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INTRODUCTION

This work deals with the theoretical construction of abstract forms of amplitude for the n— nnw
decay and similar meson processes, the description of which falls within the scope of strong-force
physics.

In the Standard Model, strong force is at a fundamental level described by the theory of
Quantum Chromodynamics (QCD). The usual perturbative method of enumerating Feynman
diagrams can only be readily applied to QCD in a limited regime — in the high-energy regime of
quark scattering, where the theory ('perturbative QCD’) produces predictions in good agreement
with experiment. However, hadron phenomenology, which is to be the low-energy manifestation
of QCD, falls outside the scope of simple perturbative treatment.

There are a couple of established approaches for deriving testable low-energy predictions from
QCD. One approach is to focus on the consequences of approximate flavor chiral symmetries
present in QCD. That approach is systematically implemented in ’Chiral Perturbation Theory’
(ChPT) [11][12][22]

ChPT postulates the validity of a ’chiral limit’, that is, a limit in which a few of the smallest
quark mass parameters of QCD vanish so as to make the resultant theory exactly chiral sym-
metric. The symmetry breaking effects connected with the physical non-vanishing values of these
parameters are then considered a small perturbation on top of the symmetric theory. Predictions
of quantities within ChPT are given in the form of expansions, the terms of which are organized
by so-called chiral ordering. In practice, the expansion needs to be cut off at some given chiral
order. As the considered chiral order cut-off grows, the theory admits an increasing number of free
parameters (low-energy coupling constants) — the predictions become more accurate, but the theory
gradually loses its predictive power. That is straightforward to understand on the grounds of ChPT
being an effective theory with the approrimate QCD symmetry and a few other assumptions for
its only basis, otherwise being unrestricted.

In an approach complementary to evaluating meson process amplitudes from ChPT, one can use
dispersive methods to build up general forms of amplitude — taking chiral ordering and unitarity
as constructive principles of the method [20][25][14]. These forms of amplitude are then compatible
with amplitudes evaluated from ChPT, that is, a ChPT amplitude corresponds to some choice of
values for the free parameters of the dispersively-constructed amplitude form. These forms can
help organize ChPT results, be a target for the fitting of experimental data, and also be used to
investigate models deviating from standard ChPT.

The n— mrw process, in particular, is intimately tied to the explicit breaking of isospin sym-
metry that is connected to the mass difference between the up and down quarks [10]. The process
can only occur in violation of isospin symmetry, and furthermore, there are arguments to show that
the electromagnetic contribution to facilitate the violation is small, leaving the explicit isospin-
breaking attributes of strong force, that is, the up/down quark mass difference, to be the dominant
driver behind the decay. As such, the decay is an interesting testbed to study the quark mass
difference.

In Chapter 1, we give an overview of ChPT as an effective theory stemming from the approxi-
mate QCD symmetries. In Chapter 2, we introduce the Dalitz plot as the customary presentation
of the kinematic variation of 1 — mmm amplitudes and measured incidences. In Chapter 3, we
summarize a dispersive method of mesonic amplitude construction. The method is established
in the published literature and is, for example, the basis of Ref. [14]. In Chapter 4, we describe
an attached software library with a high-level user interface for carrying out calculations in the
dispersive construction of meson process amplitudes. This library is the original contribution
of the present work. In Appendix A, we list utility functions that figure in the dispersively-
constructed amplitudes, and in Appendix B, we print a transcript of an interactive computer session
demonstrating the usage of the library.






CHAPTER 1

OVERVIEW OF CHIRAL PERTURBATION THEORY

1.1. INTRODUCTION

Chiral Perturbation Theory ([11], [12], [22]) is an effective field theory for the description of low-
energy phenomenology of Quantum Chromodynamics. It builds on considering the symmetry
principles manifest in QCD, employing them in the construction of terms in (otherwise most
general) Lagrangian density. Predictions are then derived by means of standard perturbation
theory except for a special ordering scheme in the perturbative expansion (instead of powers of
coupling one considers powers of momenta and quark masses). In what follows some of the technical
details are laid out. For a full introduction to the topic, we refer for example to Ref. [19].

The crucial symmetry of QCD in the construction of ChPT is the approximate SU(2) isospin
symmetry or, by extension, the SU(3) symmetry among the lightest quark flavors. Famously these
symmetries pronounce themselves in a striking way by organizing the hadronic spectrum into SU(2)
and SU(3) multiplets of similar particle mass and attributes. The SU(N) (N =2 or 3) symmetry
of QCD is not exact and is broken by the quark mass term of the Lagrangian. If we neglect the
relevant part of the mass term, we decouple!-! the left-handed and right-handed quark fields, so the
Lagrangian density exhibits an even larger symmetry of flavor multiplets in left- and right-handed
quark fields independently, the so-called chiral symmetry. We denote by SU(N)y and SU(N)g
the two symmetry groups acting on left-handed and right-handed fields separately, and we have,
overall, an SU(N)r x SU(N)g symmetry (called chiral symmetry) of the QCD Lagrangian, up to
the mass term.

isospin

KO K+
497.6 MeV  493.7 MeV

T 70 ot

139.6 MeV  135.0 MeV  139.6 MeV

K- K°
493.7 MeV  497.6 MeV

Stl"itllg(‘ll(?SS

Figure 1.1. The pseudoscalar octet of light mesons arranged in the weight space of the SU(3) Lie group.
meson (mass 547.9 MeV, isospin singlet) is not depicted, but lies at the same position as the neutral pion 0.

Green boxes correspond to isospin doublets/triplets. Mass values were rounded from those available in [27].

1.1. The resulting quantum theory will not exhibit all the symmetries suggested by the formal decouplement of
the fields at the classical level. There is a chiral anomaly (discussed at an introductory level e.g. in [8]) that affects
the U(1) symmetry of contrariwise change in phase of the left-handed and right-handed fields. However, the SU(N)
chiral flavor symmetries that are the subject of discussion here can be preserved through quantization.
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The SU(N)p, x SUR(N) approximate symmetry underpins the construction of ChPT. For fur-
ther discussion, it is important to recast it, representing each element (L, R) of SUL(N) x SUr(N)
by two matrices V', A € SU(N) such that

(L,R) = (VA1 VA).

We use SU(N )y and SU(N)4 to denote the set of all V and A, respectively. The former corresponds
to symmetry transformations acting on left-handed and right-handed fields evenhandedly (so the
usual flavor symmetry), and the latter corresponds to transformations acting contrariwise on the
two fields. We speak of SU(N )y x SU(N )4 symmetry, but we note that SU(N)y4 is not a subgroup
of SU(N), x SU(N)g (while SU(N)y is). The V and A subscripts stand for vector and azial, being
descriptions of the transformation properties of the associated Noether currents. Under parity,
when the left-handed and right-handed quark fields are swapped, the axial current is inverted,
while the vector current is unchanged.

For the consideration of the isospin/flavor symmetry effects in QCD we have already invoked
what is called the chiral limit — the edge case of taking the mass terms in QCD for the IV lightest
quarks to zero and thus making the chiral symmetry exact. To account for the low-energy meson
phenomenology, the chiral symmetry-breaking effects (non-vanishing quark mass terms in QCD)
are treated to be a small perturbation around the chiral limit. Furthermore, in the limit, the full
SU(N)r, x SU(N)g symmetry of the dynamical laws is postulated spontaneously broken down
to SU(N)y. The members of the pseudoscalar meson octet (Fig. 1.1) are then identified with
the Goldstone bosons of the Nambu-Goldstone realization of the spontaneously broken SU(N)4
symmetry.

It can be shown that, in the chiral limit, the interaction among the pseudoscalar mesons (being
Goldstone bosons) should vanish in the limit of zero energy [21]. To model the low-energy dynamics
of mesons, Chiral Perturbation Theory then systematically implements a perturbation around both
the zero-energy and chiral limits.

By the argument given, e.g., in Ref. [15], the low-energy dynamic is presumed dominated by
the exchange of light mesons (those being the observed low-energy asymptotic states), and from
that it is deduced that an effective low-energy theory can be recast into the form of a perturbative
quantum field theory, having an octet of pseudoscalar fields for its dynamical degrees of freedom
and an infinite sum of monomials of the fields and their derivatives for its local Lagrangian density.
A priori, each term of the effective Lagrangian has an unspecified free parameter, and as such,
this doesn’t make much for a theory with predictive power, but fortunately, the free parameters
in ChPT can be cut down in two steps:

i. By viewing the scattering amplitudes that are the predictions of the effective theory to be
an expansion in powers of magnitude of external momenta (and strength of chiral breaking
parameters to be introduced later), we can establish an ordering of the terms of Lagrangian.
That is, the ordering of the amplitude expansion propagates back into an ordering of the
Lagrangian terms. We can then focus on terms with low “chiral order”. This issue of chiral
ordering is explained in the next section.

ii. Within each chiral order, there’s still an a priori infinite number of free parameters of the
Lagrangian, but by demanding the symmetries of QCD in the chiral limit to reproduce in
the effective theory, we can constraint the free parameters at each chiral order to a finite-
dimensional choice. The symmetries to be demanded of the effective theory are not only the
global chiral symmetries, but also the gauge chiral symmetries once the chiral QCD is made
gauge invariant by the addition of appropriate gauge transforming external fields. This is
equivalent to demanding the effective theory to satisfy QCD chiral Ward identities. Details
on this are to be found in the provided references. We will return to the construction of
allowed effective Lagrangian terms in Section 1.3.

The remaining issue is the inclusion of explicit chiral symmetry breaking. The QCD mass term
for the N lightest quarks has the form L£,,ss=—¢ M ¢ which can be expanded in terms of the left-
handed and right-handed quark fields into Lmass = —qr M qr. + (h.c.). If we were to consider M
to be an external source field added to a chiral-limit QCD Lagrangian, covariance with an g(x):
R*— SUL(N) x SUR(N) gauge transformation would demand of field M (z) the transformation law

M(z)— RM (z) LT, (1.1)
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where (L, R) = g(z).

To include the effects of explicit symmetry breaking that is present in QCD at physical values
of quark mass terms, we consider the effective theory not only to be an effective theory of QCD
in the chiral limit but also an effective theory of QCD in the chiral limit with the inclusion of an
external field having the transformation law (1.1). With this external field included, we are still
demanding of the effective theory to be gauge invariant like QCD in the sense mentioned within
(ii.) above, that is, with the inclusion of the aiding external fields [those are different fields from the
one transforming under (1.1)]. Once we wish to apply the effective theory to the physical world,
we set the new external field to a constant matrix over the spacetime, just like we do with the field
M in QCD.

In ChPT, the external field with transformation law (1.1) is called y, and by symmetry con-
siderations alone, it is related to M up to a multiplicative constant. This multiplicative constant
can have a physical dimension, and as such the dimension of x is unspecified. The dimension
is intimately related to the ordering of the chiral expansion. In standard ChPT, the field x has
dimension mass squared and is normalized for a simple leading order coupling in the effective
Lagrangian. (This leading order coupling generates the mass term for the octet of pseudoscalar
fields.)

1.2. CHIRAL ORDERING

To restate, in ChPT, we deal with perturbative expansions of scattering amplitudes (and other
quantities) around the chiral and zero-energy limits. In the following we will derive what is known
as the Weinberg formula [22] for assigning chiral dimension to contributing diagrams. We focus on
standard chiral ordering in which the dimension of chiral-breaking field x is mass squared.

Suppose we have an amplitude A(p;, x) corresponding to a diagram, which we consider here to
be a function of external momenta p; and the chiral-breaking field x introduced earlier. To assign
a chiral dimension to A, we perform linear scaling of p; and quadratic scaling of x. (This choice
reflects the mass dimensions of the two quantities: [p;] =1 and [x] =2.) The chiral dimension D of
contribution A is defined such that!-2

A(tpi, t2 x) =tP A(pi, x),

as we vary t. All the while, any constants with a non-zero dimension of mass appearing in A are
held constant. By nature of both p;s and x being small in application of ChPT, we expect the
contribution of diagrams with low D to be dominant.

To assign chiral dimension to a given diagram in practical terms, we can derive a simple formula.
It will be expressed in terms of the chiral dimensions of the constituent vertices and the number
of loops present in the diagram. We start by considering the energy dimension of A based on its
relation to the S-matrix:

[A]=—Ng+4, (1.2)

where Ng is the number of external lines of the diagram. At the same time, from the definition of
the chiral dimension D, using C'(v) to denote the coupling constant associated with vertex v, we
can state

[Al=D+> [C(v)], (1.3)

where the sum is over the vertices of the diagram. Now, we conveniently define the chiral dimension
of a term in the effective Lagrangian to be the number of field derivatives plus twice the power of
X appearing in the term’s product. We denote by D(v) the chiral dimension of the term generating
the vertex v. If we then focus on the mass dimension of the interaction term (here labeled simply
[v]), it holds

4=[v]=Np(v) +D(v) +[C(v)], (1.4)

1.2. Here, in the definition of the chiral dimension and in the derivation of Weinberg formula, we ignore the
issue of renormalization and of regularization of any loop integrals.
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where Np(v) is the number of lines attached to the vertex (number of fields in the interaction
term). Solving for [C(v)] in (1.4) and combining it with (1.2) and (1.3), we have

—Ng+4=[A]=D+> " (4= Np(v) - D(v)).

From the above, we can express D. To simplify, we will use the graph identity >~ Nr(v) =2Nr+ Ng,
where Nj is the number of internal lines. Therefore, we have

D=4—Ng—Y_ (4= Np(v) = D(v)) =4+ 2N;+ Y _ (D(v) —4).

v

Next, we introduce the number of loops Ny, and substitute for Ny by Ny = Np, + Ny — 1, where Ny
is the number of vertices:

D=2+2N;+>  (D(v)-2), (1.5)

which is the final form of the result. Note that by (1.5), if we are enumerating contributions up to
some chiral order D, we only need to consider Lagrangian terms up to the same order. Furthermore
diagrams with a high number of loops are suppressed by the 2Ny, term.

1.3. TERMS IN THE EFFECTIVE LAGRANGIAN

The terms of the Lagrangian in ChPT are constrained by the condition on the effective theory to
reproduce the chiral symmetries of QCD. We will show how this is conceptually carried out. We
will focus on the SU(3) version of ChPT, pointing out the differences of SU(2) effective theory at
the end.

In establishing the chiral symmetry of the effective theory, we need to specify a transformation
law for its dynamical degrees of freedom. By the nature of the dynamical fields being Goldstone
bosons, and given the symmetry groups involved, we expect the collective value of the fields at a
point to correspond to a coset from the quotient group

(SUB)L x SU(3)r) /SUB)v-

This has relation to the fields’ transformation law. A convenient way to achieve the desired chiral
symmetry of the effective theory is to make the following choices:

i. Define a field ¢(x) that takes a value from the space of 3 x 3 Hermitian matrices acting in
flavor space. The eight degrees of freedom contained in ¢(x) are the pseudoscalar octet of
fields that are to be the dynamical degrees of freedom of the effective theory.

ii. Define an SU(3)-valued field U(z) related to ¢(x) by U = e'®/™ where F, is a free con-
stant.!3 Prescribe for the field U the gauge transformation law

U— R(z)U(x) LT(x). (1.6)

Because of this simple and linear transformation law, U is then well-suited to be a building
block of chiral invariant terms. Law (1.6) also induces a representation of the chiral group
on ¢ — the adjoint representation of the subgroup SU(3)y but, in general, a non-linear
representation of the full group.

iii. Impose the effective theory to have a chiral invariant Lagrangian density.

While it is obvious that point (iii) leads to chiral symmetry of the effective theory, and point (ii)
leads to a transformation law on the dynamical degrees of freedom that is consistent with physical
interpretation of the fields, it is not obvious that the choices made in (ii) and (iii) do not arbitrarily
restrict the effective theory beyond what can be inferred from QCD symmetries.

1.3. This constant has a physical interpretation of being the pion-decay constant in the chiral limit.
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Ref. [15] shows that this is, in fact, not so, that we are free to make those choices and an effective
theory, as long as it is to reproduce also the local chiral symmetries of QCD, can be without loss
of generality put into form satisfying (ii) and (iii).

So, to build up the effective Lagrangian, at each chiral order, we construct all the chiral invari-
ants that are local products of fields U and x (taking into account the transformation laws (1.6)
and (1.1)), then we select an independent subset of those. We take a freely parametrized linear
combination of the independent invariants to make up the part of the effective Lagrangian of the
given order.

The Lagrangian is not allowed to have any terms of order O(p°), since those would imply, in
chiral limit, mass terms or interaction terms at zero momenta, both of which we are ruling out.
Terms of chiral order O(p?) are disallowed on symmetry grounds. In fact all terms of odd order
are since they would require contracting an odd number of derivatives to a Lorentz scalar. The
leading terms are therefore of chiral order O(p?), the subleading of order O(p?), and so forth. We
use subscripts of £ to group terms of given chiral order, so that the full effective Lagrangian is
decomposed by

L=Lo+L4+Ls+---.
The customary leading order terms are

Fg F

The terms Tr(9,U0*UT) and Tr(xUT+ Ux') are a full set of independent invariants of chiral
order O(p?) up to a total derivative. In place of introducing a free parameter for the coupling
of Tr(0,U0*UT), we opt to generate a normalized kinetic term!* for ¢, noting that any freedom
afforded by the hypothesized free parameter is equivalent to rescaling of the field and adjusting all
other coupling constants. Similarly, we don’t need to introduce a free parameter in conjunction
with Tr(xUT 4 Ux') since there is a free parameter in relating the scale of x to the quark mass
field. So in effect L5 is without free parameters. The free parameter relating x to quark mass
fields is Bp!®, defined such that it holds y =2 By M.

Moving on to the next nonvanishing order, the subleading terms of the effective Lagrangian are

Ly = Ly {Tx[0,U (0*U)1)}? (1.7)
+Lo Tr[8,U (8, U) 1 Te[orU (0¥ U)T]
+L3 Tr[0,U (0+U) T 0,U (97U 1]
+L,Tr[0,U (0MU) T] Tr(x Ut+ UXT)
+Ls Tr[0,U (0*U) T (xUT+ Ux )]
+Le [Tr(xUT+UxM)?
+L7 [Tr(xUT—Ux")]?
+Ls Tr(UxtUxT+ xUTxUT)
+Hy Tr(x x1),

where L to Lg are free parameters, so-called low-energy coupling constants, and Hs is a constant
controlling a “contact term” (involving an external field only but allowed by symmetry and possibly
required for renormalization). One sometimes includes in £4 further terms with constants Lg, L1
and H;, but those couple to external fields we will not be introducing. The density £, quoted
above needs to be supplemented by the Wess-Zumino-Witten action ([23],[24]) to account for the
effects of an axial anomaly in its leading order (the effect is of order O(p*)), an issue which we are
otherwise ignoring.

) 1.4. Once we decompose ¢ to components by ¢ =\, ¢, such that Tr(Ag Ap) = dqp, we have % Tr(BMUa“UJf) =
L 80Ot ...

1.5. This parameter is called the “scalar quark condensate in the chiral limit” due to its relation to the vacuum
expectation value of quark bilinears.
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Finally, to give a concrete relation of the abstract field ¢ to the physical meson states, let us use
70, 7t K9 KO K# nlabels for the fields whose excitations correspond to the light pseudoscalar
meson octet. Then, based on a correspondence by the particles’ quantum numbers to the generators

of adjoint representation of SU(3)y, we can collect the fields like so:

Wbl VEIrt JIK*
o=| VIT x4 Ly —vIKO
— B 0 _i

V3K VK 2

Note that the phases of the meson fields in ¢ are our convention, adopted for agreement with
references in the later chapter on dispersive methods. Since ¢ is a Hermitian field, it follows
(7+)T = —n~, which we need to keep in mind when relating the ingoing and outgoing asymptotic
charged pion states.

1.3.1. SU(2) variety of ChPT

The SU(2) version of ChPT is conceptually similar to the SU(3) version but differs in some specifics.
The O(p?) part of the Lagrangian is the same but the O(p*) part is composed of fewer independent
chiral invariants due to a simpler group structure. This means the set of free parameters Lj...Lg
from Eq. (1.7) is replaced by a smaller set ly...lg. In the SU(2) version of ChPT, the field ¢ is
related to the pionic fields only, and that can be:

0 /2t

1.4. PION-PION SCATTERING IN CHPT TO ONE-LOOP ORDER

We will now discuss the amplitude of 77 scattering in SU(2) ChPT at one-loop order in the isospin
limit of m, =mg=:m. It will be a result to which we will later, for illustration, compare forms
of amplitude constructed on dispersion grounds. Up to O(p?), we have by (1.5) the following
contributing diagrams: a single £, or £4 vertex in a tree diagram or two Lo vertices in loop diagrams
(Fig. 1.2).

Lo vertices L4 vertices
O(p?) contribution *) contributions

Figure 1.2. Schematic depiction of the leading contributions to pion-pion scattering amplitude in ChPT.

To establish notation, let us write down that we are interested in the process

7(pa) T (ps) = 7(pe) T(pa), (1.9)

where a, b, ¢, d are isospin triplet indices of the corresponding incoming and outgoing particles
and p, to pg are their four-momenta (introduced with a slight abuse of notation).

To obtain the leading tree-level contribution of the graph labeled (1), we expand Lo with respect
to powers of ¢:

2

S1ERl(0e00)]+ 00",

u(baa ¢a——¢ b+ ——5 [0.0i O Dj i pj — Opups O by b 5] +

6F2
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where we labeled, by M2 =2 Bym, the mass of the pion corresponding to the mass term generated
in Lo. It follows that an O(p?) vertex, as a function of momenta and isospin indices of the lines
meeting at the vertex (all momenta ingoing), has the following form:

1
Viikl(py pa, pa, p3) = 572 {60k [4 (p1+ p2)® — (p1—p2)® — (p3— pa)2 +2 M2 + -},
0

where the omitted part consists of two symmetric terms, one obtained by exchange of p; and ps and
the other by exchange of p; and p3, accompanied by the corresponding exchanges of isospin indices.
The O(p?) contribution to the amplitude then quickly follows to be

1
Ao(p2) =V U pa, b, Pe, pa) = 72 [0ab bcd (5 — M7) 4 SacOpa (t — MZ) + Gaq Ope (u — M7)],
0

where we used the usual Mandelstam variables s, t, u.

For the topic of this thesis which revolves around dispersion relations, we are interested in the
non-analytic contributions (non-analytic in kinematic variables) which start appearing at the order
of O(p*). As one can easily convince themself, the tree level O(p?) contribution is a polynomial
and does not contribute a non-analytic part, but the loop diagrams do.

By considering the isospin and crossing symmetries of process (1.9), the amplitude can be
expressed in terms of a single a form factor (see Subsection 3.3.1):

A(s,t,u) =389 5UA(s,t,u) + 6% 5% A(t, s, u) + 591 6% A(u, t, s).
We can extract the form factor from the amplitude, e.g., by
A (Sa ta U) = A(Sa t) u)'a,b,c,d:1,1,2,23

and that we can also do for the O(p?), O(p?) parts of amplitude separately.

So, to account for the Ag(’;’ 4 contribution to the form factor from the loop diagrams at O(p%),
we get
)3 [ d*% (*)
)
owh = T2 Rt (R2—MEZ+io)[(P—k)2— MZ+id

where (x) in the integrand stands for
(*) = Vllkl(paapba ka _P - k) V22kl(pca Dd, _ka P + k)
+V12kl(pa7 Pe, ka —-P— k) Vl?kl(pba Dad, 71/”'5 P + k)
+V12kl(paa DPe, k) —P - k) V21kl(pd7 Db, _ka P + k)
The integral over loop momenta Alg‘()g4) evaluated in dimensional regularization and treated by the

modified minimal subtraction scheme amounts to
$2— M*

Ay = g J() 4 g { (P 4u M2 = 20 M2 = 20%) () + (u+ 4t M2 = 2u M2 =2 M) J ()}
1 9 5, 10 5 10 9 4 m?
_ 1 (32 (+— Doz M M4 ) 1o
+96772F4< 32— (t—u)*+ 7 5 3 (t+u) M*+7 ogM2

T2 F4\ 36 432 36 8640 ° 3456 9760

Ltu
1728 ’

where J(s) is

T <5M4 SEIP VE TN IV Ve IS Sy SRR L YSRGS LT .

174M2/:L'
6H0+ 16 7r2 4m2 x(x—s—ie)

The J(s) terms are the non-analytic contribution to the O(p*) amplitude. As will be stressed
in Chapter 3 discussing dispersion method of amplitude construction, the form of these terms (up
to a polynomial difference) is fixed by the condition of the unitarity of the S-matrix.

J(s)=






CHAPTER 2
ETA-TO-PI DECAY

Experiments involving 7 decays are important tests of the Standard Model. Recently published
data for the decay of 1 into three neutral pions can be found in Refs. 2], [18], or, for the decay into
a pair of charged pions and one neutral pion, in Refs. [1]. Such decays can only occur in violation
of isospin symmetry, and as such, they are an interesting link to isospin-breaking parameters. In
particular they may provide information [10] on the quark mass ratio

ms— (ma+my) /2
Mg — My '

R=

Literature readily contains results for the ChPT amplitude at orders up to O(p?) (see Ref. [12]),
and the authors of Ref. [5] have worked out the ChPT amplitude up to O(p®).

2.1. DECAY KINEMATICS (DALITZ PLOT)

In n— 7w and similar processes, the kinematic dependence of process amplitude, or the measured
incidences, is customarily presented in the form of a so-called Dalitz plot. In the Dalitz plot, two
axes are linearly related to Mandelstam-type variables in such a way that they represent the full
variation in decay product kinematics (up to a rotation in the center-of-mass frame of the decaying

0k
To elaborate, let us start by defining

sj:=(k—p;)? forj=1,2,3,

where £ is the four-momentum of the decaying eta meson, and p; are the four-momenta of the
produced pions (each with mass m;). Over the Mandelstam-type variables a kinematic identity

S1+ So+83= m% + Z?Zl m? holds, leaving merely two of the variables independent.

As will be stressed in the next chapter, the n— w77 process can be considered related, through
crossing, to the scattering processes nm — mm. After such crossing, the s; variables of the decay
process are identified with the usual Mandelstam s, ¢, u variables of a scattering process (the exact
pairing depending on the particular identification of pions of the two processes).

We can picture a kinematic plane spanned by any two s; variables (which up to a scaling of
axes and shearing will be the Dalitz plot). The decay process, and the crossed scattering processes,
are all confined to their own non-overlapping regions of the kinematic plane. Let us now work out
the extent of the decay region. Considering s; alone, evaluating it in the rest frame of ps + p3,
we obtain the lower bound s; = (p2+ p3)? = (B2 + F3)? > (ma+ m3)? (E; being the energy of four-
momentum p;). At the same time the center-of-mass energy of ps+ p3 can be at most m, —my,
and so s1 < (m, —m1)% Similar lower and upper bounds exist on the other s; by analogy. At this
point, we can attest to the separation of kinematic regions by noting that for a scattering process
we have s> (m,, + m,)?, which is in conflict with the upper bound on s; in the decay region.

Now, to further confine the decay region, we derive bounds on (s2 — s3) given a fixed value of s;.
In the center-of-mass frame of py+ ps, it follows from the zero sum of three-momenta (ps+ p3) =0
that E3 —m3= E3 —m3. Now, using this relation to solve for Ey and E3 from s; = (Ey + F3)?, we
have

_s1+ Aag _s1— o3

| D —
2 2\/8_1, 2\/8_1,

where we have introduced the notation Ayp=m3 —m%. Analogously, we have

Es

81 + Anl

Bi=—",
1 NG

_ 31+An1

E, =
n 2\/8_1)

13
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Figure 2.1. Dalitz plot for n — m7m using the usual z, y kinematic variables. The decay region is shaded

pink and the scattering regions are shaded purple. Left is detail on the shape of the decay region. Masses

of pions are taken equal, i.e. corresponding to n— 707070,

Wishing to express the magnitude of three-momenta in terms of s;, we have

_ 2 _ 2 1/2
7l = WW‘“ B —dsmn  A3(s)
1 1 1 2\/8_1 2\/8_1
N2 2
\/(51 — Ag3)?—4s1mj3 _ A%Q(S)
2.\/51 251

where we have introduced the square root of the Kallen triangle function by )\114/32(3) =

VB =~

|3

V[s = (ma +mp)?|[s + (ma —mp)?]. Now using the relations above to express so, s3, we first have
350 =5  AazAp

sy = (p1+p3)?=mi+2E1E;—2p)-ps+m3= 5 P —2p1 - P3

o 3s0—s Aoz A -

s3 = (p1+p2)2=mi+2E1FEy+2p)-ps+m3= 02 + 253 UL Y7
A2 () A35%(s)

where if we subtract the two equations and employ |p1 - pa| < |p1] |ps] =
bounds on (s2 — s3) given a fixed value of s:
< A Aot An1(s1) Aa2s(s1)

—Ap1 Aoz — Api(s1) A2a(s1) s s
51 X 02 3IxX 51

= , we arrive at
1

From this bound and its analogical realization with s; — so and s3 — s1, we can draw the shape of
the decay region.

For the process n— 7+ 7~ 7° the standard kinematic variables z, 3 on the axes of the Dalitz
plot are given in terms of s1, so and sz by

V3(s2—51) (2.1)

v 2my, Q
y - 3[(my — mgo)® — s3] — 1
2m, Q ’

where Q) =m,, —2m + —mgo is the kinetic energy of decay products in the center-of-mass frame.
For the decay of 7 into neutral pions, i.e., the process n— 707" 7% the kinematic variables are
given by (2.1) also after the replacement of m + by myo. Using the kinematic variables x, y, we
show on Fig. 2.1 the shape of the decay region (of 7— 7°7%7Y).



15 ETA-TO-PI DECAY

2.2. DALITZ PARAMETERS

The customary way of summarizing the results of 7— 7w decay experiments is by so-called Dalitz
parametrization in which the measured incidences are fitted to a free low-order polynomial in
kinematic variables. This is foremost a phenomenological parametrization exploiting the fact that
the measured incidences are to a good approximation a smooth function of the kinematic variables.

The Dalitz parametrization does not take into consideration non-analytic features of the ampli-
tude, e.g., the “cusp” [6].

2.2.1. Dalitz parameters of n— wtn— w°

In the case of charged decay, the standard parameters are the coefficients of a polynomial in the
x, y variables that correspond to the axes of Dalitz plot. Calling the measured incidence by I, its
kinematic dependence is fitted to a polynomial with free parameters a, b, ¢, d, e, f, g like so

—II((E’g)) =l+ay+by’+cx+da’+exy+ fyP+ga®y+---.

By charge conjugation, we expect ¢c=0, e =0 since an exchange of the charged pions in the decay
product corresponds to flipping the sign of = from where it follows that charge symmetry prohibits
terms linear in z. See Table 2.1 for values of the Dalitz parameters from recent experiments.

a b d / g
KLOE [7] —1.090(5)(19) 0.124(6)(10) 0.057(6)(16) 0.14(1)(2)
KLOE-2 [3] —1.104(3)(2) 0.142(3)(5) 0.073(3)(4) 0.154(6)(5)
—1.095(3)(3)  0.145(3)(5) 0.081(3)(6) 0.141(7)(8) —0.044(9)(13)

—_ A~

Table 2.1. Estimates of the Dalitz parameters a, b, d, f, g taken from published accounts of few n— 7wtz ~ 70
experiments.

2.2.2. Dalitz parameters of n— wo7%x°

The decay to three neutral pions has additional symmetries, which is reflected in the standard
Dalitz parametrization. Defining z = 22 4 2, the parametrization is

I(z,y)

_ ) 24 ...
I(O,O)fl+az+26y(3z dy?) +yz2+ -,

where the free parameters are «, (3, 7. See Table 2.2 for values of these Dalitz parameters from
recent experiments.

a B Y
KLOE 2010 [2] —0.0301(35)(35)
A2 Collaboration at MAMI [18] —0.0302(8)
0.0280(9) ~0.0058(8)
—0.0231(33)  —0.0053(8) —0.0057(37)

Table 2.2. Estimates of the Dalitz parameters a, 3, v taken from published accounts of few 1 — w0070

experiments.






CHAPTER 3

DISPERSIVE METHOD OF AMPLITUDE CONSTRUCTION

Dispersive methods provide means of amplitude construction (S-matrix construction) based on
analyticity and unitarity properties to be satisfied by the elements of the S-matrix. These properties
can be justified on the basis of general physical arguments, or may be shown to follow from quantum
field theory postulates.

Historically, within the S-matrix programme originally suggested by Heisenberg [13], dispersive
methods were used to construct S-matrices accounting for observed scattering phenomena but
otherwise detached from any underlying theory, especially one involving local fields.

Within the scope of quantum field theories, dispersive methods can be, for example, of service
to aid in modeling of scattering of particles for which it is challenging to define asymptotic states,
as is the case of hadrons within QCD, being bound states beyond the reach of direct perturbative
treatment. Despite the difficulties in the formulation of hadronic states, we can rely on general
properties of the S-matrix elements involving hadronic states.

In the following section a “reconstruction procedure” for meson scattering is introduced. It
encapsulates the basic dispersive method of construction of higher-order amplitude (in the sense
of chiral ordering) from a lower-order form of it. The present introduction to the procedure is a
compilation of an account of the method given in Ref. [25] and [14] which themselves cite Ref.
[20] for the establishment of the method in the context of w7 scattering, and cite other references
for its subsequent evolution. The procedure is set up in such a way that it can be iterated up to
order O(p®) (that is two-loop order). The application of the reconstruction procedure to processes
7w — 77 (in isospin limit) and n— w77 (to the first order of isospin breaking) is then commented
on.

3.1. RECONSTRUCTION PROCEDURE

3.1.1. Preliminaries

The reconstruction procedure, as we will establish it, will concern scattering amplitudes A(s,t, u)
of processes with two ingoing and two outgoing particles. The functions A(s,t,u) will be the usual
invariant matrix elements parametrized by Mandelstam variables, that is

(p3, palT |p1, p2) = (2m)* 6*(P) A((p1+ p2)?, (p1— p3)?, (p1— pa)?),

where T is related to the S-matrix by S=1+4T, the p; represent particles by their four-momenta
and P = p1 + pa — p3 — pyg is the momentum balance of the process. Throughout this work, the
particles are assumed spinless (as is the case for m, n).

For the use of dispersive methods, we need to extend the domain of the definition of A(s,t,u)
into a complex plane of s, t and u. Nonetheless, the definition domain is restricted to the values
satisfying the kinematic identity s+ ¢+ u=Y_ m? where the sum is over masses squared of
the ingoing and outgoing particles. We will be using 3 so to denote the sum. Using analytic
continuation, there is still a level of arbitrariness in the definition of A on the extended domain,
but there is a natural choice, and on that point, we simply refer to Ref. [9].

In viewing the function A as a function of a single complex variable s, ¢ or u (with one of
the other variables fixed, and the remaining variable determined from the kinematic identity), it
typically has singularities on the real axis. The real axis is, of course, where we are reading off the
physical amplitude. To that end, it is crucial that we can, in a simple way, fix the definition of
A(s,t,u) on the real axis in relation to the value it takes on the surrounding complex plane. We
can impose the following:

A(s,t,u)= lirél A(s+ie,t,u—ie). (s,t,u € physical). (3.1)
e— 0+

17



3.1 RECONSTRUCTION PROCEDURE 18

The label “physical” for the domain of s, t, u represents the set of values that are kinematically
feasible. This restriction must be in place for consistency with crossing relations (to be mentioned
shortly). The prescription reads, that the functional value of A, when s is on the real axis and in
the “physical” set, is the limiting value of approaching the real axis from above. This prescription
for the physical amplitude is in natural correspondence to the usual ie prescriptions in propagators
that would appear in perturbative contributions to the S-matrix. This issue is discussed for example
in Ref. [9], which also contains a discussion of other properties of A we are mentioning here.

We assume the validity of crossing relations, which for our purposes state that the amplitude (as
a function of complex s, t, u) of process AB— C'D can be made equal to the amplitude of processes
CD—AB, AC—BD and AD— BC (bar for antiparticle) under appropriate identification of
the s, t, u variables of the original and crossed-into process. Explicitly that means

AAB%CD(Satau) :.AC'D_,AB(S,t,U) :ETAAC—)BD(t7 S,’LL) = EUAADeBC(ua Sat)a

where er and ey are phase factors picked up due to the signs of mesonic fields established in (1.7)
and (1.8). The sign convention has the consequence of (7*|f=—|7F) and analogously for charged
kaons. Therefore the phase factor in crossing relations is minus one each time we are crossing an
odd number of charged mesons and plus one in all other cases.

For use in dispersion relations, we need to define the Disc symbol for evaluating the discontinuity
across a cut on the real axis of s. We define

Disc A(s, t,u) = lirél [A(s+ie,t,u—ie)—A(s—ie, t,utie)l.
e—0+

Furthermore, in the case of function F'(s) of a single complex variable, we define

Disc F(s) :eli%l+ [F(s+ie)—F(s—tie)],

As a final point, for theories with symmetry such that

(p3, pa|T |1, p2) = (P1, P2|T |3, Pa), (3.2)
it then holds ([9])

Disc A(s,t,u) =2iIm A(s,t,u). (s,t,ue€R) (3.3)

That is, the discontinuity is purely in the imaginary component of the value, and that component
flips its sign across the cut.

We can take (3.3) to be true of the nm scattering amplitude, but in the case of the nw— 7w
process, the matter is spoiled by the instability of 1 within the mesonic sector. That can be worked
around by a device of analytic continuation in 1 mass [14], a point to which we will return once
we apply the reconstruction procedure to this process.

3.1.2. Dispersion relations

The reconstruction procedure rests on the use of dispersion relations, which we will now derive.
Suppose we have a function F(s) of a complex variable s, regular everywhere except for cuts
on the real line, constrained to some s > sy, >0 and (another cut) s < s{, < 0. The situation is
schematically depicted on Fig. 3.1.

Ims

/
Sthr Sthr Res

Figure 3.1. The complex plane of s with the indicated location of the two cuts in the definition of F(s).
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Figure 3.2. Integration contour on the complex plane of s used in derivation of dispersion relations. The
contour approaches the cuts of F(s) from below and above in an implicit limit. Inside the contour, F(s) is
regular. The outer arches of the contour have radius r.

Consider the integration contour from Fig. 3.2. Now suppose |F'(s)| — 0 as |s| — oo. If we use
the contour in Cauchy’s integral formula and take the limit r — oo, the contribution of the outer
arches vanishes. We are led to

00 . . Sl . .
Fs) =  lim [/ dxF(ac—He) F(x ze)+/ dxF(ac—i—ze) F(z—ie)
270 e—~0+ | Ssp rT—S5 oo T—Ss
0 3 Sinr 1
_ 1 [/ delscF(ac)+/ delscF(ac)}
270 S T—5 oo rT—S5

Now suppose that it cannot be assumed |F(s)| — 0 as |s| — oo, but at least |F'(s)/s™|— 0 for
some n € Ny. If we then define F’(s) = F(s)/s™ and apply Cauchy’s integral formula to F’(s) in
an analogous manner, we obtain a similar result for F'(s) as we did for F'(s) above, except we pick
up residual terms due to the introduced pole at s =0. We obtain

00 : / Stnr : /
Fils) = 1 . [/ da Disc F'(x) +/ da Disc F'(x) (3.4)
270 | Sson T—5 . T—5
1 d F(x)
(n—=1)!daen"to—s|, _o
4
If we then proceed with the expansion
2 n—1
- S T
x—s 5 s
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we can conclude that the residual term & is a Laurent polynomial in s with terms the power of
which ranges from —n to —1 and such that its coefficients depend on the value and first n — 1
derivatives of F'(z) at x =0. If we then substitute F'(s) into (3.4), we have

&) — s™ > xDiscF’(s) Sthr xDiscF’(x) .
F() - 27m'|l/s d (:p—s)x”+/_ood (:Efs):]j” JrPn( )7 (3.5)

where P,(s) is a so-called subtraction polynomial. It is equal to —s™¢ and so is a polynomial in s
of degree n — 1. Eq. (3.5) is called an n-times subtracted dispersion relation. It is a consequence
of the assumed analytic structure of F(s) in combination with the assumption |F'(s)/s" —0 as
|s| — co. Since the integrals as functions of s are regular around s =0 and are multiplied by s”, we
can conclude that P,(s) is in fact the Taylor polynomial of F'(s) around s=0, as explicit evaluation
of —s™ ¢ would confirm. When we wish to express arbitrary F'(s) in terms of its discontinuities at
known branch cuts by means of (3.5), the subtraction polynomial P,(s) represents a fully analytic
component of F(s) that is not reproduced by the dispersion integrals but is constrained by the
input assumption |F'(s)/s"| — 0.

In application of (3.5) to an amplitude A(s,t,u), we can substitute e.g. F(s)=.A(s,t,3s0—u),
resulting in

thr

s" *  Disc A(z,t,3s50—t—=x str  Disc A x,t,3s0—t—x
A(s,t,3s9—t—3s) = 27”,[/ dx ((x—s)aoc" )—i-/ dx ((ac—s)aoc" ) +
Sthr —0o0
Pu(s;), (3.6)

where we signified in arguments of P,(s;t) that it is a polynomial in s with coefficients that are
functions of t¢.

It is natural to replace s{y,, by utny through s’y =3s9 — t — usny, since ug,, then indicates the
threshold of the respective cut when the amplitude is viewed as a function of w (with ¢ held fixed).
To make the second integral similar in appearance to the first, we can also change

Sinr 3 _ oo i —_
s”/ da Disc A(z, t, 3501 t—z) _ —s‘”/ da Disc A(3so —t —x,t, x)
(x —s)am e (x —u)(B3sp—t—a)"
()
7un/°° Disc. A(3s0 —t — z,t,x)

dx
s (x —u)am

— 00

+ My (s),

where M, (s;t) is some polynomial of degree n —1 in s. In the first equality, we merely changed
the integration variable under z — 3s9p —t — x and swapped the limits of integration. The second
equality is more subtle, one way to prove it is to note that, if ug,, >0, the expression (%) /271, as a
function of u, on its own satisfies the assumptions of (3.5), so if we apply (3.5) to F(u):= (%) /21,
we obtain the desired result. The introduced polynomial M, (s) can be absorbed into a redefinition
of the subtraction polynomial P,(s;t), so we have

g™ [, Disc A(x,t,3s0—t —x)
A(s,t,3s9—t—3s) = 5 /Sthrdx (@—s)a" (3.7)
u™ /°° Disc A(3so—t —x,t, x)
— - dzx —~
270 fo,,. (x—u)x
+P,(s;t).

The form (3.6) or (3.7) would be called the fixed-t n-times subtracted dispersion relation since
in the definition of the underlying function of a single complex variable we held ¢ fixed. In the
derivation of (3.7), we so far assumed s{},, < 0 < S¢nr, 0 < Ugnr, but it suffices s{p; < Stnr, 0 < Ughr,
0 < Stnr, which we do not show here.

3.1.3. Derivation

Exploited by the reconstruction procedure, the discontinuities of A (in the sense of quantity Disc.A)
are constrained by unitarity. Specifically, from SST=1+4iT —iTT 4+ TTt=1, it follows

i(p3, pa|T — TT|p1, p2) = —(p3, pa|TT | p1, pa).
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We will manipulate the left-hand and right-hand sides separately. On the left-hand side, we have

i(p3, pa|T — TT|p1, p2) = (p3, pa|T|p1, p2) — (p1, p2|T |p3, pa)*
= (p3, pa|T'|p1, p2) — (p3, pa|T'|p1, p2)*

2i Tm (p3, pa|T'|p1, p2)

= 2iIm (27)*54(P) A(s,t,u),

while on the right-hand side we have (introducing an abstract sum over intermediate states n)

—(p3, pa|TTH[p1, p2) = iy (pa, palT|n) (n|T[p1, po)
= ZZ <p35p4|T|n> <p17p2|T|n>*7

and so it follows

2ZIm(27T)464( ) Svtau Z p35p4|T|n <p1,p2|T|77,>*. (38)

We will make use of (3.8) after the partial-wave projection of A. At this point let us remark that
(3.8) will be the basis for the construction of higher-order amplitude approximations from lower-
order ones. It mixes different orders of the amplitude in the sense that the product of lower-
order components on the right-hand side is made equal to the imaginary part of the higher-order
component of the amplitude on the left-hand side. From the imaginary part along a cut given by
(3.8) or its variant in spirit, a dispersion relation reproduces the higher-order component in full,
up to the subtraction polynomial.

To apply the dispersion relations, we need to assume that (for fixed ¢) the function A(s, ¢,
3sg—t—s) (viewed as a function of a single complex variable s) is analytic except for cuts on the real
s-axis, which are restricted to regions s > sy, and u=3sg —t — 8 > Uy, for some gy, usn € RT. The
Sthr threshold can be provided by (3.8) in combination with (3.3), analogously uy, can be obtained
after considering a crossed amplitude. The fact that the amplitude is otherwise analytic can be
attested to by studying perturbative contributions to it, a point on which we again refer to Ref. [9].

To implement the program sketched in the previous paragraphs, we start by projecting .4 on
the first two partial waves:

A(s,t,u) =16m[to(s) 4+ 3t1(s) cos ] + Arsa(s, t,u), (3.9)

where cos 6 is the cosine of the scattering angle, to(s) and ¢;(s) are the S and P partial-wave
projections and As~9 is the remainder of the decomposition. The cosine of the scattering angle is
expressed in terms of Mandelstam variables by the kinematic identity

s(t—u)+AapAcp
N3 (5) A (s)

cosf =

, (3.10)

where M p(s) = A(s,m3, m%) =[s — (ma+mp)?|[s + (ma —mp)?] is the Killen triangle function on
the masses of particles A, B and Ayp=m3 — m5.

The Ags2 remainder of (3.9) can be neglected to the order of reconstruction we are interested
in, which will be commented on shortly. The explicit expression of t.(s) is given by

to(s) = oo

+1 p
T /_1 d(cos ) (cos0)” A(s,t,u). (3.11)

The analogue of (3.8) projected on partial waves, neglecting intermediate states with more than
two particles (see [26] for discussion), is

4 1/2
Imt; ™/ (s) Z L) ik s) 1 H(5)]* (s — sh). (3.12)
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where we denoted by tZHf (s) the £th partial wave of process ¢ — f. The sum is introduced over
quantum numbers (selection of particles) in intermediate states. sk . is the minimal center-of-mass
energy of an intermediate state of kind k. If k contains, say, particles A B, then sf, is of course
equal to (ma+mp)% Sy is a symmetry factor:
S { 2 if the particles in k are undlstlngulshable
1 otherwise

By means of (3.12) we can show Im A~ 2(s,t,u) = O(p®). First we note a leading O(p?) amplitude
must be analytic since by (3.12) discontinuities are of order O(p?). Therefore the O(p?) amplitude
must be a first-degree polynomial in s, ¢, u, and, as such, it cannot contribute to As~o. If then
As=2=0(p") it follows from (3.12) again that Im As~2(s,t,u) =O(p®).

At this point, we invoke the dispersion relation (3.7) with two modifications. As the first
modification, we introduce a crossed amplitude AY(u,t,s): =A(s,t,u) into its second integral-!.
This is done in advance of using a different expansion in partial waves (the partial waves of the
crossed amplitude will be functions of u). As the second modification, we extend the degree of the
subtraction polynomial from n — 1 to n. That is prompted by the reasoning provided, e.g., in Ref.
[25], that the additional free terms of the polynomial will account for integrating into high-energy

region with an amplitude that is built on the basis of a low-energy effective theory with limited
applicability. With the modifications, we have

s™ [, Disc A(x,t,3s0—t—x
A(s,t,3s0—t—s) = m/ dz — ((:r—s);" )

thr

n um /°° Disc AY(z,t,3s0—t — )

d
270 S * (x —u)z"

+Pni1(s;t).

Now we insert the projection (3.9) applied to A(s,#,u) and separately to AY(s,t,u), distinguishing
the partial waves of the latter by a U superscript, and we also substitute Disc t,(s) =2 Imt.(s),
finally we arrive at?2

A(s,t,3s0—t—s) = 163" Ood—aclrmfo(ac)
T sope (T — 8) T

48" dz I t1(2) z(t—u—s+z)+AapAcp
Sthr(x_s)‘rn )\1/2( ))\1/2( )

o0 dz
+16u”/ ———1Im t§ (x)
e, (T —U) T

A8 dx Im U(I) I(t— —S+I)+AADACB
e (T — 1) T AYE (@) N2 ()

thr

+Ppia(s;t) +O(p),

where we kept the S and P partial waves only and signified that the remainder is O(p®).

Manipulating the integrals containing ¢1(z) and t{(z), we have, respectively
L[ dx z(t—u—s+ux) e dx Im ¢ (x)
nf % I ()R YT any
S ﬂ (ZC—S)J/'TL m l(x) )\1/2( ))\1/2( ) S ( u)lthr(x_s)xn 1 )\1/2( ))\1/2( )
_Sn/oo dml Imt1( )
s AR (@) N2 ()
()

thr

3.1. Note the change of sign due to Disc AY (s, t,u) = —Disc A(u, t, s).

3.2. One must be careful to apply the right permutation on A, B, C, D particle symbols corresponding to the
identification of s, t, u variables in the original and crossed process.
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o [T A p o at—u—sta) L, [T de Im t{/(x)
A - Imty ( )—)\1/2( ))\1/2( ) (t )Ath(xs)xn I )\1/2( ))\1/2( )

+un/oo dr mt¥(z)
sthrxn 1 AI/Q( )Al/Q( )
(%)

The terms labeled (x) and (xx) can be absorbed into a redefinition of the P, y1(s;t) subtraction
polynomial (they are polynomial in s) and, as such, will be omitted going forward.

To state the result derived from the dispersion relation so far, we have:

s* [ dx 3AapAcp
i) = 16r5l [ 4z )y _SBABACD 1 1
A(s,t,3s0—t—) 6m - Sthr(x_s)xn{mto(x)—i—)\lﬂ( ))\1/2( ) mh(ac)} (3.13)
Wo(s)
s [ dx Im¢1(x)
+167 (3t — 3u —/
( ) Sthr(m_s)xn 1 )\1/2( ))\1/2( )
Wl(s)
u [ dx U 3Aap Apc U
+167T7 uthrm {Imto (lL’) +W1mtl (IE)
W[)Dr(u)
u™ [ dx Im tY (z)
+167 3t—33)—/ —
( uﬂ"(l‘_u)x 1 )\1/2( ))\1/2( )
Wla(u)

+Pn+1(8;t) +O(p8)7

where we have labeled parts of the expression by the newly introduced W 1(s)/ I/Volﬁ(u) family of
functions. We can define Wii';(t) in terms of partial waves ¢4 (), 1 (t) of AT (¢,u,s):=A(s,t,u) in
complete analogy to Wy’j(u). That is

T o ﬁ o0 dlL’ U 3AACADB U
W) =) Tmwe {Imto (x”x”( g .

T
we =7 tu (£ = W) 2T N2 ))\1/2( )

We will use these new functions to rewrite (3.13) as follows:

A(s,t,u) = 16m [Wo(s) +3(t —u) Wi(s) + We (u) + 3(t — s) W5 (u) + Wo' () + 3(u — s) W5 (1)]
+Pni(s3t) + O(p%), (3.15)

where the addition of W' (t) +3(u — s) Wi (t) (being a polynomial in s with coefficients that are
functions of t) can be canceled by yet another redefinition of P, 11 (s;t). The expression on the
right-hand side of (3.15) appears symmetrical in s, ¢, u, except for the P,41(s;t) polynomial,
which singles out ¢ (the coefficients can be arbitrary functions of t). To reform the polynomial,
we invoke the following argument: We could have redone the derivation up to this point on the
amplitude A'(s,u,t) =.A(s,t,u), by which we would have arrived at (3.15) for A(s,t,u), except
that the subtraction polynomial would be of the form P, (s;u) (signifying it is polynomial in
s with coefficients being functions of u). Since in both cases, the left-hand side of (3.15) is the
same, and all the other terms on the right-hand side are also the same (up to O(p®), but we don’t
consider n > 3), it must be that the two forms of the subtraction polynomial are equal:

Poia(s;t) = Pyia(s;u),
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from where it follows that P,y1(s;t) in (3.15) is, in fact, a polynomial in s, ¢, u. Inserting this into
(3.16), we arrive at the final expression for A(s,t, u) that forms the basis of the reconstruction
procedure. To quote the final result:

Als, t,u) = 16w [Wo(s) +3(t —u) Wils) + W (u) + 3(t — ) W5 (u) + Wo' (£) + 3(u — s) W (t)]
+P’ﬂ+1(85 t, 'U,) + O(pS) (316)

Having an approximate expression for the amplitude up to some chiral order O(p™), we can use
(3.16) to obtain the amplitude of order O(p™*?2) expressed in terms of a free subtraction polynomial
and dispersion integrals over S and P partial waves of the lower-order amplitude, that is, up to the
O(p®) remainder.

The number of subtractions n has up to this point not been determined. According to the
reasoning found e.g. in [25] considering the tails of the dispersion integrals into the high-energy
region beyond the applicability of effective theory, one should use n =3 in the derivation of Eq.
(3.16).

3.2. LOWERING SUBTRACTIONS

In setting n =3, the functions VV(fl/U/T(s) appearing in Eq. (3.16) and defined in Eq. (3.13) and
(3.14), are expressed in terms of thrice and twice subtracted dispersion integrals over expressions
involving the imaginary part of the input partial waves. We can make use of the following equality

o [T S de sn[o{; L ]f(:c)dx (3.17)

s T (2 — 5) 2"~z —s)s ams

thr

— Sn—l/oo f(iE)diE —g" thrf(x)dx
Sthr'rn71 T — S) Sthr z™s

to express an n-times subtracted dispersion integral in terms of an (n — 1)-times subtracted integral
and a remainder, which is monomial in s, provided the integrals on the right-hand side converge. If
the monomial remainder can then be absorbed into the redefinition of the subtraction polynomial,
or the monomial can be dropped due to its order, one can freely decrease the number of subtractions
in the integrals. For a more thorough discussion of the restrictions that may apply, we refer to
Section 2.5 of [25].

3.3. PION-PION SCATTERING

First we will comment on applying the reconstruction procedure to 77 scattering in the isospin
limit.
3.3.1. Form-factors

Before applying the reconstruction procedure, we first make use of an assumed isospin symmetry
to extract form-factors of 7w scattering. We attach four isospin indices to a general pion-pion
scattering amplitude A“*!(s ¢, u) as follows:

AR (st u) = A(rind — 7hnls s, u)

In the above, 7%, k € {1,2,3}, stand for the canonical basis vectors in vectorial representation of
the pion isospin triplet. Based on symmetry considerations, A“* must be expressible in terms of
to-be-determined isoscalar form factors A, B and C":

Aijkl — Aéij6kl+B5ik6jl+C(5”6jk
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Now, for processes of interest involving the charge states 77, 7=, 7°, we have (s,t,u arguments
omitted):
A(rtr~ —a70) = f%A“%f%A”%fiA2133+iA1233
= —A
24 -2C
e N [P S
A(7T+7T7*>7r+7r7) — i A1111+A2222+A1122+A2211 +A1212+A2121*A1221*A2112
—/_/
2A442B+2C BY2)
= A+B

A7 - 707Y) = A333B=A+B+C

Alrt 70— gt a0y = 1<A1313+A2323+iA1323_iA2313)
2
oB o

= B

We can relate A, B, C to each other. From Bose symmetry of the outgoing particles we have
AR (st u) = A9 (s u, t), which in turn implies

B(s,t,u) = C(s,u,t)

A(s,t,u) = A(s,u,t)

Furthermore from the crossing relation®? A(ntr~ — 7%7% s, ¢, u) = —A(r "7 - 770 ¢, s, u), we
have

—A(s,t,u) = —DB(t,s,u).

All the form-factors and considered process amplitudes can thus be expressed in terms of a single
function A.
We can summarize the result so far:

A(nta™ = %% s, t,u) = Au(s, t,u) = —A(s,t,u) (3.18)
Alrtr- —atn s, t,u)=Ar_(s,t,u) = A(s,t,u)+ A(t,u,s)

A(mO70 — 7079 s, ¢, u) = Aoo(s, t,u) = A(s,t,u)+ A(t,u,s)+ A(u, s,t)
A(rt 7% —rt 70 s, t,u) = Ao(s, t,u) = A(t,u,s)

Here we introduced the z, +—, 00, +0 shorthands for processes, which we will be using from now on.

3.3.2. Leading-order amplitude

We start by writing down a general form of the amplitude for w7 scattering at the leading chiral
order O(p?). At this order, the amplitude is analytic: (1.5) admits tree-level contributions only,
and (3.8) shows any discontinuity is of order O(p?).

The amplitude must, therefore, be a first-order polynomial in s, ¢, u, so let us use free parameters
o, By and write

—A(rtr= =709 s, t,u)=A(s, t,u) =16 7 (ap + Bo s) + O(p*),

Ao(s,t,u)

We labeled by Agthe O(p?) contribution proper. Linear terms with ¢ or u need not be included
from symmetry3-4.

To obtain form-factor A at O(p?*), we will apply the reconstruction procedure to 7tr= — 7
Input to the procedure will be partial waves extracted from the O(p?) form factor Ag when it is
viewed through the lens of some of the processes in (3.18). The O(p?) partial waves will be labeled

07.‘.0.

by gpfﬁf (s), and with the process shorthands introduced earlier, they read

3.3. As areminder, in the convention we have adopted, a phase factor -1 is picked up when crossing charged pions.

3.4. Taking t for example, we have 2t = (t +u) + (t — u) = (4m2 — s) + (t — u), where the term in the second pair
of parentheses is ruled out by Bose symmetry.
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6(3) = —ap— s 8080(5) = 4MZ2Bo+3ap
H(s) = 0 As) = 0

1
p3"(s) = a0 fo(s —4My)
1
pl%(s) = 5 Bo(s —4Mz),
where M is the average mass of the pion.
3.3.3. Next-to-leading-order amplitude

Using Eq. (3.16) to obtain the imaginary part of O(p?) partial waves and inserting such into the
dispersion integrals contained in the VVOS{ T/ U(s) functions, the integrals take on the forms

I )

o @ —s

)
)
32/00 d:rg(x’—]wﬂ?L(:r),

vz w3(r—s

and

where Q(s), L(s) are polynomials in s and o(x, M2) is defined according to Appendix A. By the
change illustrated in Eq. (3.17), we can decrease the number of subtractions in the integral, dealing
with the terms of Q(s)/L(s) individually and eventually arriving at

O

vz z(x— )
) s - x—a(x,ME)
L=) /4M,gd (=)’

167J (s, M)

and

as effectively equal and simplified versions of the initial integrals. These integrals are, up to a
multiplicative constant, proportional to the function J(s) appearing in the ChPT amplitude for
the same process.3-°

Now we quote the resulting expressions for I/VOS{ T/ Y(s) functions:
Wo(s) = —8m [8 Mz (co+ Bos) fo+7ad+8ao Bos+ 55 8% I (s, Mx)+O(p9)

Wi(s) = O(p°)
WOT(t) :WOU(t) 47T[16M72(050 ﬁo*M}r 63)+8M72r ﬁgt+4(){0(ﬁot*ao) 763152] j(t,Mw)+O(p6)
W (6) =W (t) = 435 (t—4MZ) J(t, Mr) /9+O(p°)

In terms of the above functions, the O(p*) amplitude is then
Als, t,u) = 16w [Wo(s) +3(t —u) Wils) + Wy (u) +3(t — 5) Wy (u) + Wo (1) + 3(u — s) Wo' (1)] +
Ps(s,t,u) +O(pb), (3.19)

where P3(s,t,u) is an O(p*) subtraction polynomial. Comparing the result to ChPT amplitude of
Section 1.4, we see that by matching the O(p?) amplitude (o =1/167EFg, Bo=—M2/167Ey) we
arrive at the same expressions for the O(p?) non-analytic part, which is as expected, taking into
account its form constrained by unitarity (up to an analytic remainder).

For later use in the construction of the nm — w7 amplitude, we will need expressions for S,
P partial waves of the reconstructed O(p*) ntm~ — 7970 amplitude (and of amplitudes related
through the form factor A introduced earlier). The dispersive O(p*) part of the partial waves
can be expressed in terms of polynomials in s times a part k;(s)/o(s), where k;(s) is a set of
utility functions defined in Appendix A. Without giving an explicit expression of the polynomial
Si(i)ff(s), the O(p*) dispersive part of S, P partial waves \Ilé/_if(s) can be expressed

4
st):ﬁZ 9) L (5) ki(5):

=0

3.5. Appendix A has a closed form expression of the function.
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This expression is chosen for convenience in the second iteration of the reconstruction procedure.
We will need to perform dispersive integrals of a polynomial times k;(s), the result of which will be
mechanical replacement of k;(s) in the integrand by appropriately defined K;(s) (see Appendix A).

3.4. ETA-TO-PI DECAY

To dispersively construct an amplitude for the n— mmm decay processes, we use their relation by
crossing to nm— mm scattering processes. The reconstruction procedure rests on the assumption of
stability of the involved particle states, which does not hold for 7. The remedy is to first reconstruct
the amplitude at a fictitious value of the mass of 7 lowered below three times the rest mass of 7,
and once the amplitude is reconstructed, continue it analytically in taking M, to its physical value
on a path slightly diverted into the upper complex plane. This prescription should recover the
correct physical amplitude [4].

We will now comment on the construction of 17— mrm amplitude to the first order of isospin
breaking. As such, in Eq. (3.12), we only consider the rescattering of 7 states. See Subsection 4.1.3
for representations (tied to the usage of software introduced in the next chapter) of the n— 7w
reconstruction to two-loop order.

3.4.1. Leading-order amplitude

Like in the case of nm scattering the leading-order amplitude will be a first-order polynomial in
Mandelstam variables. By symmetries of the processes, the free polynomial parametrization of the
amplitudes at O(p?) is

A(nm® —7970% s, t,u) = Ago+O(p*)
Anm® —rtr7;s,t,u) = Ay+ Bys+O(pY),

where Agg, Az, B, are free parameters. Amplitudes of the other nm — 77 processes are related by
crossing.

3.4.2. Next-to-leading-order amplitude

In the reconstruction of the O(p*) dispersive part of the 77 — w7 amplitude, the O(p?) S and
P partial waves of processes nm — nm and 7w — ww enter Eq. (3.12). The I/VO“?I/U/T(S) functions
carrying the dispersive part of amplitude then take on the form familiar from the w7 scattering of
polynomials times .J(s) functions (up to O(p?)).

In the extraction of expressions for S, P waves to be used in the second iteration of reconstruc-
tion, we need to evaluate the integral (3.11). It can be evaluated in terms of utility functions lgj(s)

in a manner similar to the k;(s) functions of 77 scattering (see Appendix A for definitions).

3.4.3. Next-to-next-to-leading-order amplitude

To reconstruct the O(p®) dispersive part of the amplitude, Eq. (3.12) combines O(p?) nr— 77
waves and O(p*) w7 — 77 waves, and then separately O(p*) nm— 77 waves and O(p?) nm — 7
waves.

Evaluation of dispersive integrals (3.13) can be expressed in terms of polynomials times func-

tions Ky(s), Ki(s), Kq(s), I%f’\)(s) (see Appendix A for definitions).






CHAPTER 4

ATTACHED SOFTWARE

In Chapter 3 we summarized a method of dispersive construction of scattering amplitudes for
mesonic processes, producing amplitude forms up to the O(p®) order in chiral counting. Here we
describe an attached*! software library with a high-level user interface available for reproducing
the calculations in the dispersive construction of the amplitude forms.

The library is a set of functions and definitions in the Python programming language to com-
plement the SYMPY library [16] for symbolic manipulation of mathematical expressions. The
library implements the reconstruction procedure generally but is limited in its ability to evaluate
the integrals of Eqgs. 3.11 and 3.13. As it is, the library is equipped with a ruleset that is tailored
to the case of the reconstruction of n7 scattering and n— 77w decay amplitudes and those in the
approximation of equal pion masses. As-is, the ruleset can be sufficient for some related processes,
and further processes can be made available to the application of the library by its extension. This
includes a generalization to the case of unequal pion masses, which is a plausible direction for
future extensions of the library.

The library contains inline documentation on its functions and definitions. In the following
section, we describe the key elements of its user interface. Appendix B contains a transcript of a
sample usage of the library in an interactive session.

4.1. Future versions of the library are to be found at: https://github.com/povik/mesonic_displib

29
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Python Value Type Description

Argument target ScatterProcess Label for the process to be reconstructed.
This will be internally used to derive
process labels to look up in the ptable.

ptable dict A dictionary of parts of the amplitude
at an appropriate chiral order to be
the input to reconstruction, indexed
by objects of type ScatterProcess.
A single representative of a class of
processes related by crossing and Bose
symmetry is sufficient.

S list A list of kinds of intermediate states to
consider in the S channel of the recon-
struction (each kind specified by a two-
letter string, see Table 4.2).

T list ditto for T channel
U list ditto for U channel
Return Value SYMPY expression The unitarity part of the reconstructed
amplitude.

Table 4.1. Inputs and outputs of function reconstruct. The function reconstruct_ext has a similar
interface, but instead of one ptable argument, accepts two ptablel, ptable2 arguments which correspond
to the two different orders of the lower-order amplitude part to be processed in the desired reconstruction.

4.1. USER INTERFACE

In the Python namespace the library is called displib and its usage revolves around the functions
reconstruct and reconstruct_ext, the programming inputs and outputs of which are described
in Table 4.1. The function performs one iteration of the reconstruction procedure — it takes in
the lower-order forms of prerequisite amplitudes and a list of considered kinds of intermediate
states and produces the unitarity part of a higher-order amplitude, that is, the terms containing
functions VVO“%T/ U(s) on the right-hand side of Eq. 3.16.#2 To construct a higher-order amplitude,

the user needs to supplement the unitarity part with an appropriate free polynomial. In this way,
the labelling of the free polynomial is fully under the user’s control.

4.1.1. Process Labels

The library defines a ScatterProcess class, which represents a label for a process with defined
particle kinds on its input and output. The ScatterProcess object also specifies an ordering of
the input and output particles and can also carry a phase for the process. That is, it can be a label
for a process amplitude with an additional overall phase. This latter feature simplifies the handling
of crossing. There is a scatter shorthand function for the creation of ScatterProcess labels. For

4.2. One can also use the related functions reconstruct_in_channel and reconstruct_in_channel_ext to obtain
S/T/U . . .
the Wy'/4 (s) functions in isolation.
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the scattering of neutral pions to a pair of charged pions, one creates a label by scatter("00",
"pm"). See Table 4.2 for the exposition of letter codes in referring to particular particle states.

Particle Letter Code

Tt P
70 0
T m

n E

Table 4.2. Letter codes used in the library to refer to © and 1 meson particle states.

4.1.2. Process Table

The reconstruct family of functions takes for its input a “process table” (under argument ptable).
That is, a dictionary from process labels to parts of the amplitude (as SYMPY expressions)
belonging to those processes. The parts of the amplitude are supplied at an appropriate chiral
order with respect to the chiral order that is desired to be reconstructed. That is, one sup-
plies the O(p?) part to reconstruct O(p*) by calling of reconstruct, or supplies the O(p?) and
O(p*) parts to reconstruct O(p%) by calling of reconstruct_ext.

A single representative of a class of processes that are mutually related by combinations of
crossing and Bose symmetry is sufficient to be present in the process table.

4.1.3. Example

To further illustrate the interface of the library, we show both a graphical (Fig. 4.1) and code (Fig.
4.2) representation of an example 7 — 7 amplitude reconstruction program.

resultant
O(p?) free O(p*) free litud
polynomial polynomial amplitude
reconstruction
of nm —nrw \L O(p®) free
at O(p%) polynomial
pr
reconstruction
of nqm — 7w
at O(p%)
tabl
2 reconstruction
of mm— 7w
at O(p*)
O(p?) free O(p*) free
polynomial polynomial

Figure 4.1. Schematic representation of using the interface of the library to reconstruct two-loop level
nm — 77 scattering amplitude to the first order in isospin breaking (cf. Fig. 1 of Ref. [14]).
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from displib import *

A = pp_subthreshold_poly(1l, subscript=0)
ptable_pp_0Op2 = pp_ptable_from_form_factor(A)

A_Op4 = -reconstruct(
scatter ("00", "pm"), ptable_pp_0Op2,
S=[”OO”, upmn] , T=["m0"] , U=[npou] ,

)

ptable_pp_0Op4 = pp_ptable_from_form_factor(-A_Op4)

A_x, B_x = sp.symbols("A_x B_x")

ptable_eta_0p2 = {
scatter ("EO", "pm"): A_x + B_x*(s-s_0)/F_pix**2,
scatter ("EO", "00"): -3*A_x

}

joined_ptable_0p2 = {x*ptable_eta_0p2, **ptable_pp_0p2}

A_eta_0Op4 = reconstruct(
scatter ("EO", "pm"), joined_ptable_0p2,
S=[||OO|| , upmn] , T=["m0"] , U=[npou] ,

ptable_eta_0p4 = {
scatter ("EO", "pm"): A_eta_Op4,
scatter ("EO", "00"): -A_eta_Op4
- A_eta_Op4.subs({s: t, t: s}, simultaneous=True)
- A_eta_Op4.subs({t: u, u: t}, simultaneous=True)

}
joined_ptable_0Op4 = {x*ptable_eta_0Op4, **ptable_pp_0p4}

E0_00_0Op6 = reconstruct_ext(

scatter("EO", "00"),

joined_ptable_0p2, joined_ptable_0p4,

s=["00", "pm"], T=["00", "pm"], U=["00", "pm"],
)

Figure 4.2. The content of Fig. 4.1 as represented in code by stringing function calls to the library. In
addition to the reconstruct, reconstruct_ext and scatter functions introduced in text, the code example
makes use of a pp_ptable_from_form_factor function to set up the process table from a w7 scattering form
factor.



CONCLUSION

This work follows up on a line of work in published literature dealing with the dispersive con-
struction of mesonic process amplitudes up to the two-loop order. In Ref. [20], the approach was
originally applied to construct the two-loop w7 scattering amplitude. Subsequent development
has seen the approach generalized, and for this work, our key reference is [14], which contains an
account of the two-loop construction of K — nm and n— mm decay amplitudes.

This work supplies a software library implementing the steps of the “reconstruction procedure”
that is the basis of the amplitude forms of Ref. [14]. The library can be used to construct the
n— mrm decay amplitude to the first order in isospin breaking, up to the two-loop order. The full
result of the construction is a long-winded expression, and the library makes the result available
for further manipulation in a CAS (computer algebra system) environment.

The forms of amplitude can be fitted to data from high-statistics 71— 7w experiments, where
in comparison to the usual Dalitz parameters the dispersively-constructed parametrization incorpo-
rates the expected non-analytical features of the amplitude surface. Fig. 1 presents the results of
an illustratory fit of the one-loop amplitude to the n— 7+7~7° data of the KLOE-2 collaboration
[3]. Two-loop amplitude results can be fitted as well once suitable numerical representations of the
special K;(s) functions appearing in the expressions are supplied.

The dispersively-constructed forms of amplitude can be of use to studies of ChPT generaliza-
tions and studies of extraction of the isospin-breaking parameter R.

In future work, the library can be extended to new processes and generalized. One road of
extension is to support the construction of amplitude taking into account the mass difference
of charged and neutral pions. This would make the resultant constructed amplitude exhibit the
feature of the “cusp” in n— 7% 7970 decay. By simple modification, the library can be adapted to
construct K — wrw amplitudes (their relation to the n— 77w amplitude is discussed at length in
Ref. [14]).

33
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Residuals in O(p?) fit

Figure 1. The results of an illustratory fit to the n— w77 decay measurements by the KLOE-2 collaboration
[3]. Top figure has the experimental data points in blue and the fitted amplitude surface (from O(p?*)
reconstruction) in light green. Bottom left and bottom right are fit residuals to the reconstructed amplitude

form at the O(p?) and O(p*) order respectively.
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APPENDIX A
SPECIAL FUNCTIONS

We define a string of special functions to which we refer from the results of dispersive calculations.
First, we define a Kéllen triangle function Ay p(s) and the usual o(s) and J(s) by:

Mils) = (5= M+ MR = (ME- D) J) = Jim s [ e T
1/2 _ 1 o(s)—1
o) = olo b =20 fy 1 B W{Qﬂ(sﬂogo(sm]

In the remainder of the Appendix we define functions k;(s), K;(s) and their decorated variants,
matching those definitions made in Ref. [14].
For utility in two-loop calculations of pion rescattering, we define functions k;(s). First, we
define, for s> 4M2,
1—o(s, My)
L(s)=log——F-"7¢
(S) Og1+0(87Mﬂ)5

in terms of which the k;(s) are (again for s > 4M?2):

1
ko(s) = Ton o(s, My)

Fi(s) — %L(s)
2
ka(s) = 8—17T<14M”>L(3)

s
_ 3 M; 2
ha(s) = 167 so(s, M) L*(s)
1 M? 1 Mz,
Fa(s) = 167 so(s, M) {IJF o(s, My) L(S)+T4]\/[§L (S)}

We label K;(s) the once-subtracted dispersion integral of each k;(s), and K ;(s) the twice-subtracted
dispersion integral, that is

oo .
Ki(s)=2 lim %L@_’
Tem0t Japz T T —8— i€

_ 2 o] X
Ki(S)ZS— lim %—k’(x)

T om0t Jap2 ®? T — 5 — i€

Similarly for utility in two-loop calculations of pion decay, we define functions l%z(s) to be

ko(s) = Flﬂa(s,Mw)

Fils) = o= L(s)

Fas) = qa=o(s,My)s jﬂ(:)
R = g6 Me) s 7z L),

where the function M (s) is defined to be

1/2 1/2
10g<1M$M3+>\n4 (S)>+log<1M5M£)\"{T (8)>,
s s 5

M(s) p
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SPECIAL FUNCTIONS 38

and for each k;(s) we define its once- and twice-subtracted dispersion integrals

Ris)=2 tim [ d2_kil®)

. 9
T e—0t 4M72‘_.CL' r—S8—1€

= oo ~4
R(s)=2 tim [ dz_Kl)
¢ Tem0t Jap2 @ T —s—ie€

In addition, to express the n— w7 two-loop amplitude, we define the function

)= g [ Mo
i Tem0t Japrz © Agr(x) ©—5 —i€’




APPENDIX B

TRANSCRIPT OF USING THE ATTACHED LIBRARY

The following is a transcript of an interactive session with a Python interpreter. After-the-fact
comments were written interspersed into the transcript.

SymPy 1.9 under Python 3.9.10
Import all symbols of the library.

>>> from displib import =*

Assign to a variable a free form of the amplitude of 77 scattering at the O(p?) order in subthreshold parametrization.
>>> A_Op2 = pp_subthreshold_poly(1)

>>> A_0Op2
4 M2
M,zra_i_ﬁ(_ 3 +S)
3E2 F2

Derive a ’process table’ from the amplitude above. That is, knowing the above is the amplitude of a 77~ — 7%7° process,

obtain a table with amplitudes of processes related by isospin symmetry. The function render_ptable presents the process
table in tabular form for inspection.

>>> ptable_0Op2 = pp_ptable_from_form_factor (A_0p2)

>>> render_ptable(ptable_0p2)

ot e s 700 —~MZ2a+ (4 M2—35s)
3F2
2 2
Mie 24104 goy Bt

atr- —ata—

F2

™
2 2
200 g0 0 Mra 4MnﬁF4;ﬁS+ﬁt+ﬁu

Reconstruct the dispersive part of amplitude at the O(p?) order, taking as input the O(p?) process table.
>>> A_Op4 = -reconstruct(

scatter("00", "pm"), ptable_0p2,

s=["00", "pm"], T=["m0"], U=["pO"],

As before, derive from 77~ — 7970 amplitude (this time of the O(p*) order), the process table with amplitudes of isospin-
related processes.
>>> ptable_0Op4 = pp_ptable_from_form_factor (A_Op4)

Look up S and P waves of a couple of processes. Take suitable linear combinations to extract the isospin form factors of
mm — 7 amplitudes at O(p?).
>>> A_00_S, A_OO_P = lookup_SP_wave(scatter("00", "00"), ptable_Op4)
A_x_S, A_x_P = lookup_SP_wave(scatter("00", "pm"), ptable_Op4)
A_pm_S, A_pm_P = lookup_SP_wave(scatter("pm", "pm"), ptable_0Op4)
>>> psi_0 = sp.cancel(A_00_S - 2%A_x_S)
psi_1 = sp.cancel(A_pm_S*2)
psi_2 = sp.cancel(A_00_S + A_x_S)

Calculate and display the 5}” polynomials (as defined in (5.7) of [14]).
>>> def derive_xi(psi):
xi_ = sp.cancel(attempt_poly_reduce(psi * sigma(s, M_pi), s))
return normalize_k4(xi_, s, M_pi)

>>> analyze_table(derive_xi(psi_0), s)

_k(s M) 5Mia?  5MAB?  5M2B%s | 78%s? |
1 A 962 FY  24n2FY 36m2F) ' 28872 F2
5Mia2 5MEB2 | M2p3%s
ka(s, M s _ s ™
a(s, M) 144x2F1 3672 F1 | 2472 Fd
Ko(s, My) 35Mpa? 5MiapB  49MiB%  5MZaBs 617TMZB%s | 3113252
NS ) o2 FY T 9n2FE ' 27n2FR | 1272 F2 43272 F2 864 w2 F2
25 Mia?2 5Miap |, MEip2  5M2afs M232%s B2 s?
ka(s, M) i Tt T+ el I 1
I 576 m2 F7; 3672 F; 9w2F7 48 w2 Fy 6m2Fy 1672 Fy
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TRANSCRIPT OF USING THE ATTACHED LIBRARY 40

>>> analyze_table(derive_xi(psi_1), s)

4 2 4 4 02 2 . 2 02 2 .2 _ 4 4 02
ki(s, My), 13M,ro¢4Jr Mwaﬁ4+ M7r547M7r04B2729M7rBf+ 138 54+ Mﬂaﬁ+4i\4ﬂ6  ka(s, My),
28872 F2  72m2F: 1872 F} 9672 F}  288w2F} 57672 F} 48 2 2
13 M7 a? Miap _4M;4r52+Mﬁ52s+—Mﬁaﬁ+4M7‘§52'ko(s M) 19Mpa? TMzaB 61M,%52+
43272 F2 5472 F} 27n2F} 4872 F% 7272 F2 ’ P 48 w2 FE 2472 F2 0 5472 FR
19M2afBs 22T M2B2%s | 503 32s? 7M§aﬁ+4M§ﬁ2'k (s, My) M2 a? Miap M2 M2Z2afs
- y R2(S, ) -

96 T2 F2 216 w2 F2 1728 2 F2 242 F2 32m2 F% 1272 F% T a2 F? + 16 w2 F2
M232s = 332s2
82 F}  64m2F2

>>> analyze_table(derive_xi(psi_2), s)

M3 a2 MiapB M2aBs TM2B2%s | 116252
3272 FY 4872 FY 3272F% 28872 F2 | 576m2 Fl
Mia? MiafB M232%s
T48n2Fr " T2n2FF  A82FE
31MEa?  Miap , TMEB%2 23M2afBs 8M2B2%s 2653%s?
1447r2F,§+97r2F,§+277r2F,%_ 96m2 F4 272 FX | 1728 n2 B2
M2 a2 Miap MaiB2  MZapBs M:2B%s 32 s2

14472 F3 " 3672 F2 ' 3672 F% 48n2F3 24n?FY ' 64n2 F2

kl(su Mﬂ')

k3(s, Mx)

ko(s, Mx)

ka(s, M)

Follow on by reconstructing the n — w7 amplitude at up to the O(p®) order.
>>> A_x, B_x = sp.symbols("A_x B_x")

Perform last step of the reconstruction once more, but this time ask for the Wo/

A_00 = sp.symbols("A_00")

ptable_eta_0p2 = {
scatter ("EO", "pm"): A_x + B_x*(s-s_0)/F_pi**2,
scatter ("EO", "00"): A_0O,

joined_ptable = {**ptable_eta_0p2, **ptable_0p2}

EO_pm_0Op4 = reconstruct(
scatter ("EO", "pm"), joined_ptable,
s=["00", "pm"], T=["mO"], U=["pO"],
)
E0_00_0p4 = reconstruct(
scatter("EO", "00"), joined_ptable,
s=["00", "pm"], T=["00", "pm"l, U=["00", "pm"],
)

ptable_eta_0Op4 = {
scatter ("EO", "pm"): EO_pm_Op4,
scatter ("EO", "00"): E0_00_Op4
}

joined_ptable_Op4 = {**ptable_eta_Op4, **ptable_Op4}
EO_pm_0Op6 = reconstruct_ext(
scatter ("EO", "pm"), joined_ptable, joined_ptable_0Op4,
s=["00", "pm"], T=["Om"]l, U=["0p"],
)

S/IT/U(S) unitarity components separately.

>>> ptablel, ptable2 = joined_ptable, joined_ptable_0p4

target = scatter("EO", "pm")

W_0_S, W_1_S = reconstruct_in_channel_ext("S", target, ["00", "pm"], ptablel, ptable2)
W_O_T, W_1_T = reconstruct_in_channel_ext("T", target, ["Om"], ptablel, ptable2)
W_O0_U, W_1_U = reconstruct_in_channel_ext("U", target, ["Op"], ptablel, ptable2)

Display the content of the Wil (s) component.
>>> sp.simplify(W_1_T)

(12 M2 8 (=3 By M2 8 (MS — 3 M2 M2 +3 M2 M2 — MS) KM (¢, Mx, My) + (3 Aoo F2 MS B — 9 Ago F2 MA M2 8 +
9 Ago F2 M2 M2 —3Ago F2MSB —6A, F2MS B+ 18 Ay F2MAM2B — 18 A, F2M2 M2B +6 A, F2MS B —
3B, M8 — 5B, MSM2a+ 8By ME M23+6 B, MS 3so+ 15 By Mj Mg — 6 By My Ma 3 —18 B, Mgy M2 8 so —
15 By M2 ME o + 18 By M2 M2 B 5o+ 5 By M8 a + By M8 8 — 6 By ME Bso) KM (¢, Mx, My)) + t (120 B, M2 82 J(t,
M) + 72 By M2 32 K1(t, M) — 96 By M2 32 Ka(t, M) + 96 B, M2 32 K3(t, M) + 288 B, M2 32 Ku(t, M) +
24 B, M3 (5 a —2 8) Ki(t, M) — 288 B, M3 (5 a — 2 ) Ka(t, Mx) — 12 By M2 3 (10 a — B) K1(t, M) +
40 B, M23 (11 a — 14 B) J(t, Mz) + 4 By M2 (5a% — 40 a 8 + 8 32) K3(t, M) — 6 B, M% (5a% —20a 3 + 6 32) J(t,
M) + 24 B, M2 (52420 a 8+ 2 B2) Ku(t, My) + 108 B, M2 82 t3 K§™ (¢, M, M) — 30 B, M2 82t J(t, My) —
42 B, M2 32t K1(t, M) 4+ 48 B, M2 3%t Ko(t, M) — 48 By M2 3%t K3(t, M) — 216 B, M2 3%t K4(t, M) —
6 By M23t (5a —383) Ki(t, My) +72 By M28t (5 a — 3 B3) Ku(t, My) — 10 B, M2 38t (11 a — 21 B) J(t, M) +
14 B, B2 t4 KV (¢, My, My) + 3 By B2 t* KN (t, My, M) + 3 B, 82 t4 KV (¢, M, My,) — 10 B, 82 2 J(t, M) +
3 B, 322 K1(t, M) — 6 By 322 Ka(t, My) 4+ 36 By 3212 Ka(t, M) —36 M2 312 (—Ago F2a+ Aoo F2+2A, F2a —
2A, F23 - B, M2a+4B, M238+2 B, M2a + 8 B, M28 — 2 B, a so + 2 B, 8 s0) K§M (¢, My, M,) —
36 MZBt(Aoo FZMZa— Ago FEMZB+ Aco FZMZa—TAg FEM2B —2A, F2M2a+2A, FZM2B—2A, F2MZa+
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14 Ag F2 M2 B+ By My o — Bo My 8 — Be M2 MZa — 2 Bo M7 M2 3+ 2 By M2 oo so — 2 Bo M7 850+ 8 Bx My a +
7 By M2 B +2 B, M2 a 5o — 14 By, M2 8 s0) K{™M (¢, M, M) — 2 M2 3 (84 Ago F2 M 8 — 168 Ago F2 M2 M2 3 +
84 Ago F2 M2 — 168 Ay F2 M} B+ 336 Ay F2 M2 M2 3 — 168 Ay F2 M} 3 — 81 By MS 3 — 140 B, My M2 o +
35 B, M;y M2 3+ 168 B, My 3 so + 280 B, M2 M} o + 173 B, M2 M2 3 — 336 B, M2 M2 3 sg — 140 B, M8 o —
127 B, ME 3+ 168 B, M2 B50) KM (£, My, M,)) + 18 M2 8 (—3 Ao F2 M2 8 — 2 Ago F2 M2 M2 o + 14 Agg F2 M2 M2 8+
2Ago F2MEa —11 Ago FAM2B+6 A, F2MEPB +4 A, F2M2 M2 o —28 A, F2M2M23 —4 A, F2 M} a +
22AmF,EM#6+SBmMSﬁ+3BmM;¢M§a+BmMﬁM%ﬁ—SBmMﬁﬁso—14BmM3,M;¢a—~7BmM3,M:5—
4 By M2 M2 & so+ 28 By M2 M2 850+ 11 B, MS v + 3 B, MS 3 4 4 B, M2 & sg — 22 By, M2 B s0) KV (¢, My, M,) —
B3 (=33 Ago F2 B+ 66 Ay F2 8+ 64 By, M2 3+ 55 By, M2 o + 56 B, M2 3 — 66 B, 3 so) K§V (¢, My, M,) —
363 (~3A00F2B+6A, F2B+5B, M2 +5B, M2a+9 By, M2 — 6 B, Bs0) KM (t, My, M) —

3813 (=3 Aoo F2B+6 Ay F2+6By M2 B+ 5By M2a+ 8B, M28 — 6 B, Bs0) KM (8, My, M,) +

3B8t2(—9 Ago F2M2 B —21 Agg F2ZM2 B8+ 18 A, F2 M2 8+ 42 A, F2 M2 3+ 12 B, M;} B+ 15 B, M2 M2 o +
36 By M2 M2 — 18 By M2 850+ 35 By M2 o+ 4 By M2 3 — 42 B, M2 B s0) KM (8, M, M) + 3 B2 (=6 Ago F2 M2 3 —
24 Ago F2ZM2B+12 A, FZ M2 B+ 48 Ay FZ MZ2B+ 7 By My 8+ 10 By M2 M2 o+ 36 By M2 M2 8 — 12 B, M2 Bso +
40 B, MY o + 9 B, M2 8 — 48 B, M2 (3 s0) KM (8, My, My) 4+ 2 B2 (=33 Ago F2 M2 8 + 9 Ago F2 M2 o —
171 Ago F2 M2 B + 66 Ay F2 M2 8 — 18 A, F2 M2 a + 342 A, F2 M2 3 4 43 B, M} B + 64 By M2 M2 o +
182 B, M2 M2 B8 — 66 By M2 f3s0 + 252 By M2 o + 81 By M2 3+ 18 B, M2 o sg — 342 B, M2 8 s0) K§V(t, M, M) —
3Bt (—9 Ao F2 My 3 —36 Agg FZ M2 M2 B+ 12 Ago F2 Moo — 3 Ago FZ M2 B+ 18 Ay F2 My B+ 72 Ay F2 M2 M2 —
24AwF,EMﬁa+6AmFEMﬁﬁ+IOBwM,?ﬁ+15BmM;‘,M,2ra+4SBmM;‘;M3,ﬁ—1SBwM,‘7‘ﬁs0+~72BmM3,Mﬁa—
54 B, M2 M2 B — 72 By, M2 M2 850 — 39 By MS a + 20 B, MS 8 + 24 B, M2 o so — 6 By, M2 8 s0) K§V(t, My, M,) —
3Bt (—3Ago F2 My 3 —30 Agg FZM2M2B+12 Agg F2 Mt oo — 15 Ago F2 M2B+6 Ay F2 My 8460 A, F2 M2 M2 —
24 Ay F2M2a+30 Ay F2M2B3+3 By MS B+ 5 By M2 M2« + 37 By Myt M2 3 — 6 By Mt Bso+ 62 By M2 M2 a+
97 B, M2 M2 8 — 60 B, M2 M2 850 — 19 By MS o — 113 B, MS 3+ 24 B, M2 o so — 30 By M2 Bs0) KM (¢, M, M) —
Bt (=33 Ago F2 M} B+ 18 Ago F2 M2 M2 o — 342 Ago F2 M2 M2 B + 126 Ago F2 M3 oo — 585 Ago F2 Mz B +
66 Ay F2 M2 B — 36 Ay F2 M2 M2 o + 684 A, F2 M2 M2 3 — 252 A, F2 M} a + 1170 A, F2 M2 8 + 36 B, MS 8 +
73 By M} M2 o + 358 By, M M2 3 — 66 By M2 3 so+ 630 By M2 M2 o + 620 B, M2 M2 3+ 36 By M2 M2 o sp —
684 B, M2 M2 83 so 4+ 513 B, MS o + 266 B, MS B + 252 B, M2 a so — 1170 B, M2 8 so) KSM (¢, M, M,) —
3 B8 (3 Ago F2 MS B + 27 Ago F2 Mjy M2 3 — 24 Ago F2 M2 M3 o + 33 Ago F2 M2 M2 B + 24 Ago F2 MS o —
63 Ago FZMEB — 6 A, F2MS B — 54 Ay F2 Mjy M2 B+ 48 Ay F2 M2 M2 o — 66 Ay F2 M2 M2 3 — 48 Ay F2 MSa +
126 Ay FR MEB — 3 By M§ 3 — 5 By My MZ o — 32 By My M2 3+ 6 By, M) 850 — 69 By M, My oo + 18 By My Mz 8 +
54 B, M M2 8o+ 57 By M2 MS o + 72 By M2 MS B — 48 By M2 M3 o sg + 66 By, M2 Mx 3so+ 17 By M8 a —
55 By, MS B+ 48 By MS o so — 126 By MS Bs0) KV (t, My, M,))) /(331776 w3 FS 1)
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