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1  | INTRODUC TION

Human cytomegalovirus (CMV) belongs to the Betaherpesvirinae 
subfamily.1 CMV represents frequent opportunistic infection among 
solid organ transplant (SOT) recipients increasing their morbidity 

and mortality, particularly in patients with no pre‐existing CMV‐spe‐
cific immunity.2,3

Two major types of CMV infection are known to occur in SOT 
recipients. Primary infection is observed in CMV seronegative re‐
cipients (R−) who receive an allograft from a CMV seropositive, 
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Abstract
Background: Cytomegalovirus (CMV) disease represents a serious complication in 
liver transplant (OLT) recipients. CMV prophylaxis reduces incidence of CMV disease 
in the early post‐transplant period (on‐prophylaxis disease, OPD) but may postpone 
its manifestation after the completion of prophylaxis. Post‐prophylaxis disease (PPD) 
incidence after prophylaxis cessation may be modified by genetic factors.
Methods: We analyzed impact of IL28B rs1297986 variants on CMV disease inci‐
dence in 743 adult OLT recipients receiving universal prophylaxis.
Results: One hundred and forty‐four (19.4%) patients had at least one CMV disease 
episode. One hundred and two of them (70.8%) had at least one OPD and 36 (25%) 
patients had PPD, six (4.2%) patients had both. The rate of IL28B T allele carriers was 
lower in PPD group (38.9%) in comparison with OPD group (66.7%, P = 0.005) and 
group without CMV disease (61.4%, P = 0.009). The impact of IL28B genotype on the 
risk of CMV OPD was significant neither in the allelic (TT + CT vs CC, P = 0.32) nor in 
the recessive model (TT vs CT + CC, P = 0.79). Contrarily, in the PPD group, T allele 
(TT + CT vs CC) had a protective effect, OR 0.4 (95% CI 0.2‐0.8, P = 0.008). Further 
risk factors of PPD were age <55 years and valganciclovir prophylaxis, whereas the 
risk factors of OPD were age <55 years, cyclosporine A therapy and pre‐transplant 
CMV serostatus (donor +/recipient −).
Conclusions: IL28B rs12979860 T allele carriers had a lower risk of CMV PPD.
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latently infected donor (D+). Reactivation of CMV occurs in CMV 
seropositive recipients after administration of immunosuppressive 
treatment.

CMV infection occurrence peaks 2‐3  months post‐transplant, 
but the onset can be delayed when CMV prophylaxis is administered 
in the early post‐transplant period. Late onset CMV infection can 
develop after prophylaxis cessation and is more common in high‐risk 
(D+/R−) recipients.4-6

Two approaches have been designed to minimize the risk of CMV 
infection. First, the preemptive treatment strategy, when antivirals 
are administered only to patients with positive CMV viraemia in 
order to prevent progression to CMV disease. Regular monitoring 
of CMV replication every 1‐2 weeks is necessary.7 The second op‐
tion is universal administration of CMV prophylaxis for 3‐6 months 
post‐transplant. This approach postpones the onset of CMV disease 
(post‐prophylaxis, former delayed onset)8 and thus is effective in re‐
ducing the CMV incidence in the early post‐transplant period, espe‐
cially in the high‐risk group (D+/R−).9

Several risk factors increasing susceptibility to CMV infection 
have been described and involve pre‐transplant donor and recipient 
serostatus, type and dose of immunosuppression, coinfection with 
immunomodulating viruses, bacteria, or fungi. One of the major risk 
factors for CMV is occurrence of an acute cellular rejection (ACR) 
episode.2,10-12

Potent antiviral prophylaxis significantly decreases the num‐
ber of CMV episodes in the early post‐transplant period. However, 
some recipients still develop CMV disease on‐prophylaxis in spite 
of the absence of the risk factors mentioned above.13 In SOT re‐
cipients, the interaction between virus and innate immune system 
seems to play a crucial role since CMV‐specific adaptive immune 
control is inhibited by immunosuppressants.14 Several studies 
reported hypotheses of the role of innate immunity in the con‐
trol of CMV infection and variants in certain genes involved.15-21 
Interferon‐λs (IFNLs), also called type III IFNs, which are mainly 
secreted by dendritic cells and macrophages, are thought to have 
potent antiviral and immunomodulatory activities by activation of 
JAK/STAT pathway and inducing expression of interferon‐stimu‐
lated genes (ISGs).22,23 These properties may partially overlap with 
those induced by type I IFNs.24

Genome‐wide association studies (GWAS) have identified a 
single nucleotide polymorphism (SNPs) on chromosome 19q13.13 
near IL28B gene rs12979860 (C/T), which was first described in 
association with spontaneous or treatment‐induced clearance of 
hepatitis C virus (HCV).25 This SNP is assumed to impact the bind‐
ing of transcription factors and methylation sites and is in link‐
age disequilibrium with other SNPs. The subsequently discovered 
IFNL4 ss469415590 (TT/ΔG), which is located 367  bp upstream 
of IL28B, is well correlated with rs12979860 in Europeans and 
perfectly correlated in Asians; ss469415590 [ΔG] is a frameshift 
variant (also known as rs368234815) creating a novel gene encod‐
ing INFL4.23 These SNPs are in an almost complete and perfect 
linkage disequilibrium.26 However, association with other viral in‐
fections, such as chronic hepatitis B, remains to be elucidated.27-29 

Several studies have been published to describe the association 
of these SNPs with the outcome of CMV infection in SOT and 
hematopoietic stem cell recipients; the results, however, remain 
controversial.19-21,30

The aim of the study was to validate the impact of IL28B 
rs12979860 variants on risk of CMV infection in a cohort of liver 
transplant recipients.

2  | METHODS

2.1 | Study design

Data were extracted from the electronic patient database contain‐
ing records of all scheduled and unscheduled patients' visits. The 
primary selection criterion was liver transplantation (OLT) for liver 
cirrhosis with or without hepatocellular carcinoma in adult age. 
Children, adolescents and also adult patients transplanted for pri‐
mary liver disease other than liver cirrhosis (acute liver failure, poly‐
cystic liver disease, tumors in non‐cirrhotic liver) were excluded. The 
second step included selection of patients who presented with typi‐
cal symptoms and had at least one record of pp65 antigen positivity 
or blood CMV DNA level higher than analytical detection limit of the 
used method or at least one record of histologically proven tissue‐
invasive CMV disease. The visit records of the patients selected in 
the second step were reviewed in order to classify the type of clini‐
cal presentation of CMV disease (viral syndrome or tissue‐invasive 
disease, on‐prophylaxis or post‐prophylaxis onset).

2.2 | Study population

The study population identified in the first step of the search in‐
cluded 743 adult Caucasian patients who have undergone OLT in our 
center from April 1996 to December 2015. The cohort consisted of 
477 males and 266 females of the mean age of 55 years (19‐74). The 
median follow‐up after OLT was 85  months (1‐242). One hundred 
and fifty‐three of them had a hepatocellular carcinoma complying 
with Milan criteria. The records of all patients were included in the 
study search from OLT until the date of death or their last visit to our 
center before June 30, 2016. The pre‐transplant and demographic 
characteristics of the studied patients are summarized in Table 1 and 
Table 2.

The most frequent indication for OLT in our group of patients 
was alcoholic liver disease, followed by viral hepatitis, non‐alcoholic 
steatohepatitis, cholestatic liver disease, and liver cirrhosis of differ‐
ent etiology (metabolic, cryptogenic). The backbone of the immu‐
nosuppressive maintenance regimens were calcineurin inhibitors: 
either tacrolimus (84.0% patients) or cyclosporine A (13.1% patients) 
was used, together with azathioprine or mycophenolate mophetil 
and prednisolone, according to the period of transplantation. Only 
2.9% of the patients were on sirolimus at the time of CMV disease 
manifestation.

A switch to sirolimus‐based regimen was performed in pa‐
tients with persistent rejection, renal impairment and in patients 
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with a de novo malignancy. Overview of the immunosuppres‐
sive regimens administered at the time of CMV disease episode 
is presented in Table 1. Seropositive for CMV pre‐transplant 
were 617/743 (83.0%) of liver transplant recipients and 566/743 
(76.9%) of donors.

2.3 | CMV disease definition

For the purpose of this study, CMV disease was defined as two 
different clinical manifestations: viral syndrome (a) defined as pres‐
ence of clinical symptoms (fever, fatigue, malaise, or bone marrow 

TA B L E  1   Patients' demographic characteristics

 
Total 
(n = 743)

Without CMV 
(n = 599)

OPD CMV 
(n = 102)

PPD CMV 
(n = 36)

OPD + PPD 
CMV (n = 6) P‐value

Sex, Male (%) 477 (64.2) 382 (63.8) 72 (70.6) 18 (50) 5 (83.3) 0.11

Age (y), median (range) 55 (19‐74) 56 (19‐74) 52 (19‐69) 50 (21‐62) 43 (25‐64) <0.001

CPT score at the time of LTx, median (range) 9 (6‐15) 9 (6‐15) 9 (5‐14) 9 (5‐13) 11 (6‐13) 0.45

MELD score at the time of LTx, median (range) 15 (6‐42) 15 (6‐42) 15 (9‐33) 15 (8‐25) 14 (9‐21) 0.52

Indication for LTx

Alcoholic liver disease (%) 237 (35.0) 198 (36.6) 29 (31.2) 9 (25.0) 1 (16.7) 0.2

Viral hepatitis (%) 159 (23.6) 128 (23.7) 24 (25.8) 5 (13.9) 2 (33.3)

Cholestatic liver disease (%) 157 (23.3) 114 (21.1) 25 (26.9) 16 (44.4) 2 (33.3)

NASH and metabolic disease (%) 25 (3.7) 23 (4.3) 2 (2.1) 0 (0) 0 (0)

Other (%) 97 (14.4) 77 (14.3) 13 (14.0) 6 (16.7) 1 (16.7)

Immunosuppressive regimen

Tacrolimus (%) 625 (84.1) 511 (85.3) 79 (77.4) 29 (80.5) 6 (100) 0.17

Cyclosporine (%) 97 (13.1) 69 (11.5) 22 (21.6) 6 (16.7) 0 (0)

Sirolimus (%) 21 (2.8) 19 (3.2) 1 (1.0) 1 (2.8) 0 (0)

CMV serostatus

D+/R+ 476 (64.1) 384 (64.1) 63 (61.8) 24 (66.7) 5 (83.3) 0.04

D+/R− 96 (12.9) 64 (10.7) 24 (23.5) 7 (19.4) 1 (16.7)

D−/R+ 138 (18.6) 123 (20.5) 11 (10.8) 4 (11.1) 0 (0)

D−/R− 33 (4.4) 28 (4.7) 4 (3.9) 1 (2.8) 0 (0)

CMV prophylaxis

Valacyclovir or Acyclovir (%) 655 (88.2) 529 (88.3) 92 (90.2) 29 (80.6) 5 (83.3) 0.30

Valganciclovir or Ganciclovir (%) 88 (11.8) 70 (11.7) 10 (9.8) 7 (19.4) 1 (16.7)

CMV disease

Viral syndrome 89 (12.0) 0 (0) 65 (63.7) 21 (58.3) 3 (50.0) 0.69

Tissue‐invasive disease 55 (7.4) 0 (0) 37 (36.3) 15 (41.7) 3 (50.0)

Acute rejection episode (%) 87 (11.7) 72 (12.0) 12 (9.8) 2 (5.6) 1 (16.7) 0.67

Note: P‐values express the differences between CMV and non‐CMV groups.
P‐values in bold are statistically significant.
Abbreviations: CMV, Cytomegalovirus; CPT, Child ‐Pugh‐Turcotte; LTx, liver transplantation; MELD, Model for End‐stage Liver Disease; OPD CMV, 
on‐prophylaxis CMV disease; OPD + PPD CMV, both on‐prophylaxis and post‐prophylaxis CMV disease; PPD CMV, post‐prophylaxis CMV disease.

TA B L E  2   IL28B rs12979860 genotype frequencies

 
Total  
(n = 743)

Without CMV 
(n = 599)

OPD CMV  
(n = 102)

PPD CMV  
(n = 36)

OPD + PPD CMV 
(n = 6) P‐value

IL28B rs12979860 genotype

CC (%) 290 (39.0) 231 (38.6) 34 (33.3) 22 (61.1) 3 (50.0) 0.086

CT (%) 363 (48.9) 295 (49.2) 55 (53.9) 11 (30.6) 2 (33.3)

TT (%) 90 (12.1) 73 (12.2) 13 (12.8) 3 (8.3) 1 (16.7)

Note: P‐values express the differences between CMV and non‐CMV groups.
Abbreviations: CMV, Cytomegalovirus; OPD CMV, on‐prophylaxis CMV disease, PPD CMV, post‐prophylaxis CMV disease; OPD + PPD CMV, both 
on‐prophylaxis and post‐prophylaxis CMV disease.
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suppression) together with proven CMV replication by pp65 an‐
tigen positivity or DNA analysis or tissue‐invasive disease (b) di‐
agnosed by histological detection of CMV in the affected organ. 
Either laboratory assessment of CMV pp65 antigen or CMV DNA 
was performed on demand in all patients who presented in a regular 
or unscheduled visit with a symptom typical of CMV viral syndrome 
(fatigue, unexplained fever, neutropenia, or thrombocytopenia) or 
in patients who had a proven diagnosis of CMV tissue‐invasive dis‐
ease based on histological examination of the affected organ.31

The terminology of CMV disease onset in patients on universal 
prophylaxis in different periods after OLT followed the recommen‐
dation given by Razonable and Blumberg in 2015.32 On‐prophylaxis 
CMV disease (OPD) was defined as CMV disease manifestation during 
the period of prophylaxis, within the first 6 months post‐transplant. 
Post‐prophylaxis CMV disease (PPD) included cases of CMV disease 
in the immediate post‐prophylaxis period (6 months following the an‐
tiviral prophylaxis completion) and cases of CMV disease in the late 
period (more than 6 months after completion of antiviral prophylaxis).

2.4 | Assessment of CMV replication

Cytomegalovirus pp65 antigen was detected using the monoclonal 
antibody indirect immunofluorescence method (CMV‐vue Kit, Incstar 
Corp). CMV DNA was assessed from plasma and quantified by Real‐
time artus® CMV RG PCR (Quiagen, GmbH) with analytical detection 
limit of 57 copies/mL.33,34 CMV tissue‐invasive disease was diagnosed 
by identification of characteristic intracellular inclusion bodies on he‐
matoxylin and eosin sections and/or identification of CMV‐specific an‐
tigen by immunohistochemical staining (Ventana Medical Systems, Inc).

2.5 | CMV prophylaxis

Antiviral prophylaxis was given to the patients universally per protocol 
in the first 6 months after OLT. The antiviral prophylaxis was selected 
according to the patients' pre‐transplant serostatus. Ganciclovir or 
valganciclovir was administered to seronegative recipients who re‐
ceived organs from seropositive donors (D+/R−, 83/743). Eleven of 
83 patients, who started antiviral prophylaxis with ganciclovir or val‐
ganciclovir switched to valacyclovir or acyclovir in the first month 
after OLT for intolerance or leukopenia and were further evaluated 
as having prophylaxis with valacyclovir or acyclovir. Valacyclovir or 
acyclovir was primarily administered to the pre‐transplant seroposi‐
tive recipients regardless of serostatus of the donor (D+/R+ and D−/
R+) and to the pre‐transplant seronegative recipients who had re‐
ceived the liver grafts from seronegative donors (D−/R−). Treatment 
of the CMV disease episode consisted of intravenous administration 
of ganciclovir, foscarnet, or oral valganciclovir according to weight 
and kidney functions. Standard treatment period was 2 weeks.

2.6 | Genotyping of IL28B rs12979860

The IL28B (which was classified as an upstream variant of IFNL4) 
non‐coding polymorphism rs12979860 C/T was genotyped 

by using the polymerase chain reaction and restriction frag‐
ment length polymorphism assay, as described by Fabris et al35 
using the primers 5′‐GCTTATCGCATACGGCTAGG‐3′(Fw) and 5′‐
AGGCTCAGGGTCAATCACAG‐3′ (Rev). A 242 base‐pair‐long product 
was subsequently digested by the Bsh1236I enzyme. The length of the 
restriction products was assessed using agarose gel electrophoresis. 
In order to minimize genotyping errors, blank controls wells were left 
on the polymerase chain reaction plates and two operators, unaware 
of the status of the sample, performed the genotype assignment inde‐
pendently. The IL28B genotyping results are summarized in Table 2.

2.7 | Statistical analyses

The results of statistical analyses are presented as means and stand‐
ard deviations (SD), medians and ranges, or as frequencies, as ap‐
propriate. Mann‐Whitney test, the chi‐square, and Fisher's exact 
test were used for comparisons of the medians and frequencies, re‐
spectively. P‐value < 0.05 was considered as statistically significant 
throughout the study.

The post‐transplant survival rate was assessed by Kaplan‐Meier 
analysis. Cox regression (proportional hazards model) was used to 
compare cumulative incidences between the individual groups, and 
the significance in different time points was assessed using confi‐
dence intervals.

In the study of predictors of CMV disease incidence, t test was 
used for comparison of the means, chi‐square, and Fisher's exact 
test for comparison of frequencies. Fine‐Gray subdistribution haz‐
ards model with two competing events was used to determine sig‐
nificant predictors of CMV disease occurrence.

Statistical analysis was performed using the R programming lan‐
guage v. 3.2.0 (www.r-proje​ct.org).

2.8 | Ethical standard

The study, approved by the Ethics Committee of Thomayer's Hospital 
and Institute for Clinical and Experimental Medicine, Prague, Czech 
Republic, was conducted as a part of Institutional grant support for 
development of research organization. Written informed consent 
for DNA sampling was obtained from all patients and the study 
conformed to the declaration of Helsinki Ethical Guidelines. The 
patients' informed consent for the clinical data analysis was not re‐
quired by local law because of the retrospective design of the study 
and because the identification information had been removed.

3  | RESULTS

3.1 | CMV disease manifestation

A total number of 144/743 (19.4%) liver transplant recipients who 
presented with at least one episode of CMV disease were identified. 
Eighty‐nine (61.8%) of these patients presented with CMV viral syn‐
drome and 55 (38.2%) patients presented with CMV tissue‐invasive 
disease. The most frequent presentation of tissue‐invasive disease 

http://www.r-project.org
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was CMV hepatitis (34/55), followed by colitis (11/55). The 1‐year 
cumulative incidence of CMV disease was 0.15. Regarding the pe‐
riod of CMV disease manifestation, at least one episode of OPD was 
diagnosed in 102/144 (70.8%) patients and 36/144 (25.0%) patients 
developed at least one episode of PPD. Both OPD and PPD were 
identified in 6/144 individuals (4.2%), who were subsequently ex‐
cluded from further statistical assessment. After the cessation of 
CMV prophylaxis, 9/36 (25.0%) patients presented with PPD be‐
tween 7th and 12th months post‐transplant. In the second year post‐
transplant, a further 8/36 (22.2%) patients had a PPD. The period 
of PPD presentation ranged from 6 to 108 months post‐transplant 
(median 25 months). The drug used for CMV prophylaxis (acyclovir 
or valacyclovir vs ganciclovir or valganciclovir) did not have an im‐
pact on the CMV disease incidence in the OPD group. On the other 
hand, in patients in the PPD group who received either valganciclo‐
vir or ganciclovir, the onset of the disease seemed to be postponed 
after the cessation of the prophylaxis (P  =  0.03, OR 2.68, 95% CI 
1.09‐5.95). Ninety‐two of 655 patients developed OPD on acyclo‐
vir or valacyclovir prophylaxis and 10/88 patients on ganciclovir or 
valganciclovir prophylaxis (P  =  0.39). Twenty‐nine of 655 patients 
who previously received acyclovir or valacyclovirir and 7/88 patients 
who previously received ganciclovir or valganciclovir presented with 
PPD (P = 0.08). The survival rate at 3, 5, and 10 years post‐transplant 
was 97%, 93%, and 82%, respectively, in patients without an epi‐
sode of CMV disease; 96%, 93%, and 85%, respectively, in patients 
with OPD and 100%, 97%, and 81%, respectively, in patients with 
PPD. The survival curves did not differ significantly in log‐rank test 
(P = 0.86, Figure 1A). The fact that the patients suffered from any 
episode of CMV disease did not impact their survival.

3.2 | Association between IL28B genotype and 
CMV disease episode

IL28B rs12979860 genotype frequencies among patients with no 
episode of CMV disease and with at least one episode of OPD or 
PPD are summarized in Table 2. Genotype frequencies in the OPD 
group (33.3% carriers of CC and 66.7% carriers of CT or TT geno‐
types) did not differ from the genotype frequencies detected in the 
group without CMV disease (38.6% carriers of CC and 61.4% carriers 
of CT or TT, P = 0.32). The proportion of CC genotype carriers was 

significantly higher in the PPD subgroup (61.1% CC, 38.9% CT + TT) 
compared with the subgroup without CMV disease (P = 0.009, OR 
0.43, 95% CI 0.23‐0.81). The IL28B genotype had no impact on 
long‐term survival of the patients when evaluating CC vs CT + TT 
genotype carriers, the survival 3, 5, and 10  years post‐transplant 
according to genotypes was 97%, 93%, and 81%, respectively, in CC 
homozygotes, and 97%, 93%, and 84%, respectively, in the group of 
CT + TT carriers. The survival curves of CC vs CT + TT carriers did 
not differ significantly in log‐rank test (P = 0.86, Figure 1B).

3.3 | Risk factors evaluation

In the OPD group, the impact of IL28B genotype on CMV disease in‐
cidence was significant neither in the allelic (CC vs CT + TT, P = 0.32) 
nor in the recessive model (CC + CT vs TT, P = 0.79). Age older than 
55  years (P  =  0.001), pre‐transplant serostatus other than D+/R− 
(P < 0.001; OR 0.39, 95% CI 0.2‐0.7) and immunosuppressive regi‐
men based on tacrolimus (P = 0.01; OR 0.48, 95% CI 0.28‐0.83) were 
identified as protective factors of OPD episode.

Contrarily, in the PPD subgroup, T allele carriage was protec‐
tive against CMV disease episode with OR 0.4 (95% CI 0.20‐0.80, 
P = 0.008). The age older than 55 years was also a protective factor 
(P = 0.02) whereas previous prophylaxis with valganciclovir or ganci‐
clovir (P  =  0.03; OR 2.75, 95% CI 1.1‐6.23) was associated with a 
higher risk of the PPD.

The cumulative incidence curve of PPD episodes in the IL28B T al‐
lele carriers shows a less sharp shape in comparison with CC genotype 
carriers. The curves are divergent in the whole displayed period and 
significantly differ in log‐rank test (P = 0.0069; Figure 2). The cumu‐
lative incidence curves of PPD are divergent only in the first 6 month 
after the cessation of antiviral prophylaxis, and then, the curves show 
a parallel course (Figure 3). The course of cumulative incidence curves 
showed that the effect antiviral prophylaxis on the risk of PPD disap‐
peared after the 6 months after the cessation of antiviral prophylaxis, 
whereas the effect of the IL28B genotype was continuous.

3.4 | Multivariate analysis

Multivariate analysis was performed separately for OPD and PPD 
groups and the following factors with potential impact on CMV 

F I G U R E  1   Kaplan‐Meier survival 
analysis according to CMV disease 
onset (A) and IL28B genotype (B). 
CMV, Cytomegalovirus; OPD CMV, on‐
prophylaxis CMV disease, PPD CMV, post‐
prophylaxis CMV disease
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disease incidence were considered: sex, age, pre‐transplant CPT 
and MELD score, immunosuppressive regimen (tacrolimus or cy‐
closporine A), pre‐transplant CMV donor and recipient serostatus, 
acute cellular rejection episode, type of administered CMV proph‐
ylaxis and IL28B rs12979860 genotype. Age older than 55  years 
(P = 0.01; HR 0.60, 95% CI 0.40‐0.89), CMV serostatus other than 
D+/R− (P  =  0.01; HR 0.59, 95% CI 0.39‐0.90), and immunosup‐
pressive regimen based on tacrolimus (P  =  0.03; HR 0.58, 95% CI 
0.36‐0.93) remained significant protective factors of an OPD epi‐
sode in the multivariate analysis, whereas in the PPD group, IL28B 
T allele carriage (P = 0.01; HR 0.41, 95% CI 0.21‐0.8) was a protec‐
tive factor and CMV prophylaxis with (val)ganciclovir (P = 0.009; HR 
0.27, 95% CI 0.11‐0.71) remained a significant risk factor of a PPD 
episode (Figure 3).

4  | DISCUSSION

We identified IL28B T allele carriage as a protective factor against 
CMV PPD, that is T allele carriers ran a lower risk of CMV disease 
after cessation of antiviral prophylaxis. Contrarily, we did not find 
any impact of IL28B genotype on CMV OPD presentation in patients 
on antiviral prophylaxis. Our results were in accordance with the re‐
sults of other studies in this point. In the Swiss Transplant Cohort 
Study, Manuel et al30 described a group of 840 SOT recipients, 373 
of whom were on universal prophylaxis, and the remaining 467 were 
regularly checked for CMV infection and treated preemptively. The 

effect of IFNL4 genotype (resp. IL28B) was pronounced only in the 
preemptive approach group but not in the universal prophylaxis 
group. Similar results were obtained in the study on kidney trans‐
plant recipients: the effect of IL28B was confirmed only in patients 
without antiviral prophylaxis.17 However, the role of the minor allele 
(T allele in IL28B rs12979860 or ΔG allele in IFNL4 ss469415590) in 
the control of CMV infection remains controversial across the stud‐
ies published so far. In the stem cells transplant recipients, the carri‐
ers of the minor T allele showed a more robust CMV‐specific T‐cell 
response,18 but the corresponding clinical impact of the minor al‐
lele was found only in one half of the published studies. While in 2 
studies involving solid organ transplant recipients and hematopoi‐
etic stem cell transplant recipients, the carriage of the minor allele 
was associated with a reduced incidence of CMV replication epi‐
sodes after transplantation.20,21 Contrarily, in the Swiss Transplant 
Cohort Study, the SOT recipients, homozygotes ΔG/ΔG in IFNL4 
ss469415590, were prone to have a higher cumulative incidence of 
CMV replication and HIV‐infected carriers of the IFNL4 minor allele 
had a higher incidence of CMV retinitis.19 Our results were compat‐
ible with the studies reporting the protective effect of the minor 
allele against CMV infection. In our opinion, it is the protective role 
of T allele in IL28B gene (corresponding with the ΔG allele in IFNL4) 
which is compatible with the function of interferon‐λ4 and with 
mechanism of immune‐mediated control of CMV infection.

The IL28B rs12979860 polymorphism, located 3kB upstream of 
the IFNL3/IL28B, strongly predicted response to pegylated inter‐
feron‐α‐based therapy in chronic hepatitis C.18,25,36,37 The SNP is in 

F I G U R E  2   Cumulative incidence 
of OPD (A) and PPD (B) CMV disease 
according to IL28B genotype. CMV, 
Cytomegalovirus; OPD CMV, on‐
prophylaxis CMV disease, PPD CMV, post‐
prophylaxis CMV disease

F I G U R E  3   Cumulative incidence 
of OPD (A) and PPD (B) CMV disease 
according to antiviral prophylaxis. ACY, 
Valacyclovir or Acyclovir prophylaxis; 
CMV, Cytomegalovirus; OPD CMV, 
on‐prophylaxis CMV disease, PPD CMV, 
post‐prophylaxis CMV disease; VGC, 
Valganciclovir or Ganciclovir prophylaxis
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almost complete and perfect linkage disequilibrium with the coding 
frameshift dinucleotide variant IFNL4 rs368234815 in the European 
and Asian population.38,39 Therefore, the genotyping of marker poly‐
morphism IL28B rs12979860 provides comparable information with 
the genotyping of functional polymorphism IFNL4 rs368234815 in 
these populations. HCV‐infected individuals expressing functional 
IFNL4 from both alleles (IL28B rs12979860 TT genotype carriers) 
present with pre‐treatment upregulation of interferon‐sensitive genes 
(ISGs) in hepatocytes but they are refractory to further stimulation 
of ISGs after administration of exogenous interferon‐α.40 Individuals 
with non‐functional IFNL4 (IL28B rs12979860 CC genotype carriers) 
had low baseline ISGs expression but they are prone to further ISGs 
stimulation by exogenous interferon‐α, which represents a crucial 
step in the interferon‐α induced HCV clearance.41,42 The mechanism 
and reason of this condition have not been elucidated so for.

Although interferons play a crucial role in immune‐mediated 
clearance of both HCV and CMV, there are significant differences 
between these infections. The most important point is the type of 
the infected cells: whereas the primary replication site of HCV are 
hepatocytes, expressing the interferon type III receptor, CMV is 
predominantly found in peripheral blood mononuclear cells (PBMC) 
not expressing the interferon type III receptor, even in otherwise 
healthy individuals.43 Since type I and II interferons and the conse‐
quent ISGs upregulation are of paramount importance in the CMV 
immune‐mediated control,44,45 CMV‐infected cells express the IE1 
protein, which is abundantly produced in the immediate early phase 
of human CMV replication and acts as an antagonist of the innate 
immune defense against the virus by inhibiting interferon type I and 
II signaling.46-48 Inhibition of interferon type III signaling in epithelial 
cells by IE1 has not been reported to our best knowledge; however, 
the binding of IE1 to STAT2 may have the same effect as in the type 
I interferon signaling inhibition. Therefore, we speculate that indi‐
viduals with preserved IFNL4 are able to control better the CMV 
replication by a hitherto unknown mechanism circumventing the re‐
ceptor‐mediated pathway.

Our cohort may be considered as heterogenous regarding the 
method used for the diagnosis of CMV replication. The reason to 
evaluate together patients diagnosed using pp65 and CMV DNA 
was based on studies confirming that both method had a similar 

diagnostic value for the diagnosis of CMV disease.33,34,49 Other 
drawback may be a low sample size in PPD group, nevertheless 
the results are statistically significant. The retrospective arrange‐
ment of our study may be also considered as a limitation, but we 
were able to obtain accurate data owing to the fact that all the 
liver transplant recipients were regularly followed up at our cen‐
ter and admitted to hospital with any infectious complication. We 
possess a complete series of medical records in all liver transplant 
recipients. The quality of the obtained data is supported by the 
fact that clinical characteristics of our cohort were compatible 
with previously described groups of liver transplant recipients, to 
whom universal prophylaxis was administered. The identified num‐
ber of cases of CMV disease corresponded to a cumulative 1‐year 
incidence of 0.16. The cumulative 1‐year incidence of CMV disease 
of 0.16 is higher than reported in prospective studies with univer‐
sal CMV prophylaxis.50 The high proportion of seropositive donors 
(76.9%) and recipients (83.0%) in our cohort may explain the fact of 
the relatively high 1‐year cumulative incidence of CMV disease. In 
concordance with other studies, the patients with D+/R− serosta‐
tus had a higher incidence of the CMV OPD. The superiority of 
ganciclovir and valganciclovir to acyclovir and valacyclovir in the 
prophylaxis of CMV OPD was confirmed neither in our cohort nor 
in previous studies in liver or kidney transplant recipients.51,52 On 
the other hand, patients in the PPD group who received valganci‐
clovir or ganciclovir seemed to have a delayed onset of the disease 
until the termination of the prophylaxis in our cohort. A higher risk 
of late onset CMV disease is considered to be a disadvantage of the 
universal prophylaxis approach according to the recent meta‐anal‐
ysis comparing universal prophylaxis and preemptive treatment.53 
However, the postponed onset of CMV infection may represent 
a milder complication for the patient in comparison with a CMV 
episode in the early post‐transplant period.

In conclusion, our results suggest that knowledge of recipient's 
genetic markers might lead to a better CMV prophylaxis individu‐
alization. Regular assessment of CMV viraemia after the cessation 
of universal prophylaxis in IL28B CC genotype carriers, who are at 
the highest risk of post‐prophylaxis CMV disease, could represent 
an individualized approach reducing the incidence of the post‐pro‐
phylaxis CMV disease.

F I G U R E  4   Multivariate analysis evaluation of risk factors for on‐prophylaxis (A) and post‐prophylaxis (B) CMV disease. ACR, acute 
cellular rejection; CMV, Cytomegalovirus; CPT, Child‐Pugh‐Turcotte score; D/R, donor/recipient CMV serostatus; MELD, model for End‐
stage Liver Disease; TAC, tacrolimus‐based immunosuppression; VGC, Valganciclovir or Ganciclovir prophylaxis
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Abstract

Background

PNPLA3 rs738409 minor allele c.444G represents a risk factor for liver steatosis and fibrosis

progression also in chronic hepatitis C (HCV). We investigated its impact on the timing of

liver transplantation (LT) in patients with genotype 1b HCV cirrhosis.

Methods

We genotyped and evaluated 172 LT candidates with liver cirrhosis owing to chronic HCV

infection, genotype 1b. One hundred patients needed LT for chronic liver failure (CLF) and

72 for a small hepatocellular carcinoma (HCC) in the cirrhotic liver without CLF. Population

controls (n = 647) were selected from the Czech cross-sectional study MONICA.

Results

The CLF patients were younger (53.5 ± 7.2 vs. 59.6 ± 6.6, P < 0.001) with more advanced

liver disease than HCC patients (Child-Pugh’s score 9.1 ± 1.8 vs. 7.1 ± 1.9, P < 0.001, MELD

14.1 ± 3.9 vs. 11.1 ± 3.7, P < 0.001). PNPLA3 G allele increased the risk of LT for CLF in

both allelic and recessive models (CG + GG vs. CC: OR, 1.90; 95% CI, 1.017–3.472, P =

0.045 and GG vs. CC + CG: OR, 2.94; 95% CI, 1.032–7.513, P = 0.042). Multivariate analy-

sis identified younger age (P < 0.001) and the G allele (P < 0.05) as risk factors for CLF. The

genotype frequencies between the CLF group and MONICA study significantly differed in

both, allelic and recessive model (P = 0.004, OR 1.87, 95% CI 1.222–2.875; P < 0.001, OR

3.33, 95% CI 1.824–6.084, respectively). The OR values almost doubled in the recessive

model compared with the allelic model suggesting the additive effect of allele G. In contrast,

genotype frequencies in the HCC group were similar to the MONICA study in both models.
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Pretransplant viral load was significantly lower in GG than in CC + CG genotypes (median,

IQR; 162,500 (61,550–319,000) IU/ml vs. 570,000 (172,000–1,595,000) IU/ml, P < 0.0009).

Conclusions

Our results suggest that PNPLA3 rs738409 G allele carriage may be associated with a

faster progression of HCV cirrhosis to chronic liver failure.

Introduction

Adequate timing of liver transplantation (LT) represents one of the main factors determining

favourable posttransplant outcome. Prediction of the patients’ prognosis based on the known

natural course of a particular liver disease is crucial in the evaluation process [1]. The natural

course of liver diseases may be altered by genetic factors. Single nucleotide polymorphism

rs738409 c.444C>G (p.Ile148Met) in the patatin-like phospholipase domain-containing pro-

tein 3 (PNPLA3) is nowadays one of the most important genetic factors with an impact on pro-

gression of several liver diseases of different etiology [2].

Association between liver fat content as a quantitative trait and PNPLA3 rs738409 genotype

was described in a large genome-wide association mapping study [3] in 2008 and confirmed in

a more detailed study [4] by the same group of authors in 2014. More than fifty studies demon-

strating that the PNPLA3 rs738409 G allele is a risk factor for non-alcoholic steatohepatitis

(NASH), liver cirrhosis in NASH or alcoholic liver disease have been published in the past

decade [5–11]. The same allele was also identified as a risk factor for liver fibrosis and cirrhosis

in HCV-monoinfected individuals [12–16] and in those with HCV/HIV coinfection [17–20]

and it also turned out to be a predisposing factor of hepatocellular carcinoma (HCC) [21–24].

In a recent study, the increased risk of HCC and PNPLA3 G allele was found only in alcoholic

liver disease, but not in non-alcoholic fatty liver disease or viral hepatitis B and C [25].

Whereas the impact of the G allele on the liver fibrosis progression in chronic hepatitis C

seems to be well known, its impact on chronic liver failure (CLF) progression and the need of

LT has not been described so far. In this study, we aimed to investigate the impact of PNPLA3
genotypes on the risk of CLF in a homogenous group of cirrhotic patients infected with HCV

genotype 1b.

Patients and methods

Study design and eligibility of patients

We retrospectively evaluated 172 adult patients with HCV-related cirrhosis caused by HCV

genotype 1b with Child-Pugh’s class A, B and C who underwent LT between January 1995 and

August 2018 at our center. One hundred patients were enlisted for LT and transplanted for

CLF (CLF group) using standard criteria evaluating liver dysfunction according to the Child-

Pugh’s and MELD score and 72 patients were transplanted for a small HCC (HCC group).

Fifty-two patients fulfilled Milan criteria, remaining 20 complied with San Francisco or up-to-

seven criteria based on pre-transplant imaging techniques results [26–28]. The diagnosis of

HCC was confirmed in the liver explants using standard histological staining techniques. Nei-

ther patients with HBsAg positivity nor those with HBcAb positivity were included. Patients

combining HCV infection with excessive alcohol consumption (60 g per day in males and 40 g

per day in females) were also excluded. None of HCV-infected patients had obtained antiviral

PNPLA3 and liver failure in HCV genotype 1b liver cirrhosis
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treatment in the year preceding LT in accordance with our centre anti-HCV treatment policy:

very short times in the liver transplant waiting list, 80–90 days, do not allow for a safe entire

treatment course before LT, even in the era of direct acting antivirals. The patients were treated

after LT according to the period of transplantation, using an interferon-based regimen until

2014 or a direct acting antivirals combination thereafter. Demographic, clinical, laboratory

and histological data were collected from the internal hospital and outpatient database (S1

Table).

Genotype frequencies in both CLF and HCC groups were compared with the PNPLA3
genotype frequencies in 647 subjects 0.566/0.372/0.062 (CC/CG/GG) reported in the Czech

cross-sectional population study MONICA [29], genotyping data were taken from Trunecka

et al. [30].

HCV viral load and HCV genotype assessment

HCV viral loads (serum HCV RNA levels) were determined in blood samples taken from

HCV-infected patients within 24 hours before LT (last value unaffected by immunosuppres-

sion or antiviral therapy). In 133 patients, serum HCV RNA level was assessed according to

the period of sampling by the Roche COBAS1 AmpliPrep/COBAS1 TaqMan1HCV Quanti-

tative Test v1.0 or v2.0 (Roche Molecular Systems Inc., South Branchburg, NJ).

In the 39 remaining patients, only an in-house quantitative method was used and therefore

those results were not included in the statistical analysis. HCV genotype was assessed using the

SIEMENS Versant1HCV Genotype 2.0 Assay (LiPA) (Siemens Healthcare Diagnostics Inc.,

Tarrytown, NY).

Genotyping

DNA was isolated from the peripheral blood using the Qiagen QIAamp kit (Qiagen, Hilden,

Germany). All patients were genotyped for the PNPLA3 rs738409 c.444C>G polymorphism

by the TaqMan predesigned SNP genotyping assay No. C_7241_10 (Thermo Fisher Scientific,

Waltham, MA). Genotyping was performed according to the manufacturer’s protocol using

the Applied Biosystems ABI 7300 Real-Time PCR instrument (Thermo Fischer Scientific). No

significant deviation from the Hardy-Weinberg equilibrium was observed in PNPLA3 geno-

types distribution within the CLF and HCC patient groups.

Statistical analysis

Continuous variables are presented as means and standard deviations, whereas categorical var-

iables are expressed as frequencies (%). Categorical data were analyzed using the chi-square

test. For continuous data, Student’s t-test or the non-parametric Mann-Whitney test were

used appropriately. Genotype frequencies were determined and tested for consistency with the

Hardy-Weinberg equilibrium using the chi-square test. Testing for genetic associations was

performed as described in [31]. Risk factors were examined using multivariate logistic regres-

sion analysis. All statistical analyses were two-sided and P value of< 0.05 was considered sta-

tistically significant throughout the study. Statistical analysis was performed using the R

programming language version 3.2.0 (www.r-project.org).

Ethics statement

This study was approved by the Ethics Committee of the Thomayer Hospital and Institute for

Clinical and Experimental Medicine, Prague, Czech Republic, and was carried out in compli-

ance with the Helsinki Declaration. The patients’ informed consent was not required by local
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law because of the retrospective design of the study and the use of data from which the

patients’ identification information had been removed. All study participants gave written

consent to the storage of blood samples and agreed to using blood for future research includ-

ing genetic testing. The written consent was obtained before enlistment for LT.

Results

Demographic, clinical data and laboratory data

Demographic, clinical and laboratory data of the CLF and HCC groups are shown in Table 1.

Patients transplanted for CLF were younger with a higher proportion of males and suffered

from more advanced liver disease according to the Child-Pugh’s and MELD score in compari-

son with the HCC group. Patients in CLF group had lower AFP levels and lower total choles-

terol, HDL and serum triglycerides levels.

Pretransplant viral load

Pretransplant viral load was known in 133 of 172 HCV cirrhotic patients. HCV patients

with known pretransplant viral load included 66 of 82 patients with the PNPLA3 rs738409

Table 1. Demographic, clinical and laboratory data of subgroups with CLF and HCC.

Variables CLF group

n = 100

HCC group

n = 72

P value

Males (n) 68 (68.0%) 38 (52.8%) 0.0428

Age (years) 53.5 ± 7.2 59.6 ± 6.6 < 0.001

BMI (kg/m2) 26.2 ± 4.2 26.8 ± 3.7 0.175

Type 2 diabetes mellitus 27 (27.0) 25 (34.7) 0.277

Child-Pugh’s class < 0.001

A 6 (6.0) 37 (51.4)

B 48 (48.0) 27 (37.5)

C 46 (46.0) 8 (11.1)

Child-Pugh’s score (points) 9.1 ± 1.8 7.1 ± 1.9 < 0.001

MELD score (points) 14.1 ± 3.9 11.1 ± 3.7 < 0.001

Ascites < 0.001

None 44 (44.0) 53 (73.6)

Small 32 (32.0) 14 (19.5)

Large 24 (24.0) 5 (6.9)

AFP (μg/l) 34.5 ± 50.1 337.1 ± 926.8 < 0.001

Total bilirubin (μmol/l) 51.8 ± 77.3 35.6 ± 46.7 < 0.001

Albumin (g/l) 29.0 ± 6.5 33.5 ± 6.8 < 0.001

ALT (μkat/l) 1.3 ± 0.9 1.5 ± 1.2 0.117

Total cholesterol (mmol/l) 3.4 ± 1.0 3.7 ± 1.0 0.004

HDL cholesterol (mmol/l) 0.9 ± 0.4 1.1 ± 0.4 0.037

LDL cholesterol (mmol/l) 1.9 ± 0.8 2.1 ± 0.7 0.080

Triglycerides (mmol/l) 1.1 ± 0.5 1.3 ± 0.7 0.009

Prothrombin time (INR) 1.4 ± 0.3 1.2 ± 0.2 < 0.001

Data are given as number, number (%), or mean ± SD.

Abbreviations: CLF, chronic liver failure; HCC, hepatocellular carcinoma; BMI, body mass index; MELD, Model for End-Stage Liver Disease; AFP, alpha-fetoprotein;

ALT, alanine-aminotransferase; HDL cholesterol, high density lipoprotein cholesterol; LDL cholesterol, low density lipoprotein cholesterol; INR, International

normalized ratio.

https://doi.org/10.1371/journal.pone.0222609.t001
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CC genotype, 51 of 67 patients with the CG genotype and 16 of 23 patients with the GG

genotype.

Similarly, pretransplant viral load was available in 68 of 100 patients with CLF and in 65 of

72 patients with HCC. PNPLA3 GG homozygotes had a significantly lower pretransplant HCV

viral load in comparison with the C allele carriers (median, interquartile range [IQR]; GG

162,500 (61,550–319,000) IU/ml vs. CC+CG 570,000 (172,000–1,595,000) IU/ml, P< 0.001,

Fig 1A). Pre-transplant viral load was significantly lower in patients with CLF in comparison

with patients with HCC (median [IQR]; CLF 292,500 (83,725–829,801) IU/ml vs. HCC

806,000 (237,000–1,680,000), P = 0.008).

PNPLA3 rs738409 genotype association with CLF

PNPLA3 genotype frequency differences between the CLF and HCC groups were found in

both allelic and recessive models (Table 2A) (p< 0.05). Genotype frequencies between the

CLF group and Czech cross-sectional population study MONICA significantly differed with

P = 0.004 for the allelic model (OR 1.87, 95% CI 1.222–2.875, test power with α = 0.05: 0.85)

and P< 0.001 for the recessive model (OR 3.33, 95% CI 1.824–6.084 (Table 2B). The OR val-

ues almost doubled in the recessive model compared with the allelic model indicating the addi-

tive effect of allele G (Fig 1B). By contrast, genotype frequencies in the HCC group were the

same as in the MONICA study in both models (Table 2C). Importantly, the minor allele fre-

quency in the MONICA study (0.25) did not differ from the frequencies recorded in European

population subsets of the GnomAD (0.23) and ExAC (0.23) databases [32].

The proportion of CLF in HCV cirrhotic patients grouped according to their PNPLA3
rs738409 genotypes is shown in Fig 1B.

Risk factors for the need of liver transplantation

In multivariate logistic regression analysis, age and PNPLA3 rs738409 genotype turned out to

be significant determinants of the need of LT. Specifically, presence of the PNPLA3 G allele

increased the risk of LT in CLF 2.4-fold (Fig 2). Other investigated variables such as gender,

BMI and type 2 diabetes mellitus did not influence the risk of LT.

Fig 1. Impact of PNPLA3 rs738409 genotypes on pre-transplant HCV RNA levels (panel 1A) and percentage of patients with

CLF (panel 1B). Pre-transplant HCV viral load assessed in 133 of 172 patients. Data are given as medians and interquartile ranges.
� p value for recessive model.

https://doi.org/10.1371/journal.pone.0222609.g001
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Discussion

The study was prompted by our long-term observation that the liver transplant candidates

with HCV genotype 1b decompensated liver cirrhosis (or CLF) had significantly more

advanced liver dysfunction and were younger that liver transplant candidates with a small

HCC. A similar difference in the degree of liver dysfunction between liver transplant candi-

dates indicated for HCV with or without HCC was reported by others [33–35]. However, the

age difference between liver transplant candidates was not significant probably due to the fact

Table 2. Genotype frequencies of PNPLA3 rs738409 C>G polymorphism in the CLF group, HCC group and the MONICA study.

A Locus Genotype CLF group

(n = 100)

HCC group

(n = 72)

OR 95% CI P value

PNPLA3 rs738409 c.444C>G CC 41 (41%) 41 (57%) 1 - -

CG 41 (41%) 26 (36%) 1.90 1.017–3.472 0.045a

GG 18 (18%) 5 (7%) 2.94 1.032–7.513 0.042b

B Locus Genotype CLF group

(n = 100)

MONICA

(n = 647)

OR 95% CI P value

PNPLA3 rs738409 c.444C>G CC 41 (41%) 366 (57%) 1 - -

CG 41 (41%) 241 (37%) 1.87 1.222–2.875 0.004a

GG 18 (18%) 40 (6%) 3.33 1.824–6.084 < 0.001b

C Locus Genotype HCC group

(n = 72)

MONICA

(n = 647)

OR 95% CI P value

PNPLA3 rs738409 c.444C>G CC 41 (57%) 366 (57%) 1 - -

CG 26 (36%) 241 (37%) 0.98 0.602–1.610 0.951a

GG 5 (7%) 40 (6%) 1.13 0.432–2.968 0.800b

a Allelic model (PNPLA3 CG + GG vs. CC),
b Recessive model (PNPLA3 GG vs. CC + CG)

Abbreviations: CLF, chronic liver failure; HCC, hepatocellular carcinoma; MONICA, MONItoring trends and determinants in Cardiovascular disease; OR, odds ratio;

CI, confidence interval

https://doi.org/10.1371/journal.pone.0222609.t002

Fig 2. Risk factors for the need of liver transplantation: Multivariate analysis. Bars represent OR with 95% confidence interval.

https://doi.org/10.1371/journal.pone.0222609.g002
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that the patients enrolled in these studies were infected with all HCV genotypes and HCV

genotype may modify the risk of HCC [36].

To explain the age difference in our cohort, we assumed that the clinical difference between

HCV liver transplant candidates with or without HCC might be caused by some genetic factor.

A single nucleotide polymorphism PNPLA3 rs738409 c.444C>G was identified as a risk factor

for concurrent liver steatosis and a faster liver fibrosis progression in patients with chronic

HCV infection in the past, but its impact on the need and timing of LT has not been evaluated.

In our study, we identified further consequences of the carriage of the G allele: accelerated

CLF development requiring LT at a younger age and lower pretransplant blood viral load. The

CLF patients were younger than HCC patients and had a significantly higher frequency of

PNPLA3 allele G in comparison with HCC patients as well as with population controls.

The earlier need for LT suggests that the G allele carriage is a strong factor contributing to

liver fibrosis progression. Consistently with our results, the recently published studies also pre-

sented the G allele carriage as a factor accelerating liver fibrosis progression in patients infected

with chronic HCV infection. The meta-analysis by Fan and colleagues [12] showed that Cauca-

sians with chronic HCV infection carrying the GG genotype have a more pronounced liver

fibrosis and steatosis. In line with these findings, association of the GG and CG genotypes with

progression of liver fibrosis was also demonstrated in a large cohort of HCV-infected patients

in the HALT-C study [13].

In contrast to studies documenting association of the PNPLA3 rs738409 genotype with the

risk of HCC development in alcoholic liver disease and non-alcoholic fatty liver disease [21–

23], no such association was found in HCV-infected subjects [13, 25]. This led us to initial mis-

interpretation of our data that the PNPLA3 G allele was protective from HCC. However, since

the G allele carriers underwent liver transplant for CLF at younger age, we realized that they

were not able to develop HCC later in the course of the disease. Indeed, age is a well-known

risk factor of HCC in patients with chronic HCV infection [37, 38].

As mentioned above, PNPLA3 G allele carriers with chronic HCV infection have also more

pronounced liver steatosis. We assume that in these subjects, lipid accumulation in hepatocytes

with subsequent steatohepatitis accelerates progression of liver fibrosis caused by the underly-

ing liver disease which is chronic HCV infection. Indeed, coincidence of chronic HCV infec-

tion with lipid accumulation and steatohepatitis results in more rapid development of CLF in

comparison with HCV-infected individuals without steatohepatitis [12–16]. The hypothesis of

two independent synergic processes leading to CLF (HCV infection and steatohepatitis) is fur-

ther supported by Jimenez-Sousa et al. [15] who demonstrated a dose dependent effect of

PNPLA3 G allele on the progression of liver stiffness in HCV infected individuals. Finally, a

dose dependent effect of PNPLA3 G allele on the serum ALT activity has recently been

described in a large study which included patients with chronic liver disease of various aetiolo-

gies [39]. When looking at our data, we realized that there is also a notable dose dependent

effect of G allele in our cohort: the proportion of patients transplanted for CLF in the sub-

groups according to PNPLA3 genotype increased with the number of G alleles (Fig 1B).

A relatively low number of subjects in the HCC group may be considered as the major dis-

advantage of our study. On the other hand, the comparison with a large number of population

controls confirmed the same G allele frequency in the HCC group and population controls.

We also found that G allele carriers had a lower blood HCV viral load. This has been already

known but it seems that the impact of the G allele on viral load is different in different HCV

genotypes. Rembek et al. [40] reported a significantly lower viral load in GG homozygotes

than in CG and CC genotype carriers infected with HCV genotype 2; however, the PNPLA3
genotype had no impact on the viral load in subjects infected with HCV genotype 3. Con-

trarily, Eslam et al. [41] found no impact of the PNPLA3 genotype on the viral load in a large
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study group, but the authors included subjects with various HCV genotypes (1–4) and they

did not evaluate subjects with different genotypes separately. Our study group was homoge-

nous regarding HCV genotypes: all patients were infected with genotype 1b and this fact

allowed us to observe the impact of PNPLA3 gene variants on the blood viral load. The HCV

replication, virus assembly and release is linked to the host cell lipid metabolism. Endoplasmic

reticulum–derived membranous web represents the viral RNA replication complex site and

lipid droplets serve as virion assembly sites [42, 43]. It has recently been reported that HCV

induces complex remodeling of the host cell lipid metabolism in order to enhance both virus

replication and virions assembly [44]. The mechanism by which the PNPLA3 variant protein

alters lipid turnover in hepatocytes has also been elucidated: the variant protein accumulates

on the surface of lipid droplets [45] and binds the cofactor CGI-58 of adipose triglyceride

lipase (ATGL or PNPLA2) [46]. Both inactivated ATGL and the barrier of PNPLA3 variant

protein on the surface of lipid droplets impede lipolysis of triglycerides and their trafficking in

hepatocytes. We assume that changes in lipid metabolism in hepatocytes caused by the

PNPLA3 variant protein may affect the HCV life cycle. We consider the lower blood viral load

in G allele carriers as a manifestation of the altered lipid trafficking in hepatocytes, but its

impact on liver fibrosis progression remains unclear since long-term lowering of viral load by

administration of low doses of interferon alpha had no beneficial effect on liver fibrosis pro-

gression in the HALT-C study [47].

Conclusions

In conclusion, our results show that the pronounced liver steatosis and fibrosis in PNPLA3
rs738409 G allele carriers with HCV genotype 1b cirrhosis may have a real impact on the tim-

ing and need of liver transplantation. The clinical consequence of G allele carriage could be a

faster CLF development and need for liver transplantation at a younger age.
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