
MASTER THESIS

Martin Červeň

Control system for badminton
shuttlecock collecting robot

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the master thesis: RNDr. David Obdržálek, Ph.D.
Study programme: Computer Science

Study branch: Artificial Intelligence

Prague 2023

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

Title: Control system for badminton shuttlecock collecting robot

Author: Martin Červeň

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: RNDr. David Obdržálek, Ph.D., Department of Theoretical Com-
puter Science and Mathematical Logic

Abstract: Badminton is a racquet game played on court with shuttles made
from feathers or plastic. Top players train with many shuttlecocks at once, which
are fed by coach from hand. After a short training period, shuttlecocks are scat-
tered around the court, which need to be picked up so that coach can feed them
from hand. In this thesis we created software for autonomous robot that de-
tects shuttlecocks with camera, estimates their position and picks them up. We
implemented this as nodes in ROS middleware. During development we created
simulated environment in Gazebo, and created plugin that simulates shuttle pick-
ing. We also created fully working picking mechanism of real shuttlecocks based
on rotary brushes powered by motors, utilising 3D printing. Furthermore, we cre-
ated and annotated dataset for object detection of over 2500 images and 18500
objects that we used for training and evaluation of state of the art neural net-
work, that detects shuttlecocks from video. As part of our solution we developed
ROS nodes that allows us to specify working area and area for filtering detections
using RViz interactive markers.

Keywords: Autonomous robot control, Object tracking,Computer vision, Plan-
ning, Badminton

ii

I would like to thank to my supervisor David Obdržálek for answering my ques-
tions and for his patience. I would also like to thank to my family for continuous
support throughout my study.

iii

Contents

1 Introduction 4
1.1 Goals of the thesis . 5

1.1.1 Detection and recognition of shuttles 5
1.1.2 Control system . 5
1.1.3 Map . 5
1.1.4 Planning . 6
1.1.5 Movement . 6
1.1.6 Visualisation . 6
1.1.7 User Interface . 7

1.2 Structure of the thesis . 7

2 Background 8
2.1 Game of Badminton . 8

2.1.1 Shuttlecock . 8
2.1.2 Badminon court . 9

2.2 Training . 10
2.3 Shuttle picking . 11
2.4 Environment . 12

3 Related work 14
3.1 Fruit picking robots . 14

3.1.1 Cucumber picking robot 14
3.1.2 Strawberry picking robot 15
3.1.3 Kiwi picking robot . 16

3.2 Plant polination . 17
3.2.1 Pepper picking robot . 18

3.3 Sport mobile robots . 18
3.3.1 Tennis ball picking robot 18
3.3.2 Golf ball picking robot . 19
3.3.3 Autonomous Table Tennis Ball Collecting Robot 20
3.3.4 Badminton . 21

4 Analysis 22
4.1 Application architecture . 22

4.1.1 Monolithic application . 22
4.1.2 Using ROS . 22

4.2 Hardware . 23
4.2.1 Sensors . 26
4.2.2 Robotic platform . 27
4.2.3 Other . 27

4.3 Software . 28
4.3.1 Control system . 28
4.3.2 Shuttle recognition . 31
4.3.3 Mapping . 32
4.3.4 Planning . 32

1

4.3.5 Visualisation . 32
4.3.6 User interface . 33

5 Proposed solution 34
5.1 ROS . 34
5.2 Gazebo . 35

5.2.1 Preparing the simulation 35
5.3 Control system . 35
5.4 Mapping and localisation . 36
5.5 Navigation and Planning . 38

5.5.1 Mapping . 39
5.6 Movement and shuttle picking . 39
5.7 Computer vision . 40

5.7.1 Object recognition . 41
5.7.2 Training neural network 41
5.7.3 Position estimation . 42

5.8 Visualization . 42
5.8.1 RViz . 42

5.9 Shuttlecock picking . 43
5.10 User interface . 44

6 Implementation 45
6.1 Launchfiles . 45
6.2 Neural network . 45

6.2.1 Data acquisition . 45
6.2.2 Dataset creation . 46
6.2.3 Deployment on robot . 49

6.3 Visual processing . 49
6.4 Visualisation . 51
6.5 Control system . 51

6.5.1 Concurrent container in SMACH 53
6.5.2 Control System . 53

6.6 Gazebo simulation . 54
6.6.1 Gazebo Plugins . 55
6.6.2 Sensor plugin for picking shuttlecocks 55

6.7 Picking system . 56
6.7.1 3D printed parts . 58
6.7.2 Other parts . 60
6.7.3 Iterative design . 60
6.7.4 Motor control . 62
6.7.5 Arduino ROS node . 63
6.7.6 Arduino Leonardo . 63

6.8 Working area customization . 64
6.8.1 Allowed area . 64
6.8.2 Allowed detection area . 65
6.8.3 Waypoints . 66
6.8.4 Home position . 67
6.8.5 Detection area visualization 68

2

7 User documentation 70
7.1 Setup . 70
7.2 Mapping the court . 70
7.3 Autonomous working . 71

8 Results 72
8.1 Shuttlecock detection . 72

8.1.1 Evaluation metrics . 73
8.1.2 Training and results . 74

8.2 Picking mechanism . 77
8.3 Allowed area . 78
8.4 Detection area . 80

8.4.1 Discussion . 80

9 Conclusion 82

Bibliography 84

List of Figures 89

Appendix A Installation documentation 93
A.1 Robot . 93

A.1.1 Jetson Xavier NX . 93
A.1.2 ROS . 93
A.1.3 Jetson - inference . 93
A.1.4 Kobuki base . 93
A.1.5 Other dependencies . 94
A.1.6 Cameras . 94
A.1.7 Vision . 94

A.2 Notebook . 94
A.3 Source code, dataset and other files of our solution 95

A.3.1 Source code for robot . 95
A.3.2 Shuttlecock dataset . 95
A.3.3 Dockerfile . 95
A.3.4 Yolo node . 95

Attachments 96

3

1. Introduction
Badminton is a racket game for two or four players played on indoor court

by striking projectiles called shuttlecocks or shuttles (Figure 1.1) over the net.
Shuttlecocks have conical shape where top part is made from cork and bottom
part called skirt is made from natural feathers or plastic. Top players train with
many feathered shuttlecocks which are fed by coach from hand. After a short
training period there are many shuttlecocks scattered around the court which
need to be manually picked up by players and coach and arranged in rows so that
coach can use them again. This manual and monotonous labor takes lot of time,
which if automated, could be spent on more intensive training (Figure 1.2) or
explaining next exercise. In this thesis we propose control system for autonomous
robot that picks these scattered shuttlecocks. We also analyse other necessary
parts to design and built such robot. To achieve goal of the thesis we need to
design a solution that would to have:

• Computer vision to sense and recognize shuttlecocks as objects in the real
world that needs to be picked up.

• Control system to decide what robot should do. We want this to be ex-
plainable, i.e. we want to know exactly in what state is robot currently in,
for example, planning, picking, moving to the next goal.

• Mapping the environment to create a map, with whitch it can then localise
itself, and mark other objects of interest, such as shuttlecocks.

• Planning of the path subject to constraints of the imperfect information
robot gets about the world from sensors and thus create plan.

• Movement to get from one place where it needs to pick a shuttlecock to the
next place.

• Visualisation of the map representing the environment that robot had cre-
ated and give commands and check settings and variables using

• User interface with basic ability to start and stop the robot, since robot
should be otherwise autonomous.

Figure 1.1: Feathered shuttlecock Figure 1.2: Multi-shuttle training.

4

1.1 Goals of the thesis
The aim of our thesis is to create control system for autonomous robot that

picks badminton shuttlecocks. This can be divided into following goals:

Goal 1.) detection and recognition of shuttles

Goal 2.) control system

Goal 3.) create internal map of environment and position of shuttles

Goal 4.) plan how to pick shuttles

Goal 5.) movement

Goal 6.) visualisation

Goal 7.) user interface

1.1.1 Detection and recognition of shuttles
We need to sense where shuttles are located relative to the robot, so we can

generate movement instructions for the robot to move close enough to the shut-
tlecocks to pick them up. Because we are using camera as the input, we need to
be able detect shuttlecocks in images. This could be done by various approaches,
most common and successful nowadays is to train deep neural network. For this
a lot of training data is needed. Luckily, there exists pretrained neural networks.
They are trained on large image datasets such as MS COCO: Common objects
in context [1].

1.1.2 Control system
We need to be able to tell what the robot is doing at each point in time [2].

This does not mean that software needs to run in one process, on the contrary we
need many processes running simultaneously. But just as well human that tells
that he is studying for exam, can be holding pen and writing and thinking about
math problem, overall state would be studying. Thus if robot state is "moving
to shuttle", it could be simultaneously checking sensor inputs for human stepping
into his path and stopping to not hit human or plan path around him. Control
system would be something that tells us what is the robot doing, but under the
hood, multiple processes and programs could be running.

1.1.3 Map
After the robot sensed positions of shuttlecock from visual input, It needs to

remember them somewhere. It could be just a list of coordinates (x,y) or shuttles
relative to the robot, or to some fixed frame. Since robot moves, it also needs
to keep its position in the map, so it needs to have sense of environment around
it. We could give robot a man-made map, but since we want to use it at many
different courts, we want it to create a map itself. This problem of creating map
and localising itself is called Simultaneous localisation and mapping or SLAM [3].

5

It can be solved by various approaches, most commonly probabilistically from
sensors, trying to estimate most probable location given previous sensed parts of
the environment. Things are easier using simpler sensors like ultrasound or 2D
lidar, since there are not many data points to match, and more complicated using
cameras, because then it needs extract only some interesting points (landmarks)
from images to match between frames, since matching many megapixels would
be wasteful and also computationally very hard. Visual SLAM [4] from sequence
of images works then by searching interesting points from each image and then
trying to match them between successive frames and trying to infer position
changed. This is also called visual odometry. Some algorithms also use fact that
many cameras nowadays have inertial measurement unit-IMU built in, so they can
sense direction of where camera had been moving between frames. Many mobile
robots have wheel odometry and this can be used in estimating match between
frames or helpful in estimation of position. Lastly, there is interesting notion of
loop closure, where if robot sensed the same scene two or multiple times, its error
of localisation should get smaller because it knows where it is more accurately,
as opposed thinking of it as new location entirely because it didn’t know it is at
previously visited location.

1.1.4 Planning
In an ideal setting, we would have knowledge about all coordinates of shuttles

relative to some frame (for example map), but since our robot looks at the
world from camera mounted on itself, it only sees part of the world at the time.
Therefore we do not have perfect information about all the shuttle coordinates,
and have to build this knowledge iteratively. We can assume that court is
perfectly flat plane and thus we can only care about (x,y) coordinates.

1.1.5 Movement
Badminton courts are flat surfaces, usually made of rubber, wood or plastic

materials, and are therefore suitable for wheeled robot. We can assume that we
have approximate locations of shuttles from vision system, then we need to process
them using planner to get sequence of positions to visit, i.e. goals. We could use
only one step to plan movement of robot from shuttle positions and map, but
robot movement is usually done with respect to map, we also need to take care
that robot does not go off somewhere or hit anything. If we have a map, then
in this map we can mark safe space for robot, and unsafe. Then we have next
goal to go, and we give it to motion planner and it gives commands for wheels to
robot platform. We could have feedback from wheel odometry and cameras with
respect to map so we can navigate safely.

1.1.6 Visualisation
We would like to visualise input from robot sensors, such as cameras. Images

from cameras would be used to build map for the robot, so we could also visualise
this map in 3D interactive manner. Robot should also be displayed as 3D model.

6

Our objective is to pick up badminton shuttlecocks, so they should be visualised as
well, for example as their estimated location by points or bounding cubes. Because
we want to pick up shuttles as fast as possible, we need to plan shortest path, this
path could be visualised as lines between estimated locations of shuttlecocks. We
do not want robot to hit humans or other parts or environment so differentiation
of safe and unsafe space by colours would be helpful. Visualisation is also needed
for remote control of robot and debugging.

1.1.7 User Interface
For controlling robot, an easy user interface would be necessary. Since our

main goal is to create control system with all the necessary software, we are con-
tent with creating simple user interface using premade controls such as buttons,
sliders, windows and graphs.

1.2 Structure of the thesis
In the second chapter, Background, we describe the game of Badminton,

its rules and history. We describe environment of where robot would operate.

In the third chapter, Related work, we describe already made solutions
that employ autonomous robots from different domains such as agriculture and
other sports.

In the fourth chapter, Analysis, we describe decision process that we used
to select architecture of our control system, which frameworks and technologies
we used and which algorithms we chose to use.

In the fifth chapter, Proposed solution, we present how we designed our
control system. We also detail what 3rd party packages we used and how we
interconnected them.

In the sixth chapter, Implementation, we describe what software and
hardware we developed as part of our solution.

In the seventh chapter, User documentation, we show how to setup robot
for picking shuttlecocks at badminton court.

In the eight chapter chapter, Results, we will present results of training
neural network on our dataset, shuttlecock picking mechanism and other features
of our solution.

In the last, ninth chapter, Conclusion, we summarise what we have achieved
and we will outline the future work that could be done and was not part of goals
of our thesis.

Installation documentation will be presented in the Appendix A. We will
describe necessary software requirements for robot and notebook.

7

2. Background
In this chapter we introduce the game of Badminton. We describe how players

train with many shuttles at once and when the problem of picking shuttles arises
in training. Robots could up speed training substantially by picking shuttlecocks
on the ground instead of humans. We also show what is normal environment for
robot for this task.

2.1 Game of Badminton
Badminton is a racket game for two (singles) or four (doubles) players. It is

played by hitting feathered projectile called shuttlecock by light racket nowadays
made from carbon. Courts have standard dimensions, as shown in Figure 2.3.
For singles court is shorter on sides, and for doubles it is wider. We will not be
going into details of the rules of the game any further since we are interested in
picking up shuttles during training.

2.1.1 Shuttlecock
According to Laws of badminton, published by Badminton World Federation

[5], badminton shuttlecock is made of 16 bird feathers arranged in cone with tips
of feathers glued to cork head (Figure 2.1). It can be also made from nylon or
other synthetic materials, but flight characteristics are different, and they are not
used for serious competition. The tips of the feathers shall lie on a circle with a
diameter from 58 mm to 68 mm. Weight of shuttlecock should be between 4.74
to 5.50 grams.

Figure 2.1: Yonex feather shuttlecock

Shuttlecock is aerodynamically different to balls used in other racket sports
such as tennis, ping pong, or squash. Because of its conical shape and holes
between feathers, it creates small vortices, shown in Figure 2.2, that increases
air drag as it travels further and abruptly decelerates [6]. This means that it

8

hard to predict where shuttle lands, and players have to train for many years to
develop intuition about this.

Figure 2.2: Vortices create drag, from [6]

2.1.2 Badminon court
Badminton court is rectangular area marked by perpendicular lines. Court

for doubles is slightly larger at the sides, similar to tennis. Total length of court
is 13.4m and width 6.1 m [5], shown in Figure 2.3.

Figure 2.3: Badminton court dimensions

9

2.2 Training
Badminton is both skill based and fitness based game. Players spend lot

of time on court practicing and polishing shots and also spend lot of time in
gym working out. Top players at international and national level do multishuttle
training (Figure 2.4), which consists of using many shuttles instead of just one.
This has many benefits such as:

• more pressure to simulate harder opponent,

• more repetitiveness, i.e. player have to smash 20 times, or play netshot 20
times in a row and coach can observe shortcomings or these strokes and
correct them,

• longer exercise to increase stamina

• train explosiveness,

• random shuttle throwing to train reflexes and improve reaction time.

Coach can feed shuttles with more frequency than is normally possible and
therefore creating high pressure situation and increasing players reflexes, fitness
and coordination in process.

Players and coaches can see where shuttles actually land, this is not possible
with one shuttle since it is constantly in play, and in top level of badminton,
centimeters matter. Players think that they are hitting perfect shots to the
sideline and in fact they are hitting well into the court, and seeing where the
shuttle actually lands helps a lot.

Figure 2.4: Picture of Kento Momota from Japan,currently no.1 player in the
world, practicing with former Korean gold olympic medalist, Japan Head Coach
Park Joo-Bong

10

2.3 Shuttle picking
During training, after using many shuttlecocks at once, players have to

manually pick up shuttles and arrange them into rows to be used again in next
exercise. Shuttlecocks are delicate, and since one costs 1-2 euros depending on
the quality, they also have to take care to not damage then unnecessarily in the
picking process. It also takes lot of effort and time to pick them up by hand and
arrange them into rows (Figure 2.5).

We empirically tested how fast can one person arrange 100 shuttles in rows
and it took around 5 minutes. This train-pick pair happen around 4-8 times per
hour depending on how fast coach is feeding, thus the overall time can be up to
two thirds of the actual training time spent.

Players thus spend 2/3 of their time picking shuttles. This time could be spend
for more training. Moreover, amateur players usually have to pay for courts and
therefore this would also save 2/3 of their money.

Therefore if picking of shuttles could be automated, players and coaches could
spend more time practicing or take a break for drinking or talk about next exer-
cise.

Figure 2.5: Hans-Kristian Vittinghus, no. 20 singles player in the world [7],
responds to the author that even pro players like Rasmus Gemke (no. 12) lose
time in training due to slow shuttle picking technique

11

2.4 Environment
Shuttlecock collecting robot will be used on badminton courts, doing its work

alongside humans. This is natural environment for humans, not environment
crafted for robot.

There are environments specifically crafted for robots, such as warehouses as
shown in Figure 2.6. The robots and human worker areas are separated. Robots
thus can roam freely without need of giving care to humans. They navigate
themselves by going by QR codes glued to floor. They arrive at current pod and
deliver it to the humans at the side of warehouse, separated by fence [8].

Figure 2.6: Kiva Robot, now Amazon robotics

Example of robots that works in human/natural environment are robotic vac-
uum cleaners such as Roomba, shown in Figure 2.7. It does not use any artificial
landmarks such as QR codes, but instead it moves randomly or use SLAM.

Figure 2.7: Roomba vacuum cleaner

We will be using our robot on court in the public halls, so we won’t be able
to install birds eye camera, although in future this could be possibility.
We also want to use robot on different courts as shown in Figures 2.8, 2.9. This
means that we cannot use any other cameras stationed on tripod for example, or
birds eye view camera on roof. Every sensor should be on robot.

12

Robot should also adapt to changes in illumination, cast shades, or number
of light sources. Color of the court also shouldn’t pose problem for navigation or
visual recognition of shuttlecocks.

Badminton courts are made from rubber, hard wood, soft rubber, or plastic.
They can cost up to 20 000 euro, thus robot should not be excessively heavy or
make markings when moving or picking shuttlecocks or not damage court surface
or equipment otherwise.

Courts are located in large halls with as much as 20 courts in one hall, so
robot should not venture from his assigned court, it needs to know which courts
he is assigned to, and not disturb players on the other courts.

Figure 2.8: Example of green court
Figure 2.9: Example of hardwood
court

13

3. Related work
In this chapter we present related work. Similar technologies that we listed

in goals in introduction are being used in agricultural robots. Furthermore, mo-
bile robots were created for other sports similar to badminton. We found that
advances in vision correlates to development in robotics. Also cheaper comput-
ers and sensors such as stereo cameras are widening the scientific community
from large corporations such as automobile industry to smaller companies and
universities.

3.1 Fruit picking robots
One field where robots, picking and vision is used, is agriculture, mainly fruit

picking. There is need to visually identify fruit from background to correctly
position the arm with gripper. There is also tendency to select fruits by ripeness,
mainly colour and size is used, for example green tomatoes are not picked, and
red are because red colour is associated with ripeness. Similarly, size of the fruit
could be used, in asparagus, if the sprouts are between some size, they are cut
and picked.

3.1.1 Cucumber picking robot
In 2002, researchers in Netherlands developed cucumber picking robot [9],

shown in Figure 3.1. It takes long time to pick, around 90s. Robot consists of
6DOF robotic arm on the rails. It has camera mounted on end effector.

• Detection of fruit, shown in Figure 3.2, is based on different reflectances
of leaves and cucumbers. 3D localisation is made by taking images from
different position by sliding robot across rails.

• It moves along greenhouse by rails. This also means that it can safely take
pictures from different positions and do 3D reconstruction since it moves
only in one known direction.

• Ripeness is estimated by measuring volume and thus weight from images.
Authors report 95% accuracy of this method.

• Gripper grips cucumber with suction.

• Cuts cucumber with thermal knife, so transmission of viruses is minimised,
and freshness of fruit is preserved.

• Slow - 45s on average to pick a cucumber, 10s is required for commercial
use.

14

Figure 3.1: Cucumber robot Figure 3.2: Segmented cucumbers

3.1.2 Strawberry picking robot
Agrobot E-Series (Figure 3.3) is a robot for strawberry picking devel-

oped in Spain[10]. There is not much information to find about this robot, but
youtube video suggest it works in practice. https://www.youtube.com/watch?
v=M3SGScaShhw

Figure 3.3: Agrobot E-Series

Problem of picking strawberries by robotic hands similar to the Agrobot could
be solved by method developed by Zhang et.al [11]. They applied R-CNN algo-
rithm for detection of strawberries. They also devised method for estimating
picking points, shown in Figure 3.4.

Figure 3.4: Bounding boxes around recongized strawberries with solid points
representing picking points, from [11]

15

https://www.youtube.com/watch?v=M3SGScaShhw
https://www.youtube.com/watch?v=M3SGScaShhw

Picking point (Figure 3.5) was calculated by taking left and right points of
strawberry that collided with bounding box (a and b), then drawing line d,
computing barycenter e. For each countour point c above line they split the
image and tested for similarity. This means that if the fruit is bent from its stem,
picking point found by this algorithm will be off, like the orange strawberry shown
in Figure 3.4. It could be interesting to use deep learning segmentation to also
get stems and choose picking point only located on the stem.

Figure 3.5: Creation of picking points, from [11]

3.1.3 Kiwi picking robot
In 2019 team from New Zealand made kiwi picking robot[12] with four grip-

pers1,2. It is using ROS to manage messages between four grippers (Figure 3.6)
. It is also using R-CNN.

• Robot has four robotic hands, calibrated before running with Diamond
Markers3.

• They use one upward looking camera, from it plan for four harvesting arms
is made so that they don’t collide between themselves.

• Rugged base, in development for at least 10 years.

• Fruit recognition done by adapted VGG-net16 network4. Trained only on
48 hand labeled kiwi images, network was pretrained 5 on PASCAL VOC
dataset[13]. After locating fruit, blob detector is run on each fruit to locate
center of fruit for grippers (Figure 3.7).

1https://www.roboticsplus.co.nz/kiwifruit-picker
2https://www.youtube.com/watch?v=b4L-oMd0yVk
3https://www.docs.opencv.org/master/d5/d07/tutorial_charuco_diamond_

detection.html
4https://github.com/shelhamer/fcn.berkeleyvision.org/tree/master/

pascalcontext-fcn8s
5Further training with custom data with already trained weights: https://stats.

stackexchange.com/questions/193082/what-is-pre-training-a-neural-network

16

https://www.roboticsplus.co.nz/kiwifruit-picker
https://www.youtube.com/watch?v=b4L-oMd0yVk
https://www.docs.opencv.org/master/d5/d07/tutorial_charuco_diamond_detection.html
https://www.docs.opencv.org/master/d5/d07/tutorial_charuco_diamond_detection.html
https://github.com/shelhamer/fcn.berkeleyvision.org/tree/master/pascalcontext-fcn8s
https://github.com/shelhamer/fcn.berkeleyvision.org/tree/master/pascalcontext-fcn8s
https://stats.stackexchange.com/questions/193082/what-is-pre-training-a-neural-network
https://stats.stackexchange.com/questions/193082/what-is-pre-training-a-neural-network

Figure 3.6: Kiwi robot with four
arms

Figure 3.7: Visual output of network
and blob detector

3.2 Plant polination
BrambleBee [14] is robot for plant polination (Figure 3.8). It is using

Clearpath robotics Husky platform [15].

• Interesting approach to recognising flowers, first they ran naive bayes clas-
sifier on pixels, and after extracting patches of possible flower areas they
run neural network to weed out false positives.

• Motion of arm - used MoveIt ROS package[16] and faster trac_ik 6 library

• Did not solve orientation of flowers, only touched ArUco marker instead of
flowers.

• Camera at the end effector to guide visual servoing.

• Velodyne 3D lidar 7 for SLAM inside greenhouse.

Figure 3.8: BrambleBee
6https://bitbucket.org/traclabs/trac_ik/src/master/
7https://velodynelidar.com/products/hdl-32e/

17

https://bitbucket.org/traclabs/trac_ik/src/master/
https://velodynelidar.com/products/hdl-32e/

3.2.1 Pepper picking robot
Arad et.al. developed sweet pepper picking robot SWEEPER [17] using

ROS8 (Figure 3.9) . They also had 4.3 mil. euro funding from European union
9.

• RGB-D camera Fotonic F80 10

• Arm 6DOF FANUC LR Mate 200iD 11

• It used MoveIt [16] ROS package.

• End effector is shown in Figure 3.10.

• Does not use neural networks for pepper detection, but instead use simpler
algorithms that find peppers by color. They rationalize this by faster FPS
which is useful for visual servoing [18].

Figure 3.9: Sweet pepper robot Figure 3.10: Closeup of end manip-
ulator

3.3 Sport mobile robots
Higher level of mobility is needed in sports, because unlike fruit the objects

robot wants to pick are not in the same position, and are not constrained by
environment, i.e. growing from the same tree. Thus they need to have mobile
base, more advanced sensors to accommodate possible dynamic environment, for
example players on court.

3.3.1 Tennis ball picking robot
Wang [19] proposed mobile robot acting as tennis ballboy (Figure 3.11). It is

using ROS and is build on RC car chassis with stereo cameras.
8Robotic operating systemhttps://www.ros.org/
9https://cordis.europa.eu/project/id/644313/results

10Sweden company, appears to be out of business.
11https://www.fanuc.eu/si/en/robots/robot-filter-page/lrmate-series/

lrmate-200-id

18

https://www.ros.org/
https://cordis.europa.eu/project/id/644313/results
https://www.fanuc.eu/si/en/robots/robot-filter-page/lrmate-series/lrmate-200-id
https://www.fanuc.eu/si/en/robots/robot-filter-page/lrmate-series/lrmate-200-id

Figure 3.11: Autonomous robotic tennis ball boy

3.3.2 Golf ball picking robot
Yun, Moon, Ko [20] from South Korea developed mobile robot for picking up

golf balls at golf driving range (Figure 3.12) . It uses wide view camera mounted
on building for getting approximate location of balls, and then computes direc-
tions for mobile robot. Robot has GPS and inertial unit and is using MCL to
localise itself at the gold range. It then pick ups balls with stereo camera on
board into the body of the robot. Several key points: needs supporting infras-
tructure, does not regard obstacles on golf course, primitive ball detection, does
not discriminate between golf balls and other objects.

19

Figure 3.12: Golf ball picking robot from its wide view camera

3.3.3 Autonomous Table Tennis Ball Collecting Robot
In 2017, Yeon et al. [21] developed mobile table tennis robot for picking

balls (Figure 3.13). It has camera, lidar and ultrasound sensors, does not use
other infrastructure like previous robot, in section 3.3.2. It actively navigates
environment to avoid obstacles and can differentiate between table tennis balls
and other similarly shaped objects. It uses vacuum cleaner suction mechanism to
collect balls and can manipulate nozzle to collect balls from tight spots.

Figure 3.13: Table Tennis Ball Collecting Robot

20

3.3.4 Badminton
For badminton, only few manual solutions exist. First one is ProSort CC-

60 12, shown in Figure 3.14, developed by students at Cambridge University[22].
It puts shuttles on strings moving upwards and lets gravity to orient shuttlecock
head downward. It then drops them into the tubes under the string mechanism.
Energy for carrying shuttlecocks on strings takes from wheels.

Figure 3.14: ProSort CC-60 manual picking mechanism.

Similar manual solutions, such as Shuttlecock Collector Machine(SCM)13,
made by students of Politeknik Kuching Sarawak of Malaysia, show in Figure 3.15
and Shuttlecock Collector / Ballsammler14 made by Helmut Siemen of Germany,
shown in Figure 3.16.

Figure 3.15: Shuttlecock Collector
Machine

Figure 3.16: Shuttlecock Collector /
Ballsammler

We were not able to find any existing autonomous robotic solution that pick
shuttles up and arranges them into suitable format for coaches and players to
train.

12https://www.youtube.com/watch?v=cxVtv0ZTztI
13https://www.youtube.com/watch?v=X5Di1ocYQfY
14https://www.youtube.com/watch?v=4hODzsYsZ7A

21

https://www.youtube.com/watch?v=cxVtv0ZTztI
https://www.youtube.com/watch?v=X5Di1ocYQfY
https://www.youtube.com/watch?v=4hODzsYsZ7A

4. Analysis
In this chapter we analyse goals that we mentioned in introduction. We also

discuss what approach should we take in programming the software, and mention
what hardware is available for construction of the robot.

In the section 4.1, Application architecture, we discuss pros and cons of us-
ing robotic middleware. In the following section Hardware we mention available
hardware for our robot. In the last section 4.3, Software, we analyse possible
software solutions for goals we listed in introduction.

4.1 Application architecture
Our application can be programmed by different approaches. In this section

we describe two types of application architectures, we consider their advantages
and disadvantages and describe which one is better suited for our problem.

4.1.1 Monolithic application
Monolithic application is an application performing all the tasks itself. It has

these advantages:

• It is fast, because there is no overhead between passing data around such
as with messages that need to carry additional data, such as header, time
stamp etc.

But it also has disadvantages, such as:

• It is hard to debug, since everything is coupled tighter than modular design.

• It is hard to modify and maintain.

• Most importantly, we would have to reinvent the wheel by programming
already available solutions.

4.1.2 Using ROS
ROS is an open source1 robotic middleware based on distributed computing

using interconnected nodes. [23].
Using ROS has several advantages:

• We can use message passing middleware to interconnect components.

• We can use already created packages, such as packages for controlling
Turtlebot.

• We can use visualising software RViz for visualising output from cameras.

• We can use packages for creating map of environment.
1https://github.com/ros/ros

22

https://github.com/ros/ros

• Sate of the art (SOTA) algorithms are available as ROS packages.

But it also has disadvantages, such as:

• Since packages are made by different authors, modifying already existing
code can be difficult because authors have different coding style, also lack
of tutorials for some packages/libraries.

• It is not easy to set up.

• Software has to be in form of packages.

• Passing data by messages can have processing overhead, such as seriali-
sation/deserialisation. Message passing also takes some time, so real-time
applications can be affected.

We decided to use ROS, mainly because robotic base we have available,
Kobuki platform, has ROS package built, and we can leverage already existing
packages such as mapping, and deep learning, which we will mention in section
4.3

Our goal will be thus to understand third party packages, and develop control
software in form of ROS package, that will:

• recognize shuttlecocks,

• translate them from 2D image space into 3D map positions,

• use knowledge of shuttlecock positions in map to generate a path that robot
will take,

• send commands to the Kobuki base that will result in picking up shuttle-
cocks.

There could be noise in visual sensors and also in ability of neural networks
to detect shuttlecocks. Additionally, there can be imprecision of shuttlecock
positions with respect to the generated map. Another source of noise can be
motors of the robot base, that can cause imperfection in the robot base movement.
We will have to incorporate the assumption of uncertainty when creating the
control software.

4.2 Hardware
We are aiming to use control system on real robot, thus we need to consider

which hardware is suitable for out needs.

There are many embedded computers such as Arduino, Raspberry Pi, Nvidia
Jetsons, etc.

We need computer that will:

23

• be small to be installed on top of a Kobuki robot

• be power efficient, so we can run it with external battery and for prolonged
time

• be sufficiently powerful to seamlessly run ROS,

• be powerful enough to run visual processing such as neural network seg-
mentation and recognition, visual mapping from stereo cameras

We decided to use Nvidia Jetson platform because of better graphic perfor-
mance compared to the other options.

At first we developed on Jetson Nano(Figure 4.1), but it proved not powerful
enough run simultaneously object recognition by deep neural networks, mapping
and other nodes, we acquired Jetson Xavier NX (Figure 4.2), which according
to benchmarks[24] is 10x more powerful in deep learning applications than Nano
(Figure 4.3), and empirically suits our needs.

Figure 4.1: Nvidia Jetson Nano Figure 4.2: Nvidia Jetson Xavier NX

24

Figure 4.3: Performance comparison of Nvidia Jetson computers, from[24]

We summarised relevant data about Jetson kits [25], from:

Name Nano B Xavier NX AGX Xavier
AI perf.1,2 472 GFLOPS 21 TOPS 32 TOPS
GPU 128-core

NVIDIA
Maxwell GPU

384 Volta
CUDA cores
and 48 Tensor
cores

512-core
NVIDIA Volta
GPU with 64
Tensor Cores

CPU Quad-core
ARM® Cortex
®-A57 MPCore
processor

6-core NVIDIA
Carmel
ARM®v8.2
64-bit CPU 6
MB L2 + 4 MB
L3

8-core NVIDIA
Carmel Arm
®v8.2 64-bit
CPU 8MB L2 +
4MB L3

Memory 4GB 64-bit
LPDDR4
25.6GB/s

8GB 128-bit
LPDDR4x
51.2GB/s

32GB 256-bit
LPDDR4x
136.5GB/s

Power cons. 10W 15W 30W
Price 99$ 399$ 699$

1 GFLOPS = giga floating point operations per second
2 TOPS = tera operations per second

25

4.2.1 Sensors
We have available several depth cameras: Stereo Labs ZED[26] camera (Fig-

ure 4.4), Intel Realsense D455[27] (Figure 4.5), Astra Orbecc[28] camera (Fig-
ure 4.6) and Intel Realsense D455 [27] (Figure 4.5). All three cameras supports
Ubuntu 18.04, and have wrappers for ROS Melodic, and their properties are
summarised in Table 4.1.

Figure 4.4: ZED stereo camera.

Figure 4.5: Intel Realsense D455

Figure 4.6: Astra camera

26

Name ZED 1 D455 Astra
Manufacturer Stereo Labs Intel Orbecc
Year 2017 2020 2017
Shutter1 Rolling Global Rolling
Illumination None Laser Laser
RGB resolu-
tion

2208x1242
@15fps

1280 × 720
@30fps

640 x 480 @30fps

Depth resolu-
tion

same as RGB 1280 × 720 @
90fps

640 x 480 @30fps

FOV2 90° x 60° 87° × 58° 60° x 49.5°
Range 0.5 m - 25 m 0.6 m - 6 m 0.6m – 8m
Accuracy < 2% up to 3m < 2% at 4m +/- 3mm @1 m
Power cons. 2W 3W < 2.4 W
Price 449$ 3 419$ 149$

1Rolling shutter reads out pixel values sequentially by rows or columns, resulting in charac-
teristic blur during fast camera motion. Global shutter reads all pixel values at once and does
not suffer from this type of blur.

2Field of view, Horizontal x Vertical in degrees.
3discontinued

Table 4.1: Properties of depth cameras.

4.2.2 Robotic platform
The robotic base we have available, Kobuki (Figure 4.7), is part of the Turtle-

bot 2 ROS project. It is useful because we can use it in simulation in Gazebo.
Turtlebot is long running project of OpenRobotics foundation and ROS commu-
nity.

Figure 4.7: Kobuki robotic base

4.2.3 Other
Kobuki has innternal battery, but for prolonged use we used 40 000mAh Viking

powerbank [29] for notebooks (Figure 4.8) that has suitable adapter for Jetson

27

Xavier.

Figure 4.8: Viking external battery

4.3 Software
In this section we will analyse what software components we need to success-

fully implement:

• control system,

• mapping - localisation,

• vision - recognition,

• planning,

• movement,

• visualisation

• user interface,

• picking.

4.3.1 Control system
Simplest control system for robots are reactive agents such as Braitenberg’s

vehicle [30] (Figure 4.9) or line follower robot (Figure 4.10), where inputs are
mapped directly or tightly to outputs.

28

Figure 4.9: Braitenberg vehicle. Figure 4.10: Line follower.

More complicated control paradigm is SPA (Sense, Plane, Act) implemented
in robots such as Shakey [31], developed in 1960s, where robot has some internal
representation of the world, and can use it to generate more intelligent actions by
reasoning about the world. Problem with robots like Shakey (Figure 4.11) was
that they were slow, and did not respond to dynamic changes in environment.
After plan was generated, it was carried out without direct feedback from sensors.

Figure 4.11: Shakey the robot.

Possible data flow from sensors, through planning to actions is shown in Fig-
ure 4.12.

29

map with
shuttlecock
positions

real world

stereo camera

R-CNN

sensors

RTAB-map

processing
algorithmsdata fusionmove commands for robot base

Figure 4.12: Example of data flow of possible robot in a SPA paradigm.

Next progression of robotic control systems was Subsumption architecture
created by Rodney Brooks[32] in 1986. It was composed of progressively complex
control programs (behaviours) on top of each other. Higher level behaviour
could override lower level behaviour. For example, zeroth level would be collision
evasion, first level wandering, and second exploration.

However, control based on behaviors hit its ceiling, because it proved hard to
create long lasting goals that were difficult to optimize[33].

Next followed architectures that combined reactivity and planning called lay-
ered or hybrid architectures, such as Firbys[34] three layered architecture (Fig-
ure 4.13) that was divided into planning, executive, behavioral layers.

Figure 4.13: Three layered architecture according to Firby, from[34].

30

4.3.2 Shuttle recognition
We need to detect position of shuttles, so our robot can approach them and

pick them up. We will be using visual inputs from camera.

Since shuttles can be scattered across court almost everywhere, we need
reliable and fast method to detect them.

Then we also need to distinguish object of our interest, shuttles, from
background-floor. Our robot could also incorporate human detection to not hit
any players that could be in its vicinity.

Since 2000s there has been interest in using neural networks for vision pro-
cessing, such as classification of numbers by LaCunn[35]. In the 2010s there
have beed numerous advances in computer vision using neural networks, such as
R-CNN[36] (Figure 4.14).

Figure 4.14: Overview of R-CNN architecture.

Modern state of the art neural networks such as YOLOv5 [37] are composed
of many layers, combining convolutional and dense layers (Figure 4.15).

Figure 4.15: Overview of architecture of YOLOv5 neural network, from [37].

31

4.3.3 Mapping
Badminton courts are flat surfaces with marked lines. We could have two

approaches to solving shuttle localization problem. Firstly, we could have up
and running mapping at all times, and detect shuttles from point clouds created
by mapping algorithm. This is very energy and computationally inefficient, and
after the robot picks up shuttle the algorithm need to update place where the
shuttle has been.

Secondly, we could run mapping algorithm to create map of the court without
any shuttles present, and then just mark positions of shuttles as points in map.
This of course has few problems, for example we need to keep track of which
shuttles are which as to not mark them in our map more than once, and we have
lot of similar frames from the camera. We could also assume that nobody will
shuffle shuttle positions behind robots back since that would complicate matters.

4.3.4 Planning
Another step we need to consider is planning of robot motion. Assume we

can give robot coordinates (x, y) where to move, relative to some frame, for
example robot’s map. In this way, if we had list of coordinates of shuttles
[(x1, y1), (x2, y2), ..., (xk, yk)] we could use some TSP solver like integer program-
ming to get shortest path through these coordinates. Of course this does not
consider time constraints such as turning of the robot base. Another problem
is that we have only partial knowledge of the world, i.e. where the shuttles are
located because we look at the world from the view of robot (Figure 4.16). This
could be alleviated if we had camera at the roof looking at the court below, but
this is undesirable because we want to have compact robot that would be usable
at many different places without any difficult and time consuming installation of
cameras.

Robot senses only part of the world

Robot senses the whole world

wifi

Figure 4.16: Partial vs whole view of the world.

4.3.5 Visualisation
We need to visualise output from the sensors of the robot. Mainly for de-

bugging and development, but also during working of the robot. We need to

32

see images from camera, map the robot creates, objects - shuttlecocks the robot
recognizes from environment, path or plan the robot generates to pick up the
shuttles. We would also like to visualize state of the robot, or it’s progress.

4.3.6 User interface
We would like control robot during the mapping, for example by keyboard or

joystick. During working, use command line to start robot, and modify behavior
of robot interactively with mouse or keyboard.

33

5. Proposed solution
In this chapter we describe how we designed control system, what parts it is

composed of, what packages we used. Because our software is implemented as
ROS nodes within ROS framework, we will also describe additional files such as
configuration, model, launch files, URDF files and world files.

In the section 5.1, ROS, we introduce essential ROS concepts, in the sec-
tion 5.2, Gazebo we describe Gazebo simulator and its components. In the fol-
lowing sections we describe goals from introduction, each goal is implemented in
as one or more ROS nodes.

5.1 ROS
ROS is an open source robotic middleware used for speeding up robotic de-

velopment. It provides many useful features as shown in Figure 5.1.

Figure 5.1: ROS equation

Main advantage of using robotic middleware such as ROS is that software
is split into interconnected nodes that communicate with messages over topics.
It is advantageous because we can swap parts such as camera for another one,
the only requirement is that data is still being published on the same topic with
same message type. Each node is run in separate process, therefore this approach
is inherently using parallelism/concurrency1. Nodes are included in packages
which are built using catkin tool which uses cmake. Nodes use publish subscribe
paradigm or service/reply paradigm. Messages are defined in the .msg format
which are then converted to the Python or C++ classes.

We will use RViz 3D rendering program to visualize what robot sees, map,
goals, path etc. Nodes can be run from terminal as normal program, or can be
run by writing launchfile for convenience. Launchfiles can include parameters and
themselves can be included in other launchfiles. Last part is Gazebo, which we
will describe in next section.

1In literature, parallelism usually means computation on multiple cores, while concurrency
means computation using multiple threads running on one core. For example, Jetson Xavier
has 6 ARM cores, and since we are running programs as separate nodes, we are using available
resources that we get from multi-core CPU.

34

5.2 Gazebo
Gazebo [38] is a robotic simulator with physics engine (ODE) with 3D ren-

dering capability, now independent of ROS. Robot inputs from simulated envi-
ronment, such as cameras, odometry, lasers are supplied by writing C++ plugins
inside Gazebo, which publishes corresponding messages over topics that we can
use for programming the robot. If published topics and simulated physics are
somewhat similar to real sensors and real physics, we can use same or slightly
modified software for both simulated and real robots.

Environments in Gazebo are called worlds2 and are specified by writing XML
files in SDF format.

Because we need to test algorithms before we apply them to a real robot, we
will use simulated robot in a simulated environment. For this we will use Gazebo
simulator [39], which has ROS integration via gazebo_ros 3 package. Gazebo is
designed to be separate from ROS, and can be controlled programmaticaly using
plugins4. Plugins are also used to generate sensor data for robots, and can be
used to control the world5.

5.2.1 Preparing the simulation
We designed few worlds that will serve as a test environment for our simu-

lation. We downloaded free models such as badminton court, shuttlecock and
bench from the internet and modified them in Blender to decrease vertex size
because our computing platform is very limited. We will describe this more in
section 6.6, Gazebo simulation. Robots are usually spawned in from launchfile
and their models are not included in SDF.

5.3 Control system
For controlling behaviour of the robot, we could use state machine, which

are similar to finite state machines [40],[41]. Possible state machine is shown in
Figure 5.2.

2http://gazebosim.org/tutorials?tut=build_world&cat=build_world
3http://gazebosim.org/tutorials?tut=ros_overview&cat=connect_ros
4http://gazebosim.org/tutorials/?tut=plugins_hello_world
5http://gazebosim.org/tutorials?tut=plugins_world_properties&cat=write_

plugin

35

http://gazebosim.org/tutorials?tut=build_world&cat=build_world
http://gazebosim.org/tutorials?tut=ros_overview&cat=connect_ros
http://gazebosim.org/tutorials/?tut=plugins_hello_world
http://gazebosim.org/tutorials?tut=plugins_world_properties&cat=write_plugin
http://gazebosim.org/tutorials?tut=plugins_world_properties&cat=write_plugin

Idle

Planning

picking up
shuttle

going to the
next shuttle

Unloading

Figure 5.2: Example of possible state machine of the robot.

We could design more complicated state machines, for example: "If you picked
10 shuttles, go to location of unloading".

5.4 Mapping and localisation
For the robot localisation and mapping we chose open source ROS package

RTAB-Map[42]. It is a graph-based SLAM approach[43]. It supports inputs from
stereo and RGB-D cameras (Figure 5.3) and outputs pose and occupancy grid
map which we can use in navigation. To create map, we first need to drive robot
around environment to get images from which RTAB-Map constructs graph
nodes used in localisation. Images are compared using SIFT or SURF algorithms
for matching features. Algorithm also takes input odometry from the robot or
can use RGBD visual odometry from camera. If the match between images is
found, RTAB-Map creates link - loop closure (Figure 5.4). During the mapping,
many loop closures can be found and algorithm tries to minimise error with
respect to the measurements - images and their extracted features. In Figure 5.5
is shown setup of RTAB-Map node on a robot. RTAB-Map is widely used by
ROS community [42] for mapping and localization with RGBD cameras, and
its performance was evaluated experimentally [44]. We found its performance
suitable for our solution.

36

Figure 5.3: Survey of ROS compatibile SLAM packages, table from [42].

Figure 5.4: Loop closure detection in RTAB-Map viewer

37

Figure 5.5: Setup of RTAB-Map node on a robot, from [45]

5.5 Navigation and Planning
If we knew position of shuttlecocks in advance, we could plan optimal path

between n shuttlecock. This would be equivalent to Travelling salesman problem.
Because field of view of camera is limited and we are viewing world from low
position instead of birds eye view, we can’t plan in advance optimal path of the
robot on court. We can only estimate position of shuttlecocks we see in front
of the robot. Therefore if we see a shuttlecock, we estimate its position relative
to robot and send command to planning node to generate path to it. ROS has
already available planning package move_base which we will use and which can
use data from RTAB-Map mapping package (Figure 5.6).

Figure 5.6: Navstack with RTAB-Map.

Global planner (Figure 5.7) plans path from A to B using Dijkstra algorithm.
This is done on squared grid called occupancy grid. In ROS nav_msgs/occupancy
grid has three values, -1, 0 and 100. Unknown space is represented as -1, 0 is free
space and 100 is occupied space.

38

While planning algorithms such as Dijkstra works in other domains such as
computer games to create path from A to B, in real world robot would need to
spin it’s motors to follow the path. This is accomplished by local planner, in ROS
Navstack this is dynamic window approach which simulates few trajectories using
forward and angular velocities. Output of local planner are velocity commands,
which are fed to move_base package that is abstraction of a robot.

Other thing which navstack keeps care of, is that if we have small robot, let’s
say 10 cm in diameter, and larger robot such as our Kobuki, which has diameter
of 40 cm, the paths cannot be the same because smaller robot could pass closer
to the wall and between obstacles than Kobuki could. This is solved by using
costmaps with inflation (Figure 5.8) which inflates larger area around obstacles
by robot’s diameter. Programmers can also use costmaps to modify the behaviour
of planning by altering the cost of cells. We will use this functionality to mark
areas of map that robot can use or should avoid, such as not going to another
court, more in subsection 6.8.1.

Figure 5.7: Path planning by global
planner from package move_base,
from [46].

Figure 5.8: Inflation of obstacles
(red dots) from Occupancy grid,
from [47].

5.5.1 Mapping
If we want to give robot movement position commands such as go to position

(x,y), we need a map. Map for given environment can be created with ROS
package RTAB-Map. This needs to be done manually before autonomous robot
driving on court. After the map is created, we turn off mapping, map will be
saved for later use to a database. We then can use this map for localization.

5.6 Movement and shuttle picking
Our robotic base Kobuki has two motors. We could send movement signals

directly to the motors, from the output of the camera. This approach is called
reactive (mentioned in subsection 4.3.1), and does not use map of the environ-
ment. In this case it could happen that robot could run off to neighbouring court
because he saw shuttlecock there, and since he has no notion of map, nothing
would prevent it from doing so.

The other approach is that robot has map of environment and he generates
position of the shuttle respective to the map from the camera. This position is
then transformed to goal for move_base package. This package generates plan

39

consisting of velocity commands for robot wheels. This is advantageous because
robot can detect obstacles and modify plan so it doesn’t hit anything. It has
disadvantage that it could identify shuttlecocks as obstacles, therefore avoiding
them.

5.7 Computer vision
We need to recognise shuttlecocks from visual input and represent them in a

way that robot can generate movement commands to pick them up. We should
be able to recognize shuttlecock on different ground colors (Figure 5.9). Our
input is simulated RGB and depth cameras in Gazebo simulation. In real life
we got depth information from stereo camera that is produced by merging data
from left and right cameras. In ROS this information is produced by Gazebo plu-
gin and in real world by camera drivers by publishing sensor_msgs::Image6 for
image data and sensor_msgs::PointCloud2 7 for depth information, called point
clouds. Point cloud is an array of n-dimensional points, usually 3 or 6 dimen-
sional such as (x, y, z) for position or (x, y, z, r, g, b) with added colour informa-
tion8. Fortunately, camera drivers output point clouds in organised point cloud9

format, meaning points from depth camera are organised as 2D matrix row-major
order in the array, and can be accessed by (x,y) indexing.

6http://docs.ros.org/en/api/sensor_msgs/html/msg/Image.html
7http://docs.ros.org/en/api/sensor_msgs/html/msg/PointCloud2.html
8http://pointclouds.org/documentation/structpcl_1_1_point_x_y_z_r_g_b.html
9https://pcl.readthedocs.io/projects/tutorials/en/latest/basic_structures.

html

40

http://docs.ros.org/en/api/sensor_msgs/html/msg/Image.html
http://docs.ros.org/en/api/sensor_msgs/html/msg/PointCloud2.html
http://pointclouds.org/documentation/structpcl_1_1_point_x_y_z_r_g_b.html
https://pcl.readthedocs.io/projects/tutorials/en/latest/basic_structures.html
https://pcl.readthedocs.io/projects/tutorials/en/latest/basic_structures.html

(a) Blue court (b) Orange court

(c) Green court (d) Wooden court

Figure 5.9: Example of different court colors and materials.

5.7.1 Object recognition
For shuttle recognition we will use library for neural network inference, de-

veloped by Nvidia, jetson-inference10. They also developed ROS node for this
library 11.

Input for the detection are sensor_msgs/Image messages. Neural network
outputs detected objects as vision_msgs/Detection2DArray12.

5.7.2 Training neural network
Training consists of feeding data of the form (xtrain, xtarget) to the training

algorithm and tweaking weights of the neural network by backpropagation. We
have several choices for creating datasets. We could use already created network
and hope that it generalizes to the new objects, but this usually does not work at
all. Another option is to use pretrained network for similar purposes, and then
retrain it with more examples, this time with shuttlecock images and rectangles
by hand.
Third option is to create dataset synthetically [48], i.e. in some modelling pro-
gram, if done correctly, can be huge benefit to training algorithm (Figure 5.10).
It is because we could in theory generate large amounts of training data. The

10https://github.com/dusty-nv/jetson-inference/
11https://github.com/dusty-nv/ros_deep_learning
12http://docs.ros.org/en/melodic/api/vision_msgs/html/msg/Detection2DArray.

html

41

https://github.com/dusty-nv/jetson-inference/
https://github.com/dusty-nv/ros_deep_learning
http://docs.ros.org/en/melodic/api/vision_msgs/html/msg/Detection2DArray.html
http://docs.ros.org/en/melodic/api/vision_msgs/html/msg/Detection2DArray.html

problem with this is that we would have to generate training data as closely
resembling the real world as possible, in various instances that could arise in the
real world.

Figure 5.10: Example of synthetic dataset, from [48].

Since generating synthetic datasets is computationally very intensive, we will
create smaller datasets by hand i.e. several hundred photos of shuttlecocks and
their true positions.

5.7.3 Position estimation
We get bounding box of shuttlecock from neural network node. This is in-

formation about position of shuttlecock in 2D space, and we will merge this
information with depth points in 3D space, acquired from depth camera. Since
depth points are organised into 2D matrix format, we can take rectangle of points
corresponding to the shuttlecock from the point cloud message.

5.8 Visualization

5.8.1 RViz
RViz (ROS Visualization) is a 3D visualization tool for displaying data from

topics in ROS. It is composed of windows letting us display all necessary messages
that robot gets and uses. It can visualise 3D data such as point clouds, 2D
image data from camera and image processing nodes, and also display navigation
information. It also allows us to visualize data for localisation such as map, robot
model, local plan, global plan, and markers for shuttlecock positions.

Specifing robot in URDF

URDF13,14 is an XML format for specifying models of robots. We need it for
both simulation and using robot in real world. Especially we need to set relation-
ships between robot parts, such as wheels, chassis, camera, or other sensors and
actuators. This is essential since we need to know position of data with respect
to some origin, such as sensor or centre of robotic base, and we need to establish
relationship between parts to easily transform between coordinate frames. This

13http://wiki.ros.org/urdf
14http://gazebosim.org/tutorials?tut=ros_urdf

42

http://wiki.ros.org/urdf
http://gazebosim.org/tutorials?tut=ros_urdf

is done by specifying links and joints in URDF. For example, if the camera sensor
is in front of the robot, distance to objects would be different than to centre of
the robot, or its actuators.

Fortunately, there are pre-build URDFs for Kobuki and ZED camera, the only
thing we need to specify is relationship between Kobuki and ZED camera. We
measured this using meter and found out that ZED origin is offset by 0.15 m in
x-axis and 0.15 m in z-axis. This can be set in ZED launch file15 which passes
parameter to xacro macro.

5.9 Shuttlecock picking
Shuttle picking could be done by arm (Figure 5.11) or by rotary mechanism

(Figure 5.12) as manual solutions mentioned in chapter 3. Robotic arms, such as
popular (Figure 5.11) shown in low cost are slow, and are also costly and quite
heavy on small robotic platforms such as Kobuki we are using. They also require
additional power. They would also increase complexity of the system. This
is because they would need precise manipulation (so that it does not damage
shuttlecock) based either on visual servoing of the end effector, or planning with
software packages such as MoveIt. This would increase complexity of system
drastically and would also take it longer to pick shuttles. On the other hand
rotary brushes are relatively simple to maintain, does not require any additional
planning or AI methods. Biggest advantage of brushing system is that that we
don’t need to know position of shuttlecock exactly, because brush is wide,
we can have some room for error and thus make whole system more reliable,
even if we estimate position of shuttlecock with some error, as long as it is within
width of the brush, we can still pick it up. After considering all above mentioned
points, we chose simpler solution based on rotating brushes.

Figure 5.11: PincherX 100 Robot
Arm by Trossen robotics

Figure 5.12: Example of brushing
mechanism

15https://github.com/stereolabs/zed-ros-wrapper/blob/master/zed_wrapper/
launch/zed.launch

43

https://github.com/stereolabs/zed-ros-wrapper/blob/master/zed_wrapper/launch/zed.launch
https://github.com/stereolabs/zed-ros-wrapper/blob/master/zed_wrapper/launch/zed.launch

5.10 User interface
Because the robot is autonomous, user interface is using commands in com-

mand line. Another option is to monitor robot outputs in RVIZ and optionally
set commands and goals through clicking on map or other UI elements.

44

6. Implementation
In this chapter we describe parts of proposed solution that we developed our-

selves, that is visual processing, visualisation for RViz, control system, models
needed to run simulation and other files, such as training data for neural net-
work and .stl files for 3D printer, and how to assemble them for working picking
mechanism, and programs used for manipulation of allowed and detection areas
in RViz.

6.1 Launchfiles
Launchfiles are XML files in ROS ecosystem used for running nodes, or recur-

sively other launchfiles. After we type following command into terminal:

roslaunch shuttlebot_control gazebo_all.launch

Roslaunch command finds gazebo_all.launch roslaunch file inside package
shuttlebot_control, and runs in order launchfiles shuttlebot_gazebo.launch,
dl_gazebo.launch and nodes image_processing and point_draw.py.

<launch>
<include file="$(find

shuttlebot_control)/launch/shuttlebot_gazebo.launch" >↪→

</include>

<include file="$(find shuttlebot_control)/launch/dl_gazebo.launch"
>↪→

</include>

<node pkg="shuttle_distance_estimation" name="image_processing"
type="image_processing"/>

<node pkg="shuttlebot_control" name="point_draw"
type="point_draw.py"/>↪→

</launch>

6.2 Neural network
Neural networks need data for training. In this section we describe process of

acquiring data from camera mounted on moving robot, cleaning and annotating
of data, and lastly deployment of trained model using ROS node within docker
container.

6.2.1 Data acquisition
Data acquisition was done on badminton courts with camera mounted on

robot with position that would be similar on a robot during deployment. We
acquired some data with ZED camera (Figure 6.1), and rest of the data with
Intel D455(Figure 6.2) because it has better image quality, and also has global

45

shutter, which means that fewer images are blurred while the robot is moving.
Both cameras have 1280×720 resolution. After we recorded data from camera, we
used free and open source photography program Darktable1 to remove duplicated
and other low quality images. First dozens of images (recorded with ZED camera)
were created by putting shuttles at various positions by hand with static robot,
but after looking at images, we came to conclusion it would be more natural if
the robot was moving and shuttles would fly and drop around robot, similarly at
what would happen during training with players and trainer. Thus, we let the
robot move and threw shuttles it its field of view, while we had running scrip
that would capture and save images every few seconds to disk. After a dozen
of passes robot around court we stopped robot, and analysed and annotated
pictures. This process was repeated on multiple days with hundreds of photos
recorded each time. We also used different courts, to capture more variety for
background for training. As for court color, we recorded around 70% of photos
of blue court, and rest on the green court to show that neural network trained on
one court colors can detect shuttlecocks independently of court color, but that it
is not hard to add more data of different courts, and we can still utilize neural
network we trained before to help us with new data annotation.

Figure 6.1: Image from ZED camera. Figure 6.2: Image from D455 cam-
era.

6.2.2 Dataset creation
We acquired data for neural network training by taking images of shuttlecocks

from multiple angles and under different lightning conditions. We created simple
shell script that would take pictures at determined intervals and drove robot
around. Another method that we employed and can be used successfully is to
record rosbag and extract images from it. We gathered data over multiple days,
on various blue and green courts on different times of day. Although courts are
usually indoor, there could be (and are) reflections from sunlight from windows
that are not present at other times (night). Since we want to get rectangle of
where shuttle is in the image, we have to provide a rectangle ourselves with which
we train the network, as shown in Figure 6.3.

For annotation of data we firstly used simple tool provided with jetson-
inference2, but we quickly found out that it is too limiting for annotation of
larger datasets.

1https://www.darktable.org/
2https://github.com/dusty-nv/jetson-inference/blob/master/docs/

pytorch-collect-detection.md

46

https://www.darktable.org/
https://github.com/dusty-nv/jetson-inference/blob/master/docs/pytorch-collect-detection.md
https://github.com/dusty-nv/jetson-inference/blob/master/docs/pytorch-collect-detection.md

Figure 6.3: Creating dataset manually for object detection by simple annotation
tool.

More sophisticated tool that we used later on for annotating, is free and
open sourced CVAT -Computer Vision Annotation Tool developed by Intel [49].
CVAT is a web based tool, but publicly available online version limits usage
to 500mb of data and 10 tasks3, which we eventually exceeded. Therefore we
installed CVAT locally on our machine (Figure 6.4). Another useful feature of
CVAT is that we can use various models for aiding of dataset creation. We used
MIL tracker, SIAM mask and lastly, we used our own neural network trained on
shuttlecocks to detect shuttlecocks. Although CVAT is able to export annotated
datasets in various formats, we needed to create a script that would transform
exported dataset from similar format to a specific format that neural network
training programs accepts. In figure Figure 6.5 we shows unnanotated picture
with multiple shuttlecocks, figure Figure 6.6 shows annotated picture.

Figure 6.4: Self-hosted version of CVAT.
3Task is a set of images, we structured tasks to correspond to different days and courts.

47

Figure 6.5: Picture taken from cam-
era on real court, not yet annotated.

Figure 6.6: Same picture, manually
annotated in CVAT.

After training first NN model on images, we deployed and run it on robot.
We quickly noticed that model detected shapes that looks like shuttlecock, but
are not, such as white circular reflections (Figure 6.7a), badminton net holder
(Figure 6.7b), white electrical socket (Figure 6.7c) or author’s white socks (Fig-
ure 6.7d). After gathering more data with these false positive examples, we
trained neural network again, this time adding these edge cases to the training
set.

(a) Reflections of lights (right) (b) Net holder.

(c) White power socket. (d) Bright white socks.

Figure 6.7: Examples of false positives in CVAT after autolabelling with neural network
trained on first few hundreds of images.

48

6.2.3 Deployment on robot
We are using Ubuntu 18.04 with ROS Melodic Morenia which has packages

built with Python version 2.7. Because we want to use state of the art libraries
for training and inference of neural networks which run on Python 3, we have two
options. We could either try to port all the other packages that we developed
and used before to Python 3 and use ROS Noetic (which natively uses Python 3),
or use Python 2.7 as same as before and isolate neural network with Python 3.
We chose latter variant, because lot of packages were not yet available for ROS
Noetic during development of the robot, such as packages for Kobuki, SMACH,
and others.

One type of "isolation" we chose, is to use Docker containers. This is relatively
streamlined approach, because all the code we developed and tested before stays
intact running natively on machine, and new code that needs Python 3 and
other dependencies is neatly isolated in a container. This way, we can run our
ROS Node with Python 3 inside container, with all the dependencies it needs.
Nvidia Jetson allows using underlying CUDA cores from the docker containers
with NVIDIA Container Runtime on Jetson4.

Docker containers are build from Dockerfiles, which are text documents
describing insctructions to build an image that is run as container. Following
is excerpt from dockerfile we used to build image with ROS Noetic, Pytorch,
YOLOv5, our ROS node and other necessary libraries:

ARG BASE_IMAGE=nvcr.io/nvidia/l4t-pytorch:r32.7.1-pth1.10-py3
FROM ${BASE_IMAGE}
ARG ROS_PKG=ros_base

ENV ROS_DISTRO=noetic
ENV ROS_ROOT=/opt/ros/${ROS_DISTRO}
ENV ROS_PYTHON_VERSION=3
ENV DEBIAN_FRONTEND=noninteractive
WORKDIR /workspace

6.3 Visual processing
Visual processing is implemented by image_processing node

in image_processing.cpp. It has three subscribers on:

• /detectnet/detections topic, which listens to messages of type
vision_msgs::Detection2DArray

• /camera/rgb/image_raw which listens to messages of type
sensor_msgs :: Image

• /camera/depth/points which listens to messages of type
sensor_msgs :: PointCloud2

4It is installed by default on Jetson devices. https://github.com/NVIDIA/
nvidia-docker/wiki/NVIDIA-Container-Runtime-on-Jetson

49

https://github.com/NVIDIA/nvidia-docker/wiki/NVIDIA-Container-Runtime-on-Jetson
https://github.com/NVIDIA/nvidia-docker/wiki/NVIDIA-Container-Runtime-on-Jetson

Normally, every subscriber has its own callback function, but since we want to
combine them, we use Synchronizer from message_filters5 package. Since mes-
sages have different time arrivals, we combined them into one callback function
using message filter Time Synchronizer6 with ApproximateTime7 policy.

Since these are two independent messages and are likely to have different
timestamps, we will use time synchronizer to combine them into one callback.
We than cut off points that are far behind shuttlecock (Figure 6.8), and compute
average of the points using centroid8 method of the pcl9 library that we are using
for manipulating with point clouds.

Figure 6.8: Neural network bounding box vs. point cloud. Some points inside
bounding box are far behind shuttlecock.

This gives us relatively accurate estimate of shuttlecock’s position, shown in
Figure 6.10, compared with Figure 6.9. The point we got is in optical frame of
the camera, we only need to set header of the point to this frame, and ROS tf
system will compute the position in map frame for us. We can then set z value
to 0, as to project it to the ground.

Figure 6.9: Shuttlecock in front of
robot, inside Gazebo.

Figure 6.10: Estimated position of
shuttlecock, from RViz

5http://wiki.ros.org/message_filters
6https://docs.ros.org/en/api/message_filters/html/c++/classmessage_

_filters_1_1TimeSynchronizer.html
7http://wiki.ros.org/message_filters/ApproximateTime
8https://pointclouds.org/documentation/classpcl_1_1_centroid_point.html
9https://pointclouds.org/

50

http://wiki.ros.org/message_filters
https://docs.ros.org/en/api/message_filters/html/c++/classmessage__filters_1_1TimeSynchronizer.html
https://docs.ros.org/en/api/message_filters/html/c++/classmessage__filters_1_1TimeSynchronizer.html
http://wiki.ros.org/message_filters/ApproximateTime
https://pointclouds.org/documentation/classpcl_1_1_centroid_point.html
https://pointclouds.org/

Positions of multiple shuttlecocks estimated on a real court (Figure 6.11).

Figure 6.11: Multiple detected shuttlecocks on real court (top left) with estimated
positions (right).

6.4 Visualisation
Shuttlecock position visualisation is done by point_draw ROS node in

point_draw.py file.

class Visualize_node:
def __init__(self):

self.node = rospy.init_node('point_draw', anonymous=True)
self.sub =

rospy.Subscriber('/marker',Point,self.visualize_point)↪→

self.pub = rospy.Publisher('shuttlebot_points', MarkerArray,
queue_size=10)↪→

rospy.spin()

def visualize_point(self,point):
marker_array = MarkerArray()
marker_array.markers.append(create_rviz_marker(point))
self.pub.publish(marker_array)

Where create_rviz_marker(point) method takes Point and outputs array of
Markers10 which are RViz visualisation objects.

6.5 Control system
Our control system is composed as a state machine, using of SMACH11, a

library for task-level execution and coordination in ROS.
10http://docs.ros.org/en/api/visualization_msgs/html/msg/Marker.html
11http://wiki.ros.org/smach

51

http://docs.ros.org/en/api/visualization_msgs/html/msg/Marker.html
http://wiki.ros.org/smach

SMACH state is a Python class. We can specify inputs and outputs of a
state. Transition between states is done by implementing execute method. In
comparison to finite state machines from Automata theory, SMACH states are
not fixed description of the world, but can do any computation inside them [50].

For picking one shuttle, we can design following state machine. It consists
of states IDLE12 (Shown in green in Figure 6.12) and COLLECTING and out-
comes13 failed_picking and picked (Shown in red in Figure 6.12).

At start, state machine is in state IDLE, and waits for messages from vision
system. When it gets message about detected shuttlecock, consisting of (x,y)
position in map frame, it passes this information to the next state COLLECTING
using transition got_msg.

Figure 6.12: System is in first state, IDLE.

In the state COLLECTING (Shown in green in Figure 6.13), (x,y) coordinate
of shuttlecock is transformed into the move_base14 action and system waits for
the result. If the robot is successful and picks the shuttle up by moving the robot
base, state machine uses transition success and goes to the picked outcome.

12According to SMACH convention, states are named with uppercase.
13In SMACH, state machines can be nested, outcomes can serve as transition from sub state

machine to higher level machine.
14http://wiki.ros.org/move_base

52

http://wiki.ros.org/move_base

Figure 6.13: System is in second state, COLLECTING.

6.5.1 Concurrent container in SMACH
In SMACH, we can simulate concurrent run of few states using concurrent

container. We can use this to check for detections while keeping track of naviga-
tion. Of course this is only formalism of this particular implementation of state
machines, and there are more processes running in background such as naviga-
tion, neural networks, visual processing, allowed area node, detection area node
etc. We could also create our own large state encompassing all the functionality
of the few states that we want to run concurrently, but we think it is better to
use multiple small states in concurrent container that one large state that could
be run without it.

In this way, we can listen for commands in one state, while communicating
with ROS nodes in other state. Of course, we don’t want and need all function-
ality to be inside SMACH states. Nodes such as RTAB-Map, YOLO, rosserial,
and Kobuki nodes will be running at all times outside of the state machines.
Ephemeral nodes, such as blinking LEDs on Kobuki or playing sound can hap-
pen inside SM states.

6.5.2 Control System
Shuttlecock picking by state machines in SMACH can be done as shown in

(Figure 6.14). Robot starts at IDLE state, and when it gets command to work,
it enters concurrency state called SM_PATROL. In this concurrency state are
three states SM_STOP which listens for user commands, SM_DETECT which

53

listens for shuttlecock detections, and SM_NAV which keeps track of waypoint
navigation. If SM_DETECT gets message from visual processing with esti-
mated point of shuttlecock, it terminates with outcome ’got_msg’ and passes
this point to the COLLECTING state which starts brushes of picking mecha-
nism and sends goal with passed position to move_base node. After move_base
report that goal has been reached, it turns off brushes and goes back to concur-
rency SM_PATROL state which resumes waypoint navigation and listneing for
detections in SM_DETECT state. After we collect given amount of shuttlecocks,
we use state SM_STOP to go to HOME_POSITION which again sends goal to
move_base and upon reaching waits for emptying by human by going to state
IDLE. This process repeats until all the shuttlecocks are collected or we turn off
the control system.

Figure 6.14: State machine of shuttlecock picking.

6.6 Gazebo simulation
For development and testing of our solution, we created multiple worlds for our

simulation in the Gazebo simulator (Figure 6.15). Simulation consists of building
a world populated with models with visual and physical attributes such as mesh,
mass, inertia, etc. Gazebo uses physics engines such as ODE[51] to simulate
physics, and OGRE[52] engine to draw 3D graphics. We already mentioned parts
of gazebo in section 5.2. World is a XML file in SDF [53] format. It is specified
by world tag. Inside it we can place models which are also files in SDF format.

<sdf version='1.6'>
<world name='default'>
<!-- populated with models -->

54

</world>
</sdf>

Figure 6.15: Gazebo world.

Models are also specified in SDF format. Necessary parts for Gazebo simulator
models are physical properties such as inertia, mass, staticness.

Mesh is the actual 3D data of the model, i.e. information about vertices,
edges, faces, textures etc. It is in Collada .dae [54] format.

6.6.1 Gazebo Plugins
Gazebo plugins15 are shared libraries written in C++ used to control parts

of simulation. There are 6 types of plugins, we will use world plugin that attaches
to the world, and sensor plugin which attaches to link of a model and produces
data that can be further used in simulation.

6.6.2 Sensor plugin for picking shuttlecocks
To simplify picking shuttles in simulation, as mentioned in section 5.9, we

created a sensor plugin for Gazebo. It’s function is, when robot touches the
shuttle, we delete it from simulation and count it as picked up, for simplicity.

We do this by creating contact plugin16 for contact sensor17. Gazebo is using
similar message system as ROS. Messages are published on topics, and are using
publish/subscribe paradigm. Contacts are published on shuttle_contact topic.

This is done by detecting collisions between models.
One thing we need to be wary of is that robot should not go into some weird

state when it touches shuttle. i.e. shuttle needs to disappear before it triggers
any Kobuki’s collision avoidance system (for example by touching bumpers). To
do this, we added collision cylinder (Figure 6.16) to Kobuki’s model by modifying
original URDF.

15http://gazebosim.org/tutorials?tut=plugins_hello_world&cat=write_plugin
16http://gazebosim.org/tutorials?tut=contact_sensor
17http://osrf-distributions.s3.amazonaws.com/gazebo/api/9.0.0/classgazebo_1_

1sensors_1_1ContactSensor.html

55

http://gazebosim.org/tutorials?tut=plugins_hello_world&cat=write_plugin
http://gazebosim.org/tutorials?tut=contact_sensor
http://osrf-distributions.s3.amazonaws.com/gazebo/api/9.0.0/classgazebo_1_1sensors_1_1ContactSensor.html
http://osrf-distributions.s3.amazonaws.com/gazebo/api/9.0.0/classgazebo_1_1sensors_1_1ContactSensor.html

Figure 6.16: Contacts (pointed by arrow) detected between shuttle model and
collision element (in orange).

We then attached this cylinder to base link of the robot.

<joint name="bounding_joint" type="fixed">
<parent link="base_link"/>
<child link="cylinder_link"/>
<origin xyz="0.00 0.0 0.0" rpy="0 0 0"/>
<axis xyz="0 0 0"/>

</joint>

Because we want to use this bounding cylinder to detect collisions but
be "contact-free" to remove shuttle before it touches the robot, we use col-
lide_without_contact property of contact tag. We care only about collisions of
cylinder with shuttlecocks, so we set same collide_bitmask18 on both models19.

<contact>
<collide_without_contact>1</collide_without_contact>
<collide_bitmask>0xf000</collide_bitmask>

</contact>

6.7 Picking system
In this section we describe development of picking mechanism used on real

robot and what materials and parts we used during development. Fully working
version which we will describe in this section is shown in Figure 6.18.

18http://gazebosim.org/tutorials?tut=collide_bitmask&cat=physics
19Links to be precise

56

http://gazebosim.org/tutorials?tut=collide_bitmask&cat=physics

Figure 6.17: Early version of picking
mechanism.

Figure 6.18: Finished, working pro-
totype of picking mechanism.

Our first version, (Figure 6.17), was using only 3D printed parts which proved
too weak, especially parts extending forward from robot and holding the weight
of brushes. Since 3D printing large parts is time consuming, there is also limit
to strength of parts in particular dimensions and also space limit imposed by 3D
printing bed of 3D printer. We therefore used L aluminium profile for holding
other, 3D printed parts. Aluminium is strong, compared to PLA20 plastic used
for 3D printing, and is not prone to bending. We used the L profile as scaffold to
support 3D printed parts holding brushes, which we had to design from scratch.
We used Kobuki hardware drawings[55], shown in Figure 6.19, to drill holes into
L profiles and attached them to Kobuki frame, (Figure 6.20).

Figure 6.19: Kobuki drawing, with
marked holes used for attaching L
profiles, image from [55].

Figure 6.20: Aluminium L pro-
files with drilled holes, attached to
Kobuki robot.

Rotating brushes for our picking system are commonly used for cleaning radia-
tors at homes21. We chose these because they are somewhat available at common
hardware stores, they are cheap, and we could try multiple versions. We settled
for small diameter brush with harder bristles for lower brushes and brushes with
softer bristles for upper brushes. Brush availability at hardware stores proved to
be essential, because from 20+ brushes we examined, only 2 were of sufficient

20https://en.wikipedia.org/wiki/Polylactic_acid
21https://www.obi.cz/cistici-pristroje/kartac-na-radiatory-dlouhy/p/2718716

57

https://en.wikipedia.org/wiki/Polylactic_acid
https://www.obi.cz/cistici-pristroje/kartac-na-radiatory-dlouhy/p/2718716

quality, i.e were not bent and had fairly straight steel core that can be used as
axle for rotating by motors.

We adapted brushes in following way. Firstly, we cut steel core to suitable
length with steel cutting wheel22, then we cut off bristles with scissors. Next, we
sanded off remaining hairs with sanding drum23 and then polished it with sanding
disc24, resulting axle shown in Figure 6.21. Lastly, we applied thin layer of hot
glue so that axle would fit the ball bearing, (Figure 6.22).

Figure 6.21: Cut and sanded steel
core of the brush.

Figure 6.22: Brush after applying
hot glue to the core.

6.7.1 3D printed parts
In second version of picking mechanism we used aluminium L profiles instead

of 3D printing. This allows us to create smaller modular 3D printed parts that can
be affixed to L profile. Repository for all 3D printed parts we created is at: https:
//github.com/martinerk0/shuttlebot_3dprints. We created parts that can
be moved along the L profile, allowing us to experiment with various brush
configurations and to fine tune picking mechanism. We call them L slider, shown
in Figure 6.23 and Figure 6.24.

Figure 6.23: Slim L slider, used
connected to bottom double brush
holder.

Figure 6.24: Longer L slider, con-
nected to two upper holders.

22https://www.dremel.com/us/en/p/456-01-26150456aa
23https://www.dremel.com/us/en/p/407-2615000407
24https://www.dremel.com/us/en/p/412-2615000412

58

https://github.com/martinerk0/shuttlebot_3dprints
https://github.com/martinerk0/shuttlebot_3dprints
https://www.dremel.com/us/en/p/456-01-26150456aa
https://www.dremel.com/us/en/p/407-2615000407
https://www.dremel.com/us/en/p/412-2615000412

Next 3D printed parts are holders - part that holds brush through the bearing
to the L slider with M3 nuts and bolts. We created four variants. First two holds
one large upper brush each, shown in Figure 6.25 and Figure 6.26.

Figure 6.25: Single large brush
holder, holds first upper brush.

Figure 6.26: Single upper brush,
holds middle upper brush.

Third holder, (Figure 6.27), is closest to the robot and holds one large and
one small brush. Last holder, (Figure 6.28), supports two lower brushes, it is
connected for stability with M3 rod to opposing holder.

Figure 6.27: Double holder, holds
third upper and lower brushes.

Figure 6.28: Bottom double holder,
holds first and second lower brushes.

Figure 6.29 shows all sliders and holders put together on a real robot. Each
holder is connected to slider with two M3 bolts and nuts. Nuts are attached to
sliders from inner side, as visible on Figure 6.23 and Figure 6.24.

59

Figure 6.29: All sliders and holders put together on a real robot.

Last 3D printed part is pulley, but we will describe it in the subsection 6.7.2.

6.7.2 Other parts
Torque between motors and brushes is transferred by timing belt or toothed

belt. To ensure that belts don’t slide, we use pulleys, (Figure 6.30), which are
gears fixed on the axle of a brush. There are various profiles of the tooth of the
belts, and also distance between teeth. We decided to use HTD 3M timing belt,
which has curvilinear profile, (Figure 6.31). 3M in name means distance between
centers of neighbouring teeth in millimeters.

Figure 6.30: 3D model of pulley,
with HTD tooth profile.

Figure 6.31: HTD 3M tooth profile,
with pitch shown.

To minimize friction between brush axle and holder, we put axles into ball
bearings. This ensures minimal friction and no degradation of 3D printed parts.

6.7.3 Iterative design
While designig the picking system, we came across several issues. First issue

was that two lower brushes were not enough to bring shuttlecock safely to the

60

top of Kobuki robot (Figure 6.32). We solved this by adding third brush near
the upper level of Kobuki, as shown in Figure 6.33.

Figure 6.32: Picking mechanism
with two lower brushes.

Figure 6.33: Picking mechanism
with three lower brushes.

Second issue was that shuttlecock was sometimes oriented with feathers
towards robot, and feathers struck upper frame of robot, (Figure 6.34). This was
resolved by adding smooth plastic layer, as shown in Figure 6.35 spanning most
of the robot’s top frame and coming down below the closest small brush, there-
fore creating surface where feathers are not likely to stuck but are glided upwards.

Figure 6.34: Kobuki’s front top,
without plastic layer.

Figure 6.35: Kobuki’s front top with
added smooth plastic.

Another problem was that mechanism did not catch25 shuttles onto the
brushes, this was because first upper brush was too close above first lower brush,
therefore not creating any pressure on feathers, but instead skidding on the
featherless part of the shuttlecock. This was resolved by extending the upper
brush more forward until it caught shuttlecocks reliably.

25Shuttle was not pulled upwards by first upper and first lower brush.

61

Lastly, on rare cases, shuttlecock could be stuck between four brushes, shown
in Figure 6.36, gliding on two lower brushes. This was resolved by putting up-
per brushes more closely together, so that upper brush could push shuttlecock
upwards with more pressure, (Figure 6.37).

Figure 6.36: Larger distances be-
tween axles caused shuttles to stuck.

Figure 6.37: Smaller distances be-
tween axles of upper brushes.

After solving these issues, we did not observe any problems with picking mech-
anism. After fine tuning positions of brushes, we drilled holes through holders,
shown in Figure 6.38, and L profile, and fixed it with M3 bolts, (Figure 6.39).

Figure 6.38: Drilled holes for fixed
position.

Figure 6.39: Fixed position of
brushes.

6.7.4 Motor control
For motor control, we used L298N [56] motor module, shown in Figure 6.41.

It can drive two DC motors and can be controlled by standard TTL26 levels. It
can be also configured to use PWM signal on both motors by removing jumpers
on ENA and ENB pins. We control motor module using Arduino Uno[57] (Fig-
ure 6.40), popular and cheap microcontroller board. Schematic of wiring between
Arduino, motor module, motors and battery is shown in Figure 6.42.

26https://learn.sparkfun.com/tutorials/logic-levels/all

62

https://learn.sparkfun.com/tutorials/logic-levels/all

Figure 6.40: Arduino Uno microcon-
troller board.

Figure 6.41: L298N module, image
from [58].

Figure 6.42: Wiring of the L298N module to the Arduino Uno and motors.

6.7.5 Arduino ROS node
For seamless communication between Arduino and ROS, we used ROS

rosserial package27. We then created ROS node on Arduino that accepts
std_msgs/String messages and turns on/off particular motor.

6.7.6 Arduino Leonardo
After using Arduino Uno microcontroller, we found out that it takes too much

space on the Turtlebot top platform. We therefore searched for another suitable
microcontroller that would be smaller, ideally could be attached directly on the
L298N motor module. Because L298N is using 5V we were limited to boards with
5V logic, and we chose Beetle CM-32U4 Leonardo28 developed by DFRobot. It
has ATmega32U4 chip and our ROSSerial program can be adapted with minimal
changes. We soldered female pins on bottom of the board so that it would fit on
top of the motor modules directly without any cables, as shown in Figure 6.44.

27http://wiki.ros.org/rosserial
28https://www.dfrobot.com/product-2475.html

63

http://wiki.ros.org/rosserial
https://www.dfrobot.com/product-2475.html

It can be seen that it takes much less space than previous solution with Arduino
Uno, (Figure 6.43).

Figure 6.43: Old arrangement with
Arduino Uno.

Figure 6.44: CM-32U4 on top of the
motor module.

6.8 Working area customization

6.8.1 Allowed area
Badminton courts are often positioned side by side in a big hall, often as much

as 4-6 courts, (Figure 6.45). We don’t want the robot to wander to neighbouring
courts while picking up shuttles, potentially disrupting play of other people. To
do this, we need to make sure that the robot have to make path plans only in
a specified area we want. We do this by marking area as allowed, as shown in
Figure 6.46, and the rest as disallowed or prohibited. Since we are using navigation
stack of ROS, and we are using global/local planners on a map made by mapping
node, we can modify the already made map, so that robot won’t create plans
going to the neighbouring courts.

Figure 6.45: Multiple badminton
courts side by side

Figure 6.46: One court with allowed
area.

Part of an occupancy grid map, (Figure 6.47), that we want to mark as al-
lowed, can be specified by a polygon. We specify positions of vertices of the
polygon, marking the allowed area, (Figure 6.48). To make it easier for users of
our robot, we created node that uses interactive markers29 of RViz. This way,
user can pull the vertices around in XY plane, and our node will re-create the

29https://wiki.ros.org/interactive_markers

64

https://wiki.ros.org/interactive_markers

polygon marking the area. This polygon will be used as static layer30 in the
global costmap, with max merging.

Figure 6.47: An occupancy grid
map.

Figure 6.48: Allowed area markers
(orange) with delineated area (light
grey).

6.8.2 Allowed detection area
Another problem we can solve with the interactive markers, is specifying

the area where shuttles can be picked, (Figure 6.49). This is different from
allowed area for planning, because we want robot to be able to make a path to
the home position, described in detail in subsection 6.8.4, where shuttles will be
offloaded, but we don’t want these same shuttles be picked up again. We do this
similarly to allowed area, where we create new occupancy grid map from orig-
inal /map that we get from mapping node and publish it on /map_darea31 topic.

30http://wiki.ros.org/costmap_2d/hydro/staticmap
31As for "detection area".

65

http://wiki.ros.org/costmap_2d/hydro/staticmap

Figure 6.49: Detection area (white) between detection area markers (blue).

6.8.3 Waypoints
Next, we can use interactive markers for waypoints the robot will move be-

tween, while not picking any shuttles. We represent waypoints by black cubes
(Figure 6.50). They can be moved around in plane by mouse similarly to area
markers. Since RGBD cameras have relatively small field of view (Table 4.1), we
can use waypoint markers to cover more area. Because robot is moving between
waypoints, and rotating after it arrives to and when it exits waypoints, we can
use this functionality to cover larger area for detections.

66

Figure 6.50: Movable waypoints (black).

6.8.4 Home position
Home position, (Figure 6.51), is a place where robot will drive off when it’s

full of shuttlecocks. We represent home position with RViz interactive marker
with green color to distinguish it from other markers. Allowed area, Detection
area and waypoints have ability to add/remove markers with right mouse clicking
on marker and then selecting add or remove. Since home point marker is only
one, we won’t use adding/removing functionality and instead we can add useful
commands for robot, such as go to home position or return to work. When user
clicks on a menu selection, publisher inside callback sends a message on a given
topic (to trigger a state change for example).

67

Figure 6.51: Home position marker (green) with menu with commands for robot.

6.8.5 Detection area visualization
To visualize correctness of the detection area delineated by markers, we cre-

ated a test launchfile:

roslaunch shuttlebot_control marker_test.launch

It creates points colored green if they are inside detection area and blue if they
are outside. Because home point is draggable, it can be interactively visualized
in RViz that the detection area works correctly, without real robot or simulation,
(Figure 6.52).

68

Figure 6.52: Points in a grid around home position, queried if they lie in the
detection area.

69

7. User documentation
In this chapter we describe how to set up the robot on a badminton court.

In the first section, we list what we need to successfuly operate the robot. In
section mapping we show how to create map that will be subsequently used in
the autonomous phase. In the autonomous working section we describe how to
modify the behaviour of robot to suit specific needs and how to interact with the
robot when it is working.

7.1 Setup
We need two parts, assembled robot and notebook. After turning on the

robot, access point with name "xavier" will be created, to which we can connect
with a notebook. Necessary software requirements for robot and notebook and
are described in Appendix, in section A.1 and section A.2. Notebook will serve
for visualization of robot data and giving robot commands (such as: go home,
stop, start, etc..) and interactively setting area the robot can go to, and where it
can detect shuttlecocks and setting the position where it would drop off collected
shuttlecocks.

7.2 Mapping the court
When we bring robot to a completely new badminton court, we need to create

a map of the court and surroundings. We cannot reuse the same map since every
hall and building is different and we want to have optimal performance in each
hall, therefore we will create new map for each different hall. After map is created,
we can reuse it as many times as we like, on condition that the surroundings don’t
change, i.e. If we come to a same hall after a year with a benches or chairs in
front of a wall, we would need to create a new map again. We start mapping by
running following roslaunch on the robot:

roslaunch shuttlebot_control shuttlebot_mapping_total.launch
localization:=false↪→

On notebook we open rviz with for visualizaton and rqt for driving:

roslaunch shuttlebot_control shuttlebot_rviz.launch

We then create map by driving around court until a map is created. We can
see progress in the RViz, as seen in Figure 7.1. After the map is saved, we are
ready for the autonomous phase.

70

Figure 7.1: Blue lines is the path robot took during mapping.

7.3 Autonomous working
After we created map, we should run following roslaunch to start the the

picking process.

roslaunch shuttlebot_control shuttlebot_working.launch

We can run robot with a list of waypoints between which it will drive, and
home position where robot will "empty" itself of the shuttles. If we don’t know
the number of the waypoints beforehand, we can add them interactively in RViz.
We can then drag them on needed locations on court, as shown in video1.

Next, we give robot signal to start picking shuttles. If there are not any
shuttles present, it will just drive between waypoints. As soon as shuttles starts
arriving, it will continuously start to pick them up. After determined amount of
shuttles, (for example 10), robot will enter emptying phase, which consists of
driving to home position, and waiting for the shuttles to be taken off the robotic
base. After we took the shuttles of the robot, we press the button to activate
autonomous phase once more. This will happen repeatedly until we tell the robot
to pause or stop.

1https://www.youtube.com/watch?v=acHEjFpJ6vw

71

https://www.youtube.com/watch?v=acHEjFpJ6vw

8. Results
In this chapter, we present results of our proposed solution. Robot should

be able to recognize shuttlecocks from 2D image camera data reliably. We show
this by training neural network and evaluating it on previously unseen images
with shuttlecocks. Next, we show successful collection of shuttlecocks by our
picking mechanism with rotary brushes. Important part of our solution, is using
interactive allowed area markers to delimit working area of robot, and interactive
detection area markers to delimit detection area of robot.

8.1 Shuttlecock detection
Our created dataset of real shuttlecocks on badminton courts contains total

of 2476 images, with 18618 total objects (shuttlecocks). Positions of shuttlecocks
across dataset we collected and created is symmetrical around vertical axis (Fig-
ure 8.1, left) with most of the shuttlecocks located below the half of the image and
more shuttlecocks located in the bottom of the image (y=1, x=1 is bottom right
corner of the images). This means that when we created dataset from camera
attached on moving robot, the shuttlecocks were positioned randomly on both
sides of the images. We can also see that size of the majority of bounding boxes
is relatively small (objects are further away) compared to the width and height
of the image, with larger objects also present.

Figure 8.1: Position and size of bounding boxes across dataset we created.

During training and evaluation of machine learning models such as neural
networks, datasets are usually split into three disjoint sets: train, validation1,
and test. Model is then trained only on train set. Training is done in epochs,
where each epoch is one pass over training data, and after each pass, the model’s
performance is evaluated on validation set. As we observe performance of model
after each epoch, evaluated on unseen validation data, this gives us insight if the
model’s performance is increasing with more time spent on training. Validation
set can also be used for tunning different hyperparameters of model or training,

1Or development set.

72

such as parameters of optimizer, or regularization techniques such as dropout.
Test set is then used as final evaluation of a best model, trained both on train
and validation sets. Since we want to evaluate performance of model on previ-
ously unseen data, if we didn’t use validation set, we could try many different
hyperparameters to try to get as high accuracy on test set using our knowledge
of previously tried hyperparameters.

8.1.1 Evaluation metrics
In this subsection we list several metrics used for evaluation of object detec-

tion models [59]. When we evaluate classification for two classes 1 and 0, we
compare prediction of model with ground truth value. Therefore we can get four
results:

model predicted 1 and ground truth is 1, that is True positive
model predicted 1 and ground truth is 0, that is False positive
model predicted 0 and ground truth is 1, that is False negative
model predicted 0 and ground truth is 0, that is True negative2

Precision is a metric comparing correctly predicted positive examples to all
positive predictions:

Precision = TP

TP + FP

Recall is a metric comparing correctly predicted positive examples over all
positive examples:

Recall = TP

TP + FN

Metric used in evaluation of object detection is Intersection over Union or
IoU (Figure 8.2). We say that object is correctly predicted if the predicted class
matches ground truth class and bounding box of prediction intersects bounding
box of ground truth at least partially. We can then set threshold for IoU as
a cutoff, for example IoU needs to be greater than 0.5. Higher IoU thresholds
therefore means better predictions in terms of alignment of bounding boxes of
predictions and ground truth examples.

2This is usually ignored in object detection metrics, since there is infinitely many true
negatives. (i.e. model could predict 1000s of boxes with negative predictions where there is
nothing) [59].

73

Figure 8.2: Intersection over union in object detection, from [60].

Lastly, two used metrics are mean average precision mAP0.5[13] and
mAP0.50:.05:.95[61]. Mean average precision is computed as area under the
precision recall curve, an example of precision recall curve is shown in Figure 8.4.
Number in subscript of mAP is IoU threshold and mAP0.50:.05:.95 means averaging
mAP over IoU thresholds from 0.5 to 0.95 by 0.05 steps.

8.1.2 Training and results
We split our dataset of 2476 images randomly into test, val and train set by

8:1:1 ratio, that is 1982 images were used for training, 247 for validation and
247 for final evaluation. We trained YOLOv5s3 model which has 7.2 million
parameters, and used batch size 16 and trained for 200 epochs.

As we can see in the Figure 8.3 the losses are decreasing with number of
epochs, while the precision mAP and mAP0.50:.05:.95is increasing.

3There are larger versions of YOLOv5 models with more parameters, but they also have
slower inference speeds, therefore we choose middle ground between performance and inference
speed.

74

Figure 8.3: Losses, precision, recall and mAP as function of number of epochs
trained.

Precision - recall curve (Figure 8.4) and F1 curve (Figure 8.5) of the first
model.

Figure 8.4: Precision - recall curve. Figure 8.5: F1 curve.

Next, we trained model with batch size 16 and number of epochs 200 on
test+val set and then evaluated on test set. Although we did not tune any
hyperparameters on val set previously, we think it is interesting to observe
increased performance with 10% more data available for training. We evaluated
first model’s performance against second model on the same test data, and while
mAP0.5 stayed same at 0.949, we observed modest increase of mAP0.50:.05:.95from
0.853 to 0.858.

Following two pictures are examples of predictions of previously unseen test
data, that contains objects similar to shuttlecocks. Our model correctly ignored
these similar objects, such as white shuttlecock tube cap (Figure 8.6) and power
socket (Figure 8.7), which was one of the objects that we mentioned in subsec-
tion 6.2.2 when we used model trained on several hundred images to help us with
automatic dataset annotation4.

4Although we still had to inspect each automatic annotation by hand, tweaking bounding

75

Figure 8.6: Example of object detection of previously unseen data.

Figure 8.7: Another example of prediction on previousy unseen data.

Lastly, we created small testing dataset of shuttlecocks located on a green
court to test detection ability of trained model on different court colors. Dataset
contains 26 images with 103 objects. Our model achieved mAP0.5=0.995 and
mAP0.50:.05:.95=0.892 . Our model correctly predicted even hard object detections
such as shuttlecock in direct reflection of sunlight, shown at Figure 8.8.

boxes by little, but we at least found several false positives that we could include to our training
set.

76

Figure 8.8: Model trained on shuttlecocks on blue court can also make accurate
predictions on other court colors such as green. Notice correct prediction of
shuttlecock in reflection of sunlight.

8.2 Picking mechanism
We showcased working picking mechanism (Figure 8.9 , Figure 8.10) to visitors

at day of open doors at Faculty of Mathematics and Physics5. Videos of working
mechanism can be also seen on Youtube6,7.

Figure 8.9: Idle robot waiting for
command to pick the shuttle.

Figure 8.10: Succesfully picked shut-
tlecock.

5On 22.11.2022, report from event at: https://www.mff.cuni.cz/cs/verejnost/
aktuality/matfyz-se-otevrel-uchazecum-o-studium

6https://www.youtube.com/shorts/kckWgyIh_Yo
7https://www.youtube.com/shorts/uJs3kkeHSKo

77

https://www.mff.cuni.cz/cs/verejnost/aktuality/matfyz-se-otevrel-uchazecum-o-studium
https://www.mff.cuni.cz/cs/verejnost/aktuality/matfyz-se-otevrel-uchazecum-o-studium
https://www.youtube.com/shorts/kckWgyIh_Yo
https://www.youtube.com/shorts/uJs3kkeHSKo

8.3 Allowed area
Allowed area demarcation for robot planning was tested on a real robot. We

put waypoints on a map in RViz and let the robot move between them. Then
we placed markers representing allowed area so that robot’s planned path would
have to intersect it if they were not there. Robot successfully planned its path
between the waypoints, avoiding the the parts of the map outside allowed area
as can be seen in Figure 8.11.

Figure 8.11: Robot moving between waypoints (black), avoiding outside of the
allowed area (pink), represented by allowed area markers (orange).

We then put the allowed marker from the other side to the center of the map,
so that robot would have to make a plan from the other side, and it did so, as
can be seen on Figure 8.12. This process happened in real-time and interactively.
After moving markers to the new location, new allowed area was redrawn for
the robot to use, which can be seen on video on youtube8. Difference compared
to allowed area shown in subsection 6.8.1 is that ROS navstack automatically
inflates the area around obstacles by robot’s footprint, which was mentioned in
section 5.5.

8https://www.youtube.com/watch?v=acHEjFpJ6vw

78

https://www.youtube.com/watch?v=acHEjFpJ6vw

Figure 8.12: After we put allowed area markers from the other side of the map,
robot had to take other path (thin red line between waypoints).

Lastly, we tested localization on a real robot in presence of allowed area mark-
ers. Natural question could be: "Can robot relocalize in presence of custom virtual
obstacles such as our allowed area?". As can be seen in Figure 8.13 and on video9

robot successfully does relocalization in presence of virtual obstacles of allowed
area, and that is because RTAB-Map mapping and localization node (section 5.4)
does not use our virtual obstacles, but they are used as static layer by planners
in navstack later on during path planning.

Figure 8.13: Our allowed area does not prevent robot from relocalization.
9https://www.youtube.com/watch?v=SsB-IQQB1ZY

79

https://www.youtube.com/watch?v=SsB-IQQB1ZY

8.4 Detection area
We tested detection area demarcation in a similar way to section 8.3. We

put shuttlecocks in front of the robot. Robot detected shuttlecocks with neural
network, and estimated locations of shuttlecocks. Then it filtered these positions
using ROS node with respect to the detection area we created from detection
area markers, colored green (Figure 8.14) if they are inside detection area and
blue (Figure 8.15) if they are outside. This was done in interactively in real-time,
as demonstrated on video10.

Figure 8.14: Shuttlecocks are detected (bottom right) and are regarded as outside
of the detection area (blue spheres in centre of the image).

Figure 8.15: After we moved detection area markers so that shuttlecocks would
be inside detection area, filter node classified them as inside the area and colored
them green.

8.4.1 Discussion
During development and testing, we tried to increase performance of our sys-

tem by all the means. Our solution contains many programs developed by us,
but also necessary third party ROS packages that we use, such as RTAB-Map

10https://www.youtube.com/watch?v=E_6Vl6_PnLQ

80

https://www.youtube.com/watch?v=E_6Vl6_PnLQ

for mapping and localization or navstack for planning, and these have high num-
ber of parameters that could affect performance of robot in real life. After we
successfully tested our part of the solution on a real robot with shuttlecocks on
various positions around robot, we turned our attention to trying to tune various
parameters of the third party packages.

For example, there are several parameters of DWA local planner that we
tried to modify, that would hopefully increase our performance. We tried several
suggestions from navstack tunning guide [62] and although some weren’t useful,
others increased ability of shuttle picking. Increased planning window does not
help, since longer window means robot can plan more smooth and curved local
plans, which does not help us at all, since we want robot to go to shuttle straight
on, and not by a curve because that decreases chance of picking the shuttlecocks
by brushes from front of the robot. Conversely, smaller windows makes robot not
plan ahead too much and therefore it has to adhere more to global plan which
results in straighter path to the goal.

Next, we tried increasing number of vx and vtheta samples, this helped a
bit. Decreasing xy_goal_tolerance from default value was catastrophic, because
robot arrives at vicinity of goal and then wiggles around until it satisfies the small
tolerance, this often resulted in not picked shuttle because it was pushed by the
sides when robot wiggled closer and closer to the goal. This is exactly where we
benefit from choosing wide rotary brushes for picking shuttlecocks, since we can
use default value of goal position tolerance.

While before we used only RGBD camera for mapping and localization, the
laser scans used to construct occupancy grids for navigations were constructed
by sampling the small horizontal section of the camera itself, which has limited
accuracy and field of view. We then tried to use real LIDAR as laser scan in
stead of fake laser scan generated from depth data or pointclouds from camera.
This improved accuracy of generated map. Another thing that was improved was
clearing of obstacles, since LIDAR that we used have 270 degree field of view,
compared to 70 of the RGBD camera. This means, that robot can clear obstacles
also on his sides, which we found very helpful. We also found that quality and
frequency of laser scans is improved since it is using TOF technology instead of
constructing points from stereo camera and then sampling this data to get fake
laser scans.

Lastly, we observed that while robot is moving and rotating at high speeds,
the rolling shutter of the camera can generate blurred images which are very
hard for neural network to detect shuttlecocks, and also for mapping algorithm
to localize. Also moving and rotating at high speeds rapidly increase odometry
drift, which is again negative thing.

We therefore tried to limit working speeds, mainly rotation velocity since that
produced most of the blurry images.

Lastly, we were very satisfied with the allowed area demarcation, since it
guarantees that robot won’t move from the court we are training on, as long as
robot relocalizes itself from time to time using RTAB-Map package.

Although we confirmed high performance of detection of shuttlecocks by neu-
ral network, the detection area that we can interactively set in RViz acts yet
as another protection from false positives that could otherwise happen, which is
very welcomed contribution to reliability of our solution.

81

9. Conclusion
In our thesis we have developed control system based on state machines for

the robot that pick shuttlecocks located on a badminton court, by using robotic
middleware ROS Melodic - Robot Operating System and creating our programs
as ROS nodes.

To accomplish goal of shuttlecock detection, we collected and annotated over
2500 images, which contained over 18500 objects.

We trained state of the art neural network to recognise shuttlecocks under
various lightning conditions and court colors. We showed that neural network
is able to make precise detections of shuttlecocks even on badminton courts of
different color.

To use this state of the neural network with older robotic base Kobuki which
was using older version of ROS, Melodic, we deployed it inside docker container
running as a newer ROS Noetic node.

To estimate position of shuttlecock from 3D data of depth camera relative to
the robot, we created program that integrates depth information from camera
and neural network detections from ROS node running inside the container.

We integrated and tested multiple third-party ROS packages such as RTAB-
Map for creating maps of the environment and navstack for planning and then
used for mapping, localization and planning.

During development of our solution, we created virtual badminton court
simulation and simulated Kobuki robot in Gazebo. We created plugin that
simulates shuttle picking, which helped us with development of solution for a
real robot.

Next, we designed and created fully working shuttlecock picking mechanism
using 3D printer based on rotating brushes, that successfully and repeatedly
picks up badminton shuttlecocks.

As part of our solution we created ROS nodes that interactively creates
allowed area for robot by moving markers in RViz visualization program. This
ensures robot does not wander to neighbouring courts during autonomous work-
ing. User can specify where robot should work by interactively moving waypoints.

User can also specify area where robot would drop off collected shuttlecocks
and then return to work. As part of our solution we also created filtering node
that filters detected shuttlecock positions based on detected area that user can
specify.

82

Future work

It could be useful to test out other types of sensors such as RGB-D cameras
with wider field of view.

Our solution could be adapted in other domains, such as picking of other
objects. Because our solution is fairly general, only things that would have to
be modified would be training neural network on another dataset to recognize
objects in the other domains and picking mechanism.

83

Bibliography
[1] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P.

Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in context,” in
European conference on computer vision, Springer, 2014, pp. 740–755.

[2] D. Gunning, “Explainable artificial intelligence (xai),” Defense Advanced
Research Projects Agency (DARPA), nd Web, vol. 2, no. 2, 2017.

[3] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I.
Reid, and J. J. Leonard, “Past, present, and future of simultaneous localiza-
tion and mapping: Toward the robust-perception age,” IEEE Transactions
on robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

[4] G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, “Simultaneous localization
and mapping: A survey of current trends in autonomous driving,” IEEE
Transactions on Intelligent Vehicles, vol. 2, no. 3, pp. 194–220, 2017.

[5] BWF. (2019). Bwf statutes, section 4.1: Laws of badminton, BWF,
[Online]. Available: https : / / extranet . bwfbadminton . com / docs /
document-system/81/1466/1470/Section%204.1%20-%20Laws%20of%
20Badminton.pdf (visited on 02/06/2021).

[6] S. Kitta, H. Hasegawa, M. Murakami, and S. Obayashi, “Aerodynamic prop-
erties of a shuttlecock with spin at high reynolds number,” Procedia Engi-
neering, vol. 13, pp. 271–277, 2011.

[7] BWF. (Jul. 20, 2021). Bwf world rankings. BWF, Ed., [Online]. Available:
https://bwfbadminton.com/rankings/2/bwf-world-rankings/6/men-
s-singles/2021/29/ (visited on 07/21/2021).

[8] D. B. Poudel, “Coordinating hundreds of cooperative, autonomous robots
in a warehouse,” Jan, vol. 27, no. 1-13, p. 26, 2013.

[9] E. J. Van Henten, J. Hemming, B. Van Tuijl, J. Kornet, J. Meuleman, J.
Bontsema, and E. Van Os, “An autonomous robot for harvesting cucumbers
in greenhouses,” Autonomous robots, vol. 13, no. 3, pp. 241–258, 2002.

[10] (2021). Agrobot, [Online]. Available: https : / / www . agrobot . com / e -
series (visited on 01/05/2023).

[11] Y. Yu, K. Zhang, L. Yang, and D. Zhang, “Fruit detection for strawberry
harvesting robot in non-structural environment based on mask-rcnn,” Com-
puters and Electronics in Agriculture, vol. 163, p. 104 846, 2019.

[12] H. A. Williams, M. H. Jones, M. Nejati, M. J. Seabright, J. Bell, N. D.
Penhall, J. J. Barnett, M. D. Duke, A. J. Scarfe, H. S. Ahn, et al., “Robotic
kiwifruit harvesting using machine vision, convolutional neural networks,
and robotic arms,” biosystems engineering, vol. 181, pp. 140–156, 2019.

[13] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman,
“The pascal visual object classes (voc) challenge,” International journal of
computer vision, vol. 88, no. 2, pp. 303–338, 2010.

84

https://extranet.bwfbadminton.com/docs/document-system/81/1466/1470/Section%204.1%20-%20Laws%20of%20Badminton.pdf
https://extranet.bwfbadminton.com/docs/document-system/81/1466/1470/Section%204.1%20-%20Laws%20of%20Badminton.pdf
https://extranet.bwfbadminton.com/docs/document-system/81/1466/1470/Section%204.1%20-%20Laws%20of%20Badminton.pdf
https://bwfbadminton.com/rankings/2/bwf-world-rankings/6/men-s-singles/2021/29/
https://bwfbadminton.com/rankings/2/bwf-world-rankings/6/men-s-singles/2021/29/
https://www.agrobot.com/e-series
https://www.agrobot.com/e-series

[14] N. Ohi, K. Lassak, R. Watson, J. Strader, Y. Du, C. Yang, G. Hedrick,
J. Nguyen, S. Harper, D. Reynolds, et al., “Design of an autonomous pre-
cision pollination robot,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), IEEE, 2018, pp. 7711–7718.

[15] (2021). Husky robot, [Online]. Available: https://clearpathrobotics.
com/husky-unmanned-ground-vehicle-robot/ (visited on 01/05/2023).

[16] ROS. (Feb. 15, 2021). Moveit! ros package, [Online]. Available: https://
moveit.ros.org/ (visited on 01/05/2023).

[17] B. Arad, J. Balendonck, R. Barth, O. Ben-Shahar, Y. Edan, T. Hellström,
J. Hemming, P. Kurtser, O. Ringdahl, T. Tielen, et al., “Development of a
sweet pepper harvesting robot,” Journal of Field Robotics, vol. 37, no. 6,
pp. 1027–1039, 2020.

[18] B. Arad, P. Kurtser, E. Barnea, B. Harel, Y. Edan, and O. Ben-Shahar,
“Controlled lighting and illumination-independent target detection for real-
time cost-efficient applications. the case study of sweet pepper robotic har-
vesting,” Sensors, vol. 19, no. 6, p. 1390, 2019.

[19] J. Wang, “Ballbot: A low-cost robot for tennis ball retrieval,” Electrical
Engineering and Computer Sciences University of California at Berkeley,
Berkeley, CA, USA, Tech. Rep. No. UCB/EECS-2012-157, 2012.

[20] C. H. Yun, Y.-S. Moon, and N. Y. Ko, “Vision based navigation for golf ball
collecting mobile robot,” in 2013 13th International Conference on Control,
Automation and Systems (ICCAS 2013), IEEE, 2013, pp. 201–203.

[21] S. H. Yeon, D. Kim, G. Ryou, and Y. Sim, “System design for autonomous
table tennis ball collecting robot,” in 2017 17th International Conference
on Control, Automation and Systems (ICCAS), IEEE, 2017, pp. 909–914.

[22] B. Sarah, L. Tianyi, L. Thomas, and M. Patel. (2016). Prosort cc-60. U. of
Cambridge 2016, Ed., [Online]. Available: https://www.ifm.eng.cam.ac.
uk/education/met/a/design/design-show-2015/#ProSort%20CC-60
(visited on 01/05/2023).

[23] J. M. O’Kane, A gentle introduction to ros, 2014.
[24] D. Franklin. (Nov. 6, 2019). Introducing jetson xavier nx, the world’s

smallest ai supercomputer. D. Franklin, Ed., [Online]. Available: https:
/ / developer . nvidia . com / blog / jetson - xavier - nx - the - worlds -
smallest-ai-supercomputer/ (visited on 07/18/2021).

[25] Nvidia. (Jul. 27, 2021). Developer kit technical specifications. Nvidia, Ed.,
[Online]. Available: https : / / www . nvidia . com / en - us / autonomous -
machines / embedded - systems / jetson - xavier - nx/ (visited on
01/05/2023).

[26] S. Labs. (2018). Zed camera and sdk overview, [Online]. Available: https://
www.stereolabs.com/assets/datasheets/zed-camera-datasheet.pdf
(visited on 01/05/2023).

[27] Intel. (2022). Intel realsense d455, [Online]. Available: https://store.
intelrealsense.com/buy-intel-realsense-depth-camera-d455.html
(visited on 01/05/2023).

85

https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
https://moveit.ros.org/
https://moveit.ros.org/
https://www.ifm.eng.cam.ac.uk/education/met/a/design/design-show-2015/#ProSort%20CC-60
https://www.ifm.eng.cam.ac.uk/education/met/a/design/design-show-2015/#ProSort%20CC-60
https://developer.nvidia.com/blog/jetson-xavier-nx-the-worlds-smallest-ai-supercomputer/
https://developer.nvidia.com/blog/jetson-xavier-nx-the-worlds-smallest-ai-supercomputer/
https://developer.nvidia.com/blog/jetson-xavier-nx-the-worlds-smallest-ai-supercomputer/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.stereolabs.com/assets/datasheets/zed-camera-datasheet.pdf
https://www.stereolabs.com/assets/datasheets/zed-camera-datasheet.pdf
https://store.intelrealsense.com/buy-intel-realsense-depth-camera-d455.html
https://store.intelrealsense.com/buy-intel-realsense-depth-camera-d455.html

[28] Orbecc. (2022). Astra camera, [Online]. Available: https : / / shop .
orbbec3d.com/Astra (visited on 01/05/2023).

[29] czc.cz. (2022). Viking notebooková powerbanka, [Online]. Available: https:
//www.czc.cz/viking-notebookova-powerbanka-smartech-ii-quick-
charge-3-0-40000mah-cerna/227132/produkt (visited on 01/05/2023).

[30] V. Braitenberg, Vehicles: Experiments in synthetic psychology. MIT press,
1986.

[31] N. J. Nilsson, “A mobile automaton: An application of artificial intelligence
techniques,” Sri International Menlo Park Ca Artificial Intelligence Center,
Tech. Rep., 1969.

[32] R. Brooks, “A robust layered control system for a mobile robot,” IEEE
journal on robotics and automation, vol. 2, no. 1, pp. 14–23, 1986.

[33] E. Gat, R. P. Bonnasso, R. Murphy, et al., “On three-layer architectures,”
Artificial intelligence and mobile robots, vol. 195, p. 210, 1998.

[34] R. J. Firby, “Adaptive execution in complex dynamic worlds,” PhD thesis,
Yale University, 1989.

[35] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[36] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2014,
pp. 580–587.

[37] G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, NanoCode012, Y. Kwon,
TaoXie, J. Fang, imyhxy, K. Michael, Lorna, A. V, D. Montes, J. Nadar,
Laughing, tkianai, yxNONG, P. Skalski, Z. Wang, A. Hogan, C. Fati, L.
Mammana, AlexWang1900, D. Patel, D. Yiwei, F. You, J. Hajek, L. Di-
aconu, and M. T. Minh, ultralytics/yolov5: v6.1 - TensorRT, TensorFlow
Edge TPU and OpenVINO Export and Inference, version v6.1, Feb. 2022.
doi: 10.5281/zenodo.6222936. [Online]. Available: https://doi.org/
10.5281/zenodo.6222936.

[38] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-
source multi-robot simulator,” in 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566),
IEEE, vol. 3, 2004, pp. 2149–2154.

[39] (2020). Gazebo website, [Online]. Available: http : / / gazebosim . org /
tutorials (visited on 01/05/2023).

[40] M. Sipser, Introduction to the Theory of Computation. Cengage learning,
2012.

[41] R. Balogh and D. Obdržálek, “Using finite state machines in introductory
robotics,” in International Conference on Robotics and Education RiE 2017,
Springer, 2018, pp. 85–91.

86

https://shop.orbbec3d.com/Astra
https://shop.orbbec3d.com/Astra
https://www.czc.cz/viking-notebookova-powerbanka-smartech-ii-quick-charge-3-0-40000mah-cerna/227132/produkt
https://www.czc.cz/viking-notebookova-powerbanka-smartech-ii-quick-charge-3-0-40000mah-cerna/227132/produkt
https://www.czc.cz/viking-notebookova-powerbanka-smartech-ii-quick-charge-3-0-40000mah-cerna/227132/produkt
https://doi.org/10.5281/zenodo.6222936
https://doi.org/10.5281/zenodo.6222936
https://doi.org/10.5281/zenodo.6222936
http://gazebosim.org/tutorials
http://gazebosim.org/tutorials

[42] M. Labbé and F. Michaud, “Rtab-map as an open-source lidar and visual
simultaneous localization and mapping library for large-scale and long-term
online operation,” Journal of Field Robotics, vol. 36, no. 2, pp. 416–446,
2019.

[43] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial
on graph-based slam,” IEEE Intelligent Transportation Systems Magazine,
vol. 2, no. 4, pp. 31–43, 2010.

[44] B. M. da Silva, R. S. Xavier, T. P. do Nascimento, and L. M. Gonçalves,
“Experimental evaluation of ros compatible slam algorithms for rgb-d
sensors,” in 2017 Latin American Robotics Symposium (LARS) and 2017
Brazilian Symposium on Robotics (SBR), IEEE, 2017, pp. 1–6.

[45] M. Labbe. (Mar. 1, 2021). Setup rtab-map on your robot! [Online].
Available: http : / / wiki . ros . org / rtabmap _ ros / Tutorials /
SetupOnYourRobot (visited on 01/05/2023).

[46] D. Lu, D. Hershberger, and E. Marder-Eppstein. (Feb. 12, 2021).
Global_planner, [Online]. Available: http : / / wiki . ros . org / global _
planner (visited on 01/05/2023).

[47] ——, (). Costmap2d, [Online]. Available: http://wiki.ros.org/costmap_
2d (visited on 01/05/2023).

[48] S. I. Nikolenko et al., “Synthetic data for deep learning,” arXiv preprint
arXiv:1909.11512, vol. 3, 2019.

[49] cvat.ai. (Mar. 2, 2019). Computer vision annotation tool: A universal ap-
proach to data annotation, [Online]. Available: https://www.intel.com/
content / www / us / en / developer / articles / technical / computer -
vision - annotation - tool - a - universal - approach - to - data -
annotation.html (visited on 01/05/2023).

[50] Isaac I. Y. Saito. (2022). Smach, [Online]. Available: http://wiki.ros.
org/smach (visited on 01/05/2023).

[51] R. Smith. (2022). Open dynamics engine, [Online]. Available: https://
www.ode.org/ (visited on 01/05/2023).

[52] The OGRE Team. (2022). Object-oriented graphics rendering engine, [On-
line]. Available: https://www.ogre3d.org/ (visited on 01/05/2023).

[53] (2021). Sdformat (simulation description format), [Online]. Available: http:
//sdformat.org/ (visited on 01/05/2023).

[54] (Aug. 1, 2021). Collada dae format, [Online]. Available: https://docs.
fileformat.com/3d/dae/ (visited on 01/05/2023).

[55] Yuijin Robot. (Oct. 30, 2012). Kobuki hardware drwaing, [Online]. Avail-
able: https://raw.githubusercontent.com/kobuki- base/kobuki_
resources/devel/hardware/drawings/pdf/kobuki_base_01.pdf (vis-
ited on 01/05/2023).

[56] STMicroelectronics. (Jul. 18, 2022). L298 dual full-bridge driver, [Online].
Available: https://www.st.com/resource/en/datasheet/l298.pdf
(visited on 01/05/2023).

87

http://wiki.ros.org/rtabmap_ros/Tutorials/SetupOnYourRobot
http://wiki.ros.org/rtabmap_ros/Tutorials/SetupOnYourRobot
http://wiki.ros.org/global_planner
http://wiki.ros.org/global_planner
http://wiki.ros.org/costmap_2d
http://wiki.ros.org/costmap_2d
https://www.intel.com/content/www/us/en/developer/articles/technical/computer-vision-annotation-tool-a-universal-approach-to-data-annotation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/computer-vision-annotation-tool-a-universal-approach-to-data-annotation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/computer-vision-annotation-tool-a-universal-approach-to-data-annotation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/computer-vision-annotation-tool-a-universal-approach-to-data-annotation.html
http://wiki.ros.org/smach
http://wiki.ros.org/smach
https://www.ode.org/
https://www.ode.org/
https://www.ogre3d.org/
http://sdformat.org/
http://sdformat.org/
https://docs.fileformat.com/3d/dae/
https://docs.fileformat.com/3d/dae/
https://raw.githubusercontent.com/kobuki-base/kobuki_resources/devel/hardware/drawings/pdf/kobuki_base_01.pdf
https://raw.githubusercontent.com/kobuki-base/kobuki_resources/devel/hardware/drawings/pdf/kobuki_base_01.pdf
https://www.st.com/resource/en/datasheet/l298.pdf

[57] Arduino. (Aug. 4, 2022). Arduino uno r3, [Online]. Available: https://
docs.arduino.cc/hardware/uno-rev3 (visited on 01/05/2023).

[58] Components101. (Jul. 19, 2022). L298n module, [Online]. Available: https:
//components101.com/modules/l293n-motor-driver-module (visited
on 01/05/2023).

[59] R. Padilla, S. L. Netto, and E. A. B. da Silva, “A survey on performance
metrics for object-detection algorithms,” in 2020 International Conference
on Systems, Signals and Image Processing (IWSSIP), 2020, pp. 237–242.

[60] A. Rosebrock. (). Intersection over union (iou) for object detection, [Online].
Available: https://pyimagesearch.com/2016/11/07/intersection-
over-union-iou-for-object-detection/ (visited on 01/05/2023).

[61] (2022). Coco metrics, [Online]. Available: https://cocodataset.org/
#detection-eval (visited on 01/05/2023).

[62] K. Zheng, “Ros navigation tuning guide,” in Robot Operating System
(ROS), Springer, 2021, pp. 197–226.

[63] ROS. (2021). Ros installation, [Online]. Available: http://wiki.ros.org/
melodic/Installation/Ubuntu (visited on 01/05/2023).

[64] D. Franklin. (2021). Nvidia jetson inference, [Online]. Available: https:
//github.com/dusty-nv/jetson-inference (visited on 01/05/2023).

88

https://docs.arduino.cc/hardware/uno-rev3
https://docs.arduino.cc/hardware/uno-rev3
https://components101.com/modules/l293n-motor-driver-module
https://components101.com/modules/l293n-motor-driver-module
https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://cocodataset.org/#detection-eval
https://cocodataset.org/#detection-eval
http://wiki.ros.org/melodic/Installation/Ubuntu
http://wiki.ros.org/melodic/Installation/Ubuntu
https://github.com/dusty-nv/jetson-inference
https://github.com/dusty-nv/jetson-inference

List of Figures
1.1 Feathered shuttlecock . 4
1.2 Multi-shuttle training. 4

2.1 Yonex feather shuttlecock . 8
2.2 Vortices create drag, from [6] . 9
2.3 Badminton court dimensions . 9
2.4 Picture of Kento Momota from Japan,currently no.1 player in the

world, practicing with former Korean gold olympic medalist, Japan
Head Coach Park Joo-Bong . 10

2.5 Hans-Kristian Vittinghus, no. 20 singles player in the world [7],
responds to the author that even pro players like Rasmus Gemke
(no. 12) lose time in training due to slow shuttle picking technique 11

2.6 Kiva Robot, now Amazon robotics 12
2.7 Roomba vacuum cleaner . 12
2.8 Example of green court . 13
2.9 Example of hardwood court . 13

3.1 Cucumber robot . 15
3.2 Segmented cucumbers . 15
3.3 Agrobot E-Series . 15
3.4 Bounding boxes around recongized strawberries with solid points

representing picking points, from [11] 15
3.5 Creation of picking points, from [11] 16
3.6 Kiwi robot with four arms . 17
3.7 Visual output of network and blob detector 17
3.8 BrambleBee . 17
3.9 Sweet pepper robot . 18
3.10 Closeup of end manipulator . 18
3.11 Autonomous robotic tennis ball boy 19
3.12 Golf ball picking robot from its wide view camera 20
3.13 Table Tennis Ball Collecting Robot 20
3.14 ProSort CC-60 manual picking mechanism. 21
3.15 Shuttlecock Collector Machine . 21
3.16 Shuttlecock Collector / Ballsammler 21

4.1 Nvidia Jetson Nano . 24
4.2 Nvidia Jetson Xavier NX . 24
4.3 Performance comparison of Nvidia Jetson computers, from[24] . . 25
4.4 ZED stereo camera. 26
4.5 Intel Realsense D455 . 26
4.6 Astra camera . 26
4.7 Kobuki robotic base . 27
4.8 Viking external battery . 28
4.9 Braitenberg vehicle. 29
4.10 Line follower. 29
4.11 Shakey the robot. 29

89

4.12 Example of data flow of possible robot in a SPA paradigm. 30
4.13 Three layered architecture according to Firby, from[34]. 30
4.14 Overview of R-CNN architecture. 31
4.15 Overview of architecture of YOLOv5 neural network, from [37]. . 31
4.16 Partial vs whole view of the world. 32

5.1 ROS equation . 34
5.2 Example of possible state machine of the robot. 36
5.3 Survey of ROS compatibile SLAM packages, table from [42]. . . . 37
5.4 Loop closure detection in RTAB-Map viewer 37
5.5 Setup of RTAB-Map node on a robot, from [45] 38
5.6 Navstack with RTAB-Map. 38
5.7 Path planning by global planner from package move_base, from

[46]. 39
5.8 Inflation of obstacles (red dots) from Occupancy grid, from [47]. . 39
5.9 Example of different court colors and materials. 41
5.10 Example of synthetic dataset, from [48]. 42
5.11 PincherX 100 Robot Arm by Trossen robotics 43
5.12 Example of brushing mechanism 43

6.1 Image from ZED camera. 46
6.2 Image from D455 camera. 46
6.3 Creating dataset manually for object detection by simple annota-

tion tool. 47
6.4 Self-hosted version of CVAT. 47
6.5 Picture taken from camera on real court, not yet annotated. . . . 48
6.6 Same picture, manually annotated in CVAT. 48
6.7 Examples of false positives after gathering first set of data. . . . 48
6.8 Neural network bounding box vs. point cloud. Some points inside

bounding box are far behind shuttlecock. 50
6.9 Shuttlecock in front of robot, inside Gazebo. 50
6.10 Estimated position of shuttlecock, from RViz 50
6.11 Multiple detected shuttlecocks on real court (top left) with esti-

mated positions (right). 51
6.12 System is in first state, IDLE. 52
6.13 System is in second state, COLLECTING. 53
6.14 State machine of shuttlecock picking. 54
6.15 Gazebo world. 55
6.16 Contacts (pointed by arrow) detected between shuttle model and

collision element (in orange). 56
6.17 Early version of picking mechanism. 57
6.18 Finished, working prototype of picking mechanism. 57
6.19 Kobuki drawing, with marked holes used for attaching L profiles,

image from [55]. 57
6.20 Aluminium L profiles with drilled holes, attached to Kobuki robot. 57
6.21 Cut and sanded steel core of the brush. 58
6.22 Brush after applying hot glue to the core. 58
6.23 Slim L slider, used connected to bottom double brush holder. . . 58
6.24 Longer L slider, connected to two upper holders. 58

90

6.25 Single large brush holder, holds first upper brush. 59
6.26 Single upper brush, holds middle upper brush. 59
6.27 Double holder, holds third upper and lower brushes. 59
6.28 Bottom double holder, holds first and second lower brushes. . . . 59
6.29 All sliders and holders put together on a real robot. 60
6.30 3D model of pulley, with HTD tooth profile. 60
6.31 HTD 3M tooth profile, with pitch shown. 60
6.32 Picking mechanism with two lower brushes. 61
6.33 Picking mechanism with three lower brushes. 61
6.34 Kobuki’s front top, without plastic layer. 61
6.35 Kobuki’s front top with added smooth plastic. 61
6.36 Larger distances between axles caused shuttles to stuck. 62
6.37 Smaller distances between axles of upper brushes. 62
6.38 Drilled holes for fixed position. 62
6.39 Fixed position of brushes. 62
6.40 Arduino Uno microcontroller board. 63
6.41 L298N module, image from [58]. 63
6.42 Wiring of the L298N module to the Arduino Uno and motors. . . 63
6.43 Old arrangement with Arduino Uno. 64
6.44 CM-32U4 on top of the motor module. 64
6.45 Multiple badminton courts side by side 64
6.46 One court with allowed area. 64
6.47 An occupancy grid map. 65
6.48 Allowed area markers (orange) with delineated area (light grey). . 65
6.49 Detection area (white) between detection area markers (blue). . . 66
6.50 Movable waypoints (black). 67
6.51 Home position marker (green) with menu with commands for robot. 68
6.52 Points in a grid around home position, queried if they lie in the

detection area. 69

7.1 Blue lines is the path robot took during mapping. 71

8.1 Position and size of bounding boxes across dataset we created. . . 72
8.2 Intersection over union in object detection, from [60]. 74
8.3 Losses, precision, recall and mAP as function of number of epochs

trained. 75
8.4 Precision - recall curve. 75
8.5 F1 curve. 75
8.6 Example of object detection of previously unseen data. 76
8.7 Another example of prediction on previousy unseen data. 76
8.8 Model trained on shuttlecocks on blue court can also make accurate

predictions on other court colors such as green. Notice correct
prediction of shuttlecock in reflection of sunlight. 77

8.9 Idle robot waiting for command to pick the shuttle. 77
8.10 Succesfully picked shuttlecock. 77
8.11 Robot moving between waypoints (black), avoiding outside of the

allowed area (pink), represented by allowed area markers (orange). 78
8.12 After we put allowed area markers from the other side of the map,

robot had to take other path (thin red line between waypoints). . 79

91

8.13 Our allowed area does not prevent robot from relocalization. . . . 79
8.14 Shuttlecocks are detected (bottom right) and are regarded as out-

side of the detection area (blue spheres in centre of the image). . . 80
8.15 After we moved detection area markers so that shuttlecocks would

be inside detection area, filter node classified them as inside the
area and colored them green. 80

92

A. Installation documentation
This chapter describes software installation on the robot and notebook.

A.1 Robot

A.1.1 Jetson Xavier NX
To install Linux operating system with preinstalled Nvidia software, use steps

described in:
https://developer.nvidia.com/embedded/jetpack-sdk-462

A.1.2 ROS
Install ROS Melodic according to [63]

A.1.3 Jetson - inference
Next we install pretrained neural networks for Nvidia Jetson platform [64]

from 1

sudo apt-get update
sudo apt-get install git cmake libpython3-dev python3-numpy
git clone --recursive https://github.com/dusty-nv/jetson-inference
cd jetson-inference
mkdir build
cd build
cmake ../
make -j$(nproc)
sudo make install
sudo ldconfig

A.1.4 Kobuki base
We have to build Kobuki packages from source for ROS Melodic, because

official Kobuki release at https://github.com/yujinrobot/kobuki depends on
packages that did not work with Melodic, we used script from:
https://github.com/gaunthan/Turtlebot2-On-Melodic
that downloads all dependencies. Lastly, there was need to downgrade OpenCV
on Jetson platform so packages would succesfsully compile.
https://github.com/ros-perception/vision_opencv/issues/329

To test that everything is installed correctly, use:

source ./devel/setup.bash
roslaunch turtlebot_bringup minimal.launch

1https://github.com/dusty-nv/jetson-inference/blob/master/docs/
building-repo-2.md

93

https://developer.nvidia.com/embedded/jetpack-sdk-462
https://github.com/yujinrobot/kobuki
https://github.com/gaunthan/Turtlebot2-On-Melodic
https://github.com/ros-perception/vision_opencv/issues/329
https://github.com/dusty-nv/jetson-inference/blob/master/docs/building-repo-2.md
https://github.com/dusty-nv/jetson-inference/blob/master/docs/building-repo-2.md

A.1.5 Other dependencies
RTABmap mapping package: http://wiki.ros.org/rtabmap_ros

PCL library : https://pointclouds.org/downloads/#linux

Rosserial package: http://wiki.ros.org/rosserial

SMACH package: http://wiki.ros.org/smach

All above-listed packages should be melodic versions.

A.1.6 Cameras
To install ZED ROS wrapper and SDK, follow instructions at:

https://www.stereolabs.com/docs/ros/
Software for Astra camera can be installed from:

https://github.com/orbbec/ros_astra_camera
Lastly, software for Intel realsense can be installed from:

https://github.com/IntelRealSense/realsense-ros/tree/ros1-legacy

A.1.7 Vision
YOLOv5: https://github.com/ultralytics/yolov5

CVAT: https://github.com/opencv/cvat
With self-hosted version instructions at: https://opencv.github.io/cvat/
docs/administration/basics/installation/

A.2 Notebook
Notebook serves as controlling and visualization platform. We have installed

Ubuntu 18.04 with ROS Melodic with latest packages, same as on Jetson. We
connect to access point xavier running on Jetson. Jetson will have IP adress
10.42.0.1 and we set up static IP address of notebook to 10.42.0.176. Networking
in ROS is done by setting linux environmental variables in ~/.bashrc. Since we
changed these variables often (on different networks, or switched master IP to
localhost), we created convenience scripts for setting these variables, they are
namely:

export ROS_MASTER_URI=http://10.42.0.1:11311
export ROS_IP=10.42.0.1
export ROS_HOSTNAME=10.42.0.1

export GAZEBO_MASTER_URI=http://10.42.0.1:11345
export GAZEBO_IP=10.42.0.1

scripts are:

94

http://wiki.ros.org/rtabmap_ros
https://pointclouds.org/downloads/#linux
http://wiki.ros.org/rosserial
http://wiki.ros.org/smach
https://www.stereolabs.com/docs/ros/
https://github.com/orbbec/ros_astra_camera
https://github.com/IntelRealSense/realsense-ros/tree/ros1-legacy
 https://github.com/ultralytics/yolov5
https://github.com/opencv/cvat
https://opencv.github.io/cvat/docs/administration/basics/installation/
https://opencv.github.io/cvat/docs/administration/basics/installation/

/shuttlebot/misc/set_master_ip.sh
/shuttlebot/misc/set_my_ip.sh
/shuttlebot/misc/switch_ip.sh

and can be called when installed like this:

set_master_ip 10.42.0.1

After setting IP of notebook correctly, we open RViz and can begin controlling
robot with RViz UI and visualize data we get from the robot.

A.3 Source code, dataset and other files of our
solution

A.3.1 Source code for robot
Source code for robot is organized as catkin packages, which is hosted at

Github. To download packages use:

cd ~/catkin_ws/src
git clone https://gitlab.mff.cuni.cz/cervema/shuttlebot_public
cd ..

Then use:

catkin_make

to compile packages. Gazebo plugins in badminton_court directory are not a
ROS package.

A.3.2 Shuttlecock dataset
Images for shuttlecock dataset (subsection 6.2.1) and annotations (subsec-

tion 6.2.2) can be downloaded from: https://gitlab.mff.cuni.cz/cervema/
shuttlecock_dataset

A.3.3 Dockerfile
Docker file we used to build image that we deployed on the robot can be

downloaded from:
https://gitlab.mff.cuni.cz/cervema/shuttlebot_docker

A.3.4 Yolo node
Because Yolo node was meant to run inside docker, and is using ROS Noetic,

we put it in a separate repository. https://gitlab.mff.cuni.cz/cervema/
yolo_node_public

95

https://gitlab.mff.cuni.cz/cervema/shuttlecock_dataset
https://gitlab.mff.cuni.cz/cervema/shuttlecock_dataset
https://gitlab.mff.cuni.cz/cervema/shuttlebot_docker
https://gitlab.mff.cuni.cz/cervema/yolo_node_public
https://gitlab.mff.cuni.cz/cervema/yolo_node_public

Attachments
The attachment contains 3 directories. Firstly, directory shuttlebot, which

contains:

• badminton_court, directory containing Gazebo worlds, models, meshes,
Gazebo plugin code and original Blender files

• misc, directory containing convenience scripts and other miscellaneous
files.

• shuttle_distance_estimation, directory containing
shuttle_distance_estimation package

• shuttlebot_control, directory with shuttlebot_control package

• README.TXT

Secondly, directory other containing other two repositories.

Lastly, attachment contains directory thesis, which contains PDF document
of this thesis.

96

	Introduction
	Goals of the thesis
	Detection and recognition of shuttles
	Control system
	Map
	Planning
	Movement
	Visualisation
	User Interface

	Structure of the thesis

	Background
	Game of Badminton
	Shuttlecock
	Badminon court

	Training
	Shuttle picking
	Environment

	Related work
	Fruit picking robots
	Cucumber picking robot
	Strawberry picking robot
	Kiwi picking robot

	Plant polination
	Pepper picking robot

	Sport mobile robots
	Tennis ball picking robot
	Golf ball picking robot
	Autonomous Table Tennis Ball Collecting Robot
	Badminton

	Analysis
	Application architecture
	Monolithic application
	Using ROS

	Hardware
	Sensors
	Robotic platform
	Other

	Software
	Control system
	Shuttle recognition
	Mapping
	Planning
	Visualisation
	User interface

	Proposed solution
	ROS
	Gazebo
	Preparing the simulation

	Control system
	Mapping and localisation
	Navigation and Planning
	Mapping

	Movement and shuttle picking
	Computer vision
	Object recognition
	Training neural network
	Position estimation

	Visualization
	RViz

	Shuttlecock picking
	User interface

	Implementation
	Launchfiles
	Neural network
	Data acquisition
	Dataset creation
	Deployment on robot

	Visual processing
	Visualisation
	Control system
	Concurrent container in SMACH
	Control System

	Gazebo simulation
	Gazebo Plugins
	Sensor plugin for picking shuttlecocks

	Picking system
	3D printed parts
	Other parts
	Iterative design
	Motor control
	Arduino ROS node
	Arduino Leonardo

	Working area customization
	Allowed area
	Allowed detection area
	Waypoints
	Home position
	Detection area visualization

	User documentation
	Setup
	Mapping the court
	Autonomous working

	Results
	Shuttlecock detection
	Evaluation metrics
	Training and results

	Picking mechanism
	Allowed area
	Detection area
	Discussion

	Conclusion
	Bibliography
	List of Figures
	Appendix Installation documentation
	Robot
	Jetson Xavier NX
	ROS
	Jetson - inference
	Kobuki base
	Other dependencies
	Cameras
	Vision

	Notebook
	Source code, dataset and other files of our solution
	Source code for robot
	Shuttlecock dataset
	Dockerfile
	Yolo node

	Attachments

