
MASTER THESIS

Martin Povi²er

Decay of h into three pions

Institute of Particle and Nuclear Physics

Supervisor of the master thesis: Mgr. Martin Zdráhal, Ph.D.
Study programme: Theoretical physics

Study branch: Theoretical physics

Prague 2023



I declare that I carried out this master thesis independently, and only with the cited
sources, literature and other professional sources. I understand that my work relates to the
rights and obligations under the Act No. 121/2000 Sb., the Copyright Act, as amended,
in particular the fact that the Charles University has the right to conclude a license
agreement on the use of this work as a school work pursuant to Section 60 subsection 1
of the Copyright Act.

In Prague date 6. 1. 2023



Title: Decay of h into three pions

Author: Martin Povi²er

Department: Institute of Particle and Nuclear Physics

Supervisor: Mgr. Martin Zdráhal, Ph.D., Institute of Particle and Nuclear Physics

Abstract: In this work, we summarize a method established in the published litera-
ture of dispersive construction of amplitude for the �! ��� decay process. We outline
Chiral Perturbation Theory (ChPT) as an effective field theory for the description of
low-energy hadron dynamics, and then introduce dispersive methods with the objec-
tive of constructing process amplitudes (up to the two-loop order) similar in form to
ChPT predictions.
The original contribution of the present work is a software library implementing the
�reconstruction procedure� that forms the basis for the dispersive construction of mesonic
process amplitudes. This library can be used to construct amplitudes in a computer
algebra system (CAS) environment, making those forms of amplitude available to fitting
of experimental data and theoretical studies, especially those focusing on the extraction
of the up/down quark mass difference.

Keywords: eta-to-pi decay, quantum chromodynamics, chiral perturbation theory, disper-
sion relations

https://www.mff.cuni.cz/en/faculty/organizational-structure/department?code=114
https://www.mff.cuni.cz/en/faculty/organizational-structure/department?code=114
https://www.mff.cuni.cz/en/faculty/organizational-structure/department?code=114
https://www.mff.cuni.cz/en/faculty/organizational-structure/department?code=114
https://www.mff.cuni.cz/en/faculty/organizational-structure/department?code=114
https://www.mff.cuni.cz/en/faculty/organizational-structure/department?code=114


Table of contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1. Overview of Chiral Perturbation Theory . . . . . . . . . . . . . . . . . . . . . 5

1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2. Chiral ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3. Terms in the effective Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1. SU(2) variety of ChPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4. Pion-pion scattering in ChPT to one-loop order . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. Eta-to-pi decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1. Decay kinematics (Dalitz plot) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2. Dalitz parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1. Dalitz parameters of �!�+�¡�0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2. Dalitz parameters of �!�0�0 �0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3. Dispersive method of amplitude construction . . . . . . . . . . . . . . . . . 17

3.1. Reconstruction procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2. Dispersion relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.3. Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2. Lowering subtractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3. Pion-pion scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1. Form-factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2. Leading-order amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.3. Next-to-leading-order amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4. Eta-to-pi decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.1. Leading-order amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.2. Next-to-leading-order amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.3. Next-to-next-to-leading-order amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4. Attached software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1. User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.1. Process Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.2. Process Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.3. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Appendix A. Special Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Appendix B. Transcript of using the attached library . . . . . . . . . . . 39

1





Introduction

This work deals with the theoretical construction of abstract forms of amplitude for the �! ���
decay and similar meson processes, the description of which falls within the scope of strong-force
physics.

In the Standard Model, strong force is at a fundamental level described by the theory of
Quantum Chromodynamics (QCD). The usual perturbative method of enumerating Feynman
diagrams can only be readily applied to QCD in a limited regime � in the high-energy regime of
quark scattering, where the theory ('perturbative QCD') produces predictions in good agreement
with experiment. However, hadron phenomenology, which is to be the low-energy manifestation
of QCD, falls outside the scope of simple perturbative treatment.

There are a couple of established approaches for deriving testable low-energy predictions from
QCD. One approach is to focus on the consequences of approximate flavor chiral symmetries
present in QCD. That approach is systematically implemented in 'Chiral Perturbation Theory'
(ChPT) [11][12][22].

ChPT postulates the validity of a 'chiral limit', that is, a limit in which a few of the smallest
quark mass parameters of QCD vanish so as to make the resultant theory exactly chiral sym-
metric. The symmetry breaking effects connected with the physical non-vanishing values of these
parameters are then considered a small perturbation on top of the symmetric theory. Predictions
of quantities within ChPT are given in the form of expansions, the terms of which are organized
by so-called chiral ordering. In practice, the expansion needs to be cut off at some given chiral
order. As the considered chiral order cut-off grows, the theory admits an increasing number of free
parameters (low-energy coupling constants) � the predictions become more accurate, but the theory
gradually loses its predictive power. That is straightforward to understand on the grounds of ChPT
being an effective theory with the approximate QCD symmetry and a few other assumptions for
its only basis, otherwise being unrestricted.

In an approach complementary to evaluating meson process amplitudes from ChPT, one can use
dispersive methods to build up general forms of amplitude � taking chiral ordering and unitarity
as constructive principles of the method [20][25][14]. These forms of amplitude are then compatible
with amplitudes evaluated from ChPT, that is, a ChPT amplitude corresponds to some choice of
values for the free parameters of the dispersively-constructed amplitude form. These forms can
help organize ChPT results, be a target for the fitting of experimental data, and also be used to
investigate models deviating from standard ChPT.

The �! ��� process, in particular, is intimately tied to the explicit breaking of isospin sym-
metry that is connected to the mass difference between the up and down quarks [10]. The process
can only occur in violation of isospin symmetry, and furthermore, there are arguments to show that
the electromagnetic contribution to facilitate the violation is small, leaving the explicit isospin-
breaking attributes of strong force, that is, the up/down quark mass difference, to be the dominant
driver behind the decay. As such, the decay is an interesting testbed to study the quark mass
difference.

In Chapter 1, we give an overview of ChPT as an effective theory stemming from the approxi-
mate QCD symmetries. In Chapter 2, we introduce the Dalitz plot as the customary presentation
of the kinematic variation of �! ��� amplitudes and measured incidences. In Chapter 3, we
summarize a dispersive method of mesonic amplitude construction. The method is established
in the published literature and is, for example, the basis of Ref. [14]. In Chapter 4, we describe
an attached software library with a high-level user interface for carrying out calculations in the
dispersive construction of meson process amplitudes. This library is the original contribution
of the present work. In Appendix A, we list utility functions that figure in the dispersively-
constructed amplitudes, and in Appendix B, we print a transcript of an interactive computer session
demonstrating the usage of the library.
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Chapter 1

Overview of Chiral Perturbation Theory

1.1. Introduction

Chiral Perturbation Theory ([11], [12], [22]) is an effective field theory for the description of low-
energy phenomenology of Quantum Chromodynamics. It builds on considering the symmetry
principles manifest in QCD, employing them in the construction of terms in (otherwise most
general) Lagrangian density. Predictions are then derived by means of standard perturbation
theory except for a special ordering scheme in the perturbative expansion (instead of powers of
coupling one considers powers of momenta and quark masses). In what follows some of the technical
details are laid out. For a full introduction to the topic, we refer for example to Ref. [19].

The crucial symmetry of QCD in the construction of ChPT is the approximate SU(2) isospin
symmetry or, by extension, the SU(3) symmetry among the lightest quark flavors. Famously these
symmetries pronounce themselves in a striking way by organizing the hadronic spectrum into SU(2)
and SU(3) multiplets of similar particle mass and attributes. The SU(N) (N =2 or 3) symmetry
of QCD is not exact and is broken by the quark mass term of the Lagrangian. If we neglect the
relevant part of the mass term, we decouple1.1 the left-handed and right-handed quark fields, so the
Lagrangian density exhibits an even larger symmetry of flavor multiplets in left- and right-handed
quark fields independently , the so-called chiral symmetry. We denote by SU(N)L and SU(N)R
the two symmetry groups acting on left-handed and right-handed fields separately, and we have,
overall, an SU(N)L� SU(N)R symmetry (called chiral symmetry) of the QCD Lagrangian, up to
the mass term.

�+�0

135.0 MeV 139.6 MeV
�¡

139.6 MeV

493.7 MeV
K0

497.6 MeV

K+

493.7 MeV497.6 MeV

K¡

K0

strangeness

isospin

Figure 1.1. The pseudoscalar octet of light mesons arranged in the weight space of the SU(3) Lie group. h
meson (mass 547.9 MeV, isospin singlet) is not depicted, but lies at the same position as the neutral pion �0.
Green boxes correspond to isospin doublets/triplets. Mass values were rounded from those available in [27].

1.1. The resulting quantum theory will not exhibit all the symmetries suggested by the formal decouplement of
the fields at the classical level. There is a chiral anomaly (discussed at an introductory level e.g. in [8]) that affects
the U(1) symmetry of contrariwise change in phase of the left-handed and right-handed fields. However, the SU(N)
chiral flavor symmetries that are the subject of discussion here can be preserved through quantization.
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The SU(N)L� SUR(N) approximate symmetry underpins the construction of ChPT. For fur-
ther discussion, it is important to recast it, representing each element (L;R) of SUL(N)�SUR(N)
by two matrices V ;A2SU(N) such that

(L;R)= (VAy; VA):

We use SU(N)V and SU(N)A to denote the set of all V and A, respectively. The former corresponds
to symmetry transformations acting on left-handed and right-handed fields evenhandedly (so the
usual flavor symmetry), and the latter corresponds to transformations acting contrariwise on the
two fields. We speak of SU(N)V �SU(N)A symmetry, but we note that SU(N)A is not a subgroup
of SU(N)L�SU(N)R (while SU(N)V is). The V and A subscripts stand for vector and axial , being
descriptions of the transformation properties of the associated Noether currents. Under parity,
when the left-handed and right-handed quark fields are swapped, the axial current is inverted,
while the vector current is unchanged.

For the consideration of the isospin/flavor symmetry effects in QCD we have already invoked
what is called the chiral limit � the edge case of taking the mass terms in QCD for the N lightest
quarks to zero and thus making the chiral symmetry exact. To account for the low-energy meson
phenomenology, the chiral symmetry-breaking effects (non-vanishing quark mass terms in QCD)
are treated to be a small perturbation around the chiral limit. Furthermore, in the limit, the full
SU(N)L� SU(N)R symmetry of the dynamical laws is postulated spontaneously broken down
to SU(N )V . The members of the pseudoscalar meson octet (Fig. 1.1) are then identified with
the Goldstone bosons of the Nambu-Goldstone realization of the spontaneously broken SU(N)A
symmetry.

It can be shown that, in the chiral limit, the interaction among the pseudoscalar mesons (being
Goldstone bosons) should vanish in the limit of zero energy [21]. To model the low-energy dynamics
of mesons, Chiral Perturbation Theory then systematically implements a perturbation around both
the zero-energy and chiral limits.

By the argument given, e.g., in Ref. [15], the low-energy dynamic is presumed dominated by
the exchange of light mesons (those being the observed low-energy asymptotic states), and from
that it is deduced that an effective low-energy theory can be recast into the form of a perturbative
quantum field theory, having an octet of pseudoscalar fields for its dynamical degrees of freedom
and an infinite sum of monomials of the fields and their derivatives for its local Lagrangian density.
A priori, each term of the effective Lagrangian has an unspecified free parameter, and as such,
this doesn't make much for a theory with predictive power, but fortunately, the free parameters
in ChPT can be cut down in two steps:

i. By viewing the scattering amplitudes that are the predictions of the effective theory to be
an expansion in powers of magnitude of external momenta (and strength of chiral breaking
parameters to be introduced later), we can establish an ordering of the terms of Lagrangian.
That is, the ordering of the amplitude expansion propagates back into an ordering of the
Lagrangian terms. We can then focus on terms with low �chiral order�. This issue of chiral
ordering is explained in the next section.

ii. Within each chiral order, there's still an a priori infinite number of free parameters of the
Lagrangian, but by demanding the symmetries of QCD in the chiral limit to reproduce in
the effective theory, we can constraint the free parameters at each chiral order to a finite-
dimensional choice. The symmetries to be demanded of the effective theory are not only the
global chiral symmetries, but also the gauge chiral symmetries once the chiral QCD is made
gauge invariant by the addition of appropriate gauge transforming external fields. This is
equivalent to demanding the effective theory to satisfy QCD chiral Ward identities. Details
on this are to be found in the provided references. We will return to the construction of
allowed effective Lagrangian terms in Section 1.3.

The remaining issue is the inclusion of explicit chiral symmetry breaking. The QCD mass term
for the N lightest quarks has the form Lmass=¡q�Mq which can be expanded in terms of the left-
handed and right-handed quark fields into Lmass=¡q�RMqL+ (h:c:). If we were to consider M
to be an external source field added to a chiral-limit QCD Lagrangian, covariance with an g(x):
R4!SUL(N)�SUR(N) gauge transformation would demand of fieldM(x) the transformation law

M(x)!RM(x)Ly; (1.1)

1.1 Introduction 6



where (L;R)= g(x).
To include the effects of explicit symmetry breaking that is present in QCD at physical values

of quark mass terms, we consider the effective theory not only to be an effective theory of QCD
in the chiral limit but also an effective theory of QCD in the chiral limit with the inclusion of an
external field having the transformation law (1.1). With this external field included, we are still
demanding of the effective theory to be gauge invariant like QCD in the sense mentioned within
(ii.) above, that is, with the inclusion of the aiding external fields [those are different fields from the
one transforming under (1.1)]. Once we wish to apply the effective theory to the physical world,
we set the new external field to a constant matrix over the spacetime, just like we do with the field
M in QCD.

In ChPT, the external field with transformation law (1.1) is called �, and by symmetry con-
siderations alone, it is related to M up to a multiplicative constant. This multiplicative constant
can have a physical dimension, and as such the dimension of � is unspecified. The dimension
is intimately related to the ordering of the chiral expansion. In standard ChPT, the field � has
dimension mass squared and is normalized for a simple leading order coupling in the effective
Lagrangian. (This leading order coupling generates the mass term for the octet of pseudoscalar
fields.)

1.2. Chiral ordering

To restate, in ChPT, we deal with perturbative expansions of scattering amplitudes (and other
quantities) around the chiral and zero-energy limits. In the following we will derive what is known
as the Weinberg formula [22] for assigning chiral dimension to contributing diagrams. We focus on
standard chiral ordering in which the dimension of chiral-breaking field � is mass squared.

Suppose we have an amplitude A(pi; �) corresponding to a diagram, which we consider here to
be a function of external momenta pi and the chiral-breaking field � introduced earlier. To assign
a chiral dimension to A, we perform linear scaling of pi and quadratic scaling of �. (This choice
reflects the mass dimensions of the two quantities: [pi]=1 and [�]=2.) The chiral dimension D of
contribution A is defined such that1.2

A(t pi; t2 �)= tDA(pi; �);

as we vary t. All the while, any constants with a non-zero dimension of mass appearing in A are
held constant. By nature of both pis and � being small in application of ChPT, we expect the
contribution of diagrams with low D to be dominant.

To assign chiral dimension to a given diagram in practical terms, we can derive a simple formula.
It will be expressed in terms of the chiral dimensions of the constituent vertices and the number
of loops present in the diagram. We start by considering the energy dimension of A based on its
relation to the S-matrix:

[A] =¡NE+4; (1.2)

where NE is the number of external lines of the diagram. At the same time, from the definition of
the chiral dimension D, using C(v) to denote the coupling constant associated with vertex v, we
can state

[A] =D+
X
v

[C(v)]; (1.3)

where the sum is over the vertices of the diagram. Now, we conveniently define the chiral dimension
of a term in the effective Lagrangian to be the number of field derivatives plus twice the power of
� appearing in the term's product. We denote by D(v) the chiral dimension of the term generating
the vertex v. If we then focus on the mass dimension of the interaction term (here labeled simply
[v]), it holds

4= [v] =NF(v)+D(v)+ [C(v)]; (1.4)

1.2. Here, in the definition of the chiral dimension and in the derivation of Weinberg formula, we ignore the
issue of renormalization and of regularization of any loop integrals.
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where NF(v) is the number of lines attached to the vertex (number of fields in the interaction
term). Solving for [C(v)] in (1.4) and combining it with (1.2) and (1.3), we have

¡NE+4= [A] =D+
X
v

(4¡NF(v)¡D(v)):

From the above, we can expressD. To simplify, we will use the graph identity
P

vNF(v)=2NI+NE,
where NI is the number of internal lines. Therefore, we have

D=4¡NE¡
X
v

(4¡NF(v)¡D(v))=4+2NI+
X
v

(D(v)¡ 4):

Next, we introduce the number of loops NL and substitute for NI by NI=NL+NV ¡1, where NV

is the number of vertices:

D=2+2NL+
X
v

(D(v)¡ 2); (1.5)

which is the final form of the result. Note that by (1.5), if we are enumerating contributions up to
some chiral order D, we only need to consider Lagrangian terms up to the same order. Furthermore
diagrams with a high number of loops are suppressed by the 2NL term.

1.3. Terms in the effective Lagrangian

The terms of the Lagrangian in ChPT are constrained by the condition on the effective theory to
reproduce the chiral symmetries of QCD. We will show how this is conceptually carried out. We
will focus on the SU(3) version of ChPT, pointing out the differences of SU(2) effective theory at
the end.

In establishing the chiral symmetry of the effective theory, we need to specify a transformation
law for its dynamical degrees of freedom. By the nature of the dynamical fields being Goldstone
bosons, and given the symmetry groups involved, we expect the collective value of the fields at a
point to correspond to a coset from the quotient group

(SU(3)L� SU(3)R)/SU(3)V :

This has relation to the fields' transformation law. A convenient way to achieve the desired chiral
symmetry of the effective theory is to make the following choices:

i. Define a field �(x) that takes a value from the space of 3� 3 Hermitian matrices acting in
flavor space. The eight degrees of freedom contained in �(x) are the pseudoscalar octet of
fields that are to be the dynamical degrees of freedom of the effective theory.

ii. Define an SU(3)-valued field U(x) related to �(x) by U = ei�/F0, where F0 is a free con-
stant.1.3 Prescribe for the field U the gauge transformation law

U!R(x)U(x)Ly(x): (1.6)

Because of this simple and linear transformation law, U is then well-suited to be a building
block of chiral invariant terms. Law (1.6) also induces a representation of the chiral group
on � � the adjoint representation of the subgroup SU(3)V but, in general, a non-linear
representation of the full group.

iii. Impose the effective theory to have a chiral invariant Lagrangian density.

While it is obvious that point (iii) leads to chiral symmetry of the effective theory, and point (ii)
leads to a transformation law on the dynamical degrees of freedom that is consistent with physical
interpretation of the fields, it is not obvious that the choices made in (ii) and (iii) do not arbitrarily
restrict the effective theory beyond what can be inferred from QCD symmetries.

1.3. This constant has a physical interpretation of being the pion-decay constant in the chiral limit.

1.3 Terms in the effective Lagrangian 8



Ref. [15] shows that this is, in fact, not so, that we are free to make those choices and an effective
theory, as long as it is to reproduce also the local chiral symmetries of QCD, can be without loss
of generality put into form satisfying (ii) and (iii).

So, to build up the effective Lagrangian, at each chiral order, we construct all the chiral invari-
ants that are local products of fields U and � (taking into account the transformation laws (1.6)
and (1.1)), then we select an independent subset of those. We take a freely parametrized linear
combination of the independent invariants to make up the part of the effective Lagrangian of the
given order.

The Lagrangian is not allowed to have any terms of order O(p0), since those would imply, in
chiral limit, mass terms or interaction terms at zero momenta, both of which we are ruling out.
Terms of chiral order O(p1) are disallowed on symmetry grounds. In fact all terms of odd order
are since they would require contracting an odd number of derivatives to a Lorentz scalar. The
leading terms are therefore of chiral order O(p2), the subleading of order O(p4), and so forth. We
use subscripts of L to group terms of given chiral order, so that the full effective Lagrangian is
decomposed by

L=L2+L4+L6+ � � �:

The customary leading order terms are

L2=
F0
2

4
Tr(@�U@�U y)+

F0
2

4
Tr(�U y+U�y):

The terms Tr(@�U@�U y) and Tr(�U y+ U�y) are a full set of independent invariants of chiral
order O(p2) up to a total derivative. In place of introducing a free parameter for the coupling
of Tr(@�U@�U y), we opt to generate a normalized kinetic term1.4 for �, noting that any freedom
afforded by the hypothesized free parameter is equivalent to rescaling of the field and adjusting all
other coupling constants. Similarly, we don't need to introduce a free parameter in conjunction
with Tr(�U y+U�y) since there is a free parameter in relating the scale of � to the quark mass
field. So in effect L2 is without free parameters. The free parameter relating � to quark mass
fields is B01.5, defined such that it holds �=2B0M:

Moving on to the next nonvanishing order, the subleading terms of the effective Lagrangian are

L4 = L1 fTr[@�U (@�U)y]g2 (1.7)
+L2Tr[@�U (@�U)y]Tr[@�U (@�U)y]
+L3Tr[@�U (@�U)y @�U (@�U)y]
+L4Tr[@�U (@�U)y]Tr(�U y+U�y)
+L5Tr[@�U (@�U)y (�U y+U�y)]
+L6 [Tr(�U y+U�y)]2

+L7 [Tr(�U y¡U�y)]2

+L8Tr(U�yU�y+ �U y�U y)
+H2Tr(��y);

where L1 to L8 are free parameters, so-called low-energy coupling constants, and H2 is a constant
controlling a �contact term� (involving an external field only but allowed by symmetry and possibly
required for renormalization). One sometimes includes in L4 further terms with constants L9, L10
and H1, but those couple to external fields we will not be introducing. The density L4 quoted
above needs to be supplemented by the Wess-Zumino-Witten action ([23],[24]) to account for the
effects of an axial anomaly in its leading order (the effect is of order O(p4)), an issue which we are
otherwise ignoring.

1.4. Once we decompose � to components by �= �a�a such that Tr(�a �b) = �ab, we have F0
4
Tr(@�U@�U y) =

1

2
@��a @

��a+...

1.5. This parameter is called the �scalar quark condensate in the chiral limit� due to its relation to the vacuum
expectation value of quark bilinears.
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Finally, to give a concrete relation of the abstract field � to the physical meson states, let us use
�0, ��, K0, K� 0, K�, � labels for the fields whose excitations correspond to the light pseudoscalar
meson octet. Then, based on a correspondence by the particles' quantum numbers to the generators
of adjoint representation of SU(3)V , we can collect the fields like so:

�=

0BBBBBBBB@
�0+ 1

3
� ¡ 2

p
�+ ¡ 2

p
K+

2
p

�¡ ¡�0+ 1

3
p � ¡ 2

p
K0

2
p

K¡ ¡ 2
p

K�0 ¡ 2

3
p �

1CCCCCCCCA
Note that the phases of the meson fields in � are our convention, adopted for agreement with
references in the later chapter on dispersive methods. Since � is a Hermitian field, it follows
(�+)y=¡�¡, which we need to keep in mind when relating the ingoing and outgoing asymptotic
charged pion states.

1.3.1. SU(2) variety of ChPT
The SU(2) version of ChPT is conceptually similar to the SU(3) version but differs in some specifics.
The O(p2) part of the Lagrangian is the same but the O(p4) part is composed of fewer independent
chiral invariants due to a simpler group structure. This means the set of free parameters L1: : :L8
from Eq. (1.7) is replaced by a smaller set l1: : :l6. In the SU(2) version of ChPT, the field � is
related to the pionic fields only, and that can be:

�=

 
�0 ¡ 2

p
�+

2
p

�¡ ¡�0

!
; (1.8)

1.4. Pion-pion scattering in ChPT to one-loop order

We will now discuss the amplitude of �� scattering in SU(2) ChPT at one-loop order in the isospin
limit of mu=md :=m. It will be a result to which we will later, for illustration, compare forms
of amplitude constructed on dispersion grounds. Up to O(p4), we have by (1:5) the following
contributing diagrams: a single L2 or L4 vertex in a tree diagram or two L2 vertices in loop diagrams
(Fig. 1.2).

L2 vertices

O(p2) contribution

+ + +O(p6)

(3)

A=

(1)

+

O(p4) contributions

(2)

+

L4 vertices

Figure 1.2. Schematic depiction of the leading contributions to pion-pion scattering amplitude in ChPT.

To establish notation, let us write down that we are interested in the process

�a(pa) �b(pb)! �c(pc)�d(pd); (1.9)

where a, b, c, d are isospin triplet indices of the corresponding incoming and outgoing particles
and pa to pd are their four-momenta (introduced with a slight abuse of notation).

To obtain the leading tree-level contribution of the graph labeled (1), we expand L2 with respect
to powers of �:

L2=
1
2
@��a @

��a¡
M�

2

2
�b�b+

1
6F02

[@��i @��j�i�j¡ @��i @��i�j�j] +
M�

2

24F02
[(�k�k)2] +O(�6);
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where we labeled, by M�
2=2B0m, the mass of the pion corresponding to the mass term generated

in L2. It follows that an O(p2) vertex, as a function of momenta and isospin indices of the lines
meeting at the vertex (all momenta ingoing), has the following form:

V ijkl(p1;p2; p2; p3)=
1

6F02
f�ij �kl [4 (p1+ p2)2¡ (p1¡ p2)2¡ (p3¡ p4)2+2M�

2] + � � �g;

where the omitted part consists of two symmetric terms, one obtained by exchange of p1 and p2 and
the other by exchange of p1 and p3, accompanied by the corresponding exchanges of isospin indices.

The O(p2) contribution to the amplitude then quickly follows to be

AO(p2)=V abcd(pa; pb; pc; pd)=
1
F0
2 [�ab �cd (s¡M�

2)+ �ac �bd (t¡M�
2)+ �ad �bc (u¡M�

2)];

where we used the usual Mandelstam variables s, t, u.
For the topic of this thesis which revolves around dispersion relations, we are interested in the

non-analytic contributions (non-analytic in kinematic variables) which start appearing at the order
of O(p4). As one can easily convince themself, the tree level O(p4) contribution is a polynomial
and does not contribute a non-analytic part, but the loop diagrams do.

By considering the isospin and crossing symmetries of process (1:9), the amplitude can be
expressed in terms of a single a form factor (see Subsection 3.3.1):

A(s; t; u)= �ab �cdA(s; t; u)+ �ac �bdA(t; s; u)+ �ad �bcA(u; t; s):

We can extract the form factor from the amplitude, e.g., by

A (s; t; u)=A(s; t; u)ja;b;c;d=1;1;2;2;

and that we can also do for the O(p2), O(p4) parts of amplitude separately.
So, to account for the AO(p4)

loop contribution to the form factor from the loop diagrams at O(p4),
we get

AO(p4)
loop = lim

�!0+

(i)3

2

Z
d4k
(2�)4

(?)
(k2¡M�

2+ i �)[(P ¡ k)2¡M�
2+ i �]

where (?) in the integrand stands for

(?) = V 11kl(pa; pb; k;¡P ¡ k) V 22kl(pc; pd;¡k; P + k)
+V 12kl(pa; pc; k;¡P ¡ k)V 12kl(pb; pd;¡k; P + k)
+V 12kl(pa; pc; k;¡P ¡ k)V 21kl(pd; pb;¡k; P + k):

The integral over loop momenta AO(p4)
loop evaluated in dimensional regularization and treated by the

modified minimal subtraction scheme amounts to

AO(p4)
loop = s2¡M4

2F 4
J�(s)+ 1

6F 4
f(t2+4uM2¡2tM2¡2M4)J�(t)+(u2+4tM2¡2uM2¡2M4)J�(u)g

+ 1
96�2F 4

�
¡3 s2¡ (t¡u)2+ 10

3
sM2¡ 10

3
(t+u)M2+7M4

�
log

m2

�2

+ 1
�2F 4

�
5
36

M4¡ 35
432

sM2¡ 1
36

(t+u)M2+ 1
8640

s2+ 13
3456

s(t+u)+ 17
5760

(t2+u2)+

7
1728

t u

�
;

where J�(s) is

J�(s)= lim
�!0+

s
16�2

Z
4m2

1
dx

1¡ 4M2/x
p
x(x¡ s¡ i�)

The J�(s) terms are the non-analytic contribution to the O(p4) amplitude. As will be stressed
in Chapter 3 discussing dispersion method of amplitude construction, the form of these terms (up
to a polynomial difference) is fixed by the condition of the unitarity of the S-matrix.
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Chapter 2
Eta-to-pi decay

Experiments involving � decays are important tests of the Standard Model. Recently published
data for the decay of � into three neutral pions can be found in Refs. [2], [18], or, for the decay into
a pair of charged pions and one neutral pion, in Refs. [1]. Such decays can only occur in violation
of isospin symmetry, and as such, they are an interesting link to isospin-breaking parameters. In
particular they may provide information [10] on the quark mass ratio

R= ms¡ (md+mu)/2
md¡mu

:

Literature readily contains results for the ChPT amplitude at orders up to O(p4) (see Ref. [12]),
and the authors of Ref. [5] have worked out the ChPT amplitude up to O(p6).

2.1. Decay kinematics (Dalitz plot)
In �!��� and similar processes, the kinematic dependence of process amplitude, or the measured
incidences, is customarily presented in the form of a so-called Dalitz plot. In the Dalitz plot, two
axes are linearly related to Mandelstam-type variables in such a way that they represent the full
variation in decay product kinematics (up to a rotation in the center-of-mass frame of the decaying
�).

To elaborate, let us start by defining

sj := (k¡ pj)2 for j=1; 2; 3;

where k is the four-momentum of the decaying eta meson, and pj are the four-momenta of the
produced pions (each with mass mj). Over the Mandelstam-type variables a kinematic identity
s1+ s2+ s3=m�

2+
P

i=1
3 mi

2 holds, leaving merely two of the variables independent.
As will be stressed in the next chapter, the �!��� process can be considered related, through

crossing, to the scattering processes ��! ��. After such crossing, the sj variables of the decay
process are identified with the usual Mandelstam s, t, u variables of a scattering process (the exact
pairing depending on the particular identification of pions of the two processes).

We can picture a kinematic plane spanned by any two sj variables (which up to a scaling of
axes and shearing will be the Dalitz plot). The decay process, and the crossed scattering processes,
are all confined to their own non-overlapping regions of the kinematic plane. Let us now work out
the extent of the decay region. Considering s1 alone, evaluating it in the rest frame of p2+ p3,
we obtain the lower bound s1=(p2+ p3)2=(E2+E3)2> (m2+m3)2 (Ej being the energy of four-
momentum pj). At the same time the center-of-mass energy of p2+ p3 can be at most m�¡m1,
and so s1< (m�¡m1)2. Similar lower and upper bounds exist on the other sj by analogy. At this
point, we can attest to the separation of kinematic regions by noting that for a scattering process
we have s> (m�+m�)2, which is in conflict with the upper bound on sj in the decay region.

Now, to further confine the decay region, we derive bounds on (s2¡s3) given a fixed value of s1.
In the center-of-mass frame of p2+ p3, it follows from the zero sum of three-momenta (p2~ + p3~ )=0~
that E22¡m2

2=E3
2¡m3

2. Now, using this relation to solve for E2 and E3 from s1=(E2+E3)2, we
have

E2=
s1+�23

2 s1
p ; E3=

s1¡�23

2 s1
p ;

where we have introduced the notation �AB=mA
2 ¡mB

2 . Analogously, we have

E�=
s1+��1

2 s1
p ; E1=

¡s1+��1

2 s1
p :
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Figure 2.1. Dalitz plot for �!��� using the usual x, y kinematic variables. The decay region is shaded
pink and the scattering regions are shaded purple. Left is detail on the shape of the decay region. Masses
of pions are taken equal, i.e. corresponding to �!�0 �0�0.

Wishing to express the magnitude of three-momenta in terms of s1, we have

jp1~ j = E1
2¡m1

2
p

=
(s1¡��1)2¡ 4 s1m1

2
q

2 s1
p =

�1�
1/2(s)
2 s1
p

jp3~ j = E3
2¡m3

2
p

=
(s1¡�23)2¡ 4 s1m3

2
q

2 s1
p = �23

1/2(s)
2 s1
p

where we have introduced the square root of the Källen triangle function by �AB
1/2(s) =

[s¡ (mA+mB)2][s+(mA¡mB)2]
p

. Now using the relations above to express s2, s3, we first have

s2 = (p1+ p3)2=m1
2+2E1E3¡ 2p1~ � p3~ +m3

2= 3s0¡ s
2

¡ �23��1

2 s
¡ 2p1~ � p3~

s3 = (p1+ p2)2=m1
2+2E1E2+2p1~ � p3~ +m2

2= 3s0¡ s
2

+ �23��1

2 s
+2p1~ � p3~ ;

where if we subtract the two equations and employ jp1~ � p3~ j6 jp1~ j jp3~ j=
�1�
1/2

(s)�23
1/2

(s)

4s1
, we arrive at

bounds on (s2¡ s3) given a fixed value of s1:

¡��1�23¡��1(s1)�23(s1)
s1

6 s2¡ s36
¡��1�23+��1(s1)�23(s1)

s1
:

From this bound and its analogical realization with s1¡ s2 and s3¡ s1, we can draw the shape of
the decay region.

For the process �! �+ �¡ �0 the standard kinematic variables x, y on the axes of the Dalitz
plot are given in terms of s1, s2 and s3 by

x = 3
p

(s2¡ s1)
2m�Q

(2.1)

y = 3[(m�¡m�0)2¡ s3]¡ 1
2m�Q

;

where Q=m�¡ 2m�+¡m�0 is the kinetic energy of decay products in the center-of-mass frame.
For the decay of � into neutral pions, i.e., the process �! �0 �0 �0, the kinematic variables are
given by (2.1) also after the replacement of m�+ by m�0. Using the kinematic variables x, y, we
show on Fig. 2.1 the shape of the decay region (of �!�0�0�0).
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2.2. Dalitz parameters

The customary way of summarizing the results of �!��� decay experiments is by so-called Dalitz
parametrization in which the measured incidences are fitted to a free low-order polynomial in
kinematic variables. This is foremost a phenomenological parametrization exploiting the fact that
the measured incidences are to a good approximation a smooth function of the kinematic variables.

The Dalitz parametrization does not take into consideration non-analytic features of the ampli-
tude, e.g., the �cusp� [6].

2.2.1. Dalitz parameters of �!�+�¡�0

In the case of charged decay, the standard parameters are the coefficients of a polynomial in the
x, y variables that correspond to the axes of Dalitz plot. Calling the measured incidence by I, its
kinematic dependence is fitted to a polynomial with free parameters a, b, c, d, e, f , g like so

I(x; y)
I(0; 0)

= 1+ a y+ b y2+ c x+ d x2+ e x y+ f y3+ g x2 y+ � � �:

By charge conjugation, we expect c=0, e=0 since an exchange of the charged pions in the decay
product corresponds to flipping the sign of x from where it follows that charge symmetry prohibits
terms linear in x. See Table 2.1 for values of the Dalitz parameters from recent experiments.

a b d f g

KLOE [7] ¡1.090(5)(19) 0.124(6)(10) 0.057(6)(16) 0.14(1)(2)
KLOE-2 [3] ¡1.104(3)(2) 0.142(3)(5) 0.073(3)(4) 0.154(6)(5)

¡1.095(3)(3) 0.145(3)(5) 0.081(3)(6) 0.141(7)(8) ¡0.044(9)(13)

Table 2.1. Estimates of theDalitz parameters a, b, d, f , g taken frompublished accounts of few �!�+�¡�0

experiments.

2.2.2. Dalitz parameters of �!�0�0�0

The decay to three neutral pions has additional symmetries, which is reflected in the standard
Dalitz parametrization. Defining z=x2+ y2, the parametrization is

I(x; y)
I(0; 0)

=1+�z+2 � y(3z¡ 4y2)+  z2+ � � �;

where the free parameters are �, �, . See Table 2.2 for values of these Dalitz parameters from
recent experiments.

� � 

KLOE 2010 [2] ¡0.0301(35)(35)
A2 Collaboration at MAMI [18] ¡0.0302(8)

¡0.0280(9) ¡0.0058(8)
¡0.0231(33) ¡0.0053(8) ¡0.0057(37)

Table 2.2. Estimates of the Dalitz parameters �, �,  taken from published accounts of few �! �0�0�0

experiments.
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Chapter 3
Dispersive method of amplitude construction

Dispersive methods provide means of amplitude construction (S-matrix construction) based on
analyticity and unitarity properties to be satisfied by the elements of the S-matrix. These properties
can be justified on the basis of general physical arguments, or may be shown to follow from quantum
field theory postulates.

Historically, within the S-matrix programme originally suggested by Heisenberg [13], dispersive
methods were used to construct S-matrices accounting for observed scattering phenomena but
otherwise detached from any underlying theory, especially one involving local fields.

Within the scope of quantum field theories, dispersive methods can be, for example, of service
to aid in modeling of scattering of particles for which it is challenging to define asymptotic states,
as is the case of hadrons within QCD, being bound states beyond the reach of direct perturbative
treatment. Despite the difficulties in the formulation of hadronic states, we can rely on general
properties of the S-matrix elements involving hadronic states.

In the following section a �reconstruction procedure� for meson scattering is introduced. It
encapsulates the basic dispersive method of construction of higher-order amplitude (in the sense
of chiral ordering) from a lower-order form of it. The present introduction to the procedure is a
compilation of an account of the method given in Ref. [25] and [14] which themselves cite Ref.
[20] for the establishment of the method in the context of �� scattering, and cite other references
for its subsequent evolution. The procedure is set up in such a way that it can be iterated up to
order O(p6) (that is two-loop order). The application of the reconstruction procedure to processes
��!�� (in isospin limit) and �!��� (to the first order of isospin breaking) is then commented
on.

3.1. Reconstruction procedure

3.1.1. Preliminaries
The reconstruction procedure, as we will establish it, will concern scattering amplitudes A(s; t; u)
of processes with two ingoing and two outgoing particles. The functions A(s; t; u) will be the usual
invariant matrix elements parametrized by Mandelstam variables, that is

hp3; p4jT jp1; p2i=(2�)4 �4(P )A((p1+ p2)2; (p1¡ p3)2; (p1¡ p4)2);

where T is related to the S-matrix by S=1+ iT , the pi represent particles by their four-momenta
and P = p1+ p2¡ p3¡ p4 is the momentum balance of the process. Throughout this work, the
particles are assumed spinless (as is the case for �, �).

For the use of dispersive methods, we need to extend the domain of the definition of A(s; t; u)
into a complex plane of s, t and u. Nonetheless, the definition domain is restricted to the values
satisfying the kinematic identity s + t + u =

P
m2, where the sum is over masses squared of

the ingoing and outgoing particles. We will be using 3 s0 to denote the sum. Using analytic
continuation, there is still a level of arbitrariness in the definition of A on the extended domain,
but there is a natural choice, and on that point, we simply refer to Ref. [9].

In viewing the function A as a function of a single complex variable s, t or u (with one of
the other variables fixed, and the remaining variable determined from the kinematic identity), it
typically has singularities on the real axis. The real axis is, of course, where we are reading off the
physical amplitude. To that end, it is crucial that we can, in a simple way, fix the definition of
A(s; t; u) on the real axis in relation to the value it takes on the surrounding complex plane. We
can impose the following:

A(s; t; u)= lim
�!0+

A(s+ i�; t; u¡ i �): (s; t; u2physical): (3.1)
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The label �physical� for the domain of s, t, u represents the set of values that are kinematically
feasible. This restriction must be in place for consistency with crossing relations (to be mentioned
shortly). The prescription reads, that the functional value of A, when s is on the real axis and in
the �physical� set, is the limiting value of approaching the real axis from above. This prescription
for the physical amplitude is in natural correspondence to the usual i� prescriptions in propagators
that would appear in perturbative contributions to the S-matrix. This issue is discussed for example
in Ref. [9], which also contains a discussion of other properties of A we are mentioning here.

We assume the validity of crossing relations, which for our purposes state that the amplitude (as
a function of complex s, t, u) of process AB!CD can be made equal to the amplitude of processes
C�D�!A�B�, AC�!B�D and AD�!B�C (bar for antiparticle) under appropriate identification of
the s, t, u variables of the original and crossed-into process. Explicitly that means

AAB!CD(s; t; u)=AC�D�!A�B�(s; t; u)= �TAAC�!B�D(t; s; u)= �UAAD�!B�C(u; s; t);

where �T and �U are phase factors picked up due to the signs of mesonic fields established in (1.7)
and (1.8). The sign convention has the consequence of h��jy=¡j��i and analogously for charged
kaons. Therefore the phase factor in crossing relations is minus one each time we are crossing an
odd number of charged mesons and plus one in all other cases.

For use in dispersion relations, we need to define the Disc symbol for evaluating the discontinuity
across a cut on the real axis of s. We define

DiscA(s; t; u)= lim
�!0+

[A(s+ i �; t; u¡ i �)¡A(s¡ i �; t; u+ i �)]:

Furthermore, in the case of function F (s) of a single complex variable, we define

DiscF (s)= lim
�!0+

[F (s+ i �)¡F (s¡ i �)];

As a final point, for theories with symmetry such that

hp3; p4jT jp1; p2i= hp1; p2jT jp3; p4i; (3.2)

it then holds ([9])

DiscA(s; t; u)= 2 i ImA(s; t; u): (s; t; u2R) (3.3)

That is, the discontinuity is purely in the imaginary component of the value, and that component
flips its sign across the cut.

We can take (3.3) to be true of the �� scattering amplitude, but in the case of the ��! ��
process, the matter is spoiled by the instability of � within the mesonic sector. That can be worked
around by a device of analytic continuation in � mass [14], a point to which we will return once
we apply the reconstruction procedure to this process.

3.1.2. Dispersion relations

The reconstruction procedure rests on the use of dispersion relations, which we will now derive.
Suppose we have a function F (s) of a complex variable s, regular everywhere except for cuts
on the real line, constrained to some s > sthr> 0 and (another cut) s < sthr

0 < 0. The situation is
schematically depicted on Fig. 3.1.

Im s

Re ssthr
0 sthr

Figure 3.1. The complex plane of s with the indicated location of the two cuts in the definition of F (s).
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Im s

Re s

r

Figure 3.2. Integration contour on the complex plane of s used in derivation of dispersion relations. The
contour approaches the cuts of F (s) from below and above in an implicit limit. Inside the contour, F (s) is
regular. The outer arches of the contour have radius r.

Consider the integration contour from Fig. 3.2. Now suppose jF (s)j! 0 as jsj!1. If we use
the contour in Cauchy's integral formula and take the limit r!1, the contribution of the outer
arches vanishes. We are led to

F (s) = 1
2 � i

lim
�!0+

�Z
sthr

1
dx F (x+ i �)¡F (x¡ i �)

x¡ s +
Z
¡1

sthr
0

dx F (x+ i �)¡F (x¡ i �)
x¡ s

�
= 1

2 � i

�Z
sthr

1
dx DiscF (x)

x¡ s +
Z
¡1

sthr
0

dx DiscF (x)
x¡ s

�
:

Now suppose that it cannot be assumed jF (s)j! 0 as jsj!1, but at least jF (s)/snj! 0 for
some n2N0. If we then define F 0(s)=F (s)/sn and apply Cauchy's integral formula to F 0 (s) in
an analogous manner, we obtain a similar result for F 0(s) as we did for F (s) above, except we pick
up residual terms due to the introduced pole at s=0. We obtain

F 0(s) = 1
2 � i

�Z
sthr

1
dx DiscF 0(x)

x¡ s +
Z
¡1

sthr
0

dx DiscF 0(x)
x¡ s

�
(3.4)

¡ 1
(n¡ 1)!

�
d

dxn¡1
F (x)
x¡ s

�
x=0|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

�

:

If we then proceed with the expansion

1
x¡ s =¡

1
s
¡ x
s2
¡ x2

s3
+ � � � ¡ xn¡1

sn
+O(xn);
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we can conclude that the residual term x is a Laurent polynomial in s with terms the power of
which ranges from ¡n to ¡1 and such that its coefficients depend on the value and first n¡ 1
derivatives of F (x) at x=0. If we then substitute F (s) into (3.4), we have

F (s) = sn

2� i

�Z
sthr

1
dx DiscF 0(s)

(x¡ s)xn +
Z
¡1

sthr
0

dx DiscF 0(x)
(x¡ s) xn

�
+Pn(s); (3.5)

where Pn(s) is a so-called subtraction polynomial. It is equal to ¡sn � and so is a polynomial in s
of degree n¡ 1. Eq. (3.5) is called an n-times subtracted dispersion relation. It is a consequence
of the assumed analytic structure of F (s) in combination with the assumption jF (s)/snj! 0 as
jsj!1. Since the integrals as functions of s are regular around s=0 and are multiplied by sn, we
can conclude that Pn(s) is in fact the Taylor polynomial of F (s) around s=0, as explicit evaluation
of ¡sn � would confirm. When we wish to express arbitrary F (s) in terms of its discontinuities at
known branch cuts by means of (3:5), the subtraction polynomial Pn(s) represents a fully analytic
component of F (s) that is not reproduced by the dispersion integrals but is constrained by the
input assumption jF (s)/snj! 0.

In application of (3.5) to an amplitude A(s; t; u), we can substitute e.g. F (s)=A(s; t; 3s0¡u),
resulting in

A(s; t; 3s0¡ t¡ s) = sn

2 � i

�Z
sthr

1
dx DiscA(x; t; 3s0¡ t¡x)

(x¡ s)xn +
Z
¡1

sthr
0

dx DiscA(x; t; 3s0¡ t¡x)
(x¡ s) xn

�
+

Pn(s; t); (3.6)

where we signified in arguments of Pn(s; t) that it is a polynomial in s with coefficients that are
functions of t.

It is natural to replace sthr0 by uthr through s0thr=3s0¡ t¡ uthr, since uthr then indicates the
threshold of the respective cut when the amplitude is viewed as a function of u (with t held fixed).
To make the second integral similar in appearance to the first, we can also change

sn
Z
¡1

sthr
0

dx DiscA(x; t; 3s0¡ t¡x)
(x¡ s)xn = ¡sn

Z
uthr

1
dx DiscA(3s0¡ t¡x; t; x)
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(?)

= ¡un
Z
uthr

1
dx DiscA(3s0¡ t¡x; t; x)

(x¡u)xn +Mn(s);

where Mn(s; t) is some polynomial of degree n¡ 1 in s. In the first equality, we merely changed
the integration variable under x! 3s0¡ t¡x and swapped the limits of integration. The second
equality is more subtle, one way to prove it is to note that, if uthr>0, the expression (?)/2� i, as a
function of u, on its own satisfies the assumptions of (3.5), so if we apply (3.5) to F (u) :=(?)/2� i,
we obtain the desired result. The introduced polynomialMn(s) can be absorbed into a redefinition
of the subtraction polynomial Pn(s; t), so we have

A(s; t; 3s0¡ t¡ s) = sn

2� i

Z
sthr

1
dx DiscA(x; t; 3s0¡ t¡x)

(x¡ s)xn (3.7)

¡ un

2 � i

Z
uthr

1
dx DiscA(3s0¡ t¡x; t; x)

(x¡u)xn

+Pn(s; t):

The form (3.6) or (3.7) would be called the fixed-t n-times subtracted dispersion relation since
in the definition of the underlying function of a single complex variable we held t fixed. In the
derivation of (3.7), we so far assumed sthr

0 < 0< sthr, 0<uthr, but it suffices sthr0 < sthr, 0<uthr,
0<sthr, which we do not show here.

3.1.3. Derivation
Exploited by the reconstruction procedure, the discontinuities of A (in the sense of quantity DiscA)
are constrained by unitarity. Specifically, from SSy=1+ iT ¡ iT y+TT y=1, it follows

ihp3; p4jT ¡T yjp1; p2i=¡hp3; p4jTT yjp1; p2i:
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We will manipulate the left-hand and right-hand sides separately. On the left-hand side, we have

ihp3; p4jT ¡T yjp1; p2i = hp3; p4jT jp1; p2i¡ hp1; p2jT jp3; p4i?

= hp3; p4jT jp1; p2i¡ hp3; p4jT jp1; p2i?

= 2i Im hp3; p4jT jp1; p2i
= 2i Im (2�)4 �4(P )A(s; t; u);

while on the right-hand side we have (introducing an abstract sum over intermediate states n)

¡hp3; p4jTT yjp1; p2i = i
X
n

hp3; p4jT jni hnjT yjp1; p2i

= i
X
n

hp3; p4jT jni hp1; p2jT jni?;

and so it follows

2i Im (2�)4 �4(P )A(s; t; u)= i
X
n

hp3; p4jT jni hp1; p2jT jni?: (3.8)

We will make use of (3.8) after the partial-wave projection of A. At this point let us remark that
(3.8) will be the basis for the construction of higher-order amplitude approximations from lower-
order ones. It mixes different orders of the amplitude in the sense that the product of lower-
order components on the right-hand side is made equal to the imaginary part of the higher-order
component of the amplitude on the left-hand side. From the imaginary part along a cut given by
(3.8) or its variant in spirit, a dispersion relation reproduces the higher-order component in full,
up to the subtraction polynomial .

To apply the dispersion relations, we need to assume that (for fixed t) the function A(s; t;
3s0¡ t¡s) (viewed as a function of a single complex variable s) is analytic except for cuts on the real
s-axis, which are restricted to regions s>sthr and u=3s0¡ t¡s>uthr for some sthr; uthr2R+. The
sthr threshold can be provided by (3.8) in combination with (3.3), analogously uthr can be obtained
after considering a crossed amplitude. The fact that the amplitude is otherwise analytic can be
attested to by studying perturbative contributions to it, a point on which we again refer to Ref. [9].

To implement the program sketched in the previous paragraphs, we start by projecting A on
the first two partial waves:

A(s; t; u)= 16�[t0(s)+ 3t1(s) cos �] +A𝓁>2(s; t; u); (3.9)

where cos � is the cosine of the scattering angle, t0(s) and t1(s) are the S and P partial-wave
projections and A𝓁>2 is the remainder of the decomposition. The cosine of the scattering angle is
expressed in terms of Mandelstam variables by the kinematic identity

cos �= s(t¡u)+�AB�CD

�AB
1/2(s)�CD

1/2(s)
; (3.10)

where �AB(s)=�(s;mA
2 ;mB

2 )= [s¡ (mA+mB)2][s+(mA¡mB)2] is the Källen triangle function on
the masses of particles A, B and �AB=mA

2 ¡mB
2 .

The A𝓁>2 remainder of (3:9) can be neglected to the order of reconstruction we are interested
in, which will be commented on shortly. The explicit expression of t𝓁(s) is given by

t𝓁(s)=
1

32�

Z
¡1

+1

d(cos �) (cos �)𝓁A(s; t; u): (3.11)

The analogue of (3.8) projected on partial waves, neglecting intermediate states with more than
two particles (see [26] for discussion), is

Im t𝓁
i!f(s)=

X
k

1
Sk

�k
1/2(s)
s

t𝓁
i!k(s) [t𝓁

f!k(s)]? �(s¡ sthrk ); (3.12)
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where we denoted by t𝓁
i!f(s) the 𝓁th partial wave of process i! f . The sum is introduced over

quantum numbers (selection of particles) in intermediate states. sthrk is the minimal center-of-mass
energy of an intermediate state of kind k. If k contains, say, particles AB, then sthr

k is of course
equal to (mA+mB)2. Sk is a symmetry factor:

Sk=
�
2 if the particles in k are undistinguishable
1 otherwise

:

By means of (3.12) we can show ImA𝓁>2(s; t; u)=O(p8). First we note a leading O(p2) amplitude
must be analytic since by (3.12) discontinuities are of order O(p4). Therefore the O(p2) amplitude
must be a first-degree polynomial in s, t, u, and, as such, it cannot contribute to A𝓁>2. If then
A𝓁>2=O(p4) it follows from (3.12) again that ImA𝓁>2(s; t; u)=O(p8).

At this point, we invoke the dispersion relation (3.7) with two modifications. As the first
modification, we introduce a crossed amplitude AU(u; t; s): =A(s; t; u) into its second integral3.1.
This is done in advance of using a different expansion in partial waves (the partial waves of the
crossed amplitude will be functions of u). As the second modification, we extend the degree of the
subtraction polynomial from n¡ 1 to n. That is prompted by the reasoning provided, e.g., in Ref.
[25], that the additional free terms of the polynomial will account for integrating into high-energy
region with an amplitude that is built on the basis of a low-energy effective theory with limited
applicability. With the modifications, we have

A(s; t; 3s0¡ t¡ s) = sn

2� i

Z
sthr

1
dx DiscA(x; t; 3s0¡ t¡x)

(x¡ s)xn

+ un

2 � i

Z
uthr

1
dx DiscAU(x; t; 3s0¡ t¡x)

(x¡u) xn

+Pn+1(s; t):

Now we insert the projection (3.9) applied to A(s; t;u) and separately to AU(s; t;u), distinguishing
the partial waves of the latter by a U superscript, and we also substitute Disc t𝓁(s) = 2 Im t𝓁(s),
finally we arrive at3.2

A(s; t; 3s0¡ t¡ s) = 16 sn
Z
sthr

1 dx
(x¡ s) xn Im t0(x)

+48sn
Z
sthr

1 dx
(x¡ s)xn Im t1(x)

x(t¡u¡ s+x)+�AB�CD

�AB
1/2(x)�CD

1/2(x)

+16un
Z
uthr

1 dx
(x¡u) xn Im t0

U(x)

+48 un
Z
uthr

1 dx
(x¡u)xn Im t1

U(x) x(t¡u¡ s+x)+�AD�CB

�AD
1/2(x)�CB

1/2(x)

+Pn+1(s; t)+O(p8);

where we kept the S and P partial waves only and signified that the remainder is O(p8).
Manipulating the integrals containing t1(x) and t1

U(x), we have, respectively

sn
Z
sthr

1 dx
(x¡ s)xn Im t1(x)

x(t¡u¡ s+x)

�AB
1/2(x)�CD

1/2(x)
= sn (t¡u)

Z
sthr

1 dx
(x¡ s)xn¡1

Im t1(x)

�AB
1/2(x)�CD

1/2(x)

¡sn
Z
sthr

1 dx
xn¡1

Im t1(x)

�AB
1/2(x)�CD
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(?)

3.1. Note the change of sign due to DiscAU(s; t; u)=¡DiscA(u; t; s).
3.2. One must be careful to apply the right permutation on A, B, C, D particle symbols corresponding to the

identification of s, t, u variables in the original and crossed process.
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and

un
Z
uthr

1 dx
(x¡u) xn Im t1

U(x) x(t¡u¡ s+x)

�AB
1/2(x)�CD

1/2(x)
= un (t¡ s)

Z
sthr

1 dx
(x¡ s)xn¡1

Im t1
U(x)

�AD
1/2(x)�BC

1/2(x)

+un
Z
sthr

1 dx
xn¡1

Im t1
U(x)

�AD
1/2(x)�BC
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(??)

:

The terms labeled (?) and (??) can be absorbed into a redefinition of the Pn+1(s; t) subtraction
polynomial (they are polynomial in s) and, as such, will be omitted going forward.

To state the result derived from the dispersion relation so far, we have:

A(s; t; 3s0¡ t¡ s) = 16�
sn

�

Z
sthr

1 dx
(x¡ s)xn

(
Im t0(x)+

3�AB�CD

�AB
1/2(x)�CD

1/2(x)
Im t1(x)

)
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W0(s)

(3.13)

+16� (3t¡ 3u) s
n

�

Z
sthr

1 dx
(x¡ s)xn¡1

Im t1(x)

�AB
1/2(x)�CD
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W1(s)

+16� u
n

�

Z
uthr

1 dx
(x¡u)xn

(
Im t0

U(x)+ 3�AD�BC
�AD
1/2(x)�BC

1/2(x)
Im t1

U(x)

)
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

W0
U(u)

+16� (3t¡ 3s) u
n

�

Z
uthr

1 dx
(x¡u) xn¡1

Im t1
U(x)

�AD
1/2(x)�BC
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W1

U(u)

+Pn+1(s; t)+O(p8);

where we have labeled parts of the expression by the newly introduced W0;1(s)/W0;1
U (u) family of

functions. We can define W0;1
T (t) in terms of partial waves t0T(t); t1T(t) of AT(t; u; s) :=A(s; t; u) in

complete analogy to W0;1
U (u). That is

W0
T(t) = tn

�

Z
tthr

1 dx
(x¡u)xn

(
Im t0

U(x)+ 3�AC�DB

�AC
1/2(x)�DB

1/2(x)
Im t1

U(x)

)
(3.14)

W1
T(t) = tn

�

Z
tthr

1 dx
(x¡u)xn¡1

Im t1
U(x)

�AC
1/2(x)�DB

1/2(x)

We will use these new functions to rewrite (3.13) as follows:

A(s; t; u) = 16� [W0(s)+3(t¡u)W1(s)+W0
U(u)+ 3(t¡ s)W0

U(u)+W0
T(t)+ 3(u¡ s)W0

U(t)]
+Pn+1(s; t)+O(p8); (3.15)

where the addition of W0
T(t)+ 3(u¡ s)W0

U(t) (being a polynomial in s with coefficients that are
functions of t) can be canceled by yet another redefinition of Pn+1 (s; t). The expression on the
right-hand side of (3.15) appears symmetrical in s, t, u, except for the Pn+1(s; t) polynomial,
which singles out t (the coefficients can be arbitrary functions of t). To reform the polynomial,
we invoke the following argument: We could have redone the derivation up to this point on the
amplitude A0(s; u; t) =A(s; t; u), by which we would have arrived at (3.15) for A(s; t; u), except
that the subtraction polynomial would be of the form Pn+1

0 (s; u) (signifying it is polynomial in
s with coefficients being functions of u). Since in both cases, the left-hand side of (3.15) is the
same, and all the other terms on the right-hand side are also the same (up to O(p8), but we don't
consider n> 3), it must be that the two forms of the subtraction polynomial are equal:

Pn+1(s; t)=Pn+1
0 (s;u);
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from where it follows that Pn+1(s; t) in (3.15) is, in fact, a polynomial in s, t, u. Inserting this into
(3.16), we arrive at the final expression for A(s; t; u) that forms the basis of the reconstruction
procedure. To quote the final result:

A(s; t; u) = 16� [W0(s)+3(t¡u)W1(s)+W0
U(u)+ 3(t¡ s)W0

U(u)+W0
T(t)+ 3(u¡ s)W0

U(t)]
+Pn+1(s; t; u)+O(p8): (3.16)

Having an approximate expression for the amplitude up to some chiral order O(pn), we can use
(3.16) to obtain the amplitude of order O(pn+2) expressed in terms of a free subtraction polynomial
and dispersion integrals over S and P partial waves of the lower-order amplitude, that is, up to the
O(p8) remainder.

The number of subtractions n has up to this point not been determined. According to the
reasoning found e.g. in [25] considering the tails of the dispersion integrals into the high-energy
region beyond the applicability of effective theory, one should use n= 3 in the derivation of Eq.
(3:16).

3.2. Lowering subtractions

In setting n=3, the functions W0;1
S/U/T(s) appearing in Eq. (3:16) and defined in Eq. (3.13) and

(3.14), are expressed in terms of thrice and twice subtracted dispersion integrals over expressions
involving the imaginary part of the input partial waves. We can make use of the following equality

sn
Z
sthr

1 f(x) dx
xn(x¡ s) = sn

Z
sthr

1� 1
xn¡1(x¡ s) s ¡

1
xns

�
f(x) dx (3.17)

= sn¡1
Z
sthr

1 f(x) dx
xn¡1(x¡ s) ¡ s

n

Z
sthr

thrf(x) dx
xns

to express an n-times subtracted dispersion integral in terms of an (n¡1)-times subtracted integral
and a remainder, which is monomial in s, provided the integrals on the right-hand side converge. If
the monomial remainder can then be absorbed into the redefinition of the subtraction polynomial,
or the monomial can be dropped due to its order, one can freely decrease the number of subtractions
in the integrals. For a more thorough discussion of the restrictions that may apply, we refer to
Section 2.5 of [25].

3.3. Pion-pion scattering

First we will comment on applying the reconstruction procedure to �� scattering in the isospin
limit.

3.3.1. Form-factors

Before applying the reconstruction procedure, we first make use of an assumed isospin symmetry
to extract form-factors of �� scattering. We attach four isospin indices to a general pion-pion
scattering amplitude Aijkl(s; t; u) as follows:

Aijkl(s; t; u)=A(�i�j! �k�l; s; t; u)

In the above, �k, k 2 f1; 2; 3g, stand for the canonical basis vectors in vectorial representation of
the pion isospin triplet. Based on symmetry considerations, Aijkl must be expressible in terms of
to-be-determined isoscalar form factors A, B and C:

Aijkl = A�ij �kl+B�ik �jl+C�il �jk
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Now, for processes of interest involving the charge states �+, �¡, �0, we have (s; t; u arguments
omitted):

A(�+�¡!�0�0) = ¡1
2
A1133¡ 1

2
A2233¡ iA2133+ iA1233

= ¡A

A(�+�¡!�+�¡) = 1
4

0@A1111+A2222|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
2A+2B+2C

+A1122+A2211
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz z}|{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{ {2A
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2B

¡A1221¡A2112
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= A+B

A(�0�0!�0�0) = A3333=A+B+C

A(�+�0!�+�0) = 1
2

�
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0

�
= B

We can relate A, B, C to each other. From Bose symmetry of the outgoing particles we have
Aijkl(s; t; u)=Aijlk(s; u; t), which in turn implies

B(s; t; u) = C(s; u; t)
A(s; t; u) = A(s; u; t)

Furthermore from the crossing relation3.3 A(�+�¡! �0�0; s; t; u)=¡A(�+�0! �+�0; t; s; u), we
have

¡A(s; t; u) = ¡B(t; s; u):

All the form-factors and considered process amplitudes can thus be expressed in terms of a single
function A.

We can summarize the result so far:

A(�+�¡! �0�0; s; t; u)=Ax(s; t; u) = ¡A(s; t; u) (3.18)
A(�+�¡! �+�¡; s; t; u)=A+¡(s; t; u) = A(s; t; u)+A(t; u; s)
A(�0�0!�0�0; s; t; u)=A00(s; t; u) = A(s; t; u)+A(t; u; s)+A(u; s; t)

A(�+�0!�+�0; s; t; u)=A+0(s; t; u) = A(t; u; s)

Here we introduced the x,+¡, 00, +0 shorthands for processes, which we will be using from now on.

3.3.2. Leading-order amplitude
We start by writing down a general form of the amplitude for �� scattering at the leading chiral
order O(p2). At this order, the amplitude is analytic: (1:5) admits tree-level contributions only,
and (3:8) shows any discontinuity is of order O(p4).

The amplitude must, therefore, be a first-order polynomial in s, t, u, so let us use free parameters
�0, �0 and write

¡A(�+�¡!�0�0; s; t; u)=A(s; t; u)= 16 � (�0+ �0 s)||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
A0(s;t;u)

+O(p4);

We labeled by A0 the O(p2) contribution proper. Linear terms with t or u need not be included
from symmetry3.4.

To obtain form-factor A at O(p4), we will apply the reconstruction procedure to �+�¡!�0�0.
Input to the procedure will be partial waves extracted from the O(p2) form factor A0 when it is
viewed through the lens of some of the processes in (3.18). The O(p2) partial waves will be labeled
by '𝓁

i!f(s), and with the process shorthands introduced earlier, they read

3.3. As a reminder, in the convention we have adopted, a phase factor -1 is picked upwhen crossing charged pions.
3.4. Taking t for example, we have 2t=(t+u)+ (t¡u)=(4m�

2 ¡ s)+ (t¡u), where the term in the second pair
of parentheses is ruled out by Bose symmetry.
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'0
x(s) = ¡�0¡ �0 s

'1
x(s) = 0

'0
00(s) = 4M�

2 �0+3�0
'1
00(s) = 0

'0
+0(s) = �0¡

1
2
�0 (s¡ 4M�

2)

'1
+0(s) = 1

6
�0 (s¡ 4M�);

where M� is the average mass of the pion.

3.3.3. Next-to-leading-order amplitude
Using Eq. (3.16) to obtain the imaginary part of O(p4) partial waves and inserting such into the
dispersion integrals contained in the W0;1

S/T /U(s) functions, the integrals take on the forms

s3
Z
4M�

2

1
dx �(x;M�)

x3(x¡ s) Q(x);
and

s2
Z
4M�

2

1
dx �(x;M�

2)
x2(x¡ s) L(x);

where Q(s), L(s) are polynomials in s and �(x;M�
2) is defined according to Appendix A. By the

change illustrated in Eq. (3.17), we can decrease the number of subtractions in the integral, dealing
with the terms of Q(s)/L(s) individually and eventually arriving at

Q(s) s
Z
4M�

2

1
dx �(x;M�)

x(x¡ s) ;
and

L(x) s
Z
4M�

2

1
dx �(x;M�

2)
x(x¡ s)||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

16�J�(s;M�)

;

as effectively equal and simplified versions of the initial integrals. These integrals are, up to a
multiplicative constant, proportional to the function J�(s) appearing in the ChPT amplitude for
the same process.3.5

Now we quote the resulting expressions for W0;1
S/T/U(s) functions:

W0(s) = ¡8� [8M�
2 (�0+ �0 s) �0+7�02+8�0 �0 s+ �0

2 s2]J�(s;M�)+O(p6)
W1(s) = O(p6)

W0
T(t)=W0

U(t) = 4� [16M�
2(�0 �0¡M�

2 �0
2)+8M�

2 �0
2 t+4�0 (�0 t¡�0)¡�02 t2]J�(t;M�)+O(p6)

W1
T(t)=W1

U(t) = 4� �02 (t¡ 4M�
2)J�(t;M�) /9+O(p6)

In terms of the above functions, the O(p4) amplitude is then

A(s; t; u) = 16� [W0(s) + 3(t¡ u)W1(s) +W0
U(u) + 3(t¡ s)W0

U(u) +W0
T(t) + 3(u¡ s)W0

T(t)] +
P3(s; t; u)+O(p6); (3.19)

where P3(s; t; u) is an O(p4) subtraction polynomial. Comparing the result to ChPT amplitude of
Section 1.4, we see that by matching the O(p2) amplitude (�0=1/16�F02, �0=¡M�

2/16�F02) we
arrive at the same expressions for the O(p4) non-analytic part, which is as expected, taking into
account its form constrained by unitarity (up to an analytic remainder).

For later use in the construction of the � �! � � amplitude, we will need expressions for S,
P partial waves of the reconstructed O(p4) �+�¡! �0�0 amplitude (and of amplitudes related
through the form factor A introduced earlier). The dispersive O(p4) part of the partial waves
can be expressed in terms of polynomials in s times a part kj(s)/�(s), where kj(s) is a set of
utility functions defined in Appendix A. Without giving an explicit expression of the polynomial
�i!f ;𝓁
(j) (s), the O(p4) dispersive part of S, P partial waves 	0/1

i!f(s) can be expressed

	𝓁
i!f(s)= 1

�(s)

X
j=0

4

�i!f ;𝓁
(j) (s) kj(s):

3.5. Appendix A has a closed form expression of the function.
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This expression is chosen for convenience in the second iteration of the reconstruction procedure.
We will need to perform dispersive integrals of a polynomial times kj(s), the result of which will be
mechanical replacement of kj(s) in the integrand by appropriately definedK�j(s) (see Appendix A).

3.4. Eta-to-pi decay

To dispersively construct an amplitude for the �!��� decay processes, we use their relation by
crossing to ��!�� scattering processes. The reconstruction procedure rests on the assumption of
stability of the involved particle states, which does not hold for �. The remedy is to first reconstruct
the amplitude at a fictitious value of the mass of � lowered below three times the rest mass of �,
and once the amplitude is reconstructed, continue it analytically in taking M� to its physical value
on a path slightly diverted into the upper complex plane. This prescription should recover the
correct physical amplitude [4].

We will now comment on the construction of �! ��� amplitude to the first order of isospin
breaking. As such, in Eq. (3.12), we only consider the rescattering of �� states. See Subsection 4.1.3
for representations (tied to the usage of software introduced in the next chapter) of the �! ���
reconstruction to two-loop order.

3.4.1. Leading-order amplitude
Like in the case of �� scattering the leading-order amplitude will be a first-order polynomial in
Mandelstam variables. By symmetries of the processes, the free polynomial parametrization of the
amplitudes at O(p2) is

A(��0!�0�0; s; t; u) = A00+O(p4)
A(��0! �+�¡; s; t; u) = Ax+Bx s+O(p4);

where A00, Ax, Bx are free parameters. Amplitudes of the other ��!�� processes are related by
crossing.

3.4.2. Next-to-leading-order amplitude
In the reconstruction of the O(p4) dispersive part of the � �! �� amplitude, the O(p2) S and
P partial waves of processes ��! �� and ��! �� enter Eq. (3.12). The W0;1

S/U/T(s) functions
carrying the dispersive part of amplitude then take on the form familiar from the �� scattering of
polynomials times J�(s) functions (up to O(p4)).

In the extraction of expressions for S, P waves to be used in the second iteration of reconstruc-
tion, we need to evaluate the integral (3.11). It can be evaluated in terms of utility functions k~j(s)
in a manner similar to the kj(s) functions of �� scattering (see Appendix A for definitions).

3.4.3. Next-to-next-to-leading-order amplitude
To reconstruct the O(p6) dispersive part of the amplitude, Eq. (3.12) combines O(p2) ��! ��

waves and O(p4) ��! �� waves, and then separately O(p4) ��! �� waves and O(p2) ��!��
waves.

Evaluation of dispersive integrals (3.13) can be expressed in terms of polynomials times func-
tions K�i(s), K��i(s); Ki

e (s), K~i(�)(s) (see Appendix A for definitions).
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Chapter 4

Attached software

In Chapter 3 we summarized a method of dispersive construction of scattering amplitudes for
mesonic processes, producing amplitude forms up to the O(p6) order in chiral counting. Here we
describe an attached4.1 software library with a high-level user interface available for reproducing
the calculations in the dispersive construction of the amplitude forms.

The library is a set of functions and definitions in the Python programming language to com-
plement the SymPy library [16] for symbolic manipulation of mathematical expressions. The
library implements the reconstruction procedure generally but is limited in its ability to evaluate
the integrals of Eqs. 3.11 and 3.13. As it is, the library is equipped with a ruleset that is tailored
to the case of the reconstruction of �� scattering and �!��� decay amplitudes and those in the
approximation of equal pion masses. As-is, the ruleset can be sufficient for some related processes,
and further processes can be made available to the application of the library by its extension. This
includes a generalization to the case of unequal pion masses, which is a plausible direction for
future extensions of the library.

The library contains inline documentation on its functions and definitions. In the following
section, we describe the key elements of its user interface. Appendix B contains a transcript of a
sample usage of the library in an interactive session.

4.1. Future versions of the library are to be found at: https://github.com/povik/mesonic_displib
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Python Value Type Description

Argument target ScatterProcess Label for the process to be reconstructed.
This will be internally used to derive
process labels to look up in the ptable.

ptable dict A dictionary of parts of the amplitude
at an appropriate chiral order to be
the input to reconstruction, indexed
by objects of type ScatterProcess.
A single representative of a class of
processes related by crossing and Bose
symmetry is sufficient.

S list A list of kinds of intermediate states to
consider in the S channel of the recon-
struction (each kind specified by a two-
letter string, see Table 4.2).

T list ditto for T channel

U list ditto for U channel

Return Value SymPy expression The unitarity part of the reconstructed
amplitude.

Table 4.1. Inputs and outputs of function reconstruct. The function reconstruct_ext has a similar
interface, but instead of one ptable argument, accepts two ptable1, ptable2 arguments which correspond
to the two different orders of the lower-order amplitude part to be processed in the desired reconstruction.

4.1. User Interface

In the Python namespace the library is called displib and its usage revolves around the functions
reconstruct and reconstruct_ext, the programming inputs and outputs of which are described
in Table 4.1. The function performs one iteration of the reconstruction procedure � it takes in
the lower-order forms of prerequisite amplitudes and a list of considered kinds of intermediate
states and produces the unitarity part of a higher-order amplitude, that is, the terms containing
functions W0/1

S/T /U(s) on the right-hand side of Eq. 3.16.4.2 To construct a higher-order amplitude,
the user needs to supplement the unitarity part with an appropriate free polynomial. In this way,
the labelling of the free polynomial is fully under the user's control.

4.1.1. Process Labels

The library defines a ScatterProcess class, which represents a label for a process with defined
particle kinds on its input and output. The ScatterProcess object also specifies an ordering of
the input and output particles and can also carry a phase for the process. That is, it can be a label
for a process amplitude with an additional overall phase. This latter feature simplifies the handling
of crossing. There is a scatter shorthand function for the creation of ScatterProcess labels. For

4.2. One can also use the related functions reconstruct_in_channel and reconstruct_in_channel_ext to obtain
the W0/1

S/T /U
(s) functions in isolation.
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the scattering of neutral pions to a pair of charged pions, one creates a label by scatter("00",
"pm"). See Table 4.2 for the exposition of letter codes in referring to particular particle states.

Particle Letter Code
�+ p
�0 0
�¡ m
� E

Table 4.2. Letter codes used in the library to refer to � and � meson particle states.

4.1.2. Process Table

The reconstruct family of functions takes for its input a �process table� (under argument ptable).
That is, a dictionary from process labels to parts of the amplitude (as SymPy expressions)
belonging to those processes. The parts of the amplitude are supplied at an appropriate chiral
order with respect to the chiral order that is desired to be reconstructed. That is, one sup-
plies the O(p2) part to reconstruct O(p4) by calling of reconstruct, or supplies the O(p2) and
O(p4) parts to reconstruct O(p6) by calling of reconstruct_ext.

A single representative of a class of processes that are mutually related by combinations of
crossing and Bose symmetry is sufficient to be present in the process table.

4.1.3. Example

To further illustrate the interface of the library, we show both a graphical (Fig. 4.1) and code (Fig.
4.2) representation of an example ��! �� amplitude reconstruction program.

reconstruction
of ��!��
at O(p4)

at O(p4)
of ��!��
reconstruction

of ��!��
reconstruction

at O(p6)

O(p2) free
polynomial
O(p4) free

O(p4) free
polynomial

O(p2) free
polynomialpolynomial

polynomial

O(p6) free
polynomialpolynomial

tabletable
process tabletable

processprocess

tabletable
process

tabletable
processprocess

resultant
amplitude

joined_ptable_Op2

ptable_eta_Op4

ptable_eta_Op2

A_Op4

A_eta_Op4

ptable_pp_Op2

ptable_pp_Op4

Figure 4.1. Schematic representation of using the interface of the library to reconstruct two-loop level
��!�� scattering amplitude to the first order in isospin breaking (cf. Fig. 1 of Ref. [14]).
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from displib import *

A = pp_subthreshold_poly(1, subscript=0)
ptable_pp_Op2 = pp_ptable_from_form_factor(A)

A_Op4 = -reconstruct(
scatter("00", "pm"), ptable_pp_Op2,
S=["00", "pm"], T=["m0"], U=["p0"],

)
ptable_pp_Op4 = pp_ptable_from_form_factor(-A_Op4)

A_x, B_x = sp.symbols("A_x B_x")
ptable_eta_Op2 = {

scatter("E0", "pm"): A_x + B_x*(s-s_0)/F_pi**2,
scatter("E0", "00"): -3*A_x

}

joined_ptable_Op2 = {**ptable_eta_Op2, **ptable_pp_Op2}

A_eta_Op4 = reconstruct(
scatter("E0", "pm"), joined_ptable_Op2,
S=["00", "pm"], T=["m0"], U=["p0"],

)

ptable_eta_Op4 = {
scatter("E0", "pm"): A_eta_Op4,
scatter("E0", "00"): -A_eta_Op4

- A_eta_Op4.subs({s: t, t: s}, simultaneous=True)
- A_eta_Op4.subs({t: u, u: t}, simultaneous=True)

}

joined_ptable_Op4 = {**ptable_eta_Op4, **ptable_pp_Op4}

E0_00_Op6 = reconstruct_ext(
scatter("E0", "00"),
joined_ptable_Op2, joined_ptable_Op4,
S=["00", "pm"], T=["00", "pm"], U=["00", "pm"],

)

Figure 4.2. The content of Fig. 4.1 as represented in code by stringing function calls to the library. In
addition to the reconstruct, reconstruct_ext and scatter functions introduced in text, the code example
makes use of a pp_ptable_from_form_factor function to set up the process table from a �� scattering form
factor.
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Conclusion

This work follows up on a line of work in published literature dealing with the dispersive con-
struction of mesonic process amplitudes up to the two-loop order. In Ref. [20], the approach was
originally applied to construct the two-loop �� scattering amplitude. Subsequent development
has seen the approach generalized, and for this work, our key reference is [14], which contains an
account of the two-loop construction of K!��� and �!��� decay amplitudes.

This work supplies a software library implementing the steps of the �reconstruction procedure�
that is the basis of the amplitude forms of Ref. [14]. The library can be used to construct the
�!��� decay amplitude to the first order in isospin breaking, up to the two-loop order. The full
result of the construction is a long-winded expression, and the library makes the result available
for further manipulation in a CAS (computer algebra system) environment.

The forms of amplitude can be fitted to data from high-statistics �!��� experiments, where
in comparison to the usual Dalitz parameters the dispersively-constructed parametrization incorpo-
rates the expected non-analytical features of the amplitude surface. Fig. 1 presents the results of
an illustratory fit of the one-loop amplitude to the �!�+�¡�0 data of the KLOE-2 collaboration
[3]. Two-loop amplitude results can be fitted as well once suitable numerical representations of the
special K�i(s) functions appearing in the expressions are supplied.

The dispersively-constructed forms of amplitude can be of use to studies of ChPT generaliza-
tions and studies of extraction of the isospin-breaking parameter R.

In future work, the library can be extended to new processes and generalized. One road of
extension is to support the construction of amplitude taking into account the mass difference
of charged and neutral pions. This would make the resultant constructed amplitude exhibit the
feature of the �cusp� in �!�0�0�0 decay. By simple modification, the library can be adapted to
construct K!��� amplitudes (their relation to the �! ��� amplitude is discussed at length in
Ref. [14]).
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Figure 1. The results of an illustratory fit to the �!��� decaymeasurements by theKLOE-2 collaboration
[3]. Top figure has the experimental data points in blue and the fitted amplitude surface (from O(p4)

reconstruction) in light green. Bottom left and bottom right are fit residuals to the reconstructed amplitude
form at the O(p2) and O(p4) order respectively.
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Appendix A
Special Functions

We define a string of special functions to which we refer from the results of dispersive calculations.
First, we define a Källen triangle function �AB(s) and the usual �(s) and J�(s) by:

�AB(s) = (s¡ (MA
2+MB

2))(s¡ (MA
2¡MB

2))

�(s) = �(s;M�)=
���
1/2(s)
s

= 1¡ 4M�
2

s

r J�(s) = lim
�!0+

s
16 �2

Z
4m2

1
dx �(s)

x(x¡ s¡ i�)

= 1
16�2

�
2+�(s) log �(s)¡ 1

�(s)+1

�
In the remainder of the Appendix we define functions ki(s), K�i(s) and their decorated variants,
matching those definitions made in Ref. [14].

For utility in two-loop calculations of pion rescattering, we define functions ki(s). First, we
define, for s> 4M�

2,

L(s)= log
1¡�(s;M�)
1+�(s;M�)

;

in terms of which the ki(s) are (again for s> 4M�
2):

k0(s) = 1
16�

�(s;M�)

k1(s) = 1
8�

L(s)

k2(s) = 1
8�

�
1¡ 4M�

2

s

�
L(s)

k3(s) = 3
16�

M�
2

s �(s;M�)
L2(s)

k4(s) = 1
16�

M�
2

s �(s;M�)

�
1+ 1

�(s;M�)
L(s)+ M�

2

s¡ 4M�
2
L2(s)

�
We labelK�i(s) the once-subtracted dispersion integral of each ki(s), andK�� i(s) the twice-subtracted
dispersion integral, that is

K�i(s)=
s
�

lim
�!0+

Z
4M�

2

1 dx
x

ki(x)
x¡ s¡ i�;

K��i(s)=
s2

�
lim
�!0+

Z
4M�

2

1 dx
x2

ki(x)
x¡ s¡ i�:

Similarly for utility in two-loop calculations of pion decay, we define functions k~i(s) to be

k~0(s) = 1
16�

�(s;M�)

k~1(s) = 1
16�

L(s)

k~2(s) = 1
16�

�(s;M�) s
M(s)

���
1/2(s)

k~3(s) = 1
16�

�(s;M�) s
M(s)

���
1/2(s)

L(s);

where the function M(s) is defined to be

M(s)=¡log

 
1¡M�

2¡M�
2

s
+
���
1/2(s)
s

!
+ log

 
1¡M�

2¡M�
2

s
¡
���
1/2(s)
s

!
;
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and for each k~i(s) we define its once- and twice-subtracted dispersion integrals

K~i(s)=
s
�

lim
�!0+

Z
4M�

2

1 dx
x

k~i(x)
x¡ s¡ i�;

K~� i(s)=
s
�

lim
�!0+

Z
4M�

2

1 dx
x

k~i(x)
x¡ s¡ i�:

In addition, to express the �!��� two-loop amplitude, we define the function

K~i
(�)(s)= s

�
lim
�!0+

Z
4M�

2

1 dx
x
M�M�

3

���(x)
k~i(x)

x¡ s¡ i�:

Special Functions 38



Appendix B

Transcript of using the attached library

The following is a transcript of an interactive session with a Python interpreter. After-the-fact
comments were written interspersed into the transcript.

SymPy 1.9 under Python 3.9.10

Import all symbols of the library.
>>> from displib import *

Assign to a variable a free form of the amplitude of �� scattering at the O(p2) order in subthreshold parametrization.
>>> A_Op2 = pp_subthreshold_poly(1)

>>> A_Op2

M�
2�

3F�
2 +

�
�
¡4M�

2

3
+ s

�
F�
2

Derive a 'process table' from the amplitude above. That is, knowing the above is the amplitude of a �+�¡!�0�0 process,
obtain a table with amplitudes of processes related by isospin symmetry. The function render_ptable presents the process
table in tabular form for inspection.
>>> ptable_Op2 = pp_ptable_from_form_factor(A_Op2)

>>> render_ptable(ptable_Op2)266666666666666664

�+�¡!�0�0
¡M�

2�+ � (4M�
2¡ 3 s)

3F�
2

�+�¡!�+�¡
2M�

2�

3
¡ 8M�

2 �

3
+ � s+ � t

F�
2

�0�0!�0�0
M�

2�¡ 4M�
2 �+ � s+ � t+ �u

F�
2

377777777777777775
Reconstruct the dispersive part of amplitude at the O(p4) order, taking as input the O(p2) process table.
>>> A_Op4 = -reconstruct(

scatter("00", "pm"), ptable_Op2,
S=["00", "pm"], T=["m0"], U=["p0"],

)

As before, derive from �+�¡!�0�0 amplitude (this time of the O(p4) order), the process table with amplitudes of isospin-
related processes.
>>> ptable_Op4 = pp_ptable_from_form_factor(A_Op4)

Look up S and P waves of a couple of processes. Take suitable linear combinations to extract the isospin form factors of
��!�� amplitudes at O(p4).
>>> A_00_S, A_00_P = lookup_SP_wave(scatter("00", "00"), ptable_Op4)

A_x_S, A_x_P = lookup_SP_wave(scatter("00", "pm"), ptable_Op4)
A_pm_S, A_pm_P = lookup_SP_wave(scatter("pm", "pm"), ptable_Op4)

>>> psi_0 = sp.cancel(A_00_S - 2*A_x_S)
psi_1 = sp.cancel(A_pm_S*2)
psi_2 = sp.cancel(A_00_S + A_x_S)

Calculate and display the �I
(i) polynomials (as defined in (5.7) of [14]).

>>> def derive_xi(psi):
xi_ = sp.cancel(attempt_poly_reduce(psi * sigma(s, M_pi), s))
return normalize_k4(xi_, s, M_pi)

>>> analyze_table(derive_xi(psi_0), s)26666666666666666666666664

k1(s;M�)
5M�

4�2

96 �2F�4
+
5M�

4 �2

24 �2F�4
¡ 5M�

2�2 s

36 �2F�4
+

7 �2 s2

288�2F�4

k3(s;M�) ¡ 5M�
4�2

144 �2F�4
¡ 5M�

4�2

36 �2F�4
+
M�

2 �2 s

24 �2F�4

k0(s;M�)
35M�

4�2

72�2F�4
¡ 5M�

4��

9�2F�
4 +

49M�
4 �2

27�2F�4
+
5M�

2�� s

12�2F�4
¡ 617M�

2�2 s

432�2F�4
+

311 �2 s2

864�2F�4

k2(s;M�)
25M�

4�2

576 �2F�4
¡ 5M�

4��

36 �2F�4
+

M�
4 �2

9 �2F�
4 +

5M�
2�� s

48�2F�4
¡M�

2 �2 s

6�2F�
4 +

�2 s2

16�2F�4

37777777777777777777777775
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>>> analyze_table(derive_xi(psi_1), s)�
k1(s; M�);

13M�
4�2

288�2F�4
+

M�
4� �

72 �2F�4
+

M�
4 �2

18 �2F�4
¡ M�

2� � s

96 �2F�4
¡ 29M�

2 �2 s

288 �2F�4
+

13 �2 s2

576�2F�4
+
¡M�

4� �+4M�
4 �2

48�2F�4
; k3(s; M�);

¡ 13M�
4�2

432 �2F�4
+

M�
4� �

54 �2F�4
¡ 4M�

4 �2

27 �2F�4
+

M�
2 �2 s

48 �2F�4
+
¡M�

4� �+4M�
4 �2

72 �2F�4
; k0(s; M�);

19M�
4�2

48 �2F�4
¡ 7M�

4� �

24 �2F�4
+

61M�
4 �2

54 �2F�4
+

19M�
2�� s

96�2F�4
¡ 227M�

2�2 s

216�2F�4
+

503 �2 s2

1728 �2F�4
+
¡M�

4��+4M�
4 �2

24�2F�4
; k2(s;M�);

M�
4�2

32�2F�4
¡ M�

4��

12 �2F�4
+

M�
4 �2

12�2F�4
+
M�

2�� s

16�2F�4
¡

M�
2 �2 s

8�2F�
4 +

3 �2 s2

64�2F�4

�
>>> analyze_table(derive_xi(psi_2), s)26666666666666666666666664

k1(s;M�)
M�

4�2

32 �2F�4
¡ M�

4��

48 �2F�4
¡M�

2�� s

32�2F�4
¡ 7M�

2�2 s

288�2F�4
+

11 �2 s2

576 �2F�4

k3(s;M�) ¡ M�
4�2

48�2F�4
+

M�
4��

72�2F�4
¡ M�

2�2 s

48�2F�4

k0(s;M�)
31M�

4�2

144�2F�4
+
M�

4��

9 �2F�
4 +

7M�
4 �2

27�2F�4
¡ 23M�

2�� s

96�2F�4
¡ 8M�

2�2 s

27�2F�4
+

265 �2 s2

1728 �2F�4

k2(s;M�)
M�

4�2

144�2F�4
+

M�
4��

36�2F�4
+

M�
4 �2

36 �2F�4
¡M�

2�� s

48 �2F�4
¡ M�

2�2 s

24�2F�4
+

�2 s2

64�2F�4

37777777777777777777777775
Follow on by reconstructing the �!��� amplitude at up to the O(p6) order.
>>> A_x, B_x = sp.symbols("A_x B_x")

A_00 = sp.symbols("A_00")

ptable_eta_Op2 = {
scatter("E0", "pm"): A_x + B_x*(s-s_0)/F_pi**2,
scatter("E0", "00"): A_00,

}

joined_ptable = {**ptable_eta_Op2, **ptable_Op2}

E0_pm_Op4 = reconstruct(
scatter("E0", "pm"), joined_ptable,
S=["00", "pm"], T=["m0"], U=["p0"],

)
E0_00_Op4 = reconstruct(

scatter("E0", "00"), joined_ptable,
S=["00", "pm"], T=["00", "pm"], U=["00", "pm"],

)

ptable_eta_Op4 = {
scatter("E0", "pm"): E0_pm_Op4,
scatter("E0", "00"): E0_00_Op4

}

joined_ptable_Op4 = {**ptable_eta_Op4, **ptable_Op4}
E0_pm_Op6 = reconstruct_ext(

scatter("E0", "pm"), joined_ptable, joined_ptable_Op4,
S=["00", "pm"], T=["0m"], U=["0p"],

)

Perform last step of the reconstruction once more, but this time ask for the W0/1
S/T/U

(s) unitarity components separately.
>>> ptable1, ptable2 = joined_ptable, joined_ptable_Op4

target = scatter("E0", "pm")
W_0_S, W_1_S = reconstruct_in_channel_ext("S", target, ["00", "pm"], ptable1, ptable2)
W_0_T, W_1_T = reconstruct_in_channel_ext("T", target, ["0m"], ptable1, ptable2)
W_0_U, W_1_U = reconstruct_in_channel_ext("U", target, ["0p"], ptable1, ptable2)

Display the content of the W1
T(s) component.

>>> sp.simplify(W_1_T)¡
12M�

2 �
¡
¡3 BxM�

2 � (M�
6 ¡ 3M�

4M�
2 + 3M�

2M�
4 ¡M�

6)K~1
(�)
(t; M�; M�) + (3 A00 F�

2M�
6 � ¡ 9 A00 F�

2M�
4M�

2 � +

9 A00 F�
2M�

2M�
4 � ¡ 3 A00 F�

2M�
6 � ¡ 6 Ax F�

2M�
6 � + 18 Ax F�2M�

4M�
2 � ¡ 18 Ax F�2M�

2M�
4 � + 6 Ax F�

2M�
6 � ¡

3BxM�
8 � ¡ 5BxM�

6M�
2 � + 8BxM�

6M�
2 � + 6BxM�

6 � s0+ 15BxM�
4M�

4 � ¡ 6 BxM�
4M�

4 � ¡ 18 BxM�
4M�

2 � s0¡
15BxM�

2M�
6 �+ 18BxM�

2M�
4 � s0+ 5BxM�

8 �+BxM�
8 � ¡ 6BxM�

6 � s0)K~2
(�)
(t; M�; M�)

�
+ t

¡
120BxM�

4 �2 J�(t;

M�) + 72 Bx M�
4 �2 K�1(t; M�) ¡ 96 Bx M�

4 �2 K�2(t; M�) + 96 Bx M�
4 �2 K�3(t; M�) + 288 Bx M�

4 �2 K�4(t; M�) +

24 Bx M�
4 � (5 � ¡ 2 �) K�1(t; M�) ¡ 288 Bx M�

4 � (5 � ¡ 2 �) K�4(t; M�) ¡ 12 Bx M�
4 � (10 � ¡ �) K�1(t; M�) +

40 BxM�
4 � (11 � ¡ 14 �) J�(t; M�) + 4 BxM�

4 (5 �2¡ 40 � � + 8 �2)K�3(t; M�) ¡ 6 BxM�
4 (5 �2 ¡ 20 � � + 6 �2) J�(t;

M�) + 24 BxM�
4 (5 �2 + 20 � � + 2 �2) K�4(t; M�) + 108 BxM�

2 �2 t3 K~3
(�)(t; M�; M�) ¡ 30 BxM�

2 �2 t J�(t; M�) ¡
42 Bx M�

2 �2 t K�1(t; M�) + 48 Bx M�
2 �2 t K�2(t; M�) ¡ 48 Bx M�

2 �2 t K�3(t; M�) ¡ 216 Bx M�
2 �2 t K�4(t; M�) ¡

6 BxM�
2 � t (5 � ¡ 3 �) K�1(t; M�) + 72 BxM�

2 � t (5 � ¡ 3 �) K�4(t; M�) ¡ 10 BxM�
2 � t (11 � ¡ 21 �) J�(t; M�) +

14 Bx �2 t4 K~0
(�)(t; M�; M�) + 3 Bx �

2 t4 K~1
(�)(t; M�; M�) + 3 Bx �

2 t4 K~2
(�)(t; M�; M�) ¡ 10 Bx �2 t2 J�(t; M�) +

3Bx �2 t2K�1(t; M�)¡ 6Bx �2 t2K�2(t; M�) + 36Bx �2 t2K�4(t; M�)¡ 36M�
2 � t2 (¡A00F�

2 �+A00 F�
2 � + 2Ax F�

2 �¡
2 Ax F�

2 � ¡ Bx M�
2 � + 4 Bx M�

2 � + 2 Bx M�
2 � + 8 Bx M�

2 � ¡ 2 Bx � s0 + 2 Bx � s0) K~3
(�)(t; M�; M�) ¡

36M�
2 � t (A00F�

2M�
2�¡A00F�

2M�
2 �+A00F�

2M�
2�¡ 7A00F�

2M�
2 � ¡ 2AxF�2M�

2�+2AxF�
2M�

2 �¡ 2AxF�2M�
2�+
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14 Ax F�2M�
2 � + BxM�

4 � ¡ BxM�
4 � ¡ BxM�

2M�
2 � ¡ 2 BxM�

2M�
2 � + 2 BxM�

2 � s0¡ 2 BxM�
2 � s0 + 8 BxM�

4 � +

7 BxM�
4 � + 2 BxM�

2 � s0 ¡ 14 BxM�
2 � s0) K~3

(�)(t; M�; M�) ¡ 2M�
2 � (84 A00 F�

2M�
4 � ¡ 168 A00 F�

2M�
2M�

2 � +

84 A00 F�
2 M�

4 � ¡ 168 Ax F�2 M�
4 � + 336 Ax F�2 M�

2 M�
2 � ¡ 168 Ax F�2 M�

4 � ¡ 81 BxM�
6 � ¡ 140 BxM�

4 M�
2 � +

35 Bx M�
4 M�

2 � + 168 BxM�
4 � s0 + 280 Bx M�

2 M�
4 � + 173 BxM�

2 M�
4 � ¡ 336 BxM�

2 M�
2 � s0 ¡ 140 Bx M�

6 � ¡
127BxM�

6 �+ 168BxM�
4� s0)K~0

(�)(t;M�;M�)+ 18M�
2 � (¡3A00F�

2M�
4 � ¡ 2A00F�

2M�
2M�

2�+ 14A00F�
2M�

2M�
2 �+

2 A00 F�
2 M�

4 � ¡ 11 A00 F�
2 M�

4 � + 6 Ax F�
2 M�

4 � + 4 Ax F�
2 M�

2 M�
2 � ¡ 28 Ax F�2 M�

2 M�
2 � ¡ 4 Ax F�

2 M�
4 � +

22 Ax F�2M�
4 � + 3 BxM�

6 � + 3 BxM�
4M�

2 � + BxM�
4M�

2 � ¡ 6 BxM�
4 � s0 ¡ 14 BxM�

2M�
4 � ¡ 7 BxM�

2M�
4 � ¡

4BxM�
2M�

2 � s0 + 28 BxM�
2M�

2 � s0 + 11 BxM�
6 � + 3 BxM�

6 � + 4 BxM�
4 � s0¡ 22 BxM�

4 � s0)K~1
(�)(t; M�; M�)¡

� t3 (¡33 A00 F�
2 � + 66 Ax F�2 � + 64 Bx M�

2 � + 55 Bx M�
2 � + 56 Bx M�

2 � ¡ 66 Bx � s0) K~0
(�)
(t; M�; M�) ¡

3 � t3 (¡3A00F�
2 �+6AxF�

2 �+5BxM�
2 �+5BxM�

2�+9BxM�
2� ¡ 6Bx� s0)K~1

(�)(t;M�;M�)¡
3 � t3 (¡3A00F�

2 �+6AxF�
2 �+6BxM�

2 �+5BxM�
2�+8BxM�

2� ¡ 6Bx� s0)K~2
(�)
(t;M�;M�)+

3 � t2 (¡9 A00 F�
2 M�

2 � ¡ 21 A00 F�
2 M�

2 � + 18 Ax F�2 M�
2 � + 42 Ax F�2 M�

2 � + 12 BxM�
4 � + 15 Bx M�

2 M�
2 � +

36BxM�
2M�

2 � ¡ 18BxM�
2 � s0+ 35BxM�

4�+4BxM�
4 � ¡ 42BxM�

2 � s0)K~2
(�)
(t;M�;M�) + 3 � t2 (¡6A00F�

2M�
2 � ¡

24A00 F�
2M�

2 � + 12Ax F�2M�
2 � + 48Ax F�2M�

2 � + 7BxM�
4 � + 10BxM�

2M�
2 �+ 36BxM�

2M�
2 � ¡ 12BxM�

2 � s0+

40 Bx M�
4 � + 9 Bx M�

4 � ¡ 48 Bx M�
2 � s0) K~1

(�)(t; M�; M�) + 2 � t2 (¡33 A00 F�
2 M�

2 � + 9 A00 F�
2 M�

2 � ¡
171 A00 F�

2 M�
2 � + 66 Ax F�2 M�

2 � ¡ 18 Ax F�2 M�
2 � + 342 Ax F�2 M�

2 � + 43 Bx M�
4 � + 64 Bx M�

2 M�
2 � +

182BxM�
2M�

2 � ¡ 66BxM�
2 � s0 + 252BxM�

4 � + 81 BxM�
4 � + 18 BxM�

2 � s0¡ 342BxM�
2 � s0)K~0

(�)
(t; M�; M�)¡

3 � t (¡9A00 F�
2M�

4 � ¡ 36A00 F�
2M�

2M�
2 �+ 12A00 F�

2M�
4 �¡ 3A00F�

2M�
4 � + 18Ax F�2M�

4 � + 72Ax F�2M�
2M�

2 � ¡
24Ax F�2M�

4 �+ 6Ax F�
2M�

4 � + 10BxM�
6 � + 15BxM�

4M�
2 �+ 48BxM�

4M�
2 � ¡ 18BxM�

4 � s0+ 72BxM�
2M�

4 � ¡
54 BxM�

2M�
4 � ¡ 72 BxM�

2M�
2 � s0¡ 39 BxM�

6 � + 20 BxM�
6 � + 24 BxM�

4 � s0¡ 6 BxM�
4 � s0)K~2

(�)(t; M�; M�) ¡
3 � t (¡3A00 F�

2M�
4 � ¡ 30A00 F�

2M�
2M�

2 �+ 12A00 F�
2M�

4 �¡ 15A00F�
2M�

4 � + 6Ax F�
2M�

4 � + 60Ax F�2M�
2M�

2 � ¡
24 Ax F�2M�

4 � + 30 Ax F�2M�
4 � + 3 BxM�

6 � + 5 BxM�
4M�

2 � + 37 BxM�
4M�

2 � ¡ 6 BxM�
4 � s0 + 62 BxM�

2M�
4 � +

97BxM�
2M�

4 � ¡ 60BxM�
2M�

2 � s0¡ 19BxM�
6 � ¡ 113BxM�

6 � + 24BxM�
4 � s0¡ 30BxM�

4 � s0)K~1
(�)
(t; M�; M�)¡

� t (¡33 A00 F�
2 M�

4 � + 18 A00 F�
2 M�

2 M�
2 � ¡ 342 A00 F�

2 M�
2 M�

2 � + 126 A00 F�
2 M�

4 � ¡ 585 A00 F�
2 M�

4 � +

66 Ax F�2M�
4 � ¡ 36 Ax F�2M�

2M�
2 � + 684 Ax F�2M�

2M�
2 � ¡ 252 Ax F�2M�

4 � + 1170 Ax F�2M�
4 � + 36 BxM�

6 � +

73 BxM�
4M�

2 � + 358 BxM�
4M�

2 � ¡ 66 BxM�
4 � s0 + 630 BxM�

2M�
4 � + 620 BxM�

2M�
4 � + 36 BxM�

2M�
2 � s0 ¡

684 Bx M�
2 M�

2 � s0 + 513 Bx M�
6 � + 266 Bx M�

6 � + 252 Bx M�
4 � s0 ¡ 1170 Bx M�

4 � s0) K~0
(�)(t; M�; M�) ¡

3 � (3 A00 F�
2 M�

6 � + 27 A00 F�
2 M�

4 M�
2 � ¡ 24 A00 F�

2 M�
2 M�

4 � + 33 A00 F�
2 M�

2 M�
4 � + 24 A00 F�

2 M�
6 � ¡

63 A00 F�
2M�

6 � ¡ 6 Ax F�
2M�

6 � ¡ 54 Ax F�2M�
4M�

2 � + 48 Ax F�2M�
2M�

4 � ¡ 66 Ax F�2M�
2M�

4 � ¡ 48 Ax F�2M�
6 � +

126Ax F�2M�
6 � ¡ 3BxM�

8 � ¡ 5BxM�
6M�

2 � ¡ 32BxM�
6M�

2 � + 6BxM�
6 � s0¡ 69BxM�

4M�
4 �+ 18BxM�

4M�
4 � +

54 BxM�
4M�

2 � s0 + 57 BxM�
2 M�

6 � + 72 BxM�
2 M�

6 � ¡ 48 BxM�
2 M�

4 � s0 + 66 BxM�
2 M�

4 � s0 + 17 BxM�
8 � ¡

55BxM�
8�+ 48BxM�

6� s0¡ 126BxM�
6 � s0)K~2

(�)
(t;M�;M�)

���
(331776�3F�6 t)
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