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Introduction
Visual attention is an important cognitive process that helps us to focus on rele-
vant visual information while suppressing the noise in the environment. Imagine
different situations like driving a car or playing some team sport, visual attention
plays a crucial role in decision-making whether it is stopping the car if a pedes-
trian is crossing the road or making a pass to another player in the team who
is in a better position to score a point. When involving eye movements we can
differentiate attention as covert meaning directing attention to a specific entity
in the scene without moving the eyes onto it and overt meaning attentively mov-
ing the eyes to focus on a particular object in the scene. Attention can even be
differentiated as selective if there is a single focus of attention like for example,
while reading some text, and divided is if there are multiple foci of attention like
for instance listening to the news on the radio while driving. Divided attention
helps us to multitask by processing multiple stimuli simultaneously. In order to
understand how the brain processes multiple stimuli and the limitations of those
processes attention has been widely studied in Neuroscience and Cognitive psy-
chology. Advancements in technologies like fMRI, EEG, Eye tracking devices,
and of course computers helped researchers to come up with various methods to
study attention in more detail.

Pylyshyn and Storm(1988) introduced an experiment called Multiple Object
Tracking(MOT) to study divided attention where participants are asked to keep
track of a subset of objects that are cued for example by color or flashing those
objects before the experimental trial begins and when the trial begins these ob-
jects usually move in a randomized way somewhat resembling Brownian motion.
Once the trial ends participants need to select the objects they tracked. Different
studies are conducted to understand factors impacting tracking performance i.e,
how many objects could the participants track accurately in the trials they are
presented. Intriligator and Cavanagh(2001) showed tracking capacity is affected
by spatial resolution. Tracking performance decreased when objects moved in
smaller frames compared to objects that moved in larger frames on the screen. In
a dynamic task like MOT, tracking capacity is impacted by the speed of objects
moving as shown in (Alvarez and Franconeri, 2007) where observers could track
only one object when objects with extreme speeds are presented and they could
track up to eight objects at very slow speeds. Alvarez and Cavanagh(2005) came
up with the Hemi-field effect showing that tracking performance decreases when
objects to be tracked are in the same hemifield and increases when tracking ob-
jects are in different hemifields. The accuracy is reduced when tracking time in
the experiment is increased((Oksama and Hyönä, 2004)).

MOT being a dynamic task was useful to researchers who tried to under-
stand the relationship between eye movements and attention. Zelinsky and Nei-
der(2008) came up with two gaze strategies that participants use which are tar-
get looking and centroid looking where participants adapted different strategies
based on the number of objects they are asked to track. Fehd and Seiffert(2008)
performed MOT experiment with three to five targets and reported that partici-
pants preferred to use centroid looking more during tracking compared to target
looking strategy. Later a study (Fehd and Seiffert, 2010)tested target looking
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strategy with the combination of centroid/target-looking strategy and showed
that there was a significant drop in tracking performance when only target look-
ing strategy was used. Lukavsky (2013) though primarily examined the inter
and intra-individual differences in eye movements of the subjects also studied the
connection of eye movements to the strategies mentioned above. Findings from
this study showed that much of the eye movement variability is because of the
anti-crowding strategy where the observer or participant tries to reduce crowding
which is a visual phenomenon that occurs when it is difficult to separate target
stimuli from distractions close to it. Dechterenko and Lukavsky(2016) used neu-
ral networks to predict gaze positions and compared them to gaze predictions
from the analytical strategies mentioned. In this study, they found that neural
network predictions were better than the predictions from strategies.

In our study, we wanted to take a data-driven approach to predict tracking
performance just based on the trajectories presented(stimulus in MOT task is
usually referred to as trajectory or track). We used data collected from a previ-
ous experiment (Děchtěrenko et al., 2017) to quantify the difficulty of trajectories
that were presented based on trajectory descriptors, and then we created a model
with two metrics that would explain tracking performance in MOT task. We con-
ducted an experiment presenting a classical MOT task with 8 objects and tested
the model on the data collected.
In Chapter 1 we discussed some background about the MOT task, factors influ-
encing tracking performance, and MOT models that explain tracking limitations.
In chapter 2 we discussed some aspects of predictive modelling, we introduce the
data used in this work, findings from our analysis done prior to formulating the
model, and how the model is created.
In chapter 3 we describe the experimental design and procedures carried out to
collect data in order to validate the model.
In chapter 4 results from the experiment we conducted are discussed. Followed
by a discussion in chapter 5 and the conclusion.
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1. Vision and MOT
In this chapter we briefly discuss some aspects of visual processing, provide some
background about MOT task, discuss limitations that affect performance during
tracking and go into few frameworks that explain the limitations during multiple
object tracking.

1.1 Visual processing
The eyes, visual cortex, and pathways between the eyes to the visual cortex play
a vital role in vision. Light reflected by things around us enters the eye through
the pupil and the amount of light that enters through the pupil is regulated by
the iris which controls the size of the pupil. In the eye, there is a lens that
focuses the object or scene onto the retina, and the image formed on the retina is
inverted due to the lens. Within the retina, we have two types of photoreceptor
cells known as rods and cones. Low levels of light and motion are processed by
rods which are located on the periphery of the retina. Cones are located in the
central region of the retina and they process details like color.

Figure 1.1: Human vision system [Source:https://www.perkins.org/
wp-content/uploads/1970/01/the_brain_14.png]

The optic nerve sends visual information to the primary visual cortex via
optic chiasm which is like an intersection point for information entering from
both the visual fields and where this information is split into parts for further
processing. From the optic chiasm, the sensory information enters the Lateral
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geniculate nucleus(LGN) and then send to the visual cortex for higher-level pro-
cessing. In humans and also animals sensory information passing from the retina
to the visual cortex is processed at a different stage in a multi-layered and hierar-
chical structures which actually inspired the creation of early convolution neural
networks(CNN’s) which are widely used in artificial intelligence.

1.2 Visual angle
When we are looking at two objects of different sizes there is a chance they can
have the same size on the retina because the size of the image projected on the
retina is determined by the real size of the object and the distance between the
object and the eyes. To avoid this ambiguity, a measure called visual angle is
used to compute the ratio between object size and distance from the eye. Visual
angle is formulated as follows:

θ = 2 arctan( s

2d
) (1.1)

Where s is the size of stimuli, d is the distance from the center of the stimuli to
the eye and θ is stimuli size in degrees of visual angle.

1.3 Multiple object tracking

Figure 1.2: Multiple object tracking task

In each trial of MOT task n objects are presented and consist of three phases
as shown in Figure 1.1, the first phase is called the cue phase(1.1a) where a subset
of objects xi(where i = 1..m < n) namely targets are highlighted or distinguished
from remaining objects xj(m ≤ j < n) which are referred to as distractors by
flashing those objects or using some color to mark them. The second phase is
known as move phase(1.1b) where usually all objects look identical and start
moving in a randomized way on the screen. Once the objects stop moving on the
screen then comes the third phase called query phase(1.1c) where participants
are asked to select the objects that were highlighted in the cue phase which is
nothing but the set of target objects m. Traditionally MOT is presented with 8
objects out of which 4 objects are targets and this configuration is denoted as 4:4
and generally, it is denoted as m:(n-m).
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1.4 Neuroscience of MOT

Figure 1.3: fMRI images showing activated brain areas during MOT task[Source:
(Jovicich et al., 2001)]

Before heading to psychological theories explaining MOT first let us discuss
some brain areas that are involved during participation in MOT tasks. From fMRI
studies conducted(Culham et al.,Jovicich et al.) it is understood that broad dorsal
network including areas in the posterior parietal cortex and in the frontal cortex
are regularly activated during tasks involving motion.In another study where
participants tracked moving targets, it was revealed that the brain area called
the posterior intraparietal sulcus(PostIPS in figure 1.2a, 1.2b) associated with
visual working memory is involved in the tracking task. Further research indicated
increased activity in the MT+ area(figure 1.2a, 1.2b), parietal areas(posterior and
anterior intraparietal sulcus and superior partial lobule(SPL in figure 1.2a,1.2b),
and frontal eye fields in the frontal cortex during tracking tasks.

Some of the brain regions mentioned above responded in a dissociable manner
when MOT task components are manipulated (Xu and Chun, 2006; Shim et al.,
2010). For example, activity in the posterior parietal cortex correlated with
an increase or decrease in the number of targets whereas activity in frontal eye
fields correlated with rotational speed and the number of targets to be tracked
(Shim et al., 2010). Based on research done in order to understand attention it
is suggested that the role of the posterior parietal cortex may be in allocating
and maintaining the spatial indices and frontal eye fields may play a role in
suppressing eye movements or in maintaining higher levels of attention.
In cognitive science, it is important to understand the structures and functions
of different brain areas in order to create a model or framework explaining some
psychological processes that occur in the brain.
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1.5 Performance limits
In this section we will look at different factors that affect the tracking perfor-
mances of the participants, the percentage of trials in which participants selects
all target objects correctly is defined as accuracy. Earlier studies that are done to
get insights about tracking performance have identified some factors like capacity,
speed, crowding, and hemifields that impact tracking performance.

Capacity

In this context, it is important to mention that visual working memory plays a
critical part in MOT tasks. Capacity can be defined as how many objects can
a participant keep track of during the experiment. George Miller(1956) claimed
that working memory capacity is limited to 7 ± 2 items. Early studies using
MOT have suggested that on average participants could track around four or five
objects at once. Taking evidence from brain studies, Cowan(2001) showed that
in short-term memory capacity to store 4 objects is very consistent.

Speed

Speed is evidently a limitation in any dynamic task, this limitation seems to be
clear when looking at some of the physical constraints brain has. Alvarez and
Franconeri (2007) showed that sometimes participants could track only a single
object and at times when object speeds are set to extreme low values participants
tracked upto eight objects.

Crowding

Crowding can be defined as the adverse impact of nearby entities when focusing
on region of interest (Levi, 2008). Crowding is a visual phenomenon that impairs
perception. Studies on crowding identified some factors that determine if crowd-
ing occurs and main factor that determines crowding is ratio of spacing between
targets, distractors and the gaze point (Bouma, 1970).
Mathematically, Crowding can be defined as follows,

Figure 1.4: Crowding effect[Source: (Scimeca and Franconeri, 2015)]

∑︂
t∈T

∑︂
d∈D

||f − t||
||t − d||

(1.2)
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Figure 1.5: [Source: (Lukavskỳ, 2013)]

Where T represents a set of targets(green dots in figure1.4) and D represent
a set of distractors(white in figure1.4) In equation 1.1 for each target object,
we are calculating the ratio of the distance between the target and the gaze
point(diamond point in figure1.4) to the distance between the target and the
distractor. From MOT studies with eye tracking(Lukavskỳ, 2013) showed that
participants use an anti-crowding strategy where they try to minimize the effect
of crowding by changing their gaze point and this can be represented as follows,

min
f∈F

∑︂
t∈T

∑︂
d∈D

||f − t||
||t − d||

(1.3)

All models varying from low-level anatomical models to high-level attentional
models have proposed that crowding occurs during the feature integration phase
in the visual field if features are not combined properly when one field is loaded
with more features.

Hemifields

Figure 1.6: Hemifields effect[Source: (Scimeca and Franconeri, 2015)]

Anatomically brain is separated into left and right hemispheres and informa-
tion coming from the left half of the visual field is processed in the visual cortex
of the right hemisphere and vice versa. Alvarez and Cavanagh (2005) showed
that there are exceptions to integrated processing of the two hemifields and ar-
gued that tracking performance is limited by object positions relative to visual
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hemifield boundary(dotted line in figure1.3). The performance seemed to be bet-
ter when target objects are distributed among the hemifields and performance
dropped when they are all present in the same hemifield. Performance limits
discussed above lead to an underlying mechanism known as limited processing
resources. In further sections below, three classes of limited processing resources
namely Spatial, Temporal, and Shape are discussed.

1.5.1 Spatial Limits
Pylyshyn and Storm(1988) along with introducing MOT paradigm also mentioned
a tracking mechanism that uses pointers(this can be thought of as some stick
that is pointing to something) which helps the visual system to identify, attend
and track the set of target objects. This mechanism accounts for a high-level
representation known as an attentional priority map(Serences and Yantis, 2007).
A priority map is a cortical representation that marks a set of selected locations
in the visual field for enhanced processing. Spatial interference theory Franconeri
et al. (2010) suggests that participants find it hard to discriminate targets from
other objects when distractors fall within the inhibitory area surrounding the
targets. In this studyFranconeri et al. (2008), they showed that the speed of
objects might not constrain tracking resources but tracking performance is solely
dependent on the inter-object spacing. Crowding and hemifield effects mentioned
earlier can also be explained in terms of spatial limits.

1.5.2 Temporal Limits
Temporal limits are mainly addressed in terms of attentional spotlights and serial
operation during tracking. In the absence of parallel processing, there is an at-
tentional spotlight that is used to shift the focus of each target object and update
its location. With an increased number of targets, the attentional spotlight needs
to be shifted between more objects and this will affect tracking performance.
When object speeds are increased the process of updating target locations could
be uncertain or wrong and lead to a decline in performance. Increasing both the
number of targets and object speeds compounds in impairing performance.

1.5.3 Shapes
This class of processing resources assumes there is a shape recognition system
that supports tracking in a given task. During tracking this system treats a set
of moving objects as vertices of an imaginary polygon. Yantis(1992) showed that
tracking multiple objects might involve complex representations like a polygon
that is formed by the target’s position at a given instance. Though this could
be a plausible argument, unfortunately, there is not much scientific evidence
to support this argument. Shape formation and maintaining the shape can be
operated more efficiently when the target objects are spread across the hemifields
compared to these objects when they are in the same hemifield could explain the
hemifield effect. The ability to form complex shapes depending on the capacity
demands of the task can affect the tracking performance. Shape recognition can
also suffer based on the object’s speed as it affects shape maintenance over time.
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1.6 MOT Models
This section covers different theoretical frameworks that have been proposed to
explain the limitations in MOT tasks. These frameworks are presented in the
chronological order of research. We discuss the drawbacks of some frameworks
and how are these addressed in other frameworks that came in later.

1.6.1 Visual Index Theory(FINST)

Figure 1.7: FINST theory[Source:(Meyerhoff et al., 2017)]

Visual index theory(figure 1.3) also known as FINST theory was the first
theoretical framework proposed to explain MOT, this theory assumes that early
vision has a visual index mechanism that connects objects in the real world to
the mental image of those same objects and this connection is established by
pre-conceptual visual indexes called FINSTs(FINgers of INSTantiation) which
provides references to the objects(1989,2001). Visual indices maintain the con-
nection with the indexed object during motion or eye movements whether the
objects look identical or not allowing tracking of multiple objects in parallel.

1.6.2 Perceptual Group Model

Figure 1.8: [Source:(Meyerhoff et al., 2017)]

The grouping model(figure 1.4) was the second framework explaining MOT,
this theory (Yantis, 1992) proposes that the visual system creates a higher-order
visual representation of the individual target objects shown in the stimulus like
forming an imaginary polygon linking the target objects. The evidence for the
statement of this theory is that attention is space-based and not object-based as
in the previous theory, in space-based attention at a given point there is only
a single convex spatial locus of focussed attention((Hoffman and Nelson, 1981)),
and all entities inside the locus are attended. Yantis(1992) in his work showed that
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tracking accuracy was more when the higher order object like polygon remained
in shape and tracking accuracy is less when the shape collapsed.

1.6.3 Multifocal Attention Theory

Figure 1.9: [Source:(Meyerhoff et al., 2017)]

In previous two theories discussed above considered only a single focus of
visual attention or selected attention. In order to explain MOT in terms of
divided or distributed attention Cavanagh and Alvarez(2005) proposed multifocal
attention theory(figure 1.5). This model suggests that during the trial there are
multiple foci of attention that keep track of the objects of interest. Multiple foci
of attention act in a similar way to visual indices in FINST theory. However,
the visual indices in FINST theory can access only one object at a given point
but in this theory, there is always continuous access to all the objects being
tracked. Neuroscientific(Awh and Pashler, 2000) and behavioral(Müller et al.,
2003) research showed that the attentional focus can be split and the processing
of stimuli at independent locations is enhanced.

1.6.4 FLEX Model

Figure 1.10: [Source:(Meyerhoff et al., 2017)]

In all three models discussed above tracking ability is limited by the number
of visual indices or attentional foci which can be referred to as architectural con-
straints. Models with fixed architecture can predict only a set of objects that
do not exceed the architectural constraints. Alvarez and Franconeri in 2007 in-
vestigated whether there is a fixed limit on the number of objects that can be
tracked or whether the tracking limit can be changed flexibly depending on the
type of MOT task. Considering the capacity and space tradeoffs in their work
they showed that participants could track up to eight objects when speed is signif-
icantly slow and could only one object when speeds are very high. Based on these
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observations they introduced the FLEX model(figure 1.6) in which attentional re-
sources are flexibly allocated between the objects during tracking(demand-based
allocation). According to this model, tracking performance is limited when there
is a deficit in attentional resources to attend all the targets.

1.6.5 Spatial Interference Theory

Figure 1.11: [Source:(Meyerhoff et al., 2017)]

According to spatial interference theory(figure 1.7), attentional enhancement
is created and an inhibitory zone is formed around the objects being tracked.
As explained in (Franconeri et al., 2010) tracking performance degrades when
distractors interfere with the inhibitory zones of targets or when the inhibitory
surround of one target interferes with the attentional enhancement of another
target. Experiment results have shown that performance limiting factors like the
number of objects to track, number of distractors, or object speeds can all be
traced back to the spatial changes happening between the moving objects. This
theory was successful in explaining the variances in tracking performance and has
sparked a lot of research in the direction of inter-object spacing to understand
tracking performance.
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2. Modelling
In this chapter we briefly discuss some principles of statistical modelling, data
that we worked with is described, discuss some findings from our initial data
exploration and close with how the model is formulated.

2.1 Statistical Modelling
Modelling is a mathematical approach to analyzing and understanding the re-
lationship between response variables and explanatory variables in the dataset.
Statistical techniques like regression can be used to identify these relations and
make predictions about future outcomes. Statistical modelling is used in diverse
areas like economics, psychology, biology, and engineering.
General principles of statistical modelling are discussed in the sections below are
presented with reference to Dobson and Barnett.

2.1.1 Exploratory data analysis
EDA is performed as the first step in order to get insights about the data. Usually,
different data visualizations like histograms, scatterplots, heatmaps, etc are used
during this process based on the type of analysis that interests the investigator.
EDA helps us to identify patterns or understand relationships between different
variables in the data before making any assumptions to create a model.

2.1.2 Model Formulation
Model has two components:
1. Probability distribution of response variable.
For example, Y ∼ N(µ, σ2)
2. An equation linking the expected value of the response variable with a linear
combination of the explanatory variables.
For generalized linear model the equation is as follows,

g[E(Y )] = β0 + β1x1 + ... + βmxm

where right side part of the equation is called the linear component.

2.1.3 Parameter estimation
For classical or frequentist statistics the most commonly used estimation methods
are least squares and maximum likelihood. Both of these methods are mathe-
matically described below.

Least Squares

Let Y1,..,Yn be independent random variables with expected values µ1,..,µn re-
spectively and B = [β1, ..., βm]T be the parameter vector we want to estimate.
Let us assume that expected values µi(i = 1...n) are functions of the parameter
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vector we want to estimate, then

E(Yi) = µi(β) (2.1)

In the method of least squares, we want to find an estimator β̂ that minimizes
the sum of squares of the difference between Yi and its expected value µi which
is denoted as follows,

S =
∑︂

[Yi − µi(β)]2 (2.2)

In case when random independent variables have unequal variances σ2
i we want

to minimize the weighted sum of squared difference then equation 2.2 is changed
as follows,

S =
∑︂

wi[Yi − µi(β)]2 (2.3)

where wi = (σ2
i )−1. By using weights we ensure that observations with less

reliability have less influence on the estimates.

Maximum likelihood

Let Y = [y1, ..., yn]T denote a random vector and let the joint probability density
function be f(Y ; Θ) which depends on the parameter vector Θ = [θ1, ..., θm]T .
Algebraically, the joint probability density function f(Y ; Θ) is same as likelihood
function L(Θ; Y ). Let Ω denote the set of all possible values of the parameter
vector Θ which is known as parameter space. The maximum likelihood estimator
of θ is the value Θ̂ which maximizes the likelihood function which is,

L(Θ̂, Y ) ≥ L(Θ, Y ) ∀Θ ∈ Ω (2.4)

Often numerical methods and calculus are used to obtain the parameter estimates
that maximize the likelihood or minimize the sum of squares.

2.1.4 Model Checking
Model checking is the process of evaluating the performance of a statistical model
to ensure that it is a good fit for the data. This process typically involves examin-
ing the residuals of the model to see if they meet certain statistical criteria, such
as being normally distributed and homoscedastic(constant variance) in nature.
Let us consider Yi set of response variables modelled as,

E(Yi) = µi; Yi ∼ N(µi, σ2)
Then the fitted values are the estimates µî and residuals will be yi − µî. In order
to compare residuals of different observations we define standardized residuals as,

ri = (yi − µî)/σ̂ (2.5)
where σ̂ is an estimate of the parameter σ.
The sum of squared residuals ∑︁(yi −µî)2, which is a component that is optimized
in parameter estimation is used to check the model adequacy.
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2.1.5 Inference
Inference comes into play when we want to draw conclusions or make predictions
about a process or population. Two main tools used in statistical inference are
confidence intervals and hypothesis tests.
The next sections in this chapter introduce the data we used and the analysis
we carried out to create a model. This step helps us to make informed decisions
based on the data collected. In the below some concepts used during inference
process are described.

2.2 Linear regression models

2.2.1 Description
In a simple linear regression model we want to model the relationship between
two variable, for example, inflation and housing costs or literacy and income. Let
us assume there is linear relationship between y and x. Then this relationship
can be modelled as,

y = β0 + β1x + ϵ (2.6)
where y is the dependent or response variable and x is the independent variable
or predictor. Random variable ϵ is considered as the error term that is arising
due to some external noise, β0 is a constant and β1 is a coefficient. Often times
response variable y is influenced by more than one predictor. In this case linear
relationship is defined as,

y = β0 + β1x1 + β2x2 + ... + βnxn + ϵ (2.7)
The parameters β0,β1,...,βn are known as regression coefficients. ϵ brings in some
randomness in y that is not explained the variables x. Here, relationship linearity
is with parameters β and it is not necessarily linear with x variables. Now, let us
consider a simple linear regression model for n observations represented as,

yi = β0 + β1xi + ϵi; i = 1, 2, ..., n (2.8)
Here, we will assume that yi and ϵi are random variables and xi are known fixed
values. We make the following assumptions for model in equation(refer the equa-
tion number),

1. E(yi) = β0 + β1xi

2. var(yi=σ2)

3. cov(yi,yj)=0

First assumption implies that yi depends only on xi and all other variation is
random. Second assumptions implies constant variance that is variance of y or
ϵ does not depend on xi values. Third assumption asserts that variables y are
uncorrelated with each other.

16



2.2.2 Parameter estimation for linear model
As mentioned, we have known observations x1,x2,...,xn and let us consider n ran-
dom observations y1,y2,...,yn then we can estimate parameters β0 and β1. Esti-
mates β0̂, β1̂ are obtained using least squares method. In method of least squares
we are interested to find β0̂ and β1̂ that minimize the sum of squares of the de-
viations yi - yî of the n observed yi’s from their predicted values yî=β0̂+β1̂xi;

n∑︂
i=1

(yi − yî)2 =
n∑︂

i=1
(yi − β0̂ − β1̂xi)2 (2.9)

To find β0̂ and β1̂ that minimize the equation 2.9 we need to differentiate it with
respect to β0̂ and β1̂ and equating to zero leaves us with two equations,

−2
n∑︂

i=1
(yi − β0̂ − β1̂xi) = 0 (2.10)

−2
n∑︂

i=1
(yi − β0̂ − β1̂xi)xi = 0 (2.11)

Solution to equations 2.10 and 2.11 is given by

β0̂ = ȳ − β1̂x̄ (2.12)

β1̂ =
∑︁n

i=1(xi − x̄)(yi − ȳ)∑︁n
i=1(xi − x̄)2 (2.13)

2.2.3 Inference for linear model
Hypotheses about β1 is important that hypotheses about β0 since we are looking
to find if some linear relationship exists between y and x. Here we will consider
null hypothesis H0: β=0 meaning there is no linear relationship between y and x
in the model 2.8. In order to test for H0: β=0 we assume that yi ∼ N (β0+β1xi,σ2).
Here let us denote unbiased estimator of variance σ2 i.e, s2 as,

s2 =
∑︁n

i=1(yi − yî)2

n − 2 (2.14)

Then β1̂ and s2 have the properties,

1. β1̂ ∼ N (β1, σ2∑︁
i
(xi−x̄)2 )

2. (n − 2)s2/σ2 ∼ χ2(n − 2)

3. β1̂ and s2 are independent

From the above three properties we will have a score statistic t as,

t = β1̂

s/
√︂∑︁

i(xi − x̄)2
(2.15)

Using t we can determine significance and find out confidence intervals. All
notations and expressions in section 2.2 are presented with reference to Rencher
and Schaalje.
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2.3 Effect size
Sometimes inferring results from a experiment especially in psychology should be
done with measures of magnitude to understand the effect of the study because
p-values in significance tests very much depend on sample sizes. For this we need
effect size as a quantitative measure of study’s effect. Larger effect size implies
stronger effect and smaller effect size implies weaker effect.

2.3.1 Cohen’s d
There are various measures of effect size but only Cohen’s d measure is discussed
as it relevant and useful in our work. Cohen’s d is computed as,

d = (µ2 − µ1)/σg (2.16)

Where µ1, µ2 are means of group 1 and group 2 respectively. σg is calculated as√︂
(σ2

1+σ2
2)

2

• if d value is less than 0.2 then we say effect is small.

• if d value is around 0.5 then we say effect is medium.

• if d value is around 0.8 then we say effect is large.
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3. Experiment
We designed an experiment in which we wanted to understand if the tracking
accuracy of the participants is improved when we modify low-scoring trajectories
obtained from our analysis according to the two metrics we selected. In the
following design section modification made to the original trajectories is explained
in detail. In later sections of this chapter, we describe the apparatus used, the
stimuli that are presented, and the experimental procedure carried out.

3.1 Data
As mentioned in the introduction we used data from the work of Dechterenko
(2017) in which they investigated if flipping objects during the trial both hori-
zontally and vertically can be used as a masking technique in long and repetitive
tasks so that participants would not notice repeated trials. The data from this ex-
periment consisted of trajectory data that were present during trials and response
data collected. Based on the column names shown in table 2.1 trajectory data

TrackId X1 Y1 X2 Y2 X3 Y3 X4 Y4 X5 Y5 X6 Y6 X7 Y7 X8 Y8 Time
1 10.51 1.09 -1.09 -5.21 -10.04 -6.80 -6.18 3.10 -10.36 3.64 -9.23 -3.98 -7.14 7.27 -11.93 3.68 0.01
1 10.52 1.15 -1.15 -5.22 -9.98 -6.80 -6.20 3.04 -10.31 3.61 -9.22 -4.04 -7.19 7.24 -11.89 3.65 0.02
1 10.53 1.20 -1.21 -5.22 -9.92 -6.81 -6.21 2.99 -10.25 3.59 -9.20 -4.09 -7.24 7.22 -11.83 3.63 0.04
1 10.53 1.26 -1.27 -5.21 -9.86 -6.82 -6.24 2.93 -10.20 3.57 -9.17 -4.14 -7.30 7.20 -11.78 3.60 0.05
1 10.53 1.32 -1.33 -5.21 -9.81 -6.81 -6.25 2.88 -10.14 3.56 -9.12 -4.18 -7.35 7.19 -11.73 3.58 0.06
1 10.54 1.38 -1.39 -5.21 -9.75 -6.81 -6.25 2.82 -10.08 3.55 -9.08 -4.22 -7.41 7.17 -11.67 3.55 0.07

Table 3.1: Sample of trajectory data

contains a column called TrackId which is an identity given to each trajectory
that is generated. We need to have a trajectory ID because during the analysis
of results, we can identify on which trajectories participants did not perform well
and study characteristics of those low-scoring trajectories. Columns Xi,Yi(where
i = 1, 2, 3, 4) contain coordinates of 4 target objects and columns Xj, Yj(where
j = 5, 6, 7, 8) contain coordinates of 4 distractor objects. Values in column Time
represent each timestep of the trial, In the experiment from which this data is
obtained each trial lasted for 6 seconds with each timestep being 85th of a second.
MOT being a dynamic task it seems obvious to have a time column but apart
from that sometimes choosing timesteps could affect the experience of the par-
ticipants. In this data each datapoint is a frame with eight objects shown at that
particular timestep, each trajectory in this data contains 510(6*85) datapoints
and a total of 500 trajectories. Please note that due to space constraint, floating
values in all tables are rounded to 2 decimals.

Table 2.2 shows a sample of response data after filtering columns that are
not useful in the analysis. Response data also contains column TrackId and its
description is the same as mentioned above. The second column nCorrect gives
how many target objects the participant tracked correctly and the values in the
third column accuracy reflect the number of target objects tracked in nCorrect.
Each data point in response data gives performance on a particular trajectory in
a specific trial. The number of data points in the response data depends on the
number of trials that are presented in the experiment. Out of 500 trajectories
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TrackId nCorrect accuracy
173 3 0.75
38 1 0.25

167 4 1.00
126 4 1.00
12 3 0.75
14 3 0.75

Table 3.2: Sample of response data after filtering unwanted columns

in trajectory data 450 trajectories were used in the experiment so response data
contains 450 unique TrackId’s and the remaining 21 trajectories are excluded for
further analysis.

3.2 Analysis
Initially based on the accuracy values in the response data we identified some
trajectories where participants could not track all target objects when these tra-
jectories were presented to them. After identifying trajectories we came up with
a couple of descriptors that would quantify the difficulty of the trajectory like
crowding, some centroid measures, mean area of the convex hull formed by the
target objects. Apart from the mentioned, we tried other metrics like the number
of targets in each hemifield and the intersection area when convex hulls formed by
targets and distractors overlap but in order to keep the model simple and avoid
collinearity we didn’t consider some metrics for the model. These measures we
tried are basically related to previous works mentioned in chapter 1. After sum-
marizing data in table 2.2 by calculating the mean accuracy of each trajectory
the data looks in table 2.3 and here we removed nCorrect as it no longer needed
because we can work just with accuracy.

TrackId accuracy
442 0.95
486 0.92
244 0.75
79 0.88

470 0.25
99 0.88

Table 3.3: Summarized response data

At this point, we excluded all trajectories with mean accuracy 1 because
participants could track all the targets on those trajectories correctly and after
exclusion we had 199 trajectories in total. These 199 trajectories are the ones
where one or more participants could not track all the targets successfully.
When computing the metrics we would like to determine some statistics particular
to target objects or distractor objects for this reason it is hard to work with data
in table 3.1 as it is so we transform the trajectory data to long format which looks
like,
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TrackId Time object X Y target
1 0.01 1 10.51 1.09 TRUE
1 0.01 2 -1.09 -5.21 TRUE
1 0.01 3 -10.04 -6.80 TRUE
1 0.01 4 -6.18 3.10 TRUE
1 0.01 5 -10.36 3.64 FALSE
1 0.01 6 -9.23 -3.98 FALSE
1 0.01 7 -7.14 7.27 FALSE
1 0.01 8 -11.93 3.68 FALSE
1 0.02 1 10.52 1.15 TRUE
1 0.02 2 -1.15 -5.22 TRUE
1 0.02 3 -9.98 -6.80 TRUE
1 0.02 4 -6.20 3.04 TRUE
1 0.02 5 -10.31 3.61 FALSE
1 0.02 6 -9.22 -4.04 FALSE
1 0.02 7 -7.19 7.24 FALSE
1 0.02 8 -11.89 3.65 FALSE

Table 3.4: Sample of trajectory data in long format

After summarizing accuracy of each trajectory we calculated 6 metrics and
summarized them for each trajectory. Summarized data for each trajectory looks
as in table 2.4 and actual data in table 2.4 consists of summary results for 93
trajectories.

TrackId accuracy Metric1 Metric2 Metric3 Metric4 Metric5 Metric6
3 0.67 8.66 8.50 1.28 13.77 66.06 5.31

18 0.96 7.09 6.58 2.20 11.36 67.32 5.36
19 0.50 9.19 7.94 1.96 16.13 88.98 6.75
23 0.96 8.48 8.01 2.12 14.76 107.37 8.61
27 0.75 9.56 9.40 4.23 13.95 150.02 8.66
28 0.97 8.69 6.98 0.27 12.76 50.83 9.98

Table 3.5: Merged data showing a summary of accuracy and metrics for each
trajectory

Next, we performed bivariate analysis to see how accuracy is influenced by
each metric and the results of this analysis can be seen in figure 2.1. Looking
at the regression line in each plot in figure 2.1 we can find out some impact of
metric 5 and metric 6 on accuracy but others metrics seems to explain nothing
from the plots.
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Figure 3.1: Scatterplots generated as part of bivariate analysis
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The description of each metric is as follows,

• Metric 1 - Mean distance of target objects to the centroid formed by all
objects i.e, targets and distractors.

• Metric 2 - Mean distance of target objects to the centroid formed by only
targets

• Metric 3 - Minimum distance of a target from the centroid formed by only
targets

• Metric 4 - Maximum distance of a target from the centroid formed by only
targets

• Metric 5 - Mean area of convex hull formed by targets

• Metric 6 - Maximum crowding(assuming gaze point at objects centroid)

Figure 3.2: Instance showing object positions in MOT[Source:Lukavskỳ]

Metric 1 can be understood from figure 3.2(left) the diamond symbol is cen-
troid formed by all the objects and lines from each target(green dots) indicates
to centroid can be considered as distance to it and we calculate mean of four
distances. Metrics 2,3 and 4 can be understood from figure 3.2(right) where di-
amond symbol represents centroid formed by targets and lines indicate distance
of each target to the centroid. We calculate mean,minimum and maximum of
these distances. Metric 6 is computed with equation 1.2 with gaze at all object
centroid and we will take maximum of the computed result.

After bivariate analysis, we created a linear models with accuracy as the
response variable and each metric as explanatory variable this is discussed in the
following section.
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3.3 Models
In this section we present the summary of 6 linear models we tested based the
six metrics that are mentioned above as part of bivariate analysis. Then based
on the model summary results we choose to pick two models that will be tested
experimentally on new set of participants to see how their tracking performance
varied based on the predictor. Please note that all models are fitted on trajectory
descriptors or metrics obtained from all 199 trajectories.

Table 3.6: Summary of model 1 with metric 1 as predictor

Dependent variable:
accuracy

Metric1 0.001 (0.007)
t = 0.072
p = 0.943

Constant 0.875 (0.064)
t = 13.604

p = 0.000∗∗∗

Observations 199
R2 0.00003
Adjusted R2 −0.005
Residual Std. Error 0.093 (df = 197)
F Statistic 0.005 (df = 1; 197)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3.7: Summary of model 2 with metric 2 as predictor

Dependent variable:
accuracy

Metric2 0.004 (0.006)
t = 0.620
p = 0.536

Constant 0.852 (0.045)
t = 18.854

p = 0.000∗∗∗

Observations 199
R2 0.002
Adjusted R2 −0.003
Residual Std. Error 0.093 (df = 197)
F Statistic 0.384 (df = 1; 197)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.8: Summary of model 3 with metric 3 as predictor

Dependent variable:
accuracy

Metric3 −0.002 (0.005)
t = −0.504
p = 0.616

Constant 0.883 (0.010)
t = 84.902

p = 0.000∗∗∗

Observations 199
R2 0.001
Adjusted R2 −0.004
Residual Std. Error 0.093 (df = 197)
F Statistic 0.254 (df = 1; 197)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3.9: Summary of model 4 with metric 4 as predictor

Dependent variable:
accuracy

Metric4 −0.001 (0.004)
t = −0.275
p = 0.784

Constant 0.895 (0.058)
t = 15.517

p = 0.000∗∗∗

Observations 199
R2 0.0004
Adjusted R2 −0.005
Residual Std. Error 0.093 (df = 197)
F Statistic 0.076 (df = 1; 197)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.10: Summary of model 5 with metric 5 as predictor

Dependent variable:
accuracy

Metric5 0.0004 (0.0002)
t = 2.163

p = 0.032∗∗

Constant 0.841 (0.019)
t = 45.188

p = 0.000∗∗∗

Observations 199
R2 0.023
Adjusted R2 0.018
Residual Std. Error 0.092 (df = 197)
F Statistic 4.677∗∗ (df = 1; 197)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3.11: Summary of model 6 with metric 6 as predictor

Dependent variable:
accuracy

Metric6 −0.006 (0.003)
t = −1.944
p = 0.054∗

Constant 0.917 (0.020)
t = 44.834

p = 0.000∗∗∗

Observations 199
R2 0.019
Adjusted R2 0.014
Residual Std. Error 0.092 (df = 197)
F Statistic 3.778∗ (df = 1; 197)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

There are different approaches in selecting predictors for a regression model
that captures the relationship with dependent variable in the best possible way.
Usually, predictors with highest adjusted R2 are selected and predictors with
p-values greater than 0.05 are disregarded. For our work we considered both
Adjusted R2 and p-values to select two models. Looking at the summary of each
model, model 5 with mean area of convex hull as predictor(metric 5) should be one
of the model to be selected due to its highest adjusted R2 and least p-value and
model 6 with maximum crowding as predictor should be the other model selected
as per its adjusted R2 and p-values. However, we did not use model 5 due to its
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complexity and limited property that is the chances of convex hulls not formed or
do not remain intact is high. Modifying trajectories(details described in section
3.4) based on convex hull is slightly harder compared modifying trajectories just
based on distance measures. For our experiment, we selected model 6 because
crowding is a general phenomenon it is observed in many cases and we selected
model 4 whose predictor is maximum distance between a target to targets centroid
to see if by minimizing the distance to target centroid would improve tracking
accuracy(minimizing the maximum distance).
Originally, our idea is to select two sets of trajectories from 199 trajectories again
based on accuracy. For this purpose, we selected one set of trajectories whose
accuracy values are under the first quartile(Q1) and another set of trajectories
whose accuracy values are above third quartile(Q3). Filtering 199 trajectories by

Figure 3.3: summary of accuracy showing quartiles,central measure and min-max

accuracy ≥ 0.9482 and accuracy ≤ 0.8333 we got 93 trajectories in total. From 93
trajectories we selected 16 trajectories whose accuracy is under Q1 and other 16
trajectories whose accuracy is above Q3. We modified 16 trajectories according to
metric 6(crowding) and 16 trajectories according to metric 4(maximum distance
of target to targets-centroid). This modification procedure is explained in the
following design section.

3.4 Design
Our main goal while designing the experiment is to come up with a procedure
that would detect the peak and suppress the peak. Here peak can be inter-
preted as the most difficult part of tracking a trajectory. After identifying the
low-scoring trajectories, we modified trajectories based on two metrics which are
crowding(Metric A) and the maximum distance of target objects to the targets-
centroid(Metric B) that we selected to quantify the difficulty of the trajectory.
we tried to modify the original trajectory as follows,

Step 1: For each trajectory, the metric quantifying difficulty is calculated
Step 2: Identify a time interval that contains the maximum value of the metric
Step 3: Perform linear interpolation on the original trajectory data within the
time interval
Step 4: Calculate midpoints between the interpolated part of the trajectory and
its original points
Step 5: Replace original trajectory points in the time interval at which peak val-
ues are detected with the midpoints calculated so that we will have a modified
trajectory with a smaller peak value.
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In the procedure described above, we used interpolation technique to suppress
the peak but we cannot use interpolated points for the stimuli because it makes
the tracking task quite easy and participants can predict the trajectory’s move-
ment during the trial. In order to overcome this we calculated the midpoints
between interpolated points and original trajectory points in the peak interval.
In MOT tasks the object directions are generated from a random distribution like
von Mises distribution(Chapter 45 in Forbes et al.), by calculating the midpoints
we could maintain the movement of the objects in the modified trajectory still in
a random way so that participants would not be able to predict future locations
of the objects.
The design procedure is explained with the help of two trajectories with IDs
90, 409 that we used in our work. Metric 1 manipulations are explained using
trajectory-90 and metric 2 manipulations are explained using trajectory-409 in
the following subsections.

3.4.1 Metric A - Crowding
In regards to metric A, we tried to manipulate the inter-object spacing of all 4
targets based on the crowding values of the original trajectory. Figure 3.3 shows
the position of objects at the peak crowding for the original trajectory(on the
left) and modified trajectory(on right). Inter-object spacing manipulation done
using the modification procedure explained is reflected within squared and circled
regions in figure3.3

Figure 3.4: Snapshot showing positions of the objects for original trajectory and
its modified version at the peak value of metric A. In the figure green, red, and
blue dots represent targets, distractors and all objects centroid respectively
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Figure 3.5: Plot showing how crowding varies over time for the original trajectory
and its modified version

Figure 3.4 shows an output of the modification process with Metric 1. Crowd-
ing values were calculated for both the original(red) and modified (green)trajectory.
In this figure, we can notice that the peak crowding value of the modified trajec-
tory is smaller than the crowding value of its original trajectory.

3.4.2 Metric B - Maximum distance of the target from
targets centroid

For metric B we modified only the position of the target object that is at a
maximum distance from the centroid formed by all target objects. Figure 3.5,
shows the position of the objects at timestep for a trajectory with ID 409 where
the distance of the target object to its centroid is maximum. In figure 3.5 target
object in green marked inside a square is at the maximum distance from the
centroid of the targets (blue point marked inside a triangle) and one can notice
the reduced distance in the right side plot of figure3.5
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Figure 3.6: Snapshot showing positions of the objects for original trajectory and
its modified version at the peak value of metric B. In the figure green, red, and
blue dots represent targets, distractors, and targets centroid respectively

Figure 3.7: Plot showing how the distance of a target to targets centroid over
time for the original and its modified trajectory

Figure 3.6 shows the output of metric 2 values calculated for both the origi-
nal(yellow) and modified (magenta)trajectory. In this figure, we can notice that
the distance between the target object and the centroid of the target is decreased
for the modified trajectory compared to the original.

30



3.5 Method

3.5.1 Participants
A total of 75 students consisting of 48 females and 27 males participated in the
experiment, mean age of the participants was 21.44 years with ages ranging from
19 to 28 years. All participants had normal or corrected vision and voluntarily
took part in the experiment.

3.5.2 Apparatus and stimuli
This experiment was programmed in Python using PsychoPy software Peirce et al.
(2022) and presented on a 22” LCD screen (1920 x 1080 px). The participant sat
approximately 50 cm from the screen, and the head position was not controlled.
Stimuli used in this experiment include eight white objects 1◦ against grey back-
ground. Each of them moved with a constant speed of 5◦. All objects moved in
30◦ diameter inside circular arena. Objects bounced off the circular border back
to screen center with a random change to avoid prediction of motion paths by
the participant. Objects also bounced off each other allowing atleast 0.1◦ space
between them. The direction of the objects of original trajectories(not modified)
was sampled from a von Mises distribution with a concentration parameter of
k=40 for each frame(Děchtěrenko et al. (2017)).

3.5.3 Procedure
The experiment consisted of 64 trials and an extra 6 trials are presented for
practice before the experiment. In each trial, eight objects are presented at
random positions on the screen and target objects are cued by flashing. After
targets are cued all 8 objects move for 6 s and stop. Once objects stop moving
participants are asked to click on the objects they tracked. Out of 64 trials,
32 trials are modified and the remaining 32 trials are the original version of
the modified trials. In this experiment, all participants are presented with the
same trajectories but in a different order based on the protocol file selected. In
presenting the trials we made sure that trials consisting of modified trajectory
and it’s original version are at least 16 trials apart so that participants do not
notice the trajectories. A sample of how a protocol file created for experimental
trials is shown in table 3.12
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prot.id trial.id trajectory.id manipulated metric performance
22 1 409 yes metric.B Q1
22 2 495 yes metric.B Q1
22 3 173 yes metric.B Q1
22 4 276 yes metric.B Q1
22 5 283 yes metric.B Q3
22 6 200 yes metric.B Q3
22 7 102 yes metric.B Q3
22 8 447 yes metric.B Q3
22 9 450 yes metric.B Q3
22 10 398 yes metric.B Q3

Table 3.12: A sample of protocol file

In every protocol file three main columns that it should contain are a column
with protocol ID to identify each protocol created, a column with trial ID given
to each trial and third column containing stimulus ID given to each stimulus.
In the table columns ’prot.id’, ’trial.id’ and ’trajectory.id’ contains protocol ID,
trial ID and stimulus ID respectively. The remaining columns in the protocol file
can be set as per the experiment requirements as in if the experimenter wants to
control some aspect of the stimulus those parameters can be listed in the file. In
our experiment we used information in column ’manipulated’ to present either
the original trajectory or the modified trajectory.
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4. Results
In this chapter we present results obtained from data collected in our experiment.
Firstly, to have an idea of how collected data looks like check table 4.1

prot id trial id trajectory id participant id modified metric performance mouse.clicked name nCorrect
15 45 382 35 no metric.A Q3 [’o1 copy 3’, ’o1 copy 0’, ’o1 copy 1’, ’o1 copy 2’] 4.00
2 61 118 22 yes metric.A Q3 [’o1 copy 4’, ’o1 copy 3’, ’o1 copy 0’, ’o1 copy 2’] 3.00
1 56 126 41 yes metric.B Q3 [’o1 copy 1’, ’o1 copy 2’, ’o1 copy 4’, ’o1 copy 7’] 2.00

19 63 346 19 yes metric.B Q1 [’o1 copy 2’, ’o1 copy 1’, ’o1 copy 0’, ’o1 copy 3’] 4.00
15 20 102 35 no metric.B Q3 [’o1 copy 1’, ’o1 copy 0’, ’o1 copy 2’, ’o1 copy 3’] 4.00
7 34 118 7 no metric.A Q3 [’o1 copy 2’, ’o1 copy 0’, ’o1 copy 3’, ’o1 copy 1’] 4.00
4 25 382 4 no metric.A Q3 [’o1 copy 1’, ’o1 copy 2’, ’o1 copy 3’, ’o1 copy 0’] 4.00

12 3 283 12 yes metric.B Q3 [’o1 copy 2’, ’o1 copy 0’, ’o1 copy 3’, ’o1 copy 1’] 4.00
14 53 415 54 yes metric.A Q1 [’o1 copy 1’, ’o1 copy 0’, ’o1 copy 2’, ’o1 copy 3’] 4.00
2 7 496 22 yes metric.B Q1 [’o1 copy 3’, ’o1 copy 2’, ’o1 copy 1’, ’o1 copy 0’] 4.00

Table 4.1: Sample of processed data collected from experiment

Most of the columns by what they mean in table 4.1 are explained previously
except for one column ”mouse.clicked name” and what this column captures a list
of four objects participant selected by mouse clicks after end of a trial. The set of
objects [’o1 copy 0’, ’o1 copy 1’, ’o1 copy 2’, ’o1 copy 3’] corresponds to target
objects and [’o1 copy 4’, ’o1 copy 5’, ’o1 copy 6’, ’o1 copy 7’] corresponds to dis-
tractors. Data in this column will be transformed as ”nCorrect” to get on number
of correctly tracked objects and once we have this column ”mouse.clicked name”
can be ignored for further analysis.

In the plots above, each point represents the mean tracking accuracy of each
participant on both original trajectories and modified trajectories for the two
metrics. Green points show the mean accuracy of participants on original tra-
jectories, blue points show the mean accuracy on their modified ones, and black
points represent the mean of all the participants. The pair of points connected
by the lines correspond to each participant. Looking at the plots we can observe
that the mean accuracy of all participants is slightly higher on the modified tra-
jectories for both metrics especially in case of Metric.A . However, we need to
test if this difference is significant in the case of both metrics. Other observations
that we can make from looking at the connecting lines is that there are multiple
cases where some participants did well on modified trajectories compared to their
original ones and there are also cases where some participants performed well on
the original trajectories and did not do well on their modified ones. Please note
that in figure 4.1 there is high overlapping of the points as many values are very
close. So, in order to have a better view of the plot the point positions have been
jittered horizontally due to this one can notice some mean accuracy values are
above 1.0 but in actual data, all values are equal to 1.0 or less than 1.0
For further analysis, for each participant we calculated the difference in accuracy
between the modified trajectory and the original trajectory and then we com-
puted the average of this difference for each metric A and metric B separately
and results shown in figure 4.2.
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Figure 4.1: Plot showing mean accuracy of each participant on both original and
modified trajectories of each metric
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Figure 4.2: plot showing difference of accuracy between original and modified
trajectories averaged for each participant. Here metric 1 and metric 2 in figure
means metric.A and metric.B respectively
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In order to understand how significant the relationship is between dependent
and explanatory variables we did a T-test. From T-test results are t=1.3753,
p<.05 and to say t is relatively large but it is not that large to ignore some rela-
tionship between tested metrics and accuracy.

Cohens d CI CI low CI high
Metric.A 0.32 0.95 0.08 0.55
Metric.B 0.09 0.95 -0.14 0.32

Table 4.2: Effect sizes of both metrics

In order to understand the effect of each metric.A, metric.B on participants
tracking accuracy we computed cohen’s d individually and those results are men-
tioned in table 4.2. For metric.A cohen’s d is 0.32 that means there is some
moderate effect on tracking accuracy whereas, for metric.B cohen’s d is 0.09
meaning there is effect of metric on the tracking accuracy.
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5. Discussion
In this study we came up with two predictive models with an expectation that
these model could explain how the tracking performance varies in an MOT exper-
iment. For validating our models we used both original trajectories at hand and
modified trajectories this approach can be consider as analogy to experimental
group and control group during clinical trials of testing some medicine. In exper-
imental group the subjects receive some treatment and researcher is interested
to find out the effect whereas in control group subjects receive no treatment and
their effect is already seen. In the same, we modified trajectories to see the effect
on tracking performance with an assumption that it would improve and original
trajectories are also presented for comparison.

5.1 Model 1
In model 1 the predictor variable we used to assess tracking performance is max-
imum crowding. We considered this because crowding is a well studied phe-
nomenon and previous research has shown that this effect would deplete tracking
performance in MOT tasks. Based on our results it is understand that minimiz-
ing crowding of the original trajectories had a moderate effect on improving the
tracking accuracy.

5.2 Model 2
In model 2 the predictor variable we used to explain tracking accuracy is a dis-
tance measure calculated as distance between one of the target objects and cen-
troid formed by the targets whose distance is the farthest. The reason for con-
sidering this measure to quantify difficulty of trajectories is again from previous
studies which used eye tracking device to capture eye movements during MOT
tasks have identified that people use some of target-centroid looking strategy and
imagine polygon with targets as vertices. So when a target is far from its centroid
we assumed that there is high chance of losing that target during tracking due to
some limitations in peripheral vision. We test this assumption by reducing the
target object distance to its center and see if the tracking performance improved.
However, there is no supporting evidence found and it effect is negligible.
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Conclusion
In this thesis, we have used linear regression models to predict tracking accuracy
in Multiple object tracking experiment. Firstly, we obtained some data collected
from a previous MOT experiment and based on results of that experiment we have
identified some trajectories where some participants could not track all the target
correctly. After we have identified those trajectories we computed some trajectory
descriptors that would quantify the tracking difficulty. Then we modified these
trajectories with low tracking accuracy to make them more easier to track. We
have tested two models and in one model where dificulty quantified by crowding
explains improved tracking performance to a little extent and the other model
where difficulty is quantified by distance measure related to only targets seems to
have no impact in improving tracking accuracy. Our interpretation from results of
both these models is that first model definitely creates a moderate effect because
inter-object spacing of all objects both targets and distractors are considered and
modified. Whereas, in model 2 only object spacing of one target was modified
with respect to a centroid this could be the reason for negligible effect or may
the object that was modified is not the toughest to track among the four objects.
Definitely, in future work it is worthy to try more descriptors involving convex
hulls and distance measures calculated by giving more preference to distractor
objects. Practically MOT can be applied in evaluating visual attention of a
sport person playing some team sport or assessing candidates who work in air
traffic control so by doing these studies in understanding and predicting tracking
accuracy there could be some benefit.
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A. Attachments

A.1 First Attachment
We programmed most of the project in R with the help Rstudio and for the ex-
periment we used PsychoPy based on python programming language which has
Graphical interface to set experiment parameters as well as coder view to pro-
gram. The thesis attachment contains code, data, images, videos and experiment
files.

A.1.1 Code
• install load packages.R - installs and loads all libraries used in the project

• load preprocess data.R - for loading and preprocessing trajectory and re-
sponse data

• functions.R - contains all the functions implemented for the project running
the script will load all functions to R environment in Rstudio

• bivariate analysis.R - generates some trajectory statistics, prints scatter
plots and creates linear models

• modify metricA tracks.R - contains script to modify original tracks related
to metric A

• modify metricB tracks.R - contains script to modify original tracks related
to metric B

• create protocols.R - generates protocol files needed for the experiment

• prepare results.R - will merge all response data collected from the experi-
ment and generates plots

A.1.2 Data
Data folder contains two files,

• trackdata mot experiments.csv - contains trajectory data presented in pre-
vious MOT experiments

• all responsedata.csv - contains response data collected from previous MOT
experiments

A.1.3 Images and Videos
Folders named Images contains various plots generated during the project. Folder
named Videos contains trajectory videos of the modified tracks.
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A.2 Experiment
Folder named experiment contains file that runs the experiment using PsychoPy,
data collected from the experiment, Motbox package that is necessary to run the
experiment, protocol files, both modified and original trajectory files.
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