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Introduction
A dynamical system is a mapping describing the evolution of a point in a state
space in time. A random dynamical system is a dynamical system enriched by an
element of random noise. The theory of random dynamical systems was developed
in great detail by L. Arnold in [1]. This thesis will focus mainly on the generation
of a random dynamical system as a solution of a random differential equation.

The conditions stated in [1] for a solution to a random differential equation
are very restrictive. We will try to relax them using the method of Lyapunov
functions.

The method of Lyapunov functions, named after Russian mathematician Alek-
sandr Mikhailovich Lyapunov, is a method used in the study of stability of differ-
ential equations. We take inspiration in [2], where this problematic is described
in the deterministic case, and develop similar theory for random ordinary differ-
ential equations.

In the first chapter we give a brief overview of the theory of Carathéodory solu-
tions for deterministic systems of differential equations which we use at a later
point to create probabilistic analogies.

The focus of the second chapter is finding sufficient conditions for the existence of
a local unique solution to a random differential equation. The latter part of this
chapter introduces the concept of explosion and provide the conditions for avoid-
ing it and thus guaranteeing a global existence of a solution using the method of
Lyapunov functions.

The third chapter contains a summary of the essential definitions regarding ran-
dom dynamical systems. We quote a theorem from [1] about the generation of
random dynamical systems from random differential equation and provide our
own improved version for a special case using the results obtained in Chapter 2.

The fourth and final chapter is dedicated to introducing the reader to essential
definitions from the field of random attractors. We state a sufficient condition
for the existence of a random attractor for a random dynamical system and for-
mulate and prove our own version which corresponds to the results presented in
the first three chapters.
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Notation
Here we give a brief overview of some of the symbols used in this thesis.

The function ∥·∥n is the Euclidean norm on Rn.
As the dimension of the space will be mostly clear from context, we will omit the
lower index and write only ∥·∥.

Bn(x,R) denotes the closed ball on Rn with center x and radius R, i.e. the
set {y ∈ Rn : ∥x− y∥n ≤ R} .
For similar reasons as above, we will omit the lower index denoting the dimension
of the space.

L1
loc(R) denotes the space of locally integrable real functions, i.e. functions which

satisfy the following property: ∫︂ b

a
∥f(t)∥dt < ∞

for each −∞ < a < b < ∞.
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1. Deterministic Results
This chapter contains a variety of definitions and theorems which serve to gen-
eralise the notion of a solution to a differential equation. The results presented
here are mostly drawn from [3] and [4].

1.1 Local Carathéodory Solutions
Consider the differential equation ẋ = f(x, t) where f : Rn+1 → Rn, n ∈ N.

Normally, for a solution to exist, the equation is required to have a contin-
uous right-hand side. This condition is often too restrictive and does not cover
many important cases. For this purpose we introduce the so-called Carathéodory
solution to a differential equation and the aptly named Carathéodory conditions
for its local existence.

Definition 1. Let f : Rn+1 → Rn, I ⊂ R be an interval and let t0 ∈ I. A function
x : I → Rn is called a solution of equation

ẋ = f(x, t) (1.1)

on I with the initial condition

x(t0) = x0 (1.2)

in the sense of Carathéodory, if

• x is absolutely continuous on each compact interval J ⊂ I,

• (t, x(t)) ∈ Rn+1 for each t ∈ I,

• d
dt
x(t) = f(x(t), t) almost everywhere on I.

In this thesis we will exclusively deal with Carathéodory solutions. Thus
from now on whenever we use the term solution, we mean solution in the sense
of Carathéodory.
Remark. For definition and properties of absolute continuity in the multidimen-
sional case, see e.g. [4].
Remark. If x is the solution of equation (1.1) with the initial condition (1.2) in
the sense of Definition 1 then for every t ∈ I it satisfies

x(t) = x0 +
∫︂ t

t0
f(x(t), t)dt.

Definition 2. A function f : Rn+1 → Rn is said to satisfy the Carathéodory
conditions, if

• f(·, t) is continuous for almost all fixed t ∈ R,

• f(x, ·) is measurable for all fixed x ∈ Rn,
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• for each (t0, x0) ∈ Rn+1 there exist positive constants a, b and a function
m ∈ L1([t0 − a, t0 + a]) such that ||f(x, t)|| ≤ m(t) for each (x, t) ∈ Q =
{(t, x) : |t− t0| ≤ a, ||x− x0|| ≤ b}.

Theorem 1. Let f : Rn+1 → Rn satisfy the Carathéodory conditions. Then for
every (x0, t0) ∈ Rn+1 the initial value problem (1.1), (1.2) has a solution on some
interval I ⊂ Rn containing t0.
Proof. The proof can be found in [4] as the proof of Theorem 18.4.2., pp. 332-
335.

In addition to its existence we are often interested whether the solution ob-
tained from the equation (1.1) with the initial condition (1.2) is unique in the
following sense:

Whenever x, y are solutions to (1.1) on intervals I, J ⊂ R respectively such
that x(t0) = y(t0), for some t0 ∈ I ∩ J then x(t) = y(t) for each t ∈ I ∩ J.

The Carathéodory conditions are sufficient to ensure existence of a local so-
lution. However, if we want the solution to be unique we need to work with
additional requirements on the function f , namely its local Lipschitz continuity
in x.
Theorem 2. Let f : Rn+1 → Rn satisfy the Carathéodory conditions. Suppose
in addition that for each R > 0 there exists a locally integrable function LR such
that

||f(x1, t) − f(x2, t)|| ≤ LR(t)||x1 − x2|| (1.3)
for every t ∈ R and for each x1, x2 ∈ B(0, R).
Then the solution of (1.1), (1.2) exists for every (x0, t0) ∈ Rn+1 on some interval
I ⊂ R, t0 ∈ I, and is unique.
Proof. The proof can be found in [4] as proof of Theorem 18.4.13., p. 337.

1.2 Extension theorems
In this section we formulate some theorems which will later help us find sufficient
conditions for global existence of solution.
Theorem 3. Let f : Rn+1 → Rn satisfy the conditions of Theorem 2 and let
x(t) be the solution of (1.1) with the initial condition (1.2) on some interval I
containing t0. Then x can be uniquely extended to its maximal interval of existence
of the form (ω−, ω+), with ω− ∈ [−∞,∞) and ω+ ∈ (−∞,∞]. Moreover, for any
given compact set K ⊂ Rn+1 there exists a time tK such that (t, x(t)) /∈ K for
every t > tK .

Proof. The proof can be found in [5] as proof of Theorem 6, pp. 70-71.

Corollary. Let f : Rn+1 → Rn satisfy the conditions of Theorem 2 let x(t) be the
solution of (1.1) with the initial condition (1.2) on a right maximal interval of
existence I = [t0, ω+).
Then either ω+ = ∞, or ω+ < ∞ and

lim
t→ω+

∥x(t)∥ = ∞

.
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2. Random Ordinary Differential
Equations
In the whole chapter we assume (Ω,A,P) to be a probability space.

2.1 Local Solutions
The main focus of this section will be examining the results from Chapter 1 in
a probabilistic setting. We will introduce the concept of a random differential
equation and formulate and prove several theorems pertaining to local existence
and uniqueness of its solution.

Definition 3. Let T ⊂ R. A family {ξ(t), t ∈ T} of random variables mapping
(Ω,A,P) into a measurable space (E, E) is called a stochastic process.
For a fixed ω ∈ Ω the function x(·, ω) is called the trajectory or the sample path
of the process.

In this thesis we will exclusively assume T ⊂ R to be an interval and E to be
Rl, l ∈ N, with its Borel σ-algebra.

Consider the following problem: Let t0 ∈ R and let {ξ(t), t ≥ t0} be a stochas-
tic process defined on probability space (Ω,A,P) with values in Rl, l ∈ N. Let
g : Rk+l+1 → Rk be a Borel-measurable function.
We call an equation of the form

ẋ = g(x, t, ξ(t, ω)) (2.1)

with the initial condition
x(t0, ω) = x0(ω) (2.2)

a random ordinary differential equation.
Since in this thesis we will work solely with random ordinary differential equa-

tions, we will omit the word ordinary in the sequel.

The definition of a solution to a random differential equation is not as straight-
forward as in the deterministic case, since the interval of existence of a potential
solution is generally random and thus different for each ω ∈ Ω. We can how-
ever prove a similar property as in Theorem 1 when we examine the random
differential equation pathwise, i.e. separately for each fixed ω ∈ Ω.

Definition 4. Let t0 ∈ R and let x0(ω) ∈ Rk for each ω ∈ Ω. We say that the
function x(t, ω) is the solution to the random differential equation (2.1) with the
initial condition (2.2) if for each ω ∈ Ω there exists an interval I(ω), t0 ∈ I(ω)
such that

x(t, ω) = x0(ω) +
∫︂ t

t0
g(x(s, ω), s, ξ(s, ω))ds (2.3)

for each t ∈ I(ω).
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We will now search for sufficient conditions under which the equation (2.1)
with the initial condition (2.2) has a solution, i.e. satisfies (2.3), on some interval
[t0 − α(ω), t0 + α(ω)] , where α : Ω → R+ is a random mapping. For this endeavor
we will present an adaptation of the Carathéodory conditions from Definition 2
in the following theorem. First, we will quote the so-called Schauder Fixed Point
Theorem which will be useful in its proof.

Theorem 4. Let K be a nonempty, closed, convex and bounded subset of a normed
linear space X. Assume that F : K → X is a compact operator and F (K) ⊂ K.
Then there is a fixed point of F in K.

Proof. The proof can be found in [6] as proof of Theorem 5.2.5, p. 254.

Theorem 5. Let g : Rk+l+1 → Rk satisfy the following conditions:

• g(·, t, ·) is continuous for each fixed t ∈ R

• g(x, ·, z) is measurable for each fixed (x, z) ∈ Rk+l

• for each (t0, x0) ∈ Rn+1 there exist positive constants a, b and function
m(t, ω),

∫︁ t0+a
t0−a m(t, ω) < ∞ for each ω ∈ Ω, such that

||f(x, t, ξ(t, ω))|| ≤ m(t, ω)

for each (x, t) ∈ Q = {(t, x) : |t− t0| ≤ a, ||x− x0|| ≤ b} .

Then for each ω ∈ Ω, (t0, x0(ω)) ∈ Rk+1 there exist a function x(t, ω) and a ran-
dom variable α(ω) such that (2.3) holds true for each t ∈ [t0 − α(ω), t0 + α(ω)] .

Proof. Let us fix ω ∈ Ω, let (t0, x0(ω)) ∈ Rk+1 and denote

Mω = {u(ω) ∈ C([t0 − α(ω), t0 + α(ω)]) : ||u(t, ω) − x0(ω)|| ≤ β(ω))}

for some β(ω) > 0, where α(ω) is to be determined.
Next we shall define the operator T = Tω on Mω by the formula:

(Tu(ω))(t) = x0(ω) +
∫︂ t

t0
g(u(s, ω), s, ξ(s, ω))ds

for t ∈ [t0 − α(ω), t0 − α(ω)] .
Let us compute

sup
{|t−t0|≤α(ω)}

||(Tu(ω))(t) − x0(ω)|| ≤ sup
{|t−t0|≤α(ω)}

⃓⃓⃓⃓∫︂ t

t0
||g(u(s, ω), s, ξ(s, ω))||ds

⃓⃓⃓⃓

≤
∫︂ t0+α(ω)

t0−α(ω)
||g(u(s, ω), s, ξ(s, ω))||ds

≤
∫︂ t0+α(ω)

t0−α(ω)
m(t, ω)

≤ β(ω)

for α(ω) sufficiently small.
Thus we have shown that T : Mω → Mω.
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To examine the continuity of T in u, let us choose {un(ω)} ⊂ Mω, u(ω) ∈ Mω

such that
un → u in C([t0 − α(ω), t0 + α(ω)]), n → ∞.

We shall employ the following estimate:

∥Tun(ω) − Tu(ω)∥ = sup
{|t−t0|≤α(ω)}

⃓⃓⃓⃓∫︂ t

t0
g(un(s, ω), s, ξ(s)) − g(u(s, ω), s, ξ(s))ds

⃓⃓⃓⃓

≤
∫︂ t0+α(ω)

t0−α(ω)
∥g(un(s, ω), s, ξ(s)) − g(u(s, ω), s, ξ(s))∥ds

Using the fact that g(x, t, z) is continuous in x, for fixed (t, z) ∈ Rl+1, and
Lebesgue theorem, we obtain that the last integral in the inequality above con-
verges to zero as n → ∞.
Finally, let us choose a sequence {un(ω)} ⊂ Mω. Then for each ε > 0 there exists
a δ(ω) that for every s, t ∈ [t0 − α(ω), t0 + α(ω)] (we can assume, without loss of
generality, that s < t)

∥(Tun(ω))(t) − (Tun(ω))(s)∥ ≤
∫︂ t

s
∥g(un(τ, ω), τ, ξ(τ, ω)∥dτ

≤
∫︂ t

s
m(τ, ω)dτ < ε,

(2.4)

whenever |t− s| < δ(ω).

By (2.4) we have shown that {Tun(ω)} ⊂ Mω is a uniformly bounded and equicon-
tinuous family in C([t0 − α(ω), t0 + α(ω)]) and from the theorem of Arzelà-Ascoli
follows that it has a uniformly convergent subsequence. {Tun(ω)} is hence pre-
compact which makes T a compact operator. We can then use Schauder’s Fixed
Point Theorem to obtain that T has a fixed point in Mω.
It is easy to see that the fixed-point obtained this way satisfies (2.3) for each
t ∈ [t0 − α(ω), t0 + α(ω)] .
This concludes the proof as ω has been chosen arbitrarily.

Remark. The function x(t, ω) obtained in Theorem 5 is a Carathéodory solution
in the sense of Definition 1 of the equation (2.1) with the initial condition (2.2)
for each fixed ω ∈ Ω.

We will now explore the uniqueness of the function obtained in Theorem 5.
By the remark above, the function x(t, ω) is a solution of the deterministic equa-
tion (2.1) for each fixed ω ∈ Ω and thus we can define uniqueness for x(t, ω) the
same way as in Chapter 1 for each fixed ω ∈ Ω.

In the proof of the theorem guaranteeing uniqueness, we will make use of the
following lemma, often called Grönwall’s inequality.

Lemma 6. Let K be an interval, η > 0, s ∈ K, ρ, ξ : K → R. Let the functions
ρ, ξ be continuous and ρ(t) ≥ 0, ξ(t) > 0 for each t ∈ K. Let for each t ∈ K

ξ(t) ≤ η +
⃓⃓⃓⃓∫︂ t

s
ρ(u)ξ(u)du

⃓⃓⃓⃓
.
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Then we have
ξ(t) ≤ ηexp

⃓⃓⃓⃓∫︂ t

s
ρ(u)du

⃓⃓⃓⃓
for each t ∈ K.

Proof. The proof can be found in [4] as proof of Lemma 4.3.1., p. 82.

Remark. The function ρ in Lemma 6 does not have to be continuous, we can
instead require that it is locally integrable.

Theorem 7. Let g : Rk+l+1 → Rk satisfy the conditions of Theorem 5. Assume
in addition that g satisfies a local Lipschitz condition, i.e. there exists a stochastic
process BR(t, ω), R > 0 with locally integrable trajectories such that

∥g(x2, t, ξ(t, ω) − g(x1, t, ξ(t, ω)∥ ≤ BR(t, ω)∥x2 − x1∥ (2.5)

whenever x1, x2 ∈ B(0, R).
Then for each ω ∈ Ω, (t0, x0(ω)) ∈ Rk+1 there exist a uniquely determined func-
tion x(t, ω) and a random variable α(ω) such that (2.3) holds true for each
t ∈ [t0 − α(ω), t0 + α(ω)] .

Proof. The existence of such function is guaranteed by Theorem 5. It remains to
show that it is given uniquely.
Let us fix ω ∈ Ω and let (t0, x0(ω)) ∈ Rk+1. Assume there exist u1(t, ω), u2(t, ω)
satisfying (2.3) on the interval [t0 − α(ω), t0 + α(ω)] .
Since there exists R0 such that [t0 − α(ω), t0 + α(ω)] ⊂ B(0, R0) then for each
t ∈ [t0 − α(ω), t0 + α(ω)] we have

∥u1(t, ω) − u2(t, ω)∥ = |x0(ω) +
∫︂ t

t0
g(u1(s, ω), s, ξ(s, ω))ds

− x0(ω) −
∫︂ t

t0
g(u2(s, ω), s, ξ(s, ω))ds|

≤
⃓⃓⃓⃓∫︂ t

t0
∥g(u1(s, ω), s, ξ(s, ω)) − g(u2(s, ω), s, ξ(s, ω))∥ds

⃓⃓⃓⃓
≤

⃓⃓⃓⃓∫︂ t

t0
BR0(s, ω)∥u1(s, ω) − u2(s, ω)∥ds

⃓⃓⃓⃓
≤ η +

⃓⃓⃓⃓∫︂ t

t0
BR0(s, ω)∥u1(s, ω) − u2(s, ω)∥ds

⃓⃓⃓⃓
(2.6)

for each η > 0.
Applying Grönwall’s inequality to (2.6), we obtain

∥u1(t, ω) − u2(t, ω)∥ ≤ ηexp
⃓⃓⃓⃓∫︂ t

t0
BR0(s, ω)ds

⃓⃓⃓⃓
. (2.7)

From (2.7) follows that
u1(t, ω) = u2(t, ω)

for each t ∈ [t0 − α(ω), t0 + α(ω)] as η can be chosen to be arbitrarily small.
By extending the method above to all ω ∈ Ω we obtain the proposition of the
theorem.
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2.2 Sufficient Conditions for Non-explosion
In this section we introduce the concept of explosion and formulate sufficient
conditions for the solution of a random differential equation to avoid it.
We illustrate the so-called explosion in the following example.
Example. Consider the one-dimensional case

ẋ = ϕ(t, ω)x2

with the initial condition
x(t0, ω) = x0(ω) > 0

where ∫︂ t2

t1
ϕ(t, ω)dt < ∞

for each ω ∈ Ω and t0 ≤ t1 < t2 < ∞ and ϕ(t, ω) > 0 for each ω ∈ Ω.
By separating x(t, ω) and integrating both sides of the equation with respect to
t we obtain

− 1
x(s, ω) = Φ(s, ω) + c,

where Φ(s, ω) =
∫︁ s

t0
ϕ(t, ω)dt.

Using the initial condition we can easily calculate that

c = − 1
x0(ω) .

Then we can express
x(s, ω) = 1

1
x0(ω) − Φ(s, ω) .

From this expression we can clearly see that the function xω(s) for a fixed ω
generally escapes to infinity in finite time τ which satisfies Φ(τ, ω) = 1

x0(ω) .

Our goal in this section is to find such requirements on the function g to avoid
cases such as the one described in the example above. One possible approach can
be seen in the following theorem from [2].

Theorem 8. Let ξ(t, ω) be a separable stochastic process with values in Rl, t0 ∈ R
and let g : Rk+l+1 → Rk be a Borel-measurable function satisfying the following
conditions:

• There exists a stochastic process B(t, ω) with locally integrable trajectories
such that for all x1, x2 ∈ Rk

∥g(x2, t, ξ(t, ω)) − g(x1, t, ξ(t, ω))∥ ≤ B(t, ω)∥x2 − x1∥.

• P
{︂∫︁ T

0 ∥g(0, t, ξ(t, ω))∥ < ∞
}︂

= 1 for every T > 0.

Then the equation (2.1) with the initial condition x(t0, ω) = x0(ω) has a unique
solution x(t, ω) for each t ∈ [t0,∞) .

Proof. The proof can be found in [2] as proof of Theorem 1.5, p. 9.
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This theorem gives us fairly concise conditions for determining whether a
global solution exists. However, the global Lipschitz continuity requirement turns
out to be too strict and fails to cover many cases of practical importance, e.g.
functions polynomial in x of a higher degree than 1.

In this section we will introduce an alternative approach using the method of
Lyapunov functions. This method for exploring stability of differential equations
in the deterministic case is fairly well established and its results can be found for
example in [2].

The following part will be dedicated to adapting those results for the random
case. First we start with the definition of the Lyapunov operator:

Definition 5. Let V ∈ C1(Rk × (t0,∞)) for some t0 ∈ R. Then we define the
action of a Lyapunov operator associated with the random differential equation
(2.1) by the following formula:

(LzV )(x, t) = ∂V

∂t
(x, t) +

k∑︂
i=1

gi(x, t, z)
∂V

∂xi

(x, t)

= ∂V

∂t
(x, t) + ⟨g(x, t, z), (∇V )(x, t)⟩,

where x ∈ Rk, t ∈ (t0,∞) and z ∈ Rl.

Another way to express the Lyapunov operator when we plug in x(t, ω), the
local solution to (2.1) for a fixed ω ∈ Ω, is given in the following lemma which
will be useful in the proof of the main theorem of this section.

Lemma 9. Let V be a function such that V ∈ C1(Rk × (t0,∞)) for some t0 ∈ R.
Let x(t, ω) satisfy (2.3) on the interval [t0, t1],−∞ < t0 < t1 < ∞. Then

(Lξ(t,ω)V )(x(t, ω), t) = d

dt
V (x(t, ω), t)

for each ω ∈ Ω and for a.e. t ∈ [t0, t1].

Proof. Using the chain rule for derivatives we obtain

d

dt
V (x(t, ω), t) = ∂V

∂t
(x(t, ω), t) +

k∑︂
i=1

∂V

∂xi

(x(t, ω), t)xi̇ (t, ω)

= ∂V

∂t
(x(t, ω), t) +

k∑︂
i=1

∂V

∂xi

(x(t, ω), t)gi(x(t, ω), t, ξ(t, ω))

= (Lξ(t,ω)V )(x(t, ω), t).

(2.8)

Another lemma which will be useful later is this special version of Grönwall’s
inequality:

Lemma 10. Let the function y : [t0, t1) → R be differentiable almost everywhere
on (t0, t1) and let the derivative dy

dt
satisfy the following inequality:

dy

dt
≤ A(t)y(t) +B(t) (2.9)
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for almost all t ∈ (t0, t1), where A,B are locally integrable functions. Then for
a.e. t ∈ [t0, t1) we have

y(t) ≤ y(t0)exp
(︃∫︂ t

t0
A(s)ds

)︃
+

∫︂ t

t0
exp

(︃∫︂ t

s
A(u)du

)︃
B(s)ds.

Proof. By dividing both sides of the inequality (2.9) by the term exp
(︂∫︁ t

t0
A(s)ds

)︂
we obtain

d

dt
y(t)exp

(︃
−

∫︂ t

t0
A(s)ds

)︃
≤ y(t)A(t)exp

(︃
−

∫︂ t

t0
A(s)ds

)︃
+B(t)exp

(︃
−

∫︂ t

t0
A(s)ds

)︃
or equivalently

d

dt

(︃
y(t)exp

(︃
−

∫︂ t

t0
A(s)ds

)︃)︃
≤ B(t)exp

(︃
−

∫︂ t

t0
A(s)ds

)︃
for almost all t ∈ (t0, t1).

Integration of this inequality with respect to t yields the result of the lemma.

Theorem 11. Let t0 ∈ R and let {ξ(t), t ≥ t0} be a stochastic process defined on
probability space (Ω,A,P) with values in Rl, l ∈ N.
Let g : Rk+l+1 → Rk be a function satisfying the conditions of Theorem 7.
Suppose there exist a function V ∈ C1(Rl+1), functions c1, c2 ∈ L1

loc(R) and func-
tion h : R+ → R+ such that h(∥ξ(t, ω)∥) is locally integrable for each ω ∈ Ω.
Let the inequality

(LzV )(x, t) ≤ c1(t)h(||z||)V (x, t) + c2(t),

be satisfied for almost all t ∈ (t0,∞), x ∈ Rk and z ∈ Rl.

Suppose further that the following holds true:

VR = inf
(t0,∞)×{||x||>R}

V (x, t) → +∞ as R → +∞.

Then for all ω ∈ Ω, each α(ω) > 0 and x(t, ω) such that x(t, ω) satisfies (2.3) on
[t0, t0 + α(ω)), we have

Ŝ(ω) = sup
[t0,t0+α(ω))

||x(t, ω)|| < ∞.

Proof. Let us fix ω ∈ Ω and choose α(ω) > 0. Denote xω(t) = x(t, ω), ξ(t) =
ξ(t, ω), where x(t, ω) is a function that satisfies (2.3) for all t ∈ [t0, t0 + α(ω)) .

The conditions of Lemma 9 are satisfied and thus we have

(Lξ(t)V )(xω(t), t) = d

dt
V (xω(t), t) ≤ c1(t)h(||ξ(t)||)V (xω(t), t) + c2(t)

12



for each t ∈ [t0, t0 + α(ω)].
Using Lemma 10 on the inequality above, we get

V (xω(t), t) ≤ V (xω(t0), t0)exp
(︃∫︂ t

t0
c1(s)h(||ξ(s)||)ds

)︃
+

∫︂ t

t0
exp

(︃∫︂ t

s
c1(u)h(||ξ(u)||)du

)︃
c2(s)ds

(2.10)

for all t ∈ [t0, t0 + α(ω)].

By the assumptions of the theorem, the functions c1, c2 and h(||ξ(t)||) are all
integrable and thus we can simplify the inequality above to yield

V (xω(t), t) ≤ C1(ω)V (xω(t0), t0) + C2(ω),

for all t ∈ [t0, t0 + α(ω)], where C1(ω), C2(ω) ≥ 0 are constant.

Using the fact that V (xω(t0), t0) is also constant for a fixed ω, we obtain

sup
(t0,t0+α(ω))

V (xω(t), t) ≤ K(ω),

where K(ω) ≥ 0.

The inequality above implies that there exists an R0 > 0 such that VR0 > K(ω)
and thus it follows, that

sup
[t0,t0+α(ω))

||xω(t)|| ≤ R0.

Since ω ∈ Ω is arbitrary, this concludes the proof.

Remark. Left-sided and both-sided variants of this theorem, i.e. for t < t0 or for
any t ∈ R, respectively, can be proven.
Corollary. Let t0 ∈ R and assume the function g : Rk+l+1 → Rk satisfies the
conditions of Theorem 11.
Then there exists a function x(t, ω) with values in Rk that for every ω ∈ Ω satisfies
(2.3) for each t ∈ [t0,∞).

Proof. Let us fix ω ∈ Ω and examine x(t, ω) as the solution of

ẋ = g(x, t, ξ(t, ω))

with the initial condition
x(t0, ω) = x0(ω).

Choose a(ω) > 0. By Theorem 11, the expression

||x(t, ω)||

is bounded on [t0, t0 + a(ω)) and together with the corollary after Theorem 3 it
implies that its maximal interval of existence is [t0,∞) .
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Example. Let g : R × R+ × R → R be defined by g(x, z) = −z1x
3 + z2x, where

z = (z1, z2), z1 ∈ R+, z2 ∈ R and let t0 ∈ R. Let ξ(t, ω) = (ξ1(t, ω), ξ2(t, ω)) be a
stochastic process defined on (Ω,A,P) with values in R2 such that∫︂ t1

t0
||ξ(t, ω)||dt < ∞

for all ω ∈ Ω and all −∞ ≤ t0 < t1 < +∞ and ξ1(t, ω) > 0 for each t ≥ t0, ω ∈ Ω.
We shall prove that under these conditions each solution of the equation ẋ =
g(x, ξ(t, ω)) with the initial condition x(t0, ω) = x0(ω) satisfies

sup
[t0,t1)

||x(t, ω)|| < +∞

for each t1 < +∞ and for all ω ∈ Ω.

Proof. Firstly, the function g clearly is not globally Lipschitz continuous in x and
thus we cannot use Theorem 8. We shall verify that the function g satisfies the
conditions of Theorem 11:
The function g(x, z) is clearly locally Lipschitz continuous in (x, z). Moreover,
for (x, t) ∈ Q = {|t− t0| ≤ a, |x− x0| ≤ b} (without loss of generality we can
assume b ≥ 1) we have

|g(x, ξ(t, ω))| = |ξ1(t, ω)x3 + ξ2(t, ω)x| ≤ |ξ1(t, ω)||x|3 + |ξ2(t, ω)||x|
≤ |ξ1(t, ω)|b3 + |ξ2(t, ω)|b ≤ ∥ξ(t, ω)∥b3 = m(t, ω)

which we assumed to be locally integrable for each ω ∈ Ω.
Next let us take a Lyapunov function V (x) = x2 + 1, x ∈ R. Then V ∈ C1(R)

and d
dx
V (x) = 2x, x ∈ R. Furthermore, we have

VR = inf
{|x|>R}

V (x) = R2 + 1

which clearly exceeds all boundaries as R approaches infinity.

The Lyapunov operator associated with the differential equation ẋ = g(x, ξ(t, ω))
is of the form:

(LzV )(x) = g(x, z) d
dx
V (x) = (−z1x

3 + z2x)2x

= −2z1x
4 + 2z2x

2.

Using that x < x2 + 1 for each x ∈ R we get the following inequality:

(LzV )(x) = −2z1x
4 + 2z2x

2 = 2(−z1x
4 + z2x

2)
= 2(−z1(x4 + 1) + z1 + z2x

2) ≤ 2(−|z1|x2 + |z1| + |z2|x2)
≤ 2(|z1|x2 + |z1| + |z2|x≤6||z||x2 + 2||z|| ≤ 6||z||(x2 + 1)
= 6||z||V (x)

for each x ∈ R, z ∈ R3.
Let us set c1(t) ≡ 6, c2(t) ≡ 0. Both of these functions are clearly integrable
over every finite interval and thus we have verified the conditions of Theorem 11
which concludes the proof.
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3. Random Dynamical Systems

3.1 Basic Definitions
The definitions presented here are formulated with a general time T which can
be any additive group or semigroup. Most often it is one of the following: R, R+,
in which case we speak about continuous time, or Z, Z+ which we call discrete
time. In this thesis we exclusively assume continuous time.

Definition 6. Let (Ω,A) be a measurable space. A family {θ(t), t ∈ T} of map-
pings of (Ω,A) into itself is called a measurable dynamical system with time T if
it satisfies the following conditions:

• (ω, t) ↦→ θ(t)ω is measurable

• θ(0) = idΩ, i.e. θ(0)ω = ω for each ω ∈ Ω

• θ(s+ t) = θ(s) ◦ θ(t) for all s, t ∈ T.

Definition 7. Let θ be a measurable mapping of (Ω,A,P) to (Ω,A). The measure
θP defined by

θP(A) = P
{︂
θ−1(A)

}︂
,

where A ∈ A, is called the image of P with respect to θ. We say that θ is an
endomorphism if θP = P.

Definition 8. A measurable dynamical system {θ(t), t ∈ T} on a probability
space (Ω,A,P) such that θ(t) is an endomorphism for each t ∈ T is called a
metric dynamical system (sometimes a measure preserving dynamical system)
and is denoted by Σ = (Ω,A,P, (θ(t))t∈T).

Definition 9. A measurable random dynamical system on the measurable space
(X,F) over a metric dynamical system (Ω,A,P, (θ(t))t∈T) with time T is a map-
ping

φ : T × Ω ×X → X, (t, ω, x) ↦→ φ(t, ω, x)
with the following properties:

• φ is B(T) ⊗ A ⊗ F ,F -measurable

• the mappings φ(t, ω) = φ(t, ω, ·) form a cocycle over X, i.e. they satisfy

φ(0, ω) = idX for all ω ∈ Ω

φ(t+ s, ω) = φ(t, θ(s)ω) ◦ φ(s, ω) for all s, t ∈ T, ω ∈ Ω.

Similarly as in the case of time, we define a random dynamical system for a
general state space X but we mainly work with Rk, k ∈ N.

Definition 10. A continuous random dynamical system on the metric space
X over the metric dynamical system (Ω,A,P, (θ(t))t∈T is a measurable random
dynamical system which satisfies in addition the following property: The mapping

φ(·, ω, ·) : T ×X → X, (t, x) ↦→ φ(t, ω, x)

is continuous for each ω ∈ Ω.
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3.2 Generation
Let T = R or T = R+, X = Rk, (Ω,A,P) be a probability space and let
(Ω,A,P, (θ(t))t∈T) be a metric dynamical system.
In this section we use the results of Chapter 2 but we choose a different approach.
Instead of focusing on a single solution to a random differential equation, deter-
mined uniquely by the initial condition, we will examine x(t, ω, t0, x), i.e. the
solution to a random differential equation dependent on the chosen initial value
at time t0. The focus of this and the next section is to show that this approach
yields a random dynamical system.

Definition 11. Let f : Ω × Rk → Rk. We say that the equation

ẋ = f(x, θ(t)ω) (3.1)

generates φ if for each t ∈ R, ω ∈ Ω the following holds true:

φ(t, ω)x = x+
∫︂ t

0
f(φ(s, ω)x, θ(t)ω)ds. (3.2)

Theorem 12. Consider the equation (3.1) and denote fω(x, t) = f(x, θ(t)ω).
Suppose that for each ω ∈ Ω the function fω has the following properties:

• fω(·, t) is locally Lipschitz continuous for almost all t ∈ R,

• sup
x∈Rk

∥fω(x, t)∥
1 + ∥x∥

≤ α(t, ω) for each t ∈ R, where α(t, ω) is locally integrable,

•
∫︂ b

a
sup
x∈Rk

∥fω(x, t)∥
1 + ∥x∥

dt < ∞ for each −∞ < a < b < ∞.

Under these conditions the equation (3.1) uniquely generates continuous a random
dynamical system for all t ∈ R

Proof. The proof can be found in [1] as proof of Theorem 2.2.1, pp. 58-60.

Remark. A more general condition can be considered instead of the second con-
dition in Theorem 12: ∥fω(x, t)∥ ≤ α(t, ω)∥x∥ + β(t, ω) for all t ∈ R where
α(t, ω), β(t, ω) are locally integrable.

Both the conditions in Theorem 12 and in the remark that follows are very
strict and exclude many important practical cases. In the following section we will
show how we can use the results of Chapter 2 to obtain less restrictive conditions
for generating a random dynamical system in a special case called The Memoryless
Case.

3.3 The Memoryless Case
Very often we encounter the case

ẋ = f(x, θ(t)ω) = g(x, ξ(t, ω)) (3.3)
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where ξ(t, ω) is a stochastic process. We will show that this type of equation also
generates a random dynamical system.

As per section 3.2, a measure preserving dynamical system is required rather
than a stochastic process as an argument of the function on the right-hand side of
the equation. However, with additional requirements on the process ξ(t, ω) this
problem can be circumvented and both cases are equivalent. First, let us now
present some definitions necessary for the construction to work.

Definition 12. Let {ξ(t), t ∈ T} be a stochastic process with values in (E, E)
and let {t1, ..., tr} be a finite subset of T. The probability measure Pt1,...,tr defined
by

Pt1,...,tr(A) = P (ξ(t1) ∈ A1, ..., ξ(tr) ∈ Ar) ,
where A = A1 × ...×Ar, A1, ..., Ar ∈ E , is called a finite-dimensional distribution
of ξ(t, ω).

Definition 13. A stochastic process {ξ(t), t ∈ T} defined on (Ω,A,P) with val-
ues in state space (E, E) is called stationary if for all t, t1, ..., tr ∈ T we have

Pt1+t,...,tr+t = Pt1,...,tr .

Definition 14. We say that a function λ : R → Rm, m ∈ N, is càdlàg if for every
t ∈ R

lim
s→t−

λ(s) ∈ Rm exists,

lim
s→t+

λ(s) = f(t).

If ξ(t, ω) is a stationary stochastic process with càdlàg trajectories for each
ω ∈ Ω then the equation (3.3) holds true and thus we can examine whether the
equation ẋ = g(x, ξ(t, ω) generates a random dynamical system. The detailed
explanation of this equivalence can be found in [1] on pp. 64 and 542-545.

Theorem 13. Let the function g : Rk+l → Rk, ξ(t, ω) satisfy the conditions of
Theorem 11. Assume, in addition, that the function x(t, ω) obtained as a solution
to (2.1) is measurable in ω. Then the equation ẋ = g(x, ξ(t, ω)) uniquely generates
a random dynamical system defined on t ∈ R+.

Proof. The global existence and uniqueness of a solution to the equation ẋ =
g(x, ξ(t, ω) follow directly from Theorem 11 with a special choice t0 = 0.
It remains to show that the mapping φ defined by (3.2) satisfies the cocycle
property of a random dynamical system. For this, we use the equivalence in
(3.3).
First, it follows immediately from the definition of φ that φ(0, ω)x = x for each
ω ∈ Ω, x ∈ Rk.
Let s, t ∈ R, s, t > 0. Then, using the equation (3.2) and the properties of a
metric dynamical system, we have

φ(s+ t, ω)x = x+
∫︂ s+t

0
f(φ(r, ω)x, θ(r)ω)dr

= x+
∫︂ s

0
f(φ(r, ω)x, θ(r)ω)dr +

∫︂ s+t

s
f(φ(r, ω)x, θ(r)ω)dr

= φ(s, ω)x+
∫︂ t

0
f(φ(r + s, ω)x, θ(r)θ(s)ω)dr
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where all the integrals are finite.
Now denote ω̄ = θ(s)ω and x̄ = φ(s, ω) and put ψ(r, ω̄) = φ(r + s, ω). Then we
will find that ψ(s, ω̄)x̄ also satisfies

ψ(t, ω̄)x̄ = x̄+
∫︂ t

0
f(ψ(r, ω̄), θ(r)ω)dr.

Using the fact that the solution to (3.1) is unique we obtain

φ(t, ω̄)x̄ = φ(t, θ(s)ω)φ(s, ω) = ψ(t, ω̄)x̄ = φ(t+ s, ω)x.

Finally, when at least one of s, t is equal to zero then we have (without loss of
generality assume t = 0)

φ(s, ω)x = φ(s+ t, ω)x = x+
∫︂ s+t

0
f(φ(r, ω)x, θ(r)ω)dr

=
∫︂ s

0
f(φ(r, ω)x, θ(r)ω)dr

which is true from definition of φ. Thus we have verified that φ satisfies the
cocycle property and this concludes the proof.

Remark. The random dynamical system obtained in Theorem 13 is also continu-
ous in the sense of Definition 10. This can be proven by applying a straightforward
modification to the method described in the proof of Theorem 9 in [5], pp. 72-73.
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4. Random Attractors
In this final chapter our main object of interest will be random attractors for
random dynamical systems. In the study of deterministic dynamical systems, an
attractor is a set toward which the system tends to evolve. For us to be able to
create an analogy we will first need to start with some definitions cited from [7].
Let (X, d) be a metric space, (Ω,A,P) a probability space. Let, in addition,
θ = (Ω,A,P, (θ(t))t∈R) be a metric dynamical system and φ a continuous ran-
dom dynamical system over θ.

The most important definition of this section will be that of a random set, which
is a set-valued extension to a random variable.

Definition 15. A set-valued map K : Ω → P(X), where P(X) is the power set
of X, taking values in the closed subsets of X is said to be measurable if for every
x ∈ X the map ω ↦→ d(x,K(ω)) is measurable, where we define

d(A,B) = sup {inf {d(x, y), y ∈ B} , x ∈ A} ,

for A, B non-void subsets of X, and d(x,B) = d({x} , B).
A closed set valued measurable map K : Ω → P(X) will be called a random
closed set.

Definition 16. A random set K is said to be φ-forward invariant if

φ(t, ω)K(ω) ⊂ K(θ(t)ω)

for each t > 0.
K is said to be strictly φ-forward invariant if

φ(t, ω)K(ω) = K(θ(t)ω)

for each t > 0.

Definition 17. Let K be a random set.

ΩK(ω) =
⋂︂

T ≥0

⋃︂
t≥T

φ(t, θ(−t)ω)K(θ(−t)ω)

is said to be the Ω-limit set of K.

Remark. The Ω-limit set is, by definition, closed.
An important definition for this chapter will be that of an attracting and an

absorbing random set.

Definition 18. A random set A is said to attract another random set B if

d(φ(t, θ(−t)ω)B(θ(−t)ω), A(ω)) → 0

as t → ∞ for almost every ω ∈ Ω.
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Definition 19. Let K and B be random sets such that for almost all ω ∈ Ω
there exists tB(ω) such that for all t ≥ tB(ω)

φ(t, θ(−t)ω)B(θ(−t)ω) ⊂ K(ω)

then K is said to absorb B and tB(ω) is called the time of absorption.

Definition 20. Let φ be a random dynamical system such that there exists a
random compact set A satisfying the following conditions:

• A is strictly φ-forward invariant,

• A attracts every bounded deterministic set B ⊂ X.

Then we say that A is a globally attracting set or a global attractor for φ.

Theorem 14. Suppose φ is a random dynamical system on a Polish space X,
and suppose that there exists a compact set ω ↦→ K(ω) absorbing every bounded
non-random set B ⊂ X. Then the set

A(ω) =
⋃︂

B⊂X

ΩB(ω)

is a global attractor for φ.

Proof. Proof can be found in [7] as proof of Theorem 3.11, p. 371.

Using the results of the theorem above we can now provide sufficient conditions
for the existence of an attracting set for a random dynamical system generated
from a random differential equation.

Theorem 15. Let g : Rk+l → Rk, ξ(t, ω) satisfy the conditions of Theorem 13.
Let the following hold true:

2⟨x, g(x, z)⟩ ≤ −k1∥x∥2 + k2∥z∥2 + k3 (4.1)

for some k1 > 0, k2, k3 ∈ R for each x ∈ Rk, z ∈ Rl.
Assume that ξ(t, ω) has locally integrable trajectories and it satisfies∫︂ 0

t
esξ(s, ω)ds < ∞, t < 0

for each ω ∈ Ω. Then there exists r(ω) > 0 such that for each ρ > 0 there exists
a t̄ ≤ 0 such that for each t0 ≤ t̄, x0 = x(t0, ω), ∥x0∥ < ρ we have

∥x(0, ω, t0, x0)∥2 ≤ r2(ω).

Proof. Let us fix an ω ∈ Ω.
First, it is easy to see that d

dt
∥x(t, ω)∥2 = 2⟨x(t, ω), g(x(t, ω), ξ(t, ω)⟩, for each

t ≥ 0, and thus from (4.1) it follows that

d

dt
∥x(t, ω)∥2 ≤ k1∥x(t, ω)∥2 + k2∥ξ(t, ω)∥2 + k3 (4.2)
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for each t ≥ 0. By integrating both sides of the inequality (4.2) we obtain:

∥x(t, ω)∥2 ≤ e−k1(t−t0)∥x0∥2 +
∫︂ t

t0
e−k1(t−s)(k2∥ξ(t, ω)∥2 + k3ds).

By plugging in t = 0 and using the fact that ∥x0∥ < ρ we obtain:

∥x(0, ω)∥2 ≤ ek1t0ρ2 +
∫︂ 0

t0
ek1s(k2∥ξ(s, ω)∥2 + k3)ds

≤ ek1t0ρ2 +
∫︂ 0

−∞
ek1s(k2∥ξ(s, ω)∥2 + k3)ds

≤ ek1t0ρ2 + C(ω).

By choosing t̄ sufficiently small that ek1 t̄ρ2 < 1 and setting r(ω) =
√︂

1 + C(ω) we
obtain the result of the theorem since ω has been chosen arbitrarily.

Corollary. A straightforward application of Theorem 15 is the existence of a
global attracting set for each random dynamical system obtained as a solution to
a random differential equation which has the required properties.
Example. Let g : R2 → R, g(x, z) = f(x) + σ(x)z where f : R → R satisfies

xf(x) ≤ −k1x
2 + k2,

where k1 > 0, k2 ∈ R, and σ : R → R satisfies
sup
x∈R

|σ(x)| < ∞.

Assume further that f, σ are locally Lipschitz continuous. Let ξ(t, ω) be a sta-
tionary stochastic process with locally integrable, càdlàg trajectories. Then the
random dynamical system obtained as a solution to (3.3) has a global attractor.

Proof. Denote σ̂ = sup
x∈R

|σ(x)|. Consider the function V (x) = x2 + 1 and let us
examine the Lyapunov operator:

(LzV )(x) = 2xf(x) + 2xσ(x)z
≤ −2k1x

2 + 2k2 + 2|xσ(x)z|
≤ −2k1x

2 + 2k2 + 2σ̂(x2 + 1)|z|
≤ K(x2 + 1) + 2σ̂|z|(x2 + 1)
= (K + 2σ̂|z|)(x2 + 1) = h(|z|)V (x)

where K = max {2|k1|, 2|k2|} .
The local integrability of h(|ξ(t, ω)|) follows from the local integrability of ξ(t, ω).
Thus we have verified the conditions of Theorem 13 and so the equation (3.3)
generates a random dynamical system.
Next, by means of Young’s inequality, we have

d

dt
x2(t, ω) = 2x(t)g(x(t, ω), ξ(t, ω))

≤ 2x(t, ω)f(x(t, ω)) + 2x(t)σ(x(t, ω))ξ(t, ω)
≤ −2k1x

2(t, ω) + 2k2 + 2x(t)σ(x(t, ω))ξ(t, ω)

≤ −2k1x
2(t, ω) + 2k2 + εx2(t, ω)σ2(x(t, ω)) + 1

ε
ξ2(t, ω)

≤ (−2k1 + σ̂2ε)x2(t, ω) + 1
ε
ξ2(t, ω) + k2
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Taking ε < 2k1
σ̂2 we see that the conditions of Theorem 15 are verified and that

concludes the proof.
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Conclusion
We have examined the deterministic results which were our starting point and
through combining theory from various resources we managed to create proba-
bilistic analogies.
We familiarised ourselves with the phenomenon of explosion and through theory
of Lyapunov functions we discovered requirements for a function to avoid it.
We explored the field of random dynamical systems from the angle of random
differential equations and found sufficient conditions for a random dynamical sys-
tem to be generated by a random differential equation.
We managed to improve on the current results pertaining to the existence of a
global solution to random differential equations by making the conditions less
restrictive and thus allowing for a wider variety of functions to be considered.
Finally, we presented some important results from the theory of random attrac-
tors and by making use of previous chapters we came up with sufficient conditions
for their existence.
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