΔΩ𝐴𝐵

2
√
2 [1 − 1.138

𝑅2
ΔΩ𝐴𝐵 ]

. (3.20)

This equation can be used for rapid estimation of 𝑘c from a spectrum measured exactly at the co-
alescence point (no need for lineshape fitting) [90, 91]. Furthermore, the concept of coalescence
can also be generalized for asymmetric two-state exchange (i.e. 𝑘𝐴𝐵 ≠ 𝑘𝐵𝐴). In contrast to sym-
metric two-state exchange, where the coalescence transition rate coefficient is a single value 𝑘c,
asymmetric exchange exhibits infinitely many pairs of transition rate coefficients {𝑘𝐴𝐵,c, 𝑘𝐵𝐴,c}
at which the spectrum has coalescence lineshapes (provided constant values of Ω𝐴, Ω𝐵, and 𝑅2).
This generalization as well as the approximative formula for non-zero 𝑅2 in Eq. (3.20) were pub-
lished in our paper [2].

An actual example of a molecular process inducing symmetric two-state exchange is shown in
Fig. 3.4f,g. Rotation of a bulky side group (Fig. 3.4f) causes jumps of a tert-butyl reference spin (all
nine hydrogen nuclei denoted by blue circle have identical Larmor frequency due to the motional
averaging – fast rotation around CH3–C bond and tert-butyl–C bond) between state 𝐴 in the
vicinity of bromobenzyl and state 𝐵 further from the bromobenzyl. The corresponding NMR
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Figure 3.4: Illustration of symmetric two-state exchange with 𝑅𝐴2 = 𝑅𝐵2 . (a) Transition in both directions is
characterized by the same transition rate coefficient 𝑘. (b) Lifetime between transitions has exponential
distribution 𝜌exp, 𝑘 is the inverse of mean lifetime ⟨𝜏⟩. (c) Transition between states 𝐴 and 𝐵 with dif-
ferent Larmor frequencies causes (d) corresponding spectra. (e) Exchange spectra in slow, intermediate
(including the coalescence point at 𝑘 = 1111 s−1) and fast regimes. (f) Symmetric two-state exchange in
a real system, rotation of a bulky side group provides two different environments for the reference spin
(denoted by blue circle). Transition rate coefficient increases with temperature. Note that the Larmor
frequencies Ω𝐴 and Ω𝐵 change with temperature.

spectra (Fig. 3.4g) show increase of 𝑘 with temperature. Note that the offset Larmor frequencies
Ω𝐴 and Ω𝐵 change with temperature.

NMR lineshape fitting is a straightforward method to obtain transition rate coefficients and
often requires only the acquisition of simple 1D NMR spectra [92–94] as described in Sec. 3.2.2.
For more complicated molecules (e.g. proteins), 2D experiments are required. For example, HSQC
spectra (see section 7.1 in [77]) can be analyzed, where either a 1D crosssection [95–97] or the full
2D spectrum [98–100] lineshape is fitted. NMR lineshape fitting procedure is most suitable for
the analysis of exchange processes with transition rate coefficients approximately in the range
of 10–105 s−1.

Methods other than lineshape fitting exist for the determination of transition rate coefficients.
However, those methods usually require elaborate NMR sequences and extended experimental
time. They are also aimed at the analysis of different ranges of transition rate coefficients (both
higher and lower). Reviews of these methods (e.g. ZZ-exchange, EXSY, 𝑅2 relaxation dispersion)
are available from Bain [101], Kleckner [102] or Furukawa [103].

3.3.1 Kinetics of spin states

Chemical exchange of a reference spin (i.e. the spin of interest within the structure of molecule)
can be modeled with discrete states𝐴, 𝐵, 𝐶, … assuming that the transition time between any two
states is short compared to the average lifetime in any state. Relative populations of states are
denoted as 𝑝𝐴, 𝑝𝐵, 𝑝𝐶 , … , where ∑𝑝𝑗 = 1. For illustration, let us consider two-state spin kinetics,
where [𝐴] and [𝐵] are concentrations of spins in states 𝐴 and 𝐵, respectively. Then the time
change of [𝐴] is

d[𝐴]
d𝑡

= −𝑘𝐴𝐵[𝐴] + 𝑘𝐵𝐴[𝐵] . (3.21)
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The first term on the right-hand side accounts for decrease of [𝐴] due to the 𝐴 → 𝐵 transitions,
the second term accounts for its increase due to the 𝐵 → 𝐴 transitions. The equation for time
change of [𝐵] is constructed analogously. Using the definitions 𝑝𝐴 = [𝐴]

[𝐴]+[𝐵] and 𝑝𝐵 = [𝐵]
[𝐴]+[𝐵] ,

the kinetic equations can be formulated as (assuming that the total concentration [𝐴] + [𝐵] is
constant)

d
d𝑡 (

𝑝𝐴
𝑝𝐵)

= 𝐊(
𝑝𝐴
𝑝𝐵)

, (3.22)

where
𝐊 = (

−𝑘𝐴𝐵 𝑘𝐵𝐴
𝑘𝐴𝐵 −𝑘𝐵𝐴)

(3.23)

is the kinetic matrix for two states. Note that the sum of left-hand sides of Eq. (3.22) yields
zero since d

d𝑡 (𝑝𝐴 + 𝑝𝐵) = d
d𝑡 1 = 0. Hence, the sum of right-hand sides of Eq. (3.22) also yields

zero, which implies that all elements of 𝑗-th column of the kinetic matrix K must sum to zero for
arbitrary 𝑗, i.e. ∑𝑖 K𝑖𝑗 = 0. This finding holds for any number of states and can be used to test if
K is correctly constructed.

For a general number of states 𝑁 , let us define the vector of populations 𝐩 = (𝑝𝐴, 𝑝𝐵, … , 𝑝𝑁 )T,
then the time dependence of populations is governed by

d𝐩
d𝑡

= 𝐊𝐩 . (3.24)

Note that these first-order differential equations are linear, unlike the governing equations for
chemical kinetics (Eq. 2.18).

We are interested in the equilibrium state, which requires the time derivative at the left-hand
side of Eq. (3.24) to be zero and converts this differential equation into an algebraic equation

𝐊𝐩 = 𝟎 . (3.25)

Solution of this equation can be readily obtained by a diagrammatic method introduced in King
and Altman [104] or Hill [105].

Apart from equilibrium, this solution also describes the steady-state. To understand the dif-
ference between equilibrium and steady-state, let us define a population flux from state 𝑖 to state
𝑗 as

𝐽𝑖𝑗 = 𝑝𝑖𝑘𝑖𝑗 − 𝑝𝑗𝑘𝑗𝑖 . (3.26)

It follows then from this definition that 𝐽𝑖𝑗 = −𝐽𝑗𝑖 .
The condition for equilibrium is that population flux between each state 𝑖 and 𝑗 is equal to

zero (i.e. 𝐽𝑖𝑗 = 0). In contrast, in steady-state mode non-zero fluxes (constant in time) are present,
but the net flux  𝑗 to any state 𝑗 is zero, so that the populations do not change over time,

𝑗 = ∑
𝑖=𝐴,𝐵,…

𝑖≠𝑗

𝐽𝑖𝑗 = 0 , (3.27)

for all 𝑗 = 𝐴, 𝐵, … . Note that ∑𝑗=𝐴,𝐵,… 𝑗 = 0 even outside equilibrium or steady-state because the
spin in states 𝐴, 𝐵,… is an isolated system. The condition for zero population flux at equilibrium
can be reformulated using populations and transition rate coefficients setting 𝐽𝑖𝑗 = 0 in Eq. (3.26).
Hence, at equilibrium (but not at steady-state),

𝑝eq
𝑗

𝑝eq
𝑖

=
𝑘𝑖𝑗
𝑘𝑗𝑖

. (3.28)
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As follows from these relationships, the equilibrium conditions reduce the number of indepen-
dent transition rate coefficients compared to any out-of-equilibrium state. This must be consid-
ered during the analysis of actual experimental data. Note that a steady-state spin kinetics can
be achieved only in schemes containing a closed cycle [105]. Closed cycle exists in the scheme
if it is possible to return to the same state through a different process (i.e. through a different
transition state).

3.3.2 Kinetics of two-state exchange

As already mentioned above, two-state spin kinetics is characterized by the kinetic matrix 𝐊 =

(
−𝑘𝐴𝐵 𝑘𝐵𝐴
𝑘𝐴𝐵 −𝑘𝐵𝐴)

. Equilibrium populations calculated from Kp = 0 are given in Eq. (3.29) in Table
3.1a. Since closed cycles are not contained in the simple two-state exchange (Table 3.1a), a steady-
state mode is not feasible. It also follows from Eq. (3.23) and (3.25) that 𝐽𝐴𝐵 = 𝐽𝐵𝐴 = 0, which
is equivalent to the equilibrium condition in Eq. (3.28). However, even in two-state kinetics, a
closed cycle can arise if the transition between states is accomplished by more than one process.

Table 3.1: Two-state spin kinetics with one or two processes.

type steady-state populations equilibrium populations
(a) one process

no closed cycle,
steady-state
impossible

𝑝eq
𝐴 =

𝑘𝐵𝐴
𝑘𝐴𝐵 + 𝑘𝐵𝐴

(3.29a)

𝑝eq
𝐵 =

𝑘𝐴𝐵
𝑘𝐴𝐵 + 𝑘𝐵𝐴

(3.29b)

(b) two processes

𝑝ss
𝐴 =

𝑘I
𝐵𝐴 + 𝑘II

𝐵𝐴

𝑘I
𝐴𝐵 + 𝑘II

𝐴𝐵 + 𝑘I
𝐵𝐴 + 𝑘II

𝐵𝐴
(3.30)

𝑝ss
𝐵 =

𝑘I
𝐴𝐵 + 𝑘II

𝐴𝐵

𝑘I
𝐴𝐵 + 𝑘II

𝐴𝐵 + 𝑘I
𝐵𝐴 + 𝑘II

𝐵𝐴
(3.31)

𝑝eq
𝐴 =

𝑘I
𝐵𝐴

𝑘I
𝐴𝐵 + 𝑘I

𝐵𝐴
=

𝑘II
𝐵𝐴

𝑘II
𝐴𝐵 + 𝑘II

𝐵𝐴
(3.32a)

𝑝eq
𝐵 =

𝑘I
𝐴𝐵

𝑘I
𝐴𝐵 + 𝑘I

𝐵𝐴
=

𝑘II
𝐴𝐵

𝑘II
𝐴𝐵 + 𝑘II

𝐵𝐴
(3.32b)

To illustrate this case, see the scheme of two-state kinetics with two reversible processes in
Table 3.1b. There are two independent reversible processes I (𝑘I

𝐴𝐵 and 𝑘I
𝐵𝐴) and II (𝑘II

𝐴𝐵 and 𝑘II
𝐵𝐴)

both of which cause interconversion of 𝐴 and 𝐵 states. Since a closed cycle is present, in the-
ory, there can be non-zero population flux in clockwise (𝐽 I

𝐴𝐵 = 𝐽 II
𝐵𝐴 > 0), or counterclockwise

(𝐽 I
𝐴𝐵 = 𝐽 II

𝐵𝐴 < 0) directions. However, the NMR spectral lineshape for a two-process two-state
exchange (Table 3.1b) is in principle indistinguishable from one-process two-state exchange (Ta-
ble 3.1a). Consequently, steady-state and equilibrium modes in the two-process case also cannot
be distinguished (both can be mapped on an equilibrium one-process spectral lineshape). There
are many examples of two-state exchange with more than one process, some of which enable
steady-state, including the conversion of a substrate to a product in reversible enzyme-catalyzed
reactions according to the Michaelis-Menten scheme [60], conformational variation in dimesityl
systems, where both mesityl rings can flip about the connecting single bonds [91, 106, 107] or
other compounds with correlated internal motions [108, 109]. These examples are described in
detail in our paper [2].
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3.3.3 Kinetics of three-state exchange

Transitions among three states are described by six transition rate coefficients according to the
scheme in Table 3.2a with the corresponding kinetic matrix

𝐊 =
⎛
⎜
⎜
⎝

−𝑘𝐴𝐵 − 𝑘𝐴𝐶 𝑘𝐵𝐴 𝑘𝐶𝐴
𝑘𝐴𝐵 −𝑘𝐵𝐴 − 𝑘𝐵𝐶 𝑘𝐶𝐵
𝑘𝐴𝐶 𝑘𝐵𝐶 −𝑘𝐶𝐴 − 𝑘𝐶𝐵

⎞
⎟
⎟
⎠
. (3.33)

The equilibrium/steady-state populations can be determined using the equation 𝐊𝐩 = 𝟎 with
populations 𝐩 = (𝑝𝐴, 𝑝𝐵, 𝑝𝐶 )T, which can also be reformulated using population fluxes (Eq. (3.26))
as

𝐽𝐵𝐴 + 𝐽𝐶𝐴 = 0 , (3.34a)
𝐽𝐴𝐵 + 𝐽𝐶𝐵 = 0 , (3.34b)
𝐽𝐴𝐶 + 𝐽𝐵𝐶 = 0 . (3.34c)

The expressions for populations of the general three-state kinetics and two special cases are
summarized in Table 3.2. In contrast to simple two-state kinetics (Table 3.1a), general three-state
kinetics (Table 3.2a) contains a cycle and thus enabling the existence of steady-state. However,
imposing symmetry (Table 3.2b) or complexity reduction (Table 3.2c) to the general three-state
scheme leads only to equilibrium solution and any steady-state solution is absent.

In contrast to simple two-state kinetics (Table 3.1a), general three-state kinetics (Table 3.2a)
contains a cycle and thus enabling the existence of steady-state. The expressions for steady-
state and equilibrium populations of the general three-state kinetics and two special cases are
summarized in Table 3.2. For the special cases, it can be seen that imposing symmetry (Table 3.2b)
or complexity reduction (Table 3.2c) to the general three-state scheme leads only to solutions in
equilibrium and a steady-state solution is absent (for more details, see text below).

In the case of general three-state kinetics, the populations for steady-state 𝑝ss
𝑗 are given in

Eq. (3.35) in Table 3.2a. At equilibrium, this solution further simplifies when it is combined with
the equilibrium conditions ( 𝑝

eq
𝑗
𝑝eq
𝑖

= 𝑘𝑖𝑗
𝑘𝑗𝑖 , Eq. (3.28)). Since the transition rate coefficients are not

mutually independent at equilibrium, we obtain

1 =
𝑝eq
𝐶
𝑝eq
𝐵

𝑝eq
𝐵
𝑝eq
𝐴

𝑝eq
𝐴
𝑝eq
𝐶

=
𝑘𝐵𝐶
𝑘𝐶𝐵

𝑘𝐴𝐵
𝑘𝐵𝐴

𝑘𝐶𝐴
𝑘𝐴𝐶

. (3.39)

If we choose, for example, 𝑘𝐵𝐴 as the dependent rate coefficient, then the equilibrium populations
can be obtained according to Eq. (3.36abc) in Table 3.2a. The dependent transition rate coefficient
𝑘𝐵𝐴 is calculated according to Eq. (3.36d). See Appendix B.3 for derivation of the populations in
Mathematica. It is possible to select any other transition rate coefficient as dependent. It fol-
lows from these relationships that the equilibrium condition reduces the number of independent
transition rate coefficients, and this fact must be taken into consideration during analysis of any
actual experimental data. Prior to use of the three-state lineshape formula derived later in Sec.
3.3.7, the populations and transition rate coefficients for steady-state should be related using Eq.
(3.35) and for equilibrium using Eq. (3.36).

The first special case of three-state kinetics is denoted half-symmetric and is shown in Table
3.2b. In this case, the states 𝐴 and 𝐵 are denoted as 𝐴1 and 𝐴2, respectively, due to the symmetry
in the corresponding chemical species. Hence, the states 𝐴1 and 𝐴2 are equally populated, and
the system is described by three transition rate coefficients: 𝑘𝐴𝐶 , 𝑘𝐶𝐴 and 𝑘𝐴. Populations given
by Eq. (3.37) already imply equilibrium because they obey the equilibrium conditions in Eq.
(3.28). Steady-state with non-zero net fluxes is not possible for this kinetic scheme. The second
special case is a consecutive kinetic scheme, which is shown in Table 3.2c. As this scheme lacks
any closed cycle, only equilibrium is possible with populations expressed in Eq. (3.38).
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Table 3.2: Three-state spin kinetics and its special cases.

type steady-state populations equilibrium populations
(a) general

𝑝ss
𝑗 =

𝜋𝑗
𝜋𝐴 + 𝜋𝐵 + 𝜋𝐶

(3.35)

𝑗 = 𝐴, 𝐵, 𝐶
𝜋𝐴 = 𝑘𝐵𝐴𝑘𝐶𝐴 + 𝑘𝐵𝐶𝑘𝐶𝐴 + 𝑘𝐵𝐴𝑘𝐶𝐵
𝜋𝐵 = 𝑘𝐴𝐵𝑘𝐶𝐴 + 𝑘𝐴𝐵𝑘𝐶𝐵 + 𝑘𝐴𝐶𝑘𝐶𝐵
𝜋𝐶 = 𝑘𝐴𝐶𝑘𝐵𝐴 + 𝑘𝐴𝐵𝑘𝐵𝐶 + 𝑘𝐴𝐶𝑘𝐵𝐶

𝑝eq
𝐴 =

𝑘𝐵𝐶𝑘𝐶𝐴
𝑘𝐴𝐶𝑘𝐵𝐶 + 𝑘𝐴𝐶𝑘𝐶𝐵 + 𝑘𝐵𝐶𝑘𝐶𝐴

(3.36a)

𝑝eq
𝐵 =

𝑘𝐴𝐶𝑘𝐶𝐵
𝑘𝐴𝐶𝑘𝐵𝐶 + 𝑘𝐴𝐶𝑘𝐶𝐵 + 𝑘𝐵𝐶𝑘𝐶𝐴

(3.36b)

𝑝eq
𝐶 =

𝑘𝐴𝐶𝑘𝐵𝐶
𝑘𝐴𝐶𝑘𝐵𝐶 + 𝑘𝐴𝐶𝑘𝐶𝐵 + 𝑘𝐵𝐶𝑘𝐶𝐴

(3.36c)

𝑘𝐴𝐵 =
𝑘𝐴𝐶𝑘𝐵𝐴𝑘𝐶𝐵
𝑘𝐵𝐶𝑘𝐶𝐴

(3.36d)

(b) half-symmetric

symmetry
prevents

steady-state

𝑝eq
𝐴1

= 𝑝eq
𝐴2

=
𝑘𝐶𝐴

2𝑘𝐶𝐴 + 𝑘𝐴𝐶
(3.37a)

𝑝eq
𝐶 =

𝑘𝐴𝐶
2𝑘𝐶𝐴 + 𝑘𝐴𝐶

(3.37b)

(c) consecutive

no closed cycle,
steady-state
impossible

𝑝eq
𝐴 =

𝑘𝐵𝐴𝑘𝐶𝐵
𝑘𝐵𝐴𝑘𝐶𝐵 + 𝑘𝐴𝐵𝑘𝐵𝐶 + 𝑘𝐴𝐵𝑘𝐶𝐵

(3.38a)

𝑝eq
𝐵 =

𝑘𝐴𝐵𝑘𝐶𝐵
𝑘𝐵𝐴𝑘𝐶𝐵 + 𝑘𝐴𝐵𝑘𝐵𝐶 + 𝑘𝐴𝐵𝑘𝐶𝐵

(3.38b)

𝑝eq
𝐶 =

𝑘𝐴𝐵𝑘𝐵𝐶
𝑘𝐵𝐴𝑘𝐶𝐵 + 𝑘𝐴𝐵𝑘𝐵𝐶 + 𝑘𝐴𝐵𝑘𝐶𝐵

(3.38c)

3.3.4 Bloch-McConnell equations

Exchange spin dynamics is described by Bloch-McConnell equations [77, 110], which originate
from Bloch equations (Eq. (3.10)) and possess additional terms accounting for transfer of magne-
tization through the exchange process. For two-state chemical exchange the Bloch-McConnell
equations are as follows

(laboratory frame)

d𝑀𝐴
𝑥

d𝑡
= 𝛾(M𝐴 × B𝐴)𝑥 − 𝑅𝐴

2 𝑀
𝐴
𝑥 − 𝑘𝐴𝐵𝑀𝐴

𝑥 + 𝑘𝐵𝐴𝑀𝐵
𝑥 , (3.40a)

d𝑀𝐴
𝑦

d𝑡
= 𝛾(M𝐴 × B𝐴)𝑦 − 𝑅𝐴

2 𝑀
𝐴
𝑦 − 𝑘𝐴𝐵𝑀𝐴

𝑦 + 𝑘𝐵𝐴𝑀𝐵
𝑦 , (3.40b)

d𝑀𝐴
𝑧

d𝑡
= 𝛾(M𝐴 × B𝐴)𝑧 + 𝑅𝐴

1 (𝑀
𝐴
0 − 𝑀𝐴

𝑧 ) − 𝑘𝐴𝐵𝑀𝐴
𝑧 + 𝑘𝐵𝐴𝑀𝐵

𝑧 , (3.40c)

d𝑀𝐵
𝑥

d𝑡
= 𝛾(M𝐵 × B𝐵)𝑥 − 𝑅𝐵

2𝑀
𝐵
𝑥 − 𝑘𝐵𝐴𝑀𝐵

𝑥 + 𝑘𝐴𝐵𝑀𝐴
𝑥 , (3.40d)

d𝑀𝐵
𝑦

d𝑡
= 𝛾(M𝐵 × B𝐵)𝑦 − 𝑅𝐵

2𝑀
𝐵
𝑦 − 𝑘𝐵𝐴𝑀𝐵

𝑦 + 𝑘𝐴𝐵𝑀𝐴
𝑦 , (3.40e)

d𝑀𝐵
𝑧

d𝑡
= 𝛾(M𝐵 × B𝐵)𝑧 + 𝑅𝐵

1 (𝑀
𝐵
0 − 𝑀𝐵

𝑧 ) − 𝑘𝐵𝐴𝑀𝐵
𝑧 + 𝑘𝐴𝐵𝑀𝐴

𝑧 . (3.40f)
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Let us use these equations to describe FID in constant external field B0. Using the definition for
complex transverse magnetization of nuclei in state 𝑗 = 𝐴, 𝐵, 𝑀 𝑗

𝑥𝑦 = 𝑀 𝑗
𝑥 + 𝑖𝑀 𝑗

𝑦 , we obtain
(rotating frame)

d𝑀𝐴
𝑥𝑦

d𝑡
= 𝑖Ω𝐴𝑀𝐴

𝑥𝑦 − 𝑅𝐴
2 𝑀

𝐴
𝑥𝑦 − 𝑘𝐴𝐵𝑀𝐴

𝑥𝑦 + 𝑘𝐵𝐴𝑀𝐵
𝑥𝑦 , (3.41a)

d𝑀𝐵
𝑥𝑦

d𝑡
= 𝑖Ω𝐵𝑀𝐵

𝑥𝑦 − 𝑅𝐵
2𝑀

𝐵
𝑥𝑦 − 𝑘𝐵𝐴𝑀𝐵

𝑥𝑦 + 𝑘𝐴𝐵𝑀𝐴
𝑥𝑦 . (3.41b)

Equations (3.41) can be conveniently expressed in matrix form for arbitrary number of states
𝑁 . Let us define a vector of complex transverse magnetizations 𝐌𝑥𝑦 = (𝑀𝐴

𝑥𝑦 , 𝑀𝐵
𝑥𝑦 , … ,𝑀𝑁

𝑥𝑦 )T. Then
the McConnell equations of general 𝑁 -state exchange (of non-𝐽 -coupled spins) for FID signal are

(rotating frame)

d
d𝑡
𝐌𝑥𝑦 (𝑡) = (𝑖𝐋 − 𝐑𝟐 + 𝐊)𝐌𝑥𝑦 (𝑡) , (3.42)

where the diagonal6 matrix 𝐋 = diag(Ω𝐴, Ω𝐵, … , Ω𝑁 ) describes evolution due to the external
magnetic field, the diagonal matrix 𝐑𝟐 = diag(𝑅𝐴

2 , 𝑅𝐵
2 , … , 𝑅𝑁

2 ) accounts for transverse relaxation,
and the kinetic matrix K characterizes flux of magnetization from one state to another due to the
chemical exchange as discussed in detail in previous sections. Bloch-McConnell equations can
be solved analytically or numerically in the frequency domain, which will be explained in the
next section. Note that this classical description is not applicable in the presence of J-coupling,
which requires quantum mechanical approach [36, 111].

3.3.5 Solution of Bloch-McConnell equations

In literature reports [76, 77, 92, 101] the differential Bloch-McConnell equations (Eq. (3.42)) are
usually solved using matrix exponential involving matrix diagonalization. Subsequently, the
time-dependent vector of complex transverse magnetizations 𝐌𝑥𝑦 (𝑡) is converted to the fre-
quency domain using FT. This method is suitable for symmetric two-state exchange, however, it
already becomes quite inconvenient for the case of an asymmetric two-state exchange. There-
fore, other studies [112–114] use Bloch-McConnell equations in the frequency domain for nu-
merical simulations of exchange spectra. FT converts the differential Bloch-McConnell equations
into algebraic equations, which can be solved either numerically or analytically using standard
methods.

The following derivation holds for an arbitrary number of states and arbitrary kinetic sche-
mes. First, FT is applied to Eq. (3.42). Note that the signal from the spectrometer is not actually
infinite, but it is equal to zero for 𝑡 < 0. Therefore, the functions 𝑓 𝑗(𝑡) = 𝜃(𝑡)𝑀 𝑗

𝑥𝑦 (𝑡) should be
transformed instead of 𝑀 𝑗

𝑥𝑦 (𝑡), 𝑗 = 𝐴, 𝐵, … , 𝑁 . The function 𝜃(𝑡) is the Heaviside step function,
equal to zero for 𝑡 < 0 and unity otherwise. The left-hand side of Eq. (3.42) multiplied by the
Heaviside function can be rewritten using the Dirac delta function 𝛿(𝑡),

𝜃(𝑡)
d𝑀 𝑗

𝑥𝑦 (𝑡)
d𝑡

=
d
d𝑡 [

𝜃(𝑡)𝑀 𝑗
𝑥𝑦 (𝑡)] − 𝑀 𝑗

𝑥𝑦 (𝑡)
d𝜃(𝑡)
d𝑡

=
d𝑓 (𝑡)
d𝑡

− 𝑀 𝑗
𝑥𝑦 (𝑡)𝛿(𝑡) . (3.43)

FT of the first term on the right-hand side is7

d̂𝑓 (𝑡)
d𝑡

= 𝑖Ω𝑓 (Ω) , (3.44)

6‘diag(●)’ represents a diagonal matrix with diagonal elements listed in the parentheses.
7The convention for FT used in this work is 𝑓 (Ω) = ∫ +∞

−∞ 𝑓 (𝑡)𝑒−𝑖Ω𝑡d𝑡 . The corresponding inverse FT is then 𝑓 (𝑡) =
1
2𝜋 ∫ +∞

−∞ 𝑓 (Ω)𝑒𝑖Ω𝑡dΩ.
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and FT of the second term is

∫
+∞

−∞
𝑀 𝑗

𝑥𝑦 (𝑡)𝛿(𝑡)𝑒
−𝑖Ω𝑡d𝑡 = 𝑀 𝑗

𝑥𝑦 (𝑡 = 0) . (3.45)

Without loss of generality, let us assume that the initial transverse magnetization is real and
positive, 𝑀 𝑗

𝑥𝑦 (𝑡 = 0) = 𝑀 𝑗
0. Using Eq. (3.43), (3.44) and (3.45), FT of Eq. (3.42) has the following

form

[𝑖(Ω𝟏 − 𝐋) + 𝐑 − 𝐊]

⎛
⎜
⎜
⎜
⎜
⎝

𝑓 𝐴(Ω)
𝑓 𝐵(Ω)

⋮
𝑓 𝑁 (Ω)

⎞
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

𝑀𝐴
0

𝑀𝐵
0
⋮

𝑀𝑁
0

⎞
⎟
⎟
⎟
⎟
⎠

, (3.46)

where 𝟏 is the unit matrix, 𝐋 = diag(Ω𝐴, Ω𝐵, … , Ω𝑁 ), 𝐑 = diag(𝑅𝐴
2 , 𝑅𝐵

2 , … , 𝑅𝑁
2 ) and 𝐊 is the ap-

propriate kinetic matrix. Using the definition 𝛼𝑗 = 𝑅𝑗 + 𝑖(Ω − Ω𝑗) we can rewrite Eq. (3.46) as

[𝐀 − 𝐊]

⎛
⎜
⎜
⎜
⎜
⎝

𝑓 𝐴(Ω)
𝑓 𝐵(Ω)

⋮
𝑓 𝑁 (Ω)

⎞
⎟
⎟
⎟
⎟
⎠

= 𝑀0

⎛
⎜
⎜
⎜
⎜
⎝

𝑝𝐴
𝑝𝐵
⋮
𝑝𝑁

⎞
⎟
⎟
⎟
⎟
⎠

, (3.47)

where 𝐀 = diag(𝛼𝐴, 𝛼𝐵, … , 𝛼𝑁 ) and 𝑀 𝑗
0 = 𝑀0𝑝𝑗 .

Solution of this set of linear equations for 𝑓 𝑗(Ω) is straightforward. Resulting complex NMR
signal is detected as the sum of all components,

𝑆(Ω) = 𝑓 𝐴(Ω) + 𝑓 𝐵(Ω) + ⋯ + 𝑓 𝑁 (Ω) . (3.48)

Solution for two- and three-state exchange is given below. Implementation of this analytical
procedure in Mathematica code to obtain four- and five-state exchange spectral lineshapes is
shown in Appendix B.2. The derivation of the analytical solution also provides a scheme for the
numerical simulation of the spectrum [112, 113]. Multiplying Eq. (3.47) by [𝐀 − 𝐊]−1 from left
yields 𝑓 𝑗(Ω) values for a fixed Ω. Hence, for 𝑁 states, inversion of an 𝑁 × 𝑁 matrix is required
for each frequency value. Implementation of the numerical solution in MATLAB code is shown
in our paper [2].

So-called steady-state approximation (in the time domain) for continuous-wave NMR spec-
troscopy [115–117] provides an equation fully analogous to Eq. (3.47) without a requirement
to apply FT. However, the angular frequency Ω in those derivations stands for the frequency of
applied continuous radiofrequency field, not for the frequency of the detected signal (as in pulse
NMR approach).

3.3.6 Two-state exchange spectral lineshape

The solution of the system of Bloch-McConnell equations (Eq. (3.42)) for two-state exchange is
a standard part of literature reports in the symmetric [76, 77, 101] and also asymmetric case [92,
118, 119]. The formula in complex form reads

𝑆two-state exch.(Ω) = 𝑀0
𝑝𝐴𝛼𝐵 + 𝑝𝐵𝛼𝐴 + 𝑘𝐴𝐵 + 𝑘𝐵𝐴
𝛼𝐴𝛼𝐵 + 𝑘𝐴𝐵𝛼𝐵 + 𝑘𝐵𝐴𝛼𝐴

, (3.49a)

where
𝛼𝑗 = 𝑅𝑗

2 + 𝑖(Ω − Ω𝑗) , (3.49b)

for 𝑗 = 𝐴, 𝐵. Total transverse magnetization is denoted as 𝑀0 = 𝑀𝐴
0 + 𝑀𝐵

0 . At equilibrium, the
populations and transition rate coefficients in Eq. (3.49) are connected by the algebraic Eq. (3.29).
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The expression 𝛼−1
𝑗 describes the complex Lorentzian lineshape with Larmor frequency Ω𝑗

and transverse relaxation 𝑅𝑗
2, see Sec. 3.2.3. This is useful for calculation of two limit cases

explaining the spectral behavior in Fig. 3.4e: (i) The infinitely slow exchange limit gives

lim
𝑘𝐴𝐵 ,𝑘𝐵𝐴→0

𝑆two-state exch.(Ω) = 𝑀0(
𝑝𝐴
𝛼𝐴

+
𝑝𝐵
𝛼𝐵)

, (3.50)

which is, as expected, sum of two Lorentzian peaks. (ii) The infinitely fast exchange limit should
be done in equilibrium regime, i.e. keeping the ratio of transition rate coefficients constant and
equal to the ratio of populations, which yields

lim
𝑘𝐴𝐵 ,𝑘𝐵𝐴→∞

𝑆two-state exch.(Ω) [
𝑘𝐴𝐵
𝑘𝐵𝐴

=
𝑝𝐵
𝑝𝐴 ]

=
𝑀0

𝑝𝐴𝛼𝐴 + 𝑝𝐵𝛼𝐵
. (3.51)

This expression is a single Lorentzian peak located at averaged frequency 𝑝𝐴Ω𝐴 + 𝑝𝐵Ω𝐵 with av-
eraged relaxation rate 𝑝𝐴𝑅𝐴

2 +𝑝𝐵𝑅𝐵
2 . Lineshapes with larger number of states behave analogously

in slow and fast limit.
For lineshape fitting, it is convenient to express the real (absorption) part of the spectrum

from Eq. (3.49). The result and its implementation in Mathematica can be found in Appendix
B.1.2. The analytical lineshape can also be used to calculate the position of coalescence point in
Eq. (3.20), detailed treatment is given in our paper [2].

3.3.7 Three-state exchange spectral lineshape

The analytical solution of the system of Bloch-McConnell equations (Eq. (3.42)) for three-state
exchange was, to the best of our knowledge, first published in our paper [2] (although special
cases were presented during the early years of NMR spectroscopy [118, 120]). It should be noted
that Kovrigin [112] analyzed numerically several properties of three-state (and four-state) chem-
ical exchange. There also exist NMR spectral simulation programs (e.g. NmrLineGuru [113] and
TITAN [98]), which enable the numerical fitting of multi-state exchange lineshapes.

The spectral lineshape for three-state chemical exchange, derived using the procedure in Sec.
3.3.5, is as follows

𝑆three-state exch.(Ω) = 𝑀0



, (3.52)

where

𝑀0 = 𝑀𝐴
0 + 𝑀𝐵

0 + 𝑀𝐶
0 ,

 = 𝑝𝐴[𝛼𝐵𝛼𝐶 + 𝛼𝐵(𝑘𝐶𝐴 + 𝑘𝐶𝐵 + 𝑘𝐴𝐶 ) + 𝛼𝐶 (𝑘𝐵𝐴 + 𝑘𝐵𝐶 + 𝑘𝐴𝐵)]
+ 𝑝𝐵[𝛼𝐴𝛼𝐶 + 𝛼𝐴(𝑘𝐶𝐴 + 𝑘𝐶𝐵 + 𝑘𝐵𝐶 ) + 𝛼𝐶 (𝑘𝐴𝐵 + 𝑘𝐴𝐶 + 𝑘𝐵𝐴)]
+ 𝑝𝐶[𝛼𝐴𝛼𝐵 + 𝛼𝐴(𝑘𝐵𝐴 + 𝑘𝐵𝐶 + 𝑘𝐶𝐵) + 𝛼𝐵(𝑘𝐴𝐵 + 𝑘𝐴𝐶 + 𝑘𝐶𝐴)]
+ 𝜋𝐴 + 𝜋𝐵 + 𝜋𝐶 ,

 = 𝛼𝐴𝛼𝐵𝛼𝐶 + 𝛼𝐴𝛼𝐵(𝑘𝐶𝐴 + 𝑘𝐶𝐵) + 𝛼𝐴𝛼𝐶 (𝑘𝐵𝐴 + 𝑘𝐵𝐶 ) + 𝛼𝐵𝛼𝐶 (𝑘𝐴𝐵 + 𝑘𝐴𝐶 )
+ 𝛼𝐴𝜋𝐴 + 𝛼𝐵𝜋𝐵 + 𝛼𝐶𝜋𝐶 ,

𝜋𝐴 = 𝑘𝐵𝐴𝑘𝐶𝐴 + 𝑘𝐵𝐶𝑘𝐶𝐴 + 𝑘𝐵𝐴𝑘𝐶𝐵 ,
𝜋𝐵 = 𝑘𝐴𝐵𝑘𝐶𝐴 + 𝑘𝐴𝐵𝑘𝐶𝐵 + 𝑘𝐴𝐶𝑘𝐶𝐵 ,
𝜋𝐶 = 𝑘𝐴𝐶𝑘𝐵𝐴 + 𝑘𝐴𝐵𝑘𝐵𝐶 + 𝑘𝐴𝐶𝑘𝐵𝐶 .

Quantities 𝜋𝑗 are proportional to the steady-state population flux as can be deduced from Eq.
(3.35).
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Details about lineshape fitting in different modes (i.e. equilibrium, steady-state and out-of-
steady-state mode with time-dependent populations) of the spin kinetics and discussion about the
interdependency of the fitted parameters during lineshape analysis can be found in our paper [2].
For lineshape fitting, it is convenient to express the real (absorption) part of the spectrum from
Eq. (3.52). The result and its implementation in Mathematica can be found in Appendix B.1.3. It
is also worth mentioning that a steady-state in the general three-state exchange scheme cannot
be distinguished from an equilibrium by analyzing a single NMR spectrum since the equilibrium
lineshape (Eq. (3.52) and (3.36)) can also be fitted to the steady-state lineshape (Eq. (3.52) and
(3.35)), although they are not mathematically identical [2].

3.3.8 Exchange schemes containing a fast process

Let us consider a consecutive exchange with slow or intermediate exchange between states 𝐴
and 𝐵 and fast exchange between 𝐵 and 𝐶 , see Scheme 3.2a.

(a) spin kinetics (b) reduced equivalent 
___scheme

Scheme 3.2: Consecutive three-state exchange containing a fast exchange process. (a) Spin kinetics scheme
and (b) the corresponding reduced equivalent scheme.

The two fast-exchanging peaks merge, so that only two peaks can be observed. This situation
can be modeled as limit of 𝑘𝐵𝐶 , 𝑘𝐶𝐵 → ∞ in Eq. (3.52), where the ratio 𝑘𝐵𝐶 /𝑘𝐶𝐵 = 𝑝𝐶 /𝑝𝐵 is kept
constant. The resulting equation is

𝑆three-state exch.limit(Ω) = 𝑀0



, (3.53)

where

𝑀0 = 𝑀𝐴
0 + 𝑀𝐵

0 + 𝑀𝐶
0 ,

 = 𝑝𝐴
𝑝𝐵𝛼𝐵 + 𝑝𝐶𝛼𝐶

𝑝𝐵 + 𝑝𝐶
+ (𝑝𝐵 + 𝑝𝐶 )𝛼𝐴 +

𝑘𝐵𝐴𝑝𝐵
𝑝𝐵 + 𝑝𝐶

+ 𝑘𝐴𝐵 ,

 = 𝛼𝐴
𝑝𝐵𝛼𝐵 + 𝑝𝐶𝛼𝐶

𝑝𝐵 + 𝑝𝐶
+

𝑘𝐵𝐴𝑝𝐵
𝑝𝐵 + 𝑝𝐶

𝛼𝐴 + 𝑘𝐴𝐵
𝑝𝐵𝛼𝐵 + 𝑝𝐶𝛼𝐶

𝑝𝐵 + 𝑝𝐶
.

In comparison with Eq. (3.49), it becomes obvious that three-state exchange containing a fast
process can be modeled as a two-state exchange between states 𝐴 and 𝐵′ with transition rate co-
efficients 𝑘𝐴𝐵 and 𝑘𝐵′𝐴, where 𝑘𝐵′𝐴 has the following relationship to the transition rate coefficient
𝑘𝐵𝐴 with physical meaning

𝑘𝐵′𝐴 = 𝑘𝐵𝐴
𝑝𝐵

𝑝𝐵 + 𝑝𝐶
. (3.54)

The offset resonant frequency of the state 𝐵′ is the population weighted average of the frequencies
Ω𝐵 and Ω𝐶 , in particular Ω𝐵′ = (𝑝𝐵Ω𝐵 + 𝑝𝐶Ω𝐶 )/(𝑝𝐵 + 𝑝𝐶 ) (by analogy with fast asymmetric two-
state exchange). Similarly, it holds that 𝑅𝐵′

2 = (𝑝𝐵𝑅𝐵
2 + 𝑝𝐶𝑅𝐶

2 )/(𝑝𝐵 + 𝑝𝐶 ) for the relaxation rate.
We can view the 𝐵′ replacement state as being merged 𝐵 and 𝐶 since 𝑀𝐵′ = 𝑀𝐵 + 𝑀𝐶 (and
consequently 𝑝𝐵′ = 𝑝𝐵 + 𝑝𝐶 ). The full kinetic scheme is simplified to a reduced equivalent scheme
as seen in Scheme 3.2b. To maintain the transition rate from 𝐵′ to 𝐴 (one-way population flux, i.e.
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𝑘𝐵′𝐴𝑝𝐵′ ) the same as the transition rate from 𝐵 to 𝐴 (𝑘𝐵𝐴𝑝𝐵) in the original scheme, the equality
𝑘𝐵′𝐴𝑝𝐵′ = 𝑘𝐵𝐴𝑝𝐵 must hold. Because 𝑝𝐵′ is larger than 𝑝𝐵, the modified constant 𝑘𝐵′𝐴 should be
smaller than the original constant 𝑘𝐵𝐴. Note that only the transition rate coefficient out of the
replacement state 𝐵′ is modified.

Modified transition rate coefficient 𝑘𝐵′𝐴 can also be obtained directly from the differential
equations d𝐩

d𝑡 = 𝐊𝐩 without the use of analytical lineshapes. In this case, the equations are as
follows

d𝑝𝐴
d𝑡

= −𝑘𝐴𝐵𝑝𝐴 + 𝑘𝐵𝐴𝑝𝐵 , (3.55a)

d𝑝𝐵
d𝑡

= −(𝑘𝐵𝐴 + 𝑘𝐵𝐶 )𝑝𝐵 + 𝑘𝐴𝐵𝑝𝐴 + 𝑘𝐶𝐵𝑝𝐶 , (3.55b)

d𝑝𝐶
d𝑡

= −𝑘𝐶𝐵𝑝𝐶 + 𝑘𝐵𝐶𝑝𝐵 . (3.55c)

After adding Eq. (3.55b) and Eq. (3.55c), expanding 𝑝𝐵 = 𝑝𝐵
𝑝𝐵+𝑝𝐶 (𝑝𝐵 +𝑝𝐶 ) and substituting 𝑝𝐵 +𝑝𝐶 =

𝑝𝐵′ we obtain
d𝑝𝐴
d𝑡

= −𝑘𝐴𝐵𝑝𝐴 + 𝑘𝐵𝐴
𝑝𝐵

𝑝𝐵 + 𝑝𝐶
𝑝𝐵′ , (3.56a)

d𝑝𝐵′
d𝑡

= −𝑘𝐵𝐴
𝑝𝐵

𝑝𝐵 + 𝑝𝐶
𝑝𝐵′ + 𝑘𝐴𝐵𝑝𝐴 . (3.56b)

Prefactors of 𝑝𝐵′ in the above equations yield the correct form of 𝑘𝐵′𝐴 (cf. Eq. (3.54)).

3.4 NMR of host-guest systems

3.4.1 Chemical exchange in host-guest complexes

In this section, we provide the relationship between reaction rate coefficients 𝜅𝑖𝑗 (introduced in
Sec. 2.1.3), which describe the kinetics of host-guest binding, and transition rate coefficients 𝑘𝑖𝑗
which describe transitions of a particular spin between corresponding states. Reaction rate coef-
ficients are independent of concentration and their temperature dependence is governed by the
Eyring equation (Eq. 2.20). In general, transition rate coefficients may or may not be dependent
on concentration. The relationship between transition and reaction rate coefficients also auto-
matically reveals the concentration dependence of transition rate coefficients, cf. section 5.6.1 in
[77].

(a) chemical kinetics (b) spin kinetics

Scheme 3.3: Two-state exchange with 1:1 host-guest binding. Schemes for (a) chemical kinetics and (b)
corresponding spin kinetics of a nucleus located at the host molecule.

Let us consider the 1:1 binding of a host (H) with a guest (G) in Scheme 3.3a with an equilib-
rium constant

𝐾HG =
[HG]
[H][G]

=
𝜅𝐴𝐵
𝜅𝐵𝐴

. (3.57)

Guldberg-Waage’s law of mass action (Sec. 2.1.3) assumes that the forward and backward rates
of a chemical reaction are proportional to the concentrations of reacting molecules,

forward reaction rate = 𝜅𝐴𝐵[G][H] , (3.58a)
backward reaction rate = 𝜅𝐵𝐴[HG] . (3.58b)
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The free host H can be assigned to state 𝐴 and the complex HG to state 𝐵 ([𝐴] = [H] and
[𝐵] = [HG]). The variation of concentration with time of the spin state 𝐵 associated with the
HG complex, i.e. the transition rate, is given by Scheme 3.3b and Eq. (3.24) (multiplied by [H]t
to transform populations to concentrations, subscript ‘t’ denotes total concentration), yielding
d[𝐵]
d𝑡 = 𝑘𝐴𝐵[𝐴] − 𝑘𝐵𝐴[𝐵]. In the latter equation, the two right-hand side terms are identified as

forward and backward transition rates, that is

forward transition rate = 𝑘𝐴𝐵[𝐴] , (3.59a)
backward transition rate = 𝑘𝐵𝐴[𝐵] . (3.59b)

A comparison of Eq. (3.58) with Eq. (3.59), using [𝐴] = [H] and [𝐵] = [HG], implies that 𝑘𝐴𝐵
depends on free guest concentration unlike 𝑘𝐵𝐴,

𝑘𝐴𝐵 = 𝜅𝐴𝐵[G] , (3.60a)
𝑘𝐵𝐴 = 𝜅𝐵𝐴 . (3.60b)

The free guest concentration [G] and consequently the value of 𝑘𝐴𝐵 increases with [G]t and
decreases with [H]t. For bimolecular elementary reactions the transition rate coefficients usually
depend linearly on concentration, while for unimolecular reaction (i.e. decay of the complex) the
transition rate coefficients are independent of concentration.

The above formulae (Eq. (3.60)) imply that simple 1:1 host-guest binding does not allow (in
general) for symmetric two-state exchange because during the titration experiments (i.e. mea-
surement of spectra at different guest concentrations when the guest is gradually added into the
host solution), the 𝑝𝐵/𝑝𝐴 ratio always increases upon addition of guest molecules. Only two out
of the three parameters 𝜅𝐴𝐵, 𝜅𝐵𝐴 and 𝐾HG are independent. The dependence of [H], [HG] and
[G] on the total host and guest concentrations ([H]t and [G]t) can be expressed in an analytical
form for 1:1 host-guest binding, see Sec. 2.2.1.

Figure 3.5 illustrates a simulated titration of a host with a guest, which form a complex ac-
cording to Scheme 3.3a. Simulated spectra shown in Fig. 3.5a contain two resonances in an
intermediate exchange regime. The resonances belong to the host in states 𝐴 (corresponding to
H) and 𝐵 (corresponding to HG). As the total amount of guest ([G]t) increases from zero to one
equivalent (from bottom to the top in Fig. 3.5a), the population of state 𝐵 increases (Fig. 3.5b)
as well as the concentration of free and bound guest ([G] and [HG] in Fig. 3.5c). Because the
exchange is in an intermediate regime, the apparent peak maxima shift towards each other and
eventually coalesce (Fig. 3.5d, details about coalescence in asymmetric two-state exchange can
be found in our paper [2]). In accordance with Eq. (3.60), the transition rate coefficient 𝑘𝐴𝐵 de-
pends on guest concentration, while 𝑘𝐵𝐴 does not. Note that although the function 𝑘𝐴𝐵([G]) is
linear, the function 𝑘𝐴𝐵([G]t) is nonlinear and can be calculated using Eq. (3.60a) and Eq. (2.26c).

Another example of a three-state exchange in the competitive host-ligand binding model
(two types of ligands), including the lineshapes during a simulated titration experiment can be
found in our paper [2].

3.4.2 NMR titration binding isotherms

Titration of the host with the guest is a standard experiment to investigate host-guest supramo-
lecular binding. At the beginning, the sample solution contains only the host molecule and the
guest is gradually added from a stock solution (the stock solution may contain the same con-
centration of host as in the sample to prevent dilution). If the host and guest molecules do not
interact, the measured spectrum is just sum of the pure H and pure G spectra. Their interaction
is manifested by appearance of new peaks due to the HG complex (slow exchange), by shift of
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Figure 3.5: Illustration of two-state exchange combined with 1:1 host-guest binding in a simulated titration
of host with guest (at constant [H]t). (a) Simulated spectral lineshapes (𝑦-scaling of spectra is adjusted
for clarity). Concentration of guest corresponds to the value where the simulated spectrum meets the
𝑦-axis. The spectrum of the free host is cropped for clarity. Concentration dependence of (b) populations,
(c) concentration of all species, (d) apparent positions of peak maxima and (e) transition rate coefficients.
Discrete points in plots of various quantities correspond to the spectra shown on the left. Simulation
parameters: 𝑅𝐴2 = 𝑅𝐵2 = 30 s−1, 𝜅𝐴𝐵 = 2 × 106 s−1M−2, 𝐾HG = 1 × 104 M−1, [H]t = 1 mM, spectrometer
frequency 𝜈0 = 500.13 MHz (which is used for conversion from ppm to rad.s−1). Chemical shifts of pure 𝐴
(corresponding toH) and pure 𝐵 (HG) states are 𝛿𝐴 = 1 ppm and 𝛿𝐵 = 0.5 ppm, respectively. Equivalents of
guest are defined as [G]t/[H]t. The spectral lineshapes were calculated using Eq. (3.49) and concentrations
determined using Eq. (2.26).

resonances (fast exchange) or by more complex change of the spectral lineshapes (intermediate
exchange regime).

A binding isotherm describes dependence of a spectral feature (e.g. chemical shift or inte-
grated peak intensity) on the total concentration of added guest in a titration at constant tem-
perature. The binding isotherm can also be calculated from a binding model, which enables
fitting of the experimental data and determination of binding constants. Figure 3.6 illustrates
construction of binding isotherms using the example of 1:1 host-guest binding from the previ-
ous section. Slow exchange between free and complexed host enables integration of isolated
peaks (numerically or using lineshape fitting) due to free and complexed host as shown in Fig.
3.6a. The binding isotherm corresponding to observed complexed fraction of host can be con-
structed as 𝑝HG,obs = area(𝐴)

area(𝐴)+area(𝐵) , see Fig. 3.6b. Complexed fraction can also be calculated from
the host-guest binding model using Eq. (2.26b), 𝑝HG,calc = [HG]

[H]t . Hence, 𝑝HG,obs obtained from
the experiment can be fitted with 𝑝HG,calc with 𝐾HG as the fitting parameter. To conclude, slow
exchange binding isotherm can be constructed as

complexed fraction =
∑ area(peaks due to the complex)

∑ area(all peaks) . (3.61)

Fast exchange regime causes averaging of observed signals and only one peak is observed (cf.
Eq. (3.51)), whose observed chemical shift 𝛿obs is the population-weighted average of chemical
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Figure 3.6: Illustration of NMR titration isotherms for two-state exchange combined with 1:1 host-guest
binding in simulated titrations of host with guest (at constant [H]t). (a) Simulated spectral lineshapes in
slow exchange regime. (b) Fraction of complexed host and the slow exchange binding isotherm. (c) Sim-
ulated spectral lineshapes in fast exchange regime. (d) Position of the observed averaged peak (𝛿obs) and
the fast exchange binding isotherm. Concentration of guest corresponds to the value where the simulated
spectrum meets the 𝑦-axis in (a,c), 𝑦-scaling of the spectra is adjusted for clarity. Discrete points in (b,d)
correspond to the spectra shown in (a,c), respectively. Simulation parameters are 𝜅𝐴𝐵 = 2 × 104 s−1M−2

in (a) and 𝜅𝐴𝐵 = 2 × 108 s−1M−2 in (b), the other parameters are identical as in Fig. 3.5. Equivalents of
guest are defined as [G]t/[H]t. The spectral lineshapes were calculated using Eq. (3.49) and concentrations
determined using Eq. (2.26).

shifts 𝛿𝑗 of all states 𝑗, which are under mutual fast exchange. Mathematically

𝛿obs = ∑
𝑗=𝐴,𝐵,...

𝑝𝑗𝛿𝑗 . (3.62)

Considering our example with two states shown in Fig. 3.6c, the binding isotherm is 𝛿obs = 𝑝𝐴𝛿𝐴+
𝑝𝐵𝛿𝐵 (see page 194 in [48]). The observed chemical shift can be fitted with 𝛿calc = [H]

[H]t 𝛿𝐴 +
[HG]
[H]t 𝛿𝐵

with 𝐾HG as the fitting parameter, where [H] and [HG] are calculated using Eq. (2.26), see Fig.
3.6d.

If the NMR resonances are in intermediate regime as in Fig. 3.5a, then the spectral pattern
must be fitted with the appropriate exchange lineshape and the aforementioned slow and fast
binding isotherms are not applicable.
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3.4.3 Determination of enantiomeric excess

Mirror image of a chiral molecule is non-superposable with the original (i.e. it lacks symmetry
elements of mirror plane, inversion center or improper rotation axis [121]). The two mirror
forms are called enantiomers and are often denoted as (R) and (S).8 Synthesis of chiral molecules
mostly produces a mixture of both enantiomers, which is characterized by enantiomeric excess
e.e. defined as

e.e. = [𝑅] − [𝑆]
[𝑅] + [𝑆]

. (3.63)

Thus, e.e. = 1 and e.e. = −1 imply enantiopure (R)- and (S)-form, respectively; e.e. = 0 implies
racemate (i.e. 1:1 mixture of (R)- and (S)-form).

NMR spectra of both enantiomers are identical and thus indistinguishable. Their distinction
is enabled by the presence of additional chiral agents in the sample (alternatively, the solvent
itself can serve as chiral agent [122]), which form covalent (chiral derivatizing agents) or non-
covalent (chiral solvating agents, chiral lanthanide shift reagents) bonds with the chiral analyte
[122–124]. Binding of the chiral agent with two enantiomeric forms of chiral analyte produces
so-called diastereomers, i.e. stereoisomers which are not mutual mirror images9 (possible types
of diastereomers in the case of 1:1 binding are (R,R) and (R,S) or alternatively (S,R) and (S,S)).
Diastereomers have different NMR spectra thus enabling determination of e.e. The use of chiral
derivatizing agents is limited by kinetic resolution (i.e. different reaction rate for (R)- and (S)-
enantiomers) or by racemization (e.g. by heat) during the analyte-agent reaction [125]. These
disadvantages are not present, when non-covalently bound agents are used.

Let us consider non-covalent binding of a chiral solvating agent denoted as host H (enantiop-
ure, can be either (R)- or (S)-form) with enantiomeric mixture of guest analytes (R)-G and (S)-G
according to the scheme in Fig. 3.7a. Fast exchange between free molecules and their complex
is required to produce sharp signals for peak integration. The reference spin of (R)-G under-
goes exchange between states 𝑅free and 𝑅bound forming a replacement state 𝑅′ (see Sec. 3.3.8),
similarly, reference spin of (S)-G undergoes exchange between states 𝑆free and 𝑆bound forming a
replacement state 𝑆′, see Fig. 3.7b. According to Eq. (3.62) signals of states 𝑅′ and 𝑆′ are located
at

𝛿𝑅′ = 𝑝𝑅,free𝛿𝑅,free + 𝑝𝑅,bound𝛿𝑅,bound , (3.64a)
𝛿𝑆′ = 𝑝𝑆,free𝛿𝑆,free + 𝑝𝑆,bound𝛿𝑆,bound . (3.64b)

Despite fast exchange, two signals are present because they originate from different guest mole-
cules. The splitting Δ𝛿 = 𝛿𝑅′ − 𝛿𝑆′ is equal to [123]

Δ𝛿 = 𝑝𝑅,free𝛿𝑅,free + 𝑝𝑅,bound𝛿𝑅,bound − 𝑝𝑆,free𝛿𝑆,free − 𝑝𝑆,bound𝛿𝑆,bound . (3.65)

Most importantly, intensity of the peaks is proportional to the concentration of each analyte
enanantiomer, which enables determination of e.e. by peak integration. Different binding affinity
of the agent H to (R)-G or (S)-G has no effect on resulting areas of the split peaks because of the
undergoing exchange between free and bound forms of guest.

Determination of e.e. is illustrated with 2-methylbutyric acid analyte (guest) and 1,2-diphe-
nylethane-1,2-diamine chiral solvating agent (host) [124], see Fig. 3.7c. Signal due to the refer-
ence guest methyl group (denoted by blue circle in Fig. 3.7c) forms a doublet due to J-coupling
as shown in Fig. 3.7d. Additional splitting by Δ𝛿 is attributed to the formation of diastereomers.
Then the integrated intensities of peaks due to (R)- and (S)-form reflect the enantiomeric excess.

8Descriptors (R)/(S) are used, when chirality is caused by a particular asymmetric center in the molecule, mostly
an sp3 carbon atom. Other descriptors exist, see page 304 in [74].

9diastereomers https://goldbook.iupac.org/terms/view/D01679

https://goldbook.iupac.org/terms/view/D01679
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Note that Δ𝛿 must be large enough so that the two signals are separated, its value differs for
each chiral solvating agent [122]. Furthermore, Δ𝛿 is the biggest if the chiral solvating agent is
enantiopure. This method also works when 1:2 host-guest complexes are formed, however, value
of Δ𝛿 differs for each stoichiometry [122].

A different method of e.e. determination was introduced recently. It is based on complex-
ation of chiral analytes with so-called prochiral solvating agents [37–40, 42], in particular with
oxoporphyrinogens introduced in Sec. 1.2. To understand this method, we will explain a few
terms related to so-called ‘topicity’, which is illustrated in Fig. 3.8. Topicity [126] is a property of
a pair of sites, in our case the sites are hydrogen atoms. Figure 3.8a illustrates homotopic10 pair
of sites, where substitution of the red hydrogen atom for chlorine atom leads to the same result
as substitution of the green hydrogen atom. Sites are homotopic when they can interchange
through proper rotation 𝐂𝑛. Figure 3.8b illustrates enantiotopic11 pair of sites, where substitution
of the red or green hydrogen atoms results into two different enantiomers (replacement with a
chiral group leads to diastereomers). Enantiotopic molecular sites are related through improper
rotation12 𝐒𝑛, but not through proper rotation 𝐂𝑛. Note that sites located exactly in the mirror
symmetry plane are not enantiotopic. Finally, Fig. 3.8c illustrates diastereotopic13 pair of sites,
where substitution of the red or green hydrogen atoms results into two different diastereomers.
Diastereotopic sites are constitutionally equivalent (e.g. bound to the same C atom) but not re-
lated by any symmetry operation [126]. Enantiotopic or diastereotopic nuclei are also called
‘heterotopic’. Pair of atomic nuclei located at homotopic or enantiotopic sites possess identical
NMR chemical shift unlike diastereotopic sites. Topicity enables us to define prochiral molecules
as those having at least one pair of enantiotopic sites [126, 127]. Generally, prochirality is “the
geometric property of an achiral object (or spatial arrangement of points or atoms) which is capa-
ble of becoming chiral in a single desymmetrization step”.14 The mirror symmetry plane between
enantiotopic sites is denoted as prochiral plane.

When a prochiral solvating agent (host) forms a complex with a chiral analyte (guest) ac-
cording to the scheme in Fig. 3.7a, the complexes H(R)-G and H(S)-G are mutual mirror images
as follows from the definition of prochirality. Hence, there is chirality transfer from guest to host
[40]. Supramolecular complexes are bound weakly, therefore the guest molecule undergoes fast
movement at the host binding site forming so-called ‘chiral field’ [40]. Symmetry of the chiral
field depends on symmetry of the host and guest molecules, see Chapter 7 for details. Pair of
enantiotopic nuclear spins of host are chosen as reference spins and their NMR spectrum is ob-
served. As shown in Fig. 3.7e, both reference spins are in state 𝐶 in free host. In the H(R)-G
complex, the reference spin 1 is in state 𝐴 and the reference spin 2 is in state 𝐵. Since the ref-
erence spins are enantiotopic, complex (S)-G induces state 𝐵 the reference spin 1 and state 𝐴 in
the reference spin 2. In other words, the presence of prochiral plane in the host shapes the chiral
field so that the exchange (𝑅) ↔ (𝑆) of enantiomers in the complex causes swapping of states
𝐴 → 𝐵 and 𝐵 → 𝐴 of the two reference enantiotopic spins. Host-guest complex formation
must be fast on the NMR timescale to permit measurement of e.e., thus, only one averaged peak
can be observed for each reference spin. According to Eq. (3.62), chemical shifts of the observed
averaged peaks are

𝛿(1) = 𝑝HG(𝑝𝐴(1)𝛿𝐴 + 𝑝𝐵(1)𝛿𝐵) + 𝑝H𝛿𝐶 , (3.66a)
𝛿(2) = 𝑝HG(𝑝𝐵(2)𝛿𝐵 + 𝑝𝐴(2)𝛿𝐴) + 𝑝H𝛿𝐶 , (3.66b)

10homotopic https://goldbook.iupac.org/terms/view/H02857
11enantiotopic https://goldbook.iupac.org/terms/view/E02083
12Improper rotation includes inversion 𝐢 (𝐒1 = 𝐂1𝝈h = 𝐢) and mirror reflection 𝝈h (𝐒2 = 𝐂2𝝈h = 𝝈h) [121].
13diastereotopic https://goldbook.iupac.org/terms/view/D01685
14prochirality https://goldbook.iupac.org/terms/view/P04859

https://goldbook.iupac.org/terms/view/H02857
https://goldbook.iupac.org/terms/view/E02083
https://goldbook.iupac.org/terms/view/D01685
https://goldbook.iupac.org/terms/view/P04859
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Figure 3.7: Determination of enantiomeric excess (e.e.) using chiral or prochiral solvating agents. (a) Chemical
kinetics scheme usable in both methods. The processes must be fast on NMR timescale. Chiral solvating agent:
(b) Spin kinetics of two reference spins located at two different molecules (R)-G and (S)-G. (c–d) Example of a chiral
analyte and a chiral solvating agent adopted from [124]. The reference methyl peak due to G (denoted by blue circle
in (c)) forms a doublet due to J-coupling, and further splits by Δ𝛿 as the diastereomers are formed. Intensity ratio of
peaks due to (R)-G and (S)-G is 𝑝𝑅/𝑝𝑆 . Prochiral solvating agent: (e) Spin kinetics of two reference spins located
at the same host molecule in HG complex. (f) Determination of Δ𝛿 from spectrum without J-coupling and (g) with
J-coupling. The former spectral shape consists of two Lorentzians, the latter can be found in [40] or in Appendix
B.1.4. Splitting due to J-coupling 𝐽 is related to the coupling constant 𝐽 by 𝐽 [ppm] = 𝐽 [Hz]/𝜈0 [MHz], where 𝜈0 is the
spectrometer frequency). Schemes in (e,f) are valid for 𝑝H = 0. (h–j) Example of chiral analyte and prochiral solvating
agent Bz2OxP adopted from [45]. The enantiotopic reporter groups of prochiral Bz2OxP are its 𝛽-protons denoted
by color circles in (h) (reference spin 1 and 2). Another pair of identical reporter groups denoted by gray ellipse lies
symmetrically relative to the mirror plane 𝜎v. Spectral splitting in (i) is linear with e.e. according to Eq. (3.67) as
shown in (j).
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homotopic enantiotopic diastereotopic

identical enantiomers diastereomers

(a) (b) (c)

Figure 3.8: Illustration of topicity. The colored pair of hydrogen atoms are (a) homotopic, when replace-
ment of the red hydrogen results to identical structure as replacement of the green hydrogen, (b) enan-
tiotopic, when the replacement leads to enantiomers and (c) diastereotopic, when replacement produces
diastereomers.

where 𝑝𝐴(1), 𝑝𝐵(1), 𝑝𝐴(2) and 𝑝𝐵(2) are relative fractions of the reference spins 1 and 2 in the corre-
sponding states 𝐴 or 𝐵 in the host-guest complex, it holds 𝑝𝐴(1) + 𝑝𝐵(1) = 1 and 𝑝𝐴(2) + 𝑝𝐵(2) = 1.
Furthermore, 𝑝H+𝑝HG = 1 holds for populations of free (𝑝H) and complexed (𝑝HG) host. Let us de-
note relative fractions of (R)- and (S)-form of guest as 𝑝𝑅 and 𝑝𝑆 , respectively, where 𝑝𝑅 + 𝑝𝑆 = 1.
Using Eq. (3.63) in the form of e.e. = 𝑝𝑅−𝑝𝑆

𝑝𝑅+𝑝𝑆 and using the relationships 𝑝𝐴(1) = 𝑝𝑅 , 𝑝𝐵(1) = 𝑝𝑆 ,
𝑝𝐴(2) = 𝑝𝑆 and 𝑝𝐵(2) = 𝑝𝑅 , Eq. (3.66) imply that splitting Δ𝛿 = 𝛿(1) − 𝛿(2) between signals of
reference spins 1 and 2 equals to [40]

Δ𝛿 = Δ𝛿max × e.e. × 𝑝HG , (3.67)

where Δ𝛿max = 𝛿𝐴 − 𝛿𝐵. Hence, the observed splitting Δ𝛿 is directly proportional to e.e. Figures
3.7f,g show how Δ𝛿 is determined without or with the presence of J-coupling. These schemes are
valid for 𝑝HG = 0, otherwise the observed peak positions are both shifted towards 𝛿𝐶 , however,Δ𝛿
would not be affected. Note that both averaged peaks have the same intensity. Determination
of Δ𝛿 for J-coupled nuclei in Fig. 3.7g requires lineshape fitting, the relevant formula for the
spectral lineshape is given in Appendix B.1.4.

An actual example is e.e. determination of camphorsulfonic acid analyte using Bz2OxP
prochiral solvating agent [45], see Fig. 3.67h. The reporter spins (reference spins 1 and 2) belong
to enantiotopic 𝛽-hydrogens denoted by blue and red circles (another pair of identical reporter
groups denoted by gray ellipse lie symmetrically relative to the mirror plane 𝜎v, their signals
overlap with the signal of the reference spins). These atoms are located symmetrically with re-
spect to prochiral mirror plane 𝜎 ′

v and are mutually J-coupled, hence the resulting spectral shapes
shown in Fig. 3.67i follow the scheme in Fig. 3.67g. Spectral lineshape fitting revealed linear de-
pendence of Δ𝛿 on e.e. shown in Fig. 3.67j as expected from Eq. (3.67). Note that 𝐶2v symmetry of
Bz2OxP causes that each nuclear spin of the molecule has its enantiotopic counterpart reflected
through 𝜎v or 𝜎 ′

v symmetry plane, which, at the same time, are not related by the 𝐶2 rotation
axis. Only the N atoms and the hydrogens of NH groups are an exception as they lie exactly on
the symmetry plane.

To conclude, contrary to the use of chiral solvating agents, where e.e. is determined by
integration, prochiral solvating agents determine e.e. from the extent of peak splitting Δ𝛿 . Im-
portantly, sign of e.e. cannot be determined from one measurement since e.e. and −e.e. produce
identical peak splitting. The sign can be determined when, for example, small amount of enan-
tiopure (R)-form of analyte is added into the sample, then Δ𝛿 increases upon addition if e.e. > 0
or decreases if e.e. < 0. Also, value of Δ𝛿max must be obtained independently using enantiopure
analyte. Oxoporphyrinogens or TPP (see Sec. 1.2) are well-described prochiral solvating agents,
furthermore, a sp3 meso-carbon porphyrinogen [43] or a coordination complex of Zn with salen-
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like ligand [44], acting as prochiral solvating agents, have been published. Determination of e.e.
using prochiral solvating agents is also possible in host-guest complexes with 1:2 stoichiometry
[37]. Other methods of chiral discrimination in NMR use chiral liquid crystals [128, 129].



4 UV/vis spectroscopy
Ultraviolet/visible (UV/vis) spectroscopy measures interaction of light with electronic structure
of analytes. This structure is affected by protonation and supramolecular host-guest binding,
thus, UV/vis is a good instrument to investigate these processes typically in titration experiments.
Analysis of UV/vis titrations is conveniently performed using singular value decomposition as
described in the next chapter.

4.1 Absorbance measurement

The experimental setup inside a UV/vis spectrometer is shown in Fig. 4.1 (see section 13 in [130]
for details). The source (incandescent lamp in combination with diffraction grating) produces
essentially monochromatic light beam passing through the sample in a cuvette and further to the
photodetector. Light interacts with the analyte in three ways: (i) transmission, when the light
passes though the sample without changes, (ii) scattering, when the photons change direction
and (iii) absorption, when the light induces dissipative processes in the analyte and its energy
is transformed to heat. The measurement is performed for all wavelengths in the accessible
range, typically 200–900 nm. Incident intensity 𝐼0(𝜆) and transmitted intensity 𝐼 (𝜆) (Fig. 4.1)
are measured by the photodetector (the former is measured without the presence of analyte)
for all wavelengths in the accessible range, typically 200–900 nm. Then, the UV/vis spectrum is
constructed as transmittance [131]

𝑇 (𝜆) =
𝐼 (𝜆)
𝐼0(𝜆)

(4.1)

or absorbance
𝐴(𝜆) = log

𝐼0(𝜆)
𝐼 (𝜆)

= − log 𝑇 , (4.2)

where ‘log’ denotes decadic logarithm. In this work, we use absorbance for visualization of
measured UV/vis spectra. Note that according to Fig. 4.1, the measured absorbance accounts not
only for absorption but also for scattering of light in the sample.

I
I0

absorption

transmission

scattering

light source

sample
in cuvette

photodetectorl

Figure 4.1: Experimental setup of UV/vis measurement.

Absorption of light is directly related to transitions between electronic energy levels of the
analyte molecules. In this regard, HOMO-LUMO1 transitions play the most significant role [132].

1Highest occupied molecular orbitals and lowest unoccupied molecular orbitals, respectively.
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UV/vis spectra in gas state reflect splitting of electronic states due to vibrational and rotational
molecular motions [133]. However, in liquid samples due to collisions with solvent, rotation
of the analyte is restricted and energies of vibrations are modified in a nonuniform way, thus,
rotational and vibrational lines disappear (see chapter 14b in [130] and chapter 7 in [134]). Typ-
ical UV/vis absorption bands of liquid samples have approximately log-normal shape [135, 136].
Scattering is caused by the presence of large molecules or particles (≈ 100 nm diameter) [137].

4.2 Beer-Lambert law of absorption

Intensity of light transmitted through the sample decreases exponentially as formulated by the
Beer-Lambert law of absorption

𝐼 = 𝐼010−𝜖𝑙[X] , (4.3)

where 𝑙 is the cuvette length, [X] is concentration of the absorbing molecules and 𝜖 is the molar
decadic absorption coefficient (also called extinction coefficient [131]).2 The law yields a simple
expression for absorbance,

𝐴 = 𝜖𝑙[X] . (4.4)

This expression is readily generalized for a mixture of 𝑁 absorbing components X𝑖 ,

𝐴(𝜆)
𝑙

= 𝜖1(𝜆)[X1] + 𝜖2(𝜆)[X2] + ⋯ + 𝜖𝑁 (𝜆)[X𝑁 ] . (4.5)

Deviations from linearity in Eq. (4.4) might occur at high analyte concentrations due to sev-
eral reasons (see pages 306–315 in [130]). For instance, analyte molecules at high concentrations
can interact with each other, and thus change their optical properties compared to diluted an-
alyte. Also, absorptivity depends on the refractive index, which might change at high analyte
concentration. Another factors, such as the presence of scattering introduce nonlinearity [138].
Furthermore, instrumental deviations such as stray radiation or too wide monochromator win-
dow can corrupt the linearity in Eq. (4.4). Absorbance values of 𝐴 > 2.5 or 𝐴 < 0.05 possess high
uncertainty due to limited accuracy of the photodetector (table 13-4 in [130]), hence the typical
analyte concentrations are 10−5 M and typical cuvette width is 1 cm or less.

4.3 UV/vis titration experiment

Titration experiments (i.e. measurement of spectra at different guest concentrations when the
guest is gradually added into the host solution, discussed for NMR in Sec. 3.4.2) in UV/vis spec-
troscopy are a common method to investigate molecular interactions. A model example is titra-
tion of Bz2OxP with (R)-CSA shown in Fig. 4.2a. Here, host-guest complex with 1:1 stoichiom-
etry is formed, thus, increase of the absorption band of HG at 745 nm as well as decrease of
the absorption band of H at 500 nm are observed. In order to quantify the host-guest binding,
binding isotherm is constructed from the absorbance values, which change the most during the
titration. In this case it is the absorption maximum at 745 nm. The Beer-Lambert law for mix-
ture of absorbing species in Eq. (4.5) implies the analytical expression for fitting of the binding
isotherm in the form (page 148 in [48])

𝐴𝜆max = 𝐴H
[H]
[H]t

+ 𝐴HG
[HG]
[H]t

, (4.6)

2Instead of 𝐴 or 𝜖, absorption cross section 𝜎 = 1
𝑙𝑁A[X]

ln 𝐼0
𝐼 = 1

𝑙𝑁A[X]
𝐴

log e (in m2) is used, where e is the Euler
number and 𝑁A is the Avogadro number. It can be expressed using the molar decadic absorption coefficient 𝜎 =

𝜖
𝑁A log e ≈ 3.82 × 10−24𝜖 m2 [131].
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where 𝐴𝑗 = 𝑙𝜖𝑗[H]t. Fitting to the experimental data with fitting parameters 𝐴H, 𝐴HG and 𝐾1
provides excellent match as shown in Fig. 4.2b. Such analysis exploits only very small part of
the total measured data. In the next chapter, we show another method based on singular value
decomposition in which the whole measured spectra are analyzed at once.
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Figure 4.2: Illustration of a titration experiment. (a) Titration of Bz2OxP with (R)-CSA. (b) Binding
isotherm constructed from absorbance at 745 nm (red dashed line in (a)), fitted with Eq. (4.6) .

4.4 Isosbestic points

When the spectral change involves only two absorbing species, i.e. one converts into the other,
isosbestic points (points of same extinction) can arise [131]. These are points {𝜆i.p., 𝐴(𝜆i.p.)}, where
the absorbance does not change, for example, during a titration experiment, see black triangles
in Fig. 4.2a. The necessary condition is that the total concentration of all absorbing species [X]t
remains constant (or the spectra are rescaled to constant concentration, see footnote 7 on page
58). Let us denote all 𝑁spc absorbing species present in the sample as X𝑖 with total concentration
[X]t = [X1] + [X2] + ⋯ + [X𝑁 ] and suppose interconversion only between X1 and X2. Then

𝐴(𝜆i.p.)
𝑙

= 𝜖1(𝜆i.p.)[X1] + 𝜖2(𝜆i.p.)[X2] + ⋯ + 𝜖𝑁spc(𝜆i.p.)[X𝑁spc]

= 𝜖1(𝜆i.p.)
{
[X]t − [X2] − ⋯ − [X𝑁spc]

}
+ 𝜖2(𝜆i.p.)[X2] + ⋯ + 𝜖𝑁spc(𝜆i.p.)[X𝑁spc]

= 𝜖1(𝜆i.p.)[X]t
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

const.

+
{
𝜖2(𝜆i.p.) − 𝜖1(𝜆i.p.)

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
0

[X2] + ⋯ +
{
𝜖𝑁spc(𝜆i.p.) − 𝜖1(𝜆i.p.)

}
[X𝑁spc]⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

const.

, (4.7)

and all the right-hand side terms are constant or equal to zero. Therefore, isosbestic points can
be formed where the individual spectra of the interconverting absorbing species cross (marked
by black triangles in Fig. D.1g in Appendix D). Identification of isosbestic points in the data
immediately implies spectral change involving two species.
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4.5 Halochromism and solvatochromism

Chromic phenomena are referring to a color change of a dye due to external stimulus. There
are several types of chromism including response to light (photochromism), temperature (ther-
mochromism), electricity (electrochromism) and many others [139]. Two chromic phenomena
are relevant for supramolecular binding. The first is halochromism, chromic response due to pro-
tonation (interaction with acid), deprotonation (base), or interaction with ions (salt). The effect of
acids is sometimes called acidochromism. Halochromic substances have an immediate applica-
tion as pH indicators, for example, the Universal Indicator is a mixture of several dyes including
phenolphtalein, methyl red and others [140]. Halochromic spectral changes stem from the for-
mation of new absorption bands upon binding (i.e. in the host-guest complex). Both free and
bound species are present in the sample and their relative populations determine the resulting
color.

increasing
acid concentration

increasing
solvent polarity

Figure 4.3: Difference between halochromic and solvatochromic spectral changes illustrated with actual
UV/vis data. These particular experiments are described and analyzed in Sec. 5.2.

The second chromic event related to supramolecular binding, solvatochromism, reflects chan-
ges in solvent polarity or weak interactions with solvent molecules (e.g. hydrogen bonding)
resulting in shift of the absorption bands, see section 6.2 in [141]. Unlike halochromism, solva-
tochromism does not produce new absorption bands but produces shift of the absorption maxima,
see green and blue arrows in Fig. 4.3, respectively.

Mechanism of solvatochromism consists in different stabilization of ground (𝐸g) and excited
(𝐸e) energy levels of molecular orbitals [141]. The energy levels of solute are lowered in polar sol-
vent (compared to nonpolar solvent) due to solute-solvent interaction based on permanent and
induced electrical dipoles. Polar solvent decreases states with high dipole moment to higher ex-
tent than states with low dipole moment. Figure 4.4 illustrates the two types of solvatochromism:
(i) positive solvatochromism, where the excited state is stabilized more than the ground state
(i.e. 𝜇e > 𝜇g) inducing red (bathochromic) shift with increasing polarity and (ii) negative solva-
tochromism, where the excited state is stabilized less than the ground state (i.e. 𝜇e < 𝜇g) inducing
blue (hypsochromic) shift with increasing polarity. Note that the excited state is in fact Franck-
Condon state (𝐸FC

e ), i.e. excited electronic states with the position of nuclei and its solvent cage
corresponding to the ground state since the optical transitions are much shorter (ca. 10−15 s)
than vibrational movemet of nuclei (ca. 10−12 s). A prominent example of a solvatochromic dye
is Reichardt’s dye [142, 143], used for construction of empirical 𝐸T(30) polarity scale for solvents.
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Figure 4.4: Illustration of solvatochromic effects as solvent polarity influence on energy difference between
ground state 𝐸g and the Franck-Condon excited state 𝐸FC

e .



5 Singular value decomposition
Singular value decomposition (SVD) is a powerful tool for data analysis. In the terms of mathe-
matics, it is a matrix decomposition with good numerical stability and guaranteed existence. It
provides a tool for dimensionality reduction, i.e. identification of patterns in high-dimensional
data stored in a single matrix and filtering out noise. SVD is closely related to a statistical method
called principal component analysis (PCA) [144], the terms SVD and PCA are sometimes used in-
terchangeably. There are plenty of SVD- and PCA-based applications, which exploit their power
to find patterns in data, for example, in imaging of gene expression in brain [145], face recog-
nition algorithm [146], modal analysis of fluid flows [147, 148], vibration modes of controlled
active microparticles [149] and others [150, 151]. Another closely related term is factor analysis,
which is focused on finding the real factors, which can explain all the variability in the data [152].
Factor analysis stems originally from psychology where it was introduced by Spearman [153] to
quantify types of intelligence.

In this chapter, we explain the use of SVD-based methods for analysis of UV/vis spectroscopic
data. They serve for determination of the exact number of absorbing species, which can be done
without the use of any binding model. The other purpose is determination of the absorption
spectra of the individual species, which often cannot be measured separately. This task can be
performed either using a particular model of chemical kinetics/binding or even without a model
in some cases [154]. Applicability of the SVD-based analysis is limited to a spectroscopic mea-
surement, where the resulting spectrum is linear combination of the individual absorbing com-
ponents. This includes measurements of UV/vis or IR absorption, Raman scattering [155, 156],
circular dichroism and others, but excludes e.g. UV/vis data with solvatochromic shift caused
solely by solvent polarity change (see Sec. 5.2.1) and NMR spectra with presence of chemical
exchange.

Excellent studying material on both SVD and PCA is provided in book of Brunton and Kutz
[157] including series of videolectures.1 Various applications in chemistry from the perspective
of factor analysis are discussed in book of Malinowski [152], comprehensive introduction of SVD
in spectroscopy is provided in publications of Henry and Hofrichter [158, 159]. Valuable insights
to these methods can be found in publications of Zimányi [160–163].

5.1 Mathematical properties

5.1.1 Basics of SVD

Let us consider a real 𝑚 × 𝑛 matrix 𝐀 consisting of experimental data, which has full rank due to
the noise. SVD of 𝐀 is defined as

𝐀 = 𝐔𝐒𝐕T , (5.1)

where 𝐔 is a square unitary2 𝑚×𝑚 matrix with columns called left singular vectors, 𝐕 is a square
unitary 𝑛 × 𝑛 matrix with columns called right singular vectors. The rectangular 𝑚 × 𝑛 matrix 𝐒 is
diagonal with the non-zero elements termed as singular values, the 𝑗-th singular value is denoted
as 𝑠𝑗 . The number of the singular values is min(𝑚, 𝑛) depending on the shape of 𝐀. All singular
values are non-negative and follow descending order, i.e. 𝑠𝑗 > 𝑠𝑗+1. For convenience, we denote3

1Available at https://www.youtube.com/playlist?list=PLMrJAkhIeNNSVjnsviglFoY2nXildDCcv.
2A unitary matrix 𝐔 satistfies 𝐔𝐔T = 𝐔T𝐔 = 1. Its columns form therefore an orthonormal basis as well as its

rows.
3In this chapter uppercase bold symbols stand for matrices, lowercase bold symbols stand for column vectors.

https://www.youtube.com/playlist?list=PLMrJAkhIeNNSVjnsviglFoY2nXildDCcv
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𝑗-th column of 𝐀 as 𝐚𝑗 , 𝑗-th column of 𝐔 as 𝐮𝑗 and 𝑗-th column of 𝐕 as 𝐯𝑗 . Vectors 𝐚𝑗 represent
single measurements, single images, or single acquired spectra, depending on the type of data.
To summarize, left singular vectors 𝐮𝑗 form an orthonormal basis for the single measurements 𝐚𝑗 ,
right singular vectors multiplied by the corresponding singular value 𝑠𝑗𝐯𝑗 are coordinates of the
basis vectors and 𝑠𝑗 themselves indicate, how significant the 𝑗-th basis vector is for reconstruction
of 𝐚𝑗 .
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Figure 5.1: Full and economy SVD of a “tall-skinny” (𝑚 > 𝑛) matrix.

The definition in Eq. (5.1), called full SVD is redundant since for a “tall-skinny” matrix (𝑚 > 𝑛),
last 𝑚 − 𝑛 left singular vectors are multiplied by zeros of 𝐒 as illustrated in Fig. 5.1. Let us define
truncated matrices 𝐔𝑟 = (𝐮1, 𝐮2, … , 𝐮𝑟 ), 𝐕𝑟 = (𝐯1, 𝐯2, … , 𝐯𝑟 ) and 𝐒𝑟 = diag(𝑠1, 𝑠2, … , 𝑠𝑟 ) (𝐒𝑟 is a
square matrix). Then, the economy SVD (equivalent to full SVD) is

𝐀 = 𝐔𝑛𝐒𝑛𝐕T . (5.2)

For a “short-fat” matrix (𝑚 < 𝑛), the economy SVD is analogously

𝐀 = 𝐔𝐒𝑚𝐕T
𝑚 . (5.3)

Another widely used notation for the SVD decomposition for 𝑝 = min(𝑚, 𝑛) is

𝐀 = 𝐔𝐒𝐕T = 𝑠1𝐮1𝐯T1 + 𝑠2𝐮2𝐯T2 + ⋯ + 𝑠𝑝𝐮𝑝𝐯T𝑝 , (5.4)

where dyadic (tensor) product is used.4 This dyadic decomposition is just another notation for
the economy SVD. Note that SVD is unique up to the sign in the product 𝑠𝑗𝐮𝑗𝐯T𝑗 = 𝑠𝑗(−𝐮𝑗)(−𝐯T𝑗 ),
however, there exists a method to get rid of this ambiguity [164].

The most useful property of SVD is that the first 𝑟 terms in Eq. (5.4) are the best possible
approximation of the matrix𝐀 than any other matrix of rank 𝑟 . Using the notation with truncated
matrices,

𝐀 ≈ 𝐔𝑟𝐒𝑟𝐕T
𝑟 , (5.5)

with 𝑟 < min(𝑚, 𝑛). “Goodness” of SVD approximation is measured with Frobenius norm5 ‖●‖
and it is formulated as the Eckhart-Young theorem [157, 165],

min
𝐗, rank(𝐗)=𝑟

‖𝐀 − 𝐗‖ = ‖𝐀 − 𝐔𝑟𝐒𝑟𝐕T
𝑟 ‖ = 𝑠𝑟+1 . (5.6)

Note the relationship with the singular value 𝑠𝑗+1.
SVD can be considered as a method for calculation of the “real” rank of a noise-containing

matrix and consequently for separation of real signal from noise. If the rank of a noiseless matrix
4Dyadic product of two column vectors 𝐚, 𝐛 is defined as (𝐚𝐛T)𝑗𝑘 = 𝑎𝑗𝑏𝑘 .
5Frobenius norm of a real matrix 𝐀 is defined as ‖𝐀‖ =

√
∑𝑚

𝑗=1 ∑
𝑛
𝑘=1 𝑎2𝑗𝑘 .
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𝐀 is 𝑟 , only the first 𝑟 singular values will be significant after addition of noise, assuming the noise
is not too big.

Eigenvalues and eigenvectors of matrices 𝐀𝐀T and 𝐀T𝐀 can be used to calculate SVD. Since
the matrices 𝐔 and 𝐕 are unitary,

𝐀𝐀T = 𝐔𝐒𝐕T𝐕𝐒T𝐔T = 𝐔𝐒𝐒T𝐔T . (5.7)

Therefore using 𝐔T = 𝐔−1

𝐀𝐀T𝐮𝑗 = 𝑠2𝑗 𝐮𝑗 , (5.8)

which implies that the left singular vectors 𝐮𝑗 are eigenvectors of 𝐀𝐀T with eigenvalues 𝑠2𝑗 . Sim-
ilarly it holds

𝐀T𝐀𝐯𝑗 = 𝑠2𝑗 𝐯𝑗 , (5.9)

so that the right singular vectors 𝐯𝑗 are eigenvectors of 𝐀T𝐀 with eigenvalues 𝑠2𝑗 . For numer-
ical implementation of SVD, see book of Press et al. [166]. In Mathematica software, SVD is
calculated as {U,S,V}=SingularValueDecomposition[A], in MATLAB, [U,S,V]=svd(A) or
[U,S,V]=svd(A,’econ’) for the economy version.

5.1.2 Pseudoinverse and linear regression

Pseudoinverse is a generalization of matrix inverse for singular or rectangular matrices also
called Moore-Penrose inverse. Unlike the inverse where 𝐀−1𝐀 = 𝐀𝐀−1 = 1, the pseudoinverse
𝐀† of a real matrix must satisfy these four criteria [165, 167]

𝐀𝐀†𝐀 = 𝐀 , (5.10a)
𝐀†𝐀𝐀† = 𝐀† , (5.10b)
(𝐀𝐀†)T = 𝐀𝐀† , (5.10c)
(𝐀†𝐀)T = 𝐀†𝐀 . (5.10d)

Pseudoinverse exists for every matrix and can be expressed by an explicit formula for a full
rank matrix (i.e. rank(𝐀) = min(𝑚, 𝑛)). In the case of tall-skinny (𝑚 > 𝑛) matrix, the full rank
ensures the existence of the inverse (𝐀T𝐀)−1, and the conditions in Eq. (5.10a,c) imply

𝐀† = (𝐀T𝐀)−1𝐀T . (5.11)

Similarly for a short-fat (𝑚 < 𝑛) matrix, the conditions in Eq. (5.10b,d) yield

𝐀† = 𝐀T(𝐀𝐀T)−1 . (5.12)

Economy SVD can be used to calculate pseudoinverse when Eq. (5.2) or Eq. (5.3) is substituted
into the first pseudoinverse condition in Eq. (5.10a) yielding

𝐀† = 𝐕𝐒−1𝑛 𝐔T
𝑛 for 𝑚 > 𝑛 , (5.13a)

𝐀† = 𝐕𝑚𝐒−1𝑚 𝐔T for 𝑚 < 𝑛 . (5.13b)

Let us consider a system of linear equations defined by a full-rank 𝑚 × 𝑛 matrix 𝐀,

𝐀𝐱 = 𝐛 , (5.14)

which consists of 𝑚 equations and a vector of 𝑛 unknowns 𝐱. For a square matrix 𝐀, the solution
is obtained simply as 𝐱 = 𝐀−1𝐛. If 𝐀 is a tall-skinny (𝑚 > 𝑛) matrix, Eq. (5.14) provides an
overdetermined system of equations, which cannot be solved exactly. However, an approximate
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solution with minimal least squares error ‖𝐀𝐱 − 𝐛‖2 can be calculated using the pseudoinverse.
Substitution of Eq. (5.2) and (5.13) into Eq. (5.14) reveals

𝐱 = 𝐀†𝐛 = 𝐕𝐒−1𝑛 𝐔T
𝑛 . (5.15)

This solution of an overdetermined system is also called linear regression and it is widely used in
statistics [168]. On the other hand, if 𝐀 is a short-fat (𝑚 < 𝑛) matrix, Eq. (5.14) is an underdeter-
mined system with infinitely many solutions. Among those, pseudoinverse in 𝐱 = 𝐀†𝐛 yields a
solution with minimal norm ‖𝑥‖.

5.2 Analysis of UV/vis spectral series via SVD

Series of spectral measurements, where one parameter is changed, are an important tool of chem-
ical physics. The parameter of change is usually concentration (titration experiments), time or
temperature [48]. The methods presented here are applicable if the spectral changes depend lin-
early on concentration of absorbing components, in UV/vis spectroscopy it is limited by validity
of the Beer-Lambert law (see Sec. 4.2). UV/vis titrations are usually analyzed at a particular wave-
length with the biggest spectral change, often at maximum of an absorbing band 𝜆max (see Sec.
4.3). However, if some of the absorbing components have small absorption coefficient 𝜖𝑗(𝜆max),
their concentration is obtained with large uncertainty. A quick remedy in this case is simultane-
ous fitting of data at more than one wavelength. However, the more wavelengths are analyzed at
once, the more parameters (absorption coefficients 𝜖(𝜆𝑗)) should be fitted. Here comes the SVD
based analysis, which enables fitting data at all measured wavelengths at once while reducing
the number of fitting parameters. Moreover, it allows elimination of the experimental noise and
reconstruction of the individual absorbing species, which is not possible with the simple one-

Table 5.1: Terminology for SVD-based analysis of UV/vis spectral series.

mathematical description application on spectral series
𝐮𝑗 left singular vector basis spectrum

(factor (for 𝑗 ≤ 𝑁spc))
𝐯𝑗 right singular vector amplitude vector
𝑠𝑗 singular value singular value
𝑁exp 𝑛 No. of measured experiments
𝑁pts 𝑚 No. of points in one experiment
𝑁spc No. of individual absorption species

(factor dimension)
𝐙 matrix of absorbing components spectra
𝐳𝑗 spectrum of 𝑗-th absorbing component

(columns of 𝐙)
𝐏exp population matrix constructed from exp. data
𝐏mod population matrix calculated from a model
𝐩𝑗 populations of 𝑗-th component

(columns of 𝐏)
𝑠𝑗𝐯𝑗 combination coefficients
𝐓 transformation matrix

(often denoted as rotation matrix 𝐑)
𝐭𝑗 component coordinates in comb. coeff. space

(columns of 𝐓)
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wavelength approach. SVD terminology is adjusted for application in UV/vis spectra analysis.
The used terms are listed in the following Table 5.1 including not yet defined quantities.

The SVD-based analysis is illustrated with two experiments in this chapter: (i) titration of
Bz2OxP with (R)-CSA in Fig. 5.2a. Halochromic spectral change in these data comprises of
growing a new absorption band at 750 nm and decrease of a 500 nm band (green arrows). Detailed
analysis of this measurement is given in Appendix D.1. (ii) Reichardt’s dye in solvent mixture of
varying polarity in Fig. 5.2b shows solvatochromic shift (blue arrow) that cannot be modeled as
linear combination of individual absorbing species (Sec. 4.5).
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Figure 5.2: UV/vis spectra with two different types of spectral changes, (a) halochromic spectral change,
titration of Bz2OxP (7𝜇M (initial), CDCl3) with (R)-CSA, dilution during experiment compensated by
rescaling to the initial concentration, black triangles denote the isosbestic points (b) solvatochromic spec-
tral change, Reichardt’s dye (55𝜇M, CDCl3) in MeOH/chloroform mixture (MeOH increases solvent po-
larity).

For the purpose of SVD analysis, the measured spectra 𝐚𝑗 are arranged into columns of the
absorbance matrix 𝐀, see Fig. 5.3. All spectra must be in the same wavelength range. The

Figure 5.3: Illustration of the SVD of UV/vis spectral series. Constructed from the data in Fig. 5.2a, spectra
in columns 𝐚𝑗 are measured at different acid concentration. Gray values correspond to noise.

abstract basis spectra 𝐮𝑗 will be transformed into the real spectra of absorbing components 𝐳𝑗 , the
amplitude vectors 𝐯𝑗 will be transformed into vectors of populations 𝐩𝑗 . Products 𝑠𝑗𝐯𝑗 are denoted
as combination coefficients [160] as they combine the basis spectra 𝐮𝑗 to reproduce the matrix 𝐀
(Eq. (5.4)). Note that the basis spectrum 𝐮1 is equal to mean of all measured spectra (possibly
multiplied by −1 due to the aforementioned ambiguity in SVD), therefore, it never crosses the 𝑥-
axis. On the other hand, all other 𝐮𝑗 must always cross the axis in order to preserve orthogonality
to 𝐮1.
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5.2.1 Linear combination of absorbing components

The Beer-Lambert law for mixture of absorbing components in Eq. (4.5) can be expressed in ma-
trix form as 𝐚𝑖 = ∑𝑗 𝑙𝝐𝑗(c𝑗)𝑖 , where 𝐚𝑖 is 𝑖-th column of the data matrix 𝐀, 𝝐𝑗 is the absorption co-
efficient of 𝑗-th absorbing component and (c𝑗)𝑖 is the concentration of 𝑗-th absorbing component
in 𝑖-th measured spectrum (i.e. 𝐀 = 𝑙𝐂T). If the total concentration of absorbing components
is [X]t = [X1] + [X2] + ⋯ + [X𝑁spc], the concentration c𝑗 can be rescaled to relative population
𝐩𝑗 = 𝐜𝑗/[X]t, and 𝝐𝑗 can be rescaled to 𝐳𝑗 = 𝑙𝝐𝑗[X]t (i.e. absorbance at the total concentration).6
Thus, the total absorbance 𝐀 can be expressed in terms of absorbance of the absorbing compo-
nents 𝐙 and their populations 𝐏,

𝐀 = 𝐙𝐏T , (5.16)

see Fig. 5.4. Transformation from𝐀 = 𝑙𝐂T to Eq. (5.16) is convenient for UV/vis data processing.

Figure 5.4: Decomposition of halochromic spectra into two absorbing components. Constructed from the
data in Fig. 5.2a, spectra in columns 𝐚𝑗 are measured at different acid concentration.

In order to ensure that the populations sum to unity in every column of 𝐏, [X]t should be
constant throughout the experiment. Otherwise the spectra should be rescaled to the initial con-
centration.7 In our example of halochromic spectra in Fig. 5.2a, the total concentration decreased
since the sample was diluted by adding stock solution during the experiment. The spectra were
indeed rescaled to the initial concentration since the isosbestic points appeared. Rescaling has
little impact on the SVD except for the amplitude vector 𝐯1, which is sensitive to total concen-
tration, see Appendix D.1.

5.2.2 Determining the number of absorbing species

One of the key moments in SVD-based analysis is determination of𝑁spc, the number of individual
absorbing species in the sample. This task is analogous to finding rank of the signal in a matrix
containing signal and noise. The amplitude of 𝑠𝑗 is proportional to the significance of 𝐮𝑗 and 𝐯𝑗 in

6For illustration, spectrum formed by two absorbing components at concentrations [X1] + [X2] = [X]t and the first
measured spectrum 𝐚1 can be expressed as

𝐚1 = 𝑙𝝐1[X1] + 𝑙𝝐2[X2] = 𝑙𝝐1[X]t⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝐳1

[X1]
[X]t⏟⏞⏞⏞⏟⏞⏞⏞⏟
(𝐩1)1

+ 𝑙𝜖2[X]t⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝐳2

[X2]
[X]t⏟⏞⏞⏞⏟⏞⏞⏞⏟
(𝐩2)1

.

7Assume that (𝐜t)𝑗 is defined as the total concentration at the 𝑗-th measurement, and (𝐜t)1 = (𝐜1)1 + (𝐜2)1. Then, the
measured spectra are rescaled to the initial concentration using

𝐚resc
1 = 𝐚orig

1 ,

𝐚resc
𝑗 = 𝐚orig

𝑗
(𝐜t)1
(𝐜t)𝑗

= 𝑙𝝐1(𝐜t)1⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝐳1

(𝐜1)𝑗
(𝐜t)𝑗⏟⏞⏞⏞⏟⏞⏞⏞⏟
(𝐩1)𝑗

+ 𝑙𝝐2(𝐜t)2⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝐳2

(𝐜2)𝑗
(𝐜t)𝑗⏟⏞⏞⏞⏟⏞⏞⏞⏟
(𝐩2)𝑗

for 𝑗 = 2, …𝑁exp .
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the reconstruction of 𝐀 according to Eq. (5.5). Thus, inspection of logarithmic plot of the singular
values is a great indicator for obtaining𝑁spc. Figure 5.5a, obtained from our halochromic example
(Fig. 5.2a), shows an obvious gap after the second singular value, suggesting two-component
spectral change. On the contrary, our solvatochromic example (Fig. 5.2b) does not show any
gap between singular values, see Fig. 5.5b. This nonlinear spectral change with bands shifts
requires many-dimensional SVD approximation to account for. SVD of uncorrelated Gaussian
noise reveals typical exponential decay (straight line in logarithmic plot), see Fig. 5.5c. Similar
decay for the noise component is exhibited in Fig. 5.5a (𝑠3–𝑠15) and Fig. 5.5b (ca. 𝑠5–𝑠12). The
highest singular value in (c) provides a crude estimate of noise threshold in Fig. 5.5a (blue line,
noise level estimate based on the Fig. 5.2a).
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Figure 5.5: Log-plot of singular values with (a) halochromic and (b) solvatochromic spectral changes,
(c) uncorrelated noise, approximately following (gray dashed) straight line. Spectral data for (a), (b) are
given in Fig. 5.2. Noise data for (c) have normal distribution  (0, 0.022) (mean=0, std.=0.02) and the same
dimensions as (a), the noise amplitude was estimated from Fig. 5.5a. The noise threshold, blue line in (a),
is given by the highest singular value in (c). Values in (a) and (b) were obtained from the spectra shown
in Fig. 5.2a,b, respectively.

The cumulative sum 𝑠21 +𝑠22 +⋯+𝑠2𝑗 is proportional to the amount of data from 𝐀 reconstructed
by 𝑗-dimensional SVD approximation according to Eq. (5.5) (or the amount of reconstructed
variance in PCA, cf. Sec. 5.3.2). Thus, the proportion of reconstructed data, also called the
cumulative energy [157], is defined as

cum.en.(𝑗) =
∑𝑗

𝑘=1 𝑠
2
𝑘

∑𝑁exp
𝑙=1 𝑠2𝑙

. (5.17)

In our halochromic example, the cumulative energy for 𝑗 = 2 already accounts for almost 100%
of data, see Fig. 5.6a. Another quantity, residual standard deviation (RSD) determines the error
of 𝑗-dimensional SVD approximation as (equation (4.44) in Malinowski [152])

RSD(𝑗) =

√
∑𝑁exp

𝑘=𝑗+1 𝑠
2
𝑘

𝑁pts(𝑁exp − 𝑗)
. (5.18)

If the experimental error is known, it can be directly compared to the RSD value and serve as
a criterion for 𝑁spc determination. RSD of our halochromic example (Fig. 5.2a) is given in Fig.
5.6b. There is significant drop of RSD for 𝑗 = 2 under the estimated experimental error threshold
(std=0.02), which is another indicator of the presence of two absorbing species.

If the signal-to-noise ratio is too low, it is hard to determine 𝑁spc just from the visual inspec-
tion of singular values, cumulative energy or RSD. If the noise level is known, the noise threshold
can be crudely estimated (Fig. 5.5a,c). Estimation of the noise threshold for white noise is given
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Figure 5.6: Various indicators for 𝑁spc determination for our halochromic data (Fig. 5.2a), (a) cumulative
energy and (b) residual standard deviation based on the singular values, (c) autocorrelation coefficients
calculated for neighbouring points.

by Gavish and Donoho [169] even for unknown noise level. Determination of 𝑁spc in UV/vis
spectra is limited by the noise from the detector and illumination lamp (dependent on 𝜆 [161])
or by imperfect baseline subtraction. Shifts of the absorption bands due to solvatochromic or
temperature effects or deviations from the Beer-Lambert law (Sec. 4.2) pose another challenges
to SVD analysis. Complications also arise if vectors 𝐳𝑗 or vectors 𝐩𝑗 are approximately linearly
dependent [161].

In the presence of uncorrelated noise, the noise-containing vectors 𝐮𝑗 and 𝐯𝑗 for 𝑗 > 𝑁spc
are often less smooth than the signal-containing vectors. The “smoothness” can be quantified as
autocorrelation [158], i.e. correlation of a vector 𝐮𝑗 (or 𝐯𝑗 ) with the same vector shifted by one
data point (or more data points, if the noise is correlated at short distances [161]), in particular,

autocorr.(𝐮𝑗) =
𝑁pts−1

∑
𝑘=1

(𝐮𝑗)𝑘(𝐮𝑗)𝑘+1 , (5.19)

autocorr.(𝐯𝑗) =
𝑁exp−1

∑
𝑘=1

(𝐯𝑗)𝑘(𝐯𝑗)𝑘+1 . (5.20)

In our halochromic example (Fig. 5.2a), the basis spectra are smooth as the autocorrelation is close
to unity, Fig. 5.6c. This is probably a consequence of data smoothing during the data processing.
On the other hand, only the first two amplitude vectors have a big positive autocorrelation, which
can be an indicator for 𝑁spc = 2. Henry and Hofrichter [158] introduced a ‘rotation procedure’,
which can transform set of 𝑝 amplitude vectors (although not the first 𝑝 vectors) to another set of
𝑝 orthonormal vectors with extremal autocorrelation. Thus, some of the new vectors have bigger
autocorrelation on the expense of others, which helps to “push” the signal forward. Nevertheless,
we are not going to use this procedure in this work.

5.2.3 Transformation from abstract to real spectra

If all spectra of individual absorbing species can be measured in isolation, their populations can
be obtained without SVD as described in Sec. 5.2.5. In the other case, SVD has to be applied
together with a model for concentrations of the chemical species (e.g. model based on host-guest
binding or chemical kinetics).

First 𝑁spc basis spectra can be transformed to the spectra of absorbing components using the
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transformation matrix 𝐓,8
𝐙 = 𝐔𝑁spc𝐓 , (5.21)

see Fig. 5.7.

-7.0-7.8

1.9-2.1

Figure 5.7: Reconstruction of real spectra from abstract basis spectra 𝐮𝑗 . Constructed from the data in Fig.
5.2a.

Analogously, populations are reconstructed using the inverse matrix 𝐓−1,

𝐏T = 𝐓−1𝐒𝑁spc𝐕
T
𝑁spc (5.22)

since 𝐀 = 𝐔𝑁spc𝐓𝐓−1𝐒𝑁spc𝐕T
𝑁spc

= 𝐙𝐏T, see Fig. 5.8. At this point, we have two ways of expressing

-.23-.07

.26-.07

Figure 5.8: Reconstruction of real populations from abstract amplitude vectors 𝐯𝑗 . Constructed from the
data in Fig. 5.2a.

the matrix 𝐀,
𝐀 = 𝐔𝑁spc𝐒𝑁spc𝐕

T
𝑁spc , (5.23)

and
𝐀 = 𝐙𝐏T = 𝐔𝑁spc𝐓𝐏

T . (5.24)
Comparing these two expressions, we get

𝐒𝑁spc𝐕
T
𝑁spc = 𝐓𝐏T . (5.25)

The left-hand side of this equation is fixed and based solely on SVD. The populations 𝐏 follow
a system-dependent model derived from thermodynamics or chemical kinetics, see Chapter 2.
Hence, the right-hand side of Eq. (5.25) should be adjusted by least squares fitting of elements
of 𝐓 and model parameters for 𝐏 (binding constants or reaction rate coefficients). Thus, we dis-
tinguish populations 𝐏exp obtained from the experiment after calculating 𝐓 (Eq. (5.22), typically
noisy) from populations 𝐏mod obtained from a model (smooth, could be interpolated between ex-
perimental points), see Fig. 5.9b. In our halochromic example (Fig. 5.2a), the host-guest binding
model with 1:1 stoichiometry (Eq. (2.26)) was used, and the function

𝜒 2 = ‖𝐒𝑁spc𝐕
T
𝑁spc − 𝐓𝐏Tmod(𝐾HG)‖2 (5.26)

8It is sometimes called ‘rotation procedure’ [152] (denoting the transformation matrix as R), however, the trans-
formation is not unitary.
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was minimized.
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Figure 5.9: Reconstructed (a) spectra of absorbing species 𝐙 and (b) their populations 𝐏 throughout the
halochromic spectral change. Points stand for 𝐏exp calculated from Eq. (5.22), lines for 𝐏mod calculated
from a 1:1 host-guest model (Eq. (2.26)).

The reconstructed spectra are shown in Fig. 5.9a. The first measured spectrum 𝐚1 with no
acid added was identified as the first absorbing component 𝐳1, therefore, the first column of 𝐓
was calculated from Eq. (5.21) and (5.15) as 𝐭1 = 𝐔†

𝑁spc
𝐚T1 or simply read out from the first column

of 𝐒𝑁spc𝐕T
𝑁spc

(combination coefficients of the first measured spectrum, see next section). Quality
of the fit can be checked by comparison of populations 𝐏mod and 𝐏exp, see Fig. 5.9b.

5.2.4 Combination coefficients

Combination coefficients 𝑠𝑗𝐯𝑗 provide an illustrative “map” of the course of the experiment. Each
point in plot of combination coefficients corresponds to a particular measurement. This plot is
linear for our halochromic example (Fig. 5.2a) as shown in Fig. 5.10a (full circles). This is a rule for
every spectral change involving exactly two absorbing species with constant dye concentration
(or rescaled to constant dye concentration, see footnote 7 on page 58). In our case, also the
original spectra measured with gradual sample dilution show linear dependence (empty circles)
because the dilution was uniform. The change of total dye concentration is mostly captured by
the first combination coefficient 𝑠1𝐯1, see Fig. D.1f in Appendix D.3. Solvatochromic spectral
change (Fig. 5.2b) shows systematic shift without the linear dependence, see Fig. 5.10b. Spectra
consisting only of noise do not show any systematic shift, see Fig. 5.10c.

If a measured spectrum 𝐚𝑗 is the spectrum of an isolated individual absorbing species in two-
component system, e.g. 𝐚𝑗 = 𝐳1, then Eq. (5.4) implies 𝐳1 = 𝐮1𝑠1(𝐯T1 )𝑗 + 𝐮2𝑠2(𝐯T2 )𝑗 . Hence, the
combination coefficients are identical to 𝑇11 and 𝑇21 (cf. Eq. (5.21)) in this case. In other words, 𝑗-
th column of𝐓 (i.e. 𝐭𝑗 ) constitutes coordinates of the 𝑗-th absorbing component in the combination
coefficient plot. Coordinates of the first and second absorbing species are shown in Fig. 5.10a
(compare the coordinates with Fig. 5.7). Since the measured spectra are linear combination of
𝐳1 and 𝐳2, all experimental points lie on a curve (𝑇11, 𝑇21)T𝑝1 + (𝑇12, 𝑇22)T(1 − 𝑝1) = 𝐭1𝑝1 + 𝐭2(1 −
𝑝1), where 𝑝1 ∈ [0, 1] is the population of the first component (dashed line in Fig. 5.10a). This
is parametric equation for a line segment implying linear dependence in the two-component
spectral change.

This linear dependence can be generalized to higher number of absorbing components. For
example, spectral dataset with𝑁spc = 3 implies that the combination coefficients lie on a 2D plane
inside a triangle given by 𝐭1, 𝐭2 and 𝐭3 [161]. Also in such system, a spectral change two absorbing
components (population of the third one is constant) implies that the corresponding combina-
tion coefficients lie on a straight line. Generally, 𝑁spc components form an (𝑁spc −1)-dimensional
object (a convex hull) in𝑁spc-dimensional space of combination coefficients, although small over-
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Figure 5.10: Plot of first two combination coefficients for (a) halochromic (data in Fig. 5.2a), (b) solva-
tochromic (data in Fig. 5.2b) spectral change and (c) spectra generated as  (0, 0.022) noise with dimen-
sions of (a). Course of the experiment is indicated by arrows. In (a) black (red) circle corresponds to
combination coefficients of the first (second) real component H (HG), dashed line denotes the linear path
between the two components in two-component spectral change.

lap with other dimensions occurs due to the noise. Combination coefficients corresponding to a
spectral change involving 𝑟 components form an (𝑟 − 1)-dimensional object in 𝑁spc-dimensional
space of combination coefficients.

5.2.5 Decomposition to the absorbing components without SVD

If all spectra of individual components 𝐙 can be measured separately, transformation from ab-
stract to real vectors is not necessary and their populations can be calculated without SVD as

𝐏Texp = 𝐙†𝐀 , (5.27)

cf. Eq. (5.15). These populations 𝐏exp obtained directly from the experiment serve as binding
isotherms and can be fitted with 𝐏mod using a binding or kinetic model to obtain binding con-
stants. In our publication [1], we used this type of analysis and called it ‘decomposition to spectra
of individual species’ (DSIS). Instead of Eq. (5.27) the equivalent approach of least squares fitting
was used and we minimized

𝜒 2 = ‖𝐀 − 𝐙𝐏Texp‖
2 (5.28)

with all elements of 𝐏Texp being fitting parameters. In contrary to pseudoinverse, least squares
fitting allows for constrains such as ∑𝐩𝑗 = 1 or 0 ≤ 𝐩𝑗 ≤ 1.
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5.2.6 SVD analysis – summary

The SVD-based analysis comprises of four basic steps described in Scheme 5.1.

singular value 
decomposition

Step 1

determination of the 
number of absorbing 
species Nspc

Step 2

transformation from abstract 
to real spectra

Step 3

model-free 

finding T by imposing 
constrains on Z or P

or

using a model for populations,
minimizing

Step 4
reconstruction of 
individual spectra

and their 
populations

Scheme 5.1: Steps in SVD-based analysis of UV/vis spectral series. Model-free determination of 𝐓 is ex-
plained in [154].

5.3 Analogy with principal component analysis

5.3.1 Calculation of principal components

Principal component analysis (PCA) is a statistical tool identifying directions of maximal vari-
ance in multidimensional datasets and consequently finding patterns (clustering of datapoints)
in high-dimensional data. We show in Sec. 5.3.2 that PCA is mathematically identical with SVD
and can be regarded as statistical interpretation of SVD. In the PCA literature it is common to
construct the analyzed matrix as rows of measurements in contrast to our SVD column-wise
convention. We follow the usual PCA convention since the common programs as Mathematica
or MATLAB use it too, and we denote the row-wise data matrix 𝐁 ≡ 𝐀T (in this section 𝐁 is a
𝑚 × 𝑛 matrix). As shown in Eq. (5.29), measurements 𝐛T𝑗 (e.g. measured absorption spectra) are
arranged in rows. Columns 𝐱𝑗 denote one particular feature (e.g. measured absorbance at one
particular wavelength). In statistical application of PCA, the columns 𝐱𝑗 stand for particular an-
alyzed features such as age, height and weight, whereas rows 𝐛T𝑗 denote entries for a particular
person.

𝐁 =

⎛
⎜
⎜
⎜
⎜
⎝

… 𝐛T1 …
… 𝐛T2 …

⋮
… 𝐛T𝑚 …

⎞
⎟
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

⋮ ⋮ ⋮
𝐱1 𝐱2 … 𝐱𝑛
⋮ ⋮ ⋮

⎞
⎟
⎟
⎠
. (5.29)
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Unlike SVD, PCA requires mean-subtracted data 𝐁 (denoted with bar) defined as

𝐁 ≡ 𝐁 −

⎛
⎜
⎜
⎜
⎜
⎝

1
1
⋮
1

⎞
⎟
⎟
⎟
⎟
⎠

(𝑥1, 𝑥2, … , 𝑥𝑛) , (5.30)

where 𝑥 𝑗 = 1/𝑛∑𝑚
𝑘=1(𝐱𝑗)𝑘 is arithmetic mean of 𝑗-th feature.

PCA is searching for directions 𝜶𝑗 in which a linear transformation of mean-centered feature
vectors 𝐱𝑗 = 𝐱𝑗 − 𝑥 𝑗 captures maximum of measured variance. These direction vectors have
unit norm and zero mutual covariance,9 i.e. they are uncorrelated. The transformed vectors
are denoted as principal components (PCs), and the transformation from mean-centered feature
vectors reads

⎛
⎜
⎜
⎝

⋮ ⋮ ⋮
PC1 PC2 … PC𝑛
⋮ ⋮ ⋮

⎞
⎟
⎟
⎠⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑚×𝑛

=
⎛
⎜
⎜
⎝

⋮ ⋮ ⋮
𝐱1 𝐱2 … 𝐱𝑛
⋮ ⋮ ⋮

⎞
⎟
⎟
⎠⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑚×𝑛

⎛
⎜
⎜
⎜
⎜
⎝

⋮ ⋮ ⋮
𝜶1 𝜶2 … 𝜶𝑛
⋮ ⋮ ⋮
⋮ ⋮ ⋮

⎞
⎟
⎟
⎟
⎟
⎠⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑛×𝑛

. (5.31)

PCs are automatically mean-centered due to the centering of feature vectors. PCs are sometimes
denoted as scores (𝑚 × 𝑛 matrix) and the directions 𝜶𝑗 as loadings (𝑛 × 𝑛 matrix).

Search for PCs is performed [144] by maximization of Var(PC𝑗) using Lagrange multipli-
ers with normalization conditions 𝜶T

𝑗 .𝜶𝑗 = 1 and zero covariance between different PCs, i.e.
Cov(PC𝑗 , PC𝑘) = 0 (equivalent to 𝜶T

𝑗 .𝜶𝑘 = 0). It turns out that the solution is equivalent to
finding eigenvectors of the covariance matrix 1/(𝑛 − 1)𝐁T𝐁,

1
𝑛 − 1

𝐁T𝐁𝜶𝑗 = 𝜆𝑗𝜶𝑗 . (5.32)

Since the variance captured by 𝑗-th PC is equal to its corresponding eigenvalue 𝜆𝑗 (as shown
below), the PCs and corresponding loadings 𝜶𝒋 are sorted in descending order according to their
eigenvalues,10 𝜆1 > 𝜆2 > ⋯ > 𝜆𝑛. The covariance matrix 1/(𝑛 − 1)𝐁T𝐁 is symmetric (Hermitian),
therefore, its eigenvalues are real and its eigenvectors are orthogonal.

5.3.2 Comparison to SVD

SVD of the mean-subtracted data matrix is 𝐁 = 𝐔𝐒𝐕T. Recalling the calculation of SVD vectors
as eigenvalues (Eq. (5.9)), we already know that

𝐁T𝐁𝐯𝑗 = 𝑠2𝑗 𝐯𝑗 . (5.33)
Comparison to Eq. (5.32) implies that 𝜆𝑗 = 𝑠2𝑗 /(𝑛 − 1) and 𝜶𝑗 = 𝐯𝑗 . Furthermore, comparing SVD
in the form 𝐔𝐒 = 𝐁𝐕 to Eq. (5.31) yields PC𝑗 = 𝐮𝑗𝑠𝑗 .

This analogy with SVD allows for a quick proof that the variance captured by PC𝑗 is 𝜆𝑗 , in
particular Var(PC𝑗) = 1/(𝑛 − 1)PC𝑗 PCT

𝑗 = 𝑠2𝑗 /(𝑛 − 1)𝐮𝑗𝐮T𝑗 = 𝑠2𝑗 /(𝑛 − 1) = 𝜆𝑗 . Relative amount of
captured variance by first 𝑗 PCs is then calculated as ∑𝑗

𝑘=1 𝜆𝑘/∑
𝑛
𝑙=1 𝜆𝑙 (cf. the cumulative energy

in Eq. (5.17)). Due to the analogy of PCA and SVD, PCA of real datasets can be calculated using
numerical algorithms for SVD.

9Covariance is defined as Cov(𝐱, 𝐲) = 1/(𝑛 − 1)∑𝑛
𝑗=1(𝑥𝑗 − 𝑥)(𝑦𝑗 − 𝑦) and variance as Var(𝐱) = Cov(𝐱, 𝐱). Covariance

calculated from measured data is also called ‘sample covariance’ because the true value is not known. To obtain
unbiased value, 𝑛 − 1 should be in the denominator rather than 𝑛.

10Since the experimental data contain noise, usually no pair of eigenvalues have the same value.
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5.3.3 Application

Standard application of PCA is visualization of high-dimensional data in low-dimensional plot of
principal components. This allows to observe clustering of data points, revealing similarities or
differences in various data sets. We illustrate PCA analysis with three artificial data sets shown
in Fig. 5.11a. Age, height and weight are the observed features (𝑛 = 3), and each data set has 150
entries (i.e. people, 𝑚 = 150). PCA is calculated from all three data sets combined. Mutual plot
of PC1 and PC2 (together capturing 92.9% of variance) in Fig. 5.11b projects the 3D data to 2D
plot and shows that data sets 1 and 2 mostly overlap, while data set 3 is significantly different.
The corresponding loadings 𝛼1 and 𝛼2 represent directions in the combined data set, where the
data are maximally “stretched out”. Mutual plot of PC2 and PC3 in Fig. 5.11c confirms that PC3
captures the smallest variance. Note that 𝑘-th data point 𝐛𝑘 can be projected to 𝑗-th PC using the
loading 𝛼𝑗 according to (PC𝑗)𝑘 = 𝐛T𝑘 .𝜶𝑗 as follows from Eq. (5.31). In real life applications of PCA,
high-dimensional data are processed (i.e. with large number of features), for example, when
thousands of genetic markers are analyzed to observe clustering based on common ancestry
[170]. Recent developments of PCA are reviewed by Jolliffe and Cadima [171]. In this work, we
use PCA to analyze combination coefficients obtained from SVD, the procedure is described in
detail in Appendix D.5.

In Mathematica software, PCs are obtained by PC=PrincipalComponents[B], in MATLAB,
the command [alpha,PC,lambda]=pca(B) is used to obtain loadings, PC scores and the vari-
ances. Both applications use the row-wise data matrix according to Eq. (5.31) and subtract the
mean automatically.
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Figure 5.11: Illustration of PCA, (a) three artificially constructed data sets with three features (normally
distributed), each of 150 entries. (b) Mutual plot of first two principal components capturing 92.9% of the
variance, (c) mutual plot of principal components 2 and 3.



6 Chromic and binding properties
of OxP derivatives
As discussed in Sec. 4.5, chromic changes in dye molecules can be caused by protonation (halo-
chromism) or by change of solvent properties (solvatochromism). In this chapter we show our
results about halochromism and solvatochromism of the oxoporphyrinogen derivatives OxP,
Bz2OxP and Bz4OxP. Aside from the complete description of color variation, particular pro-
tonated species are identified and the binding constants were determined, where possible. To
remind the structures of oxoporphyrinogens, see Fig. 6.1. The OxP molecule possesses two
calix[4]pyrrole-type binding sites (shortly NH/amine binding sites, black arrows) and four pro-
tonation sites at the carbonyl goups (C=O groups, green arrows). N-benzylation at the macro-
cyclic nitrogen atoms of OxP leads to stepwise elimination of the two NH binding sites (red
crosses) and subsequent serial variation of the chromic properties of the N-benzylated products.
The color related properties were studied by UV/vis spectroscopy, however, to verify our conclu-
sions related to protonation, NMR titration experiments (i.e. measurement of spectra at different
guest concentrations when the guest is gradually added into the host solution) were conducted.
Following sections on chromism and binding mostly follow our article [1] including parts of text,
most figures were adopted from [1] with modifications. Several NMR spectra analyzed here and
some preliminary results were presented in the master’s thesis [45]. Experimental details about
the measurements are given in Appendix C.2.
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Figure 6.1: Chemical structures (top) and X-ray crystal structures (bottom) of (a) oxoporphyrinogen (OxP),
(b) bis(4-bromobenzyl)oxoporphyrinogen (Bz2OxP), (c) tetrakis(4-bromobenzyl)oxoporphyrinogen
(Bz4OxP) used in this work. X-ray crystal structure in panels (b,c) are of the non-brominated deriva-
tives [172]. Black arrows: accessible calix[4]pyrrole-type binding sites, red crosses: blocked binding sites,
green arrows: protonation carbonyl sites.
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6.1 Halochromism of OxP

Colorimetric response of OxP was reported for the first time by Shundo et al. [31]. The cause of
color variation upon addition of trifluoroacetic acid (TFA) was the presence of di- and tetrapro-
tonated OxP species. The protonation at the hemiquinonoid carbonyl sites was proven by direct
observation of the intensity of the C-O-H infrared vibration, see Fig. 6.2. Since the binding steps
HG→HG2 and HG3 →HG4 are strongly cooperative (i.e. high interaction parameters 𝛼12 and
𝛼34, see Sec. 2.2.4), mono- and tri- protonated OxP species are virtually absent. In our publication
[1], we reanalyzed the UV/vis data from the study [31] to assess quantitatively the halochromic
properties of OxP.
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Figure 6.2: Solution (CH2Cl2, 0 ◦C) state FTIR spec-
tra of OxP with various amounts of TFA (0, 2 and 100
equiv. of TFA) and pure TFA. Absorbance of the OxP hy-
droxyl stretching peak is indicated. Appearance of the OH
stretching signal is due to first diprotonation (2 equiv. of
TFA) then further protonation at higher concentration of
TFA. Adopted from [31].

Titration spectra1 in Fig. 6.3a,b
show two consecutive spectral changes.
The presence of isosbestic points (see
Sec. 4.4) indicates consecutive transitions
(i.e. only two species are present at a
time) OxP→OxP2+ and OxP2+→OxP4+

corresponding to the first and second
spectral change, respectively. Singu-
lar value decomposition (SVD) analysis
of the spectra confirms the presence of
three absorbing species based on three
significant singular values as shown in
Fig. 6.3f (see Sec. 5.2.2). Mutual plot
of combination coefficients in Fig. 6.3g,h
shows two linear segments connecting
all three component coordinates. Since
arrangement of combination coefficients
on a straight line implies that exactly two
components are involved in the particu-
lar spectral change (see Sec. 5.2.4), this

plot further confirms the aforementioned consecutive protonation scheme. In Fig. 6.3g, the
OxP2+ coordinates do not lie exactly at the intersection due to small change in total dye concen-
tration, see details in Appendix D.2.

As the two spectral changes are separated, the spectra of individual absorbing species, Fig.
6.3c, were identified at the end of each spectral change, thick lines in Fig. 6.3a,b. Since the
observed spectral changes are purely of halochromic nature (see Sec. 5.2.1), the measured UV/vis
spectra are linear combination of the absorbing components spectra, 𝐀 = 𝐙𝐏Texp. Analysis from
Sec. 5.2.5 referred to as ‘decomposition into the spectra of individual species’ (DSIS) can be
applied. DSIS of 𝐚𝜑𝑗 , measured spectrum at volume fraction 𝜑𝑗 , is formulated as

𝐚𝜑𝑗 = 𝑝OxP(𝜑𝑗) 𝐳OxP + 𝑝OxP2+(𝜑𝑗) 𝐳OxP2+ + 𝑝OxP4+(𝜑𝑗) 𝐳OxP4+ , (6.1)

where 𝐳𝑖 is the spectrum of 𝑖-th absorbing component and 𝐩𝑖(𝜑𝑗) its population at DFA volume
fraction 𝜑𝑗 . Populations 𝐏exp obtained by DSIS (with constrains 𝐩𝑗 > 0 and ∑𝐩𝑗 = 1) are shown in
Fig. 6.3d (solid circles). The quality of DSIS is excellent, as the error ‖𝐀 − 𝐙𝐏Texp‖ is small, see Fig.
D.3 in Appendix D.2. Decomposition according to Eq. (6.1) would not possible in the presence of
solvatochromic shift.

1The amount of added guest is described by guest equivalents defined as equiv. = [G]t/[H]t. In addition, volume
fraction (vol.f./ 𝜑) is used, especially for later description of solvatochromism (polarity of the sample depends on vol.f.
of its components).
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Figure 6.3: UV/vis titration of OxP (10−5 M, CH2Cl2) with TFA and corresponding analyses. (a, b) First
and second sets of spectral changes occurring during titration. These data were first published in [31]. (c)
Spectra of individual absorbing species𝐙 identified as the start and endpoints of each spectral change (bold
lines in panels (a, b)). (d) Populations 𝐏exp of absorbing species 𝐙 as obtained by DSIS (solid circles). Fitting
of 𝐏exp to 1:4 binding model provided model populations 𝐏mod (solid lines). (e) Chemical structures and
RGB colors of absorbing species (colors calculated from the spectra shown in panel (c), details in Appendix
C.2). SVD analysis confirms 𝑁spc = 3 via plots of (f) singular values and (g,h) combination coefficients
space.

Subsequently, we attempted to describe the interaction of OxP with TFA in terms of a host–
guest binding model minimizing ‖𝐏exp − 𝐏mod‖, where 𝐏mod is a matrix of concentrations recon-
structed using a particular binding model. Here, the first spectral change saturates at 2 guest
equiv. implying double protonation. The second spectral change is saturated at relatively low
concentration of TFA (𝜑 = 0.002 in CH2Cl2), thus, equations governing the chemical equilibria
can be used without correction for activity (i.e. assuming 𝛾𝑗 = 1, see Sec. 2.1.1). A 1:4 host-guest
binding model (derived in Sec. 2.2.2 with implementation in Appendix A.4) was adopted to ob-
tain the equilibrium binding constants listed in Table 6.1, Sec. 6.9. The resulting fit is shown in
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Fig. 6.3d (solid lines). The diprotonated form is stabilized by binding of two counteranions (on
the top and on the bottom, Fig. 6.1a) at the central NH groups. Another source of stabilization
is placement of the protonation at opposite carbonyl groups [36] (protonation sites can change
during a tautomerization process, see Sec. 7.1.1). The good quality of the data fit also confirms
the low stability of any mono- and triprotonated OxP species, which are essentially absent due
to the ease of further protonation (analogously to tetraphenylporphyrin monocation [39, 173,
174]). The chemical structures of protonated species including the changes in conjugation are
given in Fig. 6.3e. Results of UV/vis titration are confirmed by NMR, see Sec. 6.5.

6.2 Halochromism of Bz2OxP

Bz2OxP differs from OxP in that only single counteranion stabilization is allowed due to its
double N-alkylation and consequent blocking of the top central binding site shown in Fig. 6.1b.
For this reason, a stable monoprotonated Bz2OxP+ form is readily formed. UV/vis titration of
Bz2OxP with difluoroacetic acid (DFA)2 reveals three consecutive spectral changes, Fig. 6.4a,b,c.
That indicates presence of four individual absorbing species, whose spectra are identified as
endpoints of the respective spectral changes, Fig. 6.4d, bold lines in Fig. 6.4a,b,c. The second
spectrum was identified as Bz2OxP+, the presence of a monoprotonated species is supported
by fitting of its binding constant in both UV/vis (see below) and NMR titrations (see Sec. 6.5).
Assignment of the remaining individual species as the two- and fourfold protonation products
is based on their significant similarities to 𝐳OxP2+ and 𝐳OxP4+ (cf. Fig. 6.3c and 6.7). Similarly to
OxP, triprotonated species is virtually absent implying strong cooperativity in the HG3 →HG4
binding step. SVD analysis also confirms 𝑁spc = 4 based on four significant singular values (see
Fig. D.4) and the combination coefficient space (see Fig. 6.4f), which shows consecutive spec-
tral changes as linear segments connecting the component coordinates. The chemical structures
of the individual species and their respective colors are given in Fig. 6.4g. Analogously to the
OxP case, linear combination of these four components accounts for all experimentally observed
spectra, thus, DSIS analysis was performed using

𝐚𝜑𝑗 = 𝑝Bz2OxP(𝜑𝑗) 𝐳Bz2OxP + 𝑝Bz2OxP+(𝜑𝑗) 𝐳Bz2OxP+

+ 𝑝Bz2OxP2+(𝜑𝑗) 𝐳Bz2OxP2+ + 𝑝Bz2OxP4+(𝜑𝑗) 𝐳Bz2OxP4+ . (6.2)

Populations 𝐏exp obtained from DSIS are shown in Fig. 6.4e (solid circles). The reconstruction
𝐙𝐏Texp excellently matches the experimental spectra 𝐀 (see Fig. D.5) confirming that Bz2OxP is
also a halochromic dye.

In order to describe the interactions of Bz2OxP with DFA, the first spectral change (up to
𝜑 = 0.001) was fitted using a 1:1 host-guest binding model, see Fig. 6.4e, solid lines. The quality
of fit was very high, see Fig. D.5. Quantities of acid greater than 𝜑 = 0.001 change the polarity of
the solvent so that activity cannot be approximated by concentration (Sec. 2.1.1). Consequently,
the host-guest binding model is not applicable for higher protonated states of Bz2OxP beyond
monoprotonation.

UV/vis titration of Bz2OxP with CSA shown in Appendix D.1 revealed only monoprotonated
species, higher protonation states are inaccessible due to low solubility of CSA in chloroform,
see Appendix C.1. NMR spectroscopy confirms protonation at the carbonyl oxygen atoms of the
hemiquinonoid groups, see Sec. 6.5. Binding constants obtained from both UV/vis and NMR
titrations are listed in Table 6.1.

2DFA was used because of its nonexchanging hydrogen utilized in NMR spectroscopy analysis, which is lacking
in TFA.
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Figure 6.4: UV/vis titration of Bz2OxP (7×10−6 M, dilution during measurement compensated by rescaling
to initial dye concentration, CDCl3) with DFA and corresponding analyses. (a, b, c) Three sets of spectral
changes occurring during titration. (d) Spectra of individual absorbing species 𝐙 identified as the start
and endpoints of each spectral change (bold lines in panels (a, b, c)). (e) Populations 𝐏exp of absorbing
species𝐙 as obtained by DSIS (solid circles). Fitting of 𝐏exp to 1:1 host-guest binding model provided model
populations 𝐏mod for the first protonation (solid lines). (f) SVD analysis confirms via plot of combination
coefficients space, that 𝑁spc = 4 and consecutive spectral changes include only two species at once. (g)
Chemical structures and RGB colors of absorbing species (colors calculated from the spectra shown in
panel (d), details in Appendix C.2).

6.3 Chromism of Bz4OxP

The title of this section avoids term ‘halochromism’ on purpose because Bz4OxP shows both
halo- and solvatochromism. Of the compounds studied, this derivative is the least susceptible to
protonation due to complete N-alkylation and consequent blockage of both central binding sites,
Fig. 6.1c. No stabilizing cation-counteranion interactions are allowed.

UV/vis titration with DFA shows three sets of spectral changes. The first one (up to 𝜑 = 0.01)
is a red shift of absorbance maximum (500 nm), i.e. positive solvatochromism (see Sec. 4.5), see
Fig. 6.5a (green arrow). This shift was not observed in the previous cases and is attributed to
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Figure 6.5: UV/vis titration of Bz4OxP (5 × 10−6 M, measured spectra rescaled to initial dye concentra-
tion, CDCl3) with DFA and corresponding analyses. (a) First solvatochromic (green arrow) and second
(black arrow) sets of spectral changes occurring during titration, (b) third spectral change. (c) Spectra of
individual absorbing species 𝐙 identified as the start and endpoints of each spectral change (bold lines in
panels (a, b)). (d) Populations 𝐏exp of absorbing species 𝐙 (free Bz4OxP excluded due to solvatochromic
shift) as obtained by DSIS. (e) Shift of absorbance maxima, gray line is eyeguide. (f) SVD analysis confirms
𝑁spc = 3 and consecutive spectral change via plot of combination coefficients space. (g) Chemical struc-
tures and RGB colors of absorbing species (colors calculated from the spectra shown in panel (c), details
in Appendix C.2).

hydrogen bonding of acid molecules to the carbonyl oxygen atoms. It was shown in [34] that
hydrogen bonding with water (in tetrahydrofuran as solvent) was accompanied by a similar spec-
tral shift in the case of both di- and tetra-N-substituted oxoporphyrinogens. The solvatochromic
effect is weak since the shift of the absorbance maximum is less than 10 nm as shown in Fig. 6.5e.
The second and third spectral changes are of typical halochromic nature, see Fig. 6.5a,b (black ar-
rows). Again, the corresponding spectra of individual species were identified as endpoints of the
spectral changes, see Fig. 6.5c. Comparing to the individual species of other oxoporphyrinogens,
we assigned the last two absorbing components as mono- and diprotonated forms (again proto-
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nated at the hemiquinonoid carbonyl sites) as shown in Fig. 6.7b,c. SVD analysis on the dataset
excluding initial solvatochromic shift (for 𝜑 > 0.01) confirms consecutive interchange between
three components via singular values shown in Fig. D.6a and plot of combination coefficient
space shown in Fig. 6.5f.

The same halochromic dataset (as in the case of SVD) was used for DSIS, decomposing the
measured spectra into

𝐚𝜑𝑗 = 𝑝Bz4OxP H-bond(𝜑𝑗) 𝐳Bz4OxP H-bond + 𝑝Bz4OxP+(𝜑𝑗) 𝐳Bz4OxP+ + 𝑝Bz4OxP2+(𝜑𝑗) 𝐳Bz4OxP2+ . (6.3)

Populations of the halochromic species obtained from DSIS are shown in Fig. 6.5d. As in the
previous cases, the quality of DSIS is excellent, see Fig. D.7. Populations 𝐏exp from DSIS cannot
be fitted by a simple host-guest binding model, as the high concentration of acid (𝜑 > 0.01) causes
the activity cannot be approximated by concentrations any more.

On the other hand, dye concentrations used in NMR titration are higher than in UV/vis and
the first protonation could be achieved at lower DFA vol.f. This enables fitting of the first proto-
nation by 1:1 host-guest binding model presented in Table 6.1. The NMR titration also reveals a
significant shift in the pyrrole 𝛽-proton resonance, Fig. 6.12c and E.7, which strongly suggests
that upon protonation the positive charges are accommodated at the central nitrogen atoms of
Bz4OxP as shown in Fig. 6.5g.

6.4 Mechanism of halochromism

Most simple dye systems operate solely on the basis of protonation, or solvent polarity. Molecular
design allows for introduction of some complexing moiety to introduce specificity of the analyte-

OxP

Bz2OxP

Bz4OxP

6 5 4 3

Acid volume fraction
10–6 10–5 10–4 10–3 0.01 0.1 10

Figure 6.6: Colorimetric response of OxP (with TFA),
Bz2OxP, and Bz4OxP (with DFA) over the entire concen-
tration range of the acids. Colors shown were obtained by
interpolation of RGB values (see Appendix C.3) obtained
from the actual measured spectra, and the color scales are
overlaid with photographs of the sample cuvettes (from
the titration experiments) at the appropriate vol.f.

dye interaction [142, 143]. In this context,
halochromism of the oxoporphyrino-
gen derivatives, investigated here, is
strongly affected by the presence of cen-
tral calix[4]pyrrole-type binding site.

The conjugation pathway of OxP
can be varied upon protonation so the
charge is shared over electronegative
heteroatoms (i.e. N and O). After dou-
ble protonation, even reorganization of
the chromophore structure through tau-
tomerization is possible. In fact, delocal-
ization of charge may be one of the fac-
tors allowing the existence of the highly
charged tetracation. The effect of N-
alkylation of OxP is twofold: first it
masks the central binding site(s), which
prevents counteranion binding; second,
it sterically restricts redistribution of
the conjugated structure of the chro-
mophore, which might otherwise further
stabilize protonated species.

As shown in Fig. 6.6, the binding
site blocking shifts approximate lower

threshold of colorimetric response from 𝜑 = 10−6 for OxP to 𝜑 = 10−3 for Bz2OxP and fur-
ther to 𝜑 = 0.01 for Bz4OxP. Such big change in sensitivity is caused by removing not only one,
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but two sources of stabilization, as mentioned above. Also the acid vol.f., at which all spectral
changes saturate, depends strongly on the N-alkylation. The population plots from DSIS in pre-
vious sections show, that OxP protonation saturates approximately at 𝜑 = 0.002 , for Bz2OxP at
𝜑 = 1 and for Bz4OxP at 𝜑 = 0.7 (only double protonation).

Spectra of the corresponding mono-, di- and tetraprotonated species of each OxP derivative
are similar in form as shown in Fig. 6.7. This assumption was exploited to assign the degrees of
protonation of each absorbing species. Diprotonated species, present in each derivative, show
gradual shifts of absorption bands correlated with the degree of N-alkylation (red arrows in Fig.
6.7c).

There exists strong positive cooperativity between the first and second protonation steps in
OxP because of the stabilization by two counterions (Table 6.1, similar to the case for double
protonation of free-base porphyrins [173]). Therefore, monoprotonated spectrum of OxP is not
observable. Since Bz2OxP is stabilized by only one counteranion, its monoprotonated form is
stable. Surprisingly, another strong cooperativity arises between the third and fourth protonation
step in both OxP and Bz2OxP. As a result, their triprotonated form cannot be observed either.

Bz4OxP lacks further counterion stabilization, therefore it does not show any strongly coop-
erative protonation. In addition, its steric crowding at the core obstructs redistribution of charge,
therefore Bz4OxP is not completely protonated even in neat acid.

In Fig. 6.3e, 6.4g and 6.5g we have assigned the formal placement of charge at the central
nitrogen atoms of the protonated structures. These charges may be shared over all electroneg-
ative atoms, albeit with preference for the central pyrrole nitrogens. The hypothesis of charged
tetrapyrrole center is supported by significant shifts of pyrrole 𝛽-protons resonances in NMR
titrations to higher ppm discussed in the next section (green squares in Fig. 6.12).

Based on the formal conjugated structure, charge redistribution can be depicted. Fig. 6.8a
shows tautomerization of OxP2+, Fig. 6.8b clarifies transfer of charge to the molecular center of
Bz2OxP+ upon protonation and Fig. 6.8c illustrates variants of charge placement at the pyrrole
nitrogens of Bz2OxP2+. The protonation sites dynamically change by a prototropic tautomer-
ization process, which is described in detail in the next chapter in Sec. 7.1.1 and 7.2.3.
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6.5 NMR analysis of host-guest binding

NMR titration experiments are another tool for assessing binding properties of oxoporphyri-
nogens. Halochromic properties of the investigated oxoporphyrinogen series were tested with
DFA as well as with CSA in deuterated chloroform. DFA (liquid) is miscible with CDCl3 in arbi-
trary ratio, however the CSA (powder) has limited solubility (Table C.1). Therefore, high degree
of protonation can be achieved only at excess of DFA, not in the presence of CSA. Tetramethyl-
silan (TMS) was used as internal standard. Addition of maximal soluble amount of CSA into
solution of Bz4OxP did not result in any spectral change, therefore, these experiments are not
shown. Experimental details are given in Appendix C.4, data analysis procedure is described in
Appendix C.5. Experimental details about the measurements are given in Appendix C.4.

Assignment of 1H spectra of the investigated OxP derivatives is shown in Fig. 6.9. Signals
due to tert-butyl-H are denoted by star (★), due to ortho-H by circle (●), due to 𝛽-H by square
(■) and signals of the bromobenzyl groups by triangles (▲). Assignment of OxP and Bz2OxP
resonances was published in [38] and [40], respectively, assignment of Bz4OxP was conducted
with help of HMBC measurement, see Appendix E.18. Despite high number of hydrogen atoms,
the resulting spectra contain low number of signals due to symmetry. Spectra of pure acids can
be found in Fig. E.1 in Appendix E.

(a) OxP

(b) Bz2OxP

(c) Bz4OxP

1.01.56.57.07.58.09.09.510.0 4.5
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Figure 6.9: Assignment of NMR signals of investigated oxoporphyrinogens without the presence of acid.

NMR chemical shifts of the investigated oxoporphyrinogens are influenced by protonation
with consequent charge transfer, by acid anion binding and also by the change of solvent polarity
at high acid vol.f. [141]. In the case of OxP, new isolated peaks of bound/protonated species arise
upon acid addition (both DFA and CSA) due to slow exchange regime. Also the host OH signals
from protonation can be observed as shown in Fig. 6.10a (top). Relative area of this resonance,
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𝐾1 = 4 × 106, 𝐾2 = 8.4 × 106, compatible with results in Table 6.1. (b) Titration of Bz4OxP with DFA
showing significant shift of the 𝛽-H resonance (■).

shown in Fig. 6.10a (bottom), is saturated at the value of 2, which is a direct evidence for two-fold
protonation. The assignment to host OH resonance was confirmed by addition of heavy water
after which the resonance disappeared, see Appendix E.17. Full titration spectra of OxP with
DFA or CSA are shown in Fig. E.2 and E.3 in Appendix E, respectively.
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Figure 6.11: Chemical shift of the DFA
non-exchanging proton signal (central fre-
quency of the triplet) in the presence and
absence of the oxoporphyrinogens inves-
tigated for different vol. frac. of DFA.

On the other hand, Bz2OxP does not show new sep-
arate signals upon protonation due to intermediate/fast
exchange of free and bound species. Only the NH sig-
nals are an exception and signals due to free and bound
species are separated, see Figure 7.12a in the next chap-
ter. We found a candidate OH signal for direct observa-
tion of the protonation, see Appendix E.17.

Titration spectra of Bz4OxP do not show any for-
mation of separate peaks. The only spectral changes
are shifts of tert-butyl-H and 𝛽-H signals. The signif-
icant shift of 𝛽-H resonance (■) shown in Fig. 6.10b
indicates charge transfer from carbonyl groups to the
porphyrinogen center enabled by protonation.

Chemical shift of the center of DFA triplet is plotted
in Fig. 6.11 as a function of DFA concentration. The
frequency shift reflects acid anion binding rather than
protonation of the oxoporphyrinogens. The DFA anions

are in fast exchange between their free and bound states, thus, only the averaged triplet signal
is observed. During titration of OxP all acid anions are bound to the oxoporphyrinogen up to
2 equiv. due to the strong binding affinity (◆). For Bz2OxP, anion binding is not so strong, so
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the corresponding chemical shift is not constant (◆). In the case of Bz4OxP, chemical shift of its
acid triplet (◆) is the same as if no oxoporphyrinogen was present (◆). It confirms the lack of
acid anion binding to Bz4OxP.

For each titration experiment, binding isotherms were constructed from integrated peak
areas (slow exchange) and peak shifts (fast exchange) as described in Sec. 3.4.2. All binding
isotherms were simultaneously fitted with host-guest binding model of appropriate stoichiom-
etry (1:4 for OxP, 1:1 for Bz2OxP and Bz4OxP), the resulting binding constants are listed in
Table 6.1. The binding models were not applicable at acid vol. frac. 𝜑 > 0.001 since the change of
solvent polarity, caused by addition of acid, influenced the peak shifts [141]. Moreover, for the
same reason, activity cannot be approximated by concentration at high acid concentrations, see
Sec. 2.1.1. Relative chemical shifts (i.e. with subtracted initial value) of non-overlapping signals
of the oxoporphyrinogens as function of DFA vol.f. are shown in Fig. 6.12. Some of the peak
shifts were used as binding isotherms in the fitting procedure, the fitting curves are also shown
(solid lines). Of the oxoporphyrinogen peaks, the most significant spectral shifts belong to the
pyrrole 𝛽-H and NH resonances, supporting the hypothesis of charge localization at the pyrrole
nitrogen atoms. Note that even residual solvent peak (black asterisk ∗ in Fig. 6.12) is shifted
relative to TMS at high acid. Details about the current data analysis, including peak integration

.
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Figure 6.12: Relative chemical shifts of peaks of the investigated oxoporphyrinogens during titrations with
DFA. The value of chemical shift of particular resonance at 0 equiv. of DFA is subtracted from correspond-
ing resonance during the titration process. For two distinct tert-butyl peaks or any doublets central chem-
ical shift is displayed as they shift simultaneously. Non-exchangeable DFA resonance (triplet) is denoted
by the diamond symbol (◆), CHCl3 is denoted by asterisk (∗). Solid lines stand for fits, the corresponding
binding constants are in agreement with Table 6.1.
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using lineshape fitting, fitting of binding isotherms and the implementation for OxP + (R)-CSA
system, are given in Appendix C.5.

6.6 Solvatochromism of OxP

To examine solvatochromic properties (see Sec. 4.5) of OxP and its derivatives, we investigated
their behavior in solvents of different polarity, namely in dimethylformamide/chloroform bi-
nary mixtures, see Appendix C.2 for experimental details. Increase in concentration of the polar
dimethylformamide (DMF) resulted in solvatochromic red shift caused by hydrogen bonding.
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Figure 6.13: Measurement of OxP (1.7 × 10−5 M, spectra rescaled to initial dye concentration to compen-
sate for dilution during experiment, CDCl3) with DMF and corresponding analyses. (a,b,c) Three sets of
spectral changes occurring during titration. Starting point of the first change and endpoint of the second
change are identified as individual absorbing species. (d) Individual spectra 𝐙 and (e) their populations
𝐏exp obtained from coordinates 𝐓 in combination coefficients space in frame of 3D SVD approximation.
(f) PCA of combination coefficients, colored points denote coordinates of absorbing components, inter-
section of green lines helped to identify the coordinate of OxP H-bond. (g) Suggested structures of the
absorbing components.
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In the case of OxP, unexpected rearrangement of its conjugated system was observed for par-
ticular DMF concentration range. Hydrogen bonding between oxoporphyrinogens and solvent
molecules has been reported, including carbonyl-containing solvents [30] (UV/vis spectra, X-ray
crystallographic structure of Bz2OxP ⋅ acetone) and trace water in tetrahydrofuran [34] (UV/vis
titration with water, DFT calculations of Bz2OxP ⋅ 𝑛H2O).

As shown in Fig. 6.13a,b,c, titration of OxP with DMF resulted in three distinct spectral
changes. The first one involves a positive solvatochromic shift (the original electronic structure
does not change), identified as hydrogen bonding with either DMF or water, which is also present
in the sample (amount of water increased during titration, see NMR spectra in Fig. E.16). Hy-
drogen bonding of water to OxP induces similar spectral change [34] shown in Fig. 6.14a. The
other two spectral changes imply formation of new species with different electronic structure
since new absorption bands arise.

In our publication [1] we identified the spectra of absorbing components as endpoints of
the three spectral changes (implying four species) and consequently performed DSIS analy-
sis. However, in this work we revisited these results and provide more precise analysis based
on combination coefficients. As shown in the SVD analysis in Appendix D.5, the first spectral
change, although solvatochromic, can be described as linear combination of two spectra of in-
dividual species, thus, for the whole experiment it holds 𝐀 = 𝐙𝐏T (see Sec. 5.2.1). Singular
values indicate the presence of three components, also the first three combination coefficients
lie on a 2D plane in their 3D space as confirmed by principal component analysis (PCA, ex-
plained in Sec. 5.3), see Fig. D.8 (𝑁spc components form an (𝑁spc − 1)-dimensional object in
the combination coefficients space, although small overlap with other dimensions occurs due
to the noise). These are sufficient arguments to prove the presence of exactly three absorb-
ing species.3 Mutual plot of combination coefficients PCs (principal components) in Fig. 6.13f
shows that the line defined by the first spectral change intersects the last points of the third
spectral change (first and third spectral changes are denoted by green lines). Hence, before the
hydrogen bonding in the first spectral change could be saturated, there is a “digression” in the
combination coefficients plot identified clearly as formation of a third absorbing component,
which looks very distinct from both OxP and OxP H-bond. Coordinates of OxP and this third
species were deduced directly from the measured spectra (bold lines in Fig. 6.13a,b) and co-

3In our study [1], we concluded the presence of four absorbing components, two of them almost identical, however,
the simpler variant in this work seems more plausible.
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Figure 6.14: UV/vis titration of (a) OxP and (b) Bz2OxP with water in tetrahydrofuran solvent. Adopted
from [34].
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ordinates of OxP H-bond were determined as intersection of the green lines in combination
coefficients PCA plot. After obtaining the coordinates, individual spectra were calculated (us-
ing Eq. (5.21)) in frame of 3D SVD approximation (capturing 99.98% of the signal) and together
with their populations plotted in Fig. 6.13d,e. Details of this analysis are given in Appendix D.5.

OxP

Bz2OxP

Bz4OxP

10–4 10–3 0.01 0.1 10
DMF volume fraction

Figure 6.15: Colorimetric response of OxP, Bz2OxP,
and Bz4OxP over the entire concentration range of
DMF/CDCl3 mixture. Colors shown were obtained by in-
terpolation of RGB values (see Appendix C.3) obtained
from the actual measured spectra, and the color scales are
overlaid with photographs of the sample cuvettes (from
the titration experiments) at the appropriate vol.f.

Electronic structure of the third ab-
sorbing species implies big reorganiza-
tion of the conjugated system.4 There-
fore its structure was assigned to a
porphodimethene form (cf. Fig. 1.1),
OxP porphodimethene form in Fig.
6.13g, based on significant similarity
to the spectrum of tautomeric OxP2+.
Prototropic tautomerization of the por-
phodimethene form could be assisted by
DMF acting as proton acceptor (due to
its basic properties) and water as pro-
ton donor. Stabilization of OxP por-
phodimethene form depends on sol-
vent polarity (potentially on the balance
of polarity and hydrogen bonding) as it is
prevalent only in DMF vol.f. range of 𝜑 ∈
[0.01, 0.05]. Phenol groups of the poten-
tial tautomer might as well form hydro-
gen bonds with DMF, although this inter-
action ought to be weakened by steric ef-
fects of the tert-butyl groups.

NMR titration of OxP by DMF shown
in Fig. E.16 reveals no conclusive results, however, it indicates interaction of OxP with DMF as
their peaks are slightly shifted even at low DMF concentration.

Figure 6.15 provides overview of the colorimetric response of all three oxoporphyrinogens.
The vol.f. range of stabilized OxP porphodimethene form is clearly visible with naked eye.
Clearly, there is no such effect in the case of the N-alkylated oxoporphyrinogen derivatives. Note
that the color change in OxP caused by DMF was saturated at 𝜑(DMF) < 0.2, while for Bz2OxP
and Bz4OxP the color change was not saturated even in pure DMF.

6.7 Solvatochromism of Bz2OxP

Measurements of Bz2OxP in DMF/CDCl3 at different vol.f. shows two different solvatochromic
changes, see Fig. 6.16a, the first one involving only small shift of the original absorbing maxima
(green arrow), the second including variation of the original band intensities and formation of
another absorbing band at ca. 750 nm (black arrows). SVD analysis indicates presence of three
absorbing components (99.99% of signal, see Appendix D.6), which were identified from the PCs
of combination coefficients in Fig. 6.16d. The first component Bz2OxP was measured in isolation
as the first measured spectrum (in pure chloroform), the second was identified as intersection of
the orange lines in Fig. 6.16d delineating first and second spectral change. However, placement
of third component on the orange line is not unique as the second spectral change is probably

4Precautions were taken to exclude acid formation in the solvents, potentially causing such spectral change by
protonation, see Appendix C.2.
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not saturated even at 𝜑(DMF) = 1. Therefore, we identified range of possible coordinates as a line
segment bounded by the last measured spectrum at one side and the position of last reasonable
spectral shape (transparent green line segment in Fig. 6.16d). The green point in the same figure
denotes coordinates of a representative spectral shape in the middle of the allowed range. Figures
6.16b,c show the absorbing spectra and the their populations during the measurements. Green
solid line (or green points) correspond to the green point in (d), green shaded area corresponds to
the uncertainty denoted by the transparent line segment in (d). Negative values of the individual
spectrum at ca. 700 nm and negative populations at ca. 𝜑(DMF) = 0.4 are caused by non-linear
effects in the UV/vis data. Details of this analysis are given in Appendix D.6.

The current spectral changes highly resemble those of hydrogen bonding of Bz2OxP with
water in tetrahydrofuran reported in [34], see Fig. 6.14b. In the same article, DFT calcula-
tions were conducted, revealing different effects of simple hydrogen bonding at single carbonyl
(Bz2OxP ⋅H2O) compared to multiple carbonyl hydrogen bonding or bonding at the central NH
group (Bz2OxP ⋅4H2O, Bz2OxP ⋅5H2O), see Fig. 6.17. Thus, we assign the second absorbing
component to Bz2OxP interacting with DFM in unspecified way (possibly hydrogen bonding at
the host carbonyl sites or only by increasing solvent polarity) and denote it as Bz2OxP form 1.
The third absorbing component is assumed to bind DMF at the poprhyrinogen center based on
the comparison with Fig. 6.14b (from [34]) and is denoted as Bz2OxP form 2. The suggested
structures are shown in Fig. 6.16e. Colorimetric response of Bz2OxP to the solvent is shown in
Fig. 6.15. The color variation is shifted to higher DMF concentration compared to OxP.
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Figure 6.16: UV/vis measurements of Bz2OxP (5.5 × 10−5 M) in DMF/CDCl3 mixture and corresponding
analyses. (a) Two sets of spectral changes occurring at different DMF vol.f. Starting point of the first
change is identified as individual absorbing species (bold line). (b) Individual spectra 𝐙 and (c) their pop-
ulations 𝐏exp obtained from coordinates 𝐓 in combination coefficients space in frame of 3D SVD approxi-
mation. (d) PCA of combination coefficients, colored points denote coordinates of absorbing components.
Intersection of orange lines helped to identify the coordinate of Bz2OxP form 1. (e) Suggested structures
of absorbing components.



6.8. Solvatochromism of Bz4OxP 83
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Figure 6.17: DFT calculations of Bz2OxP. Bromine atoms at benzyl substituents were replaced with hy-
drogen atoms to simplify calculations. (a) Top and side views of calculated hydrogen bonded structures of
Bz2OxP (M06-L/6-31G(d,p), 0 K in vacuum). Total binding energies of water molecules were are shown.
(b) Calculated absorption spectra (TD-M06-2x/6-31++G(d,p)). Adopted from [34].

6.8 Solvatochromism of Bz4OxP

Similarly to solvatochromism in DFA, Bz4OxP shows small solvatochromic shift in DMF, see
Fig. 6.18a. Compared to DFA, the red shift caused by DMF requires much higher concentration
of the added polar/hydrogen bonding substance as shown in Fig. 6.18b. Due to the small mag-
nitude of the solvatochromic spectral change (≈ 10 nm), SVD cannot unequivocally determine if
the spectral change is caused by formation of a new absorbing species. 2D SVD approximation
covers 99.994% of the signal suggesting transition between two species, however, combination
coefficients shown in Fig. 6.18c do not lie on a straight line as required.5 This behavior, if caused
by individual absorbing species, requires three components. This hypothetical scenario is further
analyzed in Appendix D.7. Colorimetric response of Bz4OxP to the solvent is shown in Fig. 6.15.
The color variation is weak and shifted to higher DMF vol.f. compared to OxP or Bz2OxP.

5Such deviation might be caused by variation in total dye concentration. However, in this experiment, stock
solution with DMF contained the same concentration of Bz4OxP as the measured solution, which should prevent
any concentration fluctuations.
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Figure 6.18: UV/vis measurements of Bz4OxP (6.3 × 10−5 M) in DMF/CDCl3 mixture and corresponding
analyses. (a) The only spectral change occurring at different DMF vol.f. The starting point (in pure chlo-
roform) is identified as an individual absorbing species (bold line). (b) Solvatochromic shift of absorbance
maxima induced by DMF (black) or DFA (red, replicated from Fig. 6.5e), solid lines are eyeguides. (c) PCA
of combination coefficients.
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6.9 Chromism and binding – summary

The investigated oxoporphyrinogens are halochromic dyes operating as colorimetric indicators
over broad range of acid contents in nonpolar media (𝜑(DFA) ∈ [10−6, 1]). This was permitted by
up to fourfold protonation of the OxP derivatives. The maximum protonation level was tuned
by N-alkylation, which gradually shifted the sensitivity, i.e. colorimetric response, to higher acid
contents, as protonation of the molecules was increasingly obstructed in the series OxP, Bz2OxP
and Bz4OxP. The mechanism of operation involves stabilization by counteranion binding and
charge delocalization. This stabilization induces strong cooperativity (see Sec. 2.2.4) in the bind-
ing step HG→HG2 (described by the interaction parameter 𝛼12). Surprisingly, also the binding
step HG3 →HG4 (𝛼34) is strongly cooperative in OxP and Bz2OxP due to unknown reason. For
Bz4OxP, stabilization by a counteranion is not permitted, thus, its response is limited to higher
acid contents (𝜑(DFA) > 0.1). Schematic overview of the protonated species and the effect of
binding site blocking is shown in Fig. 6.19. Note the difference between weak hydrogen bonding
of acid to Bz4OxP at low acid contents and protonation of Bz4OxP when more acid is added.
UV/vis and NMR titration experiments allowed fitting of binding isotherms (at 𝜑(acid) < 0.001)
to obtain the corresponding binding constants. At higher acid vol.f., the binding constants could
not be obtained because of the the unknown activity coefficients of the species in solution (see
Sec. 2.1.2) and peak shifts due to increased solvent polarity in NMR measurements. Also, full
protonation could not be achieved in CSA due to its limited solubility in chloroform (see Ap-
pendix C.1), hence, CSA induces only monoprotonation6 in Bz2OxP and even no protonation

6Peak shifts in NMR titration above ca. 10 CSA equiv. are induced by the increase of solvent polarity, although
they might also be attributed to formation of HG2 complex. However, UV/vis titration of Bz2OxP with CSA proved

OxP

proton

acid anion

Bz2OxP

Bz4OxP

increasing acid concentration

Figure 6.19: Binding site blocking effect of the oxpoporphyrinogen molecules on their interaction with
acid. Crossed arrows denote blocked sites due to N-alkylation.
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Table 6.1: Stepwise binding constantsa (in M−1) and corresponding interaction parametersb (measure of
cooperativity) determined by fitting of the NMR and UV/vis titration experiments. Decadic logarithms
(‘log’) of parameters are given, the mean values correspond to the geometric mean of the maximum and
minimum values. Details about the analysis and errors are given in Appendix C.5.

DFA / TFA CSA
NMR UV/vis NMR UV/vis

OxP
log 𝐾1 4.5–8.7 2.3–6.0c 4.0–5.0
log 𝐾1𝐾2 8.0–16 13–15c 10–12
log 𝐾3 2.5–4.0 < 1.0c < 5.0 N/A
log 𝐾3𝐾4 4.0–6.0 3.6–5.0c 2.3–2.5
log 𝛼12 — > 3.7c —
log 𝛼34 — > 5c —
Bz2OxP
𝐾1 (1.3 ± 3.0) × 103 (1.8 ± 2.0) × 103 (8.0 ± 5.0) × 104 (5.0 ± 1.0) × 104

Bz4OxP
𝐾1 10 ± 9 N/A no spectral no spectral

change change
aBinding constants for processes at higher acid vol.f. could not be obtained because of the solubility threshold of CSA,
the unknown activity coefficients of the species in solution and peak shifts with polarity in NMR measurements.
Due to the nature of the binding processes and the models used, only the range of the binding constants could be
determined in the case of OxP. Also, due to the strong cooperativity, products of binding constants, i.e. 𝐾1𝐾2, 𝐾3𝐾4,
are used to describe the binding steps H → HG2 and HG2 → HG4, respectively (cf. Eq. (2.30)). bInteraction
parameters were obtained as 𝛼12 = 8

3
𝐾2
𝐾1

and 𝛼34 = 8
3
𝐾4
𝐾3

(see Table 2.3). cMeasured with TFA instead of DFA.

in Bz4OxP. The results are presented in Table 6.1 including the calculated values of interaction
parameters for OxP protonation.7 In the case of OxP, only the range of the binding constants
could be determined due to strong cooperativity. Note that the parameters obtained from NMR
titrations are less reliable compared to those from UV/vis because shift of NMR peaks is affected
by variation of solvent polarity at high acid contents. Since the values of binding constants were
determined with uncertainty over several orders, their logarithms are listed, the mean values
correspond to the geometric mean of the maximum and minimum values.

Solvatochromic effects in DMF/chloroform mixture were observed. Besides other interac-
tions, central NH binding sites allow hydrogen bonding with DMF carbonyl group. All three
oxoporphyrinogens show red shifts of absorption bands (positive solvatochromism, see Sec. 4.5)
upon addition of DMF attributed to the increase of polarity or to hydrogen bonding (the un-
avoidable presence of water might have small influence on the spectra too). Furthermore, OxP
showed transition to another form (assigned to porphodimethene form) stable only at particu-
lar DMF concentration range. Analogously to halochromism, the solvatochromic colorimetric
response is also shifted to higher DMF concentration with increasing degree of N-alkylation.

UV/vis titration experiments proved as a powerful tool to investigate proton transfer and
formation of hydrogen bonds in the oxoporphyrinogen conjugated systems. Together with SVD
and DSIS, they enable determination of the number of individual absorbing species including
their spectra and populations. Especially, mutual plot of SVD combination coefficients is a very
effective instrument to assess the present spectral changes. NMR measurements provide only
supporting evidence (except for direct observation of protonation inOxP and possibly inBz2OxP

only the presence of monoprotonation, see Appendix D.1.
7Here, we revised the values of 𝛼12 and 𝛼34 published in our article [1] and used the correct prefactor 8/3.
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(see Appendix E.17) since at higher acid contents, all peaks undergo fast chemical exchange
and thus providing only limited information from shifts of their resonant frequencies. On the
contrary, NMR is an excellent tool to investigate intra- and intermolecular dynamic processes as
presented in the next chapter.



7 Dynamic processes and chemical
exchange in OxP derivatives
Systems of oxoporphyrinogen hosts in the presence of organic acids (chiral CSA or achiral DFA)
show not only dynamic host-guest binding (described in the previous chapter) but also other
processes such as rotation of bulky side groups. In this chapter, these processes are described
qualitatively and some of them even quantitatively using appropriate models.

The dynamic behavior is investigated using NMR lineshape analysis covered in Sec. 3.3. NMR
signal is sensitive to the kinetics of a particular nuclear spin serving as a probe of molecular pro-
cesses. Although in many cases there is no direct one-to-one correspondence between chemical
kinetics (involving chemical species present in the sample) and the observed spin kinetics (in-
volving states in different environments of a reference nuclear spin), comparison of chemical and
spin kinetics schemes provides the relationship between reaction and transition rate coefficients.

Two types of 1H NMR experiments were used to assess the dynamic properties. The first type
consists of titration of host with guest at constant temperature (i.e. measurement of spectra at
different guest concentrations when the guest is gradually added into the host solution), which
was already used to determine binding properties of oxoporphyrinogens in the previous chapter.
Here, these NMR spectra are analyzed in more detail. The second type of experiments consists of
variable temperature measurements at constant concentrations of host and guest in the sample.
Experimental details about the measurements are given in Appendix C.4. Concentration and
temperature dependence of measured transition rate coefficients is different for each process.
Full description requires a specific kinetic model, which connects the transition rate coefficients
to reaction rate coefficients, see Sec. 3.4.1. The latter are independent of concentration and their
temperature dependence follows the Eyring equation, see Sec. 2.1.3 and 2.1.4.

Results in Sec. 7.2.3 mainly follow our publication [2] including parts of the text, figures
and schemes, other results are still unpublished in a scientific journal (as of 2022). Several NMR
spectra analyzed here and some preliminary results were presented in the master’s thesis [45].

7.1 Dynamics of OxP

7.1.1 Prototropic tautomerization

When OxP is double protonated by an acid (while forming a host-guest complex with acid an-
ions), the protonation is located at the opposite oxoporphyrinogen C=O sites because protonation
of adjacent sites is energetically unfavorable [36]. Hence, two different tautomers denoted as (+)-
OxP2+ and (−)-OxP2+ are formed, see Fig. 7.1. Double protonation reduces the OxP symmetry
from 𝐷2d to 𝐷2, thus, the tautomers are formally mutual mirror images, i.e. enantiomers (because
𝐷2 symmetry group lacks improper rotation). These tautomeric forms can be interconverted
by so-called prototropic tautomerization process characterized by the reaction rate coefficient
𝜅taut. Tautomerization1 is a special type of isomerization process (structural change preserving
atomic composition of the molecule), where an atom or a group of atoms is repositioned within
a molecule. In OxP2+, the repositioned atoms are protons (H+) originating from the acid. Figure
7.1 shows that a reference spin of tert-butyl-H (denoted by blue circle) changes its environment
between states 𝐴1 and 𝐴2, and thus undergoes chemical exchange characterized by transition
rate coefficient 𝑘taut (which is related to 𝜅taut).

1tautomerization https://goldbook.iupac.org/terms/view/T06253

https://goldbook.iupac.org/terms/view/T06253
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(+)-OxP2+ (–)-OxP2+

prototropic
tautomerism

ktaut

reference 
spin

state A1 state A2

Figure 7.1: Prototropic tautomerization process. The tautomers are different due to position of protonation
relative to spatial orientation of central pyrroles (bold bonds are oriented towards the reader). Influence
of acid anion is not shown.

Besides protonation, the resulting geometry of the OxP⋅acid host-guest complex is shaped
by the two bound acid anions (see Sec. 6.9), which create so-called ‘chiral field’ by their thermal
movement around the central binding sites,2 which is averaged on the NMR timescale [36, 37].
For our purposes, only the symmetry of chiral field is essential, nevertheless, its exact shape can
be rigorously obtained from molecular dynamics modeling for example as angular probability
function of a chosen axis in the acid anion [36, 37, 40]. Symmetry of the chiral field is influenced
by symmetry of the protonated OxP2+ host and by symmetry of the acid anion guest. Molecule
of DFA possesses mirror symmetry, and thus chiral field of the DFA anion does not change the 𝐷2
symmetry of the host-guest complex as shown in Fig. 7.2a. Here, the chiral field is represented
with geometric shapes with proper symmetry. Note that the tautomers (+)-HG2 and (−)-HG2
are mutual mirror images and thus true enantiomers. Number of states of the host nuclei are

2The anion is held close to the charged host because of hydrophobic interaction with the nonpolar solvent. The
counterions do not dissociate as they would in a polar solvent.
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Figure 7.2: Structures of OxP + DFA 1:2 host-guest complex, corresponding states of tert-butyl-H spins
(black labels; also valid for ortho-H and 𝛽-H spins) and states of NH spins (gray labels). (a) Spin states of
two tautomeric forms (enantiomers) (+)-HG2 and (−)-HG2. (b) Spin states of the structure averaged due to
fast tautomerization (combination of (+)-HG2 and (−)-HG2 structures). Solid and dashed geometric shapes
with proper symmetry represent chiral field in front of and behind the host, respectively. Dashed straight
lines denote symmetry elements 𝐶2 (two-fold rotation axis) and 𝜎d (diagonal mirror plane). Averaging of
states implies 𝛿𝐴′ = 1

2 (𝛿𝐴1 + 𝛿𝐴2 ), state of NH spins does not change due to the fast exchange.
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determined by symmetry of the host-guest complex. Figure 7.2a reveals two distinct states 𝐴1
(closer to protonated site) and 𝐴2 (further from protonated site) for tert-butyl-H nuclei. Note that
(i) the same notation can be used for ortho-H or 𝛽-H signals in the vicinity of the corresponding
tert-butyl-H (denoted by black letters in Fig. 7.2a), and (ii) another independent notation is used
for central NH signals since they lie exactly in the mirror symmetry planes of OxP (denoted
by gray letters in Fig. 7.2a). The situation is more complicated when we consider complexation
with a chiral acid lacking mirror symmetry such as CSA, where tautomers (+)-HG2 and (−)-HG2
are not mutual mirror images [36]. Then the host-guest complex can be formed either with two
(R)-G, two (S)-G or one (R)-G and one (S)-G as shown in [37].

When the tautomerization process is fast on the NMR timescale, the chiral field is averaged
and 𝐷2d symmetry of free OxP is restored, see Fig. 7.2b. This averaging is repesented as super-
position of geometric shapes representing the chiral field in Fig. 7.2a. The combined geometric
shapes properly represent symmetry of the averaged chiral field. Fast exchange also induces new
averaged spin states denoted by prime (i.e. 𝐴′) in Fig. 7.2b, cf. replacement states in Sec. 3.3.8.

NMR spectra of titration of OxPwith DFA are shown in Fig. 7.3a. At low acid concentrations,
the reference tert-butyl-H spin assumes three states: equally populated 𝐴1 and 𝐴2 in the HG2
complex ([HG] is low due to strong cooperativity 𝛼12, see Sec. 6.9) and 𝐶 in the free OxP.
Assignment of states 𝐴1 and 𝐴2 is not confirmed by 2D NMR experiments, however, the presence
of protonation close to tert-butyl-H spins in state 𝐴1 is expected to alter the Larmor frequency of
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Figure 7.3: 1H NMR spectral manifestation of prototropic tautomerization at tert-butyl signals in OxP. (a)
Titration of OxP with DFA (full spectra in Fig. E.2). States 𝐴1, 𝐴2 and their average 𝐴′ refer to bound
OxP (see Fig. 7.2), state 𝐶 refers to free OxP. (b) Variable temperature measurements at 1.1 equiv. of
DFA (full spectra in Fig. E.8). (c) Variable temperature measurements at 18 equiv. of DFA (full spectra in
Fig. E.9). (d) Analysis of titration measurement from (a), dependence of 𝑘obs on DFA concentration (top).
Mean protonation number (⟨𝑛⟩ = ([HG]+2[HG2]+3[HG3])+4[HG4]/[H]t) calculated using 𝐾1 = 4×106,
𝐾2 = 8.4 × 106, 𝐾3 = 680, 𝐾4 = 100 M−1, compatible with results in Table 6.1 (bottom). (e) Analysis
of variable temperature measurement from (b), the Eyring plot is nonlinear. Values of 𝑘obs in (a,c) were
obtained from symmetric two-state exchange fit of states 𝐴1 and 𝐴2 (fits are denoted by red line). Fitting
procedure and meaning of error bars is explained in Appendix C.6.
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free OxP state 𝐶 by greater amount then in state 𝐴2 (assuming |𝛿𝐴1 − 𝛿𝐶 | > |𝛿𝐴2 − 𝛿𝐶 | in Fig. 7.3a).
At more than 2 equiv. of DFA, free host is absent and the exchange can be modeled and fitted
with symmetric two-state exchange with observed transition rate coefficient 𝑘obs, see red lines in
Fig. 7.3a. Fitting results in Fig. 7.3d (top) show increase of 𝑘obs with acid concentration (similarly
for CSA in Fig. C.5a). Calculated mean protonation number ⟨𝑛⟩ in 7.3d (bottom) indicates that
all four protonation sites of OxP are saturated at about 10 equiv. of DFA. Complex HG3 is
almost not present due to strong cooperativity 𝛼34 (see Sec. 6.9), thus, the 𝐷2 symmetry of HG2
is preserved in the HG4 complex. Hence, binding of third and fourth acid molecules modifies
Larmor frequencies of the 𝐴1 and 𝐴2 states, however, no additional states are observed. Details
about the fitting procedure are given in Appendix C.6. Therefore, 𝑘obs describes tautomerization
of diprotonated OxP (𝑘taut) at lower acid concentrations and tautomerization of tetraprotonated
OxP (𝑘̃taut) at higher acid concentrations, see the illustration in Table 7.4.

Temperature dependence at 1.1 equiv. of DFA provides little information since the exchange
is in slow regime, see Fig. 7.3b. At 18 equiv. of DFA causing fourfold protonation of the host,
chemical exchange is in intermediate regime and the lineshape can be fitted as shown in Fig.
7.3c. Fitting results in Fig. 7.3e show that in the range from −60 ◦C to −30 ◦C the transition rate
coefficient 𝑘obs increases but decreases at higher temperatures. Henceforth, this process cannot
be described by single energy barrier with constant Δ𝐻‡ and Δ𝑆‡, see discussion at the end of
Sec. 2.1.4.

Transfer of protons between (+)-HG2 and (−)-HG2 is realized in three different ways, see
figure 7 in [36]. The first way is proton transfer by free acid molecules, manifested by the in-
crease of 𝑘obs with total acid concentration as described above. The second way is mediation by
OxP-OxP collisions since the transition rate coefficient increases with [OxP]t. The transition
rate coefficient also increases with water concentration, thus, the process is mediated by water
(carrying the protons in the form of H3O+).

7.1.2 Anion binding at the porphyrinogen center

Behavior of the acid anion is governed by several processes. The first one is host-guest binding,
transition between free host and the host-guest complex. This process consists of two steps
(indiscernible in NMR), protonation of a host carbonyl group and subsequent binding of guest
anion at the porphyrinogen center, where the positive charge is located. In addition, intermediate
species HG is neglected due to high cooperativity 𝛼12. Host-guest association is characterized
by 𝑘ass and dissociation by 𝑘diss as shown in Scheme 7.1. Both transition rate coefficients are

ktaut

C

A1 A2ktaut

Scheme 7.1: Exchange scheme for OxP + DFA (or enantiopure CSA) 1:2 host-guest complex applicable
to tert-butyl-H, 𝛽-H and ortho-H signals. Intermediate species HG is neglected due to high cooperativity
𝛼12.

connected by the expression
𝑘ass
𝑘diss

=
𝑝bound
𝑝free

, (7.1)

where 𝑝free and 𝑝bound (i.e. relative fractions with 𝑝free + 𝑝bound = 1) are populations of free and
bound host, respectively. OxP in the presence of either (R)-CSA or DFA shows separate peaks
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(due to tert-butyl-H, 𝛽-H and ortho-H) due to free and bound species, see Fig. E.2, E.8 and E.3,
therefore, the process of host-guest binding is slow on the NMR timescale. Half-symmetric three-
state lineshape fitting of tert-butyl signals of OxP in the presence of 1 equiv. of DFA3 according
to Scheme 7.1 yields 𝑘ass, 𝑘diss, 𝑘taut < 5 s−1.

Another process is anion exchange at the porphyrinogen center characterized by 𝑘ex, when
an incoming anion from free acid pushes out the original bound anion. Anion exchange of enan-
tiopure or achiral acid guests has no effect on the host spin states. However, the presence of
both enantiomers of a chiral guest enables anion exchange (R)-G↔ (S)-G, which affects the spin
states by changing the corresponding chiral field, see details in [37, 38]. This process must be fast
on the NMR timescale to enable determination of enantiomeric excess as explained in Sec. 3.4.3.
In OxP + (R)-CSA system, the e.e.-induced resonance splitting (Δ𝛿) is too small for any practical
use, see Fig. E.3. Other processes influencing or influenced by the acid anion behavior are pro-
totropic tautomerization, discussed in the previous section, and macrocyclic inversion described
in the next section. OxP in the presence of less than 2 equiv. of (R)-CSA induces two methyl
signals of (R)-CSA at 0.57 ppm, see Fig. E.3. This splitting is caused by formation of (+)-H(R)-G2
and (−)-H(R)-G2 diastereomers, which implies slow 𝑘taut and 𝑘ex (there is no free acid for anion
exchange). On the other hand, at more than 2 equiv. of DFA or CSA, acid nuclear spins undergo
chemical exchange between free and bound acid states. Since only single averaged peak is de-
tected (DFA triplet at 5.16 ppm, CSA methyls at 0.57 and 0.86 ppm, see Fig. E.2 and E.3), the anion
exchange process 𝑘ex is intermediate/fast on NMR timescale. Analogously to 𝑘taut, the anion ex-
change process is different (occurs in different protonation states) at lower acid concentrations,
where the acid anion binds at the porphyrinogen center (𝑘ex) and at higher acid concentrations
without acid anion binding (𝑘̃ex), see the illustration in Table 7.4.

7.1.3 Macrocyclic inversion

Another dynamic process found inOxP is macrocyclic inversion of the porphyrinogen macrocycle
characterized by 𝑘flip. It consists in collective flipping of all pyrrole subunits by 90◦ and intercon-
verts the tautomeric forms (+)-HG2 and (−)-HG2. This process was reported in [36] for OxP +
mandelic acid system (in CDCl3), its progress as suggested in the same article is reproduced in

3The fitted spectrum was measured during the titration of OxP with DFA, fitting curve is not shown. Parameters
𝛿𝑗 were obtained at the peak positions, parameter 𝑅2 was obtained from the spectrum at 0 guest equiv. Equation (7.1)
was used and the free/bound populations were obtained from peak integration.

Labuta et al. 2014

(a) neutral 
uncomplexed form

(b) deprotonated 
hydrogen bonded form

(c) neutral flip-active 
form

1–

1–

2+

complexation activation

Figure 7.4: Macrocyclic inversion process in OxP + mandelic acid system. Adopted from [36].
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Figure 7.4a–c. Free OxP (a) is unable of the flipping due to steric hindrance at the porphyrinogen
center. In the second step (b), HG2 complex is formed, yet not enabling the inversion. Finally
(c), each of the two acid anions removes a proton from the central NH groups rendering the host
neutral, which makes the porphyrinogen center less crowded and activates the flipping process.
The transition rate coefficient of flipping (not exceeding 300 s−1 at 50 ◦C for OxP in the presence
of mandelic acid) decreases with the acid concentration since strongly bound acid anion prevents
flipping. Water content in the sample increases the rate because water can push the acid anion
away (while keeping the double protonation in place), which enables the ring flip process and
preserves its detectability, see figure 7 in [36].

States of OxP +(R)-CSA (or another enantiopure acid, e.g. (𝑅)-mandelic acid) are shown in
Fig. 7.5. Each diastereomer (+)-HG2 and (−)-HG2 induces spin states with different chemical
shift as shown in (a). Averaging of these states occurs in three possible ways as shown in (b):
(i) Fast prototropic tautomerization (and slow macrocyclic inversion), which does not change 𝐷2
symmetry of the diastereomers, and thus does not change the number of observed peaks. (ii)
Fast macrocyclic inversion (and slow prototropic tautomerization), which again does not change
the symmetry and the number of observed peaks. (iii) Both prototropic tautomerization and
macrocyclic inversion are fast, which averages tert-butyl-H (as well as ortho-H and 𝛽-H) and
NH resonances to a single peak. Figure 7.5c shows that the reference ortho-H spin (denoted by
blue circle) undergoes four-state chemical exchange governed by 𝑘taut and 𝑘flip. In the case of
mandelic acid in [36], all four states were observed as separate peaks (see figure 5 in [36]) for
ortho-H and 𝛽-H nuclear spins. Macrocyclic inversion has little effect on distant tert-butyl-H
spins, it influences mainly the porphyrinogen center.

Unlike mandelic acid inducing four peaks, the presence of (R)-CSA induces a doublet in or-
tho-H and a singlet in 𝛽-H in the HG2 complex, see Fig. E.3. We suggest that splitting due
to tert-butyl protonation is very small and averaged by the prototropic tautomerization above
2 equiv. of guest (i.e. 𝑘taut is large compared to the corresponding ortho-H and 𝛽-H splitting,
although small compared to splitting of tert-butyl-H). Furthermore, splitting by the chiral field
(which can be used for e.e. determination, see Sec. 3.4.3) is observable in ortho-H4 but negligible
in 𝛽-H. This situation implies the absence/slow regime of macrocycle inversion process, which
would otherwise cause averaging of the ortho-H resonance to a singlet. This conclusion is also
supported by the splitting of bound guest methyl signal at 0.57 ppm below 2 guest equiv. (each
signal belongs to different diastereomer), which contradicts the presence of fast/intermediate
macrocyclic inversion or prototropic tautomerization. The structure in Fig. 7.5b (left) implying
two different ortho-H states 𝐴′

I and 𝐴′
II is relevant for this system. The reason for the absence of

macrocyclic inversion is probably the greater binding strength of (R)-CSA compared to mandelic
acid (𝐾1𝐾2 > 108 M−2 for CSA compared to 𝐾1𝐾2 < 107 M−2 for mandelic acid, see Sec. 6.9 and
[36]) preventing the activation step in Fig. 7.4c.

In OxP + DFA system, macrocyclic inversion does not alter the spin states shown in Fig.
7.2a. Hence, this process cannot be detected by NMR in this system. Macrocyclic inversion is not
possible in Bz2OxP and Bz4OxP due to steric hindrance.

4Spectrum of free host implies 𝐽 (𝛽-H)=2.5 Hz while splitting due to weak J-coupling of ortho-H cannot be even
observed, see Fig. E.3. The splitting of ortho-H in HG2 is 0.008 ppm corresponding to 4 Hz. Thus, this value is
unrealistically high to be caused by J-coupling and the splitting is ascribed to chiral field.
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Figure 7.5: Structures of OxP + (R)-CSA 1:2 host-guest complex, corresponding states of tert-butyl-H spins
(black labels; also valid for ortho-H and 𝛽-H spins) and states of NH spins (gray labels). (a) Spin states in
the two tautomeric forms (diastereomers) (+)-HG2 and (−)-HG2, (b) Averaged structures (combination of
(+)-HG2 and (−)-HG2 structures) due to fast prototropic tautomerization (left), fast macrocyclic inversion
(middle) and due to the combined effect of these two (right). Solid and dashed geometric shapes with
proper symmetry represent chiral field in front of and behind the host, respectively. Dashed straight
lines denote symmetry elements 𝐶2 (two-fold rotation axis). Fast exchange implies (Eq. (3.62)) in tert-
butyl-H peaks: 𝛿𝐴′

I
= 𝑝+𝛿𝐴2 + 𝑝−𝛿𝐴3 , 𝛿𝐴′

II
= 𝑝+𝛿𝐴1 + 𝑝−𝛿𝐴4 , 𝛿𝐴′

III
= 𝑝+𝛿𝐴1 + 𝑝−𝛿𝐴3 , 𝛿𝐴′

IV
= 𝑝+𝛿𝐴2 + 𝑝−𝛿𝐴4 ,

𝛿𝐴′ = 𝑝+
2 (𝛿𝐴1 + 𝛿𝐴2 ) +

𝑝−
2 (𝛿𝐴3 + 𝛿𝐴4 ), where 𝑝+ and 𝑝− are relative populations of the species (+)-H(R)-G2

and (−)-H(R)-G2, respectively. Fast exchange implies in NH peaks: 𝛿𝐴′ = 𝑝+𝛿𝐴1 + 𝑝−𝛿𝐴2 . (c) Processes of
macrocyclic inversion (𝑘flip) and prototropic tautomerization (𝑘taut) in OxP in the presence of enantiopure
guest. The reference ortho-H spin (denoted by blue circle) changes its position among states 𝐴1, 𝐴2, 𝐴3
and 𝐴4 (corresponding to 𝑎’, 𝑏’, 𝑎” and 𝑏” in [36], respectively). Tert-butyl groups and some hydrogen
atoms are removed for clarity. Yellow colored hemiquinonoid groups are subject to protonation.
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7.2 Dynamics of Bz2OxP

7.2.1 Topomerization at hemiquinonoid groups

Topomerization5 is a process converting a chemical species into itself, typically rotation of a side
group. In protonated Bz2OxP, double bond at the hemiquinonoid group reduces to single bond
enabling rotation of the whole group about its meso-position bond as denoted by green color in
Fig. 7.6. Although the chemical structure does not change, the reference tert-butyl nuclear spin
(denoted by circle) changes its environment between states 𝐴 and 𝐵. Consequently, Bz2OxP
hemiquinone topomerization is manifested as symmetric two-state exchange in the NMR spec-
trum (ortho-H signals are sensitive to this process as well, but they do not coalesce due to large
peak separation). In fact, each of states 𝐴 and 𝐵 consists of multiple substates, which are aver-
aged due to other processes, as will be shown later. Due to this averaging, all four hemiquinonoid
groups appear as if they rotate simultaneously on the NMR timescale even when the mean proto-
nation number ⟨𝑛⟩ < 4. Although hemiquinonoid topomerization almost certainly takes place in
OxP, it is undetectable because the spin environments are identical (the rotation axis coincides
with the 𝐶2 symmetry axis, which also lies in the mirror symmetry plane). However, Bz2OxP
possesses intrinsic asymmetry due to N-alkylation revealing the topomerization process.

state A

state B

reference spin

Figure 7.6: Rotation of hemiquinonoid group (topomerization) in protonated Bz2OxP

As expected, the observed transition rate coefficient 𝑘obs indicating the hemiquinone topo-
merization (the relationship between 𝑘obs and the “true” reaction/transition rate coefficient 𝜅topo=
𝑘topo is complicated as discussed at the end of this section) depends on acid concentration, see Fig.
7.7a. Initially, increasing the mean protonation number ⟨𝑛⟩ on average reduces double bonds of
the hemiquinonoid groups to single bonds and 𝑘obs increases, see Fig. 7.7f (⟨𝑛⟩ is calculated only
up to 20 equiv. because only the value of 𝐾1 is available, see Sec. 6.9). Above ca. 200 equiv. of
DFA, rate of the process decreases with acid concentration. The absence of chemical exchange in
NMR spectra without any acid (even at high temperatures) proves the necessity of protonation to
activate the rotation, see Fig. 7.7b. Concentration dependence at room temperature was observed
only in the presence of DFA not CSA (see spectrum in Fig. E.5), energy barrier in the latter case
is too high and the effect of topomerization is only observed at higher temperatures as discussed
below.

Variable temperature measurements in the presence of constant amount of DFA or CSA
(enough to induce ⟨𝑛⟩ ≥ 1 so that free host contribution to the spectral lineshape is negligible) in
Fig. 7.7c,d show increase in 𝑘obs as determined by lineshape fitting, see details in Appendix C.6. In
the system of Bz2OxP + DFA (Fig. 7.7c), the topomerization is fast enough to induce an averaged
state 𝑇 ′ formed from 𝐴′ and 𝐵′, see the corresponding structures in Fig. C.7 in Appendix C.6.
Temperature dependence of 𝑘obs is linear in Eyring plot, see Fig. 7.7g,h, thus, the hemiquinone

5topomerization https://goldbook.iupac.org/terms/view/T06396

https://goldbook.iupac.org/terms/view/T06396
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Figure 7.7: Analysis of NMR tert-butyl signals of Bz2OxP in various conditions reflecting rotation of the
hemiquinonoid groups. (a) Titration of Bz2OxP with DFA (full spectra in Fig. E.4). (b) Variable tem-
perature measurement of Bz2OxP. There is no chemical exchange in the absence of acid. (c) Variable
temperature measurements of Bz2OxP with 35 equiv. of DFA (full spectra in Fig. E.11). (d) Variable
temperature measurements of Bz2OxP with 17 equiv. of (rac)-CSA (full spectra in Fig. E.15). (e) Variable
temperature measurements of Bz2OxP with 14 equiv. of (R)-CSA (full spectra in Fig. E.13). (f) Concen-
tration dependence of 𝑘obs for titration of Bz2OxP with DFA obtained from lineshape fitting of spectra
in panel (a) (top) and the corresponding mean protonation number (⟨𝑛⟩ = [HG]/[H]t) calculated using
𝐾1 = 1260 M−1 (bottom). (g) Eyring plot of Bz2OxP + DFA system obtained from lineshape fitting of spec-
tra in panel (c). (h) Eyring plot of Bz2OxP + (rac)-CSA system obtained from lineshape fitting of spectra
in panel (d). Details about meaning of error bars, lineshape fitting procedure and Eyring plot fitting are
given in Appendix C.6. Structures corresponding to states in Bz2OxP in the presence of DFA or (R)-CSA
are given in Fig. C.7 in Appendix C.6 or in Fig. 7.8, respectively.

topomerization process can be described by a single Gibbs energy barrier Δ𝐺‡ = Δ𝐻‡ − 𝑇Δ𝑆‡
(Sec. 2.1.4). Weighted linear fit of the Eyring plots quantifies the Gibbs energy barrier as shown in
Table 7.1. Room temperature (298 K) entropic contribution to the Gibbs energy barrier (−𝑇Δ𝑆‡)

Table 7.1: Results of Eyring plot fitting for topomerization of hemiquinonoid group of Bz2OxP in the
presence of acid. The fitting procedure is described in Appendix C.6.

acid Δ𝐻‡ / kJ.mol−1 Δ𝑆‡ / J.mol−1.K−1 Δ𝐺‡ (25 ◦C) / kJ.mol−1 −𝑇Δ𝑆‡ (25 ◦C) / kJ.mol−1
DFA 49.4 ± 1.4 42.0 ± 5.0 36.8 ± 2.0 −12.7 ± 1.4
CSA 58.7 ± 2.6 29.0 ± 8.0 50.1 ± 3.5 −8.6 ± 2.4
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is smaller than the enthalpic contribution (Δ𝐻‡), however, it is not negligible as would be ex-
pected for rotation processes with no bond breaking [175]. Hence, the structure of protonated
complex is rearranged during the topomerization process. Relevance of using 𝑘obs in the Eyring
plot (instead of reaction rate coefficient 𝜅topo) is discussed at the end of this section.

Comparison of Bz2OxP spectra with racemic CSA and its (R)-enantiomer in Fig. 7.7d,e re-
veals an important difference, the presence of (R)-CSA induces four tert-butyl states, while (rac)-
CSA only two. To understand this effect caused by CSA chirality, it is necessary to analyze all
possible tert-butyl spin states of the monoprotonated Bz2OxP host (states of higher protonation
are negligible for Bz2OxP + CSA system, see Sec. 6.9).

Figure 7.8a shows host structures with four different protonation sites in Bz2OxP + (R)-CSA
system. They comprise of two chemically distinct tautomers (+)-HG and (−)-HG. The labels (+)
and (−) have been assigned arbitrarily (without the influence of guest anion, protonated species
(+)-H+ and (−)-H+ are mutual mirror images, i.e. enantiomers). Asymmetric acid anions create
different chiral field at the porphyrinogen center of (+)-HG and (−)-HG, which is schematically
denoted by blue or red asymmetric shapes, thus, NMR spectra of (+)-HG (tert-butyl states 𝐴1, . . . ,
𝐴4) and (−)-HG (tert-butyl states 𝐴5, . . . , 𝐴8) tautomers are different.6 First and third structures
in Fig. 7.8a (i.e. (+)-H(R)-G) are chemically identical, but a reference tert-butyl nuclear spin in
both structures is located in different environments, similarly for (−)-H(R)-G. Note that states
𝐵𝑗 are always in the vicinity of N-bromobenzyl groups contrary to 𝐴𝑗 states. Figure 7.8b shows
four different protonation states in Bz2OxP + (S)-CSA system. The structure of (−)-H(S)-G is
a mirror image of (+)-H(R)-G and the structure of (+)-H(S)-G is a mirror image of (−)-H(R)-G
as schematically denoted by the shape and orientation of the chiral field. This implies that, for
example, spin state𝐴1 is located at (+)-H(R)-G as well as (−)-H(S)-G and similarly for other states.

Besides hemiquinone topomerization, other processes change the environment of a reference
tert-butyl spin, see next two sections for details. These processes are characterized by 𝑘taut, 𝑘∗taut
and 𝑘ex, the corresponding chemical exchange is fast on the NMR scale above −20 ◦C, thus, the
spin states and their NMR signals are averaged, see Fig. E.4, E.5 and E.6. In the case of Bz2OxP in
the presence of (R)-CSA, all four structures in Fig. 7.8a are combined resulting to averaged chiral
field inducing 𝐶2 symmetry of the host-guest complex, see Fig. 7.8c (left). Averaged states 𝐴I
and 𝐴II are formed from substates 𝐴1, … , 𝐴8, averaged states 𝐵I and 𝐵II are formed from substates
𝐵1, … , 𝐵8. These averaged states 𝐴I, 𝐴II, 𝐵I and 𝐵II are observed in Fig. 7.7e for Bz2OxP in the
presence of (R)-CSA (two resonances overlap at 1.44 ppm). The presence of racemate combines
eight states from Fig. 7.8a,b resulting to averaged chiral field inducing 𝐶2v symmetry of the host-
guest complex, see Fig. 7.8c (right). This yields only two states 𝐴 and 𝐵 and explains the spectra
in Fig. 7.7d for Bz2OxP in the presence of (rac)-CSA. Note that the aforementioned sensitivity to
chirality follows the mechanism of determination of enantiomeric excess by prochiral solvating
agents as described in Sec. 3.4.3. Spectra of Bz2OxP in the presence of DFA in Fig. 7.7c include
only two tert-butyl states 𝐴′ and 𝐵′ because the Bz2OxP⋅CSA complex has 𝐶2v symmetry (in-
duced by the mirror symmetry of DFA), see the corresponding structures in Fig. C.7 in Appendix
C.6.

At −60 ◦C and low number of acid equivalents, all 𝑘topo, 𝑘ex, 𝑘taut and 𝑘∗taut are small enough
that the exchange enters intermediate regime and some of the states 𝐴1, … , 𝐴8 and 𝐵1, … , 𝐵8 are
directly visible in NMR although being broadened, see Fig. 7.8d. Note that chirality does not play
a role and low-temperature spectra in the presence of (R)-CSA or (rac)-CSA are identical.

Determination of energy barrier of topomerization process requires knowledge of 𝜅topo tem-
perature dependence. Our previous analysis in Table 7.1 made a simple assumption 𝜅topo = 𝑘obs,
however, according to Fig. 7.7d 𝑘obs depends on acid concentration, and thus it is not equal

6As in the case of OxP, the chiral field is formed since the charged species interact strongly together due to
hydrophobicity of the CDCl3 solvent.
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Figure 7.8: Structures of Bz2OxP + CSA complex, corresponding states of tert-butyl-H spins (black labels; also valid
for ortho-H and 𝛽-H spins) and states of NH spins (gray labels). (a) Spin states in Bz2OxP+⋅(R)-CSA− complex, (b)
spin states in Bz2OxP+⋅(S)-CSA− complex. (c) Fast prototropic tautomerization processes cause averaging of chiral
field in Bz2OxP + (R)-CSA system (consists of averaged states from (a)) and Bz2OxP + (rac)-CSA system (consists of
averaged states from (a) and (b), also requires fast anion exchange process). Geometric shapes with proper symmetry
represent chiral field created by the acid anion. Dashed straight lines denote symmetry elements 𝜎v (vertical mirror
plane). Fast exchange implies (Eq. (3.62)) in tert-butyl-H peaks: 𝛿𝐴′

I
= 𝑝+,𝑅

2 (𝛿𝐴1 + 𝛿𝐴3 ) +
𝑝−,𝑅
2 (𝛿𝐴6 + 𝛿𝐴8 ), 𝛿𝐴′

II
= 𝑝+,𝑅

2 (𝛿𝐴2 +
𝛿𝐴4 ) +

𝑝−,𝑅
2 (𝛿𝐴5 + 𝛿𝐴7 ), 𝛿𝐵′I = 𝑝+,𝑅

2 (𝛿𝐵1 + 𝛿𝐵3 ) +
𝑝−,𝑅
2 (𝛿𝐵6 + 𝛿𝐵8 ), 𝛿𝐵′II = 𝑝+,𝑅

2 (𝛿𝐵2 + 𝛿𝐵4 ) +
𝑝−,𝑅
2 (𝛿𝐵5 + 𝛿𝐵7 ), 𝛿𝐴′ = 1

2 (𝛿𝐴′
I
+ 𝛿𝐴′

II
) =

𝑝+,𝑅
4 (𝛿𝐴1 +𝛿𝐴2 +𝛿𝐴3 +𝛿𝐴4 )+

𝑝−,𝑅
4 (𝛿𝐴5 +𝛿𝐴6 +𝛿𝐴7 +𝛿𝐴8 ) and 𝛿𝐵′ = 1

2 (𝛿𝐵′I +𝛿𝐵′II ) =
𝑝+,𝑅
4 (𝛿𝐵1 +𝛿𝐵2 +𝛿𝐵3 +𝛿𝐵4 )+

𝑝−,𝑅
4 (𝛿𝐵5 +𝛿𝐵6 +𝛿𝐵7 +𝛿𝐵8 ),

where 𝑝+,𝑅 , 𝑝−,𝑅 , 𝑝+,𝑆 and 𝑝−,𝑆 are relative populations of the species (+)-H(R)-G, (−)-H(R)-G, (+)-H(S)-G or (−)-H(S)-G,
respectively. Since some species are exact mirror images of others, and thus possess the same energy, it follows that
𝑝+,𝑅 = 𝑝−,𝑆 and 𝑝−,𝑅 = 𝑝+,𝑆 . Fast exchange implies in NH peaks: 𝛿𝐴′ = 𝑝+,𝑅

2 (𝛿𝐴1 + 𝛿𝐴3 ) +
𝑝−,𝑅
2 (𝛿𝐴2 + 𝛿𝐴4 ). (d) Some of the

states from (a) and (b) are detected in low-temperature NMR spectra (full spectra in Fig. E.11, E.12 and E.14).



98 Chapter 7. Dynamic processes and chemical exchange in OxP derivatives

to a reaction rate coefficient in general. We suggest a simple model, which naturally takes the
concentration dependence into account,

𝑘obs = ⟨𝑛⟩𝜅topo . (7.2)

This model predicts linear dependence (with zero intercept) of 𝑘obs on ⟨𝑛⟩ at ⟨𝑛⟩ ≤ 1, which is
approximately confirmed experimentally in Fig. 7.9. However, the presence of free host affects
the spectral lineshapes and introduces error to 𝑘obs determined by two-state fitting as discussed
in Appendix C.6. Thus, the observed dependence is not perfectly linear. In the presence of 35
equiv. of DFA or 17 equiv. of CSA ⟨𝑛⟩ ≈ 1, thus, our simple assumption 𝜅topo = 𝑘obs used in
Table 7.1 is valid. At more than 200 equiv. of DFA, 𝑘obs decreases with concentration. This effect
is probably related to increasing steric hindrance due to the high abundance of guest molecules
around carbonyl groups.

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

Figure 7.9: Linear correlation between ⟨𝑛⟩ and 𝑘obs in titration of Bz2OxP with DFA. Dashed line stands
for weighted linear fit.

7.2.2 Anion binding at the porphyrinogen center

Processes in Bz2OxP + acid systems involving transfer of the acid anion are analogous to those
described for OxP in Sec. 7.1.2. The first process is the host-guest binding (accompanied by
host protonation), where the association and dissociation is characterized by 𝑘ass and 𝑘diss (or by
concentration-independent 𝜅ass and 𝜅diss). Unlike for OxP, there are no separate peaks of free
and bound host except for NH signals with bigger separation |𝛿bound − 𝛿free|, however, other host
signals are significantly broadened in the presence of low acid concentration implying interme-
diate exchange regime of 𝑘ass and 𝑘diss. Values of 𝑘ass and 𝑘diss are determined in the next section
by lineshape fitting of NH signals.

Another process is the exchange of the bound acid anion characterized by 𝑘ex (described in
detail for OxP in Sec. 7.1.2). This process can also be accompanied by the prototropic tautomer-
ization, see the next section and Appendix C.9. Exchange of achiral anions or identical enan-
tiomers does not alter spin state of a reference spin. However, the spin state is altered when, for
example, (R)-CSA anion exchanges for (S)-CSA anion thus enabling determination of e.e. [45]
in the fast exchange regime of 𝑘ass, 𝑘taut and 𝑘ex (exchange broadening must not be present). In
theory, all hydrogen signals are split due to e.e. except NH since they lie exactly in the prochiral
plane, see Sec. 3.4.3 for details. Actually, only 𝛽-protons at alkylated pyrroles ( in Fig. E.13)
provide e.e.-induced splitting Δ𝛿 big enough for practical use at room temperature [45], com-
pare Fig. E.13 and E.15. Interestingly, 𝛽-protons at non-alkylated pyrroles ( in Fig. E.13) are
J-coupled to each other and also to the NH hydrogen, which results to involved spectral line-
shape with badly detectable splitting [40]. Tert-butyl resonances split due to e.e. below 10 ◦C,
see Fig. 7.7d,e. Above 10 ◦C, the hemiquinone topomerism interferes with e.e. splitting through
interchange of states 𝐴I ↔ 𝐵I and 𝐴II ↔ 𝐵II in Fig. 7.8c and causes merger of the corresponding
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resonances. At higher guest concentrations, host-guest stoichiometries higher than 1:1 appear
implying guest binding at the C=O sites at the edge of the host, which is characterized by another
set of transition rate coefficients 𝑘̃ass, 𝑘̃diss and 𝑘̃ex, see Table 7.5.

7.2.3 Prototropic tautomerization

Prototropic tautomerization, i.e. change of the protonation site in the host-guest complex, is
observed at tert-butyl resonances in the case of OxP + acid systems. However, Bz2OxP + acid
systems show tert-butyl peak broadening rather than splitting upon protonation due to their
small peak separation. Thus, Bz2OxP tert-butyl peaks cannot be used as a probe to the tau-
tomerization process. However, the protonation induces partial charge in the porphyrinogen
center (see Sec. 6.4), and thus affects state of the central NH spins possessing significant peak
separation upon protonation. Hence, NH groups serve as probes of the tautomerization process.
In this section, we describe the prototropic tautomerization in the Bz2OxP + (R)-CSA system in
detail.

The central NH protons of the Bz2OxP host in the presence of (R)-CSA (and unavoidable
presence of water) are subject to chemical exchange between six environments, which is experi-
mentally manifested in its NMR spectrum as three resonances (some of the resonances are already
merged due to fast exchange, see below) in the titration spectra at low [G]t, see Fig. 7.12a (full
spectra in Fig. E.5). At low [G]t, the three observable resonances of the reference spin (denoted
by green color in Fig. 7.10a) are well separated and the exchange between them is in a slow
regime. The peak at 9.3 ppm, denoted as state 𝐶′, vanishes at 1 guest equivalent (equivalents

reference 
spin

H

H+

(+)-H(R)-G

state A1

H+

(−)-H(R)-G

state A2

H+

(−)-H(R)-G

state A4

(a) (b)

(c) 

(+)-H(R)-G

state A3

H+

W

(C2v sym. group)

Figure 7.10: Spin states of central NH protons of Bz2OxP host molecule (H) in the presence of CSA (G). (a) Structure
of H. Bromobenzyl groups are situated behind the molecule. The spin states are described with respect to reference
proton denoted by green arrow. (b) Schematic representation of free host H𝐶 and host-water complex HW𝐷 inducing
the spin states denoted in superscript. (c) Protonated host-guest complex in two distinct tautomeric forms (+)-H(R)-G
and (−)-H(R)-G differing in the site of protonation. NH spins of (+)-HG tautomer can be present in two spin states
HG𝐴1 or HG𝐴3 (similarly NH spins of (−)-HG can be in states HG𝐴2 or HG𝐴4 ) depending on the carbonyl protonation
proximity to the green-labeled reference proton. Different sites of protonation within the green or yellow zones, form
the averaged states 𝐴′

I and 𝐴′
II, respectively. The superscripts (e.g. H𝐶 , HG𝐴1 ) denote the spin state with respect to the

green-labeled reference NH proton.
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defined as [G]t/[H]t). The state 𝐶′ actually comprises substates 𝐶 and 𝐷 averaged due to fast
chemical exchange, see Fig. 7.10b. These substates correspond to free host and its complex with
water, respectively (details are discussed below). The two resonances at 13.1 and 11.8 ppm cor-
respond to two equally populated (due to the 𝜎 ′

v symmetry of the host) states denoted as 𝐴′
I and

𝐴′
II, respectively. The state 𝐴′

I comprises substates 𝐴1 and 𝐴2, the state 𝐴′
II comprises substates

𝐴3 and 𝐴4, each two substates are averaged due to the fast exchange. States 𝐴1, . . . , 𝐴4 of the
green-labeled reference NH spin in Fig. 7.10c correspond to protonated host with protonation at
four different C=O sites. Hence, states 𝐴1 and 𝐴3 correspond to (+)-HG tautomer and states 𝐴2
and 𝐴4 to (−)-HG tautomer (NH spin states of the host in the presence of (R)- or (S)-form of the
guest are also shown in Fig. 7.8a,b including chiral field induced by the acid anion). Considering
the mirror symmetry plane 𝜎 ′

v of the host (shown in Fig. 7.10a), the reference spin is in state 𝐴1
or 𝐴2 (forming 𝐴′

I ) when the protonation is at the same side of the molecule as the reference spin
and in state 𝐴3 or 𝐴4 (forming 𝐴′

II) when the protonation is on the other side.

(a) Bz2OxP + (R)-CSA (b) Bz2OxP + (S)-CSA

(c) Bz2OxP + (rac)-CSA

14 13 12 11 10 9
ppm

25 °C, (R)-G

A1, A2 A3, A4 –60 °C, (R)-G

–60 °C, (rac)-G

(C1 sym. group)(C1 sym. group)(C1 sym. group)

(Cs sym. group)

(C1 sym. group)

(Cs sym. group)

(d) NH signals

Figure 7.11: (a) Averaged structures induced by fast exchange for the system of Bz2OxP + (R)-CSA (large
𝑘∗𝐴′ ), (b) Bz2OxP + (S)-CSA (large 𝑘∗𝐴′ ) and (c) Bz2OxP + (rac)-CSA (large 𝑘∗𝐴′ and 𝑘ex). Corresponding
states of NH spins (black labels) and states of tert-butyl-H spins (gray labels; also valid for ortho-H and
𝛽-H spins) are formed as combination of spin states in Fig. 7.8a,b. Fast exchange implies (Eq. (3.62)) in
NH peaks: 𝛿𝐴′

I
= 𝑝+,𝑅𝛿𝐴1 + 𝑝−,𝑅𝛿𝐴2 and 𝛿𝐴′

II
= 𝑝+,𝑅𝛿𝐴3 + 𝑝−,𝑅𝛿𝐴4 . Fast exchange implies in tert-butyl-H

peaks: 𝛿𝐴′
1
= 𝑝+,𝑅𝛿𝐴4 + 𝑝−,𝑅𝛿𝐴5 , 𝛿𝐴′

2
= 𝑝+,𝑅𝛿𝐴1 + 𝑝−,𝑅𝛿𝐴6 , 𝛿𝐴′

3
= 𝑝+,𝑅𝛿𝐴2 + 𝑝−,𝑅𝛿𝐴7 , 𝛿𝐴′

4
= 𝑝+,𝑅𝛿𝐴3 + 𝑝−,𝑅𝛿𝐴8 ,

𝛿𝐵′1 = 𝑝+,𝑅𝛿𝐵4 + 𝑝−,𝑅𝛿𝐵5 , 𝛿𝐵′2 = 𝑝+,𝑅𝛿𝐵1 + 𝑝−,𝑅𝛿𝐵6 , 𝛿𝐵′3 = 𝑝+,𝑅𝛿𝐵2 + 𝑝−,𝑅𝛿𝐵7 , 𝛿𝐵′4 = 𝑝+,𝑅𝛿𝐵3 + 𝑝−,𝑅𝛿𝐵8 , 𝛿𝐴̃′
1
=

𝑝+,𝑅
2 (𝛿𝐴1 +𝛿𝐴4 )+

𝑝−,𝑅
2 (𝛿𝐴5 +𝛿𝐴6 ), 𝛿𝐴̃′

2
= 𝑝+,𝑅

2 (𝛿𝐴2 +𝛿𝐴3 )+
𝑝−,𝑅
2 (𝛿𝐴7 +𝛿𝐴8 ), 𝛿𝐵̃′1 =

𝑝+,𝑅
2 (𝛿𝐵1 +𝛿𝐵4 )+

𝑝−,𝑅
2 (𝛿𝐵5 +𝛿𝐵6 ),

𝛿𝐵̃′2
= 𝑝+,𝑅

2 (𝛿𝐵2 + 𝛿𝐵3 ) +
𝑝−,𝑅
2 (𝛿𝐵7 + 𝛿𝐵8 ), where 𝑝+,𝑅 , 𝑝−,𝑅 , 𝑝+,𝑆 and 𝑝−,𝑆 are relative populations of the species

(+)-H(R)-G, (−)-H(R)-G, (+)-H(S)-G and (−)-H(S)-G, respectively. Since some species are exact mirror
images of others, and thus possess the same energy, it follows that 𝑝+,𝑅 = 𝑝−,𝑆 and 𝑝−,𝑅 = 𝑝+,𝑆 . (d) 1H
NMR spectra of NH resonances of host (8.4 × 10−4 M−1, CDCl3) with 0.59 equiv. (R)-G at −60 ◦C and 25 ◦C,
host with 0.5 equiv. (rac)-G at 25 ◦C. The low-temperature spectra show the presence of four states 𝐴1, . . . ,
𝐴4 (intensity ratio of the peaks at 13.03 and 12.96 ppm is 74:26), the room-temperature spectrum shows
only two averaged states 𝐴′

I and 𝐴′
II.
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Transitions between substates 𝐴1, . . . , 𝐴4 are accomplished by the prototropic tautomeriza-
tion process, mediated by the guest anion (details are discussed below). For simplicity, we char-
acterize this process by transition rate coefficient 𝑘𝐴′ (corresponding to reaction rate coefficient
𝜅taut), when the protonation changes across the 𝜎 ′

v plane (i.e. transitions 𝐴1 ↔ 𝐴3, 𝐴1 ↔ 𝐴4,
𝐴2 ↔ 𝐴3 or 𝐴2 ↔ 𝐴4); or 𝑘∗𝐴′ (corresponding to 𝜅∗taut) otherwise (i.e. transitions 𝐴1 ↔ 𝐴2 or
𝐴3 ↔ 𝐴4). Large value of 𝑘∗𝐴′ causes averaging of the substates to 𝐴′

I and 𝐴′
II as shown in detail in

Fig. 7.11a including the corresponding chiral field (cf. Fig. 7.8a). The presence of (S)-CSA induces
identical 𝐴′

I and 𝐴′
II states in the host since the NH groups lie in the prochiral plane 𝜎v, see Fig.

7.11b (cf. Fig. 7.8b). Therefore, also the presence of (rac)-CSA induces identical 𝐴′
I and 𝐴′

II states
and chemical shift of these averaged states does not depend on enantiomeric excess of guest.
Note that averaged states of other hydrogen spins not located in the prochiral plane are in differ-
ent states in the presence of (rac)-CSA compared to (R)-CSA. These states are denoted by tilde in
Fig. 7.11c and also require fast anion exchange 𝑘ex in order to induce single resonance. At higher
guest concentrations, the resonance in state 𝐶′ vanishes and the resonances in states 𝐴′

I and 𝐴′
II

start to coalesce and enter intermediate then fast exchange regimes. The appearance of only one
resonance implies that fast prototropic tautomerization process restores the 𝐶2 symmetry even
in protonated host, see the structures in Fig. 7.8c. Furthermore, titration with (R)-CSA produced
the same spectral behavior of the NH resonances (see Fig. E.6). Note that in the Bz2OxP + DFA
system, the tautomerization process is fast, and thus only one NH resonance is observed in the
whole DFA concentration range, the corresponding structures are in Fig. C.7 in Appendix C.6.

All states 𝐴1, . . . , 𝐴4 are directly observed at low temperature as shown in Fig. 7.11d. Since
the chiral field induced by the acid anion is different in (+)-HG and (−)-HG (due to the absence
of mirror symmetry of the guest), Larmor frequency of state 𝐴1 differs from that of 𝐴2, although
Larmor frequencies of 𝐴3 and 𝐴4 are coincidentally similar. The presence of (rac)-CSA does
not alter the corresponding chemical shifts compared to (R)-CSA. At room temperature, only
averaged states 𝐴′

I and 𝐴′
II are detected due to fast exchange. We were not able to unequivocally

assign states 𝐴1, . . . , 𝐴4 (corresponding to structures in Fig. 7.10c) to particular resonances in Fig.
7.11d. However, this information is not essential for analyzing the system’s kinetics. Therefore,
we assumed that Larmor frequency of the reference NH spin (denoted by green color in Fig.
7.10c) is likely similar when the protonation is in its vicinity (i.e. states 𝐴1 and 𝐴2) contrary
to protonation across the symmetry plane (i.e. states 𝐴3 and 𝐴4), which results in assignment
shown in Fig. 7.11d.

The observed spectral behavior can be described (in terms of reduced equivalent scheme
from Sec. 3.3.8) as the half-symmetric three-state exchange with states 𝐴′

I , 𝐴′
II and 𝐶′ (Table

3.2b), which is characterized by two independent transition rate coefficients 𝑘𝐴′ and 𝑘𝐴′𝐶′ (𝑘𝐶′𝐴′ =
𝑘𝐴′𝐶′𝑝𝐶′/𝑝𝐴′

I
is not independent as follows from Eq. (3.37)). The corresponding populations are

𝑝𝐴′
I
= 𝑝𝐴1 + 𝑝𝐴2 , 𝑝𝐴′

II
= 𝑝𝐴3 + 𝑝𝐴4 and 𝑝𝐶′ = 𝑝𝐶 + 𝑝𝐷 . Resonance positions 𝛿𝐴′

I
and 𝛿𝐴′

II
shift upfield

(to lower ppm values) at higher acid concentrations due to the increase in polarity of the medium
upon addition of acid, see arrow in Fig. 7.12b. The resonance position 𝛿𝐶′ shifts downfield (to
larger ppm values) during the titration (while 𝛿𝐴′

I
and 𝛿𝐴′

II
still remain constant), see blue arrow

in Fig. 7.12b. This is a direct evidence that state 𝐶′ consists of two substates 𝐶 and 𝐷 because
the three-state solution in Eq. (3.52) does not allow shifts of peak maxima in the slow exchange
regime. In the current model, the peak due to state 𝐶′ can shift when populations 𝑝𝐶 and 𝑝𝐷
change (𝛿𝐶′ = 𝑝𝐶𝛿𝐶 + 𝑝𝐷𝛿𝐷). It is already known that the host molecule can bind water with a
binding constant 𝐾HW = 240 ± 35 M−1 [40]. During experiments it is not reasonably possible to
prepare CDCl3 solutions of H containing no residual water. Moreover, small quantities of water
are added together with the hydrophilic guest during the titration process. Hence, the spin state
𝐷 most likely corresponds to a host-water complex (HW). Competitive binding of guest and
water is assumed [40], i.e. complexation with one ligand precludes binding of the other (see
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Figure 7.12: Experimental results for the host-guest system of di-bromobenzylated oxoporphyrinogen with
(R)-camphorsulfonic acid. (a) NH portion of 1H NMR spectra of host H (initial concentration 6 × 10−4 M,
CDCl3) during the titration with guest G (𝑦-scaling of spectra is adjusted for clarity). Concentration of
guest G corresponds to the value where the spectrum meets the 𝑦-axis. (b) Apparent positions of peak
maxima during the titration, green and blue arrows denote the shift of maxima due to solvent polarity
increase and fast exchange between states 𝐶 (free H) and 𝐷 (host-water complex HW), respectively. Red
line is fit of the frequency 𝜔𝐶′ = 𝑝𝐶𝜔𝐶 + 𝑝𝐷𝜔𝐷 rescaled to ppm. (c) Concentration dependence of the
transition rate coefficient 𝑘𝐴′ obtained using two-state lineshape fitting on states 𝐴′

I and 𝐴′
II (black circles)

and using three-state lineshape fitting on states 𝐴′
I , 𝐴′

II and 𝐶′ (green circles). The red line is the best fit of
the 𝑘𝐴′ concentration dependence within three-state model (two-state model is used above 1 equiv. due
to the disappearance of the 𝐶 state from NMR spectra) using Eq. (7.3a) and (A.3). Magenta lines denote
the slope of the red fitting curve. (d) Other transition rate coefficients describing the half-symmetric
three-state exchange. The parameter 𝑘𝐴′𝐶′ was fitted and 𝑘𝐶′𝐴′ was calculated (𝑘𝐶′𝐴′ = 𝑘𝐴′𝐶′𝑝𝐶′ /𝑝𝐴′

I
). (e)

Concentration dependence of the power law exponent. (f) Concentration dependence of populations of
host-related species. (g) Concentration dependence of free guest, host-water complex (both determined
from the model in Sec. 2.2.3) and total concentration of water (as determined from water peak integration,
red solid line is interpolation). (h) Gibbs energy profile of all chemical species as calculated from the Eyring
equation, Eq. (2.20), from the reaction rate coefficients at 𝑇 = 298 K and setting the transition probability
𝜂 = 1. Barriers Δ𝐺‡

𝐶𝐷 and Δ𝐺‡
𝐷𝐶 were not determined since the corresponding exchange process was

too fast. The Larmor frequencies of states 𝐴′
I and 𝐴′

II are not unequivocally assigned with respect to the
structures in Fig. 7.10c. Error bars in (c) and (d) denote maximum errors, see discussion in Sec. C.7.
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Sec. 2.2.3). Because of the high mobility of water (small molecule) and low value of 𝐾HW we
assume infinitely fast exchange between states 𝐶 and 𝐷. To summarize, the chemical kinetics
description of this system includes competitive host-guest and host-water binding. The observed
spin exchange kinetics (for host NH signals) can be described using the half-symmetric three-
state model. Fast exchange effectively reduces the number of states to three, enabling the use of
the reduced equivalent scheme.

Figure 7.13 shows three different levels of description of chemical kinetics in this system, and
the underlying equations are given in Appendix C.8. Figure 7.13a shows the simplified chemical
kinetics of the processes involved assuming the presence of host molecule as three distinct chem-
ical species, H, HG and HW. The simplified chemical kinetics scheme is sufficient to describe
the competitive host-ligand binding characterized by equilibrium constants 𝐾HG and 𝐾HW, the
corresponding equations are shown in Sec. 2.2.3. The constant 𝐾HG accounts for the protona-
tion of any of the four sites. The low-temperature spectrum of Bz2OxP + (R)-CSA in Fig. 7.11d
suggests that the sites are not equivalent since states 𝐴1 and 𝐴2 are not equally populated with
intensity ratio 74:26. The populations cannot be determined at room temperature. However, we
can treat the sites as equivalent (with equal populations) at room temperature with reasonable
accuracy since the populations tend to equalize with increasing temperature. Hence, the reaction
rate coefficient 4𝜅ass in Fig. 7.13a contains an integer prefactor to account for the four equiva-
lent protonation sites. Protonation of one particular site is characterized by 𝐾micro

HG = 𝐾HG/4 (cf.
Table 2.2 in Sec. 2.2.4). The microscopic equilibrium constant 𝐾micro

HG is also equal to the ratio
of reaction rate coefficients for the molecular processes of protonation and deprotonation, i.e.
𝐾micro
HG = 𝜅ass/𝜅diss.

In fact, the protonation forms two different tautomeric species (+)-HG and (−)-HG as dis-
cussed above, see Fig. 7.10c. This situation is captured by the chemical kinetics scheme in
Fig. 7.13b. Both tautomers can be formed in two different ways, hence the integer prefactor
in 2𝜅ass. As discussed above, chemical species (+)-HG and (−)-HG can be interconverted by the

(b) chemical kinetics

(+)-HG (−)-HG

≡

≡

≡ fast on the NMR 
timescale

(a) simplified chemical 
___kinetics

G G

HG

HW

H

4

HW

H

(c) expanded chemical kinetics

Figure 7.13: Chemical kinetics schemes for the multi-state system of Bz2OxP (host H) in the presence
of two ligands, (R)-CSA (ligand G) and water (ligand W). (a) Simplified chemical kinetics scheme corre-
sponding to 1:1 H:G binding with competitive 1:1 H:W binding (see Sec. 2.2.3 for details). (b) Chemical
kinetics scheme describing interconversion of all distinguishable chemical species. (c) Expanded chemical
kinetics scheme, equal to the full spin kinetics scheme. All relevant molecular processes and their reaction
rate coefficients are shown. Processes denoted by magenta arrows are fast on the NMR timescale.
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prototropic tautomerization processes characterized by 𝜅taut or 𝜅∗taut. This interconversion be-
tween the two tautomeric forms can occur in two ways implying overall reaction rate coefficient
𝜅taut + 𝜅∗taut (Fig. 7.13b). It is a second order reaction since the guest molecule has to collide
with the host-guest complex. Details of these tautomerization processes, including structure of
transition states, are given in Appendix C.9.

The chemical kinetics scheme can be further expanded to remove degeneracy from all mi-
crostates, see in Fig. 7.13c. Here, all chemically distinct species in all spin states (as listed in Fig.
7.10b,c) are shown as separate entities, so that no prefactors or sums of reaction rate coefficients
are present for the reaction rate coefficients. The spin states are denoted in superscripts at the
chemical species, e.g. H𝐶 , HG𝐴1 . The processes characterized by 𝜅∗𝐴 (denoted by magenta arrows
in Fig. 7.13c) have low energy barriers and therefore are fast at room temperature. This makes
𝜅∗𝐴 indeterminable by lineshape analysis. The expanded chemical kinetics scheme is equal to the
full spin kinetics scheme and forms a basis for the connection between chemical kinetics and
observed spin kinetics as explained in the next paragraph.

Due to fast exchange (large 𝜅∗taut, 𝜅𝐶𝐷 and 𝜅𝐷𝐶 ), the kinetics scheme in Fig. 7.13c must be
contracted from six to three states, which results in the spin kinetics scheme in Fig. 7.14a. Then
this scheme expressed in reaction rate coefficients can be directly compared to the corresponding
scheme expressed in transition rate coefficients in Fig. 7.14b, and subsequently, the relations be-
tween reaction and transition rate coefficients can be established. In addition, the concentration
dependence of the transition rate coefficients is obtained. Details of this procedure are described
in Appendix C.8. The resulting equations are

𝑘𝐴′ = 2𝜅taut[G] , (7.3a)
𝑘𝐴′𝐶′ = 𝜅diss , (7.3b)
𝑘𝐶′𝐴′ = 2𝜅ass[G] . (7.3c)

The transition rate coefficient 𝑘𝐴′𝐶′ , which corresponds to decay of HG complex, is independent
of concentration. On the other hand, formation of a complex is a bimolecular reaction, therefore
𝑘𝐶′𝐴′ is proportional to [G]. Also, the guest-mediated prototropic tautomerization is a bimolecular
reaction (based on the suggested reaction scheme in Appendix C.9), implying 𝑘𝐴′ is proportional
to [G].

The use of three-state reduced equivalent spin kinetics scheme enables us to describe the
observed spectra with only two transition rate coefficients 𝑘𝐴′ and 𝑘𝐴′𝐶′ . At guest concentrations
higher than 1 equiv. the two-state model with transition rate coefficient 𝑘𝐴′ is sufficient because

(a) reduced equivalent spin kinetics scheme
___(in reaction rate coeff.)

(b) reduced equivalent spin kinetics scheme
___(in transition rate coeff.)

[G]
[G]

Figure 7.14: Reduced equivalent spin kinetics schemes for the multi-state system of Bz2OxP (host H)
in the presence of two ligands, (R)-CSA (ligand G) and water (ligand W). Schemes refer to the central
NH protons of the host molecule. (a) Spin kinetics in terms of reaction rate coefficients as obtained from
contraction of the scheme in Fig. 7.13c. (b) Corresponding spin kinetics in terms of transition rate coeffi-
cients. It has the form of half-symmetric three-state exchange. Comparison with (a) gives the relationship
between transition and reaction rate coefficients in Eq. (7.3). This scheme represents experimentally ob-
served spin kinetics. It was used for lineshape fitting, see Appendix C.7 for details.
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the state 𝐶′ is unpopulated. During the fitting procedure, the parameter 𝛿𝐶′ , which describes
the averaged frequency of the state 𝐶′, is fixed exactly at the corresponding peak position in the
spectra, frequencies of the states 𝐴′

I and 𝐴′
II are also fixed, for details see Appendix C.8. To show

the actual usefulness of the three-state model, we have also fitted the states 𝐴′
I and 𝐴′

II with the
two-state model over the concentration range studied (fitting parameter 𝑘𝐴′ ). From Fig. 7.12c
it is obvious that the three-state model systematically shifts 𝑘𝐴′ to lower values than obtained
using the two-state model (presence of the third state 𝐶′ causes broadening of the peaks due to
states 𝐴′

I and 𝐴′
II). Examples of actual fitted spectra are shown in Fig. C.8 in Appendix C.7.

After the values of 𝑘𝐴′ and 𝑘𝐴′𝐶′ were obtained from the raw spectra (green and blue points
in Fig. 7.12d), fitting of the concentration dependence of 𝑘𝐴′ (using Eq. (7.3a)) was conducted si-
multaneously with other changes in spectra. This is shown together with other technical details
of the fitting procedure in Appendix C.7. The resulting fitted curve for 𝑘𝐴′ (red line in Fig. 7.12c)
describes the experimental values from the three-state exchange model with good accuracy and
confirms the assumption of proportionality to [G] for the guest-mediated prototropic tautomer-
ization, expressed in Eq. (7.3a). The value of equilibrium constant 𝐾HG = (7.4±3.0) × 104 M−1 was
also obtained. This value is comparable with the results of our previous analysis from Sec. 6.9
𝐾HG = (8.0 ± 5.0) × 104 M−1 (obtained from NMR binding isotherms) or 𝐾HG = (5.0 ± 1.0) × 104 M−1

(obtained from UV-vis), which did not take into account the competitive binding of water and
the concentration dependence of 𝑘𝐴′ . The concentration dependence of 𝑘𝐶′𝐴′ was determined
using the formula 𝑘𝐶′𝐴′ = 2𝜅ass[G] = 𝐾HG𝑘𝐴′𝐶′[G]/2, see Fig. 7.12d. The value of 𝑘𝐶′𝐴′ is cal-
culated directly from fitted values of 𝑘𝐴′𝐶′ up to 1 equiv. (red points in Fig. 7.12d). For higher
guest concentrations, the population of state 𝐶′ is negligible, and values of 𝑘𝐴′𝐶′ could not be
determined by three-state lineshape fitting. The red line in Fig. 7.12d is an extrapolation from
the guest concentration dependence using the mean value of 𝑘𝐴′𝐶′ (blue line). The fitting proce-
dure also provides concentrations of all species present in the sample, see Fig. 7.12f,g. Values of
equilibrium constants and reaction rate coefficients are listed in Table 7.2 and an overview of all
parameters used during the fitting procedure is given in Table C.3.

The concentration dependence of 𝑘𝐴′ can also be expressed in the form of a power law as 𝑘𝐴′ ∝
[G]𝑛t (for constant [H]t). The exponent 𝑛 can easily be extracted from the log-log plot in Fig. 7.12c
as the gradient (first derivative) of the red curve. The concentration dependence of the power law
exponent is shown in Fig. 7.12e. It can be seen that for low and high guest concentrations 𝑛 = 1.
However, between these limit cases, the power law exponent reaches values over 𝑛 = 3. It is
interesting to mention that the 𝑘𝐴′ dependence on free guest concentration [G] has a simple linear
relationship (see Eq. (7.3a)) while its dependence on total guest concentration [G]t has a nonlinear
form with the largest deviation from linearity around 1 equiv. of total guest concentration (Fig.
7.12e).

Table 7.2: Parameters of Gibbs energy profile at 𝑇 = 298 K. In the Eyring equation (Eq. (2.20)), the
assumption for transition probability 𝜂 = 1 was used.

equilibrium constants std. Gibbs energy of reaction mutual relationship
𝐾HG (7.4 ± 3.0) × 104 M−1 Δ𝐺◦

HG −27.8 ± 1.0 kJ.mol−1 Δ𝐺◦
HG = −𝑅𝑇 ln 𝐾HG

𝐾micro
HG (1.9 ± 0.8) × 104 M−1 Δ𝐺◦micro

HG −24.3 ± 1.0 kJ.mol−1 Δ𝐺◦micro
HG = −𝑅𝑇 ln𝐾micro

HG
𝐾HW 240 ± 35 M−1 Δ𝐺◦

HW −13.6 ± 0.4 kJ.mol−1 Δ𝐺◦
HW = −𝑅𝑇 ln𝐾HW

reaction rate coefficients Gibbs energy of barrier mutual relationship

𝜅diss 47 ± 6 s−1 Δ𝐺‡
diss 63.4 ± 0.3 kJ.mol−1 Δ𝐺‡

diss = −𝑅𝑇 ln ℎ𝜅diss
𝑘B𝑇

𝜅ass (9 ± 4) × 105 M−1s−1 Δ𝐺‡
ass 39.0 ± 1.1 kJ.mol−1 Δ𝐺‡

ass = −𝑅𝑇 ln ℎ𝜅ass
𝑘B𝑇

𝜅taut (10 ± 1) × 105 M−1s−1 Δ𝐺‡
taut 38.7 ± 0.2 kJ.mol−1 Δ𝐺‡

taut = −𝑅𝑇 ln ℎ𝜅taut
𝑘B𝑇
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The chemical kinetics, according to Fig. 7.13b, can also be viewed in terms of the Gibbs en-
ergy landscape as shown in Fig. 7.12h. The energy barriers are calculated from the corresponding
reaction rate coefficients using the Eyring equation, Eq. (2.20), at 𝑇 = 298 K with the transition
probability 𝜂 = 1. Standard reaction Gibbs energies for both HG and HW complexes were calcu-
lated from the equilibrium constants 𝐾micro

HG and 𝐾HW, respectively. All parameters of the Gibbs
energy profile are listed in Table 7.2. The barrier between states 𝐶 and 𝐷 was not determined
since it is very low (i.e. fast exchange regime).

7.3 Dynamic processes – summary

Multiple processes have been identified in OxP and Bz2OxP, which is summarized and schemat-
ically illustrated in Table 7.4 and 7.5, respectively. Only one variant out of several possible ones
is shown. NMR spectra of Bz4OxP in the presence of DFA do not show any dynamic behavior
since the tautomeric processes are fast (OH signal due to protonated Bz4OxP is broadened and
thus not observable), anion binding at the center is prevented by N-alkylation, and observation
of topomerization is impossible due to high symmetry of Bz4OxP. Our analyses quantified some
of these processes in terms of transition rate coefficients (summarized in Table 7.3), reaction rate
coefficients and energy barrier heights. These results were obtained in two steps: (i) lineshape fit-
ting of NMR spectra to obtain transition rate coefficients and (ii) fitting of binding and exchange
models to obtain reaction rate coefficients, binding constants and other parameters included in
binding isotherms (see Sec. 3.4.2). These steps are described in detail in Appendix C.7 for the
analysis of NH signals in Bz2OxP + (R)-CSA titration.

The first process in Table 7.3 is dynamic host-guest binding. This process could not be accu-
rately quantified in OxP due to the slow exchange regime, but the corresponding transition rate
coefficients were determined in Bz2OxP from NH resonances (see Sec. 7.2.3). Dissociation of the
complex is unimolecular reaction, thus, 𝑘diss does not depend on concentration, while 𝑘ass rep-
resenting a bimolecular reaction is proportional to [G]. The anion exchange process 𝑘ex changes
the host spin states only when chiral and not enantiopure guest is present in the sample. This
condition was satisfied for Bz2OxP + CSA systems, which revealed fast anion exchange at acid
excess (see Sec. 7.2.2 or [45]). Prototropic tautomerization is mediated by free guest molecules,
the concentration dependence was measured in both OxP and Bz2OxP. In Bz2OxP + (R)-CSA
system, the concentration dependence was successfully described by a kinetics model (see Sec.
7.2.3 or our article [2]). Macrocyclic inversion is an unexpected dynamic process taking part in
OxP in the presence of mandelic acid [36]. However, this process was not observed in the OxP +
CSA system probably due to strong host-guest binding, which prevented formation of the neutral
flip-active form. In the presence of DFA it cannot be decided whether this process takes place be-
cause the host spin states are not changed due to mirror symmetry of DFA (see Sec. 7.1.3). Finally,
rotation of the bulky side groups referred to as hemiquinonoid topomerization was detected in

Table 7.3: Overview of transition rate coefficients. Question mark stands for the inability to obtain the
corresponding parameter from current experiments.

OxP Bz2OxP
process DFA CSA DFA CSA
host-guest bind. 𝑘ass, 𝑘diss < 5 s−1 slow intermediate 𝑘diss = 47 s−1, 𝑘ass < 200 s−1
anion exchange undetectable ? undetectable fast at acid excess
prototrop. tautomer. 𝑘taut < 105 s−1 𝑘taut < 2000 s−1 ? 𝑘taut < 2 × 105 s−1
macrocyc. inv. undetectable not occurring impossible impossible
hemiquin. topomer. undetectable undetectable 𝑘topo < 150 s−1 slow
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Bz2OxP. This process is activated by protonation, and thus shows complicated dependence on
concentration when host-guest complex with higher than 1:1 stoichiometry is formed (see Sec.
7.2.1).

Noteworthy, high symmetry of OxP in combination with mirror symmetry of DFA hinders
the observability of some processes because the corresponding nuclear spins undergo chemical
exchange between identical chemical environments (first column of Table 7.3). On the other
hand, N-alkylation lowers the symmetry of Bz2OxP, which in combination with asymmetric
(R)-CSA allows, in theory, observation of all processes (last column of Table 7.3).

Table 7.4: Schematic overview of all processes in OxP. When the processes can be realized by multiple
ways, only one instance is shown as illustration. Transition states are not shown.

process illustration

host-guest binding
in the binding step 
H→HG2

host-guest binding at 
acid excess

in the binding step 
HG2→HG4

anion exchange
shares transition states 
with prototropic 
tautomerization; in HG2

anion exchange at 
acid excess

either the center anion or 
the guest at the edge can 
be exchanged; in HG4

prototropic 
tautomerization

mediated by either (i) free 
guest, (ii) water or (iii) 
host-host collisions; 
involved temperature 
dependence; in HG2

prototropic 
tautomerization at 

acid excess
in HG4

macrocyclic inversion
activated by the acid 
binding; in HG2

notes

G

G

G

GG

G

G

G

kass

kdiss

G

GG

Gkex

kex

ktaut

ktaut

kflip

kflip
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Table 7.5: Schematic overview of all processes in Bz2OxP. When the processes can be realized by multiple
ways, only one instance is shown as illustration. Proposed transition states of prototropic tautomerization
and anion exchange are shown in Sec. C.9.

process illustration

host-guest binding
in the binding step 
H→HG

host-guest binding at 
acid excess

in the binding step 
HG→HG2 or 
HG2→HG4

anion exchange
shares transition states 
with prototropic 
tautomerization; in HG

anion exchange at 
acid excess

either center anion or 
the guest at the edge can 
be exchanged; in HG2 or 
HG4

prototropic 
tautomerization

in HG

prototropic 
tautomerization at 

acid excess
in HG2 or HG4

hemiquinonoid 
topomerization

rotation around single 
bond; activated by 
protonation; in HG, 
HG2 or HG4

notes

GG

G G

kass
G

G
kdiss

G

GG

Gkex

kex

ktaut

ktaut

ktopo

ktopo

G

G



8 Conclusion
OxP, Bz2OxP and Bz4OxP serve as colorimetric sensors for acids in nonpolar media in wide
range of acid volume fractions. The halochromic response of OxP (𝜑(DFA) ∈ [10−6, 10−3]) is
very sensitive to small amounts of acid (detects ca. 1 ppm of DFA), however, it also saturates
at relatively low acid contents. The color response is shifted to higher acid contents in Bz2OxP
(𝜑(DFA) ∈ [10−4, 1]) and Bz4OxP (𝜑(DFA) ∈ [0.01, 0.6]) due to N-alkylation (Fig. 6.6). The color
changes were permitted by protonation and subsequent anion binding (i.e. host-guest binding),
which was studied by UV/vis and NMR spectroscopy in Chapter 6. UV/vis spectra were analyzed
using SVD to determine the number of absorbing components and using DSIS to obtain the com-
ponents’ populations. Up to fourfold protonation in OxP and Bz2OxP, and up to twofold pro-
tonation in Bz4OxP was observed, all UV/vis spectra of the individual protonated species were
obtained (Fig. 6.7 and Fig. 6.19). Experimental binding isotherms were constructed from both
UV/vis and NMR spectroscopic data and fitted with appropriate host-guest binding models (ap-
plicable at 𝜑(DFA) < 0.001) to obtain binding constants (Table 6.1). It turns out that N-alkylation
in Bz2OxP and Bz4OxP reduces the binding affinity in two ways: (i) it blocks the binding sites
for acid anions at the porphyrinogen center and (ii) prevents redistribution of charge, which
would stabilize the protonated species. Upon host protonation, the acid anions are located near
the charged complex because the nonpolar solvent does not allow for full dissociation.

Solvatochromic effects were studied in DMF/chloroform mixture. High contents of DMF in-
crease the solvent polarity and induce hydrogen bonding of DMF to the oxoporphyrinogen host,
causing positive solvatochromic shifts in UV/vis spectra of all investigated oxoporphyrinogens.
Analogously to halochromism, solvatochromic response threshold is shifted to higher DMF con-
centrations with increasing degree of N-alkylation (Fig. 6.15). The spectral changes in OxP and
Bz2OxP could be modeled as interconversion of individual absorbing species, which was further
confirmed by SVD. Besides solvatochromic shifts, OxP showed transition to another form with
distinct absorption bands assigned to porphodimethene form, which was stable only at particular
DMF concentration range. Detailed summary of chromic and binding properties is given in Sec.
6.9.

Various molecular dynamic processes are manifested as chemical exchange in NMR spectra of
protonated OxP and Bz2OxP as shown in Chapter 7. In both oxoporphyrinogens, we identified
the processes of anion exchange and prototropic tautomerization, also the host-guest binding
was confirmed to be a dynamic process (Fig. 7.4 and 7.5). Protonation also activates rotation of
bulky side groups (i.e. process of hemiquinonoid topomerization) as observed in Bz2OxP. This
process cannot be detected in OxP or Bz4OxP due to their high symmetry. NMR spectra of
protonated Bz4OxP do not show any chemical exchange due to its symmetry and fast rate of the
molecular processes.

To enable fitting of three-state chemical exchange lineshapes in NMR spectra (in the absence
of J-coupling), we calculated the analytical formula, which has not been published before (Sec.
3.3.7). We also devised so-called ‘reduced equivalent schemes’ for exchange schemes containing
a fast-exchanging state in order to reduce the number of parameters for lineshape fitting (Sec.
3.3.8). Furthermore, we derived an approximative formula to determine the coalescence point in
symmetric two-state exchange with nonzero transverse relaxation rate (Eq. 3.20).

Using these theoretical instruments, temperature and concentration dependence of transi-
tion rate coefficients corresponding to the present molecular processes was obtained. Effect of
temperature on the topomerization process in protonated Bz2OxP obeys Eyring equation (Ta-
ble 7.1), however, transition rate coefficient of tautomerization in protonated OxP shows non-
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monotonous temperature dependence. Concentration dependence of transition rate coefficients
in Bz2OxP systems has been described in detail using a kinetic model derived from competitive
host-guest binding (Fig. C.11 and Table 7.2). Note that chirality of the acid influences the number
of exchanging states in NMR spectra because the bound acid anion determines overall symmetry
of the complex through the so-called chiral field. Detailed summary of dynamic processes in the
oxoporphyrinogens is given in Sec. 7.3.

OxP and its derivatives have potential practical applications as colorimetric sensors in non-
polar media. N-alkylation modulates the color response so that the full acid volume fraction
(𝜑(DFA) ∈ [10−6, 1]) is covered by either of the compounds. Similar structure of the compounds
assures matching solubility, thus, these sensors might be applied as blends analogously to the
Universal Indicator [140].

Our NMR study of dynamic processes in the oxoporphyrinogens contributes to understand-
ing the concentration dependence of transition rate coefficients, which is always system-specific.
In this regard, models derived from chemical kinetics proved to be useful. We have also shown
the advantage of reduced equivalent schemes, derived from analytical exchange lineshapes. The
presented methods can be used to describe molecular kinetics in a wide range of systems with a
variety of intra- or intermolecular processes, such as those involving host–guest binding, enzy-
matic reactions or nontrivial conformational dynamics of proteins or other complex molecules.
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reina, F.-X. Le Bourdonnec, G. MacLeod, L. Martı́n-Francés, D. Massilani, J. Mercader, J. M.
Miller, E. Ndiema, B. Notario, A. Pitarch Martı́, M. E. Prendergast, A. Queffelec, S. Rigaud,
P. Roberts, M. J. Shoaee, C. Shipton, I. Simpson, N. Boivin, and M. D. Petraglia, “Earliest
known human burial in Africa”, Nature 593, 95–100 (2021).

[152] E. R. Malinowski, Factor Analysis in Chemistry (Wiley, Mar. 2002).
[153] C. Spearman, “”General Intelligence,” Objectively Determined and Measured”, The Amer-

ican Journal of Psychology 15, 201–292 (1904).
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List of Abbreviations

CSA camphorsulfonic acid

CW continuous wave

DFA difluoroacetic acid

DMF dimethylformamide

DSIS decomposition of spectra into individual species

FID free inductions decay

FT Fourier transform

IR infrared

NMR nuclear magnetic resonance

PC principal component

PCA principal component analysis

RF radiofrequency

RSD residual standard deviation

SVD singular value decomposition

TFA trifluoroacetic acid

TMS tetramethylsilan

TPP tetraphenylporphyrin

UV/vis ultraviolet/visible



A Overview of binding models
In this section, Mathematica code for the calculation of binding isotherms is provided.

A.1 Binding model 1:1

The simple 1:1 stoichiometry enables simple analytical solution. The concentrations are calcu-
lated as the following functions

(* H:G 1:1 *)

H[K1_,Ht_,Gt_] := (-1 - Gt K1 + Ht K1 + Sqrt[4 Ht K1 + (-1 - Gt K1 + Ht K1)^2])/(2 K1);

HG[K1_,Ht_,Gt_] := (1 + Gt K1 + Ht K1 - Sqrt[4 Ht K1 + (-1 - Gt K1 + Ht K1)^2])/(2 K1);

G[K1_,Ht_,Gt_] := (-1 + Gt K1 - Ht K1 + Sqrt[4 Ht K1 + (-1 - Gt K1 + Ht K1)^2])/(2 K1);

Using artificial data, numeric values can be obtained as follows

(* creating artificial data: *)

Htdata = ConstantArray[.001, 100];

Gtdata = Subdivide[0, .01, 99];

K1 = 5000;

(* calculating the concentrations *)

Gdata=G[K1, Htdata, Gtdata];

Hdata=H[K1, Htdata, Gtdata];

HGdata=HG[K1, Htdata, Gtdata];

A.2 Binding model 1:2

In principle, this model can be solved analytically using the formula for cubic equation. However,
numerical approach from [71] can be applied universally as explained in Sec. 2.2.2. The derivation
and implementation is shown here.

First, the host-related species (i.e. [H] and [HG𝑗]) and [G]t are expressed as functions of
[G]. Then the free guest concentration is calculated numerically from a polynomial equation in
the form [G]t = [G]t([G], [H]t, 𝐾𝑗). The equations for stepwise binding constants and total mass
balance are

(* H:G 1:2 *)

equations = {K1 == HG/(H G), K2 == HG2/(HG G), Ht == H + HG + HG2, Gt == G + HG + 2 HG2};
solutionRule = Solve[And @@ equations, {H, HG, HG2, Gt}][[1]]

This solution provides formulae for host-related species

H[K1_, K2_, Ht_, G_] := Ht/(1 + G K1 + G^2 K1 K2);

HG[K1_, K2_, Ht_, G_] := G Ht K1/(1 + G K1 + G^2 K1 K2);

HG2[K1_, K2_, Ht_, G_] := G^2 Ht K1 K2/(1 + G K1 + G^2 K1 K2);

The concentration [G] can be calculated from a polynomial equation, which can be obtained from
the solution for [G]t by the following procedure

polynomEq = (Gt == (Gt /. solutionRule));

polynomEq = MultiplySides[polynomEq, Denominator[(Gt /. solutionRule)]][[1, 1, 1]];

polynomEq = SubtractSides[polynomEq, polynomEq[[2]]];

polynomEq = Collect[polynomEq, G] (* polynomial equation for [G] *)

which yields the polynomEq in the form
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Gt + G (-1 + Gt K1 - Ht K1) - G^3 K1 K2 + G^2 (-K1 + Gt K1 K2 - 2 Ht K1 K2) == 0

The code for calculation of [G] is then obtained by

G[K1_?NumericQ, K2_?NumericQ, Ht_, Gt_] :=

G /. FindRoot[{Gt + G (-1 + Gt K1 - Ht K1) - G^3 K1 K2 + G^2 (-K1 + Gt K1 K2 - 2 Ht K1 K2)

== 0}, {G, Gt}];
SetAttributes[G, Listable];

The command SetAttributes[G, Listable] allows accepting values of Ht and Gt as lists of
numbers. For the use in fitting procedure, the check for numeric value ?NumericQmust be added
to input arguments.
Using artificial data, numeric values can be obtained as follows

(* creating artificial data: *)

Htdata = ConstantArray[.001, 100];

Gtdata = Subdivide[0, .01, 99];

K1 = 5000; K2 = 1000;

(* calculating the concentrations *)

Gdata=G[K1, K2, Htdata, Gtdata];

Hdata=H[K1, K2, Htdata, Gdata];

HGdata=HG[K1, K2, Htdata, Gdata];

HG2data=HG2[K1, K2, Htdata, Gdata];

A.3 Binding model 1:3

The equations describing the model are

(* H:G 1:3 *)

equations = {K1 == HG/(H G), K2 == HG2/(HG G), K3 == HG3/(HG2 G),

Ht == H + HG + HG2 + HG3, Gt == G + HG + 2 HG2 + 3 HG3};
solutionRule = Solve[And @@ equations, {H, HG, HG2, HG3, Gt}][[1]]

Polynomial equation for [G] is derived analogously to the previous section, the resulting code is

H[K1_, K2_, K3_, Ht_, G_] := Ht/(1 + G K1 + G^2 K1 K2 + G^3 K1 K2 K3);

HG[K1_, K2_, K3_, Ht_, G_] := G Ht K1/(1 + G K1 + G^2 K1 K2 + G^3 K1 K2 K3);

HG2[K1_, K2_, K3_, Ht_, G_] := G^2 Ht K1 K2/(1 + G K1 + G^2 K1 K2 + G^3 K1 K2 K3);

HG3[K1_, K2_, K3_, Ht_, G_] := G^3 Ht K1 K2 K3/(1 + G K1 + G^2 K1 K2 + G^3 K1 K2 K3);

G[K1_?NumericQ, K2_?NumericQ, K3_?NumericQ, Ht_, Gt_] :=

G /. FindRoot[{Gt + G (-1 + Gt K1 - Ht K1) + G^2 (-K1 + Gt K1 K2 - 2 Ht K1 K2)

- G^4 K1 K2 K3 + G^3 (-K1 K2 + Gt K1 K2 K3 - 3 Ht K1 K2 K3) == 0}, {G, Gt}];
SetAttributes[G, Listable];

Using artificial data, numeric values can be obtained as follows

(* creating artificial data: *)

Htdata = ConstantArray[.001, 100];

Gtdata = Subdivide[0, .01, 99];

K1 = 5000; K2 = 1000; K3 = 200;

(* calculating the concentrations *)

Gdata=G[K1, K2, K3, Htdata, Gtdata];

Hdata=H[K1, K2, K3, Htdata, Gdata];

HGdata=HG[K1, K2, K3, Htdata, Gdata];

HG2data=HG2[K1, K2, K3, Htdata, Gdata];

HG3data=HG3[K1, K2, K3, Htdata, Gdata];
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A.4 Binding model 1:4

The equations describing the model are
(* H:G 1:4 *)

equations = {K1 == HG/(H G), K2 == HG2/(HG G), K3 == HG3/(HG2 G), K4 == HG4/(HG3 G),

Ht == H + HG + HG2 + HG3 + HG4, Gt == G + HG + 2 HG2 + 3 HG3 + 4 HG4};
solutionRule = Solve[And @@ equations, {H, HG, HG2, HG3, HG4, Gt}][[1]]

Polynomial equation for [G] is derived analogously to previous sections, the resulting code is
H[K1_, K2_, K3_, K4_, Ht_, G_] :=

Ht/(1 + G K1 + G^2 K1 K2 + G^3 K1 K2 K3 + G^4 K1 K2 K3 K4);

HG[K1_, K2_, K3_, K4_, Ht_, G_] :=

G Ht K1/(1 + G K1 + G^2 K1 K2 + G^3 K1 K2 K3 + G^4 K1 K2 K3 K4);

HG2[K1_, K2_, K3_, K4_, Ht_, G_] :=

G^2 Ht K1 K2/(1 + G K1 + G^2 K1 K2 + G^3 K1 K2 K3 + G^4 K1 K2 K3 K4);

HG3[K1_, K2_, K3_, K4_, Ht_, G_] :=

G^3 Ht K1 K2 K3/(1 + G K1 + G^2 K1 K2 + G^3 K1 K2 K3 + G^4 K1 K2 K3 K4);

HG4[K1_, K2_, K3_, K4_, Ht_, G_] :=

G^4 Ht K1 K2 K3 K4/(1 + G K1 + G^2 K1 K2 + G^3 K1 K2 K3 + G^4 K1 K2 K3 K4);

G[K1_?NumericQ, K2_?NumericQ, K3_?NumericQ, K4_?NumericQ, Ht_, Gt_] :=

G /. FindRoot[{Gt + G (-1 + Gt K1 - Ht K1) + G^2 (-K1 + Gt K1 K2 - 2 Ht K1 K2) +

G^3 (-K1 K2 + Gt K1 K2 K3 - 3 Ht K1 K2 K3) - G^5 K1 K2 K3 K4 +

G^4 (-K1 K2 K3 + Gt K1 K2 K3 K4 - 4 Ht K1 K2 K3 K4) == 0}, {G, Gt}];
SetAttributes[G, Listable];

Using artificial data, numeric values can be obtained as follows
(* creating artificial data: *)

Htdata = ConstantArray[.001, 100];

Gtdata = Subdivide[0, .01, 99];

K1 = 5000; K2 = 1000; K3 = 200; K4 = 300;

(* calculating the concentrations *)

Gdata=G[K1, K2, K3, K4, Htdata, Gtdata];

Hdata=H[K1, K2, K3, K4, Htdata, Gdata];

HGdata=HG[K1, K2, K3, K4, Htdata, Gdata];

HG2data=HG2[K1, K2, K3, K4, Htdata, Gdata];

HG3data=HG3[K1, K2, K3, K4, Htdata, Gdata];

HG4data=HG4[K1, K2, K3, K4, Htdata, Gdata];

A.5 Competitive binding 1:1 host-ligand binding

The competitive binding of a host H with two different ligands G and W is described by the
following scheme with the corresponding governing equations

KHG

KHW

𝐾HG =
[HG]
[H][G]

, (A.1a)

𝐾HW =
[HW]
[H][W]

, (A.1b)

[H]t = [H] + [HG] + [HW] , (A.1c)
[G]t = [G] + [HG] , (A.1d)
[W]t = [W] + [HW] . (A.1e)
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A.5.1 First solution

First, the concentrations of host-related species are expressed as functions of [G] and [W] (in-
stead of [G]t and [W]t) from the governing Eq. (A.1), yielding

[H] =
[H]t

1 + 𝐾HG[G] + 𝐾HW[W]
, (A.2a)

[HG] =
𝐾HG[G][H]t

1 + 𝐾HG[G] + 𝐾HW[W]
, (A.2b)

[HW] =
𝐾HW[W][H]t

1 + 𝐾HG[G] + 𝐾HW[W]
. (A.2c)

In the next step, substitution of Eq. (A.2) into Eq. (A.1c) yields a set of two second-order polyno-
mial equations in [G] and [W] after rearrangement,

0 = [G] − [G]t + [G]2𝐾HG − [G][G]t𝐾HG + [G][H]t𝐾HG + [G]𝐾HW[W] − [G]t𝐾HW[W] , (A.3a)
0 = [W] + [G]𝐾HG[W] + [H]t𝐾HW[W] + 𝐾HW[W]2 − [W]t − [G]𝐾HG[W]t − 𝐾HW[W][W]t .

(A.3b)

This equation is solved numerically in the interval ([G], [W]) ∈ [0, [G]t] × [0, [W]t].
In Mathematica, Eq. (A.2) and (A.3) can be derived with the following code

(* host-ligand binding H:G 1:1, H:W 1:1 *)

equations = {KHG == HG/(H G), KHW == HW/(H W),

Ht == H + HG + HW, Gt == G + HG, Wt == W + HW};
solutionRule = Solve[And @@ equations, {H, HG, HW, Gt, Wt}][[1]];
polynomEq1 = (Gt == (Gt /. solutionRule));

polynomEq1 =

MultiplySides[polynomEq1, Denominator[(Gt /. solutionRule)]][[1, 1, 1]];

polynomEq1 = SubtractSides[polynomEq1, polynomEq1[[2]]];

polynomEq1 = Collect[polynomEq1, G] (* 1st polynomial equation for [G] and [W] *)

polynomEq2 = (Wt == (Wt /. solutionRule));

polynomEq2 =

MultiplySides[polynomEq2, Denominator[(Wt /. solutionRule)]][[1, 1, 1]];

polynomEq2 = SubtractSides[polynomEq2, polynomEq2[[2]]];

polynomEq2 = Collect[polynomEq2, W] (* 2nd polynomial equation for [G] and [W] *)

Then the model can be implemented using

H[KHG_, KHW_, Ht_, G_, W_] := Ht/(1 + G KHG + KHW W);

HG[KHG_, KHW_, Ht_, G_, W_] := G Ht KHG/(1 + G KHG + KHW W);

HW[KHG_, KHW_, Ht_, G_, W_] := Ht KHW W/(1 + G KHG + KHW W);

G[KHG_?NumericQ, KHW_?NumericQ, Ht_, Gt_, Wt_] :=

G /. FindRoot[{Gt - G^2 KHG + Gt KHW W + G (-1 + Gt KHG - Ht KHG - KHW W) == 0,

-KHW W^2 + Wt + G KHG Wt + W (-1 - G KHG - Ht KHW + KHW Wt) == 0},
{{G, Gt}, {W, Wt}}];

W[KHG_?NumericQ, KHW_?NumericQ, Ht_, Gt_, Wt_] :=

W /. FindRoot[{Gt - G^2 KHG + Gt KHW W + G (-1 + Gt KHG - Ht KHG - KHW W) == 0,

-KHW W^2 + Wt + G KHG Wt + W (-1 - G KHG - Ht KHW + KHW Wt) == 0},
{{G, Gt}, {W, Wt}}];

SetAttributes[G, Listable];

SetAttributes[W, Listable];

Using artificial data, numeric values can be obtained as follows

(* creating artificial data: *)

Htdata = ConstantArray[.001, 100];

Gtdata = Subdivide[0, .01, 99];
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Wtdata = ConstantArray[.05, 100];

KHG = 5000; KHW = 50;

(* calculating the concentrations *)

Gdata=G[KHG, KHW, Htdata, Gtdata, Wtdata];

Wdata=W[KHG, KHW, Htdata, Gtdata, Wtdata];

Hdata=H[KHG, KHW, Htdata, Gdata, Wdata];

HGdata=HG[KHG, KHW, Htdata, Gdata, Wdata];

HWdata=HW[KHG, KHW, Htdata, Gdata, Wdata];

A.5.2 Second solution

Instead of numeric solution of set of two second-order polynomial equations as in the previous
section, this method results in numeric solutions of one third-order polynomial equation, which
is more numerically stable in some circumstances. Derivation of the equations described in Sec.
2.2.3 is implemented in Mathematica in the following code

(* host-ligand binding H:G 1:1, H:W 1:1 *)

equations = {KHG == HG/(H G), KHW == HW/(H W), Ht == H + HG + HW,

Gt == G + HG, Wt == W + HW};
solutionRule = Solve[And @@ equations, {HG, HW, G, W, Ht}][[1]]
polynomEq = (Ht == (Ht /. solutionRule));

polynomEq =

MultiplySides[polynomEq, Denominator[(Ht /. solutionRule)]][[1, 1, 1]];

polynomEq = SubtractSides[polynomEq, polynomEq[[2]]];

polynomEq = Collect[polynomEq, H] (* polynomial equation for [H] *)

Then the model can be implemented using

H[KHG_?NumericQ, KHW_?NumericQ, Ht_, Gt_, Wt_] :=

H /. FindRoot[{Ht - H^3 KHG KHW + H (-1 - Gt KHG + Ht KHG + Ht KHW - KHW Wt) +

H^2 (-KHG - KHW - Gt KHG KHW + Ht KHG KHW - KHG KHW Wt) == 0}, {H, Ht}];
HG[KHG_?NumericQ, KHW_?NumericQ, H_, Gt_, Wt_] := Gt H KHG/(1 + H KHG);

HW[KHG_?NumericQ, KHW_?NumericQ, H_, Gt_, Wt_] := H KHW Wt/(1 + H KHW);

G[KHG_?NumericQ, KHW_?NumericQ, H_, Gt_, Wt_] := Gt/(1 + H KHG);

W[KHG_?NumericQ, KHW_?NumericQ, H_, Gt_, Wt_] := Wt/(1 + H KHW);

SetAttributes[H, Listable];

Using artificial data, numeric values can be obtained as follows

(* creating artificial data: *)

Htdata = ConstantArray[.001, 100];

Gtdata = Subdivide[0, .01, 99];

Wtdata = ConstantArray[.05, 100];

KHG = 5000; KHW = 50;

(* calculating the concentrations *)

Hdata=H[KHG, KHW, Htdata, Gtdata, Wtdata];

HGdata=HG[KHG, KHW, Hdata, Gtdata, Wtdata];

HWdata=HW[KHG, KHW, Hdata, Gtdata, Wtdata];

Gdata=G[KHG, KHW, Hdata, Gtdata, Wtdata];

Wdata=W[KHG, KHW, Hdata, Gtdata, Wtdata];



B Overview of NMR spectral
lineshapes
B.1 Lineshape formulae andMathematica codes

In this appendix, an overview of basic NMR spectral lineshapes is given. For practical applica-
tion in fitting of experimental spectra, real parts of the lineshapes Re[𝑆(Ω)] are implemented in
Mathematica functions. Implementation in MATLAB can be found in [2]. Spectral lineshapes in
Chapter 3 are constructed using angular frequency Ω in units of rad.s−1, but experimental NMR
spectra are usually measured as chemical shift 𝛿 in units of ppm. Therefore, conversion formula
from ppm to rad.s−1 is present in all Mathematica functions calculating the spectral lineshapes
in this appendix, and it reads

ΔΩ [s−1] = 2𝜋 × 𝜈0 [MHz] × Δ𝛿 [ppm] , (B.1)

where 𝜈0 is the spectrometer frequency in MHz, see Sec. 3.1.2. Be aware that this formula is true
only for differences of angular frequencies ΔΩ and differences of chemical shift Δ𝛿 . The con-
version factor δToΩConvFac (equal to ΔΩ/Δ𝛿) is preset to spectrometer frequency 500.13 MHz
(corresponding to 𝐵0 = 11.7 T, cf. Eq. (3.4)).

In the presence of chemical exchange, state populations must be specified. In the presented
Mathematica functions, these are calculated internally from analytical solution of Kp = 0, which
implies equilibrium or steady-state populations. Note that the 𝑅2 parameters correspond to trans-
verse relaxation including the inhomogeneous broadening effect (see Sec. 3.1.3). Importantly,
area below the curve of all presented spectral lineshapes does not depend on peak position Ω0,
transverse relaxation rate 𝑅2, transition rate coefficients 𝑘𝑖𝑗 or on J-coupling constant 𝐽 , and it
can be obtained as

peak area = ∫
+∞

−∞
Re[𝑆(Ω)] dΩ = 𝜋𝑀0 (ang. freq. scale) , (B.2a)

peak area = ∫
+∞

−∞
Re[𝑆(𝛿)] d𝛿 =

𝑀0

2𝜈0 [MHz] (ppm scale) . (B.2b)

Equation (B.2b) is obtained from Eq. (B.2a) using the substitution Ω = 2𝜋𝜈0 [MHz]𝛿 from Eq.
(B.1). Note that 𝑀0 plays a role of arbitrary proportionality constant in measured spectra, it is
not equal to the actual magnetization.

B.1.1 Lorentzian lineshape

Lorentzian lineshape is detected in the absence of chemical exchange and J-coupling. The ana-
lytical lineshape formula is

𝑆(Ω) =
𝑀0

𝑅2 − 𝑖(Ω − Ω0)
=
𝑀0

𝛼
, (B.3)

where 𝛼 = 𝑅2 − 𝑖(Ω − Ω0), with the real part

Re[𝑆(Ω)] = 𝑀0𝑅2
𝑅2
2 + (Ω − Ω0)2

. (B.4)

Figure B.1 shows that full width at half-maximum of the Lorentzian lineshape equals to 2𝑅2 in
the angular frequency scale and 2𝛾 in the chemical shift scale. Thus, 𝑅2 can be calculated from a
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NMR spectrum (measured in chemical shift scale) using

𝑅2 [s−1] = 2𝜋 × 𝜈0 [MHz] × 𝛾 [ppm] , (B.5)

resulting from the conversion formula in Eq. (B.1).

δ0

I/2 γ

ppmΩ0

I/2 R2

ang. freq.

(a) (b)

I

Figure B.1: Illustration of Lorentzian lineshape with the horizontal axis in (a) angular frequency and (b)
chemical shift scale.

Code for implementation in Mathematica is

(* Lorentzian *)

lorentzianFunc[δ_, δ0_, R2_, M0_] :=

Module[{δToΩConvFac, Ω, Ω0},
δToΩConvFac = 2π*500.13;

Ω = δ*δToΩConvFac;

Ω0 = δ0*δToΩConvFac;

M0 R2/(R2^2 + (Ω - Ω0)^2) ];

(* the use is illustrated in the following lines *)

deltaData = Range[0,2,.005];

absorptionSpectrum = lorentzianFunc[deltaData,(*δ0*)1,(*R2*)150,(*M0*)10];

Alternative formulation of the Lorentzian lineshape (real part) is

Re[𝑆(Ω)] = 𝐼 𝛾 2

𝛾 2 + (𝛿 − 𝛿0)2
, (B.6a)

peak area = ∫
+∞

−∞
Re[𝑆(𝛿)] d𝛿 = 𝜋𝛾 𝐼 (ppm scale) , (B.6b)

where 𝐼 = 𝑀0/𝑅2. This is convenient for fitting of spectral lineshapes because variation in 𝛾 does
not influence the peak height (which always equals 𝐼 ). Mathematica implementation of Eq. (B.6a)
reads

(* Lorentzian - alternative formulation *)

lorentzianAltFunc[δ_, δ0_, γ_, I_] :=

I γ^2/(γ^2 + (δ - δ0)^2);

(* the use is illustrated in the following lines *)

deltaData = Range[0,2,.005];

absorptionSpectrum = lorentzianAltFunc[deltaData,(*δ0*)1,(*γ*)0.04,(*I*)0.25];

B.1.2 Two-state exchange lineshape

The analytical formula for two-state exchange lineshape is

𝑆two-state exch.(Ω) = 𝑀0
𝑝𝐴𝛼𝐵 + 𝑝𝐵𝛼𝐴 + 𝑘𝐴𝐵 + 𝑘𝐵𝐴
𝛼𝐴𝛼𝐵 + 𝑘𝐴𝐵𝛼𝐵 + 𝑘𝐵𝐴𝛼𝐴

, (B.7)
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where 𝛼𝑗 = 𝑅𝑗
2 + 𝑖(Ω − Ω𝑗) for 𝑗 = 𝐴, 𝐵. Equilibrium populations are calculated as

𝑝eq
𝐴 =

𝑘𝐵𝐴
𝑘𝐴𝐵 + 𝑘𝐵𝐴

, (B.8a)

𝑝eq
𝐵 =

𝑘𝐴𝐵
𝑘𝐴𝐵 + 𝑘𝐵𝐴

. (B.8b)

The Mathematica implementation is
(* two-state exchange lineshape *)

twoStateExchFunc[δ_, δ0List_, R2List_, kList_, M0_] :=

Module[{αA, αB, δA, δB, δToΩConvFac, Ω, ΩA, ΩB,
RA, RB, kAB, kBA, pA, pB, P, Q},
δToΩConvFac = 2π*500.13;

{δA, δB} = δ0List;

Ω = δ*δToΩConvFac;

ΩA = δA*δToΩConvFac;

ΩB = δB*δToΩConvFac;

{kAB, kBA} = kList;

{RA, RB} = R2List;

{pA, pB} = {kBA/(kAB + kBA), kAB/(kAB + kBA)};
αA = RA + I (Ω - ΩA); αB = RB + I (Ω - ΩB);

P = pA αB + pB αA + kAB + kBA;

Q = αA αB + kAB αB + kBA αA;

M0 Re[P/Q] ];

(* the use is illustrated in the following lines *)

deltaData = Range[0,2,.005];

absorptionSpectrum = twoStateExchFunc[deltaData,{(*δA*).7,(*δB*)1.4},
{(*RA*)40,(*RB*)40},{(*kAB*)200,(*kBA*)300},(*M0*)10];

Any spectral exchange lineshape can be formally written as

𝑆(Ω) = 𝑀0
 + 𝑖
 + 𝑖

= 𝑀0(
 + 
2 +2 + 𝑖

 −
2 +2 ) . (B.9)

Hence, the real part of asymmetric two-state exchange (𝑘𝐴𝐵 ≠ 𝑘𝐵𝐴) can be explicitly written as

 = 𝑘𝐴𝐵 + 𝑘𝐵𝐴 + 𝑝𝐴𝑅𝐵 + 𝑝𝐵𝑅𝐴 ,
 = 𝑝𝐴(Ω − Ω𝐵) + 𝑝𝐵(Ω − Ω𝐴) ,
 = 𝑘𝐴𝐵𝑅𝐵 + 𝑘𝐵𝐴𝑅𝐴 + 𝑅𝐴𝑅𝐵 − (Ω − Ω𝐴)(Ω − Ω𝐵) ,
 = (𝑘𝐴𝐵 + 𝑅𝐴)(Ω − Ω𝐵) + (𝑘𝐵𝐴 + 𝑅𝐵)(Ω − Ω𝐴) (B.10)

with the corresponding code
(* two-state exchange lineshape with explicit real part *)

twoStateExchReFunc[δ_, δ0List_, R2List_, kList_, M0_] :=

Module[{δA, δB, δToΩConvFac, Ω, ΩA, ΩB,
RA, RB, kAB, kBA, pA, pB, A, B, C, D},
δToΩConvFac = 2π*500.13;

{δA, δB} = δ0List;

Ω = δ*δToΩConvFac;

ΩA = δA*δToΩConvFac;

ΩB = δB*δToΩConvFac;

{kAB, kBA} = kList;

{RA, RB} = R2List;

{pA, pB} = {kBA/(kAB + kBA), kAB/(kAB + kBA)};
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A = kAB + kBA + pA RB + pB RA;

B = pA (Ω - ΩB) + pB (Ω - ΩA);

C = kAB RB + kBA RA + RA RB - (Ω - ΩA) (Ω - ΩB);

D = (kAB + RA) (Ω - ΩB) + (kBA + RB) (Ω - ΩA);

M0 (A C + B D)/(C^2 + D^2) ];

(* the use is illustrated in the following lines *)

deltaData = Range[0,2,.005];

absorptionSpectrum = twoStateExchReFunc[deltaData,{(*δA*).7,(*δB*)1.4},
{(*RA*)40,(*RB*)40},{(*kAB*)200,(*kBA*)300},(*M0*)10];

In the case of symmetric two-state exchange (𝑘𝐴𝐵 = 𝑘𝐵𝐴 = 𝑘), the formula simplifies to

 = (4𝑘 + 𝑅𝐴 + 𝑅𝐵)/2 ,
 = (2Ω − Ω𝐴 − Ω𝐵)/2 ,
 = 𝑘(𝑅𝐴 + 𝑅𝐵) + 𝑅𝐴𝑅𝐵 − (Ω − Ω𝐴)(Ω − Ω𝐵) ,
 = (𝑘 + 𝑅𝐴)(Ω − Ω𝐵) + (𝑘 + 𝑅𝐵)(Ω − Ω𝐴) . (B.11)

B.1.3 Three-state exchange lineshape

The analytical formula for two-state exchange lineshape is

𝑆three-state exch.(Ω) = 𝑀0



, (B.12)

where
 = 𝑝𝐴[𝛼𝐵𝛼𝐶 + 𝛼𝐵(𝑘𝐶𝐴 + 𝑘𝐶𝐵 + 𝑘𝐴𝐶 ) + 𝛼𝐶 (𝑘𝐵𝐴 + 𝑘𝐵𝐶 + 𝑘𝐴𝐵)]
+ 𝑝𝐵[𝛼𝐴𝛼𝐶 + 𝛼𝐴(𝑘𝐶𝐴 + 𝑘𝐶𝐵 + 𝑘𝐵𝐶 ) + 𝛼𝐶 (𝑘𝐴𝐵 + 𝑘𝐴𝐶 + 𝑘𝐵𝐴)]
+ 𝑝𝐶[𝛼𝐴𝛼𝐵 + 𝛼𝐴(𝑘𝐵𝐴 + 𝑘𝐵𝐶 + 𝑘𝐶𝐵) + 𝛼𝐵(𝑘𝐴𝐵 + 𝑘𝐴𝐶 + 𝑘𝐶𝐴)]
+ 𝜋𝐴 + 𝜋𝐵 + 𝜋𝐶 ,

 = 𝛼𝐴𝛼𝐵𝛼𝐶 + 𝛼𝐴𝛼𝐵(𝑘𝐶𝐴 + 𝑘𝐶𝐵) + 𝛼𝐴𝛼𝐶 (𝑘𝐵𝐴 + 𝑘𝐵𝐶 ) + 𝛼𝐵𝛼𝐶 (𝑘𝐴𝐵 + 𝑘𝐴𝐶 )
+ 𝛼𝐴𝜋𝐴 + 𝛼𝐵𝜋𝐵 + 𝛼𝐶𝜋𝐶 ,

𝜋𝐴 = 𝑘𝐵𝐴𝑘𝐶𝐴 + 𝑘𝐵𝐶𝑘𝐶𝐴 + 𝑘𝐵𝐴𝑘𝐶𝐵 ,
𝜋𝐵 = 𝑘𝐴𝐵𝑘𝐶𝐴 + 𝑘𝐴𝐵𝑘𝐶𝐵 + 𝑘𝐴𝐶𝑘𝐶𝐵 ,
𝜋𝐶 = 𝑘𝐴𝐶𝑘𝐵𝐴 + 𝑘𝐴𝐵𝑘𝐵𝐶 + 𝑘𝐴𝐶𝑘𝐵𝐶 .

Steady-state populations are calculated as

𝑝ss
𝑗 =

𝜋𝑗
𝜋𝐴 + 𝜋𝐵 + 𝜋𝐶

(B.13)

with 𝑗 = 𝐴, 𝐵, 𝐶 . Equilibrium lineshapes are obtained when the input transition rate coefficients
fulfill an additional condition 𝑘𝐴𝐵 = 𝑘𝐴𝐶𝑘𝐵𝐴𝑘𝐶𝐵

𝑘𝐵𝐶𝑘𝐶𝐴 , cf. Sec. 3.3.3.
The Mathematica implementation is
(* three-state exchange lineshape *)

threeStateExchFunc[δ_, δ0List_, R2List_, kList_, M0_] :=

Module[{αA, αB, αC, δA, δB, δC, δToΩConvFac, Ω, ΩA, ΩB, ΩC,
RA, RB, RC, kAB, kBA, kAC, kCA, kBC, kCB, pA, pB, pC, πA, πB, πC, P, Q},
δToΩConvFac = 2π*500.13;

{δA, δB, δC} = δ0List;

Ω = δ*δToΩConvFac;

ΩA = δA*δToΩConvFac;
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ΩB = δB*δToΩConvFac;

ΩC = δC*δToΩConvFac;

{kAB, kBA, kAC, kCA, kBC, kCB} = kList;

πA = kBA kCA + kBC kCA + kBA kCB;

πB = kAB kCA + kAB kCB + kAC kCB;

πC = kAC kBA + kAB kBC + kAC kBC;

{RA, RB, RC} = R2List;

{pA, pB, pC} = {πA, πB, πC}/(πA + πB + πC);

αA = RA + I (Ω - ΩA); αB = RB + I (Ω - ΩB); αC = RC + I (Ω - ΩC);

P = pA (αB αC + αB (kCA + kCB + kAC) + αC (kBA + kBC + kAB))

+ pB (αA αC + αA (kCA + kCB + kBC) + αC (kAB + kAC + kBA))

+ pC (αA αB + αA (kBA + kBC + kCB) + αB (kAB + kAC + kCA))

+ (πA + πB + πC);

Q = αA αB αC + αA αB (kCA + kCB) + αA αC (kBA + kBC) + αB αC (kAB + kAC)

+ αA πA + αB πB + αC πC;

M0 Re[P/Q] ];

(* the use is illustrated in the following lines *)

deltaData = Range[0,2,.005];

absorptionSpectrum = threeStateExchFunc[deltaData,{(*δA*).7,(*δB*)1,(*δC*)1.4},
{(*RA*)40,(*RB*)40,(*RC*)40},{(*kAB*)200,(*kBA*)80,(*kAC*)100,(*kCA*)150,
(*kBC*)70,(*kCB*)80},(*M0*)10];

Using Eq. (B.9), the real part of three-state exchange lineshape can be expressed explicitly as

 = 𝑝𝐴[𝑅𝐵
2 𝑅

𝐶
2 + 𝑅𝐵

2 (𝑘𝐶𝐴 + 𝑘𝐶𝐵 + 𝑘𝐴𝐶 ) + 𝑅𝐶
2 (𝑘𝐵𝐴 + 𝑘𝐵𝐶 + 𝑘𝐴𝐵) − (Ω − Ω𝐵)(Ω − Ω𝐶 )]

+ 𝑝𝐵[𝑅𝐴
2 𝑅

𝐶
2 + 𝑅𝐴

2 (𝑘𝐶𝐴 + 𝑘𝐶𝐵 + 𝑘𝐵𝐶 ) + 𝑅𝐶
2 (𝑘𝐴𝐵 + 𝑘𝐴𝐶 + 𝑘𝐵𝐴) − (Ω − Ω𝐴)(Ω − Ω𝐶 )]

+ 𝑝𝐶[𝑅𝐴
2 𝑅

𝐵
2 + 𝑅𝐴

2 (𝑘𝐵𝐴 + 𝑘𝐵𝐶 + 𝑘𝐶𝐵) + 𝑅𝐵
2 (𝑘𝐴𝐵 + 𝑘𝐴𝐶 + 𝑘𝐶𝐴) − (Ω − Ω𝐴)(Ω − Ω𝐵)]

+ 𝜋𝐴 + 𝜋𝐵 + 𝜋𝐶 ,

 = 𝑝𝐴[(𝑅𝐶
2 + 𝑘𝐶𝐴 + 𝑘𝐶𝐵 + 𝑘𝐴𝐶 )(Ω − Ω𝐵) + (𝑅𝐵

2 + 𝑘𝐵𝐴 + 𝑘𝐵𝐶 + 𝑘𝐴𝐵)(Ω − Ω𝐶 )]

+ 𝑝𝐵[(𝑅𝐶
2 + 𝑘𝐶𝐴 + 𝑘𝐶𝐵 + 𝑘𝐵𝐶 )(Ω − Ω𝐴) + (𝑅𝐴

2 + 𝑘𝐴𝐵 + 𝑘𝐴𝐶 + 𝑘𝐵𝐴)(Ω − Ω𝐶 )]

+ 𝑝𝐶[(𝑅𝐵
2 + 𝑘𝐵𝐴 + 𝑘𝐵𝐶 + 𝑘𝐶𝐵)(Ω − Ω𝐴) + (𝑅𝐴

2 + 𝑘𝐴𝐵 + 𝑘𝐴𝐶 + 𝑘𝐶𝐴)(Ω − Ω𝐵)] ,

 = 𝑅𝐴
2 𝑅

𝐵
2 𝑅

𝐶
2 + (𝑘𝐶𝐴 + 𝑘𝐶𝐵)𝑅𝐴

2 𝑅
𝐵
2 + (𝑘𝐵𝐴 + 𝑘𝐵𝐶 )𝑅𝐴

2 𝑅
𝐶
2 + (𝑘𝐴𝐵 + 𝑘𝐴𝐶 )𝑅𝐵

2 𝑅
𝐶
2

− (𝑅𝐶
2 + 𝑘𝐶𝐴 + 𝑘𝐶𝐵)(Ω − Ω𝐴)(Ω − Ω𝐵)

− (𝑅𝐵
2 + 𝑘𝐵𝐴 + 𝑘𝐵𝐶 )(Ω − Ω𝐴)(Ω − Ω𝐶 )

− (𝑅𝐴
2 + 𝑘𝐴𝐵 + 𝑘𝐴𝐶 )(Ω − Ω𝐵)(Ω − Ω𝐶 )

+ 𝑅𝐴
2 𝜋𝐴 + 𝑅𝐵

2 𝜋𝐵 + 𝑅𝐶
2 𝜋𝐶 ,

 = (𝑅𝐵
2 𝑅

𝐶
2 + (𝑘𝐶𝐴 + 𝑘𝐶𝐵)𝑅𝐵

2 + (𝑘𝐵𝐴 + 𝑘𝐵𝐶 )𝑅𝐶
2 + 𝜋𝐴)(Ω − Ω𝐴)

+ (𝑅𝐴
2 𝑅

𝐶
2 + (𝑘𝐶𝐴 + 𝑘𝐶𝐵)𝑅𝐴

2 + (𝑘𝐴𝐵 + 𝑘𝐴𝐶 )𝑅𝐶
2 + 𝜋𝐵)(Ω − Ω𝐵)

+ (𝑅𝐴
2 𝑅

𝐵
2 + (𝑘𝐵𝐴 + 𝑘𝐵𝐶 )𝑅𝐴

2 + (𝑘𝐴𝐵 + 𝑘𝐴𝐶 )𝑅𝐵
2 + 𝜋𝐶 )(Ω − Ω𝐶 )

− (Ω − Ω𝐴)(Ω − Ω𝐵)(Ω − Ω𝐶 ) (B.14)

with Mathematica code
(* three-state exchange lineshape with explicit real part *)

threeStateExchReFunc[δ_, δ0List_, R2List_, kList_, M0_] :=

Module[{δA, δB, δC, δToΩConvFac, Ω, ΩA, ΩB, ΩC, RA,

RB, RC, kAB, kBA, kAC, kCA, kBC, kCB, pA, pB, pC, πA, πB, πC, A, B, C, D},
δToΩConvFac = 2π*500.13;

{δA, δB, δC} = δ0List;

Ω = δ*δToΩConvFac;
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ΩA = δA*δToΩConvFac; ΩB = δB*δToΩConvFac; ΩC = δC*δToΩConvFac;

{kAB, kBA, kAC, kCA, kBC, kCB} = kList;

πA = kBA kCA + kBC kCA + kBA kCB;

πB = kAB kCA + kAB kCB + kAC kCB;

πC = kAC kBA + kAB kBC + kAC kBC;

{RA, RB, RC} = R2List;

{pA, pB, pC} = {πA, πB, πC}/(πA + πB + πC);

A = pA (RB RC + RB (kAC + kCA + kCB) + RC (kBA + kBC + kAB) - (Ω - ΩB) (Ω - ΩC))

+ pB (RA RC + RA (kCA + kCB + kBC) + RC (kAB + kAC + kBA) - (Ω - ΩA) (Ω - ΩC))

+ pC (RA RB + RA (kBA + kBC + kCB) + RB (kAB + kAC + kCA) - (Ω - ΩA) (Ω - ΩB))

+ πA + πB + πC;

B = pA ((RC + kCA + kCB + kAC) (Ω - ΩB) + (RB + kBA + kBC + kAB) (Ω - ΩC))

+ pB ((RC + kCA + kCB + kBC) (Ω - ΩA) + (RA + kAB + kAC + kBA) (Ω - ΩC))

+ pC ((RB + kBA + kBC + kCB) (Ω - ΩA) + (RA + kAB + kAC + kCA) (Ω - ΩB));

C = RA RB RC + (kCA + kCB) RA RB + (kBA + kBC) RA RC + (kAB + kAC) RB RC

- (RC + kCA + kCB) (Ω - ΩA) (Ω - ΩB)

- (RB + kBA + kBC) (Ω - ΩA) (Ω - ΩC)

- (RA + kAB + kAC) (Ω - ΩB) (Ω - ΩC)

+ RA πA + RB πB + RC πC;

D = (RB RC + (kCA + kCB) RB + (kBA + kBC) RC + πA) (Ω - ΩA)

+ (RA RC + (kCA + kCB) RA + (kAB + kAC) RC + πB) (Ω - ΩB)

+ (RA RB + (kBA + kBC) RA + (kAB + kAC) RB + πC) (Ω - ΩC)

- (Ω - ΩA) (Ω - ΩB) (Ω - ΩC);

M0 (A C + B D)/(C^2 + D^2) ];

(* the use is illustrated in the following lines *)

deltaData = Range[0,2,.005];

absorptionSpectrum = threeStateExchReFunc[deltaData,{(*δA*).7,(*δB*)1,(*δC*)1.4},
{(*RA*)40,(*RB*)40,(*RC*)40},{(*kAB*)200,(*kBA*)80,(*kAC*)100,(*kCA*)150,
(*kBC*)70,(*kCB*)80},(*M0*)10];

Exchange lineshapes for 𝑁 > 3 can be readily derived in Mathematica software, which will be
shown in Sec. B.2.

B.1.4 Spectral lineshape of two J-coupled spins

Two J-coupled nuclear spins 𝐼 = 1/2 with offset Larmor frequencies Ω𝐴 and Ω𝐵 produce NMR
spectrum with two doublets as shown in Fig. B.2 [76, 81]. If Ω𝐴 = Ω𝐵, no splitting is observ-
able. The coupling constant 𝐽 (in Hz) describes strength of indirect dipole-dipole interaction
(Sec. 3.1.4), two strongly interacting spins form so-called ‘AB system’ and weakly interacting
spins form so-called ‘AX system’1 (|𝐽 | ≪ |Ω𝐴−Ω𝐵 |). AB system shows so-called ‘roof effect’ when
the inner peaks are more intensive than the outer peaks (𝐼in > 𝐼out), see Fig. B.2, while peaks of
AX system are equally intensive.

ΩBΩA

ang. freq.Ω2Ω1 Ω4Ω3

Figure B.2: Illustration of spectral lineshape two J-coupled spins.

1Strength of J-coupling depends on the distance between spins, therefore A and B being close in the alphabet
indicate strong interaction, A and X being far indicate weak interaction.
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Spectral lineshape for J-coupled spins cannot be derived from Bloch equations, it requires
quantum mechanical approach. The solution in the case of homonuclear AB system and 𝑅𝐴

2 =
𝑅𝐵
2 = 𝑅2 can be found in [76] (page 615) and consists of four Lorentzian peaks,

𝑆(Ω) =
𝑀out
𝛼1

+
𝑀in
𝛼2

+
𝑀in
𝛼3

+
𝑀out
𝛼4

, (B.15)

where

𝛼1 = 𝑅2 − 𝑖(Ω − Ω1) ,
𝛼2 = 𝑅2 − 𝑖(Ω − Ω2) ,
𝛼3 = 𝑅2 − 𝑖(Ω − Ω3) ,
𝛼4 = 𝑅2 − 𝑖(Ω − Ω4) ,

Ω1 =
Ω𝐴 + Ω𝐵

2
+
1
2
(𝐷 + 2𝜋𝐽 ) ,

Ω2 =
Ω𝐴 + Ω𝐵

2
+
1
2
(𝐷 − 2𝜋𝐽 ) ,

Ω3 =
Ω𝐴 + Ω𝐵

2
−
1
2
(𝐷 − 2𝜋𝐽 ) ,

Ω4 =
Ω𝐴 + Ω𝐵

2
−
1
2
(𝐷 + 2𝜋𝐽 ) ,

𝐷 =
√
(Ω𝐴 − Ω𝐵)2 + (2𝜋𝐽 )2 . (B.16a)

As shown in Fig. B.2, peaks and Ω1 and Ω2 as well as Ω3 and Ω4 are separated by 2𝜋𝐽 in
the angular frequency scale, which corresponds to splitting by 𝐽 [ppm] = 𝐽 [Hz]/𝜈0 [MHz] in
the ppm scale, 𝜈0 is the spectrometer frequency. Furthermore, 𝐼in = 𝑀in/𝑅2 and 𝐼out = 𝑀out/𝑅2.
Intensities of inner and outer peaks satisfy

𝑀in
𝑀out

=
𝐼in
𝐼out

=
𝐷 + 2𝜋𝐽
𝐷 − 2𝜋𝐽

, (B.17a)

𝑀in + 𝑀out = 𝑀0 , (B.17b)

where 𝑀0 is equilibrium magnetization due to a single spin. Furthermore, a few other relation-
ships can be derived from the above equations,

𝑀in =
𝐷 + 2𝜋𝐽

2𝐷
𝑀0 , (B.18a)

𝑀out =
𝐷 − 2𝜋𝐽

2𝐷
𝑀0 , (B.18b)

|Ω𝐴 − Ω𝐵 | =
√
𝐷2 − (2𝜋𝐽 )2 =

√
(Ω1 − Ω4)(Ω2 − Ω3) . (B.18c)

Total area below the curve (in angular frequency scale) is 𝜋𝑅2(2𝐼in + 2𝐼out) = 2𝜋𝑀0, which is the
expected peak intensity due to two spins.
The Mathematica code is
(*J-coupled spins 1/2 lineshape*)

JcoupledSpinFunc[δ_, δ0List_, R2_, J_, M0_] :=

Module[{α1, α2, α3, α4, δA, δB, δToΩConvFac,
Ω, ΩA, ΩB, Ω1, Ω2, Ω3, Ω4, D, Min, Mout},
δToΩConvFac = 2π*500.13;

{δA, δB} = δ0List;

Ω = δ*δToΩConvFac; ΩA = δA*δToΩConvFac; ΩB = δB*δToΩConvFac;

D = Sqrt[(ΩA - ΩB)^2];
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Ω1 = 1/2 (ΩA + ΩB) + 1/2 (D + 2π J);

Ω2 = 1/2 (ΩA + ΩB) + 1/2 (D - 2π J);

Ω3 = 1/2 (ΩA + ΩB) - 1/2 (D - 2π J);

Ω4 = 1/2 (ΩA + ΩB) - 1/2 (D + 2π J);

α1 = R2 - I (Ω - Ω1); α2 = R2 - I (Ω - Ω2);

α3 = R2 - I (Ω - Ω3); α4 = R2 - I (Ω - Ω4);

Min = (D + 2π J)/(2 D) M0; Mout = (D - 2π J)/(2 D) M0;

Re[Mout/α1 + Min/α2 + Min/α3 + Mout/α4] ];

deltaData = Range[0,2,.002];

absorptionSpectrum = JcoupledSpinFunc[deltaData,{(*δA*).9,(*δB*)1.1},(*R2*)40,
(*J*)12,(*M0*)10];

B.2 Rapid derivation of 𝑁 -state exchange lineshape inMathema-
tica

Here we show a “copy-paste” code in the Mathematica software to rapidly derive the four- and
five-state exchange spectral lineshapes. However, it can be readily extended to an arbitrary num-
ber of states. We do not show the actual formulae generated by the code due to the excessive
number of terms contained.
(* four-state exchange lineshape *)

Kmatrix = {{-kAB - kAC - kAD, kBA, kCA, kDA}, {kAB, -kBA - kBC - kBD, kCB, kDB},
{kAC, kBC, -kCA - kCB - kCD, kDC}, {kAD, kBD, kCD, -kDA - kDB - kDC}};
Amatrix = DiagonalMatrix[{αA, αB, αC, αD}];
(* three following command lines: keeping together the terms on diagonal (βj)

of the matrix B=A-K reduces the size of the final symbolic expression *)

Bmatrix = Amatrix - Kmatrix;

betaRule = MapThread[Rule[#1, #2] &,

{{βA, βB, βC, βD}, Diagonal[Bmatrix]}]; (* later restores the diagonal

values of B *)

Bmatrix = Bmatrix - DiagonalMatrix[Diagonal[Bmatrix]] +

DiagonalMatrix[{βA, βB, βC, βD}]; (* replaces diagonal values with βj *)

{fA, fB, fC, fD} = M0 Inverse[Bmatrix].{pA, pB, pC, pD};
fourStateLineshapeComplex = (Total[{fA, fB, fC, fD}] // Together) /. betaRule;

alphaRule = {αA -> RA + I (Ω - ΩA), αB -> RB + I (Ω - ΩB),

αC -> RC + I (Ω - ΩC), αD -> RD + I (Ω - ΩD)};
fourStateLineshapeComplex = fourStateLineshapeComplex /. alphaRule; (* substitute

for αj *)

(* in order to obtain the absorption part of the spectrum,

numerical values of the parameters must be inserted and then the real part

taken, see the example in the following lines *)

absorptionSpectrum = fourStateLineshapeComplex /. {Ω -> Range[4000],

ΩA -> 1000., ΩB -> 1500., ΩC -> 2500., ΩD -> 3000.,

M0 -> 1., pA -> 1/4, pB -> 1/4, pC -> 1/4, pD -> 1/4,

kAB -> 30., kBA -> 30., kAC -> 30., kCA -> 30., kAD -> 30., kDA -> 30.,

kBC -> 30., kCB -> 30., kBD -> 30., kDB -> 30., kCD -> 30., kDC -> 30.,

RA -> 30., RB -> 30., RC -> 30., RD -> 30.};
absorptionSpectrum = Re[absorptionSpectrum];

(* five-state exchange lineshape *)

Kmatrix = {{-kAB - kAC - kAD - kAE, kBA, kCA, kDA, kEA},
{kAB, -kBA - kBC - kBD - kBE, kCB, kDB, kEB},
{kAC, kBC, -kCA - kCB - kCD - kCE, kDC, kEC},
{kAD, kBD, kCD, -kDA - kDB - kDC - kDE, kED},
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{kAE, kBE, kCE, kDE, -kEA - kEB - kEC - kED}};
Amatrix = DiagonalMatrix[{αA, αB, αC, αD, αE}];
(* three following command lines: keeping together the terms on diagonal (βj)

of the matrix B=A-K reduces the size of the final symbolic expression *)

Bmatrix = Amatrix - Kmatrix;

betaRule = MapThread[Rule[#1, #2] &,

{{βA, βB, βC, βD, βE}, Diagonal[Bmatrix]}]; (* later restores the

diagonal values of B *)

Bmatrix = Bmatrix - DiagonalMatrix[Diagonal[Bmatrix]] +

DiagonalMatrix[{βA, βB, βC, βD, βE}]; (* replaces diagonal values with βj *)
{fA, fB, fC, fD, fE} = M0 Inverse[Bmatrix].{pA, pB, pC, pD, pE};
fiveStateLineshapeComplex = (Total[{fA, fB, fC, fD, fE}] // Together) /. betaRule;

alphaRule = {αA -> RA + I (Ω - ΩA), αB -> RB + I (Ω - ΩB),

αC -> RC + I (Ω - ΩC), αD -> RD + I (Ω - ΩD), αE -> RE + I (Ω - ΩE)};
fiveStateLineshapeComplex = fiveStateLineshapeComplex /. alphaRule; (* substitute

for αj *)

(* in order to obtain the absorption part of the spectrum,

numerical values of the parameters must be inserted and then the real part

taken, see the example in the following lines *)

absorptionSpectrum = fiveStateLineshapeComplex /. {Ω -> Range[4000],

ΩA -> 1000., ΩB -> 1500., ΩC -> 2500., ΩD -> 3000., ΩE -> 3300.,

M0 -> 1., pA -> 1/4, pB -> 1/4, pC -> 1/4, pD -> 1/8, pE -> 1/8,

kAB -> 30., kBA -> 30., kAC -> 30., kCA -> 30., kAD -> 30., kDA -> 30.,

kAE -> 30., kEA -> 30., kBC -> 30., kCB -> 30., kBD -> 30., kDB -> 30.,

kBE -> 30., kEB -> 30., kCD -> 30., kDC -> 30., kCE -> 30., kEC -> 30.,

kDE -> 30., kED -> 30., RA -> 30., RB -> 30., RC -> 30.,

RD -> 30., RE -> 30.};
absorptionSpectrum = Re[absorptionSpectrum];

B.3 Rapid derivation of three-state populations

Steady-state populations are derived with the following Mathematica code
(* three-state steady-state populations *)

Kmatrix = {{-kAB - kAC, kBA, kCA}, {kAB, -kBA - kBC, kCB},
{kAC, kBC, -kCA - kCB}};

pvector = {pA, pB, pC};
equations = MapThread[Equal[#1, #2] &,

{Kmatrix . pvector, ConstantArray[0, Length@pvector]}];
ssRule = Solve[(And @@ equations)~And~(Total@pvector == 1),

pvector][[1]] // Factor

This code can be extended to higher number of states.
Three-state equilibrium populations are derived from the steady-state populations with ad-

ditional equilibrium condition 𝑘𝐴𝐵 = 𝑘𝐴𝐶𝑘𝐵𝐴𝑘𝐶𝐵
𝑘𝐵𝐶𝑘𝐶𝐴 (Eq. (3.39)). The corresponding code reads

(* three-state equilibrium populations *)

eqCondRule = {kAB -> kAC kBA kCB/(kBC kCA)}
ssRule /. eqCondRule // Factor



C Experimental details, models
and data analysis
C.1 Properties of used chemicals

Quantities characterizing the compounds used in this study are given in Table C.1. They were
used for calculation of concentrations during the experiments. Molar mass of oxoporphyrinogens
was calculated in the Chem Draw Pro program. OxP and its derivatives were synthesized in
National Institute for Materials Science (NIMS), Japan, by Jonathan Hill. Other compounds were
purchased from Sigma-Aldrich.

Table C.1: Basic properties of chemicals used in this work.

compound molar mass / g.mol−1 density / g.mL−1 notes

OxP 1125.57 powder
Bz2OxP 1463.61 powder
Bz4OxP 1801.68 powder
CSA 232.3 1.331 powder

solubility in CDCl3: 2.3 mg/mL
[CSA]max ≈ 0.01 M

DFA 96.03 1.526 liquid
TFA 114.0 1.489 liquid
CDCl3 120.4 1.5 𝜇el = 1.15 D
DMF 73.10 0.948 basic, p𝐾a ≈ −0.3 for conjugate acid,

𝜇el=3.86 D

Full names of the investigated oxoporphyrinogens are meso-tetrakis(3,5-di-tert-butyl-4-oxo-2,5-
cyclohexadienylidene)porphyrinogen (OxP), N21,N23-bis(4-bromobenzyl)-meso-tetrakis(3,5-di-
tert-butyl-4-oxo-2,5-cyclohexadienylidene)porphyrinogen (Bz2OxP) and N21,N22,N23,N24-tetra-
kis(4-bromobenzyl)-meso-tetrakis(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadienylidene)porphyrin-
ogen (Bz4OxP). Numbering of the porphyrinogen macrocycle is shown in Fig. 1.2d.

C.2 UV/vis spectroscopy measurements

UV/vis absorption spectra were recorded using Jasco J-820, Shimadzu UV-3600, and Hitachi U-
2910 spectrophotometers (1 cm or 1 mm quartz cells with screw caps were used). Baseline, de-
termined by calibration measurement with empty cuvette, was subtracted from each spectrum.
All UV/vis measurements were conducted at room temperature. Titration experiments (i.e. mea-
surement of spectra at different guest concentrations when the guest is gradually added into the
host solution) were performed by the addition of stock solution (acid dissolved in chloroform, in
some cases in the presence of oxoporphyrinogen with the same concentration as in the sample
to keep the total dye concentration constant) into the sample using a microsyringe. Deuterated
spectroscopic chloroform was used as solvent. Spectral calculator [176] was used for the conver-
sion of the measured UV/vis spectra into the corresponding RGB values.

Measurements of solvatochromic effects in Bz2OxP and Bz4OxP in DMF/CDCl3 mixture
were started in the pure solution of oxoporphyrinogen in CDCl3. Then, appropriate amount of
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the sample was gradually removed and replaced from the stock solution containing DMF (stock
solution also contained the oxoporphyrinogen to prevent dilution), total sample volume was kept
constant. Prior the sample preparation, the solvent was filtered through potassium carbonate
to remove all residual acid molecules (which are sometimes created by solvent decomposition).
Deuterated spectroscopic chloroform with silver foil was used to prevent formation of HCl. In
these cases, titration is not appropriate because the complete picture of spectral changes should
be obtained in the whole vol.f. range (𝜑(DMF) = 1 is inaccessible in titration starting in pure
chloroform). Measurements of solvatochromic effects in OxP were investigated by titration of
OxP in CDCl3 with DMF similarly to the previous paragraph (solvatochromic spectral change is
saturated at 𝜑(DMF) = 0.2, which is accessible in titration).

C.3 RGB coordinates of UV/vis spectra

Conversion of UV/vis spectra to corresponding RGB coordinates was done using Excel spread-
sheet developed by Bruce Lindbloom (Spectral Calculator) [176]. Input data in this spreadsheet
are in the form of transmittance 𝑇 , which was calculated from the measured absorbance 𝐴 using
𝑇 = 10−𝐴. Output format was set to Adobe RGB (1998). RGB values of spectra of individual
absorbing components obtained by titration of oxoporphyinogens with DFA are listed in Table
C.2.

R G B

OxP 177 92 170
OxP2+ 212 152 166
OxP4+ 151 186 160

Bz2OxP 217 129 171
Bz2OxP+ 204 137 197
Bz2OxP2+ 157 169 206
Bz2OxP4+ 147 196 192

Bz4OxP 244 165 173
Bz4OxP H-bond 225 135 184
Bz4OxP+ 195 168 194
Bz4OxP2+ 121 195 213

Table C.2: RGB values of protonated oxoporphyrinogen species (listed in Fig. 6.3, 6.4 and 6.5) calculated
from measured absorbance using [176].

C.4 NMR spectroscopy measurements

NMR spectroscopy measurements were performed using Bruker Avance III HD 500 and JEOL
AL300BX spectrometers. Tetramethylsilane was used as the internal standard, chloroform with
silver foil was used as solvent to prevent the formation of HCl. Titration experiments (i.e. mea-
surement of spectra at different guest concentrations when the guest is gradually added into the
host solution) were performed by the addition of stock solution (acid dissolved in chloroform,
in some cases in the presence of oxoporphyrinogen with the same concentration as in the sam-
ple) into the sample using a microsyringe. All measurements were performed at 25 ◦C unless
otherwise specified. Variable temperature measurements were performed at the Bruker spec-
trometer, refrigerator was used for cooling up to ca. −40 ◦C, liquid nitrogen was used to reach
lower temperatures.
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C.5 NMR analysis of host-guest binding

In order to obtain useful information presented in Chapter 6, the measured spectra were analyzed
in two steps:

Step 1 – Lineshape fitting:
Fitting of all relevant peaks in raw data (after proper phase correction and subtraction of baseline
with polynomial curve fitted outside peaks) using appropriate formulae: Lorentzian, J-coupled
or exchange lineshapes. This type of fitting is illustrated in Fig. C.1. The spectra were not fitted
in the whole ppm range, but rather only in the close vicinity of the analyzed peaks. Partially
overlapping peaks can be fitted without problems. Fitting of the exchange lineshapes requires
careful treatment of 𝛿𝑗 and 𝑅𝑗

2 parameters, which is discussed in next sections.
Fitting of tert-butyl resonances of the host, methyl group resonances of the guest (averaged

signal due to fast exchange between G and HG in both CSA and DFA), and resonance due to wa-
ter (averaged signal due to fast exchange between W and HW) also provided accurate number
of equivalents of guest and water (with respect to host) and consequently their total concentra-
tions using [G]t = equiv.(G) × [H]t and [W]t = equiv.(W) × [H]t. Total concentration of host
was calculated from the weight of the sample in powder form and the corresponding volume of
solvent (the effect of dilution during the titration was also incorporated). The lineshape fitting
procedure was conducted in Excel.

0.30.50.70.91.11.31.51.7

TB free TB bound 1 TB bound 2 water
CSA 
methyl 1a

CSA 
methyl 1b CSA methyl 2

I 2.4E+7 1.2E+8 1.3E+8 3.3E+8 9.7E+6 9.9E+6 1.9E+7
delta0 / ppm 1.33 1.38 1.53 1.55 0.56 0.58 0.86
gamma / ppm 0.0096 0.0051 0.0056 0.0053 0.0050 0.0048 0.0061

CSA methyl
CSA methylfree OxP tertbutyl

bound OxP tertbutyl

bound OxP tertbutyl

water

Figure C.1: Illustration of fitting the measured spectra (OxP + (R)-CSA). Experimental data (black) are
successfully reproduced by the Lorentzian fitting curves (red).

Step 2 – Fitting of binding isotherms:
Simultaneous least squares fitting of appropriate binding isotherms to the peak parameters ob-
tained in Step 1 as every titration experiment shows several spectral changes (peak shifts or newly
formed isolated peaks). Figure C.2 shows isotherms calculated from shift of averaged peaks in
fast exchange that were fitted using Eq. (3.62) (isotherms 2,3,4) and isotherms constructed as
ratio of peak areas that were fitted by Eq. (3.61) (isotherms 1,5,6). Proper binding model should
be used in order to describe the system correctly. The lineshape fitting procedure was conducted
in Excel using Solver add-in. Contributions of sum of squares due to particular isotherms to the
total sum of squares are weighted to be in the same order as shown in Fig. C.3. This figure also
shows all parameters used to describe the binding isotherms within the 1:4 host-guest binding
model. The parameters with blue background were fitted, those with yellow background were
fixed and obtained directly from the spectra. The least-square fitting procedure was conducted
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Figure C.2: Illustration of fitted binding isotherms.

in Excel using Solver add-in and VBA programming environment to implement calculations of
binding isotherms. The fitted values are listed in Table 6.1. In order to obtain the corresponding

isotherm 4
OxP + R-CSA NMR isotherm 2 isotherm 3 δG(CSA met2)-δG(CSA met1) 0.021
K1 4.8E+5 δHG(quin bound) 7.60 δHG(NH bound) 12.4 δHG(CSA met2)-δHG(CSA met1) 0.27
K2 1.1E+8 δHG2(quin bound) 7.60 δHG2(NH bound) 12.4 δHG2(CSA met2)-δHG2(CSA met1) 0.29
K3 131 δHG3(quin bound) 7.61 δHG3(NH bound) 12.2 δHG3(CSA met2)-δHG3(CSA met1) 0.24
K4 2.8 δHG4(quin bound) 8.41 δHG4(NH bound) 3.82 δHG4(CSA met2)-δHG4(CSA met1) 1.46

isotherm 1 isotherm 2 isotherm 3 isotherm 4 isotherm 5 isotherm 6
sums of squares 6.9E-2 7.0E-6 9.4E-4 3.8E-4 4.0E+1 2.7E-2
weights 250 2000000 20000 50000 1 200
weighted SSq 17.24 14.06 18.77 18.85 40.48 5.38
TOTAL SSq 114.8

Figure C.3: Illustration of simultaneous weighted fitting of binding isotherms (OxP + (R)-CSA) in Excel.
Parameters with blue background were fitted, the other were obtained directly from the measured spectra.
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Figure C.4: Plot of total sum of squares for repeated fitting procedure with different fixed 𝐾1 values
(Bz4OxP + DFA).

error, the fitting procedure was repeated several times with different fixed values of 𝐾𝑗 . Ac-
ceptable fits were determined by visual inspection of fitted curves and subsequently confidence
intervals were constructed from minimum and maximum values of these fitted parameters. This
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procedure is illustrated in Fig. C.4 for the titration of Bz4OxP with DFA.

C.6 Fitting of exchange lineshapes

This appendix describes describes fitting exchanging of tert-butyl-H signals with symmetric two-
state exchange lineshape (Eq. (B.11)). Dependence on guest concentration or on temperature of
the transition rate coefficient 𝑘obs was determined. The fitting procedure was realized in Mathe-
matica (using in-house scripts with FindFit command for the minimization procedure). Chem-
ical shifts 𝛿𝐴 and 𝛿𝐵 and transverse relaxation rates 𝑅𝐴

2 and 𝑅𝐵
2 (including the inhomogeneous

broadening effect, see Sec. 3.1.3) have a big influence on the resulting exchange coefficients.
However, they could not be fixed at one particular value throughout the whole experiment since
they might change with concentration or temperature.

Parameters 𝛿𝐴 and 𝛿𝐵 were obtained from the positions of peak maxima in the slow regime (at
low guest concentration or at low temperature). During the titration experiment the parameters
𝛿𝐴 and 𝛿𝐵 might change with changing polarity of the solvent (e.g. upon addition of acid) or when
new species form in the sample (which must not change the number of states). In this situation,
the difference |𝛿𝐴 − 𝛿𝐵 | often remains nearly constant and only the center (𝛿𝐴 + 𝛿𝐵)/2 shifts with
increasing guest concentration. On the other hand, variable temperature experiments imply
significant change in 𝛿𝐴 and 𝛿𝐵 parameters including their difference, which makes the fitting
procedure more difficult. Due to these reasons, change of 𝛿𝐴 and 𝛿𝐵 during the whole experiment
is also given.

Relaxation rates 𝑅𝐴
2 and 𝑅𝐵

2 (which include homogeneous broadening) were also obtained at
the slow regime from peak width 2𝛾 (𝑅2 [s−1] = 2𝜋𝜈0 [MHz]𝛾 [ppm]). In some cases, 𝑅𝐴

2 = 𝑅𝐵
2

was assumed. However, they might also vary with concentration or with temperature. During
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Figure C.5: Fitting of OxP tert-butyl signals with symmetric two-state exchange lineshape. (a) Titration
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the fitting procedure, one of the relaxation rates were fixed. The parameters adjusted during the
fitting procedure are: 𝑘obs, one of transverse relaxation rates 𝑅𝐴

2 or 𝑅𝐵
2 (only if they are not equal)

and total magnetization in relative units 𝑀0 (here, 𝑀0 plays the role of arbitrary proportionality
constant). To obtain the confidence intervals, fitting was repeated for every measured spectrum
for different fixed 𝑅2 values, which were varied in a reasonable range of 𝑅2 ∈ [10 s−1, 40 s−1].
Quality of the fits to the experimental data was determined upon visual inspection, fixed 𝑅2
parameters providing a good fit are denoted by gray zone in Fig. C.5 and C.6. Error bars of fitted
𝑘obs in these figures correspond to maximum or minimum 𝑅2 inside the gray zone. Mean values
of 𝑘obs correspond to best fit (with minimal sum of squares) or to the fixed 𝑅2 obtained from peak
width at slow exchange.

Analysis of OxP + acid systems is shown in Fig. C.5. Fitting of titration of OxP with (R)-
CSA in Fig. C.5a assumed 𝑅𝐴

2 = 𝑅𝐵
2 , 𝛿𝐴 and 𝛿𝐵 were almost constant during the whole experiment.

Fitting of titration of OxPwith DFA in Fig. C.5b also assumed 𝑅𝐴
2 = 𝑅𝐵

2 , |𝛿𝐴−𝛿𝐵 |was kept constant
during the whole experiment. However, the center (𝛿𝐴+𝛿𝐵)/2 slightly shifted due to formation of
HG4 complex at 10–300 equiv. of DFA until saturation (blue curve, number of spin states in HG4
does not change compared to HG2), furthermore, the center is shifted by a greater extent above
300 equiv. due to solvent polarity change. Fitting of variable temperature measurement of OxP
with 18 equiv. of DFA in Fig. C.5c showed different values of 𝑅𝐴

2 or 𝑅𝐵
2 . Therefore, in the first

part of the analysis, 𝑅𝐴
2 was fixed and 𝑅𝐵

2 was fitted together with 𝑘obs and 𝑀0, which is shown
in the second panel. Successful fits correspond to 𝑅𝐴

2 within the gray zone, the fitted values of
𝑅𝐵
2 are enclosed by red dashed line. Mean values of 𝑅𝐴

2 (black circles) correspond to mean values
of 𝑅𝐵

2 (red circles). In the second part of the analysis, the roles of 𝑅𝐴
2 and 𝑅𝐵

2 were swapped as
shown in the third panel. Confidence intervals in the Eyring plot in the first panel correspond
to intersection of 𝑘obs confidence intervals obtained in the second and third panel. Values of 𝛿𝐴
and 𝛿𝐵 varied during the experiment.
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Analysis of Bz2OxP + acid systems is shown in Fig. C.6. Fitting of variable temperature
mesurement of Bz2OxP with 17 equiv. of (rac)-CSA in Fig. C.6a assumed 𝑅𝐴

2 = 𝑅𝐵
2 , 𝛿𝐴 and 𝛿𝐵

significantly varied during the whole experiment. Linear Eyring plot (see Sec. 2.1.4) in first panel
yielded (using weighted linear least squares) the energy barrier parameters listed in Table 7.1,
the following Mathematica code has been used

(* Eyring plot ln(k/T)=a 1/T + b *)

ΔH‡ = -R a/1000 /. R -> 8.3145 (* in kJ/mol *)

ΔS‡ = -R (b - Log[kBoltz/h])/1000 /. {R -> 8.3145,

kBoltz -> 1.3806*10^-23, h -> 6.6261*10^-34} (* in kJ/mol/K *)

Fitting of titration of Bz2OxP with DFA in Fig. C.6b showed different values of 𝑅𝐴
2 or 𝑅𝐵

2 . Fitting
was performed for range of fixed 𝑅𝐴

2 values and then for fixed 𝑅𝐵
2 values as shown in second and

third panel, respectively. However, the “hillocks” in 𝑅𝐴
2 and 𝑅𝐵

2 values below 20 equiv. of DFA
(corresponding to ⟨𝑛⟩ < 1) in Fig. C.6b indicate that two-state fitting model is not appropriate,
which causes the failed linear dependence in Fig. 7.9. In this concentration range, population
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Figure C.7: Structures of Bz2OxP + DFA complex, corresponding states of tert-butyl-H spins (black labels;
also valid for ortho-H and 𝛽-H spins) and states of NH spins (gray labels). (a) Spin states in Bz2OxP+⋅DFA
complex, (b) Fast prototropic tautomerization processes cause averaging of chiral field in Bz2OxP + DFA
system (consists of averaged states from (a)). Slow topomerization process (left) induces two states (i.e. 𝐴′

and 𝐵′) of tert-butyl-H and ortho-H spins, fast topomerization process (right) induces one averaged state
(i.e. 𝑇 ′). In the latter case, topomerization does not influence states of 𝛽-H spins. Geometric shapes with
proper symmetry represent chiral field created by the acid anion. Dashed straight lines denote symmetry
elements 𝜎v (vertical mirror plane). Fast exchange implies (Eq. (3.62)) in tert-butyl-H peaks: 𝛿𝐴′ = 1

4 (𝛿𝐴1 +
𝛿𝐴2 + 𝛿𝐴3 + 𝛿𝐴4 ), 𝛿𝐵′ =

1
4 (𝛿𝐵1 + 𝛿𝐵2 + 𝛿𝐵3 + 𝛿𝐵4 ) and 𝛿𝑇 ′ = 1

2 (𝛿𝐴′ + 𝛿𝐵′ ). Fast exchange implies in NH peaks:
𝛿𝐴′ = 1

2 (𝛿𝐴1 + 𝛿𝐴2 ).
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of free host is not negligible and broadens the signals. Three-state exchange fitting is needed
to obtain corrected 𝑘obs values. Parameters 𝛿𝐴 and 𝛿𝐵 significantly varied but their difference
remained almost constant. Structures and corresponding states of the Bz2OxP + DFA system
are shown in Fig. C.7. Fitting of variable temperature mesurement of Bz2OxP with 35 equiv. of
DFA in Fig. C.6c assumed 𝑅𝐴

2 = 𝑅𝐵
2 , 𝛿𝐴 and 𝛿𝐵 significantly varied during the whole experiment.

Linear Eyring plot (see Sec. 2.1.4) in first panel yielded (using weighted linear least squares) the
energy barrier parameters listed in Table 7.1.

C.7 Fitting of experimental data in Bz2OxP + (R)-CSA system

The following text describing data analysis from Sec. 7.2.3 is taken from our paper [2], where
files with implementation in Excel and Mathematica can also be found. The fitting procedure
comprises of two consecutive steps:

Step 1 – Lineshape fitting:
Fitting of tertiary butyl (TB) resonances of the host, methyl (MET) group resonances of the guest
(averaged signal due to fast exchange between G and HG), and resonance due to water (averaged
signal due to fast exchange between W and HW) with Lorentzian lineshapes was performed in
order to provide accurate number of equivalents of guest and water (with respect to host) and
consequently their total concentrations. This fitting procedure was realized in Excel (with Solver
add-in using iterative generalized reduced gradient (GRG) nonlinear method for minimization).
Total concentration of host was calculated from the weight of the sample in powder form and
the corresponding volume of solvent (the effect of dilution during the titration was also incorpo-
rated). Values of [G]t, [W]t and [H]t were interpolated and served for calculation of continuous
values of all transition rate coefficients and concentrations shown in Fig. 7.12 by solid lines.

Symmetric two-state exchange lineshape (Eq. (B.11)) and half-symmetric three-state ex-
change (Eq. (3.52) and (3.37)) lineshapes were fitted to the NH peaks of the host to obtain the
concentration dependence of transition rate coefficients. Parameters 𝛿𝐴′

I
, 𝛿𝐴′

II
and 𝛿𝐶′ were ob-

tained from the positions of peak maxima in the slow regime. In the intermediate and fast regime
the Larmor frequencies shifted due to variation in solvent polarity, so the difference |𝛿𝐴′

I
− 𝛿𝐴′

II
|

was fixed, while the center (𝛿𝐴′
I
+ 𝛿𝐴′

II
)/2 was adjusted during the fitting, see gray dashed lines in

Fig. 7.12a,b. Relaxation rates were assumed to be equal, i.e. 𝑅𝐴′
I

2 = 𝑅𝐴′
II

2 = 𝑅𝐶′
2 . During the fitting

procedure, the relaxation rates were fixed. The parameters adjusted during the fitting procedure
are: 𝑘𝐴′ for two-state exchange, 𝑘𝐴′ and 𝑘𝐴′𝐶′ for three-state exchange and total magnetization in
relative units 𝑀0. This fitting procedure was realized in Mathematica (using in-house scripts with
FindFit command for the minimization procedure). The excellent match of fits is illustrated in
Fig. C.8a,c. The fitting procedure was repeated for every measured spectrum (at particular [G]t)
for different 𝑅2 values, which were varied in a reasonable range of 𝑅2 ∈ [10 s−1, 40 s−1], gray zone
in Fig. C.8b,d (bottom). Upon visual inspection, the fitted lineshapes provided an excellent match
to the experimental data in almost the whole range of the 𝑅2 parameter (gray zone in Fig. C.8b,d
(bottom)). Maximum and minimum values of the fitted transition rate coefficients 𝑘𝐴′ , 𝑘𝐴′𝐶′ and
𝑘𝐶′𝐴′ form the error bars in Fig. C.8b,d (top). Mean 𝑘𝐴′ , 𝑘𝐴′𝐶′ and 𝑘𝐶′𝐴′ values correspond to
𝑅2 = 30 s−1. Figure 7.12c in the main manuscript shows that the transition rate coefficients in
the intermediate exchange regime are determined with the highest accuracy since the spectral
lineshape at this point is most sensitive to the change of the transition rate coefficients (see also
section S7.4 in [2]).

Step 2 – Binding model fitting:
Simultaneous fitting of 𝑘𝐴′ concentration dependence together (using Eq. (C.8a)) with shift of
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Figure C.8: Fitting of two- and three-state exchange spectral lineshape and determination of transition
rate coefficients in Step 1. (a) Example of two-state fitting (spectrum at 0.78 equiv. of guest). Parameters
𝛿𝐴′

I
, 𝛿𝐴′

II
and 𝑅𝐴

′
I

2 = 𝑅𝐴
′
II

2 were fixed during the fitting of one particular spectrum. Values of 𝑘𝐴′ and 𝑀0
are fitted parameters (value of 𝑀0 differs from the real total magnetization since it depends on technical
details of the experimental setup and data processing). (b) Resulting values of 𝑘𝐴′ from two-state fitting
(top) and the range of the 𝑅2 parameter, where the fit was successful (gray zone, bottom). Full circles
(top and bottom) correspond to 𝑅2 = 30 s−1, error bars denote maximum and minimum 𝑘𝐴′ values from
repeated fitting procedure at different 𝑅2 values in the range 𝑅2 ∈ [10 s−1, 40 s−1] (gray zone, bottom). (c)
Example of three-state fitting. Parameters 𝛿𝐴′

I
, 𝛿𝐴′

II
, 𝛿𝐶′ and 𝑅𝐴

′
I

2 = 𝑅𝐴
′
II

2 = 𝑅𝐶
′

2 were fixed during the fitting
of one particular spectrum. Values of 𝑘𝐴′ , 𝑘𝐴′𝐶′ and 𝑀0 are fitted parameters. (d) Resulting values of 𝑘𝐴′

and 𝑘𝐴′𝐶′ from three-state fitting (top) and the range of the 𝑅2 parameter (gray zone, bottom). Full circles
(top and bottom) correspond to 𝑅2 = 30 s−1, error bars denote maximum and minimum 𝑘𝐴′𝐶′ , 𝑘𝐶′𝐴′ values
from the repeated fitting procedure at different 𝑅2 values in the range 𝑅2 ∈ [10 s−1, 40 s−1] (gray zone,
bottom).

fast-exchanging peaks of H/HW (denoted as 𝐶′ in Fig. 7.12b), two host TB resonances and two
guest MET resonances (Fig. C.9) was performed. This fit provides equilibrium binding constant
𝐾HG, reaction rate coefficient 𝜅taut and Larmor frequencies of the peaks involved. The following
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binding isotherms were fitted simultaneously

𝑘𝐴′ = 2𝜅taut[G] ,

𝛿𝐶′ = 𝛿𝐶
[H]

[H] + [HW]
+ 𝛿𝐷

[HW]
[H] + [HW]

,

𝛿(G MET1 observed) = 𝛿(G MET1 free) [G]
[G]t

+ 𝛿(G MET1 bound) [HG]
[G]t

,

𝛿(G MET2 observed) = 𝛿(G MET2 free) [G]
[G]t

+ 𝛿(G MET2 bound) [HG]
[G]t

,

𝛿(H TB1 observed) = 𝛿(H TB1 free) [H]
[H]t

+ 𝛿(H TB1 bound) [HG]
[H]t

,

𝛿(H TB2 observed) = 𝛿(H TB2 free) [H]
[H]t

+ 𝛿(H TB2 bound) [HG]
[H]t

.

Concentrations of the chemical species were obtained from numerical solution of the compet-
itive host-ligand binding model, summarized in Eq. (A.2) and (A.3). The fitting procedure was
realized in Mathematica (using in-house scripts). In order to obtain error of all fitted parame-
ters, the fitting procedure was repeated several times with different fixed values of parameters
𝐾HG, 𝜅𝐴, 𝛿𝐶 or 𝛿𝐷 . Acceptable fits were determined by visual inspection of fitted curves and sub-
sequently confidence intervals were constructed from minimum and maximum values of these
fitted parameters. The parameter 𝜅taut was calculated as a mean, hence its error was determined
as standard deviation. Furthermore, errors of other parameters, denoted here as 𝜎●, were ob-
tained from propagation of uncertainty. In particular, error of 𝜅𝐶𝐴 (where 𝜅ass = 𝐾HG𝜅diss/4)
was calculated as 𝜎𝜅diss =

√
(𝜅diss

4 )2𝜎2
𝐾HG

+ (𝐾HG
4 )2𝜎2

𝜅diss
, errors of Gibbs energy barriers Δ𝐺‡

𝑗 (where
Δ𝐺‡

𝑗 = −𝑅𝑇 ln ℎ𝜅𝑗
𝑘B𝑇 ) were calculated as 𝜎Δ𝐺‡

𝑗
=
√
(𝑅𝑇𝜅𝑗 )

2𝜎2
𝜅𝑗 and errors of standard reaction Gibbs

energies Δ𝐺◦
𝑗 (where Δ𝐺◦

𝑗 = −𝑅𝑇 ln 𝐾𝑗 ) were calculated as 𝜎Δ𝐺◦𝑗 =
√
(𝑅𝑇𝐾𝑗

)2𝜎2
𝐾𝑗

. All parameters
used during the fitting procedures in Step 1 and Step 2 are listed in Table C.3
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Figure C.9: Result of simultaneous fitting of chemical shifts of guest’s MET resonances (left panel) and
host’s TB resonances (right panel) during the Step 2.
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Table C.3: Overview of fitted and fixed parameters in the fitting procedures in Step 1 and Step 2.

Parameter Value Comment
𝑘𝐴′𝐶′ 47 ± 6 s−1 mean from raw data fit (Step 1)
𝑘𝐴′ 10–105 s−1 fitted (Step 1), changing with concentration
𝐾HG (7.4 ± 3.0) × 104 M−1 fitted (Step 2),

analysis from Sec. 6.9 yields (8.0 ± 5.0) × 104 M−1

𝐾HW 240 ± 35 M−1 reported value [40], fixed during Step 2
𝜅taut (10 ± 1) × 105 M−1s−1 fitted (Step 2), binding isotherm 𝑘𝐴′ = 2𝜅taut[G]
𝜅diss 47 ± 6 s−1 𝜅diss = 𝑘𝐴′𝐶′ , mean from raw data fit (Step 1),

fixed during Step 2
𝜅ass (9 ± 4) × 105 M−1s−1 calculated, 𝜅ass = 𝐾HG𝜅diss/4,
𝛿𝐴′

I
13.08 ppm at low [G]t; fixed (Step 1), obtained from peak maxima,
< 13.08 ppm at high [G]t; fitted with fixed 𝛿𝐴′

I
− 𝛿𝐴′

II
(Step 1)

𝛿𝐴′
II

11.76 ppm at low [G]t; fixed (Step 1), obtained from peak maxima,
< 11.76 ppm at high [G]t; fitted with fixed 𝛿𝐴′

I
− 𝛿𝐴′

II
(Step 1)

𝛿𝐶′ 9.19–9.65 ppm fixed, changing with concentration,
obtained from the peak maxima (Step 1)

𝛿𝐶 7.8 ± 0.2 ppm fitted (Step 2), reported value [40] 7.86 ± 0.40 ppm
𝛿𝐷 10.4 ± 0.2 ppm fitted (Step 2), reported value [40] 10.09 ± 0.03 ppm
𝛿(G MET1 free) 1.02 ± 0.01 ppm fitted (Step 2)
𝛿(G MET1 bound) 1.00 ± 0.01 ppm fitted (Step 2)
𝛿(G MET2 free) 0.99 ± 0.01 ppm fitted (Step 2)
𝛿(G MET2 bound) 0.71 ± 0.01 ppm fitted (Step 2)
𝛿(H TB1 free) 1.33 ± 0.01 ppm fitted (Step 2)
𝛿(H TB1 bound) 1.42 ± 0.01 ppm fitted (Step 2)
𝛿(H TB2 free) 1.20 ± 0.01 ppm fitted (Step 2)
𝛿(H TB2 bound) 1.28 ± 0.01 ppm fitted (Step 2)

C.8 Kinetic models of Bz2OxP + (R)-CSA system

Our model for the system of di-bromobenzylated oxoporphyrinogen (H) in the presence of (R)-
camphorsulfonic acid (G) and water (W) combines the competitive host-ligand binding scheme
for chemical kinetics (described in Sec. 2.2.3) and the half-symmetric three-state exchange model
for the observed spin kinetics. The spin kinetics corresponds to the central NH nuclear spins
located at the host.

There are multiple levels of description of the molecular kinetics in our system. The most
elementary description is a simplified chemical kinetics scheme in Fig. C.10a, assuming the host
molecule in three possible chemical states, H, HG and HW. The simplified chemical kinetics is
governed by the following equations

d[HG]
d𝑡 = −𝜅diss[HG] + 4𝜅ass[G][H] , (C.1a)

d[H]
d𝑡 = −4𝜅ass[G][H] − 𝜅𝐶𝐷[W][H] + 𝜅diss[HG] + 𝜅𝐷𝐶[HW] , (C.1b)

d[HW]
d𝑡 = −𝜅𝐷𝐶[HW] + 𝜅𝐶𝐷[W][H] . (C.1c)

The factor of four in the term 4𝜅ass[G][H] is caused by the presence of four possible protonation
sites, increasing the rate of HG formation. The reaction rate coefficients are related to the equi-
librium constants through the following formulae (obtained for the time derivatives in Eq. (C.1a)
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Figure C.10: Chemical kinetics schemes for the multi-state system of di-bromobenzylated oxoporphyrino-
gen (host H) in the presence of two potential ligands, (R)-camphorsulfonic acid (ligand G) and water (lig-
and W). (a) Simplified chemical kinetics scheme corresponding to 1:1 H:G binding with competitive 1:1
H:W binding described by Eq. (C.1). (b) Chemical kinetics scheme described by Eq. (C.4). (c) Expanded
chemical kinetics scheme described by Eq. (C.5). All relevant molecular processes and their reaction rate
coefficients are shown. Processes denoted by magenta arrows are fast on the NMR timescale.

and (C.1c) equal to zero)

𝐾HG = 4𝐾micro
HG = 4

𝜅ass
𝜅diss

, (C.2a)

𝐾HW =
𝜅𝐶𝐷
𝜅𝐷𝐶

. (C.2b)

The stepwise binding constant, defined as 𝐾HG = [HG]/([H][G]), describes protonation of any
of the four possible protonation sites (hence the factor of four in Eq. (C.2a)). On the other
hand, the microscopic binding constant 𝐾micro

HG = 𝜅ass/𝜅diss describes binding to one particular
binding site [48]. Thus, this constant corresponds to the “microscopic” standard reaction Gibbs
energy Δ𝐺◦micro

HG , which can be obtained from quantum chemistry calculations [177] as Δ𝐺◦micro
HG =

𝜇◦HG−𝜇◦H−𝜇◦G (𝜇◦● represents the standard chemical potential of species indicated in subscript). The
quantity Δ𝐺◦micro

HG is higher than the standard reaction Gibbs energy Δ𝐺◦
HG = −𝑅𝑇 ln 𝐾HG (the

quantity Δ𝐺◦
HG is always defined by the latter equation from the stepwise equilibrium constant,

but it should be correctly interpreted [46, 73]),

Δ𝐺◦micro
HG = −𝑅𝑇 ln 𝐾micro

HG = −𝑅𝑇 ln
𝐾HG

4
= Δ𝐺HG + 𝑅𝑇 ln 4 . (C.3)

The numerical value is Δ𝐺◦micro
HG = Δ𝐺HG + 𝑅𝑇 ln 4 = −27.76 + 3.43 kJ.mol−1 = −24.33 kJ.mol−1 at

𝑇 = 298 K.
In fact, the protonated species HG are not identical as they form two enantiomers (+)-(HG)

and (−)-(HG). The chemical kinetics is described by the scheme in Fig. C.10b, which is an expan-
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sion of the scheme in Fig. C.10a. This scheme is governed by the following equations
d[(+)-(HG)]

d𝑡 = −(𝜅taut + 𝜅∗
taut)[G][(+)-(HG)] − 𝜅diss[(+)-(HG)] + (𝜅taut + 𝜅∗

taut)[G][(−)-(HG)] + 2𝜅ass[G][H] , (C.4a)

d[(−)-(HG)]
d𝑡 = −(𝜅taut + 𝜅∗

taut)[G][(−)-(HG)] − 𝜅diss[(−)-(HG)] + (𝜅taut + 𝜅∗
taut)[G][(+)-(HG)] + 2𝜅ass[G][H] , (C.4b)

d[H]
d𝑡 = −4𝜅ass[G][H] − 𝜅𝐶𝐷[W][H] + 𝜅diss ([(+)-(HG)] + [(−)-(HG)]) + 𝜅𝐷𝐶 [HW] , (C.4c)

d[HW]
d𝑡 = −𝜅𝐷𝐶 [HW] + 𝜅𝐶𝐷[W][H] . (C.4d)

These equations are compatible with the simplified chemical kinetics (Eq. (C.1)) by adding Eq.
(C.4a) and (C.4b), and substituting [(+)-(HG)] + [(−)-(HG)] = [HG].

In order to establish the connection between chemical kinetics and spin kinetics, the scheme
in Fig. C.10b must be expanded to incorporate all relevant microstates, see Fig. C.10c. The states
(+)-(HG)𝐴1 , (+)-(HG)𝐴3 , (−)-(HG)𝐴2 and (−)-(HG)𝐴4 correspond to protonation of different C=O
sites (see Fig. 7.10 for molecular structures). The expanded chemical kinetics is described by the
following equations

d[(+)-(HG)𝐴1]
d𝑡 = −(2𝜅taut + 𝜅∗taut)[G][(+)-(HG)𝐴1] − 𝜅diss[(+)-(HG)𝐴1]

+ 𝜅taut[G][(+)-(HG)𝐴3] + 𝜅∗taut[G][(−)-(HG)𝐴2] + 𝜅taut[G][(−)-(HG)𝐴4] + 𝜅ass[G][H𝐶 ] ,
(C.5a)

d[(+)-(HG)𝐴3]
d𝑡 = −(2𝜅taut + 𝜅∗taut)[G][(+)-(HG)𝐴3] − 𝜅diss[(+)-(HG)𝐴3]

+ 𝜅taut[G][(+)-(HG)𝐴1] + 𝜅taut[G][(−)-(HG)𝐴2] + 𝜅∗taut[G][(−)-(HG)𝐴4] + 𝜅ass[G][H𝐶 ] ,
(C.5b)

d[(−)-(HG)𝐴2]
d𝑡 = −(2𝜅taut + 𝜅∗taut)[G][(−)-(HG)𝐴2] − 𝜅diss[(−)-(HG)𝐴2]

+ 𝜅∗taut[G][(+)-(HG)𝐴1] + 𝜅taut[G][(+)-(HG)𝐴3] + 𝜅taut[G][(−)-(HG)𝐴4] + 𝜅ass[G][H𝐶 ] ,
(C.5c)

d[(−)-(HG)𝐴4]
d𝑡 = −(2𝜅taut + 𝜅∗taut)[G][(−)-(HG)𝐴4] − 𝜅diss[(−)-(HG)𝐴4]

+ 𝜅taut[G][(+)-(HG)𝐴1] + 𝜅∗taut[G][(+)-(HG)𝐴3] + 𝜅taut[G][(−)-(HG)𝐴2] + 𝜅ass[G][H𝐶 ] ,
(C.5d)

d[H𝐶 ]
d𝑡 = −4𝜅ass[G][H𝐶 ] − 𝜅𝐶𝐷[W][H𝐶 ]

+ 𝜅diss ([(+)-(HG)𝐴1] + [(+)-(HG)𝐴3] + [(−)-(HG)𝐴2] + [(−)-(HG)𝐴4]) + 𝜅𝐷𝐶 [HW𝐷] ,
(C.5e)

d[HW𝐷]
d𝑡 = −𝜅𝐷𝐶 [HW𝐷] + 𝜅𝐶𝐷[W][H𝐶 ] . (C.5f)

The above equations are compatible with the chemical kinetics scheme governed by Eq. (C.4) as
shown by summing Eq. (C.5a) with (C.5b) and Eq. (C.5c) with (C.5d), and substituting [(+)-(HG)𝐴1 ]+
[(+)-(HG)𝐴3 ] = [(+)-(HG)] and [(−)-(HG)𝐴2 ] + [(−)-(HG)𝐴4 ] = [(−)-(HG)].

This expanded chemical kinetics scheme accounts for all relevant molecular processes and
microstates (i.e. there is absence of integer prefactors or sums of reaction rate coefficients ac-
counting for degeneracy) and explains all the prefactors or sums of reaction rate coefficients
used in previous schemes in Fig. C.10a,b. The corresponding energy barriers can be calculated
employing the Eyring equation (Eq. 2.20). In order to simplify the model, the guest-mediated
prototropic tautomerization between states (+)-(HG)𝐴1 ↔ (+)-(HG)𝐴3 , (+)-(HG)𝐴1 ↔ (−)-(HG)𝐴4 ,
(−)-(HG)𝐴2 ↔ (+)-(HG)𝐴3 and (−)-(HG)𝐴2 ↔ (−)-(HG)𝐴4 is characterized by single effective reaction
rate coefficient 𝜅𝐴, although the real energy barriers might differ. On the other hand, prototropic
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tautomerization between states (+)-(HG)𝐴1 ↔ (−)-(HG)𝐴2 and (+)-(HG)𝐴3 ↔ (−)-(HG)𝐴4 is char-
acterized by the reaction rate coefficient 𝜅∗𝐴.

(a) reduced equivalent spin kinetics scheme
___(in reaction rate coeff.)

(b) reduced equivalent spin kinetics scheme
___(in transition rate coeff.)

[G]
[G]

Figure C.11: Reduced equivalent spin kinetics schemes for the multi-state system of di-bromobenzylated
oxoporphyrinogen (host H) in the presence of two potential ligands, (R)-camphorsulfonic acid (ligand G)
and water (ligand W). The schemes refer to central NH protons of the host molecule. (a) Spin kinetics in
terms of reaction rate coefficients as obtained from contraction of the scheme in Fig. C.10c. It is described
by Eq. (C.6). (b) Corresponding spin kinetics in terms of transition rate coefficients described by Eq. (C.7).
It has the form of half-symmetric three-state exchange. Comparison with (a) gives the the relationship
between transition and reaction rate coefficients in Eq. (C.8). This model was used for lineshape fitting,
see Sec. C.7 for details.

At this point, fast exchange between states (+)-(HG)𝐴1 ↔ (−)-(HG)𝐴2 , (+)-(HG)𝐴3 ↔ (−)-(HG)𝐴4

and H𝐶 ↔ H𝐷 should be taken into account. The equivalent reduced spin kinetics scheme is
constructed from the expanded chemical kinetics scheme in Fig. C.10c according to the procedure
explained in Sec. 3.3.8. In this case, Eq. (C.5a) and (C.5c), Eq. (C.5b) and (C.5d), and Eq. (C.5e)
and (C.5f), respectively, are added up, expansion [H𝐶] = [H𝐶 ]

[H𝐶 ]+[H𝐷] ([H
𝐶] + [H𝐷]) is made and

substitutions [(+)-(HG)𝐴1] + [(−)-(HG)𝐴2] = [HG𝐴′
I ], [(+)-(HG)𝐴3] + [(−)-(HG)𝐴4] = [HG𝐴′

II] and
[H𝐶] + [H𝐷] = [H𝐶′] are used. This procedure yields governing equations for three-state spin
kinetics corresponding to the spin kinetics scheme in Fig. C.11a, in particular

d[HG𝐴′
I ]

d𝑡 = −2𝜅taut[G][HG𝐴′
I ] − 𝜅diss[HG𝐴′

I ] + 2𝜅taut[G][HG𝐴′
II] + 2𝜅ass[G][H𝐶] , (C.6a)

d[HG𝐴′
II]

d𝑡 = −2𝜅taut[G][HG𝐴′
II] − 𝜅diss[HG𝐴′

II] + 2𝜅taut[G][HG𝐴′
I ] + 2𝜅ass[G][H𝐶] , (C.6b)

d[H𝐶′]
d𝑡 = −4𝜅ass

[G][H𝐶]
[H𝐶] + [H𝐷]

[H𝐶′
] + 𝜅diss ([HG𝐴′

I ] + [HG𝐴′
II]) . (C.6c)

These equations can be further compared with a spin kinetics scheme formulated in terms of
transition rate coefficients as shown in Fig. C.11b, which is governed by the following set of
differential equations

d𝑝𝐴′
I

d𝑡
= −(𝑘𝐴′ + 𝑘𝐴′𝐶′)𝑝𝐴′

I
+ 𝑘𝐴′𝑝𝐴′

II
+ 𝑘𝐶′𝐴′𝑝𝐶′ , (C.7a)

d𝑝𝐴′
II

d𝑡
= −(𝑘𝐴′ + 𝑘𝐴′𝐶′)𝑝𝐴′

II
+ 𝑘𝐴′𝑝𝐴′

I
+ 𝑘𝐶′𝐴′𝑝𝐶′ , (C.7b)

d𝑝𝐶′

d𝑡
= −2𝑘𝐶′𝐴′𝑝𝐶′ + 𝑘𝐴′𝐶′𝑝𝐴′

I
+ 𝑘𝐴′𝐶′𝑝𝐴′

II
. (C.7c)

Relationships between the transition and reaction rate coefficients are established by comparison
of Eq. (C.6) and (C.7) using the appropriate relations for spin state populations, i.e. 𝑝𝐴′

I
= [HG𝐴′I ]

[H]t ,

𝑝𝐴′
II
= [HG𝐴′II ]

[H]t and 𝑝𝐶′ = [H𝐶′ ]
[H]t . As a result, we also obtain the dependencies of transition rate
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coefficients on guest concentration,

𝑘𝐴′ = 2𝜅𝐴[G] , (C.8a)
𝑘𝐴′𝐶′ = 𝜅diss , (C.8b)

𝑘𝐶′𝐴′ =
2𝜅ass𝑝𝐶
𝑝𝐶 + 𝑝𝐷

[G] . (C.8c)

C.9 Prototropic tautomerization processes in Bz2OxP

Prototropic tautomerization consists of several steps, which are indistinguishable in NMR (due
to fast exchange regime). Here, we suggest the corresponding reaction schemes for tautomeriza-
tion processes. Initial state (−)-(HG) can undergo the tautomerization process in three different
ways as illustrated in Fig. C.12 (final state (+)-(HG), characterized by 𝜅∗𝐴), Fig. C.13 (final state
(−)-(HG), characterized by 𝜅𝐴) and Fig. C.14 (final state (+)-(HG), characterized by 𝜅𝐴). All three
reaction paths are reversible and consist of analogous steps. In step (1), an incoming guest (red)
forms a hydrogen bond with host’s carbonyl group thus forming hydrogen-bonded structure
(−)-HG⋅G. The next step (2) shows the suggested transition state (HG2)‡, which is created by
formal redistribution of electron density (denoted by blue arrows in (−)-HG⋅G structure and by
dashed bonds in (HG2)‡ structure). Formally, partial charge +𝛿 is located at the central alkylated
amines and at the protonated carbonyls although in reality, the charge is delocalized. During this
step, guest anions change positions and are located close to partially charged atoms of the host
in (HG2)‡. This allows for (blue and red) guest anions exchange, as shown in step (3). Hence,
prototropic tautomerization can, in principle, proceed in two branches, i.e. the initial guest coun-
teranion (blue) either remains at the porphyrinogen center or it is replaced by the incoming
acid anion (red). Both branches lead to hydrogen bonded species (+)-HG⋅G or (−)-HG⋅G in step
(4) (redistribution of electron density is denoted by blue arrows in (HG2)‡ structure). Finally,
monoprotonated host-guest complex (+)-(HG) or (−)-(HG) is formed in step (5). Although the
tautomerization processes consist of several steps, in our chemical kinetics scheme (Fig. 7.13c),
they are described by effective barriers Δ𝐺‡

𝐴 (corresponding to 𝜅𝐴) and Δ𝐺‡
𝐴∗ (corresponding to

𝜅∗𝐴). Step (1) is a second-order reaction, hence the effective forward reaction rate (𝜅𝐴[G][HG]
or 𝜅∗𝐴[G][HG]) depends linearly on [G] and [HG]. Similarly, step (5) is also a second-order re-
action, hence the effective backward reaction rate (𝜅𝐴[G][HG] or 𝜅∗𝐴[G][HG]) depends linearly
on [G] and [HG]. Note that we assume equal effective barriers Δ𝐺‡

𝐴 for protonation transfers
“left-to-right” (Fig. C.13) and “left-to-down” and (Fig. C.14).
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Figure C.12: Suggested transition structures for prototropic tautomerization from (−)-(HG) to (+)-(HG)
characterized by 𝜅∗𝐴. Dotted line in (+)-HG⋅G and (−)-HG⋅G represents hydrogen bond, dashed lines in
(HG2)‡ represent partially formed bonds in transition state.
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Figure C.13: Suggested transition structures for prototropic tautomerization from (−)-(HG) to (−)-(HG)
characterized by 𝜅𝐴. Dotted line in (−)-HG⋅G represents hydrogen bond, dashed lines in (HG2)‡ represent
partially formed bonds in transition state.
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Figure C.14: Suggested transition structures for prototropic tautomerization from (−)-(HG) to (+)-(HG)
characterized by 𝜅𝐴. Dotted line in (+)-HG⋅G and (−)-HG⋅G represents hydrogen bond, dashed lines in
(HG2)‡ represent partially formed bonds in transition state.



D SVD analysis
SVD of UV/vis spectra (in the matrix A) was conducted in Mathematica using:

{U, S, V} = SingularValueDecomposition[A];

Graphs showing quality of DSIS and SVD analysis were adopted from our publication [2].

D.1 Bz2OxP + (R)-CSA titration

Total host concentration changed during the titration due to dilution by stock solution (see Ap-
pendix C.2). Therefore, the measured spectra shown in Fig. D.1a were rescaled to the initial
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Figure D.1: UV/vis titration of Bz2OxP (7 × 10−6 M, dilution during measurement compensated by rescal-
ing to initial dye concentration, CDCl3) with (R)-CSA and corresponding analyses. (a) Rescaled titration
spectra. (b) Absorbance at 700 nm before and after rescaling. SVD analysis before and after rescaling
yielded (c) basis spectra, (d) singular values, (e) mutual plot of combination coefficients 1,2 with coordi-
nates t1 and t2 of the absorbing species, and (f) amplitude vectors. The fitting procedure, described in Sec.
5.2.3, yielded (g) spectra of free (identified as bold line in panel (a)) and protonated host (obtained from
SVD analysis), black triangles denote intersections which produce isosbestic points as explained in Sec.
4.4; and (h) populations Pexp (points) and Pmod (lines) of these species.
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concentration (see footnote 7 on page 58), plot of the absorbance at 700 nm in Fig. D.1b illus-
trates the extent of rescaling. SVD analysis following Sec. 5.2.3 was performed on the original
as well as rescaled spectra. Figures D.1c–f prove little effect of spectra rescaling on SVD except
for the first amplitude vector v1 (note that v1 is most sensitive to concentration fluctuations also
in other UV/vis titration experiments) and consequently the first combination coefficient 𝑠1v1.
Mutual plot of combination coefficients (e) forms a straight line segment confirming the pres-
ence of two absorbing species – free and protonated Bz2OxP host. Spectrum of free host z1 is
identified as the first titration measurement a1 (black bold line in (a)) yielding the t1 coordinates
in combination coefficients space (black point in (e)) using t1 = U‡

2a1 (from Eq. (5.21) and (5.14)).
However, spectrum of protonated host z2 was not measured in isolation (the spectral change was
not saturated) and its t2 coordinates were obtained by minimization of the function in Eq. (5.26)
using the 1:1 host-guest binding model (see Sec. 2.2.1) for the model populations Pmod. Fitting
parameters were the vector t2 (i.e. 𝑇12 and 𝑇22 elements of the transformation matrix T) and 𝐾1.
Resulting value is 𝐾HG = (5.0 ± 1.0) × 104 M−1, uncertainties were obtained by repeated fitting
with fixed 𝐾1 value.

D.2 OxP + TFA titration

The presence of three absorbing components and two consecutive spectral changes is confirmed
by singular values in Fig. D.2a and mutual plot of combination coefficients in Fig. D.2c–f showing
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Figure D.2: SVD analysis of UV/vis titration of OxP (10−5 M, CH2Cl2, data first published in [31]) with
TFA, (a) singular values, (b) first combination coefficients shows ‘jump’ due to total dye concentration
change, (c,d,e) mutual plot of combination coefficients. (f) PCA on the combination coefficients enables
2D plot of 3D data lying on a plane.
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two straight line segments. Coordinates of OxP2+ in Fig. D.2c,d do not lie exactly at the inter-
section of the two lines as would be expected. This is probably because the first combination
coefficient 𝑠1𝐯1 in Fig. D.2b shows a “jump” since it is sensitive to the total dye concentration,
which slightly changed (by a few percent as estimated from the ratio of 𝑠1𝐯1 values before and
after the jump) when different stock solution was used to observe the second spectral change.

Since the combination coefficients from three species lie on a 2D plane in 3D combination
coefficients space, they can be conveniently visualized when the plane is properly rotated. As
shown in Sec. 5.3, the PCA method is suited for such a rotation. The PCA of combination coef-
ficients almost coincides with the mutual plot of the second and third combination coefficients
(the plane has been originally oriented almost perpendicularly to the 𝑠1𝐯1 dimension), where the
effect of total dye concentration change is filtrated out (OxP2+ lies at the intersection of straight
lines). See Appendix D.5 for the detailed implementation of PCA.

Populations were obtained by DSIS (see Sec. 5.2.5) by minimization of Eq. 5.28 with con-
straints ∑p𝑗 = 1 and 0 ≤ p𝑗 ≤ 1. These populations were fitted using the 1:4 host-guest binding
model from Appendix A.4. Furthermore, fitting of the host-guest model was performed in the
3D SVD approximation as described in Sec. 5.2.3, see [1] for details. Figure D.3 shows the high
quality of these fits.
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Figure D.3: Quality check of DSIS and 3D SVD approximation of UV/vis titration of OxP with TFA.
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D.3 Bz2OxP + DFA titration
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Figure D.4: SVD analysis of UV/vis titration of Bz2OxP (7 × 10−6M, CDCl3, diluted during measurement,
rescaled to initial concentration) with DFA, (a) singular values, (b) first combination coefficients shows
“jumps” due to total dye concentration change, (c) mutual plot of combination coefficients 2,3.

The presence of four absorbing components and three consecutive spectral changes is con-
firmed by singular values in Fig. D.2a and mutual plot of combination coefficients in Fig. D.2c
showing three line segments. Because of experimental difficulties (unwanted photoreaction at
high acid contents) the titration was repeated several times at different concentration ranges.
Finally, the spectra were combined together and rescaled to the initial dye concentration (see
footnote 7 on page 58). Imperfections in rescaling are visible as small “jumps” in the first com-
bination coefficient in Fig. D.2b. Mutual plot of combination coefficients 2 and 3 is not sensitive
to these concentration fluctuations.

Populations were obtained by DSIS (see Sec. 5.2.5) by minimization of Eq. 5.28 with con-
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Figure D.5: Quality check of DSIS and 4D SVD approximation of UV/vis titration of Bz2OxP with DFA.
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straints ∑p𝑗 = 1 and 0 ≤ p𝑗 ≤ 1. These populations were fitted using the 1:1 host-guest binding
model from Appendix A.1. Furthermore, fitting of the host-guest model was performed in the
4D SVD approximation as described in Sec. 5.2.3, see [1] for details. Figure D.5 shows the high
quality of these fits.

D.4 Bz4OxP + DFA titration

Data excluding the first solvatochromic shift were analyzed by SVD. The presence of three ab-
sorbing components and two consecutive spectral changes is confirmed by singular values in Fig.
D.6a and mutual plot of combination coefficients in Fig. D.6c showing two straight line segments.
Rescaling of the experimental spectra produced on jumps (only one outlier) as deduced from the
first combination coefficient in Fig. D.6b.
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measurement, measured spectra rescaled to initial concentration. (a) Singular values, (b) first combina-
tion coefficients shows only one outlier, so the rescaling was very good, (c) mutual plot of combination
coefficients 2,3.

Populations were obtained by DSIS (see Sec. 5.2.5) by minimization of Eq. 5.28 with con-
straints ∑p𝑗 = 1 and 0 ≤ p𝑗 ≤ 1. Figure D.7 shows the high quality of this decomposition.
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D.5 OxP + DMF titration

Plot of singular values in Fig. D.8a indicates three significant components (capturing 99.975%
of the signal), which indicates presence of three absorbing species. However, the structure of
combination coefficients plot in Fig. D.8b is nontrivial. The OxP and OxP H-bond species
lie on a straight line but before saturation of the spectral change, there is a “digression” to the
porphodimethene form. In our publication [1], we concluded the existence of two hydrogen-
bonded species (very similar to each other and thus consistent with three significant singular
values), however, here we propose this simpler solution with only three absorbing species on the
basis of the combination coefficients plot (not present in [1]).

Figure D.8b shows PCA of the combination coefficients. Since PCA identifies directions of
maximal variance in a dataset (see Sec. 5.3), the first two PCs project the combination coefficients
from 3D to 2D plane so that they are maximally “stretched out”. This projection accounts for
99.95% of the signal variance, so the combination coefficients indeed lie on a 2D plane in their 3D
space, further supporting the presence of three absorbing components (𝑁spc components form an
(𝑁spc − 1)-dimensional object in the combination coefficients space, although small overlap with
other dimensions occurs due to the noise). Coordinates of OxP and the porphodimethene
form in combination coefficients plot were determined from the measured spectra at the end-
points of the spectral changes, where they appear in isolation (black and blue points in Fig.
D.8b). The coordinates of OxP H-bond were determined as intersection of the lines delineating
the first and third spectral changes in the PCA plot (green lines in Fig. D.8b) while setting the
PC3 coordinate of all three species to zero as shown in Fig. D.8c.
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For calculation of PCA, the combination coefficients were arranged as columns 𝐱𝑗 of the row-
wise data matrix 𝐁 according to Eq. (5.29). This calculation was implemented in Mathematica.
Since this software does not include command for direct calculation of PCA, it was obtained
using SVD (Sec. 5.3.2) using the following code
B = Transpose@{s1 v1, s2 v2, s3 v3 }; (* row-wise data matrix *)

Bbar = B - Outer[Times,ConstantArray[1,Length@B],

Mean[B]]; (* mean-centering *)

{U, S, V} = SingularValueDecomposition[Bbar];

V1 = V[[All,1]]; V2 = V[[All,2]]; V3 = V[[All,3]];

PC1 = Bbar.V1; (* = U1 s1 *)

PC2 = Bbar.V2; (* = U2 s2 *)

PC3 = Bbar.V3; (* = U3 s3 *)

Consequently, PCs are transformed to coordinates 𝐭𝑗 (using inversion of Eq. 5.31) with

⎛
⎜
⎜
⎝

… 𝐭1 …
… 𝐭2 …
… 𝐭3 …

⎞
⎟
⎟
⎠⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐓T

=
⎛
⎜
⎜
⎝

⋮ ⋮ ⋮
𝜶1 𝜶2 … 𝜶𝑛
⋮ ⋮ ⋮

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

PC1(comp.1) PC2(comp.1) 0
PC1(comp.2) PC2(comp.2) 0
PC1(comp.3) PC2(comp.3) 0

⎞
⎟
⎟
⎠
+ 𝐁T , (D.1)

where 𝜶𝑗 are PCA loadings. As the data during PCA become mean-centered, the mean 𝐁 should
be added in order to obtain true coordinates. The coordinates obtained through PCA nicely fit
into the three original combination coefficients planes, Fig. D.8d–f. It would be very tedious if
not impossible to find the proper positions of the OxPH-bond coordinate directly in these plots
without the use of PCA since bad placement results in negative spectra or forbidden values of
populations.

When all coordinates (columns of the transformation matrix 𝐓) are known, the individual
spectra are reconstructed using 𝐙 = 𝐔𝑁spc𝐓 and populations using 𝐏Texp = 𝐓−1𝐒𝑁spc𝐕𝑁spc = 𝐙†𝐀.
The reconstruction of spectra and populations can be implemented as follows
{U, S, V} = SingularValueDecomposition[A];

T = Transpose@{t1, t2, t3};
Z = U[[All,1;;3]].T;

PT = PseudoInverse[Z].A;

(* alternatively: PT=Inverse[T].(S.Transpose[V])[[1;;3,All]];*)
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D.6 Bz2OxP + DMF at different vol.f.

Singular values in Fig. D.9a indicate the presence maximum three absorbing components (99.99%
of the signal), however, interpretation of mutual plot of combination coefficients in Fig. D.9b re-
quires three components and two straight line segments. The analysis was conducted using PCA
in similar manner as in the previous section. Coordinates of Bz2OxP in (b) were obtained di-
rectly from the measured spectra. The second spectral change is unsaturated, thus, only interval
for reasonable location for PCA coordinates of form 2 (transparent green line segment) was de-
termined, it lies on the straight line corresponding to the second spectral change (orange line).
PCA coordinates of form 1 lie at the intersection of the two spectral changes (orange lines in
Fig. D.9b). PC3 component of the coordinates was set to zero and the coordinates in Fig. D.9d–f
were calculated. Then individual spectra and their populations were obtained analogously to the
previous appendix.
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D.7 Bz4OxP + DMF at different vol.f.

Since the measured spectral change is very small, it cannot be decided if the solvatochromism
is caused by formation of new species or by shift of absorption bands (see Sec. 4.5). Here, the
hypothetical formation of new species is investigated. The SVD analysis is fully analogous to
the previous appendix. The hypothetical individual spectra in Fig. D.10g resemble the hydrogen
bonded species of Bz2OxP in Fig. 6.16b. However, no absorption bands arise, which suggests
that no new species are formed.
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E NMR spectra
NMR spectra analyzed in this work are shown here in the full ppm range. Several figures were
adopted from our publication [1] with modifications. Experimental details about NMR measure-
ments can be found in Appendix C.4. Note that NMR assignment of Bz2OxP in our study [1]
and in the master’s thesis [45] was partially incorrect, the correct assignment can be found here
or in [40].
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Figure E.1: NMR spectra of (a) difluoroacetic acid and (b) camphorsulfonic acid, both in CDCl3 at 298 K.



E.2 OxP + DFA titration

1.31.41.51.6

ppm

0 0

0.86 5.9 10 5

1.7 1.3 10 4

5.2 8.4 10 4

11 1.7 10 3

17 2.4 10 3

1.8 102 2.3 10 2

7.5 103 0.38

equiv. vol. f.

5.05.56.06.57.07.5

ppm

8101214

ppm

H2O

2 + H2O

OH due to
OxP2+

CHCl3

ppm

×40 ×40 ×1

DFA equiv. / vol.f.

1
2

1

Figure E.2: Titration of OxP with DFA (in CDCl3 at 298 K, host concentration 0.002 M decreased upon addition of stock solution). Free and protonated/complexed
species are denoted by full and empty symbols, respectively. Red dotted arrows denote splitting of tert-butyl signal due to symmetry breaking after protonation and
anion binding. Some regions of the spectra are magnified for clarity. The factor of magnification is given above each region (see factors above each region).
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species are denoted by full and empty symbols, respectively. Red dotted arrows denote splitting of tert-butyl signal due to symmetry breaking after protonation and
anion binding. Certain regions of spectra have been magnified for clarity (see factors above each region). Splitting of methyl signals due to (R)-CSA at 0.57 ppm below
2 equiv. is caused by formation of (+)-H(R)-G2 and (𝑅)-H(R)-G2 diastereomers.
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Figure E.4: Titration of Bz2OxP with DFA (in CDCl3 at 298 K, host concentration 7×10−4 M decreased upon addition of stock solution). Free and protonated/complexed
species are denoted by full and empty symbols, respectively. Asterisk (∗) denotes impurities contained in acid. Some regions of the spectra are magnified for clarity
(see factors above each region). The factor of magnification is given above each region.
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nated/complexed species are denoted by full and empty symbols, respectively. Red dotted arrows denote splitting of tert-butyl signal due to symmetry breaking
after protonation and anion binding. Certain regions of spectra have been magnified for clarity (see factors above each region).
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nated/complexed species are denoted by full and empty symbols, respectively. Red dotted arrows denote splitting of tert-butyl signal due to symmetry breaking after
protonation and anion binding. Certain regions of spectra have been magnified for clarity (see factors above each region). Structure of the protonated form is confirmed
by COSY in [45].
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Figure E.11: Variable temperature measurement of Bz2OxP with 35 equiv. DFA (in CDCl3, host concentration 7 × 10−4 M).
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Figure E.12: Variable temperature measurement of Bz2OxP with 0.59 equiv. (R)-CSA (in CDCl3).
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Figure E.13: Variable temperature measurement of Bz2OxP with 14 equiv. (R)-CSA (in CDCl3, host concentration 8.4 × 10−4 M). Structure of the protonated form is
confirmed by COSY in [45].
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Figure E.14: Variable temperature measurement of Bz2OxP with 0.5 equiv. (rac)-CSA (in CDCl3).



E.15 Bz2OxP + (rac)-CSA 17 equiv. variable temperature
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Figure E.15: Variable temperature measurement of Bz2OxP with 17 equiv. (rac)-CSA (in CDCl3).



E.16 OxP + DMF titration
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Figure E.16: NMR titration of OxP with DMF (in CDCl3 at 298 K, host concentration 0.001 M decreased to 5 × 10−4 M upon addition of stock solution). Spectra were
rescaled to constant OxP concentration. Spectrum of DMF in CDCl3, which was used as stock solution, is included. Peak of free water (1.56 ppm) is shifting probably
due to the solvent polarity change.
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E.17 Detection of OH signal in Bz2OxP

Hydrogen atoms from the host OH groups exchange with hydrogen atoms of water present in
the sample. This exchange is mediated by the acid OH groups. Hence, the presence of an OH
signal in the host NMR spectrum can be confirmedby addition of small amount of D2O into the
sample. Then, the host OH signal should vanish since the deuterium is not detectable in 1H NMR
measurement. Figure E.17a confirms the presence of OH resonance (red arrow) in OxP ⋅DFA
complex. Also, Fig. E.17b suggests assignment of peak at 6.5 ppm as OH (red arrow), although
this assignment is not as unequivocal as in the previous case.

+ D2O
+ D2O

(a) OxP + 2 equiv. DFA (25 °C) (b) Bz2OxP + 2 equiv. DFA (0 °C)

OH signal
OH candidateno D2O no D2O

Figure E.17: Confirmation of presence of exchangeable phenolic OH peak (a) bottom: OxP + 2 equiv. of
DFA (25 ◦C), top: after addition of D2O, (b) bottom: Bz2OxP + 0.5 equiv. of CSA (0 ◦C), top: after addition
of D2O. The OH peak denoted by red arrow disappears in both cases.



E.18 Bz4OxP assignment - HMBC

Two-dimensional technique Heteronuclear Multiple Bond Correlation (HMBC) detected corre-
lations via chemical bonds between 1H and 13C nuclei. The measurement shows correlations (i)
between tert-butyl carbon and hemiquinonoid hydrogen (2 ↔ ●, red circle), (ii) between CH2
carbon and inner benzyl hydrogen (3↔ ▲, blue circle). Peaks 1, 2 and 3 were assigned according
to they chemical shift and peak area, the HMBC correlation was used to assign ● and ▲.
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Figure E.18: NMR HMBC measurement of Bz4OxP. Geometric shapes denote assignment of hydrogen
nuclei, numbers denote assignment of carbon nuclei.
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