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Abstract: Tidal field from a nearby binary companion affects the structure and
evolution of stars. We successfully applied the Kippenhahn averaging formalism
to the Roche potential and used the method to formulate approximate models
of tidally deformed primaries in close binary systems. We considered both the
detached and the contact configurations and neglected chemical composition
evolution. These tidally deformed models are thermally stable. We explored the
parametric dependence of the results on three quantities: mass ratio q in the
binary, surface equipotential C of the primary or the fill-out factor F (C), and
mass M1 of the primary.

We found that the depth of the surface convective layer of low mass primaries
increased due to tidal deformation. All models decreased their effective tempera-
ture when compared to their spherical counterparts. Our results also predict a
positive correlation between the effective temperature and the fill-out factor for
contact systems. Furthermore, the temperature negatively correlates with the
mass ratio of the deformed system. Finally, when isolating the tidal deformation
effects, a jump in temperatures was found around 1.2 M⊙ for most fill-out factors.
These findings could help to explain the observationally reported dichotomy of
contact binary systems at the temperature approximately corresponding to the
Kraft break known from isolated star population.
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Introduction
Pairs of stars that appear close together in the sky have been known since Ptolemy
2000 years ago. However, the question of why this happens, whether these stars
interact, remained unexplained until the beginning of the 19th century. Still, in
1767, the English philosopher John Michell employed statistical methods to the
by-then substantial number of double stars known and wrote: “We may from
hence, therefore with the highest probability conclude. . . that the stars are really
collected together in clusters in some places, where they form a kind of systems,
whilst in others, there are either few or none of them, to whatever cause this
may be owing, whether to their mutual gravitation, or to some other law or
appointment of the Creator" (see Tenn [2013]).

It was William Herschel, a well-established musician (primarily during the
days), and most acknowledged astronomer (primarily during the nights) who, in
1803, discovered that the Castor system (α Gemini) consists of two stars moving
round each other due to their mutual gravitational interaction. Herschel observed
other similar systems and concluded that all of them were stars orbiting around
each other—the binary stars, as he was the first to call them in this way. After
Herschel a number of other leading scientists like F. Bessel, G. Struve, O. Struve,
H. Russell, and H. Shapley contributed much to the present understanding of
classical binaries.

It is outside the scope of this thesis to follow rich aspects of formation and
evolution of binaries, however, in this introduction we would like yet to describe
briefly the illustrative case of the Algol system (β Persei) which, at the first sight,
might appear to be in contradiction with basic theory of stellar evolution. It was
a young Englishman, John Goodricke, who observed that the star called Algol
was on the night of November 12, 1782, only about 1/6-times as bright as in the
previous night. Goodricke offered several explanations, and one of them, after
about another hundred years proved correct: Algol has a companion star which
every 69 hours moves (as viewed from Earth) in front of Algol and so obscures it.
Today, a number of such systems is known.

If two stars are orbiting around each other, the gravitational potential of the
whole system and, correspondingly the gravitational forces acting through the
system, may take a complex geometry (see, e.g., Figs. 1.1 and 2.1). Under these
circumstances, it may happen that a less massive star evolves more rapidly than a
star with a greater mass. This, at first sight, appears to contradict the theory of
stellar evolution. In the case of an isolated star, the more massive it is, the faster
will evolve and the sooner will die. The resolution of this paradox consists in the
detailed understanding of the mass transfer between the individual components of
the binary.

The term contact binary star originated from Kuiper [1941], who was the first
to attempt to compute how such a structure could exist. He found a discrepancy
between the conditions for thermal and hydrostatic equilibrium, which suggested
that complex heat and mass exchange must be happening in such systems. These
are thought to happen mainly in the common envelope of the two stars.

The term common envelope should not be confused with common envelope
evolution in merger astrophysics. This is a fundamentally different concept than
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contact binary stars: it is a rather short, evolutionary violent dynamical phase
ranging from several months to years, during which the overflow of a Roche lobe
of one of the stars causes a common envelope to form around the system. Viscous
dragging effects cause this envelope to heat up and when sufficient thermal energy
is present, the common envelope gets ejected, taking away a substantial amount
of energy and angular momentum, and causing the objects to merge under Hubble
time [for a review of the topic, see e.g., Ivanova et al., 2013]. Since the first direct
observation of gravitational waves in 2015, merger astrophysics came back to
the forefront of research topics, alongside with evolutionary processes in binary
physics. The mystery of the origin of merging systems is yet to be fully solved,
although it is very probable that many of them had to undergo the common
envelope evolution phase. Contact binary configurations, on the other hand, last
for nuclear timescales and seem to be stable. A better term for contact binary
stars could be ”shared envelope", however, due to the nomenclature commonly
used in literature, in this thesis, the term common envelope will always mean the
envelope of a contact configuration of a binary system stable on large timescales.

From the observational side, instrumental imperfections always lead to signifi-
cant biases. For instance, many systems are not bright enough to be observed, or
in very low mass ratio systems the eclipse depth may be too small to be photomet-
rically detectable (and radial velocity changes too small to be spectroscopically
detectable). Nevertheless, Rucinski [1993] provides an interesting overview, espe-
cially about systems with low total mass and small contact. Recently, high-quality
photometric data from the Kepler mission and significant improvements in light
curve fitting techniques have been applied to obtain information about a much
broader range of system parameters Kobulnicky et al. [2022].

The Kuiper paradox (see Sec. 1.1) hints at internal mixing mechanisms, such as
energy or mass exchange. Indeed, papers as Almeida et al. [2015] found evidence
for enhanced internal mixing, due to observing stars in contact configurations
with different temperatures than would be expected without mixing. Due to flows
generating mixing, it is suggested that magnetic fields could play an important
role in contact binary systems. The common presence of sunspots on such systems
alongside other observational characteristics would suggest the presence of strong
magnetic fields in these systems [see Morgan et al., 1997]. Papers such as Borkovits
et al. [2005] even suggest the existence of magnetic cycles.

An interesting relation between the color and orbital period in contact binary
systems has been known for a long time [Eggen, 1967]. The most recent observa-
tional update on this issue can be found in Jayasinghe et al. [2020]. This relation
is thoroughly discussed in section 4.6.1.

Low mass eclipsing contact binary stars are commonly referred to as W UMa
stars after the typical W Ursae Majoris. It is estimated that more than 50% of
the stars we see are binaries (and this percentage depends on the spectral type).
Out of eclipsing contact binaries, about 95% are W UMa type stars. It is not clear
how many binary systems undergo the contact phase throughout their lifetime,
however, the percentage is thought to be higher for massive stars. With ongoing
developments in observational instrumentation, over a million eclipsing binary
systems have been found Czavalinga et al. [2022]. As more modern methods such as
high-resolution time sequence spectroscopy are applied to binary systems Rucinski
[2015], we could have much more detailed information about these mysterious

4



objects in the near future.
One of the motivations for this thesis was inspired by the results of the recent

paper by Jayasinghe et al. [2020]. The authors analyzed a large sample of close
binaries based on observations of the ASSASN survey, as well as a number of
other archive sources. They noted a clear dichotomy among the contact binaries
in the effective temperature versus orbital period space. Intriguingly, the dividing
line among these two groups appears to be located near ≃ 6200 K. Isolated main
sequence stars are known to have a division near this effective temperature, known
as the Kraft break, such that massive and hot stars rotate fast and vice versa.
This division is traditionally understood using a change of surface layer nature.
The cooler stars have deep convective layers that promote magnetic dynamo.
Stellar winds carry out the magnetic field and slow down the rotation through
the effects called magnetic braking. Massive and hot stars have radiative surface
layers and radiatively driven winds without a significant magnetic component.
Now the question is whether the contact binary dichotomy is produced by similar
phenomena as the Kraft break for isolated stars, or whether something else
operates in this case.

Having the motivation in mind, the specific goal of this thesis is to create a
new method of determining the structure of contact binary stars. In particular,
we combine two standard approaches in stellar modeling to construct simplified
models of contact binary systems in the form of one significantly tidally deformed
star. The Kippenhahn averaging formalism is the key approach to converting a 3D
problem to a 1D approximation. We apply it to the contact binary systems using
the Roche equipotentials as the fundamental geometric scaffolding. Obviously,
this method cannot capture all complex aspects of the problem, but it could
potentially yield insights for further developments of the model.

The thesis is divided into five parts. In the first chapter, a brief history of
contact binary system models is reviewed alongside with discussion and obser-
vational constraints of different approaches, from Kuiper times to the current
state-of-art. In the second chapter, the whole formalism of the newly developed
model is outlined, including the correction factors, defined as surface integrals on
the equipotentials of the Roche model, as the fundamental parameters. Numerical
values of the correction factors, needed to approximately determine the structure
of the highly irregularly shaped common envelope system, are computed for a
wide range of their defining parameters, the mass ratio q of the binary and the
fill-out factor F defining surface of the primary. Our simplified approach allows to
determine the structure of the primary component in the binary only, assuming
the secondary behaves like a mass point perturber. The third chapter describes
the tools and methods used to create stellar models with the MESA code. We
briefly comment on the most relevant parts of the code, relegating an interested
reader to the original literature. Chapter four contains the principal results of the
thesis. Here we apply the formalism and necessary numerical tools developed in
the previous two chapters to model the primary component in the short-period
binaries (we include both detached and contact configurations). We explore a
wide range of important parameters, the mass ratio q, the fill-out factor F , and
the mass of the primary M1. We focus on the determination of the effective
temperature and properties of the subsurface layers, as they may be the most
relevant for the confrontation with observations. Some of the recent observational
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facts about contact binaries are summarized at the end of this chapter, and we
try to propose connections with our numerical results. Admittedly, they need
justification for using more complex models. Finally, chapter five summarizes
approximations made by the model developed in this thesis as well as a few ideas
about possible generalizations still within the 1D formulation (before much more
complex 2D or 3D approaches are used). We also mention a few more problems in
astrophysics, other than contact binaries, where our approach could be possibly
applied in the future.

6



1. Models of contact binary
systems
The problem of the structure and evolution of contact binary stars has been
subject to research for over 80 years now. During the sixties and seventies, a
great effort to construct accurate theoretical models was made. Despite this
research continuing until now and a greater abundance of observational data, a
clear understanding of the problem is still absent. This chapter serves as a review
of historical approaches, models, and fundamental findings constraining possible
future solutions.

1.1 Kuiper’s paradox
The geometry of a close binary system can be roughly estimated by the well-known
Roche potential, which will be further analyzed in Chapter 2. Assuming stellar
rotation synchronous with the orbit, Kuiper [1941] proved that in order for a
contact configuration to exist the common boundary must lie in between the two
critical surfaces of the Roche potential. The synchronous rotation assumption
has been thoroughly explored both theoretically and observationally [see, e.g.,
Meibom et al., 2006, Lurie et al., 2017]. Due to large tidal forces, close systems
exhibit both rotational synchronization with orbit and orbital circularization.
Traditionally quoted timescales of synchronization and circularization of the orbit
were calculated by Zahn [1989]. This configuration with its boundary in the
common envelope significantly limits possible stellar parameters, namely the
mass-radius relationship. For binaries with masses M1 and M2 and radii R1 and
R2 of the two components, this relation has to have an approximate form

(R1/R2)Roche lobe ≈ (M1/M2)0.46 . (1.1)

On the other hand, the mass-radius relationship of isolated main sequence
stars typically occurring in these configurations is

(R1/R2)main sequence ≈ (M1/M2)n , (1.2)

where the exponent n varies from 0.6 to 1 from upper main sequence towards
lower main sequence stars, respectively. Because of this incompatibility, Kuiper
argued that contact binary configurations must have mass ratios close to 1 in
order to exist. The population of contact binaries, however, has a wide range of
mass ratios q = M2/M1 with extreme cases having q < 0.1 [Li et al., 2021]. The
mean mass ratio of the population is q = 0.3, with a majority of cases being in
the range 0.2 to 0.45. Mass ratios close to 1 are fairly rare [e.g., Binnendijk, 1970,
Latković et al., 2021, Sun et al., 2020].

1.2 The importance of the common envelope
This discrepancy led Osaki [1965], and particularly Lucy [1968], to propose that
the common envelope must play a key role in these configurations. In their
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models, the common envelope redistributes energy coming from the two cores
and radiates it away. With his model based on continuity at the inner critical
surface (coinciding with the contact discontinuity in Fig. 1.1), Lucy confirmed
Kuiper’s result for radiative envelopes, but showed that the discrepancy does not
appear for convective ones. This was an encouraging result since most W UMa
stars have later spectral types [Rucinski, 1993]. In Lucy’s original models, the
convective common envelope had a single specific entropy value due to hydrostatic
equilibrium arguments. The value of the specific entropy was then adjusted to be
equal to specific entropies of the inner envelopes of the stars underneath. Although
Lucy’s models worked only in a very small mass range around 2.5 M⊙ and with
very specific assumptions (the primary had to be burning through the CNO
cycle, whereas the secondary through the proton chain), they provided significant
insight into the problem of contact binaries. Lucy’s papers were followed by many,
expanding the range of masses and other parameters, such as Hazlehurst [1970],
Moss and Whelan [1970] or Whelan [1972]. However, none of them reached stable
models for the correct variety of observed masses and agreement with observation,
such as the color-period relation. Soon after his initial papers, Lucy concluded
that his models cannot exist in a stable thermal equilibrium state, but should
rather undergo oscillations around a semi-stable configuration. This led to the
thermal relaxation oscillation theory of contact binary stars discussed in Section
1.4.

The idea that the common envelope redistributes energy can explain some
observational peculiarities, such as why the temperatures of both binary compo-
nents are the same despite having different masses. However, the mystery of the
internal structure of contact binary stars and the precise mechanism for energy
redistribution has remained unsolved.

1.3 The contact discontinuity model
Later on Shu, Lubow, and Anderson [Shu et al., 1976] expanded Lucy’s model and
proposed the so-called contact discontinuity (DSC) model. The motivation for this
theory is the assumption that the failure of previous models is due to too strict
boundary conditions. This model therefore discarded the assumption of continuity
at the inner Roche lobe and replaced it with a possible discontinuity in ϱ and
mainly T while keeping pressure continuous. This discontinuity is maintained
against thermal diffusion by rapid fluid flow in the innermost sections of the
common envelope. The configuration can be seen for the convective case in
Fig. 1.1. Effectively, these assumptions lead to the specific entropy of the envelope
possibly having a different value than the interior of one of the stars as opposed
to Lucy’s model. This additional "freedom" (which can be quantified for example
by the temperature discontinuity ∆T ) allowed more advanced static models. In
their papers, Shu, Lubow, and Anderson calculated models for both radiative and
convective envelopes as opposed to only convective envelope models of Lucy. Some
pointed out that in order for an infinitesimal contact discontinuity to exist, mainly
a discontinuity in luminosities, infinite flows would be required. This problem is
occasionally referred to as Lucy’s paradox [Shu, 1980].

Because of this, Lubow and Shu [1979] concluded that in order for a DSC
model to function, the contact discontinuity has to be a layer of temperature
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Figure 1.1: Illustration of the contact discontinuity model the case of convective
envelopes, adapted from Shu et al. [1976]. The contact discontinuity is highlighted
along with two separate entropy value regions.

inversion of some finite thickness. Several works tried to construct heat engine
models which would support such a structure and prove its stability [Shu et al.,
1980, Smith et al., 1980]. The controversial proposition of a temperature inversion
layer led to many attacks of the model. Ultimately, they were mostly proven to
not be possible without violating the second law of thermodynamics [Hazlehurst,
1993].

Eggleton [1982] argued that even the primary motivation for this model is
incorrect and that rather than constructing an artificial static model, a better
way of the liberation of the boundary condition is taking the mass of both stars
together and then mass transfer between them as an additional degree of freedom.

1.4 Thermal relaxation oscillation theory models
As was mentioned in Section 1.2, after failures of static models, Lucy argued that
due to instabilities his model will undergo some oscillatory cycles. These models
proposed by Lucy [1976], and expanded by Robertson and Eggleton [1977] and
Kähler [1986], are referred to as the Thermal relaxation oscillation (TRO) models.
On a qualitative level, the cyclic nature of the expansion of Lucy’s theory can be
summarized in the following steps:

• An initial configuration similar to Lucy’s model is established, where the
common envelope has the same specific entropy as the inner envelopes under
the inner critical surface.

• Due to this configuration the secondary expands and mass transfer to the
primary begins. Due to this mass transfer, the mass ratio of the system
shifts, and eventually the secondary does not fill its Roche lobe. The system
becomes detached.

• After losing contact the secondary naturally shrink to its main sequence
size. The primary expands to its natural isolated state, but afterwards it
starts to fill its Roche lobe. Due to this filling mass transfer starts, which
causes the orbit to shrink, and contact is established again.
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• While establishing contact, the envelope of the primary has larger entropy
than the secondary and, therefore, flows around the secondary arise and
the common envelope forms. This creates the contact discontinuity. This
configuration is maintained on the thermal timescale, on which is heats
up the upper parts of the secondary. Throughout this heating the original
configuration is established and the cycle begins anew.

Alongside the contact discontinuity model, this was the leading theory of
contact binaries in the 70s and the discussions were lively [Shu, 1980]. The two
theories –DSC and TRO– do not necessarily directly contradict each other - the
equilibrium that the TRO model oscillates around could be precisely the contact
discontinuity model. The difference in opinions boils down to the stability of DSC.
The TRO school proposed that it can only last on the thermal timescale, while
DSC proponents constructed mechanisms throughout which the discontinuity
could be maintained on the nuclear timescale.

The TRO model seemed to solve some stability and consistency problems of
the contact discontinuity model, and mainly managed to be in accordance with
the observed mass distributions and even the period - color relation. The major
downside was in its failure to reproduce observed light curves. This discrepancy
naturally arises due to the phase without contact where the temperatures of the
two components differ by a larger value than observations would suggest, and led
Hazlehurst [2001] to denounce the TRO model.

A later review of this assessment, however, points out that this discrepancy
may have been cause by insufficient observational data [Paczyński et al., 2006].
This 2006 survey found enough close binaries in the semi-detached configuration
of the TRO cycle. With these new observations, TRO type theories are not fully
off the table yet.

1.5 Later models of Kähler
From the end of the 70s the problem of the structure of contact binaries had
lost its place at the forefront of stellar research. This was the fate of many
astrophysical problems until the 90s due to the lack of observational data. In
his review, Eggleton attributed this shift either to the fact that possible models
have been developed to a large extent, or, on the other hand, that state of the art
models were "stuck" not being able to fully reconstruct observed light curves and
system parameters.

Nevertheless, several new models and semi-analytical approaches appeared,
namely a series of papers by Kähler [2002b] and Kähler [2002a]. Kähler attributed
the lack of success of previous models to overly strict assumptions. He therefore
constructed models based on the weakest possible assumptions for the stellar
equations and boundaries possible. Despite this approach, further in his models
he employed some assumptions that are arguably artificial. These include the
assumption that energy sources and sinks appear only in outer layers and in the
same mass percentage in both stars. He also used specific formulas for mass
transfer rates which may not have to be valid. He found two solutions that
either stay in contact due to mass transfer when it is possible, or in most cases
have a cycle similar to the TRO theory, with the no-contact phase fairly short.
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Cumulatively, the failure of these models was in insufficient contact: observed
W UMa systems have much more greater contact, which was not theoretically
reproduced.

In his last paper on the topic of contact binary stars, Kähler [2004] proposes
some elegant possible solutions to uncertainties of some previous models, namely
the inversion layer mentioned in Section 1.3. These models rely on deviations of
the system from the Roche potential due to additional internal circulatory flows,
which enable thermal equilibrium. Additional forces from these flows can, for
example, aid with explaining a pressure inversion zone needed for the contact
discontinuity model. This is done by circulation luminosity - luminosity carried
by circulation currents through level surfaces. The corresponding decrease in the
temperature gradient is able to sustain a thermal equilibrium model similar to
the DSC model. The effects of these flows given by certain circulation functions
still contain free parameters such as the energy transport efficiency, which are
somewhat arbitrary, as well as the velocity field of the flow itself.

From the observational side, Rucinski [2015] and several others used high-
frequency time-resolved spectroscopy methods to observe line broadening cor-
responding to large flows in common envelope binaries. A significant structure
of strong equatorial flow rotating around the binary faster than the rest of the
system was observed, similar to Kählers flow prescriptions. There is some observa-
tional uncertainty since this flow could also be attributed to an external disk-like
structure. Rucinsky also observed strong movements that were significantly non-
uniform, with irregular spots traveling with different velocities, which could point
to significant convection in the common envelope in general.

1.6 Newer models
Since then, not many more papers studying the structure of contact binary stars
appeared. Li et al. [2004] studied models with different vertical positions of energy
transfer in the common envelope. They found that these modifications significantly
affect the structure and evolution of the system. Comparing simulations with
observations, they concluded that in W type systems, energy transfer may occur
in the outermost layers of the common envelope, whereas A type systems could
have energy transfer in deeper levels.

Some newer papers, such as Stępień [2009], continue in the steps of Kähler
with more and more complex modeling of flows. As more precise observational
constraints on flow structures will be available, papers like these may become
more common.

Stepien [2005] studied the evolution of contact systems and proposed a revolu-
tionary evolutionary approach, where contact binaries of the W UMa type are old
objects past a mass exchange phase with a reversed mass ratio. The proposed
evolutionary paths start with angular momentum loss due to magnetized wind.
This evolution has a similar timescale as main sequence evolution of typical stars
in these configurations, which would explain the old age of the components. After
Roche lobe overflow, significant mass transfer until the mass ratio inverts.

An article from this year, Fabry et al. [2022], proved that the problem of the
structure of contact binary stars might be revisited in the following years. This
is the first paper in a series that should deal with many aspects of the structure
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of contact binary systems. As the model from their article has close similarities
to the new approach in this thesis, it will be thoroughly discussed in the next
chapters.

Advancements in computer capability could even allow full 3D magnetohydro-
dynamic models to be possible in the future, which might be needed for the full
understanding of the problem of the structure of contact binary systems.
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2. Model set-up and correction
factors of the Roche geometry
In this thesis, we developed a new approach, that has certain similarities to the
contact discontinuity model. It also aims for a stationary description of a common
envelope configuration, although it does not thoroughly model complex flows
in the common envelope needed. The fundamentals consist in the application
of an elegant approach to the reduction of a three-dimensional problem to one
dimension, assuming the equipotentials are topologically equivalent to spheres.
The formalism is further applied to a standard binary system model - the Roche
potential - via correction factors. In this chapter, the mathematical formalism
is introduced and the results of numerical calculations of correction factors are
presented.

2.1 Modified stellar structure equations
The origins of the employed approach were introduced by Faulkner et al. [1968],
who divided rotating stars into several zones ranging from fully spherical in
the center to significantly deformed in the outer layers. They solved the stellar
structure equations in these zones separately, accounting for the correction factors
due to the rotationally-imposed deviation from spherical geometry. Two years
later Kippenhahn and Thomas [1970] fully developed this mathematical formalism
into its differential form, where the stellar structure equations are solved for
equipotential shells with appropriate correction factors.

Consider a general conservative potential Ψ, where equipotential surfaces
Ψ = C are topologically equivalent to spheres. For these equipotentials, we denote
average values of any scalar quantity f by averaging over the surface

⟨f⟩ = 1
SΨ

∫︂
Ψ=C

f dσ, (2.1)

where the integration is taken over the equipotential surface, and SΨ =
∫︁

Ψ=C dσ
is its total area. We also denote the volume enclosed by the equipotential as VΨ

and in the spherical analogy define the equivalent radius as rΨ = 3
√︂

3VΨ
4π . Finally,

in the relevant case of gravitational potential, we denote the mass enclosed by the
equipotential as MΨ.

A fundamental assumption of the model is "shellularity", i.e. the thermody-
namic parameters (such as the pressure or temperature) are constant over the
equipotential surfaces, an assumption equivalent to baroclinicity. This is the case
in hydrostatic equilibrium, however, such a configuration cannot exist in radiative
equilibrium [see Von Zeipel, 1924]. Nevertheless, strong horizontal flows should
ensure solid isobar rotation and approximately keep the shellular approximation
valid [Zahn, 1992].

Since density ρ is constant over equipotentials, the Lagrangian mass conserva-
tion equation has the same form as in the spherical case

drΨ

dMΨ
= 1

4πr2
Ψρ

. (2.2)
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Using the standard definition notation for effective gravity g (note that aside from
the gravitational part, the potential Ψ may also contain contributions from other
effects, such as the centripetal, non-inertial forces in the Roche model)

g = ∥∇Ψ∥ = dΨ
dn

, (2.3)

we can write the potential differential as

dΨ =
(︄

dVΨ

dΨ

)︄−1

dVΨ =
(︄

dVΨ

dΨ

)︄−1 dMΨ

ϱ
= dMΨ

g−1SΨϱ
. (2.4)

Combining this relation and Eq. (2.2) with the general form of hydrostatic equi-
librium ∂P/∂Ψ = −ρ, one obtains a corrected equilibrium equation

∂P

∂MΨ
= − GMΨ

4πrΨ4 fp , (2.5)

where we define a correction factor fp as

fp = 4πrΨ
4

GMΨSΨ

1
⟨g−1⟩

. (2.6)

A similar treatment can be applied to the energy conservation equation. For
zones with radiative energy transfer, the energy flux is proportional to the local
effective gravity

F = −4acT 3

3κϱ

dT

dn
= −4acT 3

3κϱ
g

dT

dΨ . (2.7)

The total equipotential luminosity is obtained by integrating over the shell. By
using Eq. (2.3)

LΨ =
∫︂

Ψ
F dσ = −4πacT 3

3κ

⟨︂
g−1

⟩︂
⟨g⟩S2

Ψ
dT

dMΨ
. (2.8)

The modified Lagrangian form of the radiative transport equation is therefore

dT

dMΨ
= − 3κLΨ

64π2acT 3r4
Ψ

fT , (2.9)

where the second correction factor fT is introduced as

fT =
(︄

4πr2
Ψ

SΨ

)︄2 1
⟨g⟩ ⟨g−1⟩

. (2.10)

In a more standard form, combining Eqs. (2.5) and (2.9), the temperature equation
can be written as

∂ ln T

∂ ln P
= 3κLΨ

16πacGMΨ

P

T 4
fT
fp

≡ ∇rad
fT
fp

, (2.11)

in which the traditional definition of the radiative gradient ∇rad has been intro-
duced.
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Accounting now for the possibility that in some stellar layers the energy
transport by convection may dominate the radiative transport, locally tested
using the Schwarzschild criterion for convection, the general temperature equation
becomes

∂ ln T

∂ ln P
= min

[︄
∇ad, ∇rad

fT
fp

]︄
, (2.12)

where ∇ad is the appropriate convective gradient (we assume adiabatic approxi-
mation, thence the subscript ad). The full system of stellar equations is closed
by an equation of state, which is discussed in section 3.3, and an equation for
luminosity gain due to nuclear energy

dLΨ

dMΨ
= ϵ, (2.13)

where ϵ is the energy generation rate.
For isolated and non-rotating stars, spherical geometry may be assumed, and

both correction factors are equal to unity. This leads to the standard stellar
structure equations. In general, fp tends to deviate from 1 more than fT . As a
result, sometimes a crude approximation in which only fp is taken into account
has been employed [e.g., Meyer-Hofmeister, 1972].

This original formalism was extended by Endal and Sofia [1976] to model the
structure of the rotating stars. In this case, angular momentum arguments are
used to determine the shape of the potential, from which the correction factors
are calculated. Kippenhahn’s original set-up was used in many works describing
the effects of stellar rotation [Smith, 1973, Basu et al., 2000, Fujimoto, 1993], as
well as stellar winds [Mendes et al., 1999]. An extension for shell-like rotation was
performed by Meynet and Maeder [1997], and further used in many studies [e.g.,
Potter et al., 2012, Yang and Bi, 2006].

The correction-factor formalism is also implemented in widely used numerical
packages for stellar astrophysics, such as the YREC code [Pinsonneault et al.,
1989], in order to model the effects of rotation. More recently, it has also been
made part of the MESA stellar code, also used in this thesis, by Paxton et al.
[2019]. More details about MESA can be found in Chapter 3.

2.2 Roche geometry application
The general formalism described in the previous section was originally intended
for rotating stars, however, contact binary systems and tidally deformed stars in
general offer an interesting application too. A very useful approximate model for
studying binary systems is the Roche potential [e.g., Roche, 1873, Eggleton, 2006].
This is the potential of two point masses M1 and M2 in a stationary configuration
orbiting around each other and separated by a constant distance d (the period P
of their revolution in the inertial space is a function of the total mass M1 +M2 and
d through the third Kepler’s law). If we choose a coordinate system centered in
the primary having mass M1 and with the x axis directed towards the secondary
at the scaled unitary distance from the primary, the Roche potential ΨRoche can
be written in the co-rotating frame as

ΨRoche(x, y, z) = −G (M1 + M2)
2d

Ψ(x, y, z), (2.14)
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Figure 2.1: Illustration of the geometrized Roche potential for mass ratio q = 1/3.
The two critical equipotentials, inner (blue) and outer (red) are shown, as well as
the two Lagrangian points L1 and L2 defining them.

where

Ψ(x, y, z) = 2
1 + q

1
(x2 + y2 + z2)1/2

+ 2q

1 + q

1
[(x − 1)2 + y2 + z2]1/2 +

(︄
x − q

1 + q

)︄2

+ y2
(2.15)

is the geometrized (non-dimensional) Roche potential, and q is the mass ratio of
the system

q = M2

M1
. (2.16)

Note that we might choose M2 ≤ M1, therefore q ∈ (0, 1], without loss of generality,
since a simple interchange of indices 1 and 2 describes the opposite situation.
However, we shall not impose any constraint on masses, thus q > 0 only. This
apparent redundancy allows us to locate the origin of the reference system at
the center of the heavier component (q < 1) or lighter component (q > 1) in
the binary. In passing, we also note that equipotentials Ψ(x, y, z) = C, with C
diverging to infinity, become asymptotically spherical surfaces around the origin
with radius ≃ 2/(1 + q)/C. At that limit, the stellar structure converges to that
of an isolated object with correction factors close to unity.

The parameter q fully defines the geometry of the potential, whereas the
additional physical parameters - the total mass and separation distance - specify
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only the scaling of the values of this potential. This geometry has five critical
points, all of which are saddle points in 3D space, commonly referred to as Lagrange
points (see Fig. 2.1). Related to them are several important equipotentials of the
model, commonly referred to as the critical equipotentials. The point L1 is located
in between the components on the equipotential defining the two potential lobes
(the Roche lobes), which represent terminal configurations in which the stars can
exist as individual objects. This equipotential surface is often called the inner
critical equipotential. Above this surface, the equipotentials start to wrap around
both stars, creating a common envelope. Point L2 defines the outer critical surface.
Equipotentials above the second Lagrangian point are already open at this point,
meaning that they are topologically not spheres. In this geometry, stars gradually
fill equipotential surfaces. Overfilling the outer critical equipotential results in
a rapid mass loss through the outer Lagrange point L2 (Kuiper [1941],Shu et al.
[1979]). Since we are examining stationary contact configurations in thermal
equilibrium, the range of this study will be limited to systems where there is no
overflow of the outer critical equipotential and therefore no mass loss from the
whole system occurs.

The Kippenhahn averaging formalism is valid for any equipotentials topologi-
cally equivalent to spheres. If the separation of the stars in the binary is large
enough for the primary not to overflow the corresponding Roche lobe in the config-
uration, the topology is not a problem and we get a star with a teardrop-like shape.
However, Kippenhahn’s requirement is not satisfied for contact binary systems,
where this would be the case only outwards of the inner critical equipotential. It
is, however, possible to use an approximation, where we model the secondary as a
point mass which tidally deforms the primary. The idea works as follows.

If the stars are close enough for mass to overflow the primary Roche lobe, we
approximate the second star as a point mass in a "shell" with the same volume as
the volume of the secondary Roche lobe. The result is a single deformed star with
a "hole", in which simply the equipotential following that of the Roche lobe covers
both stars in a contact configuration. This step creates a significant jump in the
equipotential parameters such as the surface area SΨ as well as enclosed mass
MΨ. In a realistic model, the presence of the secondary should also contribute
with its luminosity, resulting in a jump in LΨ. This approach would, however,
require modelling of the secondary component as well. Instead, here we collapse
the secondary into the point and account just for its tidal effect on the primary.
Our only focus is modelling the structure of the primary. As a result, we adopt
three approximations at the point, when the layers exceed the inner critical Roche
equipotential; (i) we subtract the volume of the secondary Roche lobe from the
computed volume VΨ of the contact equipotentials, (ii) the mass of the secondary
is accounted for in the equipotential geometry (and thus also local variables related
to local acceleration such as g or g−1), but not included in the mass variable
MΨ in the equations determining the primary structure (Sec. 2.1), and (iii) we
neglect the contribution of the secondary to the luminosity budget. The former
conditions (i) and (ii) imply the radius rΨ and mass MΨ are continuous over the
inner critical equipotential (describing thus in a single object). The last condition
(iii) means that our solution is less accurate and justified when q becomes close to
unity. Figure 2.2 provides a schematic diagram of a contact configuration and our
approach described above.
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Figure 2.2: Schematic description of the geometry of the newly developed stellar
model. The secondary is modeled a point mass which tidally distorts the primary.
Due to this tidal distortion, the equipotentials of the primary eventually "overflow"
the secondary (this occurs when they reach the L1 point) and form a common
envelope.

Before we discuss our results for the correction factors determined in the strict
Roche model, with the two point-mass sources, we pay a short comment on an
approximate way how they are implemented in the MESA code. When using this
software package to construct a standard 1D stellar model, one has to calculate
the fp and fT correction factors for all cells in the star. In order to preserve
basics of the Roche geometry, but go a step beyond the point-mass model, the
correction factors for every cell are calculated from the Roche potential with the
mass ratio q set by the mass enclosed by the current shell of the primary – this is
to be used as M1 – to the conserved total mass of the secondary, still modelled
as the point mass M2. This effectively means that outer shells do not tidally
affect the distortion of the inner ones as usual. But there are two aspects of
the approximation. First, the mass M1 is dynamically added as the model is
constructed from inside out. Second, the outer potential shells may, if they were
modeled rigorously, deviate from the simple Roche model prediction by the effect
of the underneath mass spread over a certain volume. Obviously, a combination
of the two effects amplifies toward the outer stellar layers. Initially, the innermost
equipotentials of the primary star have small enclosed mass, usually smaller than
the secondary point mass, and they are still nearly spherical. After some point,
where the equipotential mass is equal or greater than the secondary mass and the
equipotential already deformed, the approximation becomes less precise. Still, the
generic strong mass concentration towards the center in stellar models roughly
justifies our approach.
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2.3 Correction factor calculations
In order to obtain correction factors for stellar equations, accurate integrations of
the Roche potential were essential. Integration tables of equipotential parameters
have been previously calculated by Mochnacki [1984] for each star in the binary
system separately, where the separation was chosen as a vertical plane slicing
through the L1 point. The tables are unfortunately not dense enough for the
usage of the aforementioned method in stellar codes - interpolation would not
yield precise enough values. Wilson [1978] calculated values even for the common
envelope, but did not publish his tables. In this thesis, the range of integrated
equipotentials has been greatly expanded as well as the range of mass ratios of
the systems.

Integrations were computed for the dimensionless Roche potential from Eq.
(2.15). In order to calculate correction factors for all cells in stellar simulations, a
broad parameter space had to be explored. Mass ratios were sampled using a dense
grid of equal steps in log q in the range −6 ≤ log q ≤ 6. For a fixed mass ratio,
there are many ways to parameterize the chosen equipotential Ψ(x, y, z) = C,
essentially mapping the semi-open interval of C values in [C2, ∞) to a more
suitable finite interval of values of a new parameter. Older literature tend to use
the "fill-out factor" defined as

F (C) =
⎧⎨⎩C1/C, (C ≥ C1)

(C1 − C) / (C1 − C2) + 1, (C1 ≥ C ≥ C2)
(2.17)

where C1 and C2 are values of the critical equipotentials connecting to L1 point
(the Roche lobe) and the outer critical surface passing through outer Lagrange
point L2. Note that the definition interval C ≥ C2 of the interest maps to the
(0, 2] interval for F . The important values are (i) F → 0 for C → ∞, for which
the equipotentials become tiny spheres about the origin, (ii) F = 1 for the inner
critical surface connected to L1 and having C = C1, and (iii) F = 2 for the outer
critical surface connected to L2 and having C = C2.

Some newer papers, such as Fabry et al. [2022], parametrize equipotentials
based on their equivalent radius in the units of the Roche lobe radius, thus
a = rΨ/rRoche; here rRoche = rΨ for a specific value Ψ = C1. This is suitable for
further direct use in standard stellar codes. However, in the case of this thesis we
keep using the parametrization via the fill-out factor, since it conveniently covers
the possible parameter space of studied equipotentials.

Various quantities were computed for a full range of fill-out factors F using 200
equal-size steps from 0 to 2. An additional table with an improved precision was
computed for the range of parameters most often seen among the stellar common
envelope models (see Chapter 3). This additional table only covered mass ratios
−2 ≤ log q ≤ 2 with twice smaller step in fill-out factor F and quadruple density
in mass ratios.

2.3.1 Integration methods and results
The Roche geometry has two plane symmetries, both containing the axis connecting
the two stars, namely y = 0 and z = 0. This is because the y and z coordinates
appear in Ψ only through quadratic terms y2 and z2 (note, however, that the
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equipotentials are not rotationally symmetric about x). When evaluating surface
integrals over the equipotentials, such as in Eq. (2.1), it is therefore sufficient to
integrate over one "quadrant" only. Since the common envelope equipotentials
are not convex volumes, it was not possible to integrate via spherical coordinates,
which would for nearly spherical bodies yield more precise integrations, cylindrical
coordinates proved to be the simplest choice due to the existence of a natural
principal axis of the problem [this choice has also been used in the previous studies,
e.g., Mochnacki, 1984]. Let us therefore choose this cylindrical coordinate system
denoting the coordinate along the axis x, the radius from the axis ρ, and the polar
angle ϕ.

Given the definition of the fp and fT factors in Eqs. (2.6) and (2.10), the
following integrals of the potential from Eq. (2.15) were needed [the formula for
VΨ correcting a small typo in Mochnacki, 1984]

VΨ = 1
2

∫︂
Ψ

ρ2(x, ϕ) dxdϕ,

SΨ =
∫︂

Ψ
s(ϕ, x) dxdϕ,

⟨g⟩ = 1
SΨ

∫︂
Ψ

g(ϕ, x)s(ϕ, x) dxdϕ,⟨︂
g−1

⟩︂
= 1

SΨ

∫︂
Ψ

g−1(ϕ, x)s(ϕ, x) dxdϕ,

(2.18)

where g(ϕ, x) is the gradient of the potential (Eq. 2.3) and dσ = s(ϕ, x) dxdϕ is
the surface element with

s(ϕ, x) = − g(ϕ, x)ρ(ϕ, x)
Ψ,y sin ϕ + Ψ,z cos ϕ

, (2.19)

where Ψ,y and Ψ,z are partial derivatives of the potential in the original Cartesian
coordinates centered at the chosen primary, as in Eqs. (2.14) and (2.15). When
calculating the radius (distance) ρ(ϕ, x) from the axis to the equipotential, the
equation Ψ(x, ρ, ϕ) = C has always at least two solutions, except for the Lagrange
points. It was therefore needed to ensure the convergence to the equipotential
closest to the x axis by writing specific root finding methods for the Roche problem.
The basis of this method is starting in a point that is always nearer to the axis and
gradually decreasing step-sizes as one moves outward. A similar approach with a
different analytical guess was employed to calculate the x-axis integration bounds,
inspired by Kopal [1959]. Some more technical details and explicit formulas are
given in the Appendix A.

Note that the fp factor depends also on the mass MΨ enclosed by the equipoten-
tial. Due to the normalization in Eq. (2.15), where the combined mass is scaled to
1, the dimensionless mass of the primary is 1/(1 + q), and the secondary q/(1 + q).
Because in the Roche model the stars have their mass concentrated in their center
(as a good approximation of the reality), the formally integral-defined mass MΨ
over potential surfaces becomes trivial: (i) up to the critical equipotential reaching
the L1 point (the Roche lobe) we have MΨ = 1/(1 + q), (ii) whereas for common
envelope equipotentials this factor is equal to 1. As a result, parameters defined
in Eq. (2.18) constitute a complete set needed for fp and fT computation.

The actual integration was performed using a cubic interpolation scheme with
600 divisions in the x direction and 100 divisions in ϕ (these values were chosen
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through convergence tests to reach the desired precision). The range of x-values,
namely (xmin, xmax), is determined for a given equipotential C by numerically
solving Ψ(x, 0, 0) = C, while the range of the polar angle ϕ is always (0, π/2). In all
integrals, the step size was greatly reduced at the last 10% limits of the x-interval.
In integrals involving the surface element s(ϕ, x), the value of the denominator in
the surface element in this particular coordinate description may approach zero
at the end of the x interval, i.e., when x → xmin or x → xmax. The reason for
this behavior is intuitively clear and has to do with the choice of (x, ϕ) to be the
coordinates delimiting the infinitesimal surface element dσ = s(ϕ, x) dxdϕ. This
choice becomes singular when the equipotential crosses the x-axis, and the formal
dx → 0 limit must be compensated by the divergence of s(ϕ, x), causing a loss
in the accuracy of numerical evaluation. For this reason, the integral evaluation
using cylindrical coordinates was restricted to the x values for which s(ϕ, x) was
smaller than a chosen limit, and the integration over the remaining "caps" of
the equipotential was completed in spherical coordinates. Some more details can
be found in Appendix A. A customization to an adaptive quadrature using the
QUADPACK library was used to compute the actual parts of the integrations
Piessens et al. [2012]. After computing these parameters, correction factors are
determined from Eqs. (2.6) and (2.10).

In Fig. 2.3 a 2D representation of several relevant integral parameters is shown
as a function of the fill-out factor F for a specific mass ratio of q = 0.5. Under
the inner critical potential (i.e., F < 1), the available data points from Mochnacki
[1984] are plotted for comparison. The important section to notice is naturally
the area around F = 1 - the inner critical surface of the Roche potential. Since
the second star is added at this equipotential, discontinuities in the equipotential
parameters appear. The jumps in the equivalent radius and surface area are
directly related to the volume and surface of the second star. In fact, this may
be used to check the precision of the integrated values. We verified that for all
calculated mass ratios the jump was roughly equal to the expected value.

Figures 2.5 and 2.4 show 3D plots of the computed correction factors fp and fT ,
here as a function of their two parameters: the fill-out factor F and the mass ratio
q. All values are bounded in roughly the interval [0.4, 1.5]. One can easily verify
two expected properties of these results. First, at the limit F → 0 we obtain both
fp → 1 and fT → 1 for all q values. This is the limit of equipotentials becoming
tiny spheres about the origin (Sec. 2.2), thus the stellar structure converging
to that of an isolated star. Second, both correction factors fp and fT are for
F > 1 symmetric in log q measure about the value log q = 0. This symmetry
transformation corresponds to mapping q to 1/q, and thus simply swapping the
role of the primary and secondary component in a binary having the same mass
ratio. Both configurations then have identical equipotentials with C ∈ (C1, C2),
namely those overlapping both stars in between L1 and L2 points.

In order to obtain the corresponding physical quantities from their computed
non-dimensional integral versions, we recall the scaling of length by d and mass
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Figure 2.3: Example of various dimensionless quantities computed by the integrals
over equipotential (the mass ratio fixed to q = 0.5): from top to bottom and
left to right the equivalent radius, surface area, average gravity, average inverse
gravity, and the correction factors fp and fT all given as a function of the fill-out
factor F . Crosses denote values calculated by Mochnacki [1984] in intervals of F ,
where comparison can be made.

by (M1 + M2). As a result [see also Mochnacki, 1984]

R = d rΨ,

S = d2 SΨ,

G = G (M1 + M2)
2d2 ⟨g⟩,

G−1 = 2d2

G (M1 + M2)
⟨g−1⟩.

(2.20)

2.4 Comparison with the work of Fabry, Mar-
chant and Sana (2022)

During the late phase of this research, a similar approach was independently
published by Fabry et al. [2022]. Despite this coincidence, and the fact that
both works aim to be a proof of concept of the correction factor formalism using
the Roche geometry, there are fundamental differences in our application of this
method. Firstly, the focus of Fabry et al. [2022] is on the surface temperature
variability and the effects of rotation in both binary systems and single rotating
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Figure 2.6: Illustration of the difference in modeling geometry of the splitting
surfaces in our approach and that of Fabry et al. [2022]. Instead of splitting the
two binary components with a plane vertical to the x-axis at the first Lagrange
point L1, the stars in that paper are split by a custom surface B (dashed blue line)
perpendicular to the equipotentials and crossing the x axis at L1 (see Fig. (2.21).
Adapted from Fabry et al. [2022].

stars. In contrast, our work explores the range of models throughout the space
of a separation distance between the binary components and examines different
contact discontinuity modifications.

In all models of Fabry et al. [2022], the system is considered and mathematically
described as a binary system, whereas in our model the system is conceptually
and computationally thought of as a significantly deformed star with a hole (see
Sec. 2.2 and Fig. 2.2 in particular). Both these approaches have their advantages:
Fabry et al.’s treatment will easily enable adding mass transfer prescriptions to
the model (this is explicitly planned in further papers in their series); this would
be difficult in the model constructed in this thesis and it is beyond its scope. On
the other hand, the approach here is more suitable for systems in which one star
overflows its Roche lobe and encompasses the other.

Another important distinction is the mass range of focus. Fabry et al. focus
on massive stars from 15 M⊙, while in our work we consider stars from 0.3 M⊙
up to 5 M⊙. The choice made by Fabry et al. is motivated by the theoretical
assumption that a large fraction of massive binary systems undergoes common
envelope evolution. On the other hand, observationally, we only know twelve
contact binary systems in that mass range or higher. W UMa stars with low mass
in the range studied in this thesis are much more common.

An elegant element in the Fabry et al. [2022] analysis of the contact binary
systems has to do with their definition of the boundary B between the two
components. Given the Roche potential Ψ, they choose to define B using a local
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constraint
∇Ψ · dS = 0, (2.21)

where dS is the infinitesimal surface area (in addition, B is obviously required
to pass through L1). Put in words, the condition (2.21) says that normal to B
is everywhere tangent to the equipotentials of Ψ. The geometry is illustrated
in Fig. 2.6. Recall that traditionally B is simply a plane normal to the axis x
dissecting the star at the L1 point [e.g., Mochnacki, 1984, Marchant et al., 2021].
Firstly, without this choice, the integrated version of Eq. (2.4) would require
additional boundary terms allowing to match the structure of the two components
at their boundary. With B defined by (2.21) things are simpler and more elegant.
Secondly, the boundary definition in Eq. (2.21) is more natural when one intends
to model the mass and energy transfer between the two components. This is
because the boundary is set up to be perpendicular to equipotentials allowing
simple boundary terms. For instance, in the case of luminosity flow LB′ over the
boundary is simply given by

LB′ =
∫︂

B′
F · dS, (2.22)

where B′ is the small patch of B around L1 that truly delimits the component
contact area and F is the radiative flux. As announced in Fabry et al. [2022],
these authors intend to develop the analysis in their first paper towards such
modelling of transfer processes in massive overcontact binaries. Furthermore,
note that the boundary definition using the local condition (2.21) may be also
used to connect B to the outer Lagrange point L2 (see also Fig. 2.6). This setup
of splitting surfaces allows to model stars which overflow not only their Roche
lobe, but also the common envelope. However, such a case is less astrophysically
motivated, since many different mass loss effects start appearing even before the
overflow of the common envelope, and are much more pronounced after this event.

Because of the difference in splitting surfaces, the correction factor solutions
coincide only for equipotentials with F ≤ 1, inside the Roche lobe. Restricting to
this interval, a vast majority of the values of fp and fT computed by Fabry et al.
[2022] are in agreement with the results obtained in this thesis up to errors of
order 10−5, in extreme edge cases of mass ratios the agreement is of the order of
10−3.
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3. Numerical framework of the
stellar models
In this Chapter, we use the formalism developed in Chapter 2 to construct stellar
models of a primary component in close binaries (including the common envelope
configurations) using the state-of-the-art code MESA (Paxton et al. [2010]) by
relaxation from initially isolated, spherical stellar models. Here we primarily
describe the way how we construct the models and perform a few tests that help
us justify the correctness of the results. Their more complete analysis within
the parametric space (q, F ) of the Roche model and mass M1 of the primary is
postponed to the next Chapter 4, where we also discuss several recent observational
data for which our results may be relevant.

3.1 MESA code specifics
The Kippenhahn averaging formalism, in the form introduced by Endal and Sofia
[1976], has been fairly recently implemented in the widely-used and well-tested
MESA package, a broad-scope tool for studies in stellar astrophysics [see, e.g.,
Paxton et al., 2010, 2019]. Their goal was to describe the effects of stellar rotation
on its structure. In this default use case, correction factors are calculated from
formulas derived from interpolations of Maclaurin spheroids. In this thesis, we aim
at a different situation, namely modelling the tidally deformed stellar object in a
common envelope stage. To that end, the correction factors fp and fT , obtained
using integrals evaluated by methods described in the previous Chapter 2, were
implemented into the MESA code in a form of large readout tables. Their specific
values at an arbitrary cell inside the zone of interest are then obtained by bicubic
interpolation using the pre-computed values. This proved to be a much faster
method as opposed to our initial idea of calculating everything online in MESA.

MESA stellar code version r15140 has been used for all modelling efforts
throughout this thesis.

3.2 Initial conditions
In order to objectively explore stellar models in a certain range of masses, well-
chosen initial models had to be used. To get a consistent sample of the main
sequence models with different masses, a natural criterion is the hydrogen fraction
X reaching a certain reference value. We chose X = 0.35 as a suitable threshold of
an intermediate-age main sequence star. We used MESA to let isolated, spherical
stars of different mass to be evolved from pre-main sequence stages all the way
to this intermediate main sequence phase. All models had an initial metallicity
value of Z = 0.02.

It is both interesting and important to note that the effective temperature of
these initial models is not exactly linear function of the mass (see Fig. 3.1). There
appears to be a “bump” around 1.2 M⊙ due to the change of dominant nuclear
reactions in these stellar models (pp-chain transitioning to the CNO cycle), which
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Figure 3.1: Effective temperature of a sample of spherical, isolated stars evolved
by MESA to the intermediate age main sequence state (operationally defined by
X = 0.35; Z = 0.02 in all models). Stellar mass at the abscissa. The change in the
structure of the models, as to the nature and location of radiative vs convective
layers, is reflected in the “bump” of T (M) relation at M ≃ 1.2 M⊙.

severely modifies their convective and radiative structure. Since the goal of our
work is to construct models of tidally distorted configurations of binaries with
common envelopes and analyze their effective surface temperature, the memory of
the initial configuration temperature has to be considered if we want to describe
the effect of geometry.

3.2.1 Relaxation
In order to understand our procedure, we briefly recall the concept of various
relaxation timescales of stellar models and provide their crude estimates. First,
the thermal timescale is defined as the timescale over which the energy of the star
would be radiated away if nuclear reactions were turned off. For a star of mass
M , radius R, and luminosity L, this gives

τth = total potential energy
rate of energy loss ≈ GM2

RL
. (3.1)

Plugging in the solar values, we get τth ≃ 30 Myr. Assuming also the characteristic
mass-radius and mass-luminosity relations for solar-type stars, namely R ∝ M0.8

and L ∝ M4, we obtain τth ∝ M−2.8, implying that more massive stars a have
shorter thermal relaxation timescale (principally because of their huge luminosity).
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Second, the dynamical timescale is defined simply as the characteristic length
over characteristic velocity, namely the radius over the escape velocity

τdyn =
√︄

R3

2GM
= 1√

Gρ̄
, (3.2)

where ρ̄ is the bulk density. Again, using the solar parameters we get about
half an hour. Per its definition, τdyn coincides with the free fall time. In fact, it
is a rough estimate of the longest period helioseismic oscillations, the so-called
p-modes. Finally, the nuclear timescale is the longest timescale, which tells us an
estimate of a timescale to burn hydrogen content in the star (assuming the main
sequence stage). Denoting the energy production rate of the nuclear reactions Q,
hydrogen fraction X, and F the fraction of the stellar mass where reactions take
place (F ∼ 0.1, say), we have

τnuc = MXF
L
Q

. (3.3)

The Sun has τnuc ≃ 10 Gyr, a rough estimate of the time it spends on the main
sequence. Therefore, we verified the strong ordering τdyn ≪ τth ≪ τnuc.

Let us return now to our goal, namely to construct a quasi-stationary model
of a tidally deformed primary in a close binary. We borrow the sample of
spherically symmetric models described in Sec. 3.2 and use them as the initial
stellar-structure model. Then we define a certain binary configuration, basically
by the mass ratio q and the fill-out factor F , and use the Roche potential to define
the spatial geometry of the layers in the final model. The initial state is then let
by MESA to relax over a certain time into the desired distorted configuration.
The question is what timescale is the most relevant for this task? Since we aim at
a stationary model with a correct structure of thermodynamical parameters, the
thermal relaxation timescale appears to be the right guess. Changes in chemical
composition, occurring on a nuclear production timescale, result in a long-term
evolution of the stellar parameters. As we have seen above, the characteristic
timescale of this slow evolution is much longer than the thermal timescale. So
even if the composition changes cannot be frozen in a consistent model, one
can adopt an approximation of a slow, adiabatic evolution through a sequence
of thermally relaxed states with fixed chemistry. In order to ensure stability,
time-step controls were set up so that at least 20 steps are made throughout the
relaxation procedure. Trials and tests have shown that this choice was satisfactory,
and further smoothing in time did not provide changes in results.

Figure 3.2 shows a satisfactory relaxation of the effective temperature for
primaries of two different masses: 1 M⊙ and 5 M⊙. In both cases, we assume a
secondary with q = 0.5, and their distance implies a binary configuration having a
fill-out factor F = 0.9. The thermal timescale is highlighted in red. By this time,
the temperature (and similarly all other important parameters) have relaxed to a
steady value. The relaxation procedure is run through three thermal timescales
to ensure higher precision. The evolution of the radius through the relaxation
procedure serves as a consistency check. This is because the volume should not
change much, only the geometry it occupies changes. In most cases, the radius
stayed within 1% of its initial value.
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Another indicator confirming that the thermal timescale is sufficient for the
relaxation processes has to do with the outer convective layer (we argue below
that this zone plays an important role in the analysis of contact binaries and
systems with a common envelope). The extent of this layer converged around
the thermal timescale in all models. Figure 3.3 demonstrates the process of the
surface convective layer relaxation for a solar mass star in the same configuration
as in Fig. 3.2.

Evolution with chemical changes was also briefly tested. Alongside with thermal
relaxation described above, a long-term effect was observed, which caused the
observed stellar parameters, such as temperature, to not asymptotically converge
but undergo a very slow, secular evolution.
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Figure 3.2: Example of the relaxation phase for stars of mass 1 M⊙ (top) and
5 M⊙ (bottom). The abscissa is time t in Myr, the ordinate shows the effective
temperature in K. In both cases, a secondary with q = 0.5 generates the tidal
deformation, and the binary configuration has a fill-out factor F = 0.9. The
relaxation was satisfactorily completed by reaching the thermal timescale, shown
here by the red line. Other important stellar parameters follow similar evolutionary
tracks.
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Figure 3.3: Example of a relaxation procedure of the surface convective layer
(violet) over a radiative deeper zone (yellow) for a star of mass 1 M⊙ within a
close binary system with q = 0.5 and the fill-out factor F = 0.9 (as in Fig. 3.2).
The abscissa is time in Myr and the ordinate shows the mass MΨ within the near-
surface equipotentials expressed in the total stellar mass. The thermal timescale
(shown by the red line) is clearly sufficient to relax the model to a quasi-stationary
state.

3.3 Important features of MESA
Our contribution to the structure of the models constructed in this thesis consists
primarily in the determination of the correction factors fp and fT for a wide range
of q and F values, and their implementation into the MESA code. However, other
aspects of the stellar model remain as they were implemented into MESA by many
previous contributors. Here we recall only the most important for our analysis.

Equations of state used by MESA are a mix of many formulations, depending
on thermodynamical parameters, as well as hydrogen fraction and metalicity. The
main ingredients are OPAL (Rogers and Nayfonov [2002]), PC (Potekhin and
Chabrier [2010]), FreeEOS, Skye (Jermyn et al. [2021]), and HELM (Timmes
and Swesty [2000]). The specific usage of various equations of state in MESA is
thoroughly described in Paxton et al. [2019].

The default MESA opacity is a mixture of many prescriptions. The total
opacity is a combination of radiative and conductive opacities

1
κ

= 1
κrad

+ 1
κcond

, (3.4)
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where the radiative opacity is the Rosseland mean opacity is taken from tables
based on metalicity and hydrogen fraction from Iglesias and Rogers [1996] and
Ferguson et al. [2005]. The conductive opacity is given by the conductivity K as

κcond = 16σSBT 3

ρK
. (3.5)

which is interpolated from a table calculated by Cassisi et al. [2007] (σSB is the
Stefan–Boltzmann constant).

The choice of the nuclear reaction chain is not relevant since chemical changes
are suppressed during relaxation, which occurs only on the thermal timescale.

All models examined in this thesis have an initial metalicity of Z = 0.02. No
winds or mass loss prescriptions are used in these models.

Atmosphere is chosen as the Eddington atmosphere [see, e.g., Cox and Giuli,
1968]. Standard boundary conditions in MESA are those interpolated on a grid
of pressure and temperature. A more thorough explanation is given in the next
Section. A sample MESA inlist is included in Appendix B.

3.3.1 Exterior boundary conditions from Fabry et al.(2022)
While the central boundary conditions are obvious, the choice of the exterior
boundary conditions has to be done with caution when dealing with tidal defor-
mation. A recipe for generally non-spherical stars was developed by Fabry et al.
[2022], and here we shall adapt it to the tidally deformed configuration relevant to
this thesis. In spite of its simplicity, the gray plane parallel Eddington atmosphere
Rybicki and Lightman [2004] is a standard assumption in stellar-structure models.
In this approximation, the atmosphere is assumed to be in thermal radiative
equilibrium, and the absorption coefficient α is constant (and there is no frequency
dependence in any of the variables). This set of conditions implies that the source
function is simply Planck’s black-body law.

Traditionally, stellar codes consider the optical thickness from τ = 0 far away
to some nominal value (usually around 1), where the stellar boundary is defined.
If the geometry is not spherical, different regions get to this critical optical depth
at different equipotentials - the equipotentials do not coincide with surfaces of
constant optical depth. To express this mathematically, in the tidally deformed
case, the differential of the optical depth is modified by the geometry as (α = κρ,
where κ is the opacity)

dτ = κρ dz = −κρ
dn

dΨ dΨ = −κρg−1dΨ. (3.6)

Following the recipe in Fabry et al. [2022], we first define the global effective
temperature Teff,Ψ of an equipotential by comparing the total, bolometric radiative
flux to that of black body using the Stefan-Boltzmann law. We obtain

LΨ =
∫︂

Ψ
Fdσ ≡ SΨ σSBT 4

eff,Ψ. (3.7)

Note the equipotential does not have to be spherical and its total surface area SΨ
is generally given by Eq. (2.18) (F is the scalar radiation flux through normal to
the surface area). At the same time, the local effective temperature variations on
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the chosen equipotential can also be defined with Eq. (3.6). Since the radiative
flux F is proportional to the gradient of the potential, the local effective surface
temperature Teff,l can be defined as follows

F = g

⟨g⟩
σSBT 4

eff,Ψ = σSBT 4
eff,l. (3.8)

Assuming the expression for radiation pressure

Pr(τ) = 4σSB

3c
T 4(τ). (3.9)

where c is the speed of light, and considering the pressure at the τ = 0 surface
from Cox and Giuli [1968] (which is a simple consequence of the assumption of
isotropic radiation outwards, therefore no limb darkening effects, often stated as
Lambert’s law), we also have

Pr(0) = 2F
3c

. (3.10)

The temperature profile of a grey atmosphere can be written as

T 4(τ) = 1
2T 4

eff,l

(︃
1 + 3

2τ
)︃

. (3.11)

where it is assumed that τsurf = 2/3. Putting Tsurf = Teff,Ψ gives the first boundary
condition for the surface temperature.

In order to obtain the other boundary condition for pressure, we can use the
equation of hydrostatic equilibrium:

dP

dτ
= g

κ
. (3.12)

The pressure can then be integrated from τ = 0 to the boundary value of
τ = 2/3. Because of the validity of the boundary condition for temperature,
the gravity at the surface can be taken as ⟨g⟩, if integrating to a point where
Teff,Ψ = Teff,l, which necessarily exists. The calculation is significantly simplified if
one assumes a constant opacity and gravity in a thin atmosphere:

Pp =
∫︂ τsurf

0

⟨g⟩
κ

dτ + Pr(0) = 2
3

4πGMΨ

κSΨ

fp
fT

+ 2
3

σSBT 4
surf

c
(3.13)

This approach leads to a complete set of outer boundary conditions for the pressure
and temperature

Psurf = 2
3

4πGMΨ

κ (Tsurf , Psurf ) SΨ

fp
fT

+ 2
3

σSBT 4
surf

c
,

Tsurf = 4

√︄
LΨ

σSΨ
.

(3.14)
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4. Results
In this chapter, we analyze the results of the stellar models for the primary compo-
nent in short-period binaries computed using our simple 1D approach implemented
into the MESA code. We explore their dependence on three parameters. The first
two determine the Roche model geometry: (i) mass ratio q of the two components
in the binary, and (ii) the equipotential value C of the surface of the modeled
star. The latter –(ii)– may also be expressed using the fill-out factor F (C), and
given its value we may have configurations ranging from a detached situation
of a primary deformed by the secondary up to a common envelope geometry.
Alternatively, we also use the distance of the components normalized to the radius
of the spherical counterpart d/R∞ in the binary as a measure of C or F (C), since
there is a one-to-one correspondence of all these parameters. The third parameter
is the mass M1 of the primary. This choice may appear redundant because M1
scaled out from the Roche model itself (being represented just by the mass ratio
q). However, other important details of the stellar structure, such as the existence
and location of the convective zones, do additionally depend on M1 uniquely.
Therefore, we need to add M1 as an independent parameter.

In the next few Sections 4.1 to 4.5, we first fix q = 0.5 and consider different
geometric configurations by changing the fill-out factor F or d. We also consider
the dependence of the results on the exterior boundary conditions for the stellar
model and different M1 values. Next, we explore results for other q values, roughly
bracketing the range of the observed systems (i.e., from 0.1 to 1).

Finally in Section 4.6, we try to connect our results with observations pouring
out from sky surveys in the past decade. Due to the simplicity of our model, this
part should be considered as a hint for avenues to be studied in the future by
more complete approaches rather than a definitive solution.

4.1 Detached configuration
A sample model of a 1 M⊙ star with a 0.5 M⊙ companion in the detached
configuration with a separation of d = 2.5 R⊙ (corresponding to a fill-out factor
F of roughly 0.9 and a binary period of ≃ 0.25 d) is shown in Fig. 4.1, where it
is compared with a non-deformed spherical star of the same mass. The first two
panels show the profile of the temperature and density in the upper layers of the
star. Luminosity is shown throughout the whole star as the variability is negligible
in the final interval. The last two panels show the behavior of the correction
factors fp and fT . The spherical model has them equal to unity throughout the
whole volume by definition, but the tidally deformed model has fp ≃ fT ≃ 1 only
at the very center of the star. Both values become gradually smaller than unity
as the equipotentials start to deviate from spheres near the surface.

Overall, the tidal deformation effects on the internal structure of the primary
are not too significant in this case. This is because the system is well detached
and the deformation is not too large. Note the minimum value of fp is only ≃ 0.94
(Fig. 4.1).
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Figure 4.1: Internal structure of a spherical (blue) and tidally deformed (red) star
in a detached configuration with M1 = 1 M⊙, q = 0.5 and F ≃ 0.9. From top left
to bottom right, the panels show: the temperature (in K), the density (in g/cm3),
the luminosity (in L⊙), the opacity (in cm2/g), and the correction factors fp and
fT in the last row. All variables are shown as a function of the mass MΨ inside a
given Roche equipotential normalized by the total mass of the star M = 1 M⊙.

4.2 Contact configuration
Next, we consider a more extreme case of a contact binary in a common envelope
configuration. We keep the masses 1 M⊙ with a 0.5 M⊙ for the primary and the
secondary components, thence q = 0.5, but set their separation to d = 1.7 R⊙
only. These parameters define a contact configuration with F ≃ 1.4 and a binary
period of ≃ 0.14 d. Figure 4.2 shows behaviour of selected variables inside the
primary, which can be directly compared to Fig. 4.1. There is only a certain
difference to be noted on the scale shown (though more than in Fig. 4.1), apart
from a behavior of the correction factors fp and fT which now drop to significant
minima fp ≃ 0.84 and fT ≃ 0.62 at the inner critical equipotential of the Roche
model. Note that the total mass of the common envelope in our model is tiny,
only ≃ 0.001 − 0.002 M⊙. Given the typically huge mass concentration towards
the center of stars, this is not that surprising.
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Figure 4.2: Internal structure of a spherical (blue) and tidally deformed (red) star
in a contact configuration with M1 = 1 M⊙, q = 0.5 and F ≃ 1.4. From top left
to bottom right, the panels show: the temperature (in K), the density (in g/cm3),
the luminosity (in L⊙), the opacity (in cm2/g), and the correction factors fp and
fT in the last row. All variables are shown as a function of the mass MΨ inside a
given Roche equipotential normalized by the total mass of the star M = 1 M⊙.
The inner critical equipotential of the Roche model is located at the minima of fp
and fT .

4.2.1 Conditions at Roche lobe overflow
In contact configurations, some equipotential parameters change discontinuously,
or at least discontinuously in the first derivative at the Roche lobe equipotential.
Naturally, when adding the second star, the surface area, the average gravity, and
average inverse gravity all experience a discontinuity at this point. Recalling our
approximation discussed in Sec. 2.2, we subtract the volume of the secondary
Roche lobe from the overfilling equipotentials, making thus the effective radius
rΨ continuous, and we also do not increment MΨ by the secondary mass at that
point. In the same way, the luminosity from the secondary is added to the primary
budget of LΨ. Nevertheless, the role of these apparent discontinuities in some of
the model parameters warrants a comment, as they may potentially trouble the
solution of the internal structure.
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Denote the surface area, average gravity, and average inverse gravity as in
Chapter 2. Then using index 1 for the primary Roche lobe, index 2 for the
secondary Roche lobe, and primed variables for parameters corresponding to the
first equipotential of the common envelope just above the Roche lobes, we can
approximate the boundary conditions at Roche lobe overflow as follows

S ′
⟨︂
g−1′

⟩︂
≃ S1

⟨︂
g−1

⟩︂
1

+ S2
⟨︂
g−1

⟩︂
2

, (4.1)

and analogously for the gravity ⟨g⟩. In our model, the radius does not change.
Inserting this estimate into equations (2.6) and (2.10) for the correction factors,
one obtains

f ′
p = 4πrψ

4

GMψSψ

1
⟨g−1⟩

≃ fp [(1 + M2/M1)(1 + S2/S1)]−1 < fp, (4.2)

f ′
T =

(︄
4πr2

ψ

Sψ

)︄2 1
⟨g⟩ ⟨g−1⟩

≃ fT

[︄
1 + S2⟨g⟩2

S1⟨g⟩1

]︄−1 [︄
1 + S2⟨g−1⟩2

S1⟨g−1⟩1

]︄−1

< fT , (4.3)

where fp and fT on the right hand sides of these equations are the values for
the inner critical equipotential of the Roche model. We can clearly see that
both correction factors will drop above the inner critical equipotential, and the
significance of the jump depends on the mass ratio and mainly the ratio of Roche
lobe surfaces. Usually, the jump will be more significant in fT than fp (see Fig. 2.3).
The magnitude of most of the computed jumps are in accordance with estimates
in Eqs. 4.2 and 4.3 within 10-20%.

However, in the case of our model, which does not use a single Roche potential
(see the last paragraph in Sec. 2.2), the discontinuities apparently smoothen out
when compared to the equations above. Due to the relaxation procedure, all
the thermodynamical quantities do not experience any discontinuities or even
discontinuities in their derivative. The jump in fp than fT also gets smoothened
out, leaving just a discontinuity in the derivative. This is in contrast with
conclusions in several references mentioned in Chapter 1, where the effects such as
density inversion zones in the common envelope were predicted. Regardless, it is
interesting to see that hydrodynamically and thermally stable common envelope
models are possible without derivative discontinuities.

4.2.2 Relevance of boundary conditions
To examine the effect of the exterior boundary conditions, models with standard
boundary conditions were compared with those derived in Section 3.3.1. To keep
things simple, in particular, to distill the proper effects of boundary conditions,
we used the same contact configuration as in Section 4.2, namely M1 = 1 M⊙,
q = 0.5, and F = 1.4. We only changed the exterior boundary conditions of the
model. Therefore, we used our improved set, basically replotting the red profiles
from Fig. 4.2, and compared it with the standard, simplified set. Results are
shown in Fig. 4.3. The differences are tiny, except for the fact that the model
with the standard boundary conditions appears to predict about twice as much
mass in the common envelope if compared to the new model.
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Figure 4.3: The role of the old (blue) and new (red) formulation of the exterior
boundary conditions on the internal structure of a star in a contact configuration
with M1 = 1 M⊙, q = 0.5 and F ≃ 1.4. From top left to bottom right, the
panels show: the temperature (in K), the density (in g/cm3), the luminosity (in
L⊙), the opacity (in cm2/g), and the correction factors fp and fT in the last
row. All variables are shown as a function of the mass MΨ inside a given Roche
equipotential normalized by the total mass of the star M = 1 M⊙. The inner
critical equipotential of the Roche model is located at the minima of fp and fT .

4.3 Geometric effects in convective structure
Tidal deformation can significantly modify and adjust the thickness and configu-
ration of convective and radiative zones in stars. In MESA, the Ledoux criterion
(Ledoux [1947]) is generally used to determine whether a particular zone in the
star is convective or radiative. To keep things simple, we shall, however, assume
local chemical homogeneity. In this situation, the Ledoux criterion takes the
classical (and simpler) Schwarzschild form.

Within the Kippenhahn averaging formalism, the traditional radiative gradient
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of the energy transport is modified by a multiplicative factor fT/fp (Eq. (2.11)).
The adiabatic gradient is local and no modifications are needed. Therefore, the
onset of convection occurs when

∇ad < ∇rad
fT
fp

, (4.4)

where ∇ad and ∇rad are the adiabatic and radiative temperature gradients. The
former depends principally on the equation of state assumed, and MESA code
has its own routines to handle it. The latter is given readily by Eq. (1.1). For
sake of completeness, we note that the additional, geometric factor fT/fp can be
rewritten in terms of equipotential parameters

fT
fp

= 4πGMψ

Sψgψ
. (4.5)

It turns out that the configurations with the fill-out factor F ≥ 1, namely in
the common envelope state, fT/fp < 1 typically. Finally, we note the important
parametric dependence of (i) ∇rad ∝ κ on the opacity κ, and (ii) ∇ad ∝ c−1

P on
the heat capacity cP . Convection is thus promoted by either large κ or large cP
values. Especially the first case is important for the surface layers of star models
we are dealing with.
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Figure 4.4: Illustration of radiative and adiabatic gradients in spherical and tidally
deformed stars (the radiative gradient contains the correction-factor term fT/fp
in the tidally deformed case). We can clearly see that the biggest change is in the
radiative gradient, associated with a significant increase in opacity in the tidally
deformed model. The subsurface convection layer is therefore deeper in this case.

A closer look at the adiabatic and radiative gradients is shown in Fig. 4.4. The
value of these gradients in the surface layers representing the last 25% of the star
in terms of mass is shown for the contact system with the same parameters as
in Fig. 4.2 (M1 = 1 M⊙, q = 0.5 and F ≃ 1.4). Dashed lines show the gradients
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for the spherical star, whereas full lines are gradients of the tidally deformed
contact configuration. The adiabatic gradients shown in blue coincide very closely
throughout the whole star. The radiative gradients, however, differ significantly
in the last 20% of the star in terms of mass coordinate. We may note that the
subsurface convection onsets earlier in the tidally deformed model than in the
spherically symmetric model of an isolated star.

A detail of the behavior of the surface convective layer for a 1 M⊙ star tidally
deformed by a 0.5 M⊙ companion is shown in Fig. 4.5. Interestingly, as the
secondary gets closer, the thickness of the convective layer increases. The most
significant gradient in the depth of the convective zone occurs near the inner critical
configuration. For a typical contact state, the mass of the surface convective zone
roughly doubles that of the isolated star.
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Figure 4.5: Example of the behavior of the surface convective layer (violet) over a
radiative deeper zone (yellow) for a star of mass 1 M⊙ tidally deformed by a 0.5
M⊙ companion (q = 0.5). The abscissa shows the separation d of the two stars
(normalized to the radius R∞ of a non-deformed, isolated star) and the ordinate
shows the mass MΨ within the near-surface equipotentials of the primary expressed
in the total stellar mass. In our approach, only the structure of the primary is
modelled, while the secondary is a point mass. The sequence of models from right
to left in the figure corresponds first to a detached state with the primary only
deformed by the secondary. After overflowing its Roche lobe (shown by the red
vertical line), the system transitions into a common envelope configuration. The
leftmost state corresponds to a near common envelope overflow phase - fill-out
factor F ≃ 2. The subsurface convective zone becomes deeper in the common
envelope phase.
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4.4 Analysis for q = 0.5
An analysis of tidally deformed stellar models was made for twenty-five different
masses M1 ranging from 0.3 to 5 M⊙, with a majority covering the interval of
1 − 1.5 M⊙ which is the most interesting range. Models of different separations,
thus fill-out factors, were examined.
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Figure 4.6: The effective temperature as a function of the separation d of the two
stars (normalized to the radius R∞ of a non-deformed, isolated star) is plotted
for systems with mass ratio q = 0.5 and M1 = 1 M⊙. The onset of the two key
configurations - the Roche lobe overflow and the common envelope overflow -
are shown with dotted and dashed lines respectively. Note the rapid drop of the
effective temperature as soon as the mass starts to overflow the Roche lobe. While
the temperature increases along the common envelope configuration sequence with
an increasing fill-out factor, it still remains by more than 350 K smaller than the
asymptotic value corresponding to the isolated primary.

Before we overview results for the range of stellar mass, we first get an insight
from a configuration of M1 = 1 M⊙ primary accompanied with a secondary of 0.5
M⊙ mass (thus q = 0.5). We follow a sequence of binaries in which we change the
separation d from d/R∞ = 10 to the smallest possible value for which the binary
start to overflow the outer critical Roche equipotential at L2 point. Put in other
words, the sequence also corresponds to configurations with the fill-out factor
ranging basically from 0 to 2. In Fig. 4.6 we plot the effective temperature Teff of
the primary as a function of d. Obviously, at large separation the tidal effect of
the secondary is tiny and the star behaves like an isolated object (see the reference
temperature in Fig. 3.1). As the primary becomes deformed at smaller separations,
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Teff decreases. This is likely because of the surface area of the deformed primary
increases. This effect accelerates at the inner critical equipotential configuration
(F = 1), for which the drop in Teff with respect to its isolated counterpart is
≃ 350 K. This is perhaps again the effect of a rapid expansion of the exterior
surface of the contact binary. As the components continue to be closer to each
other, the fill-out factor increases to 2, and Teff starts slightly increasing. Not only
does the exterior surface slightly compactify, but the effect may also be due to
the gradually deeper subsurface convection zone that brings hotter material from
deeper layers to the surface.

2 4 6 8
d/R

4000

6000

8000

10000

12000

14000

T e
ff/
K

CE overflow
RL overflow

1

2

3

4

5

M
/M

Figure 4.7: The effective temperature as a function of the separation d of the
two stars (normalized to the radius R∞ of a non-deformed, isolated star). This
is similar to Fig. 4.6, but now shown for various masses M1 in between 0.3 M⊙
to 5 M⊙ (all binaries assumed to have q = 0.5). The Roche lobe overflow limit
is shown with a dotted line, common envelope overflow limit with a dashed line
(terminal configuration of our models). The temperature drop at the inner critical
limit appears to be much larger for more massive stars.
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In Fig. 4.7 the Teff versus d dependence illustrated in Fig. 4.6 is plotted for
the whole range of primary masses M1, namely in between 0.3 M⊙ to 5 M⊙.
There are obvious similarities and also interesting differences for different M1
values. First, Teff always decreases with decreasing d, having a major drop at the
binary configuration corresponding to the inner critical case. Below this distance,
Teff tends to increase. However, the effect is much smaller for low-mass stars.
Additionally, the progression towards the high-mass stars is not a continuous
increase of the effect. This is because the effects become anomalously small again
when M1 ≃ 1.3 M⊙, before steadily increasing for larger M1.
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Figure 4.8: The difference between the effective temperature Teff of the relaxed,
tidally deformed model and that of the isolated, spherical model from Fig. 3.1 with
the same mass (at the abscissa). Different curves for different separations in the
binary configuration with q = 0.5 (color-coded using the bar at the right). Different
separations map uniquely onto configurations with different fill-out factors. At
the largest separation (dark red) the difference is essentially zero since the star is
very close to its spherical state. Note the significant jump in temperature near
the inner critical Roche limit (blue curves and separation d/R∞ ≃ 2.25). This
effect appears to be suppressed for stars with M1 in the 1 M⊙ to 1.6 M⊙ range, in
which the quasi-linear dependence Teff − T0 ∝ M1 at each separation is disrupted
by significant a bump.

This behaviour is actually better seen on Fig. 4.8, where we show a difference
Teff − T0 as a function of M1 (T0 is the effective temperature of the reference
spherical model of a star with mass M1 at d → ∞). This comparison fully extracts
only the effect of tidal deformation. The different, color-coded curves are now for
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different d values. For M1 in the 1 M⊙ to 1.6 M⊙ range, the changes of effective
temperature with d are suppressed and stay quite small.

There is a significant feature around 1.2 M⊙, where the temperatures experience
a jump. The larger the fill-out factor, the more significant the jump is. This
phenomenon is closely related to the Kraft break mentioned and thoroughly
discussed in section 4.6.1.

4.5 Additional analysis for q = 0.1 and q = 1
A less detailed analysis has been conducted for mass ratios q which represent
the endpoints of the observed range of contact binary systems. Although most
of contact binaries have been observed to have q ≃ 0.3, their observed values
range from ≃ 0.1 to unity [theoretically, the q values could be as small as 0.03,
Pešta and Pejcha, 2022, but it is not clear whether they would be observationally
detectable]. At this moment, we use q = 0.1 and q = 1 cases.

In Figs. 4.9, the effective temperatures for models with different separations
are shown in systems with mass ratio 0.1. Although the relation roughly follows
the one for more standard mass ratio (Fig. 4.6)), the correlation between the
fill-out factor and effective temperature for contact configuration systems is much
less clear. First, the temperature drop at the inner critical configuration is smaller
(≃ 300 K here). Second, for fill-out factors larger than 1.5, the temperature attains
a value basically equal to that of a spherical star of the same mass. In fact, both
may be expected, since the secondary is small compared to the primary and does
not deform the geometry much.

In Figs. 4.10, the effective temperatures for models with different separations
are shown in systems with mass ratio 1, i.e., two equal solar mass stars. Here the
temperatures of models in the common envelope configuration exhibit very different
behavior. Beyond the inner critical configuration, the effective temperature
appears to be approximately constant. We do not have a simple explanation of
this behavior, but the geometry of the surface layers is the most extreme of the
studied cases and the correction factors fp and fT most severely deviate from
unity (see Figs. 2.5 and 2.4). We also recall that the luminosity of the companion
star is not added to our solution, which may be the most serious drawback in
the equal-mass (q = 1) case. So in reality, Teff may be increasing towards the
outer critical configuration. We also noted that in these more extreme mass ratios
(discussed in this Section), the models are generally less stable and undergo a
kind of oscillations of the TRO type. For this reason, models of contact systems
near critical configurations should be taken with caution.

In order to show that the comparison in the next section is consistent for all
mass ratios that are observed. For every situation, the temperature correlated
positively with the fill-out factor in contact configurations. For a constant fill-
out factor in the common envelope, it seems that there is a negative correlation
between the effective temperature of the primary with the mass ratio of the system.
This relation is discussed in the next sections of this chapter.
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Figure 4.9: The effective temperature as a function of the separation d of the two
stars (normalized to the radius R∞ of a non-deformed, isolated star) is plotted
for systems with mass ratio q = 0.1 and M1 = 1 M⊙. The onset of the two key
configurations - the Roche lobe overflow and the common envelope overflow -
are shown with dotted and dashed lines respectively. Note the rapid drop of the
effective temperature as soon as the mass starts to overflow the Roche lobe. In
this case, however, the common envelope configurations with the fill-out factor
≥ 1.5 have their effective temperature resembling that of the asymptotic value
corresponding to the isolated primary.

4.6 Observational connections
While this thesis serves mainly as a proof of concept of the new method of
modelling tidally deformed stars, we mentioned already in the introduction that
ideally we also aim at making some connections with recent observational data.
This motivation is explored more thoroughly in this section.

4.6.1 Connection to Kraft break and ASSASN survey data
The recent paper by Jayasinghe et al. [2020] presented an analysis of W UMa
type contact binaries using All Sky Automated Survey for SuperNovae (ASSASN),
complementing them with archival data from Gaia, 2MASS, AllWISE, LAMOST,
GALAH, RAVE, and APOGEE surveys. The final set of about 71200 systems
included over 12000 new discoveries and represents the most extensive compilation
so far.

While studying different aspects of the sample of contact binaries, a clear
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Figure 4.10: The effective temperature as a function of the separation d of the two
stars (normalized to the radius R∞ of a non-deformed, isolated star) is plotted
for systems with mass ratio q = 1 and M1 = 1 M⊙. The onset of the two key
configurations - the Roche lobe overflow and the common envelope overflow -
are shown with dotted and dashed lines respectively. Note the rapid drop of the
effective temperature as soon as the mass starts to overflow the Roche lobe. In
this case, however, in the common envelope configuration phase, the temperature
stagnates at about the same level.

dichotomy was noted in the effective temperature Teff (in K) vs orbital period P
(in d) space. The approximate line described by

Teff = 6710 − 1760 log(P/0.5), (4.6)

separates the two populations. The hotter population has a systematically longer
period, whereas the opposite trend is observed for the colder population (we will
follow the nomenclature of the paper and call the hotter population the early type
population and the cooler population the late type population.). The authors
argue that Eq. (4.6) provides a much clearer distinction between early and late
type systems than the criterion based on the period P (in d)

log P = −0.25, (4.7)

which has been traditionally used in the literature.
It has also been conjectured that the dichotomy is caused by effects related

to the Kraft break - the abrupt spindown in stellar rotation at about 6200 K.
This break is commonly explained by magnetic dynamos operating in the upper
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stellar layers and allowing to transfer rotational angular momentum to winds in
a process commonly referred to as magnetic braking [e.g., Matt et al., 2012]. In
the case of main sequence single (isolated) massive and hot stars do not have
deep convective envelopes, so the magnetic braking process is inefficient, and
indeed they are observed to rotate fast. On the contrary, low mass and cooler
stars develop a significant subsurface convective layer and their rotation is slow
(recall the case of the Sun). Even though this hypothesis is based on an order of
magnitude calculations and is still being developed towards a more rigorous model,
it is by far the leading explanation of the Kraft break. From the observational
side, El-Badry et al. [2022] found evidence of the saturation of magnetic fields
and confirmed magnetic braking predictions for new models where the torque is
inversely proportional to the period, by looking at the distribution of periods for
eclipsing binaries.

However, the way how the mechanism works in contact binary systems is more
of a mystery. Note that the picture provided by observations is actually reversed:
the hotter systems tend to have longer orbital periods, while the cooler systems
tend to have shorter orbital periods. The intriguing point is that the division
occurs at about the same effective temperature of 6200 K. As in the case of single
stars, a thorough (possibly 3D magnetohydrodynamic) model would be necessary
to account for all the complex processes, including the magnetized winds escaping
from the systems. However, the simple models developed in this thesis could at
least shed some light on the principal parameters that could eventually point in
the direction of the resolution of the problem.

In this thesis, we do not include modelling of the stellar wind. A fundamental
parameter allowing the magnetic dynamo to operate and to promote the magnetic
breaking process is, however, the depth of the surface convective layer. We
observed that in all tidally deformed models, the thickness of this layer increased
when compared to their spherical counterparts. The thickness also increased when
the orbital period of the binary decreased (i.e., the two components were put closer
to each other), and therefore the fill-out factor of the contact binary increased. If
confirmed by more complex models, this effect could point to magnetic braking
having an even stronger effect in contact binaries. That being said, many other
parameters come into play, such as very different and anisotropic mass loss of
contact binaries. This means that even with thicker convective layers, the overall
braking effect could be smaller. Unfortunately, its estimates in theoretical models
are still quite uncertain, and without them, the debate cannot be concluded.

Regardless of the specific mechanism, the tidal deformation effect alone showed
a feature similar to the temperature gap from Jayasinghe et al. [2020]. In Fig. 4.8,
the feature around 1.2 M⊙ could represent the sudden increase in temperature
corresponding to the gap.

An interesting prediction of models developed in this thesis is the relation
between the fill-out factor and effective temperature described in Sections 4.4 and
4.5.
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4.6.2 Observational evidence about fill-out factors of con-
tact binaries

Regarding efforts to get as complete parameters of contact binary systems as
possible from the observations, studies as Yakut and Eggleton [2005] attempted
to combine a wide range of data. However, a typical problem was the data
inhomogeneity, mainly due to the various instrumental accuracy. As a result,
these works did not reach convincing and justifiable conclusions.

Luckily, powerful modern survey programs in astronomy have changed the
game over the past decade or so. As an example, Kobulnicky et al. [2022] conducted
a Bayesian analysis of close binary parameters from the Kepler survey. Light
curves were fitted with a model accounting for the main system parameters - the
period, the derivative of the period, orbital inclination, mass ratio, fill-out factor,
and the ratio of the individual temperatures. Observed objects were classified by
several parameters into detached, contact, and ambiguous models. In order to be
considered contact systems, the root mean square error of a contact configuration
model had to be less than 0.005 (and smaller than that of any detached model),
and the radius of either star had to be larger than 95% of the Roche lobe radius
appropriate to the respective Roche potential. Out of the 783 total objects, these
criteria yielded 173 probable contact systems, 114 probable detached systems,
and 491 ambiguous systems. One of the fitted parameters in their work was the
fill-out factor F (Eq. (2.17)), an important parameter in our models. Interestingly,
Kobulnicky et al. [2022] missed to correlate their results with F , yet we argue
below it may potentially lead to surprising results. In particular, we split the
stars into populations below and above the Kraft break, approximately below and
above the effective temperature of 6200 K. We then analyzed the fill-out factor
in each of these categories separately. Due to a small sample of sure contact
configurations, the ambiguous category was also considered, as many systems
are probable contact systems only with a slightly smaller degree of certainty. In
Fig. 4.11 differential and cumulative distributions of F for both populations are
displayed and compared to each other.

We can see that contact binaries in the second (hotter) population have
systematically larger fill-out factors than those in the first (cooler) population
(having median values of F equal to ∼ 0.7 and ∼ 0.47, respectively). This
discrepancy has been pointed towards before by Mochnacki [1981]. Furthermore,
about 20% of the systems from the second population have a very large fill-out
factor - over 1.9. We should, however, admit that this result is partly suspicious
and may not be accurate, since a large mass loss starts occurring well before the
common envelope is filled up to these values. Among others, Ruciński [1973]
predicts that the average fill-out should be around 1.25. However, we do not have
tools to verify and/or improve these results.

To quantify the significance of the difference in cumulative distributions shown
in Fig. 4.11, the Kolmogorov-Smirnov test was used. This is a standard statistical
method applied to determine whether the two cumulative sets of data are drawn
from the same probability distribution or not. This method gave a statistical
value of 0.180 and a p-value of 2.56 × 10−4 of the null hypothesis, rejecting thus
similarity of the two distributions.

Another interesting result from the work of Kobulnicky et al. [2022] concerns
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Figure 4.11: Cumulative (cdf, top) and differential (pdf, bottom) probability
density distribution function of the fill-out factor of the early type (blue) and
late type (red) populations of Kepler contact binaries. Kolmogorov-Smirnov test
on the cumulative functions hints the two sets are not drawn from the same
probability distribution.

the typical mass ratio q of the contact binaries. Dividing the sample again into
the early and late type contact binaries, Fig. 4.12 shows the probability density
distribution of q for the two groups separately. Clearly, a typical value for the early
type binaries is smaller (median q about 0.31) than that of the late type binaries
(median q about 0.435). Pešta and Pejcha [2022] predicts a similar dichotomy
in median mass ratios for the warmer versus colder stellar populations, however,
the actual predicted distribution is very different, and much less flat. Combined
with the finding of section 4.5, this discrepancy could also play a role in the gap
observed from Jayasinghe et al. [2020].

We should, however, caution the reader that these results do not represent a
rigorous analysis and thus no hasty conclusions should be made. They should
be taken simply as an interesting direction of thought for further, more complex
modeling of contact binary systems.
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Figure 4.12: Probability density distribution of the mass ratio q for the early type
(blue) and late type (red) populations of Kepler contact binaries. The early type
systems seem to have systematically smaller q values.
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5. Discussions
In this chapter, possible extensions of the model presented in this Thesis are
discussed, alongside of interesting applications in seemingly unrelated directions.

5.1 Possible application to binary interaction in
classical novae

The application of our model could be extended towards other astrophysical
phenomena where a common envelope forms and the interaction with the secondary
is limited mainly towards the effects of tidal deformation. A good example of this
situation is the binary interaction phase before classical novae. This is a situation
when a main sequence star or a red giant and a white dwarf orbit in a binary
system close enough so that matter starts accreting on the white dwarf. This
creates an atmosphere that gets heated by the white dwarf and rapidly expands
encircling the other star. For a more thorough review of the topic, see Bode and
Evans [2008]. Effectively, plasma with very different entropies does not interact,
so this model could be used to model hot flow around the main sequence star, as
this envelope has significantly higher entropy than the star. The star effectively
acts as a hole analogously to the secondary in our work above.

Shen and Quataert [2022] found that most of the mass loss happens within
binary evolution and that this interaction phase can last much longer than was
previously expected. Only after the region of acceleration recedes within the
Roche lobe radius of the white dwarf. Modelling this phase is crucial to create
population synthesis estimates for novae rates.

5.2 Analogy with effects in massive star evolu-
tion

In this thesis, only low-mass binaries were explored. Massive stars can have
completely different structure due to different physical phenomena in action, and
this could also have interesting implications for the behaviour of massive contact
configurations. As mentioned in Sec. 2.4, there are only 12 contact binaries
observed with masses over 15 M⊙. Available models suggest that a much greater
fraction of massive short-period binaries evolve to a contact phase than low mass
W UMa systems.

An interesting aspect of massive stars is the possibility of enhanced opacity
due to iron (or iron-group) atoms in the upper layers of the atmosphere. This may
lead to the formation of a small surface convective layer, analogous to the one
present in low mass stars (Chapter 4). Recall that the tidal interaction explored in
this Thesis significantly altered the parameters of the surface layer, and it would
be interesting to understand this behaviour in massive stars. In a paper, Jiang
et al. [2015], interesting behaviour of convective and radiative zones around the
iron peak was found, alongside oscillatory behaviours. These oscillations could be
somewhat analogical to TRO oscillations mentioned in chapter 1.
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5.3 Future work
Exploring the range of massive stars would be an interesting direction to follow,
as discussed in the previous section.

Understanding the limitations of our approach in modelling the structure of
the contact binaries is an important task for future work. The 1D approximation
is definitely not sufficient to make fully accurate predictions about contact binary
systems due to the absence of symmetry compared to single stars. Ultimately, full
3D magneto-hydrodynamical simulations will be needed to grasp all effects.

The models presented in this Thesis deal only with the tidal deformation
(geometric) aspects of the problem. Still, introducing the corresponding correction
factors into the equations of stellar structure, even some physical features (such as
the presence and location of the convective layers) were changed. The next step,
still within the 1D approach, might be to implement the effects of the secondary
more fully. For instance, one could imagine estimating and implementing the
radiative energy flux at the secondary Roche lobe contributing to the structure
of the primary. Intuitively, this would be especially important for systems with
sizeable secondaries, namely when q is close to unity. The luminosity of the
secondary then basically equals that of the primary, and so far our models are
missing this contribution. One may wonder how this change would modify the
structure of the common envelope.

There are many effects of binary systems and of stellar evolution in general, that
are not considered in this model. Mass transfer seems to play a key role in contact
binary stellar evolution, as well as in the stability of stationary configurations.
The models developed in this thesis are not well suited for mass transfer, as the
boundary between stars is the whole secondary Roche lobe. Boundary conditions
at the critical equipotential could be defined to dynamically vary the mass ratio
of the system. Alongside mass transfer, energy transfer has to also play a key
role in the evolution and stability of contact binaries. The increased thickness of
the convective surface layer in our models could hint at larger meridional flows
around the binary as predicted by Kahler, or some different mixing effects in the
common envelope distributing energy so that the ratio of the temperatures of the
two components stays close to unity. A different approach will be taken by Fabry
et al. [2022], whose way of separating the two stars in the contact binary system
is very well suited for energy transfer between the two stars with simple boundary
conditions.

The aim of this Thesis was only to construct thermally and hydrostatically sta-
tionary models. A natural step further is stellar evolution. On nuclear timescales,
the integrated effects of the phenomena mentioned in the paragraphs above could
change the model completely. Nuclear evolution changes the chemical composition
of the star significantly, which would have to be taken into account, as well as
the evolution changes in secondary. This could be done for example by varying
the boundary conditions at the critical equipotential in time by either only some
preset conditions, or through more advanced dynamical modelling depending on
the boundary parameters.

Regarding the observational comparisons - to make bolder claims and to
explain observational data around the Kraft break, winds and a model of magnetic
braking would be needed as discussed in section 4.6.1.
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Conclusions
Recently, observations of contact binary stars from Jayasinghe et al. [2020] showed
a clear dichotomy with a gap between two populations in effective temperatures.
In this thesis, new models of these systems are created to explain this gap.

The Kippenhahn averaging formalism was successfully applied to the Roche
potential and used to formulate approximate models of tidally deformed primaries
in close binary systems. The models were constructed by modifying classical
stellar structure equations with correction factors due to the geometry of tidal
effects. These correction factors were obtained by generating large tables of
integrated quantities of the Roche potential. Effectively, the contact binary is
a single significantly deformed star tidally deformed by a point mass creating a
notional hole inside the star.

We considered both the detached and the contact configurations. These
tidally deformed models are thermally stable if chemical composition evolution
is neglected. We explored the parametric dependence of the results on three
quantities: mass ratio q in the binary, surface equipotential C of the primary (or
the fill-out factor F (C)), and mass M1 of the primary.

In all models of tidally deformed stars, the deformation lowered the effective
temperature of the star in comparison with the spherical counterpart. For detached
configurations, this effect is increased with increasing fill-out up towards Roche
lobe overflow.

For contact configurations, models developed in this thesis predicted a positive
correlation of temperature with the fill-out factor all the way to common envelope
overflow. This coincides with a similar trend obtained from processing observa-
tional data from Kobulnicky et al. [2022]. Here, fill-out factors were compared for
the two distinct populations from Kobulnicky et al. [2022]. This analysis shows
that the second population has a systematically higher fill-out factor, which could
lead to a systematically higher temperature.

Another finding from models is the correlation between the mass ratio and the
tidal deformation effect on temperature (and therefore smaller temperature). Small
mass ratio contact binaries are closer to their spherical counterparts than systems
with mass ratios close to 1. This means that the tidal effect on temperature is
smaller. The effect was only tested on three mass ratios, more tests would be
needed for more direct conclusions. The findings from observational data show a
systematic difference in the mass ratio of the two populations.

Finally, when isolating the effect of tidal deformation, we saw a jump in
temperatures around 1.2 M⊙ for most fill-out factors, most pronounced for fill-out
factors around Roche lobe overflow.

The three effects mentioned in the last three paragraphs successfully reproduced,
on a qualitative level, the gap described by Jayasinghe et al. [2020].

In all models, the thickness of the surface convective layer present in low
mass stars increased with increasing tidal deformation, with the greatest increase
happening when overflowing its Roche lobe. The cause is found to be a significant
increase in opacity in this reason due to deformation effects. This layer seems to
play a key role in the complete quantitative explanation of the effects found in
the models developed in this thesis.
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Full 3D magnetohydrodynamic models would be needed for a complete descrip-
tion of the functioning of contact binary stars. However, even simple models like
those developed in this thesis can point in the directions of interesting phenomena
in such complex systems as contact binary stars.
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A. Geometry of equipotential
integrations
In this appendix, some of the integration formulas are derived and some problems
with the geometrical configuration are discussed. The equipotential surfaces

Ψ(x, y, z) = 2
1 + q

1
(x2 + y2 + z2)1/2 + 2q

1 + q

1
[(x − 1)2 + y2 + z2]1/2 +

(︄
x − q

1 + q

)︄2

+ y2 = C

(A.1)

of the Roche model are fundamental to our analysis. In our work, we are primarily
interested in a subset determined by C ranging from infinity to C2 that corresponds
to the second Lagrangian point L2. The second parameter q, the mass ratio of
the two stars in the binary, is a positive real number (Eq. (2.16)).

Given a point (x, y, z) at the equipotential, we define local acceleration in a
usual way as a gradient of Ψ. The corresponding norm reads (Eq. (2.3))

g = ∥∇Ψ∥ =
√︂

(Ψ,x)2 + (Ψ,y)2 + (Ψ,z)2, (A.2)

where the indexes denote the partial derivative along the three Cartesian axes (i.e.,
Ψ,x = ∂Ψ/∂x, etc.). The value of g is always nonzero except the five critical points
of the equipotentials, including L1 and L2 relevant for our work. Conceptually,
these points are equilibria for a test mass, where the gravitational attraction by
the primaries is compensated by the centrifugal effects if the rotating frame. We
easily obtain

Ψ,x = 2
(︄

x − q

1 + q

)︄
− 2

1 + q

{︄
x

(x2 + y2 + z2)3/2 + q(x − 1)
[(x − 1)2 + y2 + z2]3/2

}︄
,

Ψ,y = 2y − 2y

1 + q

{︄
1

(x2 + y2 + z2)3/2 + q

[(x − 1)2 + y2 + z2]3/2

}︄
, (A.3)

Ψ,z = − 2z

1 + q

{︄
1

(x2 + y2 + z2)3/2 + q

[(x − 1)2 + y2 + z2]3/2

}︄
.

Note that roots of Ψ,x = 0, when y = z = 0, provide location of the three
Lagrangian colinear points L1 to L3. While analytic solutions are available in the
form of convergent series [e.g., Szebehely, 1967], it is more efficient to determine
them numerically (especially for q values not too different from unity).

The Kippenhahn approach requires equipotential averages Eq. (2.1) to be
computed. Following Mochnacki [1984], we actually switch from Cartesian coordi-
nates (x, y, z) to a set of cylindrical coordinates (x, ρ, ϕ) such that (i) x defines
the symmetry axis, (ii) ρ is the distance from x, and (iii) ϕ is the polar angle
reckoned from z, i.e., y = ρ sin ϕ and z = ρ cos ϕ (implying y2 + z2 = ρ2). With
that choice, the equipotentials in Eq. (A.1) become functions of the cylindrical
coordinates Ψ(x, ρ, ϕ) obeying symmetries expressed by mirror reflections y → −y
and z → −z, though not the axial symmetry.

Evaluation of the surface integrals Eq. (2.1) requires a choice of two independent
curvilinear coordinates on the equipotential. Although these may be general, we
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follow Mochnacki [1984] the coordinates (x, ϕ) to also be the parameters of the
equipotential, thus dσ = s(x, ϕ) dxdϕ with some surface element function s(x, ϕ).
Using standard tools of analytical geometry of surfaces in three-dimensional space,
we obtain

s(ϕ, x) = − g(ϕ, x)ρ(ϕ, x)
Ψ,y sin ϕ + Ψ,z cos ϕ

, (A.4)

where g is the acceleration from (A.2), and the denominator may actually be
also expressed as Ψ,ρ. In fact, this result may be straightforwardly obtained
using the following simple argument. The surface element oriented outward from
the symmetry axis has an area ρ dxdϕ and outward normal nc = (0, sin ϕ, cos ϕ).
Normal to the equipotential is ns = −∇Ψ/g, where ∇Ψ = −(Ψ,x, Ψ,y, Ψ,z) (note
that the C constant decrease outward the star and then the outward normal
should have the sign minus). The infinitesimal area on the equipotential surface
thus reads (note the cosine of the tilt angle between the two unit vectors in the
denominator)

dσ = ρ dxdϕ

nc · ns
= s(ϕ, x) dxdϕ. (A.5)

As noted in Sec. 2.3.1, each equipotential Ψ(x, ρ, ϕ) = C intersects the sym-
metry axis x at two points (xmin, xmax) for all C values. The value xmin is always
negative, and this intersection is located on the symmetry axis in a direction
opposite to L2. The intersection xmax is always positive, and may be localized
in between the primaries (for C > C1, i.e., detached configuration), or beyond
the secondary (for C < C1, i.e., common envelope configuration). Having a closer
look at behaviour of the denominator of s(ϕ, x) in Eq. (A.4) near the intersection
xmin, we obtain

Ψ,y sin ϕ + Ψ,z cos ϕ ≃ 2ρ

[︄
sin2 ϕ − 1

1 + q

(︄
1
r3

1
+ q

r3
2

)︄
+ O

(︂
ρ2
)︂]︄

, (A.6)

where r1 = |xmin| and r2 = 1 + |xmin| are distances from the primaries. At the
limit ρ → 0 the evaluation of the elementary surface area dσ becomes inaccurate,
because s(ϕ, x) suffers divergence, especially for large q. This is because the ρ
factor cancels in the numerator and denominator, and the first two terms in the
bracket on the right hand side of Eq. (A.6) may cancel. This is obviously a simple
coordinate singularity, because approaching x → xmin requires dx → 0 in dσ.
Interestingly, this problem has not been reported in Mochnacki [1984], most likely
because of his choice of a too restricted range of q values.

The problem is removed by choosing a more suitable couple of curvilinear
coordinates on the equipotential near the surface intersection at xmin. For instance,
we may keep using the cylindrical coordinates, but now set (ρ, ϕ) to act as the
surface coordinates. In this case, x(ρ, ϕ) is the dependent coordinate on the
equipotential, and dσ = s′(ρ, ϕ) dρdϕ. The simple argument as above yields in
this case s′(ρ, ϕ) = gρ/Ψ,x.

Computation of the equipotential volume Vψ (the first equation in (2.18)), and
thus the equivalent radius rΨ ∝ V

1/3
Ψ , is an easier task. For obvious reasons a

number of researchers focused mainly on the case of the inner critical Roche lobe
at F = 1. Starting from Kopal [1959], others like Eggleton [1983] or Leahy and
Leahy [2015], have searched an approximate analytical formulation for rΨ(q, F = 1)
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Figure A.1: The calculated table of equivalent radii rΨ of equipotentials of the
Roche potential as a function of mass ratio log q and fill-out factor F (the values
of rΨ are non-dimensional, scaled by the distance d of the components of the
binary). This table is used for determining the appropriate fill-out factor.

that would closely match the numerically determined values (for instance near
q = 1 a linear approximation rΨ(q, F = 1) ≃ 0.38 − 0.2 log q appears to hold well).
Here we computed rΨ(q, F ) for a wide range of q values and also for the fill-out
factors in its complete interval of values in between 0 and 2. Results are shown in
Fig. A.1.

There are notable features that help us verify our results. For instance, very
near the primary the equipotentials are little spheres and then rΨ(q, F ) ∝ F in the
limit of very small F . Obviously, the slope of this linear relation decreases with
increasing log q. At F = 1 our results favourably match those of Leahy and Leahy
[2015]. There is obviously always a jump in rΨ(q, F ) when F crosses unity, as
the equipotential volume instantly increases by that of the secondary Roche lobe.
This is most significant for large log q values. Finally, rΨ(q, F ) beyond the inner
critical Roche equipotential, i.e. F > 1, is symmetric under the log q → − log q
transformation (see discussion in Sec. 2.2).
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B. MESA inlists and functions
For reasons of the reproducibility of results, some of the additional MESA inlists
are presented in this appendix.

B.1 Generating initial models
A sample appropriate inlist for generating initial models is:
&star_job

! s ee s t a r / d e f a u l t s / star_job . d e f a u l t s

! begin with a pre−main sequence model
create_pre_main_sequence_model = . f a l s e .

! save a model at the end o f the run
save_model_when_terminate = . t rue .
save_model_filename = ’10M_mid_MS. mod’

! d i s p l a y on−s c r e e n p l o t s
pgs ta r_f lag = . t rue .

/ ! end o f star_job name l i s t

&eos
! eos opt ions
! s e e eos / d e f a u l t s / eos . d e f a u l t s

/ ! end o f eos name l i s t

&kap
! kap opt ions
! s e e kap/ d e f a u l t s /kap . d e f a u l t s
use_Type2_opacities = . t rue .
Zbase = 0.02

/ ! end o f kap name l i s t

&c o n t r o l s
! s e e s t a r / d e f a u l t s / c o n t r o l s . d e f a u l t s

! s t a r t i n g s p e c i f i c a t i o n s
i n i t i a l _ m a s s = 1 .0 ! in Msun u n i t s
i n i t i a l _ z = 0.02

! opt ions f o r energy co n se r va t i o n ( see MESA V, Sec t i on 3)
use_dedt_form_of_energy_eqn = . t rue .
use_gold_tolerances = . t rue .

! stop when the s t a r nears ZAMS ( Lnuc/L > 0 . 9 9 )
Lnuc_div_L_zams_limit = 0 .99 d0
stop_near_zams = . f a l s e .
max_num_profile_models = 1000

! stop when the c e n t e r mass f r a c t i o n o f h1 drops below t h i s l i m i t
xa_centra l_lower_l imit_spec ies (1 ) = ’ h1 ’
xa_central_lower_l imit (1 ) = 0 .3
p r o f i l e _ i n t e r v a l =1

/ ! end o f c o n t r o l s name l i s t
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B.2 Relaxation
A sample appropriate inlist for relaxation procedures is:
&star_job

! s t a r t a run from a saved model
load_saved_model = . t rue .
saved_model_name = ’10M_mid_MS. mod’
init ial_model_relax_num_steps = 20

! save a model at the end o f the run
save_model_when_terminate = . t rue .
save_model_filename = ’1M_mid_MS_relaxed . mod ’

! d i s p l a y on−s c r e e n p l o t s
pgs ta r_f lag = . t rue .

new_rotation_flag = . t rue .
change_rotat ion_f lag = . t rue .

/ ! end o f star_job name l i s t

&kap
! kap opt ions
! s e e kap/ d e f a u l t s /kap . d e f a u l t s
use_Type2_opacities = . t rue .
Zbase = 0.02

/ ! end o f kap name l i s t

&c o n t r o l s
! s e e s t a r / d e f a u l t s / c o n t r o l s . d e f a u l t s

! opt ions f o r energy co n se r va t i o n
use_dedt_form_of_energy_eqn = . t rue .
set_uniform_am_nu_non_rot = . t rue .
uniform_am_nu_non_rot = 1d20
use_gold_tolerances = . t rue .

! stop when the s t a r nears ZAMS ( Lnuc/L > 0 . 9 9 )
max_age=5.1432259550089808E+009
Lnuc_div_L_zams_limit = 0 .99 d0
stop_near_zams = . f a l s e .

use_other_eval_fp_ft = . t rue .
use_other_surface_PT = . true .
dxdt_nuc_factor = 0

max_years_for_timestep =8.586525952265069E+006
p r o f i l e _ i n t e r v a l = 1
force_timestep_min_years=1e5
force_timestep_min_factor=3
max_num_profile_models=500

/ ! end o f c o n t r o l s name l i s t
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